Science.gov

Sample records for 30-m sprint performance

  1. The Effects of a 6-Week Strength Training on Critical Velocity, Anaerobic Running Distance, 30-M Sprint and Yo-Yo Intermittent Running Test Performances in Male Soccer Players

    PubMed Central

    Karsten, Bettina; Larumbe-Zabala, Eneko; Kandemir, Gokhan; Hazir, Tahir; Klose, Andreas; Naclerio, Fernando

    2016-01-01

    The objectives of this study were to examine the effects of a moderate intensity strength training on changes in critical velocity (CV), anaerobic running distance (D'), sprint performance and Yo-Yo intermittent running test (Yo-Yo IR1) performances. Methods: two recreational soccer teams were divided in a soccer training only group (SO; n = 13) and a strength and soccer training group (ST; n = 13). Both groups were tested for values of CV, D', Yo-Yo IR1 distance and 30-m sprint time on two separate occasions (pre and post intervention). The ST group performed a concurrent 6-week upper and lower body strength and soccer training, whilst the SO group performed a soccer only training. Results: after the re-test of all variables, the ST demonstrated significant improvements for both, YoYo IR1 distance (p = 0.002) and CV values (p<0.001) with no significant changes in the SO group. 30-m sprint performance were slightly improved in the ST group with significantly decreased performance times identified in the SO group (p<0.001). Values for D' were slightly reduced in both groups (ST -44.5 m, 95% CI = -90.6 to 1.6; SO -42.6 m, 95% CI = -88.7 to 3.5). Conclusions: combining a 6-week moderate strength training with soccer training significantly improves CV, Yo-Yo IR1 whilst moderately improving 30-m sprint performances in non-previously resistance trained male soccer players. Critical Velocity can be recommended to coaches as an additional valid testing tool in soccer. PMID:27015418

  2. Resisted sprints do not acutely enhance sprinting performance.

    PubMed

    Whelan, Niamh; OʼRegan, Ciaran; Harrison, Andrew J

    2014-07-01

    Sprinting speed is a vital component of successful performance in many sports. Long-term resisted sprint training has been shown to improve early acceleration performance, but the acute post-activation potentiation (PAP) effects of resisted sprinting on subsequent performance remain unclear. The purpose of this investigation was to examine the effects of resisted sprinting on sprinting and factors related to sprint performance. Twelve active males participated in a pretest involving ten 10-m sprints through dual-beam timing gates and 10-m Optojump Next System with full recovery. This provided baseline data on step rate, step length, ground contact time, and running speed over the first 6 steps of a maximum effort sprint. One week later, the participants performed three 10-m resisted sprints using a sled loaded to 25-30% body mass followed by a 10-m sprint at 1, 2, 4, 6, 8, and 10 minutes after the final resisted sprint. The data were analyzed using an adapted typical error analysis and repeated measures analysis of variance. The results using analysis of variance provided evidence of significant initial fatigue followed by the enhancement of mean step rate, contact time, reactive strength index, and running speed in 10-m sprints performed after the resisted sprinting (p > 0.05). By contrast, the typical error analysis showed that this enhancement was limited and unsystematic in nature with little clear evidence of fatigue followed by potentiation. The results using typical error data do not provide strong evidence of PAP in 10-m sprint performance after resisted sprinting.

  3. Creatine supplementation and multiple sprint running performance.

    PubMed

    Glaister, Mark; Lockey, Richard A; Abraham, Corinne S; Staerck, Allan; Goodwin, Jon E; McInnes, Gillian

    2006-05-01

    The aim of this study was to examine the effects of short-term creatine monohydrate supplementation on multiple sprint running performance. Using a double-blind research design, 42 physically active men completed a series of 3 indoor multiple sprint running trials (15 x 30 m repeated at 35-second intervals). After the first 2 trials (familiarization and baseline), subjects were matched for fatigue score before being randomly assigned to 5 days of either creatine (4 x d(-1) x 5 g creatine monohydrate + 1 g maltodextrin) or placebo (4 x d(-1) x 6 g maltodextrin) supplementation. Sprint times were recorded via twin-beam photocells, and earlobe blood samples were drawn to evaluate posttest lactate concentrations. Relative to placebo, creatine supplementation resulted in a 0.7 kg increase in body mass (95% likely range: 0.02 to 1.3 kg) and a 0.4% reduction in body fat (95% likely range: -0.2 to 0.9%). There were no significant (p > 0.05) between-group differences in multiple sprint measures of fastest time, mean time, fatigue, or posttest blood lactate concentration. Despite widespread use as an ergogenic aid in sport, the results of this study suggest that creatine monohydrate supplementation conveys no benefit to multiple sprint running performance.

  4. High performance image processing of SPRINT

    SciTech Connect

    DeGroot, T.

    1994-11-15

    This talk will describe computed tomography (CT) reconstruction using filtered back-projection on SPRINT parallel computers. CT is a computationally intensive task, typically requiring several minutes to reconstruct a 512x512 image. SPRINT and other parallel computers can be applied to CT reconstruction to reduce computation time from minutes to seconds. SPRINT is a family of massively parallel computers developed at LLNL. SPRINT-2.5 is a 128-node multiprocessor whose performance can exceed twice that of a Cray-Y/MP. SPRINT-3 will be 10 times faster. Described will be the parallel algorithms for filtered back-projection and their execution on SPRINT parallel computers.

  5. Sprint performance under heat stress: A review.

    PubMed

    Girard, O; Brocherie, F; Bishop, D J

    2015-06-01

    Training and competition in major track-and-field events, and for many team or racquet sports, often require the completion of maximal sprints in hot (>30 °C) ambient conditions. Enhanced short-term (<30 s) power output or single-sprint performance, resulting from transient heat exposure (muscle temperature rise), can be attributed to improved muscle contractility. Under heat stress, elevations in skin/core temperatures are associated with increased cardiovascular and metabolic loads in addition to decreasing voluntary muscle activation; there is also compelling evidence to suggest that large performance decrements occur when repeated-sprint exercise (consisting of brief recovery periods between sprints, usually <60 s) is performed in hot compared with cool conditions. Conversely, poorer intermittent-sprint performance (recovery periods long enough to allow near complete recovery, usually 60-300 s) in hotter conditions is solely observed when exercise induces marked hyperthermia (core temperature >39 °C). Here we also discuss strategies (heat acclimatization, precooling, hydration strategies) employed by "sprint" athletes to mitigate the negative influence of higher environmental temperatures.

  6. Acute effect of a complex training protocol of back squats on 30-m sprint times of elite male military athletes

    PubMed Central

    Ojeda, Álvaro Huerta; Ríos, Luis Chirosa; Barrilao, Rafael Guisado; Serrano, Pablo Cáceres

    2016-01-01

    [Purpose] The aim of this study was to determine the acute effect temporal of a complex training protocol on 30 meter sprint times. A secondary objective was to evaluate the fatigue indexes of military athletes. [Subjects and Methods] Seven military athletes were the subjects of this study. The variables measured were times in 30-meter sprint, and average power and peak power of squats. The intervention session with complex training consisted of 4 sets of 5 repetitions at 30% 1RM + 4 repetitions at 60% 1RM + 3 repetitions of 30 meters with 120-second rests. For the statistical analysis repeated measures of ANOVA was used, and for the post hoc analysis, student’s t-test was used. [Results] Times in 30 meter sprints showed a significant reduction between the control set and the four experimental sets, but the average power and peak power of squats did not show significant changes. [Conclusion] The results of the study show the acute positive effect of complex training, over time, in 30-meter sprint by military athletes. This effect is due to the post activation potentiation of the lower limbs’ muscles in the 30 meters sprint. PMID:27134353

  7. Speed, force, and power values produced from nonmotorized treadmill test are related to sprinting performance.

    PubMed

    Mangine, Gerald T; Hoffman, Jay R; Gonzalez, Adam M; Wells, Adam J; Townsend, Jeremy R; Jajtner, Adam R; McCormack, William P; Robinson, Edward H; Fragala, Maren S; Fukuda, David H; Stout, Jeffrey R

    2014-07-01

    The relationships between 30-m sprint time and performance on a nonmotorized treadmill (TM) test and a vertical jump test were determined in this investigation. Seventy-eight physically active men and women (22.9 ± 2.7 years; 73.0 ± 14.7 kg; 170.7 ± 10.4 cm) performed a 30-second maximal sprint on the curve nonmotorized TM after 1 familiarization trial. Pearson product-moment correlation coefficients produced significant (p ≤ 0.05) moderate to very strong relationships between 30-m sprint time and body mass (r = -0.37), %fat (r = 0.79), peak power (PP) (r = -0.59), relative PP (r = -0.42), time to peak velocity (r = -0.23) and TM sprint times at 10 m (r = 0.48), 20 m (r = 0.59), 30 m (r = 0.67), 40 m (r = 0.71), and 50 m (r = 0.75). Strong relationships between 30-m sprint time and peak (r = -0.479) and mean vertical jump power (r = -0.559) were also observed. Subsequently, stepwise regression was used to produce two 30-m sprint time prediction models from TM performance (TM1: body mass + TM data and TM2: body composition + TM data) in a validation group (n = 39), and then crossvalidated against another group (n = 39). As no significant differences were observed between these groups, data were combined (n = 72) and used to create the final prediction models (TM1: r = 0.75, standard error of the estimate (SEE) = 0.27 seconds; TM2: r = 0.84, SEE = 0.22 seconds). These final movement-specific models seem to be more accurate in predicting 30-m sprint time than derived peak (r = 0.23, SEE = 0.48 seconds) and mean vertical jump power (r = 0.31, SEE = 0.45 seconds) equations. Consequently, sprinting performance on the TM can significantly predict short-distance sprint time. It, therefore, may be used to obtain movement-specific measures of sprinting force, velocity, and power in a controlled environment from a single 30-second maximal sprinting test.

  8. Influence of Strength, Sprint Running, and Combined Strength and Sprint Running Training on Short Sprint Performance in Young Adults.

    PubMed

    Marques, M C; Gabbett, T J; Marinho, D A; Blazevich, A J; Sousa, A; van den Tillaar, R; Izquierdo, M

    2015-10-01

    The purpose of this study was to assess the degree of transference of 6 weeks of full squat vs. full squat plus sprint running training to short (ranged from 0-10 to 0-30 m) sprint running performance in non-athletes. We hypothesized that a speed-full-squat training regimen could enhance squat strength and power with simultaneous improvements in short sprint performance. 122 physically active adults (age: 20.5±2.5 years; body mass: 65.8±6.1 kg; height: 1.71±0.08 m) were randomly divided into 4 groups: full squat training (n=36), combined full squat and sprint training (n=32), speed training only (n=34) and non-training control group (n=20). Each training group completed 2 sessions per week over 6 weeks, while the control group performed only their normal physical activity. Sprint performance was improved after sprint running or full squat training alone (1.7% and 1.8% P<0.05, respectively), however larger enhancements (2.3%; P<0.01) were observed after the combined full squat plus sprint training intervention. These results suggest that in recreationally active adults, combined full squat and sprint training provides a greater stimulus for improving sprint performance than either modality alone.

  9. Effect of pre-performance lower-limb massage on thirty-meter sprint running.

    PubMed

    Goodwin, Jon E; Glaister, Mark; Howatson, Glyn; Lockey, Richard A; McInnes, Gillian

    2007-11-01

    Massage is a commonly utilized therapy within sports, frequently intended as an ergogenic aid prior to performance. However, evidence as to the efficacy of massage in this respect is lacking, and massage may in some instances reduce force production. The aim of this study was to investigate the effect of massage on subsequent 30-m sprint running performance. Male university level repeat sprint sports players volunteered for the study (n = 37). After each of 3 treatment conditions, subjects completed a standardized warm-up followed by three 30-m sprint trials in a counterbalanced crossover design. Treatment conditions were 15 minutes of lower-limb massage (M), 15 minutes of placebo ultrasound (PU), and rest (R). Thirty-meter sprint times were recorded (including 10-m split times) for the 3 trials under each condition. Best times at 10 m (M: 1.85 +/- 0.09 seconds, PU: 1.84 +/- 0.11 seconds, R: 1.83 +/- 0.10 seconds) and 30 m (M: 4.41 +/- 0.27 seconds, PU: 4.39 +/- 0.28 seconds, R: 4.39 +/- 0.28 seconds) were not significantly different (p > 0.05). There was no significant treatment, trial, or interaction effect for 10- or 30-m sprint times (p > 0.05). No difference was seen in the location of subjects' best times across the 3 trials (p > 0.05). Relative to placebo or control, the results of this study showed that a controlled 15-minute lower-limb massage administered prior to warm-up had no significant effect on subsequent 30-m sprint performance. Massage remains indicated prior to performance where other benefits, such as reduced muscle spasm and psychological stress, might be served to the athlete.

  10. Effects of functional exercises in the warm-up on sprint performances.

    PubMed

    Sander, Andre; Keiner, Michael; Schlumberger, Andreas; Wirth, Klaus; Schmidtbleicher, Dietmar

    2013-04-01

    The process of warming up prepares athletes for subsequent stress and increases their level of performance. Functional exercises are often included in warm-up programs for power sports, although a positive effect of functional exercises has not been confirmed. The aim of this study was to measure a possible effect of functional exercises on sprint performance included in a warm-up program. A total of 121 elite youth soccer players between 13 and 18 years of age participated in this study and performed 2 different warm-up programs. The first program (NWP) consisted of 5 minutes of nonspecific running, coordination exercises, stretching, and acceleration runs. The second program (WPS) was the same with additional functional exercises. The subjects were tested performing linear sprints of approximately 30 m and change-of-direction sprints of approximately 10 m. The t-test for dependent samples showed significant differences between the groups for each segment of the linear sprint (p < 0.01 for 5 m; p < 0.001 for 10, 15, 20, 25, and 30 m); however, the effect sizes are small. Also, in the change-of-direction sprint, the t-test showed significant differences between the groups (p < 0.01 for 10 m left, 10 m right; p < 0.001 for 5 m right). These effect sizes are also small. In the change-of-direction sprint time for 5 m left, the data showed no significant differences between the groups. The results show no effects of functional exercises on sprint performance that are implemented in addition to a general warm-up. It appears that a general warm-up program, such as the NWP, generates sufficient activation of the performance-limiting muscles for sprint performance. Functional exercises did not lead to a supplemental activation with a positive effect on sprint performance. Therefore, a warm-up for sprint performance should contain nonspecific running, coordination exercises, stretching exercises, and acceleration runs. These components lead to sufficient activation of the

  11. SPEED, FORCE AND POWER VALUES PRODUCED FROM A NON-MOTORIZED TREADMILL TEST ARE RELATED TO SPRINTING PERFORMANCE.

    PubMed

    Mangine, Gerald T; Hoffman, Jay R; Gonzalez, Adam M; Wells, Adam J; Townsend, Jeremy R; Jajtner, Adam R; McCormack, William; Robinson, Edward H; Fragala, Maren S; Fukuda, David H; Stout, Jeffrey R

    2013-11-22

    The relationships between 30m sprint time and performance on a non-motorized treadmill test, as well as a vertical jump test were determined in the present investigation. Seventy-eight physically active men and women (22.9±2.7 y; 73.0±14.7 kg; 170.7±10.4 cm) performed a 30-s maximal sprint on the Curve™ non-motorized treadmill (TM) following one familiarization trial. Pearson product-moment correlation coefficients produced significant (p<0.05) moderate to very strong relationships between 30m sprint time and body mass (r= -0.37), %Fat (r=0.79), peak power (r= -0.59), relative peak power (r= -0.42), time to peak velocity (r= -0.23), as well as TM sprint times at 10m (r=0.48), 20m (r=0.59), 30m (r=0.67), 40m (r=0.71), and 50m (r=0.75). Strong relationships between 30m sprint time and peak- (r= -0.479) and mean vertical jump power (r= -0.559) were also observed. Subsequently, stepwise regression was used to produce two 30m sprint time prediction models from TM performance (TM1: body mass+TM-data; and TM2: body composition+TM-data) in a validation group (n=39) and then cross-validated against another group (n=39). As no significant differences were observed between these groups, data was combined (n=72) and used to create the final prediction models (TM1: r=0.75, SEE=0.27s; TM2: r=0.84, SEE=0.22s). These final movement-specific models appear to be more accurate in predicting 30m sprint time than derived peak- (r=0.23, SEE=0.48s) and mean vertical jump power (r=0.31, SEE=0.45s) equations. Consequently, sprinting performance on the TM can significantly predict short-distance sprint time. It therefore, may be used to obtain movement-specific measures of sprinting force, velocity, and power in a controlled environment from a single 30-s maximal sprinting test.

  12. Effects of Sled Towing on Peak Force, the Rate of Force Development and Sprint Performance During the Acceleration Phase.

    PubMed

    Martínez-Valencia, María Asunción; Romero-Arenas, Salvador; Elvira, José L L; González-Ravé, José María; Navarro-Valdivielso, Fernando; Alcaraz, Pedro E

    2015-06-27

    Resisted sprint training is believed to increase strength specific to sprinting. Therefore, the knowledge of force output in these tasks is essential. The aim of this study was to analyze the effect of sled towing (10%, 15% and 20% of body mass (Bm)) on sprint performance and force production during the acceleration phase. Twenty-three young experienced sprinters (17 men and 6 women; men = 17.9 ± 3.3 years, 1.79 ± 0.06 m and 69.4 ± 6.1 kg; women = 17.2 ± 1.7 years, 1.65 ± 0.04 m and 56.6 ± 2.3 kg) performed four 30 m sprints from a crouch start. Sprint times in 20 and 30 m sprint, peak force (Fpeak), a peak rate of force development (RFDpeak) and time to RFD (TRFD) in first step were recorded. Repeated-measures ANOVA showed significant increases (p ≤ 0.001) in sprint times (20 and 30 m sprint) for each resisted condition as compared to the unloaded condition. The RFDpeak increased significantly when a load increased (3129.4 ± 894.6 N·s-1, p ≤ 0.05 and 3892.4 ± 1377.9 N·s-1, p ≤ 0.01). Otherwise, no significant increases were found in Fpeak and TRFD. The RFD determines the force that can be generated in the early phase of muscle contraction, and it has been considered a factor that influences performance of force-velocity tasks. The use of a load up to 20% Bm might provide a training stimulus in young sprinters to improve the RFDpeak during the sprint start, and thus, early acceleration.

  13. Effects of Sled Towing on Peak Force, the Rate of Force Development and Sprint Performance During the Acceleration Phase

    PubMed Central

    Martínez-Valencia, María Asunción; Romero-Arenas, Salvador; Elvira, José L.L.; González-Ravé, José María; Navarro-Valdivielso, Fernando; Alcaraz, Pedro E.

    2015-01-01

    Resisted sprint training is believed to increase strength specific to sprinting. Therefore, the knowledge of force output in these tasks is essential. The aim of this study was to analyze the effect of sled towing (10%, 15% and 20% of body mass (Bm)) on sprint performance and force production during the acceleration phase. Twenty-three young experienced sprinters (17 men and 6 women; men = 17.9 ± 3.3 years, 1.79 ± 0.06 m and 69.4 ± 6.1 kg; women = 17.2 ± 1.7 years, 1.65 ± 0.04 m and 56.6 ± 2.3 kg) performed four 30 m sprints from a crouch start. Sprint times in 20 and 30 m sprint, peak force (Fpeak), a peak rate of force development (RFDpeak) and time to RFD (TRFD) in first step were recorded. Repeated-measures ANOVA showed significant increases (p ≤ 0.001) in sprint times (20 and 30 m sprint) for each resisted condition as compared to the unloaded condition. The RFDpeak increased significantly when a load increased (3129.4 ± 894.6 N·s−1, p ≤ 0.05 and 3892.4 ± 1377.9 N·s−1, p ≤ 0.01). Otherwise, no significant increases were found in Fpeak and TRFD. The RFD determines the force that can be generated in the early phase of muscle contraction, and it has been considered a factor that influences performance of force-velocity tasks. The use of a load up to 20% Bm might provide a training stimulus in young sprinters to improve the RFDpeak during the sprint start, and thus, early acceleration. PMID:26240657

  14. Which measure of drop jump performance best predicts sprinting speed?

    PubMed

    Barr, Matt J; Nolte, Volker W

    2011-07-01

    The purpose of this study was to evaluate which measure of a drop jump (DJ) has the highest correlation with sprinting speed over 60 m. For use of comparison, maximal leg strengths in a front squat, countermovement jump, and squat jump were also assessed. The subjects in the study were all high-caliber female university rugby players. Subjects did DJs from 0.12, 0.24, 0.36, 0.48, 0.60, 0.72, and 0.84 m. Jump height and reactive strength index (RSI) were calculated at each drop height. Pearson correlations were used to analyze the relationship between the strength and jumping measures with sprinting speed. The DJ height from 0.84 m had the highest negative correlation with 0- to 10-m split (r = -0.66), the 10- to 30-m split (r = -0.86) and 30- to 60-m split (r = -0.86). The use of RSI is questioned as a measurement of DJ performance. It is suggested that maximal height achieved in a DJ is the most important DJ measure. If it is desired to measure ground contact time, then it may be more useful to use a second test where the jump height for the athlete is set by having the athlete jump onto a box or touch a target overhead set at a standard height and measure the ground contact time with a switch mat or force plate.

  15. The effect of warm up on single and intermittent-sprint performance.

    PubMed

    Yaicharoen, Pongson; Wallman, Karen; Bishop, David; Morton, Alan

    2012-01-01

    Lack of benefit of warm up on prolonged intermittent-sprint performance has been proposed to be due to use of a pacing strategy by participants. To investigate this, twelve participants performed four cycle trials that consisted of either prolonged intermittent-sprint performance (80 min) or single-sprint performance (4 s), with or without a warm up. The first-sprint of intermittent-sprint performance was also assessed. No interaction effects (P > 0.05) were found between trials for intermittent-sprint performance for total work (J · kg(-1)), or percentage work and power decrement. Work done during the first-sprint of intermittent-sprint performance (no warm up) was less (P < 0.001) than the first-sprint of intermittent-sprint performance (warm up; effect size (ES) = 0.59) and both single-sprint trials (warm up and no warm up; ES = 0.91, 0.75, respectively). Peak power (W · kg(-1)) for single-sprint (warm up) was greater (P < 0.05) than single-sprint (no warm up), and the first-sprint of intermittent-sprint performance (warm up and no warm up). Warm up improved single-sprint performance and the first sprint of intermittent-sprint performance. Use of a pacing strategy probably resulted in similar intermittent-sprint performance between trials. These results suggest that team-sport players should perform a warm up at the start of a game or before substitution during a game.

  16. Effects of Warm-Up Stretching Exercises on Sprint Performance

    ERIC Educational Resources Information Center

    Makaruk, Hubert; Makaruk, Beata; Kedra, Stanislaw

    2008-01-01

    Study aim: To assess direct effects of warm-up consisting of static and dynamic stretching exercises on sprint results attained by students differing in sprint performance. Material and methods: A group of 24 male and 19 female physical education students, including 12 and 9 sprinters, respectively. They performed warm-ups consisting of dynamic…

  17. The effect of resisted sprint training on speed and strength performance in male rugby players.

    PubMed

    Harrison, Andrew J; Bourke, Gillian

    2009-01-01

    Various studies have demonstrated that resistance sprint (RS) training can produce significant changes in running speed and running kinematics. The longer-term training adaptations after RS training remain unclear. The purpose of this study was to investigate whether an RS training intervention would enhance the running speed and dynamic strength measures in male rugby players. Fifteen male rugby players aged 20.5 (+/- 2.8) years who were proficient in resisted sledge training took part in the study. The subjects were randomly assigned to control or RS groups. The RS group performed two sessions per week of RS training for 6 weeks, and the control group did no RS training. Pre- and postintervention tests were carried out for 30-m sprint, drop, squat, and rebound jumps on a force sledge system. A laser measurement device was used to obtain velocities and distance measures during all running trials. The results show a statistically significant decrease in time to 5 m for the 30-m sprint for the RS group (p = 0.02). The squat jump and drop jump variables also showed significant increases in starting strength (p = 0.004) and height jumped (p = 0.018) for the RS group from pre- to post-testing sessions. The results suggest that it may be beneficial to employ an RS training intervention with the aim of increasing initial acceleration from a static start for sprinting.

  18. Prediction of 200-m sprint kayaking performance.

    PubMed

    van Someren, Ken A; Palmer, Garry S

    2003-08-01

    The aim of this study was to determine the anthropometric and physiological profile of 200-m sprint kayakers and to examine relationships with 200-m race performance. Twenty-six male kayakers who were categorised in two ability groups, international (Int) and national (Nat) level, underwent a battery of anthropometric and physiological tests and a 200-m race. Race time was significantly lower in Int than Nat (39.9 +/- 0.8 s and 42.6 +/- 0.9 s, respectively). Int demonstrated significantly greater measures of mesomorphy, biepycondylar humeral breadth, circumferences of the upper arm, forearm and chest, peak power and total work in a modified Wingate test, total work in a 2-min ergometry test, peak isokinetic power, and peak isometric force. Significant relationships were found between 200-m time and a number of anthropometric variables and anaerobic and dynamometric parameters. Stepwise multiple regression revealed that total work in the modified Wingate alone predicted 200-m race time (R2 = 0.53, SEE = 1.11 s) for all 26 subjects, while biepycondylar humeral breadth alone predicted race time (R2 = 0.54, SEE = 0.52 s) in Int. These results demonstrate that superior upper body dimensions and anaerobic capacities distinguish international-level kayakers from national-level athletes and may be used to predict 200-m performance.

  19. Comparison of Two Types of Warm-Up Upon Repeated-Sprint Performance in Experienced Soccer Players.

    PubMed

    van den Tillaar, Roland; von Heimburg, Erna

    2016-08-01

    van den Tillaar, R and von Heimburg, E. Comparison of two types of warm-up upon repeated-sprint performance in experienced soccer players. J Strength Cond Res 30(8): 2258-2265, 2016-The aim of the study was to compare the effects of a long warm-up and a short warm-up upon repeated-sprint performance in soccer players. Ten male soccer players (age, 21.9 ± 1.9 years; body mass, 77.7 ± 8.3 kg; body height, 1.85 ± 0.03 m) conducted 2 types of warm-ups with 1 week in between: a long warm-up (20 minutes: LWup) and a short warm-up (10 minutes: SWup). Each warm-up was followed by a repeated-sprint test consisting of 8 × 30 m sprints with a new start every 30th second. The best sprint time, total sprinting time, and % decrease in time together with heart rate, lactate, and rate of perceived exertion (RPE) were measured. No significant differences in performance were found for the repeated-sprint test parameters (total sprint time: 35.99 ± 1.32 seconds [LWup] and 36.12 ± 0.96 seconds [SWup]; best sprint time: 4.32 ± 0.13 seconds [LWup] and 4.30 ± 0.10 seconds [SWup]; and % sprint decrease: 4.16 ± 2.15% [LWup] and 5.02 ± 2.07% [SWup]). No differences in lactate concentration after the warm-up and after the repeated-sprint test were found. However, RPE and heart rate were significantly higher after the long warm-up and the repeated-sprint test compared with the short warm-up. It was concluded that a short warm-up is as effective as a long warm-up for repeated sprints in soccer. Therefore, in regular training, less warm-up time is needed; the extra time could be used for important soccer skill training.

  20. Hypoxic Repeat Sprint Training Improves Rugby Player's Repeated Sprint but Not Endurance Performance.

    PubMed

    Hamlin, Michael J; Olsen, Peter D; Marshall, Helen C; Lizamore, Catherine A; Elliot, Catherine A

    2017-01-01

    This study aims to investigate the performance changes in 19 well-trained male rugby players after repeat-sprint training (six sessions of four sets of 5 × 5 s sprints with 25 s and 5 min of active recovery between reps and sets, respectively) in either normobaric hypoxia (HYP; n = 9; FIO2 = 14.5%) or normobaric normoxia (NORM; n = 10; FIO2 = 20.9%). Three weeks after the intervention, 2 additional repeat-sprint training sessions in hypoxia (FIO2 = 14.5%) was investigated in both groups to gauge the efficacy of using "top-up" sessions for previously hypoxic-trained subjects and whether a small hypoxic dose would be beneficial for the previously normoxic-trained group. Repeated sprint (8 × 20 m) and Yo-Yo Intermittent Recovery Level 1 (YYIR1) performances were tested twice at baseline (Pre 1 and Pre 2) and weekly after (Post 1-3) the initial intervention (intervention 1) and again weekly after the second "top-up" intervention (Post 4-5). After each training set, heart rate, oxygen saturation, and rate of perceived exertion were recorded. Compared to baseline (mean of Pre 1 and Pre 2), both the hypoxic and normoxic groups similarly lowered fatigue over the 8 sprints 1 week after the intervention (Post 1: -1.8 ± 1.6%, -1.5 ± 1.4%, mean change ± 90% CI in HYP and NORM groups, respectively). However, from Post 2 onwards, only the hypoxic group maintained the performance improvement compared to baseline (Post 2: -2.1 ± 1.8%, Post 3: -2.3 ± 1.7%, Post 4: -1.9 ± 1.8%, and Post 5: -1.2 ± 1.7%). Compared to the normoxic group, the hypoxic group was likely to have substantially less fatigue at Post 3-5 (-2.0 ± 2.4%, -2.2 ± 2.4%, -1.6 ± 2.4% Post 3, Post 4, Post 5, respectively). YYIR1 performances improved throughout the recovery period in both groups (13-37% compared to baseline) with unclear differences found between groups. The addition of two sessions of "top-up" training after intervention 1, had little effect on either group. Repeat-sprint training in

  1. Hypoxic Repeat Sprint Training Improves Rugby Player's Repeated Sprint but Not Endurance Performance

    PubMed Central

    Hamlin, Michael J.; Olsen, Peter D.; Marshall, Helen C.; Lizamore, Catherine A.; Elliot, Catherine A.

    2017-01-01

    This study aims to investigate the performance changes in 19 well-trained male rugby players after repeat-sprint training (six sessions of four sets of 5 × 5 s sprints with 25 s and 5 min of active recovery between reps and sets, respectively) in either normobaric hypoxia (HYP; n = 9; FIO2 = 14.5%) or normobaric normoxia (NORM; n = 10; FIO2 = 20.9%). Three weeks after the intervention, 2 additional repeat-sprint training sessions in hypoxia (FIO2 = 14.5%) was investigated in both groups to gauge the efficacy of using “top-up” sessions for previously hypoxic-trained subjects and whether a small hypoxic dose would be beneficial for the previously normoxic-trained group. Repeated sprint (8 × 20 m) and Yo-Yo Intermittent Recovery Level 1 (YYIR1) performances were tested twice at baseline (Pre 1 and Pre 2) and weekly after (Post 1–3) the initial intervention (intervention 1) and again weekly after the second “top-up” intervention (Post 4–5). After each training set, heart rate, oxygen saturation, and rate of perceived exertion were recorded. Compared to baseline (mean of Pre 1 and Pre 2), both the hypoxic and normoxic groups similarly lowered fatigue over the 8 sprints 1 week after the intervention (Post 1: −1.8 ± 1.6%, −1.5 ± 1.4%, mean change ± 90% CI in HYP and NORM groups, respectively). However, from Post 2 onwards, only the hypoxic group maintained the performance improvement compared to baseline (Post 2: −2.1 ± 1.8%, Post 3: −2.3 ± 1.7%, Post 4: −1.9 ± 1.8%, and Post 5: −1.2 ± 1.7%). Compared to the normoxic group, the hypoxic group was likely to have substantially less fatigue at Post 3–5 (−2.0 ± 2.4%, −2.2 ± 2.4%, −1.6 ± 2.4% Post 3, Post 4, Post 5, respectively). YYIR1 performances improved throughout the recovery period in both groups (13–37% compared to baseline) with unclear differences found between groups. The addition of two sessions of “top-up” training after intervention 1, had little effect on either

  2. Regression models of sprint, vertical jump, and change of direction performance.

    PubMed

    Swinton, Paul A; Lloyd, Ray; Keogh, Justin W L; Agouris, Ioannis; Stewart, Arthur D

    2014-07-01

    It was the aim of the present study to expand on previous correlation analyses that have attempted to identify factors that influence performance of jumping, sprinting, and changing direction. This was achieved by using a regression approach to obtain linear models that combined anthropometric, strength, and other biomechanical variables. Thirty rugby union players participated in the study (age: 24.2 ± 3.9 years; stature: 181.2 ± 6.6 cm; mass: 94.2 ± 11.1 kg). The athletes' ability to sprint, jump, and change direction was assessed using a 30-m sprint, vertical jump, and 505 agility test, respectively. Regression variables were collected during maximum strength tests (1 repetition maximum [1RM] deadlift and squat) and performance of fast velocity resistance exercises (deadlift and jump squat) using submaximum loads (10-70% 1RM). Force, velocity, power, and rate of force development (RFD) values were measured during fast velocity exercises with the greatest values produced across loads selected for further analysis. Anthropometric data, including lengths, widths, and girths were collected using a 3-dimensional body scanner. Potential regression variables were first identified using correlation analyses. Suitable variables were then regressed using a best subsets approach. Three factor models generally provided the most appropriate balance between explained variance and model complexity. Adjusted R values of 0.86, 0.82, and 0.67 were obtained for sprint, jump, and change of direction performance, respectively. Anthropometric measurements did not feature in any of the top models because of their strong association with body mass. For each performance measure, variance was best explained by relative maximum strength. Improvements in models were then obtained by including velocity and power values for jumping and sprinting performance, and by including RFD values for change of direction performance.

  3. Postactivation potentiation of sprint acceleration performance using plyometric exercise.

    PubMed

    Turner, Anthony P; Bellhouse, Sam; Kilduff, Liam P; Russell, Mark

    2015-02-01

    Postactivation potentiation (PAP), an acute and temporary enhancement of muscular performance resulting from previous muscular contraction, commonly occurs after heavy resistance exercise. However, this method of inducing PAP has limited application to the precompetition practices (e.g., warm-up) of many athletes. Very few studies have examined the influence of plyometric activity on subsequent performance; therefore, we aimed to examine the influence of alternate-leg bounding on sprint acceleration performance. In a randomized crossover manner, plyometric-trained men (n = 23) performed seven 20-m sprints (with 10-m splits) at baseline, ∼15 seconds, 2, 4, 8, 12, and 16 minutes after a walking control (C) or 3 sets of 10 repetitions of alternate-leg bounding using body mass (plyometric, P) and body mass plus 10% (weighted plyometric, WP). Mean sprint velocities over 10 and 20 m were similar between trials at baseline. At ∼15 seconds, WP impaired 20-m sprint velocity by 1.4 ± 2.5% when compared with C (p = 0.039). Thereafter, 10- and 20-m sprint velocities improved in WP at 4 minutes (10 m: 2.2 ± 3.1%, p = 0.009; 20 m: 2.3 ± 2.6%, p = 0.001) and 8 minutes (10 m: 2.9 ± 3.6%, p = 0.002; 20 m: 2.6 ± 2.8%, p = 0.001) compared with C. Improved 10-m sprint acceleration performance occurred in P at 4 minutes (1.8 ± 3.3%, p = 0.047) relative to C. Therefore, sprint acceleration performance is enhanced after plyometric exercise providing adequate recovery is given between these activities; however, the effects may differ according to whether additional load is applied. This finding presents a practical method to enhance the precompetition practices of athletes.

  4. The power output and sprinting performance of young swimmers.

    PubMed

    Barbosa, Tiago M; Morais, Jorge E; Marques, Mário C; Costa, Mário J; Marinho, Daniel A

    2015-02-01

    The aim of this article was to compare swimming power output between boys and girls and to model the relationship between swimming power output and sprinting performance in young swimmers. One hundred young swimmers (49 boys and 51 girls, aged between 11 and 13 years) underwent a test battery including anthropometrics (body mass, height, arm span [AS], and trunk transverse surface area), kinematic and efficiency (velocity, stroke frequency, stroke length, speed fluctuation, normalized speed fluctuation, stroke index, and Froude efficiency), hydrodynamics (active drag and active drag coefficient), and power output (power to overcome drag, power to transfer kinetic energy to water, and external power) assessments and sprinting performance (official 100 freestyle race). All variables but the trunk transverse surface area, stroke length normalize to AS, speed fluctuation, active drag coefficient, and Froude efficiency were significantly higher in boys than in girls with moderate-strong effects. Comparing both sexes but controlling the effect of the sprinting performance, most variables presented a no-significant variation. There was a significant and strong relationship between power output and sprinting performance: y = 24.179x (R = 0.426; standard error of estimation = 0.485; p < 0.001). As a conclusion, boys presented better performances than girls because of their higher power output. There is a cubed relationship between power output and sprinting performance in young swimmers.

  5. Relationship Between Repeated Sprint Performance and both Aerobic and Anaerobic Fitness

    PubMed Central

    Dardouri, Wajdi; Selmi, Mohamed Amin; Sassi, Radhouane Haj; Gharbi, Zied; Rebhi, Ahmed; Yahmed, Mohamed Haj; Moalla, Wassim

    2014-01-01

    The aims of this study were firstly, to examine the relationship between repeated sprint performance indices and anaerobic speed reserve (AnSR), aerobic fitness and anaerobic power and secondly, to identify the best predictors of sprinting ability among these parameters. Twenty nine subjects (age: 22.5 ± 1.6 years, body height: 1.8 ± 0.1 m, body mass: 68.8 ± 8.5 kg, body mass index (BMI): 22.2 ± 2.1 kg•m-2, fat mass: 11.3 ± 2.9 %) participated in this study. All participants performed a 30 m sprint test (T30) from which we calculated the maximal anaerobic speed (MAnS), vertical and horizontal jumps, 20m multi-stage shuttle run test (MSRT) and repeated sprint test (10 × 15 m shuttle run). AnSR was calculated as the difference between MAnS and the maximal speed reached in the MSRT. Blood lactate sampling was performed 3 min after the RSA protocol. There was no significant correlation between repeated sprint indices (total time (TT); peak time (PT), fatigue index (FI)) and both estimated VO2max and vertical jump performance). TT and PT were significantly correlated with T30 (r=0.63, p=0.001 and r=0.62, p=0.001; respectively), horizontal jump performance (r = −0.47, p = 0.001 and r = −0.49, p = 0.006; respectively) and AnSR (r=−0.68, p= 0.001 and r=−0.70, p=0.001, respectively). Significant correlations were found between blood lactate concentration and TT, PT, and AnSR (r=−0.44, p=0.017; r=−0.43, p=0.018 and r=0.44, p=0.016; respectively). Stepwise multiple regression analyses demonstrated that AnSR was the only significant predictor of the TT and PT, explaining 47% and 50% of the shared variance, respectively. Our findings are of particular interest for coaches and fitness trainers in order to predict repeated sprint performance by using AnSR that can easily identify the respective upper performance limits supported by aerobic and anaerobic power of a player involved in multi-sprint team sports. PMID:25031682

  6. Relationship Between Repeated Sprint Performance and both Aerobic and Anaerobic Fitness.

    PubMed

    Dardouri, Wajdi; Selmi, Mohamed Amin; Sassi, Radhouane Haj; Gharbi, Zied; Rebhi, Ahmed; Yahmed, Mohamed Haj; Moalla, Wassim

    2014-03-27

    The aims of this study were firstly, to examine the relationship between repeated sprint performance indices and anaerobic speed reserve (AnSR), aerobic fitness and anaerobic power and secondly, to identify the best predictors of sprinting ability among these parameters. Twenty nine subjects (age: 22.5 ± 1.6 years, body height: 1.8 ± 0.1 m, body mass: 68.8 ± 8.5 kg, body mass index (BMI): 22.2 ± 2.1 kg•m-2, fat mass: 11.3 ± 2.9 %) participated in this study. All participants performed a 30 m sprint test (T30) from which we calculated the maximal anaerobic speed (MAnS), vertical and horizontal jumps, 20m multi-stage shuttle run test (MSRT) and repeated sprint test (10 × 15 m shuttle run). AnSR was calculated as the difference between MAnS and the maximal speed reached in the MSRT. Blood lactate sampling was performed 3 min after the RSA protocol. There was no significant correlation between repeated sprint indices (total time (TT); peak time (PT), fatigue index (FI)) and both estimated VO2max and vertical jump performance). TT and PT were significantly correlated with T30 (r=0.63, p=0.001 and r=0.62, p=0.001; respectively), horizontal jump performance (r = -0.47, p = 0.001 and r = -0.49, p = 0.006; respectively) and AnSR (r=-0.68, p= 0.001 and r=-0.70, p=0.001, respectively). Significant correlations were found between blood lactate concentration and TT, PT, and AnSR (r=-0.44, p=0.017; r=-0.43, p=0.018 and r=0.44, p=0.016; respectively). Stepwise multiple regression analyses demonstrated that AnSR was the only significant predictor of the TT and PT, explaining 47% and 50% of the shared variance, respectively. Our findings are of particular interest for coaches and fitness trainers in order to predict repeated sprint performance by using AnSR that can easily identify the respective upper performance limits supported by aerobic and anaerobic power of a player involved in multi-sprint team sports.

  7. Influence of Gender and Muscle Architecture Asymmetry on Jump and Sprint Performance

    PubMed Central

    Mangine, Gerald T.; Fukuda, David H.; LaMonica, Michael B.; Gonzalez, Adam M.; Wells, Adam J.; Townsend, Jeremy R.; Jajtner, Adam R.; Fragala, Maren S.; Stout, Jeffrey R.; Hoffman, Jay R.

    2014-01-01

    Muscle architecture is a determinant for sprinting speed and jumping power, which may be related to anaerobic sports performance. In the present investigation, the relationships between peak (PVJP) and mean (MVJP) vertical jump power, 30m maximal sprinting speed (30M), and muscle architecture were examined in 28 college-aged, recreationally-active men (n = 14; 24.3 ± 2.2y; 89.1 ± 9.3kg; 1.80 ± 0.07 m) and women (n = 14; 21.5 ± 1.7y; 65.2 ± 12.4kg; 1.63 ± 0.08 m). Ultrasound measures of muscle thickness (MT), pennation angle (PNG), cross-sectional area (CSA), and echo intensity (ECHO) were collected from the rectus femoris (RF) and vastus lateralis (VL) of both legs; fascicle length (FL) was estimated from MT and PNG. Men possessed lower ECHO, greater muscle size (MT & CSA), were faster, and were more powerful (PVJP & MVJP) than women. Stepwise regression indicated that muscle size and quality influenced speed and power in men. In women, vastus lateralis asymmetry negatively affected PVJP (MT: r = –0.73; FL: r = –0.60) and MVJP (MT: r = –0.76; FL: r = –0.64), while asymmetrical ECHO (VL) and FL (RF) positively influenced MVJP (r = 0.55) and 30M (r = 0.57), respectively. Thigh muscle architecture appears to influence jumping power and sprinting speed, though the effect may vary by gender in recreationally-active adults. Appropriate assessment of these ultrasound variables in men and women prior to training may provide a more specific exercise prescription. Key points The manner in which thigh muscle architecture affects jumping power and sprinting speed varies by gender. In men, performance is influenced by the magnitude of muscle size and architecture. In women, asymmetrical muscle size and architectural asymmetry significantly influence performance. To develop effective and precise exercise prescription for the improvement of jumping power and/or sprinting speed, muscle architecture assessment prior to the onset of a training program is advised. PMID

  8. Effects of limited peripheral vision on shuttle sprint performance of soccer players.

    PubMed

    Lemmink, Koen A P M; Dijkstra, Baukje; Visscher, Chris

    2005-02-01

    This study examined the effect of limited peripheral vision on the shuttle sprint performance of soccer players. Participants were 14 male soccer players of a student soccer club (M age = 22.1 yr., SD = 1.3 yr.). They performed a repeated shuttle sprint with full and limited peripheral vision. Mean total sprint time and mean turning time increased significantly with limited peripheral vision. It is concluded that only turning during shuttle sprint performance decreases when sprinting with a restricted peripheral field of view, indicating the use of peripheral vision for the control of directional changes while sprinting.

  9. Assessment of linear sprinting performance: a theoretical paradigm.

    PubMed

    Brown, Todd D; Vescovi, Jason D; Vanheest, Jaci L

    2004-12-01

    The purpose of this manuscript is to describe a theoretical paradigm from which to more accurately assess linear sprinting performance. More importantly, the model describes how to interpret test results in order to pinpoint weaknesses in linear sprinting performance and design subsequent training programs. A retrospective, quasi-experimental cross sectional analysis was performed using 86 Division I female soccer and lacrosse players. Linear sprinting performance was assessed using infrared sensors at 9.14, 18.28, 27.42, and 36.58 meter distances. Cumulative (9.14, 18.28, 27.42, and 36.58 meter) and individual (1(st), 2(nd), 3(rd), and 4(th) 9.14 meter) split times were used to illustrate the theoretical paradigm. Sub-groups were identified from the sample and labelled as above average (faster), average, and below average (slower). Statistical analysis showed each sub-group was significantly different from each other (fast < average < slow). From each sub-group select individuals were identified by having a 36.58 meter time within 0.05 seconds of each other (n = 11, 13, and 7, respectively). Three phases of the sprint test were suggested to exist and called initial acceleration (0-9.14 m), middle acceleration (9.14-27.42 m), and metabolic-stiffness transition (27.42-36.58 m). A new model for assessing and interpreting linear sprinting performance was developed. Implementation of this paradigm should assist sport performance professionals identify weaknesses, minimize training errors, and maximize training adaptations. Key PointsAssessment of linear sprinting should include splits for a greater understanding of performance.Individual split times can be used to identify specific areas of weakness.Appropriate training strategies can be developed and used to improve the identified weaknesses.

  10. Assessment of Linear Sprinting Performance: A Theoretical Paradigm

    PubMed Central

    Brown, Todd D.; Vescovi, Jason D.; VanHeest, Jaci L.

    2004-01-01

    The purpose of this manuscript is to describe a theoretical paradigm from which to more accurately assess linear sprinting performance. More importantly, the model describes how to interpret test results in order to pinpoint weaknesses in linear sprinting performance and design subsequent training programs. A retrospective, quasi-experimental cross sectional analysis was performed using 86 Division I female soccer and lacrosse players. Linear sprinting performance was assessed using infrared sensors at 9.14, 18.28, 27.42, and 36.58 meter distances. Cumulative (9.14, 18.28, 27.42, and 36.58 meter) and individual (1st, 2nd, 3rd, and 4th 9.14 meter) split times were used to illustrate the theoretical paradigm. Sub-groups were identified from the sample and labelled as above average (faster), average, and below average (slower). Statistical analysis showed each sub-group was significantly different from each other (fast < average < slow). From each sub-group select individuals were identified by having a 36.58 meter time within 0.05 seconds of each other (n = 11, 13, and 7, respectively). Three phases of the sprint test were suggested to exist and called initial acceleration (0-9.14 m), middle acceleration (9.14-27.42 m), and metabolic-stiffness transition (27.42-36.58 m). A new model for assessing and interpreting linear sprinting performance was developed. Implementation of this paradigm should assist sport performance professionals identify weaknesses, minimize training errors, and maximize training adaptations. Key Points Assessment of linear sprinting should include splits for a greater understanding of performance. Individual split times can be used to identify specific areas of weakness. Appropriate training strategies can be developed and used to improve the identified weaknesses. PMID:24624004

  11. Sprint swimming performance of wild bull trout (Salvelinus confluentus)

    USGS Publications Warehouse

    Mesa, M.G.; Phelps, J.; Weiland, L.K.

    2008-01-01

    We conducted laboratory experiments to determine the sprint swimming performance of wild juvenile and adult bull trout Salvelinus confluentus. Sprint swimming speeds were estimated using high-speed digital video analysis. Thirty two bull trout were tested in sizes ranging from about 10 to 31 cm. Of these, 14 fish showed at least one motivated, vigorous sprint. When plotted as a function of time, velocity of fish increased rapidly with the relation linear or slightly curvilinear. Their maximum velocity, or Vmax, ranged from 1.3 to 2.3 m/s, was usually achieved within 0.8 to 1.0 s, and was independent of fish size. Distances covered during these sprints ranged from 1.4 to 2.4 m. Our estimates of the sprint swimming performance are the first reported for this species and may be useful for producing or modifying fish passage structures that allow safe and effective passage of fish without overly exhausting them. ?? 2008 by the Northwest Scientific Association. All rights reserved.

  12. Effect of two different long-sprint training regimens on sprint performance and associated metabolic responses.

    PubMed

    Hanon, Christine; Bernard, Olivier; Rabate, Mathieu; Claire, Thomas

    2012-06-01

    The purpose of this study was to analyze 2 different long-sprint training programs (TPs) of equal total work load, completed either with short recovery (SR) or long recovery (LR) between sets and to compare the effects of 6 long-sprint training sessions (TSs) conducted over a 2-week period on a 300-m performance. Fourteen trained subjects performed 3 pretraining maximal sprints (50-, 100-, and 300-m), were paired according to their 300-m performance, and randomly allocated to an LR or SR group, which performed 6 TSs consisting of sets of 150, 200, or 250 m. The recovery in the LR group was double that of the SR group. During the third TS and the 300-m pretest and posttest, blood pH, bicarbonate concentration ([HCO₃⁻]), excess-base (EB), and lactate concentration were recorded. Compared with a similar TS performed with SR, the LR training tends to induce a greater alteration of the acid-base balance: pH: 7.09 ± 0.08 (LR) and 7.14 ± 0.05 (SR) (p = 0.10), [HCO₃⁻]: 7.8 ± 1.9 (LR) and 9.6 ± 2.7 (SR) (p = 0.04), and EB: -21.1 ± 3.8 (LR) and -17.7 ± 2.8 (SR) (p = 0.11). A significant improvement in the 300-m performance between pre-TP and post-TP (42.45 ± 2.64 vs. 41.52 ± 2.45, p = 0.01) and significant decreases in pH (p < 0.01), EB (p < 0.001) and increase in [La] (p < 0.001) have been observed post-TP compared with those pre-TP. Although sprint training with longer recovery induces higher metabolic disturbances, both sprint training regimens allow a similar 300-m performance improvement with no concomitant significant progress in the 50- and 100-m performance.

  13. Sprint running performance: comparison between treadmill and field conditions.

    PubMed

    Morin, Jean-Benoît; Sève, Pierrick

    2011-08-01

    We investigated the differences in performance between 100-m sprints performed on a sprint treadmill recently validated versus on a standard track. To date, studies comparing overground and treadmill running have mainly focused on constant and not maximal "free" running speed, and compared running kinetics and kinematics over a limited number of steps, but not overall sprint performance. Eleven male physical education students including two sprinters performed one 100-m on the treadmill and one on a standard athletics track in a randomized order, separated by 30 min. Performance data were derived in both cases from speed-time relationships measured with a radar and with the instrumented sprint treadmill, which allowed subjects to run and produce speed "freely", i.e. with no predetermined belt speed imposed. Field and treadmill typical speed-distance curves and data of maximal and mean speed, 100-m time and acceleration/deceleration time constants were compared using t tests and field-treadmill correlations were tested. All the performance parameters but time to reach top speed and deceleration time constant differed significantly, by about 20% on average, between field and treadmill (e.g. top speed of 8.84 ± 0.51 vs. 6.90 ± 0.39 m s(-1)). However, significant correlations were found (r > 0.63; P < 0.05) for all the performance parameters except time to reach top speed. Treadmill and field 100-m sprint performances are different, despite the fact that subjects could freely accelerate the belt. However, the significant correlations found make it possible to investigate and interpret inter-individual differences in field performance from treadmill measurements.

  14. Hyperventilation as a strategy for improved repeated sprint performance.

    PubMed

    Sakamoto, Akihiro; Naito, Hisashi; Chow, Chin-Moi

    2014-04-01

    Repeated high-intensity sprints incur substantial anaerobic metabolic challenges and create an acidic muscle milieu that is unfavorable for subsequent performance. Hyperventilation, resulting in respiratory alkalosis, acts as a compensatory mechanism for metabolic acidosis. This study tested the hypothesis that hyperventilation performed during recovery intervals would attenuate performance decrement in repeated sprint pedaling. Thirteen male university athletes performed 10 sets of 10-second maximal pedaling on a cycle ergometer with a 60-second recovery between sets under control (spontaneous breathing) and hyperventilation conditions in a crossover counter-balanced manner. Pedaling load was set at 0.075 × body mass. Peak and mean power outputs were documented for each set to compare performance decrements for 10 sets between conditions. Hyperventilation (60 breaths per minute and end-tidal partial pressure of CO2 maintained at 20-25 mm Hg) was performed 30 seconds before each sprint set. This intervention successfully increased blood pH by 0.03-0.07 but lowered P(CO2) by 1.2-8.4 mm Hg throughout exercise (p < 0.001). The peak and mean power outputs, and blood [La] accumulation were not significantly different between the conditions. However, a significant condition × time interaction existed for peak power (p = 0.035) and mean power (p = 0.023), demonstrating an attenuation in power decrement in later sprint sets with hyperventilation. In conclusion, hyperventilation implemented during recovery intervals of repeated sprint pedaling attenuated performance decrements in later exercise bouts that was associated with substantial metabolic acidosis. The practical implication is that hyperventilation may have a strategic role for enhancing training effectiveness and may give an edge in performance outcomes.

  15. Effects of Beetroot Juice on Recovery of Muscle Function and Performance between Bouts of Repeated Sprint Exercise.

    PubMed

    Clifford, Tom; Berntzen, Bram; Davison, Gareth W; West, Daniel J; Howatson, Glyn; Stevenson, Emma J

    2016-08-18

    This study examined the effects of beetroot juice (BTJ) on recovery between two repeated-sprint tests. In an independent groups design, 20 male, team-sports players were randomized to receive either BTJ or a placebo (PLA) (2 × 250 mL) for 3 days after an initial repeated sprint test (20 × 30 m; RST1) and after a second repeated sprint test (RST2), performed 72 h later. Maximal isometric voluntary contractions (MIVC), countermovement jumps (CMJ), reactive strength index (RI), pressure-pain threshold (PPT), creatine kinase (CK), C-reactive protein (hs-CRP), protein carbonyls (PC), lipid hydroperoxides (LOOH) and the ascorbyl free radical (A(•-)) were measured before, after, and at set times between RST1 and RST2. CMJ and RI recovered quicker in BTJ compared to PLA after RST1: at 72 h post, CMJ and RI were 7.6% and 13.8% higher in BTJ vs. PLA, respectively (p < 0.05). PPT was 10.4% higher in BTJ compared to PLA 24 h post RST2 (p = 0.012) but similar at other time points. No group differences were detected for mean and fastest sprint time or fatigue index. MIVC, or the biochemical markers measured (p > 0.05). BTJ reduced the decrement in CMJ and RI following and RST but had no effect on sprint performance or oxidative stress.

  16. Effects of Beetroot Juice on Recovery of Muscle Function and Performance between Bouts of Repeated Sprint Exercise

    PubMed Central

    Clifford, Tom; Berntzen, Bram; Davison, Gareth W.; West, Daniel J.; Howatson, Glyn; Stevenson, Emma J.

    2016-01-01

    This study examined the effects of beetroot juice (BTJ) on recovery between two repeated-sprint tests. In an independent groups design, 20 male, team-sports players were randomized to receive either BTJ or a placebo (PLA) (2 × 250 mL) for 3 days after an initial repeated sprint test (20 × 30 m; RST1) and after a second repeated sprint test (RST2), performed 72 h later. Maximal isometric voluntary contractions (MIVC), countermovement jumps (CMJ), reactive strength index (RI), pressure-pain threshold (PPT), creatine kinase (CK), C-reactive protein (hs-CRP), protein carbonyls (PC), lipid hydroperoxides (LOOH) and the ascorbyl free radical (A•−) were measured before, after, and at set times between RST1 and RST2. CMJ and RI recovered quicker in BTJ compared to PLA after RST1: at 72 h post, CMJ and RI were 7.6% and 13.8% higher in BTJ vs. PLA, respectively (p < 0.05). PPT was 10.4% higher in BTJ compared to PLA 24 h post RST2 (p = 0.012) but similar at other time points. No group differences were detected for mean and fastest sprint time or fatigue index. MIVC, or the biochemical markers measured (p > 0.05). BTJ reduced the decrement in CMJ and RI following and RST but had no effect on sprint performance or oxidative stress. PMID:27548212

  17. Changes in repeated-sprint performance in relation to change in locomotor profile in highly-trained young soccer players.

    PubMed

    Buchheit, Martin; Mendez-Villanueva, Alberto

    2014-01-01

    The aim of this study was to examine the effects of changes in maximal aerobic (MAS) and sprinting (MSS) speeds and the anaerobic reserve (ASR) on repeated-sprint performance. Two hundred and seventy highly-trained soccer players (14.5 ± 1.6 year) completed three times per season (over 5 years) a maximal incremental running test to approach MAS, a 40-m sprint with 10-m splits to assess MSS and a repeated-sprint test (10 × 30-m sprints), where best (RSb) and mean (RSm) sprint times, and percentage of speed decrement (%Dec) were calculated. ASR was calculated as MSS-MAS. While ∆RSb were related to ∆MSS and ∆body mass (r(2) = 0.42, 90%CL[0.34;0.49] for the overall multiple regression, n = 334), ∆RSm was also correlated with ∆MAS and ∆sum of 7 skinfolds (r(2) = 0.43 [0.35;0.50], n = 334). There was a small and positive association between ∆%Dec and ∆MAS (r(2) = 0.02 [-0.07;0.11], n = 334). Substantial ∆MSS and ∆MAS had a predictive value of 70 and 55% for ∆RSm, respectively. Finally, ∆ASR per se was not predictive of ∆RSm (Cohen's = +0.8 to -0.3 with increased ASR), but the greater magnitude of ∆RSm improvement was observed when MSS, MAS and ASR increased together (0.8 vs. +0.4 with ASR increased vs. not, additionally to MSS and MAS). Low-cost field tests aimed at assessing maximal sprinting and aerobic speeds can be used to monitor ∆RS performance.

  18. A novel compression garment with adhesive silicone stripes improves repeated sprint performance – a multi-experimental approach on the underlying mechanisms

    PubMed Central

    2014-01-01

    Background Repeated sprint performance is determined by explosive production of power, as well as rapid recovery between successive sprints, and there is evidence that compression garments and sports taping can improve both of these factors. Methods In each of two sub-studies, female athletes performed two sets of 30 30-m sprints (one sprint per minute), one set wearing compression garment with adhesive silicone stripes (CGSS) intended to mimic taping and the other with normal clothing, in randomized order. Sub-study 1 (n = 12) focused on cardio-respiratory, metabolic, hemodynamic and perceptual responses, while neuronal and biomechanical parameters were examined in sub-study 2 (n = 12). Results In both sub-studies the CGSS improved repeated sprint performance during the final 10 sprints (best P < 0.01, d = 0.61). None of the cardio-respiratory or metabolic variables monitored were altered by wearing this garment (best P = 0.06, d = 0.71). Also during the final 10 sprints, rating of perceived exertion by the upper leg muscles was reduced (P = 0.01, d = 1.1), step length increased (P = 0.01, d = 0.91) and activation of the m. rectus femoris elevated (P = 0.01, d = 1.24), while the hip flexion angle was lowered throughout the protocol (best P < 0.01, d = 2.28) and step frequency (best P = 0.34, d = 0.2) remained unaltered. Conclusion Although the physiological parameters monitored were unchanged, the CGSS appears to improve performance during 30 30-m repeated sprints by reducing perceived exertion and altering running technique. PMID:24914412

  19. Can cycle power predict sprint running performance?

    PubMed

    van Ingen Schenau, G J; Jacobs, R; de Koning, J J

    1991-01-01

    A major criticism of present models of the energetics and mechanics of sprint running concerns the application of estimates of parameters which seem to be adapted from measurements of running during actual competitions. This study presents a model which does not perpetuate this solecism. Using data obtained during supra-maximal cycle ergometer tests of highly trained athletes, the kinetics of the anaerobic and aerobic pathways were modelled. Internal power wasted in the acceleration and deceleration of body limbs and the power necessary to overcome air friction was calculated from data in the literature. Assuming a mechanical efficiency as found during submaximal cycling, a power equation was constructed which also included the power necessary to accelerate the body at the start of movement. The differential equation thus obtained was solved through simulation. The model appeared to predict realistic times at 100 m (10.47 s), 200 m (19.63 s) and 400 m (42.99 s) distances. By comparison with other methods it is argued that power equations of locomotion should include the concept of mechanical efficiency.

  20. The effects of enforced, rapid deceleration on performance in a multiple sprint test.

    PubMed

    Lakomy, Julie; Haydon, Daniel T

    2004-08-01

    The nature of multiple sprint sports such as soccer, hockey, and rugby is such that deceleration plays an important part in the movement patterns of players during a game and training. The purpose of this study was to investigate the effect of deceleration on fatigue during repeated sprint efforts. A group of 18 elite field hockey players (all men) performed a running repeated sprint ability test (6 x 40 m using maximal effort and departing every 30 seconds). In one condition, there was no deceleration zone, and in the second condition, the test had a deceleration component (rapid deceleration to a stop within 6 m of the end of each sprint). Sprint times under each condition were compared using a repeated-measures analysis of variance. No significant difference was seen between the 2 conditions for mean sprint times (p > 0.05) or for the mean fatigue index (p > 0.05). However, results showed a divergent trend, and further analysis extrapolating the data for an increased number of sprints showed that a significant difference (p < 0.05) would have been seen at the 11th sprint. Although this study found that the deceleration zone had little effect on the 6-sprint protocol, it was clear that the deceleration component would have shown an effect, giving rise to greater fatigue and slower sprint times, if the number of sprints had been increased. The implications are that deceleration training should be introduced into general fitness training programs for those competing in multiple sprint sports.

  1. Effect of Carbohydrate Ingestion on Sprint Performance Following Continuous Exercise

    NASA Astrophysics Data System (ADS)

    Siahkohian, M.; Farhadi, H.; Naghizadeh Baghi, A.; Valizadeh, A.

    The purpose of this study was to determine the effect of 5% carbohydrate ingestion on the sprint performance immediately following 90 min of running at 70-80% of maximal heart rate reserve. Thirty young active men were selected as subjects and allocated randomly to two carbohydrate (CHO, N = 15) and placebo (PL, N = 15) groups. Pre-test 200 m dash, 90 min running and post-test 200 m dash took place, respectively. Exercise heart rate monitored during 90 min running by a cardio frequency meter. Significant differences were found between the CHO and PL post-test 200 m dash records (p<0.05). Blood glucose was found to be significantly higher at the end of the 90 min running for the CHO group than for the PL group (p<0.01). The results suggest that carbohydrate ingestion during endurance exercise inhibits failing of Sprint performance of young active men.

  2. Creatine supplementation does not improve sprint performance in competitive swimmers.

    PubMed

    Mujika, I; Chatard, J C; Lacoste, L; Barale, F; Geyssant, A

    1996-11-01

    This study was conducted to examine the effects of creatine (Cr) supplementation on sprint swimming performance and energy metabolism. Twenty highly trained swimmers (9 female, 11 male) were tested for blood ammonia and for blood lactate after the 25-, 50-, and 100-m performance in their best stroke on two occasions 7 d apart. After the first trial, subjects were evenly and randomly assigned to either a creatine (5 g creatine monohydrate 4 times per day for 5 d) or a placebo group (same dosage of a lactose placebo) in a double-blind research design. No significant differences in performance times were observed between trials. Post-exercise blood ammonia concentration decreased in the 50- and 100-m trials in the creatine group and in the 50-m trial in the placebo group. The supplementation period had no effect on post-exercise blood lactate. Therefore, creatine supplementation cannot be considered as an ergogenic aid for sprint performance in highly trained swimmers although adenine nucleotide degradation may be reduced during sprint exercise after 5 d of creatine ingestion.

  3. Effects of different substrates on the sprint performance of lizards.

    PubMed

    Tulli, Maria Jose; Abdala, Virginia; Cruz, Felix B

    2012-03-01

    The variation in substrate structure is one of the most important determinants of the locomotor abilities of lizards. Lizards are found across a range of habitats, from large rocks to loose sand, each of them with conflicting mechanical demands on locomotion. We examined the relationships among sprint speed, morphology and different types of substrate surfaces in species of lizards that exploit different structural habitats (arboreal, saxicolous, terrestrial and arenicolous) in a phylogenetic context. Our main goals were to assess which processes drive variability in morphology (i.e. phylogeny or adaptation to habitat) in order to understand how substrate structure affects sprint speed in species occupying different habitats and to determine the relationship between morphology and performance. Liolaemini lizards show that most morphological traits are constrained by phylogeny, particularly toe 3, the femur and foot. All ecological groups showed significant differences on rocky surfaces. Surprisingly, no ecological group performed better on the surface resembling its own habitat. Moreover, all groups exhibited significant differences in sprint speed among the three different types of experimental substrates and showed the best performance on sand, with the exception of the arboreal group. Despite the fact that species use different types of habitats, the highly conservative morphology of Liolaemini species and the similar levels of performance on different types of substrates suggest that they confer to the 'jack of all trades and master of none' principle.

  4. The effect of a prophylactic dose of flurbiprofen on muscle soreness and sprinting performance in trained subjects.

    PubMed

    Semark, A; Noakes, T D; St Clair Gibson, A; Lambert, M I

    1999-03-01

    The aim of this study was to examine the effects of a prophylactic dose of a local, transcutaneously administered, non-steroidal anti-inflammatory drug on muscle soreness, muscle damage and sprinting performance in young trained males. Twenty-five subjects aged 19+/-3 years, actively participating in rugby union and field hockey, were familiarized with the test procedure and then divided at random into an experimental group (n = 13) and a control group (n = 12). The experimental group received two patches, each containing 40 mg flurbiprofen (TransAct LAT), 12 h before an exercise bout designed to produce delayed-onset soreness (DOMS). The control group received identical non-medicated placebo patches at the same time. Delayed-onset muscle soreness was induced by an exercise protocol consisting of drop jumps (seven sets of 10 repetitions). Serum creatine kinase activity, muscle soreness, muscle girth and acceleration in a maximal sprint over 30 m were measured before the induction of DOMS and at 12, 24, 48 and 72 h thereafter. Plasma lactate concentration was measured 3 min after the 30-m sprint tests. Subjects in both groups had significantly more pain at 24 and 48 h compared with at 12 and 72 h (P < 0.05; Friedman two-way analysis of variance). Thigh girth and serum creatine kinase did not change throughout the experiment. Although plasma lactate concentrations were elevated after the 30-m sprint, there were no differences between groups or as a result of DOMS. The greatest acceleration occurred between 5 and 10 m. This was not affected by the anti-inflammatory drug or DOMS. In conclusion, the aetiology of the DOMS induced in the trained subjects in this study seems to be independent of inflammatory processes or, more specifically, of increases in prostaglandin synthesis in the muscles.

  5. Relationships between ground reaction impulse and sprint acceleration performance in team sport athletes.

    PubMed

    Kawamori, Naoki; Nosaka, Kazunori; Newton, Robert U

    2013-03-01

    Large horizontal acceleration in short sprints is a critical performance parameter for many team sport athletes. It is often stated that producing large horizontal impulse at each ground contact is essential for high short sprint performance, but the optimal pattern of horizontal and vertical impulses is not well understood, especially when the sprints are initiated from a standing start. This study was an investigation of the relationships between ground reaction impulses and sprint acceleration performance from a standing start in team sport athletes. Thirty physically active young men with team sport background performed 10-m sprint from a standing start, whereas sprint time and ground reaction forces were recorded during the first ground contact and at 8 m from the start. Associations between sprint time and ground reaction impulses (normalized to body mass) were determined by a Pearson's correlation coefficient (r) analysis. The 10-m sprint time was significantly (p < 0.01) correlated with net horizontal impulse (r = -0.52) and propulsive impulse (r = -0.66) measured at 8 m from the start. No significant correlations were found between sprint time and impulses recorded during the first ground contact after the start. These results suggest that applying ground reaction impulse in a more horizontal direction is important for sprint acceleration from a standing start. This is consistent with the hypothesis of training to increase net horizontal impulse production using sled towing or using elastic resistance devices, which needs to be validated by future longitudinal training studies.

  6. Mechanical determinants of 100-m sprint running performance.

    PubMed

    Morin, Jean-Benoît; Bourdin, Muriel; Edouard, Pascal; Peyrot, Nicolas; Samozino, Pierre; Lacour, Jean-René

    2012-11-01

    Sprint mechanics and field 100-m performances were tested in 13 subjects including 9 non-specialists, 3 French national-level sprinters and a world-class sprinter, to further study the mechanical factors associated with sprint performance. 6-s sprints performed on an instrumented treadmill allowed continuous recording of step kinematics, ground reaction forces (GRF), and belt velocity and computation of mechanical power output and linear force-velocity relationships. An index of the force application technique was computed as the slope of the linear relationship between the decrease in the ratio of horizontal-to-resultant GRF and the increase in velocity. Mechanical power output was positively correlated to mean 100-m speed (P < 0.01), as was the theoretical maximal velocity production capability (P < 0.011), whereas the theoretical maximal force production capability was not. The ability to apply the resultant force backward during acceleration was positively correlated to 100-m performance (r (s) > 0.683; P < 0.018), but the magnitude of resultant force was not (P = 0.16). Step frequency, contact and swing time were significantly correlated to acceleration and 100-m performance (positively for the former, negatively for the two latter, all P < 0.05), whereas aerial time and step length were not (all P > 0.21). Last, anthropometric data of body mass index and lower-limb-to-height ratio showed no significant correlation with 100-m performance. We concluded that the main mechanical determinants of 100-m performance were (1) a "velocity-oriented" force-velocity profile, likely explained by (2) a higher ability to apply the resultant GRF vector with a forward orientation over the acceleration, and (3) a higher step frequency resulting from a shorter contact time.

  7. The effects of warm-up on intermittent sprint performance in a hot and humid environment.

    PubMed

    Yaicharoen, Pongson; Wallman, Karen; Morton, Alan; Bishop, David; Grove, Robert J

    2012-01-01

    It is unknown whether a passive warm-up or an active warm-up performed at an intensity based on lactate thresholds could improve prolonged intermittent-sprint performance either in thermoneutral or hot environmental conditions. To investigate this issue, 11 male athletes performed three trials that consisted of 80 min of intermittent-sprinting performed on a cycle ergometer, preceded by either an active or a passive warm-up. Active warm-up and intermittent-sprint performance were performed in both hot and thermoneutral environmental conditions, while passive warm-up and intermittent-sprint performance were performed in hot conditions only. First sprint performance was also assessed. Results showed no significant interaction effects between any of the trials for total work (J · kg(-1)), work decrement, and power decrement (P = 0.10, P = 0.42, P = 0.10, respectively). While there were no significant differences between trials for work done for first sprint performance (P = 0.22), peak power was significantly higher after passive warm-up compared with active warm-up performed in either thermoneutral (P = 0.03) or in hot conditions (P = 0.02). Results suggest that the main benefits of warm-up for first sprint performance are derived from temperature-related effects. Active warm-up did not impair prolonged intermittent-sprint performance in the heat compared with thermoneutral conditions.

  8. Interaction Between Leg Muscle Performance and Sprint Acceleration Kinematics

    PubMed Central

    Lockie, Robert G.; Jalilvand, Farzad; Callaghan, Samuel J.; Jeffriess, Matthew D.; Murphy, Aron J.

    2015-01-01

    This study investigated relationships between 10 m sprint acceleration, step kinematics (step length and frequency, contact and flight time), and leg muscle performance (power, stiffness, strength). Twenty-eight field sport athletes completed 10 m sprints that were timed and filmed. Velocity and step kinematics were measured for the 0–5, 5–10, and 0–10 m intervals to assess acceleration. Leg power was measured via countermovement jumps (CMJ), a five-bound test (5BT), and the reactive strength index (RSI) defined by 40 cm drop jumps. Leg stiffness was measured by bilateral and unilateral hopping. A three-repetition maximum squat determined strength. Pearson’s correlations and stepwise regression (p ≤ 0.05) determined velocity, step kinematics, and leg muscle performance relationships. CMJ height correlated with and predicted velocity in all intervals (r = 0.40–0.54). The 5BT (5–10 and 0–10 m intervals) and RSI (5–10 m interval) also related to velocity (r = 0.37–0.47). Leg stiffness did not correlate with acceleration kinematics. Greater leg strength related to and predicted lower 0–5 m flight times (r = −0.46 to −0.51), and a longer 0–10 m step length (r = 0.38). Although results supported research emphasizing the value of leg power and strength for acceleration, the correlations and predictive relationships (r2 = 0.14–0.29) tended to be low, which highlights the complex interaction between sprint technique and leg muscle performance. Nonetheless, given the established relationships between speed, leg power and strength, strength and conditioning coaches should ensure these qualities are expressed during acceleration in field sport athletes. PMID:26839607

  9. Repeated Sprint Ability in Young Basketball Players (Part 2): The Chronic Effects of Multidirection and of One Change of Direction Are Comparable in Terms of Physiological and Performance Responses

    PubMed Central

    Attene, Giuseppe; Nikolaidis, Pantelis T.; Bragazzi, Nicola L.; Dello Iacono, Antonio; Pizzolato, Fabio; Zagatto, Alessandro M.; Dal Pupo, Juliano; Oggianu, Marcello; Migliaccio, Gian M.; Mannucci Pacini, Elena; Padulo, Johnny

    2016-01-01

    The aim of this study was to examine the effects of a 5-week training program, consisting of repeated 30-m sprints, on two repeated sprint ability (RSA) test formats: one with one change of direction (RSA) and the other with multiple changes of direction (RSM). Thirty-six young male and female basketball players (age 16.1 ± 0.9 years), divided into two experimental groups, were tested for RSA, RSM, squat jump, counter-movement jump, and the Yo-Yo Intermittent Recovery-Level-1 (Yo-Yo IR1) test, before and after a 4-week training program and 1 week of tapering. One group performed 30-m sprints with one change of direction (RSA group, RSAG), whereas the other group performed multidirectional 30-m sprints (RSM group, RSMG). Both groups improved in all scores in the post-intervention measurements (P < 0.05), except for the fatigue index in the RSM test. However, when comparing the two groups, similar effects were found for almost all parameters of the tests applied, except for RPE in the RSA test, which had a greater decrease in the RSAG (from 8.7 to 5.9) than in the RSMG (from 8.5 to 6.6, P = 0.021). We can conclude that repeated 30-m sprints, either with one change of direction or multidirectional, induce similar physiological and performance responses in young basketball players, but have a different psycho-physiological impact. PMID:27445852

  10. Repeated Sprint Ability in Young Basketball Players (Part 2): The Chronic Effects of Multidirection and of One Change of Direction Are Comparable in Terms of Physiological and Performance Responses.

    PubMed

    Attene, Giuseppe; Nikolaidis, Pantelis T; Bragazzi, Nicola L; Dello Iacono, Antonio; Pizzolato, Fabio; Zagatto, Alessandro M; Dal Pupo, Juliano; Oggianu, Marcello; Migliaccio, Gian M; Mannucci Pacini, Elena; Padulo, Johnny

    2016-01-01

    The aim of this study was to examine the effects of a 5-week training program, consisting of repeated 30-m sprints, on two repeated sprint ability (RSA) test formats: one with one change of direction (RSA) and the other with multiple changes of direction (RSM). Thirty-six young male and female basketball players (age 16.1 ± 0.9 years), divided into two experimental groups, were tested for RSA, RSM, squat jump, counter-movement jump, and the Yo-Yo Intermittent Recovery-Level-1 (Yo-Yo IR1) test, before and after a 4-week training program and 1 week of tapering. One group performed 30-m sprints with one change of direction (RSA group, RSAG), whereas the other group performed multidirectional 30-m sprints (RSM group, RSMG). Both groups improved in all scores in the post-intervention measurements (P < 0.05), except for the fatigue index in the RSM test. However, when comparing the two groups, similar effects were found for almost all parameters of the tests applied, except for RPE in the RSA test, which had a greater decrease in the RSAG (from 8.7 to 5.9) than in the RSMG (from 8.5 to 6.6, P = 0.021). We can conclude that repeated 30-m sprints, either with one change of direction or multidirectional, induce similar physiological and performance responses in young basketball players, but have a different psycho-physiological impact.

  11. Neck-cooling improves repeated sprint performance in the heat

    PubMed Central

    Sunderland, Caroline; Stevens, Ryan; Everson, Bethan; Tyler, Christopher J.

    2015-01-01

    The present study evaluated the effect of neck-cooling during exercise on repeated sprint ability in a hot environment. Seven team-sport playing males completed two experimental trials involving repeated sprint exercise (5 × 6 s) before and after two 45 min bouts of a football specific intermittent treadmill protocol in the heat (33.0 ± 0.2°C; 53 ± 2% relative humidity). Participants wore a neck-cooling collar in one of the trials (CC). Mean power output and peak power output declined over time in both trials but were higher in CC (540 ± 99 v 507 ± 122 W, d = 0.32; 719 ± 158 v 680 ± 182 W, d = 0.24 respectively). The improved power output was particularly pronounced (d = 0.51–0.88) after the 2nd 45 min bout but the CC had no effect on % fatigue. The collar lowered neck temperature and the thermal sensation of the neck (P < 0.001) but had no effect on heart rate, fluid loss, fluid consumption, lactate, glucose, plasma volume change, cortisol, or thermal sensation (P > 0.05). There were no trial differences but interaction effects were demonstrated for prolactin concentration and rating of perceived exertion (RPE). Prolactin concentration was initially higher in the collar cold trial and then was lower from 45 min onwards (interaction trial × time P = 0.04). RPE was lower during the football intermittent treadmill protocol in the collar cold trial (interaction trial × time P = 0.01). Neck-cooling during exercise improves repeated sprint performance in a hot environment without altering physiological or neuroendocrinological responses. RPE is reduced and may partially explain the performance improvement. PMID:26594177

  12. Neck-cooling improves repeated sprint performance in the heat.

    PubMed

    Sunderland, Caroline; Stevens, Ryan; Everson, Bethan; Tyler, Christopher J

    2015-01-01

    The present study evaluated the effect of neck-cooling during exercise on repeated sprint ability in a hot environment. Seven team-sport playing males completed two experimental trials involving repeated sprint exercise (5 × 6 s) before and after two 45 min bouts of a football specific intermittent treadmill protocol in the heat (33.0 ± 0.2°C; 53 ± 2% relative humidity). Participants wore a neck-cooling collar in one of the trials (CC). Mean power output and peak power output declined over time in both trials but were higher in CC (540 ± 99 v 507 ± 122 W, d = 0.32; 719 ± 158 v 680 ± 182 W, d = 0.24 respectively). The improved power output was particularly pronounced (d = 0.51-0.88) after the 2nd 45 min bout but the CC had no effect on % fatigue. The collar lowered neck temperature and the thermal sensation of the neck (P < 0.001) but had no effect on heart rate, fluid loss, fluid consumption, lactate, glucose, plasma volume change, cortisol, or thermal sensation (P > 0.05). There were no trial differences but interaction effects were demonstrated for prolactin concentration and rating of perceived exertion (RPE). Prolactin concentration was initially higher in the collar cold trial and then was lower from 45 min onwards (interaction trial × time P = 0.04). RPE was lower during the football intermittent treadmill protocol in the collar cold trial (interaction trial × time P = 0.01). Neck-cooling during exercise improves repeated sprint performance in a hot environment without altering physiological or neuroendocrinological responses. RPE is reduced and may partially explain the performance improvement.

  13. The Effects of Psoas Major and Lumbar Lordosis on Hip Flexion and Sprint Performance

    ERIC Educational Resources Information Center

    Copaver, Karine; Hertogh, Claude; Hue, Olivier

    2012-01-01

    In this study, we analyzed the correlations between hip flexion power, sprint performance, lumbar lordosis (LL) and the cross-sectional area (CSA) of the psoas muscle (PM). Ten young adults performed two sprint tests and isokinetic tests to determine hip flexion power. Magnetic resonance imaging was used to determine LL and PM CSA. There were…

  14. Muscle - tendon unit mechanical and morphological properties and sprint performance.

    PubMed

    Stafilidis, Savvas; Arampatzis, Adamantios

    2007-07-01

    The objective of this study was to determine whether sprint performance is related to the mechanical (elongation - force relationship of the tendon and aponeurosis, muscle strength) and morphological (fascicle length, pennation angle, muscle thickness) properties of the quadriceps femoris and triceps surae muscle - tendon units. Two groups of sprinters (slow, n = 11; fast, n = 17) performed maximal isometric knee extension and plantar flexion contractions on a dynamometer at 11 different muscle - tendon unit lengths. Elongation of the tendon and aponeurosis of the gastrocnemius medialis and the vastus lateralis was measured using ultrasonography. We observed no significant differences in maximal joint moments at the ankle and knee joints or morphological properties of the gastrocnemius medialis and vastus lateralis between groups (P > 0.05). The fast group exhibited greater elongation of the vastus lateralis tendon and aponeurosis at a given tendon force, and greater maximal elongation of the vastus lateralis tendon and aponeurosis during maximum voluntary contraction (P < 0.05). Furthermore, maximal elongation of the vastus lateralis tendon and aponeurosis showed a significant correlation with 100-m sprint times (r = -0.567, P = 0.003). For the elongation - force relationship at the gastrocnemius medialis tendon and aponeurosis, the two groups recorded similar values. It is suggested that the greater elongation of the vastus lateralis tendon and aponeurosis of the fast group benefits energy storage and return as well as the shortening velocity of the muscle - tendon unit.

  15. Characterization of the Sprint and Repeated-Sprint Sequences Performed by Professional Futsal Players, According to Playing Position, During Official Matches.

    PubMed

    Caetano, Fabio Giuliano; de Oliveira Bueno, Murilo José; de Oliveira, Murilo José; Marche, Ana Lorena; Nakamura, Fábio Yuzo; Cunha, Sergio Augusto; Moura, Felipe Arruda

    2015-12-01

    The purposes of this study were to investigate sprints and to characterize repeated-sprint sequences (RS) performed by athletes during professional futsal matches. We analyzed 97 players during 5 official matches using the DVideo automatic tracking system. The sprints were analyzed during the first and second halves according to playing position, and RS were categorized according to the number of sprints and the time between them. The results showed an increase (F[1, 2520] = 3.96; P = .046) in the sprint duration from the first (mean = 3.1 ± 1.3) to the second half (mean = 3.2 ± 1.2). However, no differences were found for other variables (distance covered, peak velocity, initial velocity, recovery time between sprints, and sprints performed per minute) or among playing positions. In addition, when considering RS, the results showed that RS comprising two sprints interspersed with a maximum of 15 seconds of recovery were significantly more frequent than other RS. The findings of this study characterizing the sprinting features of futsal players can help coaches to plan physical training and assessments according to the requirements of the sport.

  16. Effect of carbohydrate mouth rinsing on multiple sprint performance

    PubMed Central

    2013-01-01

    Background Research suggests that carbohydrate mouth rinsing (CMR) improves endurance performance; yet, little is known regarding the effect of CMR on multiple sprint efforts. As many sports involve multiple sprinting efforts, followed by periods of recovery, the aim of our current study was to investigate the influence of CMR on multiple sprint performance. Methods We recruited eight active males (Age; 22 ± 1 y; 75.0 ± 8.8 kg; estimated VO2max 52.0 ± 3.0 ml/kg/min) to participate in a randomly assigned, double-blind, counterbalanced study administering a CMR (6.4% Maltodextrin) or similarly flavoured placebo solution. Primary outcomes for our study included: (a) time for three repeated sprint ability tests (RSA) and (b) the Loughborough Intermittent Shuttle Test (LIST). Time was expressed in seconds (sec). Secondary outcomes included ratings of perceived exertion (RPE) and blood glucose concentration. Tertiary outcomes included two psychological assessments designed to determine perceived activation (i.e., arousal) and pleasure-displeasure after each section of the LIST. We analysed our data using a two-way analysis of variance (ANOVA) for repeated measures, a Bonferroni adjusted post hoc t-test to determine significant differences in treatment, and a liberal 90% confidence interval between treatment conditions. Effect sizes were calculated between trials and interpreted as ≤ 0.2 trivial, > 0.2 small, > 0.6 moderate, > 1.2 large, > 2 very large and > 4 extremely large. Data are means ± SD. Overall statistical significance was set as P < 0.05; yet, modified accordingly when Bonferroni adjustments were made. Results Overall, we observed no significant difference in average (3.46 ± 0.2 vs. 3.44 ± 0.17; P = 0.11) or fastest time (3.38 ± 0.2 vs. 3.37 ± 0.2; P = 0.39) in the RSA test for the placebo vs. CMR conditions, respectively. Similar findings were also noted for the placebo vs. CMR, respectively, during

  17. Sprinting performance on the Woodway Curve 3.0 is related to muscle architecture.

    PubMed

    Mangine, Gerald T; Fukuda, David H; Townsend, Jeremy R; Wells, Adam J; Gonzalez, Adam M; Jajtner, Adam R; Bohner, Jonathan D; LaMonica, Michael; Hoffman, Jay R; Fragala, Maren S; Stout, Jeffrey R

    2015-01-01

    To determine if unilateral measures of muscle architecture in the rectus femoris (RF) and vastus lateralis (VL) were related to (and predictive of) sprinting speed and unilateral (and bilateral) force (FRC) and power (POW) during a 30 s maximal sprint on the Woodway Curve 3.0 non-motorized treadmill. Twenty-eight healthy, physically active men (n = 14) and women (n = 14) (age = 22.9 ± 2.4 years; body mass = 77.1 ± 16.2 kg; height = 171.6 ± 11.2 cm; body-fa t = 19.4 ± 8.1%) completed one familiarization and one 30-s maximal sprint on the TM to obtain maximal sprinting speed, POW and FRC. Muscle thickness (MT), cross-sectional area (CSA) and echo intensity (ECHO) of the RF and VL in the dominant (DOM; determined by unilateral sprinting power) and non-dominant (ND) legs were measured via ultrasound. Pearson correlations indicated several significant (p < 0.05) relationships between sprinting performance [POW (peak, DOM and ND), FRC (peak, DOM, ND) and sprinting time] and muscle architecture. Stepwise regression indicated that POW(DOM) was predictive of ipsilateral RF (MT and CSA) and VL (CSA and ECHO), while POW(ND) was predictive of ipsilateral RF (MT and CSA) and VL (CSA); sprinting power/force asymmetry was not predictive of architecture asymmetry. Sprinting time was best predicted by peak power and peak force, though muscle quality (ECHO) and the bilateral percent difference in VL (CSA) were strong architectural predictors. Muscle architecture is related to (and predictive of) TM sprinting performance, while unilateral POW is predictive of ipsilateral architecture. However, the extent to which architecture and other factors (i.e. neuromuscular control and sprinting technique) affect TM performance remains unknown.

  18. Prediction of sprint triathlon performance from laboratory tests.

    PubMed

    Van Schuylenbergh, R; Eynde, B Vanden; Hespel, P

    2004-01-01

    This study investigated whether sprint triathlon performance can be adequately predicted from laboratory tests. Ten triathletes [mean (SEM), age 21.8 (0.3) years, height 179 (2) cm, body mass 67.5 (2.5) kg] performed two graded maximal exercise test in random order, either on their own bicycle which was mounted on an ergometer or on a treadmill, to determine their peak oxygen consumption ( VO(2)peak). Furthermore, they participated in two to three 30-min constant-load tests in both swimming, cycling and running to establish their maximal lactate steady state (MLSS) in each exercise mode. Swim tests were performed in a 25-m swimming pool (water temperature 27 degrees C). During each test heart rate (HR), power output (PO) or running/swimming speed and blood lactate concentration (BLC) were recorded at regular intervals. Oxygen uptake ( VO(2)) was continuously measured during the graded tests. Two weeks after the laboratory tests all subjects competed in a triathlon race (500 m swim, 20-km bike, 5-km run) [1 h 4 min 45 s (1 min 38 s)]. Peak HR was 7 beats.min(-1) lower in the graded cycle test than in the treadmill test ( p<0.05) at similar peak BLC (approximately 10 mmol.l(-1)) and VO(2)peak (approximately 5 L.min(-1)). High correlations were found between VO(2)peak during cycling ( r=-0.71, p<0.05) or running ( r=-0.69, p<0.05) and triathlon performance. Stepwise multiple regression analysis showed that running speed and swimming speed at MLSS, together with BLC in running at MLSS, yielded the best prediction of performance [1 h 5 min 18 s (1 min 49 s)]. Thus, our data indicate that exercise tests aimed to determine MLSS in running and swimming allow for a precise estimation of sprint triathlon performance.

  19. Effects of Three Different Resistance Training Frequencies on Jump, Sprint, and Repeated Sprint Ability Performance in Professional Futsal Players.

    PubMed

    Paz-Franco, Adrián; Rey, Ezequiel; Barcala-Furelos, Roberto

    2017-02-21

    The aim of this study was to examine the effect of 3 different resistance training frequencies (one strength training session per week (1W), two strength training sessions per week (2W) or one strength training session every second week (0.5W)) on jump, sprint and repeated sprint performance (RSA) in professional futsal players. Thirty-five futsal players were randomized into 1 of 3 groups, the 1W group (n= 12), 2W group (n= 12), or the 0.5W group (n= 11). The players performed the same resistance training during 6 weeks and only training frequency differed between the groups. Within-group analysis showed significant improvements in jump (p≤0.001, Effect Size (ES)= 0.13-0.35), sprint (p≤0.001, ES= 0.48-0.71), and RSA (p≤0.01, ES= 0.22-0.63) from pretest to posttest in 1W and 2W. However, no significant (p>0.05) pre-post changes were observed for the 0.5W in any variable. In the between-groups analysis, significant better results were found in jump (p≤0.01), sprint (p≤0.01), and RSA performance (p≤0.01) in the 1W group and 2W group in comparison with 0.5W group. Also, jump (p≤0.05) and 5 m sprint (p≤0.05) performances was significantly better in the 2W group in comparison with 1W group. In conclusion, the current study showed that 6 weeks of RT one or two times per week in addition to typical futsal training, produced significant improvements in jump, sprint and RSA performance. Additionally, RT one every second week may be sufficient to maintain physical fitness in professional futsal players. This information may be useful for coaches when planning training contents during congested fixture schedules or in periods where the emphasis need to be put on other qualities and spend as little time as possible on maintaining or increasing physical performance.

  20. Improving Sprint Performance in Soccer: Effectiveness of Jump Squat and Olympic Push Press Exercises

    PubMed Central

    Loturco, Irineu; Pereira, Lucas Adriano; Kobal, Ronaldo; Maldonado, Thiago; Piazzi, Alessandro Fromer; Bottino, Altamiro; Kitamura, Katia; Cal Abad, Cesar Cavinato; de Arruda, Miguel; Nakamura, Fabio Yuzo

    2016-01-01

    Training at the optimum power load (OPL) is an effective way to improve neuromuscular abilities of highly trained athletes. The purpose of this study was to test the effects of training using the jump squat (JS) or Olympic push-press (OPP) exercises at the OPL during a short-term preseason on speed-power related abilities in high-level under-20 soccer players. The players were divided into two training groups: JS group (JSG) and OPP group (OPPG). Both groups undertook 12 power-oriented sessions, using solely JS or OPP exercises. Pre- and post-6 weeks of training, athletes performed squat jump (SJ), countermovement jump (CMJ), sprinting speed (5, 10, 20 and 30 m), change of direction (COD) and speed tests. To calculate the transfer effect coefficient (TEC) between JS and MPP OPP and the speed in 5, 10, 20, and 30 m, the ratio between the result gain (effect size [ES]) in the untrained exercise and result gain in the trained exercise was calculated. Magnitude based inference and ES were used to test the meaningful effects. The TEC between JS and VEL 5, 10, 20, and 30 m ranged from 0.77 to 1.29, while the only TEC which could be calculated between OPP and VEL 5 was rather low (0.2). In addition, the training effects of JS on jumping and speed related abilities were superior (ES ranging from small to large) to those caused by OPP (trivial ES). To conclude, the JS exercise is superior to the OPP for improving speed-power abilities in elite young soccer players. PMID:27100085

  1. Improving Sprint Performance in Soccer: Effectiveness of Jump Squat and Olympic Push Press Exercises.

    PubMed

    Loturco, Irineu; Pereira, Lucas Adriano; Kobal, Ronaldo; Maldonado, Thiago; Piazzi, Alessandro Fromer; Bottino, Altamiro; Kitamura, Katia; Cal Abad, Cesar Cavinato; de Arruda, Miguel; Nakamura, Fabio Yuzo

    2016-01-01

    Training at the optimum power load (OPL) is an effective way to improve neuromuscular abilities of highly trained athletes. The purpose of this study was to test the effects of training using the jump squat (JS) or Olympic push-press (OPP) exercises at the OPL during a short-term preseason on speed-power related abilities in high-level under-20 soccer players. The players were divided into two training groups: JS group (JSG) and OPP group (OPPG). Both groups undertook 12 power-oriented sessions, using solely JS or OPP exercises. Pre- and post-6 weeks of training, athletes performed squat jump (SJ), countermovement jump (CMJ), sprinting speed (5, 10, 20 and 30 m), change of direction (COD) and speed tests. To calculate the transfer effect coefficient (TEC) between JS and MPP OPP and the speed in 5, 10, 20, and 30 m, the ratio between the result gain (effect size [ES]) in the untrained exercise and result gain in the trained exercise was calculated. Magnitude based inference and ES were used to test the meaningful effects. The TEC between JS and VEL 5, 10, 20, and 30 m ranged from 0.77 to 1.29, while the only TEC which could be calculated between OPP and VEL 5 was rather low (0.2). In addition, the training effects of JS on jumping and speed related abilities were superior (ES ranging from small to large) to those caused by OPP (trivial ES). To conclude, the JS exercise is superior to the OPP for improving speed-power abilities in elite young soccer players.

  2. Relationships between strength, sprint, and jump performance in well-trained youth soccer players.

    PubMed

    Comfort, Paul; Stewart, Al; Bloom, Laurence; Clarkson, Ben

    2014-01-01

    Research has demonstrated a clear relationship between absolute and relative strength and sprint and jump performance in adult athletes; however, this relationship in younger athletes has been less extensively studied. The aim of this study, therefore, was to determine the relationships between strength, sprint, and jump performances in well-trained youth soccer players. Thirty-four young male soccer players (17.2 ± 0.6 years; body mass, 72.62 ± 7.42 kg; height, 179.27 ± 6.58 cm) performed a predicted maximal squat test, 20-m sprints, squat jumps (SJs), and countermovement jumps (CMJs). Absolute strength showed the strongest correlations with 5-m sprint times (r = -0.596, p < 0.001, power = 0.99), SJ height (r = 0.762, p < 0.001, power = 1.00), and CMJ height (r = 0.760, p < 0.001, power = 1.00), whereas relative strength demonstrated the strongest correlation with 20-m sprint times (r = -0.672, p < 0.001, power = 0.99). The results of this study illustrate the importance of developing high levels of lower-body strength to enhance sprint and jump performance in youth soccer players, with stronger athletes demonstrating superior sprint and jump performances.

  3. Eight Weeks of Kettlebell Swing Training Does not Improve Sprint Performance in Recreationally Active Females

    PubMed Central

    HOLMSTRUP, MICHAEL E.; JENSEN, BROCK T.; EVANS, WILLIAM S.; MARSHALL, EMILY C.

    2016-01-01

    The kettlebell swing (KBS), emphasizing cyclical, explosive hip extension in the horizontal plane, aligns with movement- and velocity-specificity of sprinting. The present study examined the effect of an eight-week KBS intervention on sprinting in recreationally-active females, in comparison to an eight-week intervention using the stiff-legged deadlift (SDL). Following a pre-testing session measuring 30 meter sprint and countermovement vertical jump performance, participants were divided evenly by sprint time into KBS (n=8) and SDL (n=10) cohorts. Following familiarization with the exercises, KBS met twice weekly to perform swings using the Tabata interval (20s work, 10s rest, 8 rounds), stressing a rapid, explosive tempo. In contrast, the SDL group performed their Tabata stiff-legged deadlifts at a conventional resistance training tempo (2 seconds concentric, 2 seconds eccentric). Following eight weeks and greater than 95% training adherence, the SDL group only had a slightly greater average training volume (~3%) than KBS. No significant differences in pre-test values, or changes were noted in sprint performance from pre- to post-intervention in either group. An improvement in vertical jump performance was noted across groups. Potential explanations for the lack of sprint improvement compared to previous studies include differences between recreationally-active and athletic females, and low exercise volume (~46% of a comparable study with improvements in vertical jump). Future studies should seek to determine the appropriate volume and intensity for KBS components of sprint programming. PMID:27766131

  4. Eight Weeks of Kettlebell Swing Training Does not Improve Sprint Performance in Recreationally Active Females.

    PubMed

    Holmstrup, Michael E; Jensen, Brock T; Evans, William S; Marshall, Emily C

    2016-01-01

    The kettlebell swing (KBS), emphasizing cyclical, explosive hip extension in the horizontal plane, aligns with movement- and velocity-specificity of sprinting. The present study examined the effect of an eight-week KBS intervention on sprinting in recreationally-active females, in comparison to an eight-week intervention using the stiff-legged deadlift (SDL). Following a pre-testing session measuring 30 meter sprint and countermovement vertical jump performance, participants were divided evenly by sprint time into KBS (n=8) and SDL (n=10) cohorts. Following familiarization with the exercises, KBS met twice weekly to perform swings using the Tabata interval (20s work, 10s rest, 8 rounds), stressing a rapid, explosive tempo. In contrast, the SDL group performed their Tabata stiff-legged deadlifts at a conventional resistance training tempo (2 seconds concentric, 2 seconds eccentric). Following eight weeks and greater than 95% training adherence, the SDL group only had a slightly greater average training volume (~3%) than KBS. No significant differences in pre-test values, or changes were noted in sprint performance from pre- to post-intervention in either group. An improvement in vertical jump performance was noted across groups. Potential explanations for the lack of sprint improvement compared to previous studies include differences between recreationally-active and athletic females, and low exercise volume (~46% of a comparable study with improvements in vertical jump). Future studies should seek to determine the appropriate volume and intensity for KBS components of sprint programming.

  5. Fast growers sprint slower: effects of food deprivation and re-feeding on sprint swimming performance in individual juvenile European sea bass.

    PubMed

    Killen, Shaun S; Marras, Stefano; McKenzie, David J

    2014-03-15

    While many ectothermic species can withstand prolonged fasting without mortality, food deprivation may have sublethal effects of ecological importance, including reductions in locomotor ability. Little is known about how such changes in performance in individual animals are related to either mass loss during food deprivation or growth rate during re-feeding. This study followed changes in the maximum sprint swimming performance of individual European sea bass, Dicentrarchus labrax, throughout 45 days of food deprivation and 30 days of re-feeding. Maximum sprint speed did not show a significant decline until 45 days of food deprivation. Among individuals, the reduction in sprinting speed at this time was not related to mass loss. After 30 days of re-feeding, mean sprinting speed had recovered to match that of control fish. Among individuals, however, maximum sprinting speed was negatively correlated with growth rate after the resumption of feeding. This suggests that the rapid compensatory growth that occurs during re-feeding after a prolonged fast carries a physiological cost in terms of reduced sprinting capacity, the extent of which shows continuous variation among individuals in relation to growth rate. The long-term repeatability of maximum sprint speed was low when fish were fasted or fed a maintenance ration, but was high among control fish fed to satiation. Fish that had been previously food deprived continued to show low repeatability in sprinting ability even after the initiation of ad libitum feeding, probably stemming from variation in compensatory growth among individuals and its associated negative effects on sprinting ability. Together, these results suggest that food limitation can disrupt hierarchies of maximum sprint performance within populations. In the wild, the cumulative effects on locomotor capacity of fasting and re-feeding could lead to variable survival among individuals with different growth trajectories following a period of food

  6. Caffeine-containing energy drink improves sprint performance during an international rugby sevens competition.

    PubMed

    Del Coso, Juan; Portillo, Javier; Muñoz, Gloria; Abián-Vicén, Javier; Gonzalez-Millán, Cristina; Muñoz-Guerra, Jesús

    2013-06-01

    The aim of this study was to determine the effects of a caffeine-containing energy drink on physical performance during a rugby sevens competition. A second purpose was to investigate the post-competition urinary caffeine concentration derived from the energy drink intake. On two non-consecutive days of a friendly tournament, 16 women from the Spanish National rugby sevens Team (mean age and body mass = 23 ± 2 years and 66 ± 7 kg) ingested 3 mg of caffeine per kg of body mass in the form of an energy drink (Fure(®), ProEnergetics) or the same drink without caffeine (placebo). After 60 min for caffeine absorption, participants performed a 15-s maximal jump test, a 6 × 30 m sprint test, and then played three rugby sevens games against another national team. Individual running pace and instantaneous speed during the games were assessed using global positioning satellite (GPS) devices. Urine samples were obtained pre and post-competition. In comparison to the placebo, the ingestion of the energy drink increased muscle power output during the jump series (23.5 ± 10.1 vs. 25.6 ± 11.8 kW, P = 0.05), running pace during the games (87.5 ± 8.3 vs. 95.4 ± 12.7 m/min, P < 0.05), and pace at sprint velocity (4.6 ± 3.3 vs. 6.1 ± 3.4 m/min, P < 0.05). However, the energy drink did not affect maximal running speed during the repeated sprint test (25.0 ± 1.5 vs. 25.0 ± 1.7 km/h). The ingestion of the energy drink resulted in a higher post-competition urine caffeine concentration than the placebo (3.3 ± 0.7 vs. 0.2 ± 0.1 μg/mL; P < 0.05). In summary, 3 mg/kg of caffeine in the form of a commercially available energy drink considerably enhanced physical performance during a women's rugby sevens competition.

  7. The effectiveness of resisted movement training on sprinting and jumping performance.

    PubMed

    Hrysomallis, Con

    2012-01-01

    Resisted movement training is that in which the sports movement is performed with added resistance. To date, the effectiveness on enhancing sprint speed or vertical jump height had not been reviewed. The objectives of this review were to collate information on resisted training studies for sprinting and vertical jumping, ascertain whether resisted movement training was superior to normal unresisted movement training, and identify areas for future research. The review was based on peer-reviewed journal articles identified from electronic literature searches using MEDLINE and SPORTDiscus data bases from 1970 to 2010. Resisted sprint training was found to increase sprint speed but, in most cases, was no more effective than normal sprint training. There was some evidence that resisted sprint training was superior in increasing speed in the initial acceleration phase of sprinting. Resisted jump training in the form of weighted jump squats was shown to increase vertical jump height, but it was no more effective than plyometric depth jump training. Direct comparisons between resisted jump training and unresisted normal jump training were limited, but loaded eccentric countermovement jump squat training with unloaded concentric phase and eccentric landing was shown to generate superior results for elite jumpers. More prospective studies on resisted sprint training are required along with monitoring both kinematic and kinetic adaptations to fully determine any underlying mechanisms for any improvements in sprint speed. Based on the available data, the benefits and superiority of resisted sprint training have not been fully established. As for resisted jump training, although there are some promising findings, these results need to be duplicated by other researchers before resisted jump training can be claimed to be more effective than other forms of jump training.

  8. Effects of caffeine and carbohydrate mouth rinses on repeated sprint performance.

    PubMed

    Beaven, C Martyn; Maulder, Peter; Pooley, Adrian; Kilduff, Liam; Cook, Christian

    2013-06-01

    Our purpose was to examine the effectiveness of carbohydrate and caffeine mouth rinses in enhancing repeated sprint ability. Previously, studies have shown that a carbohydrate mouth rinse (without ingestion) has beneficial effects on endurance performance that are related to changes in brain activity. Caffeine ingestion has also demonstrated positive effects on sprint performance. However, the effects of carbohydrate or caffeine mouth rinses on intermittent sprints have not been examined previously. Twelve males performed 5 × 6-s sprints interspersed with 24 s of active recovery on a cycle ergometer. Twenty-five milliliters of either a noncaloric placebo, a 6% glucose, or a 1.2% caffeine solution was rinsed in the mouth for 5 s prior to each sprint in a double-blinded and balanced cross-over design. Postexercise maximal heart rate and perceived exertion were recorded, along with power measures. A second experiment compared a combined caffeine-carbohydrate rinse with carbohydrate only. Compared with the placebo mouth rinse, carbohydrate substantially increased peak power in sprint 1 (22.1 ± 19.5 W; Cohen's effect size (ES), 0.81), and both caffeine (26.9 ± 26.9 W; ES, 0.71) and carbohydrate (39.1 ± 25.8 W; ES, 1.08) improved mean power in sprint 1. Experiment 2 demonstrated that a combination of caffeine and carbohydrate improved sprint 1 power production compared with carbohydrate alone (36.0 ± 37.3 W; ES, 0.81). We conclude that carbohydrate and (or) caffeine mouth rinses may rapidly enhance power production, which could have benefits for specific short sprint exercise performance. The ability of a mouth-rinse intervention to rapidly improve maximal exercise performance in the absence of fatigue suggests a central mechanism.

  9. Importance of Muscle Power Variables in Repeated and Single Sprint Performance in Soccer Players

    PubMed Central

    López-Segovia, Manuel; Dellal, Alexandre; Chamari, Karim; González-Badillo, Juan José

    2014-01-01

    This study examined the relationship between lower body power and repeated as well as single sprint performance in soccer players. The performance of nineteen male soccer players was examined. The first testing session included the countermovement jump (CMJL) and the progressive full squat (FSL), both with external loads. Power in the CMJL and FSL was measured with each load that was lifted. The second session included a protocol of 40-m repeated sprints with a long recovery period (2 min). The number of sprints executed until there was a 3% decrease in performance for the best 40-m sprint time was recorded as a repeated sprint index (RSI). The RSI was moderately associated with power output relative to body mass in the CMJL and FSL (r = 0.53/0.54, p ≤ 0.05). The most and least powerful players (determined by FSL) showed significant differences in the RSI (9.1 ± 4.2 vs. 6.5 ± 1.6) and 10 m sprint time (p ± 0.01). Repeated and single sprints are associated with relatively lower body power in soccer players. PMID:25031688

  10. The effect of heavy resistance exercise on repeated sprint performance in youth athletes.

    PubMed

    Low, Daniel; Harsley, Paul; Shaw, Matthew; Peart, Daniel

    2015-01-01

    This investigation assessed whether prior heavy resistance exercise would improve the repeated sprint performance of 16 trained youth soccer players (Age 17.05 ± 0.65 years; height 182.6 ± 8.9 cm; body mass 77.8 ± 8.2 kg). In session 1, individual 1 repetition max was measured utilising a squat movement. In sessions 2 and 3, participants performed a running-based repeated anaerobic sprint test with and without prior heavy resistance exercise of 91% of their 1 repetition max. Times were recorded for each of the 6 sprints performed in the repeated sprint test and summed to provide total time. T-tests compared the two exercise conditions via differences in corresponding sprint times and total time. Analysis revealed significantly reduced total time with use of heavy resistance exercise (33.48 (±1.27) vs. 33.59 (±1.27); P = 0.01). Sprints 1 (P = 0.05) and 2 (P = 0.02) were also faster in the heavy resistance exercise condition (5.09 (±0.16) vs. 5.11 (±0.16) and 5.36 (±0.24) vs. 5.45 (±0.26) seconds respectively) although no other differences were shown. Findings demonstrate improved sprint times of trained adolescent soccer players after heavy resistance exercise although benefits appear not as sustained as in adult participants.

  11. Anthropometric factors related to sprint and agility performance in young male soccer players

    PubMed Central

    Mathisen, Gunnar; Pettersen, Svein Arne

    2015-01-01

    Objective To investigate the relationship between anthropometrics and sprint and agility performance and describe the development of sprint (acceleration) and agility performance in 10- to 16-year-old male soccer players. Methods One hundred and thirty-two participants were divided into three age groups, 10–12 years (mean 10.8±0.50), 13–14 years (mean 13.9±0.50), and 15–16 years (mean 15.5±0.24), with assessment of 20 m sprint with 10 m split time and agility performance related to body height and body mass within groups. Results In the 10- to 12-year-olds, there were no significant correlations between height, weight, and the performance variables, except for body mass, which was correlated to 10–20 m sprint (r=0.30). In the 13- to 14-year-olds, body height was significantly correlated with 10 m sprint (r=0.50) and 20 m sprint (r=0.52), as well as 10–20 m sprint (r=0.50) and agility performance (r=0.28). In the 15- to 16-year-old group, body height was correlated to 20 m (r=0.38) and 10–20 m (r=0.45) sprint. Body mass was significantly correlated to 10 m spring (r=0.35) in the 13- to 14-year-olds, as well as 20 m (r=0.33) and 10–20 m (r=0.35) sprint in the 15- to 16-year-olds. Conclusion Height and body mass were significantly correlated with sprint performance in 13- to 16-year-old male soccer players. However, the 10- to 12-year-olds showed no significant relationship between sprint performance and anthropometrics, except for a small correlation in 10–20 m sprint. This may be attributed to maturation, with large differences in body height and body mass due to different patterns in the growth spurt. The agility performance related to anthropometrics was insignificant apart from a moderate correlation in the 13- to 14-year-olds. PMID:26604842

  12. Effect of caffeine ingestion after creatine supplementation on intermittent high-intensity sprint performance.

    PubMed

    Lee, Chia-Lun; Lin, Jung-Charng; Cheng, Ching-Feng

    2011-08-01

    The aim of this study was to investigate the effects of acute caffeine ingestion on intermittent high-intensity sprint performance after 5 days of creatine loading. After completing a control trial (no ergogenic aids, CON), twelve physically active men were administered in a double-blind, randomized crossover protocol to receive CRE + PLA (0.3 g kg(-1) day(-1) of creatine for 5 days then followed by 6 mg kg(-1) of placebo) and CRE + CAF (0.3 g kg(-1) day(-1) of creatine for 5 days and followed by 6 mg kg(-1) of caffeine), after which they performed a repeated sprint test. Each test consisted of six 10-s intermittent high-intensity sprints on a cycling ergometer, with 60-s rest intervals between sprints. Mean power, peak power, rating of perceived exertion (RPE), and heart rates were measured during the test. Blood samples for lactate, glucose, and catecholamine concentrations were drawn at specified intervals. The mean and peak power observed in the CRE + CAF were significantly higher than those found in the CON during Sprints 1 and 3; and the CRE + CAF showed significantly higher mean and peak power than that in the CRE + PLA during Sprints 1 and 2. The mean and peak power during Sprint 3 in the CRE + PLA was significantly greater than that in the CON. Heart rates, plasma lactate, and glucose increased significantly with CRE + CAF during most sprints. No significant differences were observed in the RPE among the three trials. The present study determined that caffeine ingestion after creatine supplements augmented intermittent high-intensity sprint performance.

  13. Effects of combined creatine and sodium bicarbonate supplementation on repeated sprint performance in trained men.

    PubMed

    Barber, James J; McDermott, Ann Y; McGaughey, Karen J; Olmstead, Jennifer D; Hagobian, Todd A

    2013-01-01

    Creatine and sodium bicarbonate supplementation independently increase exercise performance, but it remains unclear whether combining these 2 supplements is more beneficial on exercise performance. The purpose of this study was to evaluate the impact of combining creatine monohydrate and sodium bicarbonate supplementation on exercise performance. Thirteen healthy, trained men (21.1 ± 0.6 years, 23.5 ± 0.5 kg·m(-2), 66.7 ± 5.7 ml·(kg·m)(-1) completed 3 conditions in a double-blinded, crossover fashion: (a) Placebo (Pl; 20 g maltodextrin + 0.5 g·kg(-1) maltodextrin), (b) Creatine (Cr; 20 g + 0.5 g·kg(-1) maltodextrin), and (c) Creatine plus sodium bicarbonate (Cr + Sb; 20 g + 0.5 g·kg(-1) sodium bicarbonate). Each condition consisted of supplementation for 2 days followed by a 3-week washout. Peak power, mean power, relative peak power, and bicarbonate concentrations were assessed during six 10-second repeated Wingate sprint tests on a cycle ergometer with a 60-second rest period between each sprint. Compared with Pl, relative peak power was significantly higher in Cr (4%) and Cr + Sb (7%). Relative peak power was significantly lower in sprints 4-6, compared with that in sprint 1, in both Pl and Cr. However, in Cr + Sb, sprint 6 was the only sprint significantly lower compared with sprint 1. Pre-Wingate bicarbonate concentrations were significantly higher in Cr + Sb (10%), compared with in Pl and Cr, and mean concentrations remained higher after sprint 6, although not significantly. Combining creatine and sodium bicarbonate supplementation increased peak and mean power and had the greatest attenuation of decline in relative peak power over the 6 repeated sprints. These data suggest that combining these 2 supplements may be advantageous for athletes participating in high-intensity, intermittent exercise.

  14. Tail autotomy affects bipedalism but not sprint performance in a cursorial Mediterranean lizard

    NASA Astrophysics Data System (ADS)

    Savvides, Pantelis; Stavrou, Maria; Pafilis, Panayiotis; Sfenthourakis, Spyros

    2017-02-01

    Running is essential in all terrestrial animals mainly for finding food and mates and escaping from predators. Lizards employ running in all their everyday functions, among which defense stands out. Besides flight, tail autotomy is another very common antipredatory strategy within most lizard families. The impact of tail loss to sprint performance seems to be species dependent. In some lizard species, tail shedding reduces sprint speed, in other species, increases it, and, in a few species, speed is not affected at all. Here, we aimed to clarify the effect of tail autotomy on the sprint performance of a cursorial lizard with particular adaptations for running, such as bipedalism and spike-like protruding scales (fringes) on the toepads that allow high speed on sandy substrates. We hypothesized that individuals that performed bipedalism, and have more and larger fringes, would achieve higher sprint performance. We also anticipated that tail shedding would affect sprint speed (though we were not able to define in what way because of the unpredictable effects that tail loss has on different species). According to our results, individuals that ran bipedally were faster; limb length and fringe size had limited effects on sprint performance whereas tail autotomy affected quadrupedal running only in females. Nonetheless, tail loss significantly affected bipedalism: the ability for running on hindlimbs was completely lost in all adult individuals and in 72.3% of juveniles.

  15. Tail autotomy affects bipedalism but not sprint performance in a cursorial Mediterranean lizard.

    PubMed

    Savvides, Pantelis; Stavrou, Maria; Pafilis, Panayiotis; Sfenthourakis, Spyros

    2017-02-01

    Running is essential in all terrestrial animals mainly for finding food and mates and escaping from predators. Lizards employ running in all their everyday functions, among which defense stands out. Besides flight, tail autotomy is another very common antipredatory strategy within most lizard families. The impact of tail loss to sprint performance seems to be species dependent. In some lizard species, tail shedding reduces sprint speed, in other species, increases it, and, in a few species, speed is not affected at all. Here, we aimed to clarify the effect of tail autotomy on the sprint performance of a cursorial lizard with particular adaptations for running, such as bipedalism and spike-like protruding scales (fringes) on the toepads that allow high speed on sandy substrates. We hypothesized that individuals that performed bipedalism, and have more and larger fringes, would achieve higher sprint performance. We also anticipated that tail shedding would affect sprint speed (though we were not able to define in what way because of the unpredictable effects that tail loss has on different species). According to our results, individuals that ran bipedally were faster; limb length and fringe size had limited effects on sprint performance whereas tail autotomy affected quadrupedal running only in females. Nonetheless, tail loss significantly affected bipedalism: the ability for running on hindlimbs was completely lost in all adult individuals and in 72.3% of juveniles.

  16. Effect of inertia on performance and fatigue pattern during repeated cycle sprints in males and females.

    PubMed

    Falgairette, G; Billaut, F; Giacomoni, M; Ramdani, S; Boyadjian, A

    2004-04-01

    The effect of recovery duration on performance and fatigue pattern during short exercises was studied including and excluding the flywheel inertia. Subjects (11 males and 11 females) performed a force-velocity test to determine their optimal force (f (opt)). On the following day, subjects performed randomly 4 series of two 8-s sprints against f (opt), with 15 s (R (15)), 30 s (R (30)), 60 s (R (60)), and 120 s (R (120)) recovery between sprints. The cycle (Monark 824 E, Stockholm, Sweden) was equipped with an optical sensor to calculate the revolution velocity of the pedal. For each sprint, peak power (P (peak)), mechanical work (W) and time to reach P (peak) (t (Ppeak)) were calculated including (I) and excluding (NI) the acceleration of the flywheel. For a given sprint, P (peak) and W were greater and t (Ppeak) was lower in I compared to NI condition (p < 0.05). Differences averaged 13 % for P (peak), 20 % for W, 34 % for t (Ppeak), and remained constant between sprints 1 and 2. In sprint 2, P (peak) and W were significantly reduced compared to sprint 1 only after R (15) and R (30) in I and NI (p < 0.05), and no gender differences occurred. In each sprint, P (peak) and W were higher (p < 0.001) and t (Ppeak) was shorter (p < 0.05) in males than in females, and gender differences were the same including or excluding the flywheel inertia. In conclusion, values excluding inertia underestimated mechanical performance and consequently the total energy supply. However, the pattern of fatigue and gender differences in performance and fatigue remained unchanged whatever the condition (I or NI). This result may have practical implications when the flywheel inertia can not be taken into account in the calculation of mechanical work and power output.

  17. The effects of synchronous music on 400-m sprint performance.

    PubMed

    Simpson, Stuart D; Karageorghis, Costas I

    2006-10-01

    The aim of the present study was to assess the effects of motivating and oudeterous (neither motivating nor demotivating) synchronous music on 400-m sprint performance while controlling for the potential confound of pre-performance mood. A panel of volunteer Caucasian males (n = 20; mean age = 20.5 years, s = 1.2) rated the motivational qualities of 32 musical selections using the Brunel Music Rating Inventory-2. An experimental group of volunteer Caucasian males (n = 36; mean age = 20.4 years, s = 1.4) completed three 400-m time trials under conditions of motivational music, oudeterous music, and a no-music control. Pre-performance mood was assessed using the Brunel University Mood Scale (BRUMS). A series of repeated-measures analyses of variance with Bonferroni adjustment revealed no differences in the BRUMS subscales. A repeated-measures analysis of variance on the 400-m times showed a significant effect (F1.24, 42.19 = 10.54, P < 0.001, eta 2 = 0.24) and follow-up pair wise comparisons revealed differences between the synchronous music conditions and the control condition. This finding supported the first research hypothesis, that synchronous music would result in better performance than a no-music control, but not the second hypothesis, that performance in the motivational synchronous music condition would be better than that in the oudeterous condition. It appears that synchronous music can be applied to anaerobic endurance performance among non-elite sports persons with a considerable positive effect.

  18. Reductions in Sprint Paddling Ability and Countermovement Jump Performance After Surfing Training.

    PubMed

    Secomb, Josh L; Sheppard, Jeremy M; Dascombe, Ben J

    2015-07-01

    The present study aimed to determine whether any meaningful change in a surfer's sprint paddling ability and countermovement jump (CMJ) performance developed after a 2-hour surfing training session and also whether any physical demands of the surfing session were related to the resultant changes in the capacities. Fifteen competitive male surfing athletes (age, 22.1 ± 3.9 years; height, 175.4 ± 6.4 cm; body mass, 72.5 ± 7.7 kg) performed a 2-hour surfing training session, with 15-m sprint paddle and CMJ trials performed both before and after the surfing session. Pre- to posttesting measures were analyzed using magnitude-based inferences. Likely declines were observed in the velocity achieved at the 5-, 10-, and 15-m splits of the 15-m sprint paddle, as well as peak velocity. Similarly, likely declines were calculated for CMJ peak force, relative peak force, and jump height. Furthermore, large correlations were calculated between presurfing session peak velocity and the change in 5, 10, 15 m, and peak velocity of the 15-m sprint paddle and total distance covered, wave riding bouts, and success rate. Surfing athletes and coaches may need to consider implementing shorter duration training sessions to reduce the decline in sprint paddling ability and CMJ performance. Furthermore, surfing athletes should possess highly developed sprint paddling ability because this may allow them to undertake a greater workload and catch more waves, which will increase the opportunity for technical refinement of maneuvers and skill acquisition.

  19. Effects of Sprint Training With and Without Weighted Vest on Speed and Repeated Sprint Ability in Male Soccer Players.

    PubMed

    Rey, Ezequiel; Padrón-Cabo, Alexis; Fernández-Penedo, Diego

    2016-11-16

    The purpose of this study was to assess the effect resisted sprint training using weighted vests (WV) compared with unresisted sprint training (US) on physical fitness (countermovement jump, 10 m sprint, 30 m sprint and repeated sprint ability (RSA)) in amateur male soccer players. 19 soccer players (age: 23.7±4.5 years; height: 178.3±5.8 cm; body mass: 72.9±5.2 kg) were randomly assigned to a WV (n= 10) or a US (n= 9) group. The intervention program had to be carried out 2 times a week over 6 weeks. The only difference between the two interventions was that the WV group performed all the sprints with an additional weight of 18.9% ± 2.1% of body mass. Within-group analysis showed significant improvements (p<0.001) in 10 m and 30 m sprint performance from pretest to post-test in WB (+9.42% and +6.04%) and CTU (+10.87% and +5.10%). Players in both WV and US also showed significant enhancements in RSA average time, fastest time, and total time from pretest to posttest. Percentage changes in 30 m sprint performance, for both groups combined, had a very large correlation with percentage changes in average time of RSA. In the between-groups analysis, there were no differences between the sprint training groups (WV vs US) in any variable. In conclusion, the findings of this study indicate that both sprint training methods used seem to be effective to improve soccer related performance measures, and could be beneficial to players and coaches in field settings.

  20. Caffeine's effect on intermittent sprint cycling performance with different rest intervals.

    PubMed

    Lee, Chia-Lun; Cheng, Ching-Feng; Lin, Jung-Charng; Huang, Hsin-Wei

    2012-06-01

    The purpose of this study was to investigate the effects of caffeine ingestion on the performance of an intermittent sprint cycling test (ISCT) with different rest intervals. Fourteen males with team sport experience consumed 6 mg kg(-1) of caffeine or a placebo 60 min prior to completing two sets of an ISCT with 4-min rest intervals. Each set consisted of 12 × 4-s sprints with 20- or 90-s active recovery intervals at 60-70 rpm. Blood lactate was collected at baseline and immediately following the completion of six sprints in each set. At 20-s recovery intervals, peak power and total work were not significantly different between conditions during the ISCT (P > 0.05); but caffeine reduced 6.31% effort for mean power in Sprint 10 of the later stage, as well as an increased fatigue index and elevated blood lactate levels during the ISCT (P < 0.05). At 90-s recovery intervals, peak power, mean power, and total work under caffeine conditions were significantly higher than under placebo conditions during the ISCT (P < 0.05), but no differences were apparent in fatigue index and blood lactate levels (P > 0.05). In conclusion, caffeine ingestion may be ergolytic, affecting performance and fatigue development in the later stage during a prolonged and intermittent sprint test with a short recovery interval. However, caffeine produces an ergogenic effect in the initial stage of an intermittent sprint performance with a longer recovery interval.

  1. The effect of a short practical warm-up protocol on repeated sprint performance.

    PubMed

    Taylor, Jonathan M; Weston, Matthew; Portas, Matthew D

    2013-07-01

    The aim of our study was to investigate the effect of a short, practical, 2-phase warm-up on repeated sprint performance when compared with more traditional warm-up protocols that contain stretching activities. Eleven subelite male soccer players completed a warm-up protocol that commenced with 5 minutes jogging at approximately 65% of maximal heart rate, followed by no stretching, static stretching, or dynamic stretching and finishing with a task-specific high-intensity activity. Using a crossover design, the 3 warm-up protocols were performed in a counterbalanced order with at least 48 hours between sessions. Repeated sprint performance was measured using a repeated sprint test that consisted of 6 × 40-m maximal sprints interspersed with a 20-second recovery. There were trivial differences in mean sprint time (0.2%) and posttest blood lactate (3.1%) between the 2-phase warm-up and the 3-phase warm-up that included dynamic stretching, whereas the short warm-up had a possibly detrimental effect on fastest sprint time (0.7%). Fastest (-1.1%) and mean (-1.2%) sprint times were quicker and posttest blood lactates were higher (13.2%) after the 2-phase warm-up when compared with the 3-phase warm-up that included static stretching. Although it is not harmful to complete a traditional 3-phase warm-up that includes dynamic stretching, it appears practical for athletes preparing for activities dependent on repeated sprint ability to complete a 2-phase warm-up consisting of a cardiovascular and specific high-intensity activity.

  2. Effects of a Non-Circular Chainring on Sprint Performance During a Cycle Ergometer Test.

    PubMed

    Hintzy, Frédérique; Grappe, Frédéric; Belli, Alain

    2016-06-01

    Non-circular chainrings have been reported to alter the crank angular velocity profile over a pedal revolution so that more time is spent in the effective power phase. The purpose of this study was to determine whether sprint cycling performance could be improved using a non-circular chainring (Osymetric: ellipticity 1.25 and crank lever mounted nearly perpendicular to the major axis), in comparison with a circular chainring. Twenty sprint cyclists performed an 8 s sprint on a cycle ergometer against a 0.5 N/kg(-1) friction force in four crossing conditions (non-circular or circular chainring with or without clipless pedal). Instantaneous force, velocity and power were continuously measured during each sprint. Three main characteristic pedal downstrokes were selected: maximal force (in the beginning of the sprint), maximal power (towards the middle), and maximal velocity (at the end of the sprint). Both average and instantaneous force, velocity and power were calculated during the three selected pedal downstrokes. The important finding of this study was that the maximal power output was significantly higher (+ 4.3%, p < 0.05) when using the non-circular chainring independent from the shoe-pedal linkage condition. This improvement is mainly explained by a significantly higher instantaneous external force that occurs during the downstroke. Non-circular chainring can have potential benefits on sprint cycling performance. Key pointsThe Osymetric non-circular chainring significantly maximized crank power by 4.3% during sprint cycling, in comparison with a circular chainring.This maximal power output improvement was due to significant higher force developed when the crank was in the effective power phase.This maximal power output improvement was independent from the shoe-pedal linkage condition.Present benefits provided by the non-circular chainring on pedalling kinetics occurred only at high cadences.

  3. Effects of a Non-Circular Chainring on Sprint Performance During a Cycle Ergometer Test

    PubMed Central

    Hintzy, Frédérique; Grappe, Frédéric; Belli, Alain

    2016-01-01

    Non-circular chainrings have been reported to alter the crank angular velocity profile over a pedal revolution so that more time is spent in the effective power phase. The purpose of this study was to determine whether sprint cycling performance could be improved using a non-circular chainring (Osymetric: ellipticity 1.25 and crank lever mounted nearly perpendicular to the major axis), in comparison with a circular chainring. Twenty sprint cyclists performed an 8 s sprint on a cycle ergometer against a 0.5 N/kg-1 friction force in four crossing conditions (non-circular or circular chainring with or without clipless pedal). Instantaneous force, velocity and power were continuously measured during each sprint. Three main characteristic pedal downstrokes were selected: maximal force (in the beginning of the sprint), maximal power (towards the middle), and maximal velocity (at the end of the sprint). Both average and instantaneous force, velocity and power were calculated during the three selected pedal downstrokes. The important finding of this study was that the maximal power output was significantly higher (+ 4.3%, p < 0.05) when using the non-circular chainring independent from the shoe-pedal linkage condition. This improvement is mainly explained by a significantly higher instantaneous external force that occurs during the downstroke. Non-circular chainring can have potential benefits on sprint cycling performance. Key points The Osymetric non-circular chainring significantly maximized crank power by 4.3% during sprint cycling, in comparison with a circular chainring. This maximal power output improvement was due to significant higher force developed when the crank was in the effective power phase. This maximal power output improvement was independent from the shoe-pedal linkage condition. Present benefits provided by the non-circular chainring on pedalling kinetics occurred only at high cadences. PMID:27274658

  4. Effect of Beta alanine and sodium bicarbonate supplementation on repeated-sprint performance.

    PubMed

    Ducker, Kagan J; Dawson, Brian; Wallman, Karen E

    2013-12-01

    This study aimed to investigate if combining beta alanine (BA) and sodium bicarbonate (NaHCO3) supplementation could lead to enhanced repeated-sprint performance in team-sport athletes, beyond what is possible with either supplement alone. Participants (n = 24) completed duplicate trials of a repeated-sprint test (3 sets; 6 × 20 m departing every 25 seconds, 4 minutes active recovery between sets) and were then allocated into 4 groups as follows: BA only (n = 6; 28 days BA, acute sodium chloride placebo); NaHCO3 only (n = 6; 28 days glucose placebo, acute NaHCO3); BA/NaHCO3 (n = 6; 28 days BA, acute NaHCO3); placebo only (n = 6; 28 days glucose placebo, acute sodium chloride placebo), then completed duplicate trials postsupplementation. Sodium bicarbonate alone resulted in moderate effect size (d = 0.40-0.71) and "likely" and "very likely" benefit for overall total sprint times (TST) and for each individual set and for first sprint (sets 2 and 3) and best sprint time (sets 2 and 3). Combining BA and NaHCO3 resulted in "possible" to "likely" benefits for overall TST and for sets 2 and 3. First sprint (set 3) and best sprint time (sets 2 and 3) also showed "likely" benefit after this trial. The BA and placebo groups showed no differences in performance after supplementation. In conclusion, these results indicate that supplementation with acute NaHCO3 improved repeated-sprint performance more than either a combination of NaHCO3 and BA or BA alone.

  5. Effects of coffee and caffeine anhydrous on strength and sprint performance.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E; Roelofs, Erica J; Hirsch, Katie R; Mock, Meredith G

    2016-09-01

    Caffeine and coffee are widely used among active individuals to enhance performance. The purpose of the current study was to compare the effects of acute coffee (COF) and caffeine anhydrous (CAF) intake on strength and sprint performance. Fifty-four resistance-trained males completed strength testing, consisting of one-rep max (1RM) and repetitions to fatigue (RTF) at 80% of 1RM for leg press (LP) and bench press (BP). Participants then completed five, 10-second cycle ergometer sprints separated by one minute of rest. Peak power (PP) and total work (TW) were recorded for each sprint. At least 48 hours later, participants returned and ingested a beverage containing CAF (300 mg flat dose; yielding 3-5 mg/kg bodyweight), COF (8.9 g; 303 mg caffeine), or placebo (PLA; 3.8 g non-caloric flavouring) 30 minutes before testing. LP 1RM was improved more by COF than CAF (p = .04), but not PLA (p = .99). Significant interactions were not observed for BP 1RM, BP RTF, or LP RTF (p > .05). There were no sprint × treatment interactions for PP or TW (p > .05). 95% confidence intervals revealed a significant improvement in sprint 1 TW for CAF, but not COF or PLA. For PLA, significant reductions were observed in sprint 4 PP, sprint 2 TW, sprint 4 TW, and average TW; significant reductions were not observed with CAF or COF. Neither COF nor CAF improved strength outcomes more than PLA, while both groups attenuated sprint power reductions to a similar degree. Coffee and caffeine anhydrous may be considered suitable pre-exercise caffeine sources for high-intensity exercise.

  6. Effect of short burst activities on sprint and agility performance in 11- to 12-year-old boys.

    PubMed

    Pettersen, Svein A; Mathisen, Gunnar E

    2012-04-01

    There are limited data on how coordinative sprint drills and maximal short burst activities affects children's sprint and agility performance. The purpose of the present study was to investigate the effect of short burst activities on sprint and agility performance in 11- to 12-year-old boys. A training group (TG) of 14 boys followed a 6-week, 1-hour·week(-1), training program consisting of different short burst competitive sprinting activities. Eleven boys of similar age served as controls (control group [CG]). Pre- and posttests assessed 10-m sprint, 20-m sprint, and agility performance. Results revealed significant performance improvement in all tests within TG (p < 0.05), but not between TG and CG in the 10-m sprint test. Furthermore, the relationships between the performances in straight-line sprint and agility showed a significant transfer effect (r = 0.68-0.75, p < 0.001). Findings from the present study indicate that competitive short burst activities executed with maximal effort may produce improvement in sprint and agility performance in 11- to 12-year-old boys.

  7. Jump Kinetic Determinants of Sprint Acceleration Performance from Starting Blocks in Male Sprinters

    PubMed Central

    Maulder, Peter S.; Bradshaw, Elizabeth J.; Keogh, Justin

    2006-01-01

    The purpose of this research was to identify the jump kinetic determinants of sprint acceleration performance from a block start. Ten male (mean ± SD: age 20 ± 3 years; height 1.82 ± 0.06 m; weight 76.7 ± 7.9 kg; 100 m personal best: 10.87 + 0.36 s {10.37 - 11.42}) track sprinters at a national and regional competitive level performed 10 m sprints from a block start. Anthropometric dimensions along with squat jump (SJ), countermovement jump (CMJ), continuous straight legged jump (SLJ), single leg hop for distance, and single leg triple hop for distance measures of power were also tested. Stepwise multiple regression analysis identified CMJ average power (W/kg) as a predictor of 10 m sprint performance from a block start (r = 0.79, r2 = 0.63, p<0.01, SEE = 0.04 (s), %SEE = 2.0). Pearson correlation analysis revealed CMJ force and power (r = -0.70 to -0.79; p = 0.011 - 0.035) and SJ power (r = -0.72 to -0.73; p = 0.026 - 0.028) generating capabilities to be strongly related to sprint performance. Further linear regression analysis predicted an increase in CMJ average and peak take-off power of 1 W/kg (3% & 1.5% respectively) to both result in a decrease of 0.01 s (0.5%) in 10 m sprint performance. Further, an increase in SJ average and peak take-off power of 1 W/kg (3.5% & 1.5% respectively) was predicted to result in a 0.01 s (0.5%) reduction in 10 m sprint time. The results of this study seem to suggest that the ability to generate power both elastically during a CMJ and concentrically during a SJ to be good indicators of predicting sprint performance over 10 m from a block start. Key Points The relative explosive ability of the hip and knee extensors during a countermovement jump can predict 10 m sprint performance from a block start. The relative power outputs of male competitive sprinters during a squat jump can predict 10 m sprint performance from a block start. PMID:24260010

  8. Acute effects of countermovement jumping and sprinting on shot put performance.

    PubMed

    Terzis, Gerasimos; Karampatsos, Giorgos; Kyriazis, Thomas; Kavouras, Stavros A; Georgiadis, Giorgos

    2012-03-01

    The purpose of this study was to investigate the acute effects of countermovement jumping and sprinting on shot put performance in experienced shot putters. Ten shot putters (best performance 13.16-20.36 m) participated in the study. After a standard warm-up including jogging, stretching, and 4-6 submaximal puts, they performed 3 shot put attempts with maximum effort, separated with 1.5-minute interval. Three minutes later, they performed 3 maximal consecutive countermovement jumps (CMJs). Immediately after jumping, they performed 3 shot put attempts with maximum effort, separated with a 1.5-minute interval. One week later, they carried out a similar protocol, at similar external conditions, but they performed a bout of 20-m sprinting instead of the CMJs, to potentiate shot put performance. Muscular strength (1 repetition maximum in squat, snatch, bench press, incline bench press) and body composition (dual x-ray absorptiometry) were measured during the same training period (±10 days from the jumping and sprinting protocols). Shot put performance was significantly increased after the CMJs (15.45 ± 2.36 vs. 15.85 ± 2.41 m, p = 0.0003). Similarly, shot put performance was significantly increased after sprinting (15.34 ± 2.41 vs. 15.90 ± 2.46 m, p = 0.0007). The increase in performance after sprinting was significantly higher compared with the increase after jumping (2.64 ± 1.59 vs. 3.74 ± 1.88%, p = 0.02). In conclusion, the results of this study indicate that a standard warm-up protocol followed by 3 maximal bouts of shot put and either 3 consecutive countermovement jumps or a bout of 20-m sprinting induce an acute increase in shot put performance in experienced shot putters.

  9. Effects of creatine supplementation on repetitive sprint performance and body composition in competitive swimmers.

    PubMed

    Grindstaff, P D; Kreider, R; Bishop, R; Wilson, M; Wood, L; Alexander, C; Almada, A

    1997-12-01

    In a double-blind and randomized manner, 18 male and female junior competitive swimmers supplemented their diets with 21 g.day-1 of creatine monohydrate (Cr) or a maltodextrin placebo (P) for 9 days during training. Prior to and following supplementation, subjects performed three 100-m freestyle sprint swims (long course) with 60 s rest/recovery between heats. In addition, subjects performed three 20-s arm ergometer maximal-effort sprint tests in the prone position with 60 s rest/recovery between sprint tests. Significant differences were observed among swim times, with Cr subjects swimming significantly faster than P subjects following supplementation in Heat 1 and significantly decreasing swim time in the second 100-m sprint. There was also some evidence that cumulative time to perform the three 100-m swims was decreased in the Cr group. Results indicate that 9 days of Cr supplementation during swim training may provide some ergogenic value to competitive junior swimmers during repetitive sprint performance.

  10. Effect of oral creatine supplementation on single-effort sprint performance in elite swimmers.

    PubMed

    Burke, L M; Pyne, D B; Telford, R D

    1996-09-01

    Oral supplementation with creatine monohydrate (Cr.H2O) has been reported to increase muscle creatine phosphate levels. The aim of the present study was to determine the effect of such supplementation on performance of a single-effort sprint by elite swimmers. Thirty-two elite swimmers (M = 18, F = 14; age = 17-25 years) from the Australian Institute of Sport were tested on two occasions, 1 week apart. Tests performed were 25-m, 50-m, and 100-m maximal effort sprints (electronically timed with dive start, swimmers performing their best stroke), each with approximately 10 min active recovery. A 10-s maximal leg ergometry test was also undertaken. Swimmers were divided into two groups matched for sex, stroke/event, and sprint time over 50 m, and groups were randomly assigned to 5 days of Cr.H2O supplementation (4 . day-1 x 5 g Cr.H2O + 2 g sucrose, n = 16) or placebo (4 . day-1 x 5 g Polycose + 2 g sucrose, n = 16) prior to the second trial. Results revealed no significant differences between the group means for sprint times or between 10-s maximal leg ergometry power and work. This study does not support the hypothesis that creatine supplementation enhances single-effort sprint ability of elite swimmers.

  11. Percentile Values for Running Sprint Field Tests in Children Ages 6-17 Years: Influence of Weight Status

    ERIC Educational Resources Information Center

    Castro-Pinero, Jose; Gonzalez-Montesinos, Jose Luis; Keating, Xiaofen D.; Mora, Jesus; Sjostrom, Michael; Ruiz, Jonatan R.

    2010-01-01

    The aim of this study was to provide percentile values for six different sprint tests in 2,708 Spanish children (1,234 girls) ages 6-17.9 years. We also examined the influence of weight status on sprint performance across age groups, with a focus on underweight and obese groups. We used the 20-m, 30-m, and 50-m running sprint standing start and…

  12. Effects of Plyometric and Sprint Training on Physical and Technical Skill Performance in Adolescent Soccer Players.

    PubMed

    Sáez de Villarreal, Eduardo; Suarez-Arrones, Luis; Requena, Bernardo; Haff, Gregory G; Ferrete, Carlos

    2015-07-01

    To determine the influence of a short-term combined plyometric and sprint training (9 weeks) within regular soccer practice on explosive and technical actions of pubertal soccer players during the in-season. Twenty-six players were randomly assigned to 2 groups: control group (CG) (soccer training only) and combined group (CombG) (plyometric + acceleration + dribbling + shooting). All players trained soccer 4 times per week and the experimental groups supplemented the soccer training with a proposed plyometric-sprint training program for 40 minutes (2 days per weeks). Ten-meter sprint, 10-m agility with and without ball, CMJ and Abalakov vertical jump, ball-shooting speed, and Yo-Yo intermittent endurance test were measured before and after training. The experimental group followed a 9-week plyometric and sprint program (i.e., jumping, hurdling, bouncing, skipping, and footwork) implemented before the soccer training. Baseline-training results showed no significant differences between the groups in any of the variables tested. No improvement was found in the CG; however, meaningful improvement was found in all variables in the experimental group: CMJ (effect size [ES] = 0.9), Abalakov vertical jump (ES = 1.3), 10-m sprint (ES = 0.7-0.9), 10-m agility (ES = 0.8-1.2), and ball-shooting speed (ES = 0.7-0.8). A specific combined plyometric and sprint training within regular soccer practice improved explosive actions compared with conventional soccer training only. Therefore, the short-term combined program had a beneficial impact on explosive actions, such as sprinting, change of direction, jumping, and ball-shooting speed which are important determinants of match-winning actions in soccer performance. Therefore, we propose modifications to current training methodology for pubertal soccer players to include combined plyometric and speed training for athlete preparation in this sport.

  13. Equipment and running surface alter sprint performance of college football players.

    PubMed

    Brechue, William F; Mayhew, Jerry L; Piper, Fontaine C

    2005-11-01

    The purpose of this study was to determine the effect of football equipment and running surface on sprint performance in NCAA Division II football players (n = 68). Players were timed in the 40-yd sprint on an indoor rubberized track (Day 1) and on an outdoor, natural-grass football field (Day 2) wearing either regulation football equipment or shorts and a T-shirt. Each player was assigned randomly to perform 2 trials under each condition on each surface, and the average of the 2 trials was used for analysis. Offensive backs, defensive backs, and linebackers were significantly faster than were offensive and defensive linemen in all trials, and subjects were collapsed into 2 groups, backs and linemen. Football equipment significantly impaired performance on the track (-2.8% +/- 1.7%) and the field (-2.9% +/- 1.8%). The increase in body mass due to the football equipment was significantly greater for backs (7.2% +/- 0.7%) than for linemen (6.5% +/- 1.0%), but produced a significantly greater impairment in sprint performance in linemen (-3.3% +/- 1.1%) as compared with backs (-2.5% +/- 1.5%). Sprint performance was significantly and equivalently impaired when running on grass (backs: -2.5 +/- 1.1%; linemen: -2.8 +/- 1.4%) as compared with the track. Thus, running a 40-yd sprint in football equipment on a natural grass field impairs performance by an average of 5.5% (+/- 2.3%) compared with running indoors with minimal apparel. Football equipment and running surface significantly impair sprint performance in college football players, the effect being greater in linemen than in backs, and is likely related to differences in muscle strength/power and body fat.

  14. The impact of lower extremity mass and inertia manipulation on sprint kinematics.

    PubMed

    Bennett, John P; Sayers, Mark G L; Burkett, Brendan J

    2009-12-01

    Resistance sprint training is a sprint-specific training protocol commonly employed by athletes and coaches to enhance sprint performance. This research quantified the impact of lower extremity mass and inertia manipulation on key temporal and kinematic variables associated with sprint performance. A 3-dimensional analysis of 40 m sprinting was conducted on 8 elite sprinters under normal conditions and resisted sprint training. Results of the study showed that lower extremity additional mass training (at 10% individual segment weight) led to a significant reduction in sprint time for both the 10-m to 20-m and the 30-m to 40-m splits and the total 40 m measure. The stride velocity throughout the 20-m to 30-m phase of the sprint trials was also shown to be significantly reduced in the lower extremity mass and inertia manipulation condition. Importantly, no significant differences were observed across the remaining spatiotemporal variables of stride length, stride frequency, total stride time, and ground contact time. For coaches and athletes, the addition of specific lower extremity mass could improve the athlete's sprint performance without any measured effect on the technique of highly trained elite sprinters.

  15. Effects of pre-cooling procedures on intermittent-sprint exercise performance in warm conditions.

    PubMed

    Duffield, Rob; Marino, Frank E

    2007-08-01

    The aim of this study was to determine whether pre-cooling procedures improve both maximal sprint and sub-maximal work during intermittent-sprint exercise. Nine male rugby players performed a familiarisation session and three testing sessions of a 2 x 30-min intermittent sprint protocol, which consisted of a 15-m sprint every min separated by free-paced hard-running, jogging and walking in 32 degrees C and 30% humidity. The three sessions included a control condition, Ice-vest condition and Ice-bath/Ice-vest condition, with respective cooling interventions imposed for 15-min pre-exercise and 10-min at half-time. Performance measures of sprint time and % decline and distance covered during sub-maximal exercise were recorded, while physiological measures of core temperature (T (core)), mean skin temperature (T (skin)), heart rate, heat storage, nude mass, rate of perceived exertion, rate of thermal comfort and capillary blood measures of lactate [La(-)], pH, Sodium (Na(+)) and Potassium (K(+)) were recorded. Results for exercise performance indicated no significant differences between conditions for the time or % decline in 15-m sprint efforts or the distance covered during sub-maximal work bouts; however, large effect size data indicated a greater distance covered during hard running following Ice-bath cooling. Further, lowered T (core), T (skin), heart rate, sweat loss and thermal comfort following Ice-bath cooling than Ice-vest or Control conditions were present, with no differences present in capillary blood measures of [La(-)], pH, K(+) or Na(+). As such, the ergogenic benefits of effective pre-cooling procedures in warm conditions for team-sports may be predominantly evident during sub-maximal bouts of exercise.

  16. The effects of oral creatine supplementation on performance in single and repeated sprint swimming.

    PubMed

    Peyrebrune, M C; Nevill, M E; Donaldson, F J; Cosford, D J

    1998-04-01

    We studied the effects of oral creatine supplementation on sprint swimming performance in 14 elite competitive male swimmers. The subjects performed a single sprint (1 x 50 yards [45.72 m]) and repeated sprint set (8 x 50 yards at intervals of 1 min 30 s) before and after a 5 day period of either creatine (9 g creatine + 4.5 g maltodextrin + 4.5 g glucose day(-1)) or placebo (18 g glucose day(-1); double-blind protocol) supplementation. Venous and capillary blood samples were taken for the determination of plasma ammonia, blood pH and lactate. Mean times recorded for the single 50 yard sprint were unchanged as a result of supplementation (creatine vs control, N.S.). During the repeated sprint test, mean times increased (P< 0.01, main effect time) during all trials, but performance was improved as a result of creatine supplementation (sprints 1-8: control pre-, 23.35+/-0.68 to 26.32+/-1.34 s; control post-, 23.59+/-0.66 to 26.19+/-1.48 s; creatine pre-, 23.20+/-0.67 to 26.85+/-0.42 s; creatine post-, 23.39+/-0.54 to 25.73+/-0.26 s; P < 0.03, group x trial interaction). Thus the percentage decline in performance times was reduced after creatine supplementation (control, 12.7+/-5.7% vs 11.0+/-5.5%; creatine, 15.7+/-4.3% vs 10.0+/-2.5%; P< 0.05, group x trial interaction). The metabolic response was similar before and after supplementation, with no differences in the blood lactate or pH response. Plasma ammonia was lower on the second trial (P< 0.05, main effect trial), but this could not be attributed to the effect of supplementation (group x trial interaction, N.S.). A further urinary analysis study supported these findings by demonstrating an approximately 67% (approximately 26 g) retention of the administered creatine in this group of swimmers after an identical supplementation regimen. In summary, our results suggest that ingesting 9 g creatine per day for 5 days can improve swimming performance in elite competitors during repeated sprints, but appears to have no

  17. Effects of three types of resisted sprint training devices on the kinematics of sprinting at maximum velocity.

    PubMed

    Alcaraz, Pedro E; Palao, José M; Elvira, José L L; Linthorne, Nicholas P

    2008-05-01

    Resisted sprint running is a common training method for improving sprint-specific strength. For maximum specificity of training, the athlete's movement patterns during the training exercise should closely resemble those used when performing the sport. The purpose of this study was to compare the kinematics of sprinting at maximum velocity to the kinematics of sprinting when using three of types of resisted sprint training devices (sled, parachute, and weight belt). Eleven men and 7 women participated in the study. Flying sprints greater than 30 m were recorded by video and digitized with the use of biomechanical analysis software. The test conditions were compared using a 2-way analysis of variance with a post-hoc Tukey test of honestly significant differences. We found that the 3 types of resisted sprint training devices are appropriate devices for training the maximum velocity phase in sprinting. These devices exerted a substantial overload on the athlete, as indicated by reductions in stride length and running velocity, but induced only minor changes in the athlete's running technique. When training with resisted sprint training devices, the coach should use a high resistance so that the athlete experiences a large training stimulus, but not so high that the device induces substantial changes in sprinting technique. We recommend using a video overlay system to visually compare the movement patterns of the athlete in unloaded sprinting to sprinting with the training device. In particular, the coach should look for changes in the athlete's forward lean and changes in the angles of the support leg during the ground contact phase of the stride.

  18. Relationship Between Jump Rope Double Unders and Sprint Performance in Elementary Schoolchildren.

    PubMed

    Miyaguchi, Kazuyoshi; Demura, Shinichi; Omoya, Masashi

    2015-11-01

    According to dynamic analyses of muscle contraction, jump rope is a typical stretch-shortening cycle (SSC) movement. It has been reported that the relationship with SSC is higher in double unders than in single unders (basic jumps); however, the relationship between jump rope and sprint performances has not been extensively studied. To clarify this relationship in elementary schoolchildren, we compared the sprint speed and SSC ability of children who were grouped according to gender and ability. The subjects were 143 elementary fifth and sixth graders (78 boys, 65 girls). The consecutive maximal number of double unders, reactivity index (index of SSC ability) by Myotest, and 20-m sprint time were measured. According to the mean of jump rope records, the children were divided into a superior ability group (more than average + 0.5 SD) and an inferior ability group (less than average - 0.5 SD) for each gender. In both genders, a significant difference was found in the 20-m sprint time between the inferior and superior ability groups. The times for the superior ability groups (boys, 3.75 ± 0.23 seconds; girls, 4.02 ± 0.24 seconds) were excellent compared with the inferior ability groups (boys, 4.17 ± 0.32 seconds; girls, 4.23 ± 0.21 seconds). This effect size was higher in boys (1.44) than in girls (0.93). The reactivity index in the superior ability group was excellent compared with that in the inferior ability group. In conclusion, children who perform better in double unders are also faster during a 20-m sprint run. This tendency may be higher in boys. Classic jump rope training, such as double unders, should be effective as elementary plyometrics for improving the sprint ability of children.

  19. Comparative Effects of In-Season Full-Back Squat, Resisted Sprint Training, and Plyometric Training on Explosive Performance in U-19 Elite Soccer Players.

    PubMed

    de Hoyo, Moises; Gonzalo-Skok, Oliver; Sañudo, Borja; Carrascal, Claudio; Plaza-Armas, Jose R; Camacho-Candil, Fernando; Otero-Esquina, Carlos

    2016-02-01

    The aim of this study was to analyze the effects of 3 different low/moderate load strength training methods (full-back squat [SQ], resisted sprint with sled towing [RS], and plyometric and specific drills training [PLYO]) on sprinting, jumping, and change of direction (COD) abilities in soccer players. Thirty-two young elite male Spanish soccer players participated in the study. Subjects performed 2 specific strength training sessions per week, in addition to their normal training sessions for 8 weeks. The full-back squat protocol consisted of 2-3 sets × 4-8 repetitions at 40-60% 1 repetition maximum (∼ 1.28-0.98 m · s(-1)). The resisted sprint training was compounded by 6-10 sets × 20-m loaded sprints (12.6% of body mass). The plyometric and specific drills training was based on 1-3 sets × 2-3 repetitions of 8 plyometric and speed/agility exercises. Testing sessions included a countermovement jump (CMJ), a 20-m sprint (10-m split time), a 50-m (30-m split time) sprint, and COD test (i.e., Zig-Zag test). Substantial improvements (likely to almost certainly) in CMJ (effect size [ES]: 0.50-0.57) and 30-50 m (ES: 0.45-0.84) were found in every group in comparison to pretest results. Moreover, players in PLYO and SQ groups also showed substantial enhancements (likely to very likely) in 0-50 m (ES: 0.46-0.60). In addition, 10-20 m was also improved (very likely) in the SQ group (ES: 0.61). Between-group analyses showed that improvements in 10-20 m (ES: 0.57) and 30-50 m (ES: 0.40) were likely greater in the SQ group than in the RS group. Also, 10-20 m (ES: 0.49) was substantially better in the SQ group than in the PLYO group. In conclusion, the present strength training methods used in this study seem to be effective to improve jumping and sprinting abilities, but COD might need other stimulus to achieve positive effects.

  20. Effects of static and dynamic stretching on sprint and jump performance in boys and girls.

    PubMed

    Paradisis, Giorgos P; Pappas, Panagiotis T; Theodorou, Apostolos S; Zacharogiannis, Elias G; Skordilis, Emmanouil K; Smirniotou, Athanasia S

    2014-01-01

    The aim of this study was to investigate the acute effects of static (SS) and dynamic stretching (DS) on explosive power, flexibility, and sprinting ability of adolescent boys and girls and to report possible gender interactions. Forty-seven active adolescent boys and girls were randomly tested after SS and DS of 40 seconds on quadriceps, hamstrings, hip extensors, and plantar flexors; no stretching was performed at the control condition. Pretreatment and posttreatment tests examined the effects of stretching on 20-m sprint run (20 m), countermovement jump (CMJ) height, and sit and reach flexibility test. In terms of performance, SS hindered 20 m and CMJ in boys and girls by 2.5 and 6.3%, respectively. Dynamic stretching had no effect on 20 m in boys and girls but impaired CMJ by 2.2%. In terms of flexibility, both SS and DS improved performance with SS being more beneficial (12.1%) compared with DS (6.5%). No gender interaction was found. It can therefore be concluded that SS significantly negates sprinting performance and explosive power in adolescent boys and girls, whereas DS deteriorates explosive power and has no effect on sprinting performance. This diversity of effects denotes that the mode of stretching used in adolescent boys and girls should be task specific.

  1. Performance and physiological responses to repeated-sprint exercise: a novel multiple-set approach.

    PubMed

    Serpiello, Fabio R; McKenna, Michael J; Stepto, Nigel K; Bishop, David J; Aughey, Robert J

    2011-04-01

    We investigated the acute and chronic responses to multiple sets of repeated-sprint exercise (RSE), focusing on changes in acceleration, intermittent running capacity and physiological responses. Ten healthy young adults (7 males, 3 females) performed an incremental test, a Yo-Yo intermittent recovery test level1 (Yo-Yo IR1), and one session of RSE. RSE comprised three sets of 5 × 4-s maximal sprints on a non-motorised treadmill, with 20 s of passive recovery between repetitions and 4.5 min of passive recovery between sets. After ten repeated-sprint training sessions, participants repeated all tests. During RSE, performance was determined by measuring acceleration, mean and peak power/velocity. Recovery heart rate (HR), HR variability, and finger-tip capillary lactate concentration ([Lac(-)]) were measured. Performance progressively decreased across the three sets of RSE, with the indices of repeated-sprint ability being impaired to a different extent before and after training. Training induced a significant increase (p < 0.05) in all indices of performance, particularly acceleration (21.9, 14.7 and 15.2% during sets 1, 2 and 3, respectively). Training significantly increased Yo-Yo IR1 performance by 8% and decreased Δ[Lac(-)]/work ratio (-15.2, -15.5, -9.4% during sets 1, 2 and 3, respectively) and recovery HR during RSE. There were strong correlations between Yo-Yo IR1 performance and indices of RSE performance, especially acceleration post-training (r = 0.88, p = 0.004). Repeated-sprint training, comprising only 10 min of exercise overall, effectively improved performance during multiple-set RSE. This exercise model better reflects team-sport activities than single-set RSE. The rapid training-induced improvement in acceleration, quantified here for the first time, has wide applications for professional and recreational sport activities.

  2. Warm-up effects on muscle oxygenation, metabolism and sprint cycling performance.

    PubMed

    Wittekind, Anna; Cooper, Chris E; Elwell, Clare E; Leung, Terence S; Beneke, Ralph

    2012-08-01

    To investigate the effects of warm-up intensity on all-out sprint cycling performance, muscle oxygenation and metabolism, 8 trained male cyclists/triathletes undertook a 30-s sprint cycling test preceded by moderate, heavy or severe warm up and 10-min recovery. Muscle oxygenation was measured by near-infrared spectroscopy, with deoxyhaemoglobin ([HHb]) during the sprint analysed with monoexponential models with time delay. Aerobic, anaerobic-glycolytic and phosphocreatine energy provision to the sprint were estimated from oxygen uptake and lactate production. Immediately prior to the sprint, blood [lactate] was different for each warm up and higher than resting for the heavy and severe warm ups (mod. 0.94 ± 0.36, heavy 1.92 ± 0.64, severe 4.37 ± 0.93 mmol l(-1) P < 0.05), although muscle oxygenation was equally raised above rest. Mean power during the sprint was lower following severe compared to moderate warm up (mod. 672 ± 54, heavy 666 ± 56, severe 655 ± 59 W, P < 0.05). The [HHb] kinetics during the sprint were not different among conditions, although the time delay before [HHb] increased was shorter for severe versus moderate warm up (mod. 5.8 ± 0.6, heavy 5.6 ± 0.9, severe 5.2 ± 0.7 s, P < 0.05). The severe warm up was without effect on estimated aerobic metabolism, but increased estimated phosphocreatine hydrolysis, the latter unable to compensate for the reduction in estimated anaerobic-glycolytic metabolism. It appears that despite all warm ups equally increasing muscle oxygenation, and indicators of marginally faster oxygen utilisation at the start of exercise following a severe-intensity warm up, other energy sources may not be able to fully compensate for a reduced glycolytic rate in sprint exercise with potential detrimental effects on performance.

  3. Effects of 8-week in-season upper and lower limb heavy resistance training on the peak power, throwing velocity, and sprint performance of elite male handball players.

    PubMed

    Hermassi, Souhail; Chelly, Mohamed Souhaiel; Tabka, Zouhair; Shephard, Roy J; Chamari, Karim

    2011-09-01

    The aims of this study were to test the potential of in-season heavy upper and lower limb strength training to enhance peak power output (Wpeak), vertical jump, and handball related field performance in elite male handball players who were apparently already well trained, and to assess any adverse effects on sprint velocity. Twenty-four competitors were divided randomly between a heavy resistance (HR) group (age 20 ± 0.7 years) and a control group (C; age 20 ± 0.1 years). Resistance training sessions were performed twice a week for 8 weeks. Performance was assessed before and after conditioning. Peak power (W(peak)) was determined by cycle ergometer; vertical squat jump (SJ) and countermovement jump (CMJ); video analyses assessed velocities during the first step (V(1S)), the first 5 m (V(5m)), and between 25 and 30 m (V(peak)) of a 30-m sprint. Upper limb bench press and pull-over exercises and lower limb back half squats were performed to 1-repetition maximum (1RM). Upper limb, leg, and thigh muscle volumes and mean thigh cross-sectional area (CSA) were assessed by anthropometry. W(peak) (W) for both limbs (p < 0.001), vertical jump height (p < 0.01 for both SJ and CMJ), 1RM (p < 0.001 for both upper and lower limbs) and sprint velocities (p < 0.01 for V(1S) and V(5m); p < 0.001 for V(peak)) improved in the HR group. Upper body, leg, and thigh muscle volumes and thigh CSA also increased significantly after strength training. We conclude that in-season biweekly heavy back half-squat, pull-over, and bench-press exercises can be commended to elite male handball players as improving many measures of handball-related performance without adverse effects upon speed of movement.

  4. Transference of Traditional Versus Complex Strength and Power Training to Sprint Performance

    PubMed Central

    Loturco, Irineu; Tricoli, Valmor; Roschel, Hamilton; Nakamura, Fabio Yuzo; Cal Abad, Cesar Cavinato; Kobal, Ronaldo; Gil, Saulo; González-Badillo, Juan José

    2014-01-01

    The purpose of this study was to determine the effects of two different strength-power training models on sprint performance. Forty-eight soldiers of the Brazilian brigade of special operations with at least one year of army training experience were divided into a control group (CG: n = 15, age: 20.2 ± 0.7 years, body height: 1.74 ± 0.06 m, and body mass: 66.7 ± 9.8 kg), a traditional training group (TT: n = 18, age: 20.1 ± 0.7 years, body height: 1.71 ± 0.05 m, and body mass: 64.2 ± 4.7 kg), and a complex training group (CT: n = 15, age: 20.3 ± 0.8 years, body height: 1.71 ± 0.07 m; and body mass: 64.0 ± 8.8 kg). Maximum strength (25% and 26%), CMJ height (36% and 39%), mean power (30% and 35%) and mean propulsive power (22% and 28%) in the loaded jump squat exercise, and 20-m sprint speed (16% and 14%) increased significantly (p≤0.05) following the TT and CT, respectively. However, the transfer effect coefficients (TEC) of strength and power performances to 20-m sprint performance following the TT were greater than the CT throughout the 9-week training period. Our data suggest that TT is more effective than CT to improve sprint performance in moderately trained subjects. PMID:25114753

  5. Evolution of Determinant Factors of Repeated Sprint Ability.

    PubMed

    Pareja-Blanco, Fernando; Suarez-Arrones, Luis; Rodríguez-Rosell, David; López-Segovia, Manuel; Jiménez-Reyes, Pedro; Bachero-Mena, Beatriz; González-Badillo, Juan José

    2016-12-01

    The aim of this study was to investigate the changes in the relationships between repeated sprint ability (RSA) and anthropometric measures as well as fitness qualities in soccer players. Twenty-one professional soccer players performed several anthropometric and physical tests including countermovement vertical jumps (CMJs), a straight-line 30 m sprint (T30), an RSA test (6 x 20 + 20 m with 20 s recovery), a progressive isoinertial loading test in a full squat, a Yo-Yo Intermittent Recovery Test Level-1 (YYIRT-1) and a 20 m shuttle run test (20mSRT). The mean (RSAmean), the fastest (RSAbest), each single sprint time, and the percentage in a sprint decrease (%Dec) in the RSA test were calculated. RSAbest correlated significantly with RSAmean (r = .82) and with all single sprints (p < 0.05), showing a downward trend as the number of sprints performed increased. No significant relationship was observed between the %Dec and RSA performance. CMJs and the T30 also showed a correlation with RSA performance, whereas lower limb strength did not show any relationship with RSA performance. RSAmean showed significant (p < 0.05) relationships with body mass (r = .44), adiposity (r = .59) and the YYIRT-1 (r = -.62), increasing as the number of repeated sprints increased. The 20mSRT showed minimal relationships with RSA performance. In conclusion, maximal sprint capacity seems to be relevant for the RSA performance, mainly in the first sprints. However, high intermittent endurance capacity and low adiposity might help enhance the RSA performance when increasing the number of repeated sprints.

  6. Evolution of Determinant Factors of Repeated Sprint Ability

    PubMed Central

    Suarez-Arrones, Luis; Rodríguez-Rosell, David; López-Segovia, Manuel; Jiménez-Reyes, Pedro; Bachero-Mena, Beatriz; González-Badillo, Juan José

    2016-01-01

    Abstract The aim of this study was to investigate the changes in the relationships between repeated sprint ability (RSA) and anthropometric measures as well as fitness qualities in soccer players. Twenty-one professional soccer players performed several anthropometric and physical tests including countermovement vertical jumps (CMJs), a straight-line 30 m sprint (T30), an RSA test (6 x 20 + 20 m with 20 s recovery), a progressive isoinertial loading test in a full squat, a Yo-Yo Intermittent Recovery Test Level-1 (YYIRT-1) and a 20 m shuttle run test (20mSRT). The mean (RSAmean), the fastest (RSAbest), each single sprint time, and the percentage in a sprint decrease (%Dec) in the RSA test were calculated. RSAbest correlated significantly with RSAmean (r = .82) and with all single sprints (p < 0.05), showing a downward trend as the number of sprints performed increased. No significant relationship was observed between the %Dec and RSA performance. CMJs and the T30 also showed a correlation with RSA performance, whereas lower limb strength did not show any relationship with RSA performance. RSAmean showed significant (p < 0.05) relationships with body mass (r = .44), adiposity (r = .59) and the YYIRT-1 (r = -.62), increasing as the number of repeated sprints increased. The 20mSRT showed minimal relationships with RSA performance. In conclusion, maximal sprint capacity seems to be relevant for the RSA performance, mainly in the first sprints. However, high intermittent endurance capacity and low adiposity might help enhance the RSA performance when increasing the number of repeated sprints. PMID:28031763

  7. Repeated Sprint Performance in Male and Female College Athletes Matched for VO2max Relative to Fat Free Mass.

    PubMed

    Mageean, Amanda L; Alexander, Ryan P; Mier, Constance M

    The purpose of this study was to examine gender differences in repeated sprint exercise (RSE) performance among male and female athletes matched for VO2max relative to FFM (VO2max FFM). Thirty nine male and female college athletes performed a graded exercise test for VO2max and hydrostatic weighing to determine FFM. From the results, 11 pairs of males and females matched for VO2max FFM (mean ± SD; 58.3 ± 4.3 and 58.9 ± 4.6 ml·kg FFM(-1)·min(-1); men and women, respectively) were identified. On a separate day, matched participants performed a RSE protocol that consisted of five 6-sec cycle sprints with 30-sec recovery periods, followed by 5-min active recovery and a 30-sec all-out sprint. Repeated 6-sec sprint performance did not differ between men and women; both maintained power output (PO) until sprint 4. POFFM (W·kg(-1) FFM) did not differ between men and women during the five sprints. During the 30-sec sprint, men achieved a lower peak POFFM than women (11.7 ± 1.5 vs 13.2 ± 1.2); however, the decline in POFFM over 30 sec was greater in women. VO2 (ml·kg FFM(-1)·min(-1)) was lower in men during recovery (24.4 ± 3.8 vs 28.7 ± 5.7) and at the beginning (29.2 ± 4.0 vs 34.7 ± 4.9) and end (49.4 ± 5.0 vs 52.3 ± 4.0). of the 30-sec sprint. These data indicate that men and women with similar aerobic capacities do not respond differently to short repeated sprints but may differ in their ability to recover and perform sprints of longer duration.

  8. Sprint and vertical jump performances are not affected by six weeks of static hamstring stretching.

    PubMed

    Bazett-Jones, David M; Gibson, Mark H; McBride, Jeffrey M

    2008-01-01

    The purpose of this study was to investigate whether 6 weeks of static hamstring stretching effects range of motion (ROM), sprint, and vertical jump performances in athletes. Twenty-one healthy division III women's track and field athletes participated in the study. Subjects were tested for bilateral knee ROM; 55-m sprint time; and vertical jump height before, at 3 weeks, and after the 6-week flexibility program. Subjects were randomly assigned to treatment and control groups and warmed up with a 10-minute jog on a track before a hamstring stretching protocol. The stretching protocol consisted of four repetitions held for 45 seconds, 4 days per week. Four variables (left and right leg ROM, 55-m sprint time, vertical jump) were analyzed using a repeated-measures analysis of variance design. No significant differences (P < or = 0.05) were found with any of the four variables between the stretching and control groups. Six weeks of a static hamstring stretching protocol did not improve knee ROM or sprint and vertical jump performances in women track and field athletes. The use of static stretching should be restricted to post practice or competition because of the detrimental effects reported throughout the literature. Based on the current investigation, it does not seem that chronic static stretching has a positive or negative impact on athletic performance. Thus, the efficacy of utilizing this practice is questionable and requires further investigation.

  9. Effects of red bull energy drink on repeated sprint performance in women athletes.

    PubMed

    Astorino, Todd A; Matera, Angela J; Basinger, Jency; Evans, Mindy; Schurman, Taylor; Marquez, Rodney

    2012-05-01

    Energy drinks are frequently consumed by athletes prior to competition to improve performance. This study examined the effect of Red Bull™ on repeated sprint performance in women athletes. Fifteen collegiate soccer players participated, with mean age, height, and body mass equal to 19.5±1.1 year, 168.4±5.8 cm, and 63.4±6.1 kg, respectively. After performing a familiarization trial, subjects performed three sets of eight bouts of the modified t test after ingestion of 255 mL of placebo or Red Bull 1 h pre-exercise in a randomized, placebo-controlled crossover design. Throughout testing, sprint time, heart rate (HR), and rating of perceived exertion (RPE) were continuously obtained. Repeated measures analysis of variance was used to examine differences in variables between drink conditions. Across athletes, t test time ranged from 10.4 to 12.7 s. Mean sprint time was similar (p>0.05) between Red Bull (11.31±0.61 s) and placebo (11.35±0.61 s). HR and RPE increased (p<0.05) during the bouts, but there was no effect (p>0.05) of Red Bull on either variable versus placebo. Findings indicate that 255 mL of Red Bull containing 1.3 mg/kg of caffeine and 1 g of taurine does not alter repeated sprint performance, RPE, or HR in women athletes versus placebo. One serving of this energy drink provides no ergogenic benefit for women athletes engaging in sprint-based exercise.

  10. MondoA deficiency enhances sprint performance in mice

    PubMed Central

    Imamura, Minako; Chang, Benny Hung-Junn; Kohjima, Motoyuki; Li, Ming; Hwang, Byounghoon; Taegtmeyer, Heinrich; Harris, Robert A.; Chan, Lawrence

    2015-01-01

    MondoA is a basic helix–loop–helix (bHLH)/leucine zipper (ZIP) transcription factor that is expressed predominantly in skeletal muscle. Studies in vitro suggest that the Max-like protein X (MondoA:Mlx) heterodimer senses the intracellular energy status and directly targets the promoter region of thioredoxin interacting protein (Txnip) and possibly glycolytic enzymes. We generated MondoA-inactivated (MondoA−/−) mice by gene targeting. MondoA−/− mice had normal body weight at birth, exhibited normal growth and appeared to be healthy. However, they exhibited unique metabolic characteristics. MondoA−/− mice built up serum lactate and alanine levels and utilized fatty acids for fuel during exercise. Gene expression and promoter analysis suggested that MondoA functionally represses peroxisome-proliferator-activated receptor γ co-activator-1α (PGC-1α)–mediated activation of pyruvate dehydrogenase kinase 4 (PDK4) transcription. PDK4 normally down-regulates the activity of pyruvate dehydrogenase, an enzyme complex that catalyses the decarboxylation of pyruvate to acetyl-CoA for entry into the Krebs cycle; in the absence of MondoA, pyruvate is diverted towards lactate and alanine, both products of glycolysis. Dynamic testing revealed that MondoA−/− mice excel in sprinting as their skeletal muscles display an enhanced glycolytic capacity. Our studies uncover a hitherto unappreciated function of MondoA in fuel selection in vivo. Lack of MondoA results in enhanced exercise capacity with sprinting. PMID:25145386

  11. Effects of resisted sprint training on acceleration in professional rugby union players.

    PubMed

    West, Daniel J; Cunningham, Dan J; Bracken, Richard M; Bevan, Huw R; Crewther, Blair T; Cook, Christian J; Kilduff, Liam P

    2013-04-01

    The use of weighted sled towing as a training tool to improve athlete acceleration has received considerable attention; however, its effectiveness for developing acceleration is equivocal. This study compared the effects of combined weighted sled towing and sprint training against traditional sprint training on 10 and 30 m speed in professional rugby union players (n = 20). After baseline testing of 10 and 30 m speed, participants were assigned to either the combined sled towing and sprint training (SLED) or traditional sprint training (TRAD) groups, matched for 10-m sprint times. Each group completed 2 training sessions per week for 6 weeks, with performance reassessed post-training. Both training programmes improved participants' 10 and 30 m speed (p < 0.001), but the performance changes (from pre to post) in 10 m (SLED -0.04 ± 0.01 vs. TRAD -0.02 ± 0.01 seconds; p < 0.001) and 30 m (SLED -0.10 ± 0.03 vs. TRAD -0.05 ± 0.03 seconds; p = 0.003) sprint times were significantly greater in the SLED training group. Similarly, the percent change within the SLED group for the 10 m (SLED -2.43 ± 0.67 vs. TRAD -1.06 ± 0.80 seconds; p = 0.003) and 30 m (SLED -2.46 ± 0.63 vs. TRAD -1.15 ± 0.72 seconds; p = 0.003) tests were greater than the TRAD group. In conclusion, sprint training alone or combined with weighted sled towing can improve 10 and 30 m sprint times; however, the latter training method promoted greater improvements in a group of professional rugby players.

  12. Design and Expected Performance of GISMO-2, a Two Color Millimeter Camera for the IRAM 30 m Telescope

    NASA Technical Reports Server (NTRS)

    Staguhn, Johannes G.; Benford, Dominic J.; Dwek, Eli; Hilton, Gene; Fixsen, Dale J.; Irwin, Kent; Jhabvala, Christine; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Tim; Moseley, S. Harvey; Sharp, Elmer H.; Wollack, Edward

    2014-01-01

    We present the main design features for the GISMO-2 bolometer camera, which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISMO-2 will operate simultaneously in the 1 and 2 mm atmospherical windows. The 1 mm channel uses a 32 × 40 TES-based backshort under grid (BUG) bolometer array, the 2 mm channel operates with a 16 × 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISMO-2 was strongly influenced by our experience with the GISMO 2mm bolometer camera, which is successfully operating at the 30 m telescope. GISMO is accessible to the astronomical community through the regularIRAMcall for proposals.

  13. Passive Recovery Promotes Superior Performance and Reduced Physiological Stress Across Different Phases of Short-Distance Repeated Sprints.

    PubMed

    Scanlan, Aaron T; Madueno, Maria C

    2016-09-01

    Scanlan, AT and Madueno, MC. Passive recovery promotes superior performance and reduced physiological stress across different phases of short-distance repeated sprints. J Strength Cond Res 30(9): 2540-2549, 2016-Limited research has examined the influence of recovery modalities on run-based repeated-sprint (RS) performance with no data available relative to the sprint phase. This study compared run-based RS performance across various sprint phases and underlying physiological responses between active and passive recoveries. Nine students (21.8 ± 3.6 years; 171.3 ± 6.4 cm; 72.8 ± 12.2 kg) completed 2 bouts (active and passive recoveries) of 10 × 20 m sprints interspersed with 30 s recoveries in a randomized crossover fashion. Sprint times and decrements were calculated for each split (0-5, 5-15, 15-20, and 0-20 m) across each sprint. Blood lactate concentration ([BLa]), heart rate (HR), and rating of perceived exertion (RPE) were measured at various time-points. Passive recovery promoted improved performance times (p ≤ 0.005) and decrements (p ≤ 0.045) across all splits, and lower post-test [BLa] (p ≤ 0.005), HR (bout 3 onwards) (p ≤ 0.014), and RPE (bout 4 onwards) when compared with active recovery. Performance differences between recoveries were less pronounced across the 0-5 m split. Temporal analyses showed significant (p ≤ 0.05) increases in sprint times and decrements primarily with active recovery. The present data indicate that passive recovery promoted superior performance across run-based RS, with earlier performance deterioration and greater physiological load evident during active recovery. These findings can aid the manipulation of interbout activity across RS drills to promote physiological overload and adaptation during training. Further, coaches may develop tactical strategies to overcome the detrimental effects of active recovery and optimize sprint performance in athletes during game-play.

  14. Acute Effects of Plyometric Intervention—Performance Improvement and Related Changes in Sprinting Gait Variability.

    PubMed

    Maćkała, Krzysztof; Fostiak, Marek

    2015-07-01

    The purpose of this study was to examine the effect of a short high-intensity plyometric program on the improvement of explosive power of lower extremities and sprint performance as well as changes in sprinting stride variability in male sprinters. Fourteen healthy male sprinters (mean ± SD: age: 18.07 ± 0.73 years, body mass: 73 ± 9.14 kg, height: 180.57 ± 8.16 cm, and best 100 m: 10.89 ± 0.23) participated in the experiment. The experimental protocol included vertical jumping such as squat jump, countermovement jump, and horizontal jumps; standing long jump and standing triple jumps to assess lower-body power, maximal running velocity; a 20-m flying start sprint that evaluated variability of 10 running steps and 60-m starting block sprint. All analyzed parameters were obtained using the new technology of OptoJump-Microgate (OptoJump, Italy). The short-term plyometric training program significantly increased the explosive power of lower extremities, both vertical and horizontal jumping improvement. However, the vertical jumps increased much more than the horizontal. The 20-m improvements were derived from an increase of stride frequency from 4.31 to 4.39 Hz because of a decrease of ground contact time from 138 to 133 milliseconds. This did not translate into step length changes. Therefore, the significantly increased frequency of stride (1.8%), which is a specific expression of ground contact time reduction during support phase, resulted in an increase of speed. The training volume of 2 weeks (with 6 sessions) using high-intensity (between 180 and 250 jumps per session) plyometric exercises can be recommended as the short-term strategy that will optimize one's probability of reaching strong improvements in explosive power and sprint velocity performance.

  15. Longitudinal Study of Repeated Sprint Performance in Youth Soccer Players of Contrasting Skeletal Maturity Status

    PubMed Central

    Valente-dos-Santos, João; Coelho-e-Silva, Manuel J.; Severino, Vítor; Duarte, João; Martins, Raúl S.; Figueiredo, António J.; Seabra, André T.; Philippaerts, Renaat M.; Cumming, Sean P; Elferink-Gemser, Marije; Malina, Robert M.

    2012-01-01

    The purpose of the study was to evaluate the developmental changes in performance in a repeated-sprint ability (RSA) test in young soccer players of contrasting maturity status. A total of 83 regional level Portuguese youth soccer players, aged 11-13 years at baseline was assessed annually. Stature, body mass, 7x34.2-m sprint protocol (25-s active recovery), 20-m multi-stage continuous shuttle endurance run and counter-movement jump (CMJ) without the use of the arms were measured. Fat-free mass (FFM) was determined by age and gender-specific formulas. Developmental changes in total sprint time across ages were predicted using multilevel modeling. Corresponding measurements were performed on an independent cross-sectional subsample of 52 youth soccer players 11-17 years to evaluate the predictive model. CA, CA2, maturational status (SA-CA), body size (mass and stature), FFM, aerobic endurance, lower limb explosive strength and annual volume training significantly improved the statistical fit of the RSA multilevel model. In ‘late’ maturing athletes, the best model for predicting change in RSA was expressed by the following equation: 86.54 - 2.87 x CA + 0.05 x CA2 - 0.25 x FFM + 0.15 x body mass + 0.05 x stature - 0.05 x aerobic endurance - 0.09 x lower limb explosive strength - 0.01 x annual volume training. The best fitting models for players who were ‘on time’ and ‘early’ maturing were identical to the best model for late maturing players, less 0.64 seconds and 1.74 seconds, respectively. Multilevel modeling provided performance curves that permitted the prediction of individual RSA performance across adolescent years in regional level soccer players. Key pointsRepeated-sprint ability tests are a valuable sport-specific field test of sprint performance in youth soccer players. Here, the test had reasonable reliability and can be useful to trainers and coaches in the assessment of young athletes and in monitoring changes over time.The total sprint time

  16. Effect of creatine supplementation on metabolism and performance in humans during intermittent sprint cycling.

    PubMed

    Finn, J P; Ebert, T R; Withers, R T; Carey, M F; Mackay, M; Phillips, J W; Febbraio, M A

    2001-03-01

    This double blind study investigated the effect of oral creatine supplementation (CrS) on 4 x 20 s of maximal sprinting on an air-braked cycle ergometer. Each sprint was separated by 20 s of recovery. A group of 16 triathletes [mean age 26.6 (SD 5.1) years. mean body mass 77.0 (SD 5.8) kg, mean body fat 12.9 (SD 4.6)%, maximal oxygen uptake 4.86 (SD 0.7) l.min-1] performed an initial 4 x 20 s trial after a muscle biopsy sample had been taken at rest. The subjects were then matched on their total intramuscular creatine content (TCr) before being randomly assigned to groups to take by mouth either a creatine supplement (CRE) or a placebo (CON) before a second 4 x 20 s trial. A muscle biopsy sample was also taken immediately before this second trial. The CrS of 100 g comprised 4 x 5 g for 5 days. The initial mean TCr were 112.5 (SD 8.7) and 112.5 (SD 10.7) mmol.kg-1 dry mass for CRE and CON, respectively. After creatine loading and placebo ingestion respectively, CRE [128.7 (SD 11.8) mmol.kg-1 dry mass] had a greater (P = 0.01) TCr than CON [112.0 (SD 10.0) mmol.kg-1 dry mass]. While the increase in free creatine for CRE was statistically significant (P = 0.034), this was not so for the changes in phosphocreatine content [trial 1: 75.7 (SD 6.9), trial 2: 84.7 (SD 11.0) mmol.kg-1 dry mass, P = 0.091]. There were no significant differences between CRE and CON for citrate synthase activity (P = 0.163). There was a tendency towards improved performance in terms of 1 s peak power (in watts P = 0.07; in watts per kilogram P = 0.05), 5 s peak power (in watts P = 0.08) and fatigue index (P = 0.08) after CrS for sprint 1 of the second trial. However, there was no improvement for mean power (in watts P = 0.15; in watts per kilogram P = 0.1) in sprint 1 or for any performance values in subsequent sprints. Our results suggest that, while CrS elevates the intramuscular stores of free creatine, this does not have an ergogenic effect on 4 x 20 s all-out cycle sprints with

  17. The relationship between short- and long-distance swimming performance and repeated sprint ability.

    PubMed

    Meckel, Yoav; Bishop, David J; Rabinovich, Moran; Kaufman, Leonid; Nemet, Dan; Eliakim, Alon

    2012-12-01

    The purpose of this study was to determine indices of repeated sprint ability (RSA) during a repeated sprint swimming test (RST), to compare these with previous similar running and cycling RST, and to correlate these indices with the best short (100 m, as an index of anaerobic performance) and long (2,000 m, as an index of aerobic performance) distance swimming times in 20 elite, national team level, male swimmers. Indices of RSA included the ideal sprint time (IS), the total sprint time (TS), and the performance decrement (PD) recorded during an 8 × 15-m swimming RST. The PD during the present swimming RST (4.7 ± 2.3%) was similar to that in previous running or cycling RSTs. However, the physiological responses after the swimming RST (heart rate 168 ± 7 b·min(-1) and blood lactate concentration 5.5 ± 2.0 mmol·L(-1)) were lower than typical responses after running or cycling RSTs. There was no significant relationship between any of the RST performance indices and either the 100-m or 2,000-m swimming results. Multiple regression analysis indicated that the 3 RST indices (IS, TS, and PD), contributed 36% of the variance of the 2,000-m, but not the 100-m, swimming time. A strong correlation was found between the 100- and 2,000-m swim times (r = 0.74, p < 0.05). The results suggest that RSA in swimmers is a specific quality that cannot predict short- or long-distance swim performance. The significantly strong relationship between the 100- and 2,000-m swim times is unique for swimming.

  18. Is there an ACE ID - ACTN3 R577X polymorphisms interaction that influences sprint performance?

    PubMed

    Eynon, N; Alves, A J; Yamin, C; Sagiv, M; Duarte, J A; Oliveira, J; Ayalon, M; Goldhammer, E; Sagiv, M; Meckel, Y

    2009-12-01

    Functional R577X (rs.1815739) and ID (rs.5186) polymorphisms in the alpha-actinin-3 ( ACTN3) and the angiotensin converting enzyme (ACE) genes, respectively, have been associated with sprint performance. The aim of this study was to determine their effect on sprint performance among 81 Israeli sprinters and 240 healthy controls. Results revealed that the ACE II genotype+ ACTN3 R allele (P=0.003 for sprinters vs. controls), and the ACTN3 RR genotype +ACE I allele (P=0.001 for sprinters vs. controls) might be the genotype for sprinters. In the whole cohort the probability of ACTN3 RR genotype+ ACE I allele being a sprinter (odds ratio 2.67, 95% confidence interval 1.45-4.93) and of ACE II genotype+ ACTN3 R allele being a sprinter (odds ratio 3.57, 95% confidence interval 1.78-7.15) was significantly higher than that in the controls. In conclusion, the above data suggest that ACE ID/ ACTN3 R577X genotype combination is associated with sprint ability. However, ACE ID/ ACTN3 R577X genotype combination is not related to the level of performance.

  19. A Clustered Repeated-Sprint Running Protocol for Team-Sport Athletes Performed in Normobaric Hypoxia

    PubMed Central

    Morrison, Jaime; McLellan, Chris; Minahan, Clare

    2015-01-01

    The present study compared the performance (peak speed, distance, and acceleration) of ten amateur team-sport athletes during a clustered (i.e., multiple sets) repeated-sprint protocol, (4 sets of 4, 4-s running sprints; i.e., RSR444) in normobaric normoxia (FiO2 = 0.209; i.e., RSN) with normobaric hypoxia (FiO2 = 0.140; i.e., RSH). Subjects completed two separate trials (i. RSN, ii. RSH; randomised order) between 48 h and 72 h apart on a non-motorized treadmill. In addition to performance, we examined blood lactate concentration [La-] and arterial oxygen saturation (SpO2) before, during, and after the RSR444. While there were no differences in peak speed or distance during set 1 or set 2, peak speed (p = 0.04 and 0.02, respectively) and distance (p = 0.04 and 0.02, respectively) were greater during set 3 and set 4 of RSN compared with RSH. There was no difference in the average acceleration achieved in set 1 (p = 0.45), set 2 (p = 0.26), or set 3 (p = 0.23) between RSN and RSH; however, the average acceleration was greater in RSN than RSH in set 4 (p < 0.01). Measurements of [La-] were higher during RSH than RSN immediately after Sprint 16 (10.2 ± 2.5 vs 8.6 ± 2.6 mM; p = 0.02). Estimations of SpO2 were lower during RSH than RSN, respectively, immediately prior to the commencement of the test (89.0 ± 2.0 vs 97.2 ± 1.5 %), post Sprint 8 (78.0 ± 6.3 vs 93.8 ± 3.6 %) and post Sprint 16 (75.3 ± 6.3 vs 94.5 ± 2.5 %; all p < 0.01). In summary, the RSR444 is a practical protocol for the implementation of a hypoxic repeated-sprint training intervention into the training schedules of team-sport athletes. However, given the inability of amateur team-sport athletes to maintain performance in hypoxic (FiO2 = 0.140) conditions, the potential for specific training outcomes (i.e. speed) to be achieved will be compromised, thus suggesting that the RSR444 should be used with caution. Key points The RSR444 is a practical, multiple-set repeated-sprint running protocol

  20. The sports performance application of vibration exercise for warm-up, flexibility and sprint speed.

    PubMed

    Cochrane, Darryl

    2013-01-01

    Since the turn of the 21st century, there has been a resurgence of vibration technology to enhance sport science especially for power and force development. However, vibration exercise has been trialled in other areas that are central to athlete performance such as warm-up, flexibility and sprint speed. Therefore, the aim of this review was to attempt to gain a better understanding of how acute and short-term vibration exercise may impact on warm-up, flexibility and sprint speed. The importance of warming up for sporting performance has been well documented and vibration exercise has the capability to be included or used as a standalone warm-up modality to increase intramuscular temperature at a faster rate compared to other conventional warm-up modalities. However, vibration exercise does not provide any additional neurogenic benefits compared to conventional dynamic and passive warm-up interventions. Vibration exercise appears to be a safe modality that does not produce any adverse affects causing injury or harm and could be used during interval and substitution breaks, as it would incur a low metabolic cost and be time-efficient compared to conventional warm-up modalities. Acute or short-term vibration exercise can enhance flexibility and range of motion without having a detrimental effect on muscle power, however it is less clear which mechanisms may be responsible for this enhancement. It appears that vibration exercise is not capable of improving sprint speed performance; this could be due to the complex and dynamic nature of sprinting where the purported increase in muscle power from vibration exercise is probably lost on repeated actions of high force generation. Vibration exercise is a safe modality that produces no adverse side effects for injury or harm. It has the time-efficient capability of providing coaches, trainers, and exercise specialists with an alternative modality that can be implemented for warm-up and flexibility either in isolation or in

  1. Energy system contributions and determinants of performance in sprint cross-country skiing.

    PubMed

    Andersson, E; Björklund, G; Holmberg, H-C; Ørtenblad, N

    2017-04-01

    To improve current understanding of energy contributions and determinants of sprint-skiing performance, 11 well-trained male cross-country skiers were tested in the laboratory for VO2max , submaximal gross efficiency (GE), maximal roller skiing velocity, and sprint time-trial (STT) performance. The STT was repeated four times on a 1300-m simulated sprint course including three flat (1°) double poling (DP) sections interspersed with two uphill (7°) diagonal stride (DS) sections. Treadmill velocity and VO2 were monitored continuously during the four STTs and data were averaged. Supramaximal GE during the STT was predicted from the submaximal relationships for GE against velocity and incline, allowing computation of metabolic rate and O2 deficit. The skiers completed the STT in 232 ± 10 s (distributed as 55 ± 3% DP and 45 ± 3% DS) with a mean power output of 324 ± 26 W. The anaerobic energy contribution was 18 ± 5%, with an accumulated O2 deficit of 45 ± 13 mL/kg. Block-wise multiple regression revealed that VO2 , O2 deficit, and GE explained 30%, 15%, and 53% of the variance in STT time, respectively (all P < 0.05). This novel GE-based method of estimating the O2 deficit in simulated sprint-skiing has demonstrated an anaerobic energy contribution of 18%, with GE being the strongest predictor of performance.

  2. Physiological Demands of Competitive Sprint and Distance Performance in Elite Female Cross-Country Skiing.

    PubMed

    Carlsson, Magnus; Carlsson, Tomas; Wedholm, Lars; Nilsson, Mattias; Malm, Christer; Tonkonogi, Michail

    2016-08-01

    Carlsson, M, Carlsson, T, Wedholm, L, Nilsson, M, Malm, C, and Tonkonogi, M. Physiological demands of competitive sprint and distance performance in elite female cross-country skiing. J Strength Cond Res 30(8): 2138-2144, 2016-The purpose was to investigate the relationship between elite females' competitive performance capability in sprint and distance cross-country skiing and the variables of gross efficiency (GE), work rate at the onset of blood-lactate accumulation (OBLA4mmol), maximal oxygen uptake (V[Combining Dot Above]O2max), maximal speed (Vmax), and peak upper-body oxygen uptake (V[Combining Dot Above]O2peak). Ten elite female cross-country skiers (age 24.5 ± 2.8 years) completed treadmill roller-skiing tests to determine GE, OBLA4mmol, and V[Combining Dot Above]O2max using the diagonal-stride technique as well as Vmax and V[Combining Dot Above]O2peak using the double-poling technique. International Ski Federations ranking points for sprint (FISsprint) and distance (FISdist) races were used as competitive performance data. There were correlations between the FISsprint and the V[Combining Dot Above]O2max expressed absolutely (p = 0.0040), Vmax (p = 0.012), and V[Combining Dot Above]O2peak expressed absolutely (p < 0.001) and as a simple ratio-standard (p = 0.049). The FISdist were correlated with OBLA4mmol (p = 0.048), V[Combining Dot Above]O2max expressed absolutely (L·min) (p = 0.015) and as a simple ratio-standard (p = 0.046), and V[Combining Dot Above]O2peak expressed absolutely (p = 0.036) and as a simple ratio-standard (ml·min·kg) (p = 0.040). The results demonstrate that the physiological abilities reflected by V[Combining Dot Above]O2max and V[Combining Dot Above]O2peak are indicators of competitive sprint and distance performance in elite female cross-country skiing. In addition, the ability to generate a high Vmax indicates the performance in sprint races, whereas the skier's OBLA4mmol reflects the performance capability in distance races

  3. Effect of surface-specific training on 20-m sprint performance on sand and grass surfaces.

    PubMed

    Binnie, Martyn J; Peeling, Peter; Pinnington, Hugh; Landers, Grant; Dawson, Brian

    2013-12-01

    This study compared the effect of an 8-week preseason conditioning program conducted on a sand (SAND) or grass (GRASS) surface on 20-m sprint performance. Twelve team-sport athletes were required to attend three 1-hour training sessions per week, including 2 surface-specific sessions (SAND, n = 6 or GRASS, n = 6) and 1 group session (conducted on grass). Throughout the training period, 20-m sprint times of all athletes were recorded on both sand and grass surfaces at the end of weeks 1, 4, and 8. Results showed a significant improvement in 20-m sand time in the SAND group only (p < 0.05), whereas 20-m grass time improved equally in both training subgroups (p < 0.05). These results suggest that surface-specificity is essential for 20-m speed improvements on sand and also that there is no detriment to grass speed gains when incorporating sand surfaces into a preseason program.

  4. New insights into the effect of wind assistance on sprinting performance.

    PubMed

    Ward-Smith, A J

    1999-04-01

    Here, a new mathematical model of sprinting is proposed. The prediction method rests on the construction of an energy balance incorporating a mathematical representation of each of the major terms in the balance. The term expressing the degradation of mechanical energy into thermal energy is formulated to express a dependence on wind speed. The dependence of the drag term on the change in mean body angle relative to the horizontal is taken into account. Whereas the effect of modifying the degradation term is shown to be significant, changes in body lean angle are shown to have little effect. Comparisons of the present predictions with a previous statistical analysis of 100-m track data show good agreement. Sensitivity analyses show which variables have the greatest influence on sprinting performance.

  5. EFFECT OF THE NUMBER OF SPRINT REPETITIONS ON THE VARIATION OF BLOOD LACTATE CONCENTRATION IN REPEATED SPRINT SESSIONS

    PubMed Central

    Dardouri, W.; Haj-Sassi, R.; Castagna, C.; Chamari, K.; Souissi, N.

    2014-01-01

    The aim of the present study was to examine the effect of number of sprint repetitions on the variation of blood lactate concentration (blood [La]) during different repeated-sprint sessions in order to find the appropriate number of sprint repetitions that properly simulates the physiological demands of team sport competitions. Twenty male team-sport players (age, 22.2 ± 2.9 years) performed several repeated-sprint sessions (RSS) consisting of 1, 2, 3, 4, 5, 9, or 10 repetitions of 30 m shuttle sprints (2 × 15 m) with 30 s recovery in between. The blood [La] was obtained after 3 min of recovery at the end of each RSS. The present study showed that for RSS of 3 sprints (RSS3) there was a high increase (p<0.001) in blood [La], which reached approximately fivefold resting values (9.4±1.7 mmol · l−1) and then remained unchanged for the RSS of 4 and 5 sprints (9.6±1.4 and 10.5±1.9 mmol · l−1, p=0.96 and 0.26, respectively). After RSS9 and RSS10 blood [La] further significantly increased to 12.6 and 12.7 mmol · l−1, p<0.001, respectively. No significant difference was found between RSS3, RSS4 and RSS5 for the percentage of sprint speed decrement (Sdec) (1.5±1.2; 2.0±1.1 and 2.6±1.4%, respectively). There was also no significant difference between RSS9 and RSS10 for Sdec (3.9±1.3% and 4.5±1.4%, respectively). In conclusion, the repeated-sprint protocol composed of 5 shuttle sprint repetitions is more representative of the blood lactate demands of the team sports game intensity. PMID:24899781

  6. Relationship Between Sprint Performance of Front Crawl Swimming and Muscle Fascicle Length in Young Swimmers

    PubMed Central

    Nasirzade, Alireza; Ehsanbakhsh, Alireza; Ilbeygi, Saeed; Sobhkhiz, Azadeh; Argavani, Hamed; Aliakbari, Mehdi

    2014-01-01

    The purpose of this study was to investigate the relationship between 25-m sprint front crawl swimming performance and muscle fascicle length in young male swimmers. 23 swimmers were selected and divided into two groups according to their best records of 25-m sprint performance: 14.6-15.7 sec (S1, n = 11) and 15.8-17 sec (S2, n = 12). Muscle thickness and pennation angle of Biceps Brachii (BB; only muscle thickness), Triceps Brachii (TB), Vastus Lateralis (VL), Gastrocnemius Medialis (GM) and Lateralis (GL) muscles were measured by B-mode ultrasonography, and fascicle length was estimated. Although, there was no significant differences between groups in anthropometrical parameter as standing height, body mass, arm length, thigh length and leg length (p < 0.001), however, S1 significantly had a greater muscle thickness in VL, GL, and TB muscles (p < 0.05). Pennation angle only in TB was significantly smaller in S1 (p < 0.05). S1 in VL, GL, and TB muscles significantly had greater absolute fascicle length and in VL and TB muscles had relatively (relative to limb length) greater fascicle length (p < 0.05). Moreover, there was a significant relationship between sprint swimming time and absolute and relative fascicle length in VL (absolute: r = -0.49 and relative: r = -0.43, both p < 0.05) and GL (absolute: r = -0.47 and relative: r = -0.42, both p < 0.05). Potentially, it seems that fascicle geometry developed in muscles of faster young swimmers to help them to perform their high speed movement. Key Points This study investigated the relationship between muscle fascicle length and sprint front crawl performance in young male swimmers. It seems that young swimmers with faster front crawl sprint swimming performance trend to have smaller pennation angle and greater absolute and relative fascicle length (relative to limb length) in their locomotor muscles. Potentially, fascicle geometry developed in faster swimmers to help them to perform higher speed movement via higher

  7. Relationship between sprint performance of front crawl swimming and muscle fascicle length in young swimmers.

    PubMed

    Nasirzade, Alireza; Ehsanbakhsh, Alireza; Ilbeygi, Saeed; Sobhkhiz, Azadeh; Argavani, Hamed; Aliakbari, Mehdi

    2014-09-01

    The purpose of this study was to investigate the relationship between 25-m sprint front crawl swimming performance and muscle fascicle length in young male swimmers. 23 swimmers were selected and divided into two groups according to their best records of 25-m sprint performance: 14.6-15.7 sec (S1, n = 11) and 15.8-17 sec (S2, n = 12). Muscle thickness and pennation angle of Biceps Brachii (BB; only muscle thickness), Triceps Brachii (TB), Vastus Lateralis (VL), Gastrocnemius Medialis (GM) and Lateralis (GL) muscles were measured by B-mode ultrasonography, and fascicle length was estimated. Although, there was no significant differences between groups in anthropometrical parameter as standing height, body mass, arm length, thigh length and leg length (p < 0.001), however, S1 significantly had a greater muscle thickness in VL, GL, and TB muscles (p < 0.05). Pennation angle only in TB was significantly smaller in S1 (p < 0.05). S1 in VL, GL, and TB muscles significantly had greater absolute fascicle length and in VL and TB muscles had relatively (relative to limb length) greater fascicle length (p < 0.05). Moreover, there was a significant relationship between sprint swimming time and absolute and relative fascicle length in VL (absolute: r = -0.49 and relative: r = -0.43, both p < 0.05) and GL (absolute: r = -0.47 and relative: r = -0.42, both p < 0.05). Potentially, it seems that fascicle geometry developed in muscles of faster young swimmers to help them to perform their high speed movement. Key PointsThis study investigated the relationship between muscle fascicle length and sprint front crawl performance in young male swimmers.It seems that young swimmers with faster front crawl sprint swimming performance trend to have smaller pennation angle and greater absolute and relative fascicle length (relative to limb length) in their locomotor muscles.Potentially, fascicle geometry developed in faster swimmers to help them to perform higher speed movement via higher

  8. Instrument Performance of GISMO, a 2 Millimeter TES Bolometer Camera used at the IRAM 30 m Telescope

    NASA Technical Reports Server (NTRS)

    Staguhn, Johannes

    2008-01-01

    In November of 2007 we demonstrated a monolithic Backshort-Under-Grid (BUG) 8x16 array in the field using our 2 mm wavelength imager GISMO (Goddard IRAM Superconducting 2 Millimeter Observer) at the IRAM 30 m telescope in Spain for astronomical observations. The 2 mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. The optical design incorporates a 100 mm diameter silicon lens cooled to 4 K, which provides the required fast beam yielding 0.9 lambda/D pixels. With this spatial sampling, GISMO will be very efficient at detecting sources serendipitously in large sky surveys, while the capability for diffraction limited imaging is preserved. The camera provides significantly greater detection sensitivity and mapping speed at this wavelength than has previously been possible. The instrument will fill in the spectral energy distribution of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Here1 will we present early results from our observing run with the first fielded BUG bolometer array. We have developed key technologies to enable highly versatile, kilopixel, infrared through millimeter wavelength bolometer arrays. The Backshort-Under-Grid (BUG) array consists of three components: 1) a transition-edge-sensor (TES) based bolometer array with background-limited sensitivity and high filling factor, 2) a quarter-wave reflective backshort grid providing high optical efficiency, and 3) a superconducting bump-bonded large format Superconducting Quantum Interference Device (SQUID) multiplexer readout. The array is described in more detail elsewhere (Allen et al., this conference). In November of 2007 we demonstrated a monolithic 8x 16 array with 2 mm-pitch detectors in the field using our 2 mm wavelength imager GISMO (Goddard IRAM

  9. Acute effects of a caffeine-taurine energy drink on repeated sprint performance of American college football players.

    PubMed

    Gwacham, Nnamdi; Wagner, Dale R

    2012-04-01

    Consumption of energy drinks is common among athletes; however, there is a lack of research on the efficacy of these beverages for short-duration, intense exercise. The purpose of this research was to investigate the acute effects of a low-calorie caffeine-taurine energy drink (AdvoCare Spark) on repeated sprint performance and anaerobic power in National Collegiate Athletic Association Division I football players. Twenty football players (age 19.7 ± 1.8 yr, height 184.9 ± 5.3 cm, weight 100.3 ± 21.7 kg) participated in a double-blind, randomized crossover study in which they received the energy drink or an isoenergetic, isovolumetric, non-caffeinated placebo in 2 trials separated by 7 days. The Running Based Anaerobic Sprint Test, consisting of six 35-m sprints with 10 s of rest between sprints, was used to assess anaerobic power. Sprint times were recorded with an automatic electronic timer. The beverage treatment did not significantly affect power (F = 3.84, p = .066) or sprint time (F = 3.06, p = .097). However, there was a significant interaction effect between caffeine use and the beverage for sprint times (F = 4.62, p = .045), as well as for anaerobic power (F = 5.40, p = .032), indicating a confounding effect. In conclusion, a caffeine-taurine energy drink did not improve the sprint performance or anaerobic power of college football players, but the level of caffeine use by the athletes likely influenced the effect of the drink.

  10. The Effects of a Single Whole-Body Cryotherapy Exposure on Physiological, Performance, and Perceptual Responses of Professional Academy Soccer Players After Repeated Sprint Exercise.

    PubMed

    Russell, Mark; Birch, Jack; Love, Thomas; Cook, Christian J; Bracken, Richard M; Taylor, Tom; Swift, Eamon; Cockburn, Emma; Finn, Charlie; Cunningham, Daniel; Wilson, Laura; Kilduff, Liam P

    2017-02-01

    Russell, M, Birch, J, Love, T, Cook, CJ, Bracken, RM, Taylor, T, Swift, E, Cockburn, E, Finn, C, Cunningham, D, Wilson, L, and Kilduff, LP. The effects of a single whole-body cryotherapy exposure on physiological, performance, and perceptual responses of professional academy soccer players after repeated sprint exercise. J Strength Cond Res 31(2): 415-421, 2017-In professional youth soccer players, the physiological, performance, and perceptual effects of a single whole-body cryotherapy (WBC) session performed shortly after repeated sprint exercise were investigated. In a randomized, counterbalanced, and crossover design, 14 habituated English Premier League academy soccer players performed 15 × 30 m sprints (each followed by a 10 m forced deceleration) on 2 occasions. Within 20 minutes of exercise cessation, players entered a WBC chamber (Cryo: 30 seconds at -60° C, 120 seconds at -135° C) or remained seated (Con) indoors in temperate conditions (∼25° C). Blood and saliva samples, peak power output (countermovement jump), and perceptual indices of recovery and soreness were assessed pre-exercise and immediately, 2-hour and 24-hour postexercise. When compared with Con, a greater testosterone response was observed at 2-hour (+32.5 ± 32.3 pg·ml, +21%) and 24-hour (+50.4 ± 48.9 pg·ml, +28%) postexercise (both P = 0.002) in Cryo (trial × treatment interaction: P = 0.001). No between-trial differences were observed for other salivary (cortisol and testosterone/cortisol ratio), blood (lactate and creatine kinase), performance (peak power output), or perceptual (recovery or soreness) markers (all trial × treatment interactions: P > 0.05); all of which were influenced by exercise (time effects: all P ≤ 0.05). A single session of WBC performed within 20 minutes of repeated sprint exercise elevated testosterone concentrations for 24 hours but did not affect any other performance, physiological, or perceptual measurements taken. Although unclear, WBC may be

  11. Acute consumption of p-synephrine does not enhance performance in sprint athletes.

    PubMed

    Gutiérrez-Hellín, Jorge; Salinero, Juan José; Abían-Vicen, Javier; Areces, Francisco; Lara, Beatriz; Gallo, Cesar; Puente, Carlos; Del Coso, Juan

    2016-01-01

    P-Synephrine is a protoalkaloid widely used as an ergogenic aid in sports. This substance has been included in the World Anti-Doping Agency monitoring program, although scientific information about its effects on performance and athletes' well-being is scarce. The purpose of this investigation was to determine the effectiveness of p-synephrine to increase performance in sprint athletes. In a randomized and counterbalanced order, 13 experienced sprinters performed 2 acute experimental trials after the ingestion of p-synephrine (3 mg·kg(-1)) or after the ingestion of a placebo (control trial). Forty-five minutes after the ingestion of the substances, the sprinters performed a squat jump, a countermovement jump, a 15-s repeated jump test, and subsequently performed 60-m and 100-m simulated sprint competitions. Self-reported questionnaires were used to assess side-effect prevalence. In comparison with the control trial, the ingestion of p-synephrine did not change countermovement jump height (37.4 ± 4.2 vs 36.7 ± 3.3 cm, respectively; P = 0.52), squat jump height (34.4 ± 3.6 vs 33.9 ± 3.7 cm; P = 0.34), or average 15-s repeated jumps height (31.8 ± 4.1 vs 32.2 ± 3.6 cm; P = 0.18). P-Synephrine did not modify maximal running speed during the 60-m (9.0 ± 0.5 vs 9.0 ± 0.4 m·s(-1), respectively; P = 0.55) and 100-m sprint competitions (8.8 ± 0.5 vs 8.8 ± 0.5 m·s(-1), respectively; P = 0.92). The ingestion of p-synephrine did not alter the prevalence of headache, gastrointestinal discomforts, muscle pain, or insomnia during the hours following the tests. Acute consumption of 3 mg·kg(-1) of p-synephrine was ineffective to increase performance in competitive sprint athletes. Moreover, p-synephrine did not increase the occurrence of side effects after the competition.

  12. Importance of mitochondrial haplotypes and maternal lineage in sprint performance among individuals of West African ancestry.

    PubMed

    Deason, M; Scott, R; Irwin, L; Macaulay, V; Fuku, N; Tanaka, M; Irving, R; Charlton, V; Morrison, E; Austin, K; Pitsiladis, Y P

    2012-04-01

    Mitochondrial DNA (mtDNA) is inherited solely along the matriline, giving insight into both ancestry and prehistory. Individuals of sub-Saharan ancestry are overrepresented in sprint athletics, suggesting a genetic advantage. The purpose of this study was to compare the mtDNA haplogroup data of elite groups of Jamaican and African-American sprinters against respective controls to assess any differences in maternal lineage. The first hypervariable region of mtDNA was haplogrouped in elite Jamaican athletes (N=107) and Jamaican controls (N=293), and elite African-American athletes (N=119) and African-American controls (N=1148). Exact tests of total population differentiation were performed on total haplogroup frequencies. The frequency of non-sub-Saharan haplogroups in Jamaican athletes and Jamaican controls was similar (1.87% and 1.71%, respectively) and lower than that of African-American athletes and African-American controls (21.01% and 8.19%, respectively). There was no significant difference in total haplogroup frequencies between Jamaican athletes and Jamaican controls (P=0.551 ± 0.005); however, there was a highly significant difference between African-American athletes and African-American controls (P<0.001). The finding of statistically similar mtDNA haplogroup distributions in Jamaican athletes and Jamaican controls suggests that elite Jamaican sprinters are derived from the same source population and there is neither population stratification nor isolation for sprint performance. The significant difference between African-American sprinters and African-American controls suggests that the maternal admixture may play a role in sprint performance.

  13. Effects of hyperventilation on repeated pedaling sprint performance: short vs. long intervention duration.

    PubMed

    Sakamoto, Akihiro; Naito, Hisashi; Chow, Chin-Moi

    2017-01-20

    Previously, hyperventilation (HV) induced respiratory alkalosis, implemented during the last 30-s of each 60-s recovery that separated repeated pedaling sprints, has been shown to attenuate performance decrement. The present study investigated whether the ergogenic effects of HV would hold if the HV duration was shortened or extended. Seventeen power-trained athletes performed 10-s × 10 sets of standing pedaling sprints on a cycle ergometer, with 60-s inter-set recovery and the load (kp) set at 0.075 × body mass, under three breathing conditions: control, HV of 15-s (HVshort), and HV of 45-s (HVlong). Subjects breathed spontaneously during each 60-s recovery for the control condition. Under HVshort and HVlong conditions, subjects hyperventilated at 60 breaths/min with near-maximum tidal volume during the last 15-s or 45-s respectively of each recovery period. Peak and mean pedaling power outputs (POpeak and POmean) were documented for each sprint set to compare performance decrements between conditions. No significant condition effect or condition × time interaction was found for POpeak and POmean. The lack of ergogenic effects with HVlong may be ascribed to a complex interaction between the positive (augmented buffering effects) and negative effects of hyperventilation (decreased aerobic energy metabolism and exaggerated discomfort sensation of increased ventilatory work). For HVshort, the implemented duration may have been too short to yield positive physiological effects. A practical implication is that ergogenic effects may be impaired when hyperventilation is too short or too long, with the duration of around 30-s being the target for this exercise type.

  14. Influence of familiarization on the reliability of vertical jump and acceleration sprinting performance in physically active men.

    PubMed

    Moir, Gavin; Button, Chris; Glaister, Mark; Stone, Michael H

    2004-05-01

    The purpose of the present study was to determine the number of familiarization sessions required to obtain an accurate measure of reliability associated with loaded vertical jump and 20-m sprint running performance. Ten physically active men attended 5 separate testing sessions over a 3-week period where they performed unloaded and loaded (10-kg extra load) countermovement (CMJ) and static (SJ) jumps, followed by straight-line 20-m sprints. Jump height was recorded for the vertical jumps using a jump mat, while the time for 10 m and 20 m was recorded during the sprints using photocells. The highest (jump conditions) and fastest (sprint) of 3 trials performed during each of the 5 testing sessions was used in the subsequent analysis. Familiarization was assessed using the scores obtained during the 5 separate testing sessions. Reliability was assessed by calculating intraclass correlation coefficients (ICCs) and coefficient of variation (CV). No significant differences were obtained between the testing sessions for any of the measures. ICCs ranged from 0.89 to 0.95, while CVs ranged from 1.9 to 2.6%. These results indicate that high levels of reliability can be achieved without the need for familiarization sessions when using loaded and unloaded CMJ and SJ and 20-m sprint performance with physically active men.

  15. Repeated-sprint ability: where are we?

    PubMed

    Dawson, Brian

    2012-09-01

    Repeated-sprint ability (RSA) is now well accepted as an important fitness component in team-sport performance. It is broadly described as the ability to perform repeated short (~3-4 s, 20-30 m) sprints with only brief (~10-30 s) recovery between bouts. Over the past 25 y a plethora of RSA tests have been trialed and reported in the literature. These range from a single set of ~6-10 short sprints, departing every 20-30 s, to team-sport game simulations involving repeating cycles of walk-jog-stride-sprint movements over 45-90 min. Such a wide range of RSA tests has not assisted the synthesis of research findings in this area, and questions remain regarding the optimal methods of training to best improve RSA. In addition, how RSA test scores relate to player "work rate," match performance, or both requires further investigation to improve the application of RSA testing and training to elite team-sport athletes.

  16. Effect of long haul travel on maximal sprint performance and diurnal variations in elite skeleton athletes

    PubMed Central

    Bullock, Nicola; Martin, David T; Ross, Angus; Rosemond, Doug; Marino, Frank E

    2007-01-01

    Objective To quantify the impact of eastward long haul travel on diurnal variations in cortisol, psychological sensations and daily measurements of physical performance. Methods Five elite Australian skeleton athletes undertook a long haul eastward flight from Australia to Canada (LHtravel), while seven elite Canadian skeleton athletes did not travel (NOtravel). Salivary cortisol was measured on awakening, 60 min and 120 min after awakening. Psychological sensations were measured with a questionnaire, and maximal 30 m sprints were performed once a day between 09:30 and 11:00 h local time. Results Compared with baseline, average (SD) resting salivary cortisol decreased by 67% immediately after long haul travel (23.43 (5.71) nMol/l) (mean±90% confidence interval) in the LHtravel group (p = 0.03), while no changes were found in the NOtravel group (p = 0.74). There were no significant differences in 30 m sprint time between baseline and post‐flight tests in the LHtravel group (p>0.05). The LHtravel group perceived themselves as “jet lagged” for up to 2 days after the flight (p = 0.01 for both midday lunch and evening dinner). Conclusions Despite a distinct phase change in salivary cortisol rhythmicity and the athletes perceiving themselves as “jet lagged”, minimal disturbances in “one‐off” maximal sprinting ability between 09:30 and 11:00 h local time were seen in a group of elite skeleton athletes after long haul eastward travel from Australia to Canada. PMID:17473002

  17. Effect of Lumbar Spine Manipulation on Asymptomatic Cyclist Sprint Performance and Hip Flexibility

    PubMed Central

    Olson, Eric; Bodziony, Michael; Ward, John; Coats, Jesse; Koby, Bradley; Goehry, Doug

    2014-01-01

    Objective The purpose of this study was to measure the impact of midlumbar spinal manipulation on asymptomatic cyclist sprint performance and hip flexibility. Methods Twelve cyclists were equally randomized into an AB:BA crossover study design after baseline testing. Six participants were in the AB group, and 6 were in the BA group. The study involved 1 week of rest in between each of the 3 tested conditions: baseline testing (no intervention prior to testing), condition A (bilateral midlumbar spine manipulation prior to testing), and condition B (sham acupuncture prior to testing, as a control). Testing was blinded and involved a sit-and-reach test followed by a 0.5-km cycle ergometer sprint test against 4-kp resistance. Outcome measures were sit-and-reach distance, time to complete 0.5 km, maximum heart rate, and rating of perceived exertion. An additional 8 cyclists were recruited and used as a second set of controls that engaged in 3 testing sessions without any intervention to track test acclimation. An analysis of variance was used to compare dependent variables under each of the 3 conditions for the experimental group and control group #1, and a repeated-measures analysis of variance was used to analyze test acclimation in control group #2. Results Lumbar spine manipulation did not demonstrate statistically significant between-group changes in sit-and-reach (P = .765), 0.5-km sprint performance time (P = .877), maximum exercise heart rate (P = .944), or rating of perceived exertion (P = .875). Conclusions The findings of this preliminary study showed that midlumbar spinal manipulation did not improve hip flexibility or cyclist power output of asymptomatic participants compared with an acupuncture sham and no-treatment control groups. PMID:25435836

  18. A deterministic model based on evidence for the associations between kinematic variables and sprint kayak performance.

    PubMed

    McDonnell, Lisa K; Hume, Patria A; Nolte, Volker

    2013-09-01

    The aim of this narrative review was to propose a deterministic model based on a review of previous research documenting the evidence for the associations between average kayak velocity and kinematic variables in sprint kayaking. Literature was reviewed after searching electronic databases using key words 'kayak,' 'biomechanics,' 'velocity,' 'kinematics,' and 'performance.' Our kinematic deterministic model for sprint kayaking performance shows that the average kayak velocity is determined by kayak stroke displacement and stroke time. Stroke time had the strongest correlation with 200-m race time (r = 0.86, p < 0.001), and stroke rate (inversely proportional to stroke time) was strongly correlated with average horizontal velocity over two consecutive strokes at race pace (r = -0.83, p < 0.05). Increased stroke rate via decreased absolute water phase time and increased relative water phase time were indicative of more elite performance. There was no significant relationship between stroke displacement and velocity; however, a large decrease in stroke displacement may be detrimental to performance. Individual characteristics may be responsible for a paddlers' ability to achieve and sustain a given stroke rate. Coaches should theoretically focus interventions on increasing stroke rate while maintaining stroke displacement; however this hypothesis should be confirmed with prospective studies.

  19. Repeated Sprint Ability in Elite Water Polo Players and Swimmers and its Relationship to Aerobic and Anaerobic Performance

    PubMed Central

    Meckel, Yoav; Bishop, David; Rabinovich, Moran; Kaufman, Leonid; Nemet, Dan; Eliakim, Alon

    2013-01-01

    The purpose of this study was to determine indices of swimming repeated sprint ability (RSA) in 19 elite water polo players compared to 16 elite swimmers during a repeated sprint swimming test (RST), and to examine the relationships between these indices and aerobic and anaerobic performance capabilities in both groups. Indices of RSA were determined by the ideal sprint time (IS), the total sprint time (TS), and the performance decrement (PD) recorded during an 8 x 15-m swimming RST. Single long - (800-m) and short-(25-m) distance swim tests were used to determined indices of aerobic and anaerobic swimming capabilities, respectively. The water polo players exhibited lower RSA swimming indices, as well as lower scores in the single short and long swim distances, compared to the swimmers. Significant relationships were found between the 25- m swim results and the IS and the TS, but not the PD of both the swimmers and the water polo players. No significant relationships were found between the 800-m swim results and any of the RSA indices in either the swimmers or the water polo players. No significant relationships were found between the 25-m and the 800-m swim results in either the swimmers or the water polo players. The results indicate that swimmers posses better RSA as well as higher anaerobic and aerobic capabilities, as reflected by the single short- and long-distance swim tests, compared to water polo players. The results also indicate that, as for running and cycling, repeated sprint swim performance is strongly related to single sprint performance. Key Points Elite water polo players demonstrated lower repeated sprint ability (RSA), aerobic and anaerobic capabilities compared to elite swimmers. A 25-m swim trial correlated significantly with ideal sprint time and total sprint time, emphasizing the important contribution of anaerobic metabolism for these exercise types in both water polo players and swimmers. 800-m swim results did not correlate with RSA or 25

  20. Sprint performance and mechanical outputs computed with an iPhone app: Comparison with existing reference methods.

    PubMed

    Romero-Franco, Natalia; Jiménez-Reyes, Pedro; Castaño-Zambudio, Adrián; Capelo-Ramírez, Fernando; Rodríguez-Juan, Juan José; González-Hernández, Jorge; Toscano-Bendala, Francisco Javier; Cuadrado-Peñafiel, Víctor; Balsalobre-Fernández, Carlos

    2017-05-01

    The purpose of this study was to assess validity and reliability of sprint performance outcomes measured with an iPhone application (named: MySprint) and existing field methods (i.e. timing photocells and radar gun). To do this, 12 highly trained male sprinters performed 6 maximal 40-m sprints during a single session which were simultaneously timed using 7 pairs of timing photocells, a radar gun and a newly developed iPhone app based on high-speed video recording. Several split times as well as mechanical outputs computed from the model proposed by Samozino et al. [(2015). A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scandinavian Journal of Medicine & Science in Sports. https://doi.org/10.1111/sms.12490] were then measured by each system, and values were compared for validity and reliability purposes. First, there was an almost perfect correlation between the values of time for each split of the 40-m sprint measured with MySprint and the timing photocells (r = 0.989-0.999, standard error of estimate = 0.007-0.015 s, intraclass correlation coefficient (ICC) = 1.0). Second, almost perfect associations were observed for the maximal theoretical horizontal force (F0), the maximal theoretical velocity (V0), the maximal power (Pmax) and the mechanical effectiveness (DRF - decrease in the ratio of force over acceleration) measured with the app and the radar gun (r = 0.974-0.999, ICC = 0.987-1.00). Finally, when analysing the performance outputs of the six different sprints of each athlete, almost identical levels of reliability were observed as revealed by the coefficient of variation (MySprint: CV = 0.027-0.14%; reference systems: CV = 0.028-0.11%). Results on the present study showed that sprint performance can be evaluated in a valid and reliable way using a novel iPhone app.

  1. Repeated sprint ability in elite water polo players and swimmers and its relationship to aerobic and anaerobic performance.

    PubMed

    Meckel, Yoav; Bishop, David; Rabinovich, Moran; Kaufman, Leonid; Nemet, Dan; Eliakim, Alon

    2013-01-01

    The purpose of this study was to determine indices of swimming repeated sprint ability (RSA) in 19 elite water polo players compared to 16 elite swimmers during a repeated sprint swimming test (RST), and to examine the relationships between these indices and aerobic and anaerobic performance capabilities in both groups. Indices of RSA were determined by the ideal sprint time (IS), the total sprint time (TS), and the performance decrement (PD) recorded during an 8 x 15-m swimming RST. Single long - (800-m) and short-(25-m) distance swim tests were used to determined indices of aerobic and anaerobic swimming capabilities, respectively. The water polo players exhibited lower RSA swimming indices, as well as lower scores in the single short and long swim distances, compared to the swimmers. Significant relationships were found between the 25- m swim results and the IS and the TS, but not the PD of both the swimmers and the water polo players. No significant relationships were found between the 800-m swim results and any of the RSA indices in either the swimmers or the water polo players. No significant relationships were found between the 25-m and the 800-m swim results in either the swimmers or the water polo players. The results indicate that swimmers posses better RSA as well as higher anaerobic and aerobic capabilities, as reflected by the single short- and long-distance swim tests, compared to water polo players. The results also indicate that, as for running and cycling, repeated sprint swim performance is strongly related to single sprint performance. Key PointsElite water polo players demonstrated lower repeated sprint ability (RSA), aerobic and anaerobic capabilities compared to elite swimmers.A 25-m swim trial correlated significantly with ideal sprint time and total sprint time, emphasizing the important contribution of anaerobic metabolism for these exercise types in both water polo players and swimmers.800-m swim results did not correlate with RSA or 25-m

  2. The influence of officer equipment and protection on short sprinting performance.

    PubMed

    Lewinski, William J; Dysterheft, Jennifer L; Dicks, Nathan D; Pettitt, Robert W

    2015-03-01

    As advances in protective equipment are made, it has been observed that the weight law enforcement officers must carry every day is greatly increasing. Many investigations have noted the health risks of these increases, yet none have looked at its effects on officer mobility. The primary purpose of this study was to examine the influence of both the weight of officer safety equipment, as well as a lateral focal point (FP), on the stride length, stride velocity, and acceleration of the first six strides of a short sprint. Twenty male law enforcement students performed two maximal effort sprint trials, in the participating college's gymnasium, from each of four starting positions: forwards (control position), backwards, 90° left, and 90° right. Subjects placed in the FP group (n = 9) were required to maintain focus on lateral FP during the 90° left and 90° right trials, and a forwards FP during the backwards trials. On a second testing date, subjects repeated the sprint tests while wearing a 9.07 kg weight belt, simulating officer equipment and protective gear. The belt averaged 11.47 ± 1.64% of subject body mass. A significant main effect of weight belt trials was found (F = 20.494, p < 0.01), in which significant decreases were found for velocity and acceleration. No other significant effects were found as a result of starting position or focal point and no significant interactions were found between independent variables. Conclusively, the results of this study show the increasing weights of duty gear and protective equipment have detrimental effects on officer velocity and acceleration, impeding their mobility, which may be dangerous in use of force or threatening situations.

  3. Short-term effects of strength and plyometric training on sprint and jump performance in professional soccer players.

    PubMed

    Ronnestad, Bent R; Kvamme, Nils H; Sunde, Arnstein; Raastad, Truls

    2008-05-01

    The purpose of this study was to compare the effects of combined strength and plyometric training with strength training alone on power-related measurements in professional soccer players. Subjects in the intervention team were randomly divided into 2 groups. Group ST (n = 6) performed heavy strength training twice a week for 7 weeks in addition to 6 to 8 soccer sessions a week. Group ST+P (n = 8) performed a plyometric training program in addition to the same training as the ST group. The control group (n = 7) performed 6 to 8 soccer sessions a week. Pretests and posttests were 1 repetition maximum (1RM) half squat, countermovement jump (CMJ), squat jump (SJ), 4-bounce test (4BT), peak power in half squat with 20 kg, 35 kg, and 50 kg (PP20, PP35, and PP50, respectively), sprint acceleration, peak sprint velocity, and total time on 40-m sprint. There were no significant differences between the ST+P group and ST group. Thus, the groups were pooled into 1 intervention group. The intervention group significantly improved in all measurements except CMJ, while the control group showed significant improvements only in PP20. There was a significant difference in relative improvement between the intervention group and control group in 1RM half squat, 4BT, and SJ. However, a significant difference between groups was not observed in PP20, PP35, sprint acceleration, peak sprinting velocity, and total time on 40-m sprint. The results suggest that there are no significant performance-enhancing effects of combining strength and plyometric training in professional soccer players concurrently performing 6 to 8 soccer sessions a week compared to strength training alone. However, heavy strength training leads to significant gains in strength and power-related measurements in professional soccer players.

  4. Genes for elite power and sprint performance: ACTN3 leads the way.

    PubMed

    Eynon, Nir; Hanson, Erik D; Lucia, Alejandro; Houweling, Peter J; Garton, Fleur; North, Kathryn N; Bishop, David J

    2013-09-01

    The ability of skeletal muscles to produce force at a high velocity, which is crucial for success in power and sprint performance, is strongly influenced by genetics and without the appropriate genetic make-up, an individual reduces his/her chances of becoming an exceptional power or sprinter athlete. Several genetic variants (i.e. polymorphisms) have been associated with elite power and sprint performance in the last few years and the current paradigm is that elite performance is a polygenic trait, with minor contributions of each variant to the unique athletic phenotype. The purpose of this review is to summarize the specific knowledge in the field of genetics and elite power performance, and to provide some future directions for research in this field. Of the polymorphisms associated with elite power and sprint performance, the α-actinin-3 R577X polymorphism provides the most consistent results. ACTN3 is the only gene that shows a genotype and performance association across multiple cohorts of elite power athletes, and this association is strongly supported by mechanistic data from an Actn3 knockout mouse model. The angiotensin-1 converting enzyme insertion/deletion polymorphism (ACE I/D, registered single nucleotide polymorphism [rs]4646994), angiotensinogen (AGT Met235Thr rs699), skeletal adenosine monophosphate deaminase (AMPD1) Gln(Q)12Ter(X) [also termed C34T, rs17602729], interleukin-6 (IL-6 -174 G/C, rs1800795), endothelial nitric oxide synthase 3 (NOS3 -786 T/C, rs2070744; and Glu298Asp, rs1799983), peroxisome proliferator-activated receptor-α (PPARA Intron 7 G/C, rs4253778), and mitochondrial uncoupling protein 2 (UCP2 Ala55Val, rs660339) polymorphisms have also been associated with elite power performance, but the findings are less consistent. In general, research into the genetics of athletic performance is limited by a small sample size in individual studies and the heterogeneity of study samples, often including athletes from multiple

  5. AMPD1 rs17602729 is associated with physical performance of sprint and power in elite Lithuanian athletes

    PubMed Central

    2014-01-01

    Background The C34T genetic polymorphism (rs17602729) in the AMPD1 gene, encoding the skeletal muscle-specific isoform of adenosine monophosphate deaminase (AMPD1), is a common polymorphism among Caucasians that can impair exercise capacity. The aim of the present study was twofold: (1) to determine the C34T AMPD1 allele/genotype frequency distributions in Lithuanian athletes (n = 204, stratified into three groups: endurance, sprint/power and mixed) and compare them with the allele/genotype frequency distributions in randomly selected healthy Lithuanian non-athletes (n = 260) and (2) to compare common anthropometric measurements and physical performance phenotypes between the three groups of athletes depending on their AMPD1 genotype. Results The results of our study indicate that the frequency of the AMPD1 TT genotype was 2.4% in the control group, while it was absent in the athlete group. There were significantly more sprint/power-orientated athletes with the CC genotype (86.3%) compared with the endurance-orientated athletes (72.9%), mixed athletes (67.1%), and controls (74.2%). We determined that the AMPD1 C34T polymorphism is not associated with aerobic muscle performance phenotype (VO2max). For CC genotype the short-term explosive muscle power value (based on Vertical Jump test) of athletes from the sprint/power group was significantly higher than that of the endurance group athletes (P < 0.05). The AMPD1 CC genotype is associated with anaerobic performance (Vertical Jump). Conclusions The AMPD1 C allele may help athletes to attain elite status in sprint/power-oriented sports, and the T allele is a factor unfavourable for athletics in sprint/power-oriented sports categories. Hence, the AMPD1 C allele can be regarded as a marker associated with the physical performance of sprint and power. Replications studies are required to confirm this association. PMID:24885427

  6. The effects of creatine loading on thermoregulation and intermittent sprint exercise performance in a hot humid environment.

    PubMed

    Wright, Glenn A; Grandjean, Peter W; Pascoe, David D

    2007-08-01

    The purpose of this study was to determine the effects creatine (Cr) loading may have on thermoregulatory responses during intermittent sprint exercise in a hot/humid environment. Ten physically active, heat-acclimatized men performed 2 familiarization sessions of an exercise test consisting of a 30-minute low-intensity warm-up followed by 6 x 10 second maximal sprints on a cycle ergometer in the heat (35 degrees C, 60% relative humidity). Subjects then participated in 2 different weeks of supplementation. The first week, subjects ingested 5 g of a placebo (P, maltodextrin) in 4 flavored drinks (20 g total) per day for 6 days and were retested on day 7. The second week was similar to the first except a similar dose (4 x 5 g/day) of creatine monohydrate (Cr) replaced maltodextrin in the flavored drinks. Six days of Cr supplementation produced a significant increase in body weight (+1.30 +/- 0.63 kg), whereas the P did not (+0.11 +/- 0.52 kg). Compared to preexercise measures, the exercise test in the heat produced a significant increase in core temperature, a loss of body water determined by body weight change during exercise, and a relative change in plasma volume (%PVC); however, these were not significantly different between P and Cr. Sprint performance was enhanced by Cr loading. Peak power and mean power were significantly higher during the intermittent sprint exercise test following 6 days of Cr supplementation. It appears that ingestion of Cr for 6 days does not produce any different thermoregulatory responses to intermittent sprint exercise and may augment sprint exercise performance in the heat.

  7. Validity of a Smartphone-Based Application for Determining Sprinting Performance.

    PubMed

    Stanton, Robert; Hayman, Melanie; Humphris, Nyree; Borgelt, Hanna; Fox, Jordan; Del Vecchio, Luke; Humphries, Brendan

    2016-01-01

    Recent innovations in smartphone technology have led to the development of a number of applications for the valid and reliable measurement of physical performance. Smartphone applications offer a number of advantages over laboratory based testing including cost, portability, and absence of postprocessing. However, smartphone applications for the measurement of running speed have not yet been validated. In the present study, the iOS smartphone application, SpeedClock, was compared to conventional timing lights during flying 10 m sprints in recreationally active women. Independent samples t-test showed no statistically significant difference between SpeedClock and timing lights (t(190) = 1.83, p = 0.07), while intraclass correlations showed excellent agreement between SpeedClock and timing lights (ICC (2,1) = 0.93, p = 0.00, 95% CI 0.64-0.97). Bland-Altman plots showed a small systematic bias (mean difference = 0.13 seconds) with SpeedClock giving slightly lower values compared to the timing lights. Our findings suggest SpeedClock for iOS devices is a low-cost, valid tool for the assessment of mean flying 10 m sprint velocity in recreationally active females. Systematic bias should be considered when interpreting the results from SpeedClock.

  8. Low dose creatine supplementation enhances sprint phase of 400 meters swimming performance.

    PubMed

    Anomasiri, Wilai; Sanguanrungsirikul, Sompol; Saichandee, Pisut

    2004-09-01

    This study demonstrated the effect of low dose creatine supplement (10 g. per day) on the sprinting time in the last 50 meters of 400 meters swimming competition, as well as the effect on exertion. Nineteen swimmers in the experimental group received creatine monohydrate 5 g with orange solution 15 g, twice per day for 7 days and nineteen swimmers in the control group received the same quantity of orange solution. The results showed that the swimmers who received creatine supplement lessened the sprinting time in the last 50 meters of 400 meters swimming competition than the control group. (p<0.05). The results of Wingate test (anaerobic power, anaerobic capacity and fatigue index) compared between pre and post supplementation. There was significant difference at p<0.05 in the control group from training effect whereas there was significant difference at p<0.000 from training effect and creatine supplement in the experiment group. Therefore, the creatine supplement in amateur swimmers in the present study enhanced the physical performance up to the maximum capacity.

  9. Validity of a Smartphone-Based Application for Determining Sprinting Performance

    PubMed Central

    Hayman, Melanie; Humphris, Nyree; Borgelt, Hanna; Fox, Jordan; Del Vecchio, Luke; Humphries, Brendan

    2016-01-01

    Recent innovations in smartphone technology have led to the development of a number of applications for the valid and reliable measurement of physical performance. Smartphone applications offer a number of advantages over laboratory based testing including cost, portability, and absence of postprocessing. However, smartphone applications for the measurement of running speed have not yet been validated. In the present study, the iOS smartphone application, SpeedClock, was compared to conventional timing lights during flying 10 m sprints in recreationally active women. Independent samples t-test showed no statistically significant difference between SpeedClock and timing lights (t(190) = 1.83, p = 0.07), while intraclass correlations showed excellent agreement between SpeedClock and timing lights (ICC (2,1) = 0.93, p = 0.00, 95% CI 0.64–0.97). Bland-Altman plots showed a small systematic bias (mean difference = 0.13 seconds) with SpeedClock giving slightly lower values compared to the timing lights. Our findings suggest SpeedClock for iOS devices is a low-cost, valid tool for the assessment of mean flying 10 m sprint velocity in recreationally active females. Systematic bias should be considered when interpreting the results from SpeedClock. PMID:27525305

  10. Maximal Strength Training Improves Surfboard Sprint and Endurance Paddling Performance in Competitive and Recreational Surfers.

    PubMed

    Coyne, Joseph O C; Tran, Tai T; Secomb, Josh L; Lundgren, Lina E; Farley, Oliver R L; Newton, Robert U; Sheppard, Jeremy M

    2017-01-01

    Coyne, JOC, Tran, TT, Secomb, JL, Lundgren, LE, Farley, ORL, Newton, RU, and Sheppard, JM. Maximal strength training improves surfboard sprint and endurance paddling performance in competitive and recreational surfers. J Strength Cond Res 31(1): 244-253, 2017-Upper-body (UB) strength has very high correlations with faster surfboard paddling speeds. However, there is no research examining the effects of improving UB strength has on surfboard paddling ability. This study aimed to determine the influence that improvements in UB closed-kinetic chain maximal strength have on surfboard paddling in both competitive and recreational surfers. Seventeen competitive and recreational male surfers (29.7 ± 7.7 years, 177.4 ± 7.4 cm, 76.7 ± 9.9 kg) participated in a repeated-measures, parallel control study design. Anthropometry; 5-, 10-, and 15-m sprint; and 400-m endurance surfboard paddling tests along with pull-up and dip 1 repetition maximum strength tests were assessed pre- and postintervention. Subjects in the training group performed 5 weeks of maximal strength training in the pull-up and dip. Differences between the training and control groups were examined postintervention. The training group increased their speed over the 5-, 10-, and 15-m sprint, whereas the control group became slower (d = 0.71, 0.51, and 0.4, respectively). The training group also displayed faster endurance paddling performance compared with the control group (d = 0.72). Short-term exposure to maximal strength training elicits improvements in paddling performance measures. However, the magnitude of performance increases seems to be dependent on initial strength levels with differential responses between strong and weaker athletes. Although a longer maximal strength training period may have produced more significant paddling improvements in stronger subjects, practitioners are unlikely to have any more than 5 weeks in an uninterrupted block with competitive surfing athletes. This study reveals

  11. Effect of Small-Sided Games and Repeated Shuffle Sprint Training on Physical Performance in Elite Handball Players.

    PubMed

    Dello Iacono, Antonio; Ardigò, Luca P; Meckel, Yoav; Padulo, Johnny

    2016-03-01

    This study was designed to compare the effects of small-sided games (SSGs) and repeated shuffle sprint (RSS) training on repeated sprint ability (RSA) and countermovement jump (CMJ) tests performances of elite handball players. Eighteen highly trained players (24.8 ± 4.4 years) were assigned to either SSG or RSS group training protocols twice a week for 8 weeks. The SSG training consisted of 5 small-sided handball games with 3-a-side teams excluding goalkeepers. The RSS consisted of 2 sets of 14-17 of 20-m shuttle sprints and 9-m jump shots interspersed by 20-second recoveries. Before and after training, the following performance variables were assessed: speed on 10-m and 20-m sprint time, agility and RSA time, CMJ height, standing throw, and jump shot speed. Significant pre-to-post treatment improvements were found in all the assessed variables following both training protocols (multivariate analysis of variance, p ≤ 0.05). There was a significantly greater improvement on 10-m sprint, CMJ, and jump shooting, after the RSS in comparison with SSG training (+4.4% vs. +2.4%, +8.6% vs. +5.6%, and +5.5% vs. +2.7%, respectively). Conversely, agility and standing throwing showed lower improvements after RSS in comparison with SSG (+1.0% vs. +7.8% and +1.6% vs. +9.0%, respectively). These results indicate that these training methods are effective for fitness development among elite adult handball players during the last period of the competitive season. Specifically, SSG seems to be more effective in improving agility and standing throw, whereas RSS seems preferable in improving 10-m sprint, CMJ, and jump shot.

  12. Does a Non-Circular Chainring Improve Performance in the Bicycle Motocross Cycling Start Sprint?

    PubMed Central

    Mateo-March, Manuel; Fernández-Peña, Eneko; Blasco-Lafarga, Cristina; Morente-Sánchez, Jaime; Zabala, Mikel

    2014-01-01

    Maximising power output during the initial acceleration phase of a bicycle motocross (BMX) race increases the chance to lead the group for the rest of the race. The purpose of this study was to investigate the effect of non-circular chainrings (Q-ring) on performance during the initial acceleration phase of a BMX race. Sixteen male cyclists (Spanish National BMX team) performed two counterbalanced and randomized initial sprints (3.95s), using Q- ring vs. circular chainring, on a BMX track. The sample was divided into two different groups according to their performance (Elite; n = 8 vs. Cadet; n = 8). Elite group covered a greater distance using Q-ring (+0.26 m, p = 0.02; D = 0.23), whilst the improvement for the Cadet (+0.04 m) was not significant (p = 0.87; D = -0.02). Also, there was no significant difference in power output for the Elite group, while the Cadet group revealed larger peak power with the circular chainring. Neither lactate level, nor heart rate showed significant differences due to the different chainring used. The non-circular chainring improved the initial acceleration capacity only in the Elite riders. Key Points This work provides novel results demonstrating very significant improvements in the sprint performance of BMX cycling discipline using a non-circular chainring system. This study seeks a practical application from scientific analysis All data are obtained in a real context of high competition using a sample comprised by the National Spanish Team. Some variables influencing performance as subjects’ physical fitness are discussed. Technical equipment approved by International Cycling Union is studied to check its potentially beneficial influence on performance. PMID:24570612

  13. Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers.

    PubMed

    Lara, Beatriz; Ruiz-Vicente, Diana; Areces, Francisco; Abián-Vicén, Javier; Salinero, Juan José; Gonzalez-Millán, Cristina; Gallo-Salazar, César; Del Coso, Juan

    2015-09-28

    This study investigated the effect of a caffeinated energy drink on various aspects of performance in sprint swimmers. In a randomised and counterbalanced order, fourteen male sprint swimmers performed two acute experimental trials after the ingestion of a caffeinated energy drink (3 mg/kg) or after the ingestion of the same energy drink without caffeine (0 mg/kg; placebo). After 60 min of ingestion of the beverages, the swimmers performed a countermovement jump, a maximal handgrip test, a 50 m simulated competition and a 45 s swim at maximal intensity in a swim ergometer. A blood sample was withdrawn 1 min after the completion of the ergometer test. In comparison with the placebo drink, the intake of the caffeinated energy drink increased the height in the countermovement jump (49.4 (SD 5.3) v. 50.9 (SD 5.2) cm, respectively; P<0.05) and maximal force during the handgrip test with the right hand (481 (SD 49) v. 498 (SD 43) N; P<0.05). Furthermore, the caffeinated energy drink reduced the time needed to complete the 50 m simulated swimming competition (27.8 (SD 3.4) v. 27.5 (SD 3.2) s; P<0.05), and it increased peak power (273 (SD 55) v. 303 (SD 49) W; P <0.05) and blood lactate concentration (11.0 (SD 2.0) v. 11.7 (SD 2.1) mM; P<0.05) during the ergometer test. The caffeinated energy drink did not modify the prevalence of insomnia (7 v. 7%), muscle pain (36 v. 36%) or headache (0 v. 7%) during the hours following its ingestion (P>0.05). A caffeinated energy drink increased some aspects of swimming performance in competitive sprinters, whereas the side effects derived from the intake of this beverage were marginal at this dosage.

  14. Combined inhalation of beta2 -agonists improves swim ergometer sprint performance but not high-intensity swim performance.

    PubMed

    Kalsen, A; Hostrup, M; Bangsbo, J; Backer, V

    2014-10-01

    There is a high prevalence of asthma and airway hyperresponsiveness (AHR) in elite athletes, which leads to a major use of beta2 -agonists. In a randomized double-blinded crossover study, we investigated the effects of combined inhalation of beta2 -agonists (salbutamol, formoterol, and salmeterol), in permitted doses within the World Anti-Doping Agency 2013 prohibited list, in elite swimmers with (AHR, n = 13) or without (non-AHR, n = 17) AHR. Maximal voluntary isometric contraction of m. quadriceps (MVC), sprint performance on a swim ergometer and performance in an exhaustive swim test at 110% of VO2max were determined. Venous plasma interleukin-6 (IL-6) and interleukin-8 (IL-8) were measured post-exercise. No improvement was observed in the exhaustive swim test, but swim ergometer sprint time was improved (P < 0.05) in both groups from 57 ± 1.7 to 56 ± 1.8 s in AHR and 58.3 ± 1 to 57.4 ± 1 s in non-AHR. MVC and post-exercise plasma IL-6 increased (P < 0.05) with beta2 -agonists in both groups, whereas IL-8 only increased in AHR. In summary, inhalation of beta2 -agonists, in permitted doses, did not improve swim performance in elite swimmers. However, swim ergometer sprint performance and MVC were increased, which should be considered when making future anti-doping regulations.

  15. Sprint and jump performances do not determine the promotion to professional elite soccer in Spain, 1994-2012.

    PubMed

    Martinez-Santos, Raul; Castillo, Daniel; Los Arcos, Asier

    2016-12-01

    The aims of this study are (a) to describe the evolution of neuromuscular performance over an 18 year period within a Spanish elite reserve team; (b) to check if there were any relation between the playing position and sprint and jump performances and (c) to look into the alleged impact of this factor on the top playing level attained by the soccer players. We considered the physical tests (5 m and 15 m sprint times and countermovement jump (CMJ) height) made by 235 players enrolled in the reserve team of the Club from 1994 to 2012 and the highest competitive-level they achieved: Spanish first (n = 39) and second divisions (n = 36) and semi-professional (n = 160). Furthermore, the players were classified according to their playing positions. The main findings were a very-likely/most-likely lower neuromuscular performance (ES = 0.48-0.68, small to moderate) in the last six-season term (2006-2012) than in the first term (1994-2000); possibly/very-likely lower performances in sprinting and CMJ (ES = 0.22-0.55, small) by central defenders (CDs) and midfielders than by other playing positions; very-likely better performances in sprinting and jumping by first and second divisions central defenders than by semi-professional central defenders (ES = 0.90-1.02, moderate). Sprint and jump performances are not a relevant physical parameter to promote to the top level of soccer in Spain except for one in six of the playing positions: CDs.

  16. Breaking the speed limit--comparative sprinting performance of brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta)

    USGS Publications Warehouse

    Castro-Santos, Theodore; Sanz-Ronda, Francisco Javier; Ruiz-Legazpi, Jorge

    2013-01-01

    Sprinting behavior of free-ranging fish has long been thought to exceed that of captive fish. Here we present data from wild-caught brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta), volitionally entering and sprinting against high-velocity flows in an open-channel flume. Performance of the two species was nearly identical, with the species attaining absolute speeds > 25 body lengths·s−1. These speeds far exceed previously published observations for any salmonid species and contribute to the mounting evidence that commonly accepted estimates of swimming performance are low. Brook trout demonstrated two distinct modes in the relationship between swim speed and fatigue time, similar to the shift from prolonged to sprint mode described by other authors, but in this case occurring at speeds > 19 body lengths·s−1. This is the first demonstration of multiple modes of sprint swimming at such high swim speeds. Neither species optimized for distance maximization, however, indicating that physiological limits alone are poor predictors of swimming performance. By combining distributions of volitional swim speeds with endurance, we were able to account for >80% of the variation in distance traversed by both species.

  17. Similar Inflammatory Responses following Sprint Interval Training Performed in Hypoxia and Normoxia

    PubMed Central

    Richardson, Alan J.; Relf, Rebecca L.; Saunders, Arron; Gibson, Oliver R.

    2016-01-01

    Sprint interval training (SIT) is an efficient intervention capable of improving aerobic capacity and exercise performance. This experiment aimed to determine differences in training adaptations and the inflammatory responses following 2 weeks of SIT (30 s maximal work, 4 min recovery; 4–7 repetitions) performed in normoxia or hypoxia. Forty-two untrained participants [(mean ± SD), age 21 ±1 years, body mass 72.1 ±11.4 kg, and height 173 ±10 cm] were equally and randomly assigned to one of three groups; control (CONT; no training, n = 14), normoxic (NORM; SIT in FiO2: 0.21, n = 14), and normobaric hypoxic (HYP; SIT in FiO2: 0.15, n = 14). Participants completed a V˙O2peak test, a time to exhaustion (TTE) trial (power = 80% V˙O2peak) and had hematological [hemoglobin (Hb), haematocrit (Hct)] and inflammatory markers [interleukin-6 (IL-6), tumor necrosis factor-α (TNFα)] measured in a resting state, pre and post SIT. V˙O2peak (mL.kg−1.min−1) improved in HYP (+11.9%) and NORM (+9.8%), but not CON (+0.9%). Similarly TTE improved in HYP (+32.2%) and NORM (+33.0%), but not CON (+3.4%) whilst the power at the anaerobic threshold (AT; W.kg−1) also improved in HYP (+13.3%) and NORM (+8.0%), but not CON (–0.3%). AT (mL.kg−1.min−1) improved in HYP (+9.5%), but not NORM (+5%) or CON (–0.3%). No between group change occurred in 30 s sprint performance or Hb and Hct. IL-6 increased in HYP (+17.4%) and NORM (+20.1%), but not CON (+1.2%), respectively. TNF-α increased in HYP (+10.8%) NORM (+12.9%) and CON (+3.4%). SIT in HYP and NORM increased V˙O2peak, power at AT and TTE performance in untrained individuals, improvements in AT occurred only when SIT was performed in HYP. Increases in IL-6 and TNFα reflect a training induced inflammatory response to SIT; hypoxic conditions do not exacerbate this. PMID:27536249

  18. The effect of sprinting after each set of heavy resistance training on the running speed and jumping performance of young basketball players.

    PubMed

    Tsimahidis, Konstantinos; Galazoulas, Christos; Skoufas, Dimitrios; Papaiakovou, Georgios; Bassa, Eleni; Patikas, Dimitrios; Kotzamanidis, Christos

    2010-08-01

    The purpose of this study was to investigate the effect of a 10-week heavy resistance combined with a running training program on the strength, running speed (RS), and vertical jump performance of young basketball players. Twenty-six junior basketball players were equally divided in 2 groups. The control (CON) group performed only technical preparation and the group that followed the combined training program (CTP) performed additionally 5 sets of 8-5 repetition maximum (RM) half squat with 1 30-m sprint after each set. The evaluation took place before training and after the 5th and 10th weeks of training. Apart from the 1RM half squat test, the 10- and 30-m running time was measured using photocells and the jump height (squat, countermovement jump, and drop jump) was estimated taking into account the flight time. The 1RM increased by 30.3 +/- 1.5% at the 10th week of training for the CTP group (p < 0.05), whereas the CON group showed no significant increase (1.1 +/- 1.6%, p > 0.05). In general, all measured parameters showed a statistically significant increase after the 5th and 10th weeks (p < 0.05), in contrast to the CON group (p > 0.05). This suggests that the applied CTP is beneficial for the strength, RS, and jump height of young basketball players. The observed adaptations in the CTP group could be attributed to learning factors and to a more optimal transfer of the strength gain to running and jumping performance.

  19. Effect of different warm-up procedures on subsequent swim and overall sprint distance triathlon performance.

    PubMed

    Binnie, Martyn J; Landers, Grant; Peeling, Peter

    2012-09-01

    This study investigated the effect of 3 warm-up procedures on subsequent swimming and overall triathlon performance. Seven moderately trained, amateur triathletes completed 4 separate testing sessions comprising 1 swimming time trial (STT) and 3 sprint distance triathlons (SDT). Before each SDT, the athletes completed 1 of three 10-minute warm-up protocols including (a) a swim-only warm-up (SWU), (b) a run-swim warm-up (RSWU), and (c) a control trial of no warm-up (NWU). Each subsequent SDT included a 750-m swim, a 500-kJ (∼20 km) ergometer cycle and a 5-km treadmill run, which the athletes performed at their perceived race intensity. Blood lactate, ratings of perceived exertion, core temperature, and heart rate were recorded over the course of each SDT, along with the measurement of swim speed, swim stroke rate, and swim stroke length. There were no significant differences in individual discipline split times or overall triathlon times between the NWU, SWU, and RSWU trials (p > 0.05). Furthermore, no difference existed between trials for any of the swimming variables measured (p > 0.05) nor did they significantly differ from the preliminary STT (p > 0.05). The findings of this study suggest that warming up before an SDT provides no additional benefit to subsequent swimming or overall triathlon performance.

  20. Effects of hip flexor training on sprint, shuttle run, and vertical jump performance.

    PubMed

    Deane, Russell S; Chow, John W; Tillman, Mark D; Fournier, Kim A

    2005-08-01

    Although hip flexion is integral in sports, hip flexion exercises are seldom emphasized in strength and conditioning for sports performance. This study aimed to determine whether a hip flexor resistance-training program could improve performance on a variety of tasks. Thirteen men and 11 women completed an 8-week hip flexion resistance-training program. Eleven men and 13 women served as controls. Isometric hip flexion strength, 40-yd dash time and the time for the first 10-yds, 4 x 5.8-m shuttle run time, and vertical jump height were evaluated at the beginning and end of the training and control period. Improvements were observed in the training group but not in the control group. Individuals in the training group improved hip flexion strength by 12.2% and decreased their 40-yd and shuttle run times by 3.8% and 9.0%, respectively. An increase in hip flexion strength can help to improve sprint and agility performance for physically active, untrained individuals.

  1. Application of the Copenhagen Soccer Test in high-level women players - locomotor activities, physiological response and sprint performance.

    PubMed

    Bendiksen, Mads; Pettersen, Svein Arne; Ingebrigtsen, Jørgen; Randers, Morten B; Brito, João; Mohr, Magni; Bangsbo, Jens; Krustrup, Peter

    2013-12-01

    We evaluated the physiological response, sprint performance and technical ability in various phases of the Copenhagen Soccer Test for Women (CSTw) and investigated whether the locomotor activities of the CSTw were comparable to competitive match-play (CM). Physiological measurements and physical/technical assessments were performed during CSTw for eleven Norwegian high-level women soccer players. The activity pattern during CSTw and CM was monitored using the ZXY tracking system. No differences were observed between CSTw and CM with regards to total distance covered (10093±94 and 9674±191m), high intensity running (1278±67 and 1193±115m) or sprinting (422±55 and 372±46m) (p>.05). During CSTw, average HR was 85±2%HRmax with 35±2% playing time >90%HRmax. Blood lactate increased (p<.05) from 1.4±0.3mM at rest to an average of 4.7±0.5mM during CSTw, with no changes during the test. Blood glucose was 5.4±0.3mM at rest and remained unaltered during CSTw. Sprint performance (2×20m) decreased (p<.05) by 3% during CSTw (8.19±0.06-8.47±0.10s). In conclusion, the locomotor activities during CSTw were comparable to that of high-level competitive match-play. The physiological demands of the CSTw were high, with no changes in heart rate, blood lactate or technical performance during the test, but a lowered sprint performance towards the end of the test.

  2. Effect of a carbohydrate-protein multi-ingredient supplement on intermittent sprint performance and muscle damage in recreational athletes.

    PubMed

    Naclerio, Fernando; Larumbe-Zabala, Eneko; Cooper, Robert; Jimenez, Alfonso; Goss-Sampson, Mark

    2014-10-01

    Carbohydrate-protein-based multi-ingredient supplements have been proposed as an effective strategy for limiting the deleterious effects of exercise-induced muscle damage. This study compares the effects of a commercially available carbohydrate-protein supplement enriched with l-glutamine and l-carnitine-l-tartrate to carbohydrate alone or placebo on sprint performance, muscle damage markers, and recovery from intermittent exercise. On 3 occasions, 10 recreationally trained males ingested a multi-ingredient, a carbohydrate supplement, or a placebo before, during, and immediately after a 90-min intermittent repeated sprint test. Fifteen-metre sprint times, creatine kinase, myoglobin, and interleukin-6 were assessed before (pre), immediately after (post), 1 h after (1h), and 24 h after (24h) exercise. Total sprint time measured during the intermittent protocol was not different between conditions. Fifteen-metre sprint time was slower (p < 0.05) at post, 1h and 24h compared with pre without differences between conditions (p > 0.05). Creatine kinase at 24h was lower (p < 0.05) in the multi-ingredient (461.8 ± 271.8 U·L) compared with both carbohydrate and placebo (606 ± 314.5 U·L and 636 ± 344.6 U·L, respectively). Myoglobin increased (p < 0.05) in all 3 conditions at post and 1h compared with pre, showing lower values at 1h (p < 0.05) for the carbohydrate and a trend (p = 0.060) for multi-ingredient compared with the placebo condition (211.4 ± 127.2 ng·mL(-1) and 239.4 ± 103.8 ng·mL(-1) vs. 484.6 ± 200.0 ng·mL(-1), respectively). Interleukin-6 increased at both post and 1h compared with pre (p < 0.05) with no differences between conditions. In conclusion, ingesting a multi-ingredient supplement before, during, and immediately after a 90-min intermittent sprint test resulted in no effects on performance and fatigue while the accumulation of some biomarkers of muscle damage could be attenuated.

  3. Effects of 4 weeks of creatine supplementation in junior swimmers on freestyle sprint and swim bench performance.

    PubMed

    Dawson, Brian; Vladich, Todd; Blanksby, Brian A

    2002-11-01

    To determine whether 4 weeks of oral creatine (Cr) supplementation could enhance single freestyle sprint and swim bench performance in experienced competitive junior swimmers, 10 young men and 10 young women (x age = 16.4 +/- 1.8 years) participated in a 27-day supplementation period and pre- and posttesting sessions. In session 1 (presupplementation testing), subjects swam one 50-m freestyle and then (after approximately 5 minutes of active recovery) one 100-m freestyle at maximum speed. Blood lactate was measured before and 1 minute after each swim trial. Forty-eight hours later, height, mass, and the sum of 6 skinfolds were recorded, and a Biokinetic Swim Bench total work output test (2 x 30-second trials, with a 10-minute passive recovery in between) was undertaken. After the pretests were completed, participants were divided into 2 groups (n = 10, Cr; and n = 10, placebo) by means of matched pairs on the basis of gender and 50-m swim times. A Cr loading phase of 20 g x d(-1) for 5 days was then instituted, followed by a maintenance phase of 5 g x d(-1) for 22 days. Postsupplementation testing replicated the presupplementation tests. Four weeks of Cr supplementation did not influence single sprint performance in the pool or body mass and composition. However, 30-second swim bench total work scores for trial 1 and trial 2 increased after Cr (p < 0.05) but not placebo ingestion. Postexercise blood lactate values were not different after supplementation for the 50- and 100-m sprint trials either within or between groups. It was concluded that 4 weeks of Cr supplementation did not significantly improve single sprint performance in competitive junior swimmers, but it did enhance swim bench test performance.

  4. Eight weeks of dynamic stretching during warm-ups improves jump power but not repeated or single sprint performance.

    PubMed

    Turki-Belkhiria, Lamia; Chaouachi, Anis; Turki, Olfa; Chtourou, Hamdi; Chtara, Moktar; Chamari, Karim; Amri, Mohamed; Behm, David G

    2014-01-01

    There is abundant research involving the acute effects of stretching on subsequent performance; however, there is little information on dynamic stretch training programmes on range of motion (ROM), power and speed measures. It was the objective of this research to examine the training consequences of active dynamic stretching (ADS) and static dynamic stretching (SDS). A repeated measures design compared the effects of 8 weeks of warm-ups incorporating two dynamic stretch modalities: ADS and SDS on squat jump (SJ), countermovement jump (CMJ), 20-m sprint performances and repeated sprint ability (RSA) and hip ROM in 37 male soccer players. SJ height (SDS: 4.6%; ADS: 5.3%; p <0.05), CMJ height (SDS: 5.3%; ADS: 3.4%; p<0.05), CMJ force (SDS: 7.2%; ADS: 12.7%; p<0.001) and CMJ peak power (SDS: 3.9%; ADS: 3.3%; p<0.05) increased significantly after SDS and ADS training compared to the control group (no significant change). Sprint performance and RSA were not affected by either of the dynamic stretch training regimens. The SDS and ADS training programmes elicited similar improvements in flexibility (SDS: 57.6%; ADS: 45.1%; p<0.01) compared to the non-significant changes in the control group. The inclusion of ADS and SDS within the regular warm-up of an 8-week training programme can improve not only flexibility but also jump power measures as well.

  5. The effects of acute creatine supplementation on multiple sprint cycling and running performance in rugby players.

    PubMed

    Ahmun, Robert P; Tong, Richard J; Grimshaw, Paul N

    2005-02-01

    The benefits of creatine (CR) supplementation are well documented, particularly during repeated bouts of high-intensity muscular activity. Most published experiments use mass-supported (cycle ergometry) activities as a means of evaluating creatine's efficacy, therefore minimizing any possible adverse effects of increased body mass associated with CR supplementation. This study aims to use both mass-supported and mass-dependent activities to assess the effectiveness of acute CR supplementation on a group of highly trained rugby players. A randomized, double-blind, crossover research design was utilized, with subjects receiving 20 g.d(-1) x 5 d of both CR and a glucose placebo (PL). Subjects were assessed via 10 x 6-second Wingate test and a 10 x 40-m sprint test on separate days, presupplementation and postsupplementation. A 28-d washout period separated the two treatments. No significant treatment (p > 0.05) or treatment by test interaction effects (p > 0.05) were observed for peak or minimum power output (W), peak or minimum running velocity (m.s(-1)), or fatigue index (%). No significant differences (p > 0.05) were found postsupplementation for body mass and percentage body fat. Although statistical significance was not achieved for any of the measured parameters, there were small improvements in performance that may be of benefit to rugby players.

  6. Who runs the fastest? Anthropometric and physiological correlates of 20 m sprint performance in male soccer players.

    PubMed

    Nikolaidis, P T; Ruano, M A G; de Oliveira, N C; Portes, L A; Freiwald, J; Leprêtre, P M; Knechtle, B

    2016-01-01

    The aim of the present study was to examine the relationship of 20 m sprint performance with anthropometrical and physiological parameters in male soccer players. A hundred and 81 soccer players from the region of Athens (age 23.4 ± 5.0 yrs, body mass 73.4 ± 7.7 kg, height 180.0 ± 5.9 cm, body fat (BF) 14.4 ± 3.6%), classified into quartiles according to 20 m sprint time (group A, 2.84-3.03 s; group B, 3.04-3.09 s; group C, 3.10-3.18 s; group D, 3.19-3.61 s), participated. Soccer players in group A were younger and had better performance in vertical jumps and in the Wingate anaerobic test (WAnT, p < 0.05). Sprint time correlated to age (r = 0.27), body mass (r = 0.23), body height (r = 0.20), BF (r = 0.23), vertical jumps (-0.58 ≤ r ≤ -0.50) and the WAnT (-0.45 ≤ r ≤ -0.30, p < 0.05). In summary, the magnitude of correlations of sprint time with measures of lower limbs muscle strength and power (WAnT and jumps) was larger than with anthropometric measures (body mass and BF).

  7. Effect of lower-limb compression clothing on 400-m sprint performance.

    PubMed

    Faulkner, James A; Gleadon, David; McLaren, Jason; Jakeman, John R

    2013-03-01

    This study investigated the effects of wearing a variety of lower-limb compression garments on 400-m sprint performance. Eleven 400-m male runners (23.7 ± 5.7 years, 1.78 ± 0.08 m, and 75.3 ± 10.0 kg) completed six, 400-m running tests on an outdoor, all-weather running track on separate occasions. The participants completed 2 runs with long-length lower-limb compression garments (LG; hip-to-ankle), a combination of short-length lower-limb compression garments (SG; hip-to-knee) with calf compression sleeves (ankle-to-knee), or without compression garments (CON; shorts), in a randomized, counterbalanced order. Overall lap time and 100-m split times, heart rate, and ratings of perceived exertion (RPEs) were measured during the 400-m run. Blood lactate concentration, visual analogue scales for perceived soreness, feeling and arousal, and scales for perceived comfort and tightness when wearing compression garments, were assessed before (preexercise, post-warm-up) and after 400-m performance (post, 4 minutes postexercise, after a warm-down). Statistical analysis revealed no differences between conditions in overall 400-m performance, 100-m split times, or blood lactate concentration (p > 0.05), although there was a trend for an increased rate of blood lactate clearance when wearing compression garments. A significantly lower RPE (p > 0.05) was however observed during LG (13.8 ± 0.9) and SG (13.4 ± 1.1) when compared with CON (14.0 ± 1.0). This study has demonstrated that lower-limb compression garments may lower the effort perception associated with 400-m performance, despite there being no differences in overall athletic performance.

  8. Thermal dependence of sprint performance in the lizard Psammodromus algirus along a 2200-meter elevational gradient: Cold-habitat lizards do not perform better at low temperatures.

    PubMed

    Zamora-Camacho, Francisco Javier; Rubiño-Hispán, María Virtudes; Reguera, Senda; Moreno-Rueda, Gregorio

    2015-08-01

    Sprint speed has a capital relevance in most animals' fitness, mainly for fleeing from predators. Sprint performance is maximal within a certain range of body temperatures in ectotherms, whose thermal upkeep relies on exogenous thermal sources. Ectotherms can respond to diverse thermal environments either by shifting their thermal preferences or maintaining them through different adaptive mechanisms. Here, we tested whether maximum sprint speed of a lizard that shows conservative thermal ecology along a 2200-meter elevational gradient differs with body temperature in lizards from different elevations. Lizards ran faster at optimum than at suboptimum body temperature. Notably, high-elevation lizards were not faster than mid- and low-elevation lizards at suboptimum body temperature, despite their low-quality thermal environment. This result suggests that both preferred body temperature and thermal dependence of speed performance are co-adapted along the elevational gradient. High-elevation lizards display a number of thermoregulatory strategies that allow them to achieve high optimum body temperatures in a low thermal-quality habitat and thus maximize speed performance. As for reproductive condition, we did not find any effect of it on sprint speed, or any significant interaction with elevation or body temperature. However, strikingly, gravid females were significantly slower than males and non-gravid females at suboptimum temperature, but performed similarly well at optimal temperature.

  9. Selected determinants of acceleration in the 100m sprint.

    PubMed

    Maćkała, Krzysztof; Fostiak, Marek; Kowalski, Kacper

    2015-03-29

    The goal of this study was to examine the relationship between kinematics, motor abilities, anthropometric characteristics, and the initial (10 m) and secondary (30 m) acceleration phases of the 100 m sprint among athletes of different sprinting performances. Eleven competitive male sprinters (10.96 s ± 0.36 for 100 with 10.50 s fastest time) and 11 active students (12.20 s ± 0.39 for 100 m with 11.80 s fastest time) volunteered to participate in this study. Sprinting performance (10 m, 30 m, and 100 m from the block start), strength (back squat, back extension), and jumping ability (standing long jump, standing five-jumps, and standing ten-jumps) were tested. An independent t-test for establishing differences between two groups of athletes was used. The Spearman ranking correlation coefficient was computed to verify the association between variables. Additionally, the Ward method of hierarchical cluster analysis was applied. The recorded times of the 10 and 30 m indicated that the strongest correlations were found between a 1-repetition maximum back squat, a standing long jump, standing five jumps, standing ten jumps (r = 0.66, r = 0.72, r = 0.66, and r = 0.72), and speed in the 10 m sprint in competitive athletes. A strong correlation was also found between a 1-repetition maximum back squat and a standing long jump, standing five jumps, and standing ten jumps (r = 0.88, r = 0.87 and r = 0.85), but again only for sprinters. The most important factor for differences in maximum speed development during both the initial and secondary acceleration phase among the two sub-groups was the stride frequency (p<0.01).

  10. Selected Determinants of Acceleration in the 100m Sprint

    PubMed Central

    Maćkała, Krzysztof; Fostiak, Marek; Kowalski, Kacper

    2015-01-01

    The goal of this study was to examine the relationship between kinematics, motor abilities, anthropometric characteristics, and the initial (10 m) and secondary (30 m) acceleration phases of the 100 m sprint among athletes of different sprinting performances. Eleven competitive male sprinters (10.96 s ± 0.36 for 100 with 10.50 s fastest time) and 11 active students (12.20 s ± 0.39 for 100 m with 11.80 s fastest time) volunteered to participate in this study. Sprinting performance (10 m, 30 m, and 100 m from the block start), strength (back squat, back extension), and jumping ability (standing long jump, standing five-jumps, and standing ten-jumps) were tested. An independent t-test for establishing differences between two groups of athletes was used. The Spearman ranking correlation coefficient was computed to verify the association between variables. Additionally, the Ward method of hierarchical cluster analysis was applied. The recorded times of the 10 and 30 m indicated that the strongest correlations were found between a 1-repetition maximum back squat, a standing long jump, standing five jumps, standing ten jumps (r = 0.66, r = 0.72, r = 0.66, and r = 0.72), and speed in the 10 m sprint in competitive athletes. A strong correlation was also found between a 1-repetition maximum back squat and a standing long jump, standing five jumps, and standing ten jumps (r = 0.88, r = 0.87 and r = 0.85), but again only for sprinters. The most important factor for differences in maximum speed development during both the initial and secondary acceleration phase among the two sub-groups was the stride frequency (p<0.01). PMID:25964817

  11. A Correlational Analysis of Tethered Swimming, Swim Sprint Performance and Dry-land Power Assessments.

    PubMed

    Loturco, I; Barbosa, A C; Nocentini, R K; Pereira, L A; Kobal, R; Kitamura, K; Abad, C C C; Figueiredo, P; Nakamura, F Y

    2016-03-01

    Swimmers are often tested on both dry-land and in swimming exercises. The aim of this study was to test the relationships between dry-land, tethered force-time curve parameters and swimming performances in distances up to 200 m. 10 young male high-level swimmers were assessed using the maximal isometric bench-press and quarter-squat, mean propulsive power in jump-squat, squat and countermovement jumps (dry-land assessments), peak force, average force, rate of force development (RFD) and impulse (tethered swimming) and swimming times. Pearson product-moment correlations were calculated among the variables. Peak force and average force were very largely correlated with the 50- and 100-m swimming performances (r=- 0.82 and -0.74, respectively). Average force was very-largely/largely correlated with the 50- and 100-m performances (r=- 0.85 and -0.67, respectively). RFD and impulse were very-largely correlated with the 50-m time (r=- 0.72 and -0.76, respectively). Tethered swimming parameters were largely correlated (r=0.65 to 0.72) with mean propulsive power in jump-squat, squat-jump and countermovement jumps. Finally, mean propulsive power in jump-squat was largely correlated (r=- 0.70) with 50-m performance. Due to the significant correlations between dry-land assessments and tethered/actual swimming, coaches are encouraged to implement strategies able to increase leg power in sprint swimmers.

  12. The influence of ego depletion on sprint start performance in athletes without track and field experience

    PubMed Central

    Englert, Chris; Persaud, Brittany N.; Oudejans, Raôul R. D.; Bertrams, Alex

    2015-01-01

    We tested the assumption that ego depletion would affect the sprint start in a sample of N = 38 athletes without track and field experience in an experiment by applying a mixed between- (depletion vs. non-depletion) within- (T1: before manipulation of ego depletion vs. T2: after manipulation of ego depletion) subjects design. We assumed that ego depletion would increase the possibility for a false start, as regulating the impulse to initiate the sprinting movement too soon before the starting signal requires self-control. In line with our assumption, we found a significant interaction as there was only a significant increase in the number of false starts from T1 to T2 for the depletion group while this was not the case for the non-depletion group. We conclude that ego depletion has a detrimental influence on the sprint start in athletes without track and field experience. PMID:26347678

  13. Aerobic and anaerobic contribution to Wingate test performance in sprint and middle-distance runners.

    PubMed

    Granier, P; Mercier, B; Mercier, J; Anselme, F; Préfaut, C

    1995-01-01

    We investigated the aerobic and anaerobic contributions to performance during the Wingate test in sprint and middle-distance runners and whether they were related to the peak aerobic and anaerobic performances determined by two commonly used tests: the force-velocity test and an incremental aerobic exercise test. A group of 14 male competitive runners participated: 7 sprinters, aged 20.7 (SEM 1.3) years, competing in 50, 100 and 200-m events and 7 middle-distance runners, aged 20.0 (SEM 1.0) years, competing in 800, 1,000 and 1,500 m-events. The oxygen uptake (VO2) was recorded breath-by-breath during the test (30 s) and during the first 20 s of recovery. Blood samples for venous plasma lactate concentrations were drawn at rest before the start of the test and during the 20-min recovery period. During the Wingate test mean power (W) was determined and three values of mechanical efficiency, one individual and two arbitrary, 16% and 25%, were used to calculate the contributions of work by aerobic (Waer,ind,16%,25%) and anaerobic (Wan,ind,16%,25%) processes. Peak anaerobic power (Wan,peak) was estimated by the force-velocity test and maximal aerobic energy expenditure (Waer,peak) was determined during an incremental aerobic exercise test. During the Wingate test, the middle-distance runners had a significantly greater VO2 than the sprinters (P < 0.001), who had significantly greater venous plasma lactate concentrations (P < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  14. AMP deaminase deficiency is associated with lower sprint cycling performance in healthy subjects.

    PubMed

    Fischer, Heléne; Esbjörnsson, Mona; Sabina, Richard L; Strömberg, Anna; Peyrard-Janvid, Myriam; Norman, Barbara

    2007-07-01

    AMP deaminase (AMPD) deficiency is an inherited disorder of skeletal muscle found in approximately 2% of the Caucasian population. Although most AMPD-deficient individuals are asymptomatic, a small subset has exercise-related cramping and pain without any other identifiable neuromuscular complications. This heterogeneity has raised doubts about the physiological significance of AMPD in skeletal muscle, despite evidence for disrupted adenine nucleotide catabolism during exercise in deficient individuals. Previous studies have evaluated the effect of AMPD deficiency on exercise performance with mixed results. This study was designed to circumvent the perceived limitations in previous reports by measuring exercise performance during a 30-s Wingate test in 139 healthy, physically active subjects of both sexes, with different AMPD1 genotypes, including 12 AMPD-deficient subjects. Three of the deficient subjects were compound heterozygotes characterized by the common c.34C>T mutation in one allele and a newly discovered AMPD1 mutation, c.404delT, in the other. While there was no significant difference in peak power across AMPD1 genotypes, statistical analysis revealed a faster power decrease in the AMPD-deficient group and a difference in mean power across the genotypes (P = 0.0035). This divergence was most striking at 15 s of the 30-s cycling. Assessed by the fatigue index, the decrease in power output at 15 s of exercise was significantly greater in the deficient group compared with the other genotypes (P = 0.0006). The approximate 10% lower mean power in healthy AMPD-deficient subjects during a 30-s Wingate cycling test reveals a functional role for the AMPD1 enzyme in sprint exercise.

  15. Comparison of Sprint and Run Times with Performance on the Wingate Anaerobic Test.

    ERIC Educational Resources Information Center

    Tharp, Gerald D.; And Others

    1985-01-01

    Male volunteers were studied to examine the relationship between the Wingate Anaerobic Test (WAnT) and sprint-run times and to determine the influence of age and weight. Results indicate the WAnT is a moderate predictor of dash and run times but becomes a stronger predictor when adjusted for body weight. (Author/MT)

  16. Effects of in-water passive recovery on sprint swimming performance and heart rate in adolescent swimmers.

    PubMed

    Casuso, Rafael A; Martínez-López, Emilio; Hita-Contreras, Fidel; Ruiz-Cazalilla, Irene; Cruz-Díaz, David; Martínez-Amat, Antonio

    2014-12-01

    The aim of the present study is to test the hypothesis that sprint swimming performance is enhanced by in-water passive recovery (IN) after sprint swimming bouts in well-trained adolescent swimmers. Using a randomized crossover study design, twelve well-trained adolescent swimmers performed two tests at the swimming pool after preliminary testing. They performed 5 bouts of 100m all-out swimming separated by 5 minutes of passive rest. Their individual in- or out-of-water passive recovery condition was randomized on the first day. In their second visit to the swimming pool the opposite recovery condition was indicated. More than 60% of the subjects which rested in-water were faster in the 5th bout when compared to the OUT group. However, no significant differences were found in blood lactate when IN and OUT were compared. After the first bout peak heart rate (HR peak) was lower in subsequent bouts for IN recovery when compared with OUT (p < 0.001). Thus, coaches and researchers should take into account that IN passive recovery may decrease loss of performance and diminish HR peak during sprint swimming bouts. This is particularly important given the use that many coaches give to HR as a tool in daily training. Key pointsIn-water passive recovery minimizes the loss of performance during high intensity swimmingMaximal HR is significantly reduced by in-water recoveryCoaches should take this information into account when using HR to control swimming intensityFuture research should study long-term effects induced by in-water passive recovery.

  17. Effects of In-Water Passive Recovery on Sprint Swimming Performance and Heart Rate in Adolescent Swimmers

    PubMed Central

    Casuso, Rafael A.; Martínez-López, Emilio; Hita-Contreras, Fidel; Ruiz-Cazalilla, Irene; Cruz-Díaz, David; Martínez-Amat, Antonio

    2014-01-01

    The aim of the present study is to test the hypothesis that sprint swimming performance is enhanced by in-water passive recovery (IN) after sprint swimming bouts in well-trained adolescent swimmers. Using a randomized crossover study design, twelve well-trained adolescent swimmers performed two tests at the swimming pool after preliminary testing. They performed 5 bouts of 100m all-out swimming separated by 5 minutes of passive rest. Their individual in- or out-of-water passive recovery condition was randomized on the first day. In their second visit to the swimming pool the opposite recovery condition was indicated. More than 60% of the subjects which rested in-water were faster in the 5th bout when compared to the OUT group. However, no significant differences were found in blood lactate when IN and OUT were compared. After the first bout peak heart rate (HR peak) was lower in subsequent bouts for IN recovery when compared with OUT (p < 0.001). Thus, coaches and researchers should take into account that IN passive recovery may decrease loss of performance and diminish HR peak during sprint swimming bouts. This is particularly important given the use that many coaches give to HR as a tool in daily training. Key points In-water passive recovery minimizes the loss of performance during high intensity swimming Maximal HR is significantly reduced by in-water recovery Coaches should take this information into account when using HR to control swimming intensity Future research should study long-term effects induced by in-water passive recovery PMID:25435791

  18. The effects of ten weeks of resistance and combined plyometric/sprint training with the Meridian Elyte athletic shoe on muscular performance in women.

    PubMed

    Ratamess, Nicholas A; Kraemer, William J; Volek, Jeff S; French, Duncan N; Rubin, Martyn R; Gómez, Ana L; Newton, Robert U; Maresh, Carl M

    2007-08-01

    The purpose of this investigation was to examine the combined effects of resistance and sprint/plyometric training with or without the Meridian Elyte athletic shoe on muscular performance in women. Fourteen resistance-trained women were randomly assigned to one of 2 training groups: (a) an athletic shoe (N = 6) (AS) group or (b) the Meridian Elyte (N = 8) (MS) group. Training was performed for 10 weeks and consisted of resistance training for 2 days per week and 2 days per week of sprint/plyometric training. Linear periodized resistance training consisted of 5 exercises per workout (4 lower body, 1 upper body) for 3 sets of 3-12 repetition maximum (RM). Sprint/plyometric training consisted of 5-7 exercises per workout (4-5 plyometric exercises, 40-yd and 60-yd sprints) for 3-6 sets with gradually increasing volume (8 weeks) followed by a 2-week taper phase. Assessments for 1RM squat and bench press, vertical jump, broad jump, sprint speed, and body composition were performed before and following the 10-week training period. Significant increases were observed in both AS and MS groups in 1RM squat (12.0 vs. 14.6 kg), bench press (6.8 vs. 7.4 kg), vertical jump height (3.3 vs. 2.3 cm), and broad jump (17.8 vs. 15.2 cm). Similar decreases in peak 20-, 40-, and 60-m sprint times were observed in both groups (20 m: 0.14 vs. 0.11 seconds; 40 m: 0.29 vs. 0.34 seconds; 60 m: 0.45 vs. 0.46 seconds in AS and MS groups, respectively). However, when sprint endurance (the difference between the fastest and slowest sprint trials) was analyzed, there was a significantly greater improvement at 60 m in the MS group. These results indicated that similar improvements in peak sprint speed and jumping ability were observed following 10 weeks of training with either shoe. However, high-intensity sprint endurance at 60 m increased to a greater extent during training with the Meridian Elyte athletic shoe.

  19. The effects of resisted sprint training on acceleration performance and kinematics in soccer, rugby union, and Australian football players.

    PubMed

    Spinks, Christopher D; Murphy, Aron J; Spinks, Warwick L; Lockie, Robert G

    2007-02-01

    Acceleration is a significant feature of game-deciding situations in the various codes of football. However little is known about the acceleration characteristics of football players, the effects of acceleration training, or the effectiveness of different training modalities. This study examined the effects of resisted sprint (RS) training (weighted sled towing) on acceleration performance (0-15 m), leg power (countermovement jump [CMJ], 5-bound test [5BT], and 50-cm drop jump [50DJ]), gait (foot contact time, stride length, stride frequency, step length, and flight time), and joint (shoulder, elbow, hip, and knee) kinematics in men (N = 30) currently playing soccer, rugby union, or Australian football. Gait and kinematic measurements were derived from the first and second strides of an acceleration effort. Participants were randomly assigned to 1 of 3 treatment conditions: (a) 8-week sprint training of two 1-h sessions x wk(-1) plus RS training (RS group, n = 10), (b) 8-week nonresisted sprint training program of two 1-h sessions x wk(-1) (NRS group, n = 10), or (c) control (n = 10). The results indicated that an 8-week RS training program (a) significantly improves acceleration and leg power (CMJ and 5BT) performance but is no more effective than an 8-week NRS training program, (b) significantly improves reactive strength (50DJ), and (c) has minimal impact on gait and upper- and lower-body kinematics during acceleration performance compared to an 8-week NRS training program. These findings suggest that RS training will not adversely affect acceleration kinematics and gait. Although apparently no more effective than NRS training, this training modality provides an overload stimulus to acceleration mechanics and recruitment of the hip and knee extensors, resulting in greater application of horizontal power.

  20. The effect of 8-week plyometric training on leg power, jump and sprint performance in female soccer players.

    PubMed

    Ozbar, Nurper; Ates, Seda; Agopyan, Ani

    2014-10-01

    The aim of this study was to determine the effect of 8-week plyometric training (PT) on the leg power and jump and sprint performance in female soccer players. Eighteen female soccer players from Women Second League (age = 18.2 ± 2.3 years, height = 161.3 ± 5.4 cm, body mass = 56.6 ± 7.2 kg) were randomly assigned to control (n = 9) and plyometric (n = 9) groups. Both groups continued together with regular technical and tactical soccer training for 4 days a week. Additionally, the plyometric group underwent PT for 8 weeks, 1 day per week, 60-minute session duration. During the 8-week period, the control group was hindered from any additional conditioning training. All players' jumps (triple hop, countermovement jump, and standing broad jump), running speed (20 m), and peak power were evaluated before and after 8 weeks. No significant difference was found between the groups at pretest variables (p > 0.05). Significant improvements were found in the posttest of both the groups (p ≤ 0.05), except for 20-m sprint test in the control group (p > 0.05). Triple hop distance, countermovement jump, standing broad jump, peak power, and 20-m sprint test values were all significantly improved in the plyometric group, compared with the control group (p ≤ 0.05). We concluded that short duration PT is an improved important component of athletic performance in female soccer players. The results indicate that safe, effective, and alternative PT can be useful to strength and conditioning coaches, especially during competition season where less time is available for training.

  1. Solar Sprint

    ERIC Educational Resources Information Center

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  2. Effect of compression garments on short-term recovery of repeated sprint and 3-km running performance in rugby union players.

    PubMed

    Hamlin, Michael J; Mitchell, Carla J; Ward, Felila D; Draper, Nick; Shearman, Jeremy P; Kimber, Nicholas E

    2012-11-01

    The aim of this study was to investigate whether wearing compression garments during recovery improved subsequent repeated sprint and 3-km run performance. In a randomized single-blind crossover study, 22 well-trained male rugby union players (mean ± SD: age 20.1 ± 2.1 years, body mass 88.4 ± 8.8 kg) were given a full-leg length compressive garment (76% Meryl Elastane, 24% Lycra) or a similar-looking noncompressive placebo garment (92% Polyamide, 8% Lycra) to wear continuously for 24 hours after performing a series of circuits developed to simulate a rugby game. After the 24-hour recovery, garments were removed and a 40-m repeated sprint test (10 sprints at 30-second intervals), followed 10 minutes later by a 3-km run, was completed. One week later, the groups were reversed and testing repeated. Relative to the placebo, wearing the compressive garment decreased time to complete the 3 km by 2.0% ± 1.9% (mean ± 90% confidence interval). Additionally, average sprint times improved (1.2% ± 1.5%) and fatigue was diminished (-15.8% ± 26.1%) during the repeated sprint test in the compression group compared with the placebo group. Delayed onset muscle soreness was substantially lower in the compression group compared with the placebo group, 48 hours after testing. Wearing compressive garments during recovery is likely to be worthwhile, and very unlikely to be harmful for well-trained rugby union players.

  3. Front Crawl Sprint Performance: A Cluster Analysis of Biomechanics, Energetics, Coordinative, and Anthropometric Determinants in Young Swimmers.

    PubMed

    Figueiredo, Pedro; Silva, Ana; Sampaio, António; Vilas-Boas, João Paulo; Fernandes, Ricardo J

    2016-07-01

    The aim of this study was to evaluate the determinants of front crawl sprint performance of young swimmers using a cluster analysis. 103 swimmers, aged 11- to 13-years old, performed 25-m front crawl swimming at 50-m pace, recorded by two underwater cameras. Swimmers analysis included biomechanics, energetics, coordinative, and anthropometric characteristics. The organization of subjects in meaningful clusters, originated three groups (1.52 ± 0.16, 1.47 ± 0.17 and 1.40 ± 0.15 m/s, for Clusters 1, 2 and 3, respectively) with differences in velocity between Cluster 1 and 2 compared with Cluster 3 (p = .003). Anthropometric variables were the most determinants for clusters solution. Stroke length and stroke index were also considered relevant. In addition, differences between Cluster 1 and the others were also found for critical velocity, stroke rate and intracycle velocity variation (p < .05). It can be concluded that anthropometrics, technique and energetics (swimming efficiency) are determinant domains to young swimmers sprint performance.

  4. The Effect of a Simulated Basketball Game on Players’ Sprint and Jump Performance, Temperature and Muscle Damage

    PubMed Central

    Pliauga, Vytautas; Kamandulis, Sigitas; Dargevičiūtė, Gintarė; Jaszczanin, Jan; Klizienė, Irina; Stanislovaitienė, Jūratė; Stanislovaitis, Aleksas

    2015-01-01

    Despite extensive data regarding the demands of playing basketball, the relative importance of factors that cause fatigue and muscle potentiation has been explored only tentatively and remains unclear. The aim of this experimental field study was to assess changes in leg muscle power and relate these changes to body temperature modifications and indices of exercise-induced muscle damage in response to a simulated basketball game. College-level male basketball players (n=10) were divided into two teams to play a simulated basketball game. Ten-meter sprint and vertical counter-movement jump tests, core body temperature and creatine-kinase activity were measured within 48 h after the game. The participants’ body temperatures increased after a warm-up (1.9%, p<0.05), continued to increase throughout the game, and reached 39.4 ± 0.4ºC after the fourth quarter (p<0.05). The increase in temperature during the warm-up was accompanied by an improvement in the 10-meter sprint time (5.5%, p<0.05) and jump height (3.8%, p<0.05). The players were able to maintain leg power up to the fourth quarter, i.e., during the major part of the basketball game. There was a significant increase in creatine-kinase at 24 h (>200%, p<0.05) and 48 h (>30%, p<0.05) after the game, indicating damage to the players’ muscles. The basketball players’ sprint and jump performance appear to be at least in part associated with body temperature changes, which might contribute to counteract fatigue during the larger part of a basketball game. PMID:26240660

  5. Acceleration performance of individual European sea bass Dicentrarchus labrax measured with a sprint performance chamber: comparison with high-speed cinematography and correlates with ecological performance.

    PubMed

    Vandamm, Joshua P; Marras, Stefano; Claireaux, Guy; Handelsman, Corey A; Nelson, Jay A

    2012-01-01

    Locomotor performance can influence the ecological and evolutionary success of a species. For fish, favorable outcomes of predator-prey encounters are often presumably due to robust acceleration ability. Although escape-response or "fast-start" studies utilizing high-speed cinematography are prevalent, little is known about the contribution of relative acceleration performance to ecological or evolutionary success in a species. This dearth of knowledge may be due to the time-consuming nature of analyzing film, which imposes a practical limit on sample sizes. Herein, we present a high-throughput potential alternative for measuring fish acceleration performance using a sprint performance chamber (SPC). The acceleration performance of a large number of juvenile European sea bass (Dicentrarchus labrax) from two populations was analyzed. Animals from both hatchery and natural ontogenies were assessed, and animals of known acceleration ability had their ecological performance measured in a mesocosm environment. Individuals from one population also had their acceleration performance assessed by both high-speed cinematography and an SPC. Acceleration performance measured in an SPC was lower than that measured by classical high-speed video techniques. However, short-term repeatability and interindividual variation of acceleration performance were similar between the two techniques, and the SPC recorded higher sprint swimming velocities. Wild fish were quicker to accelerate in an SPC and had significantly greater accelerations than all groups of hatchery-raised fish. Acceleration performance had no significant effect on ecological performance (as assessed through animal growth and survival in the mesocosms). However, it is worth noting that wild animals did survive predation in the mesocosm better than farmed ones. Moreover, the hatchery-originated fish that survived the mesocosm experiment, when no predators were present, displayed significantly increased acceleration

  6. The validity and reliability of a global positioning satellite system device to assess speed and repeated sprint ability (RSA) in athletes.

    PubMed

    Barbero-Alvarez, José C; Coutts, Aaron; Granda, Juan; Barbero-Alvarez, Verónica; Castagna, Carlo

    2010-03-01

    There is a limited understanding of the validity and reliability of commercially available global positioning satellite (GPS) devices for assessing repeated sprint performance in athletes. The aims of this study were to assess the convergent validity and the test-retest reliability of a GPS device for measuring repeated sprint ability test (RSAT) variables. Two groups participated in this study, a group of 21 physical education students (age: 20.2+/-2.3 years, stature: 1.75+/-0.42 m, body mass: 68.0+/-6.8kg) and a second group 14 elite junior soccer players (age: 14.5+/-1.2 years, stature: 1.60+/-0.09 m, body mass: 57.7+/-3.8kg) volunteered to participate in this study. Convergent validity was assessed as the correlation between sprint performance (15 and 30-m) using both timing lights and a portable GPS device during a RSAT (7 x 30-m sprints with 30-s of active recovery). The 7 x 30-m RSAT test-retest reliability using GPS device was assessed in elite junior soccer players repeating the test 1 week apart and expressing reliability as a coefficient of variation. Results showed a strong correlation between peak speed measures with the GPS device and RSAT performance measured with timing lights for the 15-m (r(2)=0.87, p<0.001, N=147) and 30-m (r(2)=0.94, p<0.001, N=147) splits, respectively. There was a low coefficient of variation for summated maximal speed (1.7%) and peak speed (1.2%) during the 7 x 30-m RSAT, but high variation for the percentage decrement score (36.2%). These results provide evidence to support the use of the GPS device as an alternative measure to assess repeated sprint performance but suggest a percentage decrement score is not a reliable measure of RSAT performance.

  7. Relationships between anthropometric measures and athletic performance, with special reference to repeated-sprint ability, in the Qatar national soccer team.

    PubMed

    Brocherie, Franck; Girard, Olivier; Forchino, Fabricio; Al Haddad, Hani; Dos Santos, Gilvan A; Millet, Grégoire P

    2014-01-01

    The aim of this study was to determine potential relationships between anthropometric parameters and athletic performance with special consideration to repeated-sprint ability (RSA). Sixteen players of the senior male Qatar national soccer team performed a series of anthropometric and physical tests including countermovement jumps without (CMJ) and with free arms (CMJwA), straight-line 20 m sprint, RSA (6 × 35 m with 10 s recovery) and incremental field test. Significant (P < 0.05) relationships occurred between muscle-to-bone ratio and both CMJs height (r ranging from 0.56 to 0.69) as well as with all RSA-related variables (r < -0.53 for sprinting times and r = 0.54 for maximal sprinting speed) with the exception of the sprint decrement score (Sdec). The sum of six skinfolds and adipose mass index were largely correlated with Sdec (r = 0.68, P < 0.01 and r = 0.55, P < 0.05, respectively) but not with total time (TT, r = 0.44 and 0.33, P > 0.05, respectively) or any standard athletic tests. Multiple regression analyses indicated that muscular cross-sectional area for mid-thigh, adipose index, straight-line 20 m time, maximal sprinting speed and CMJwA are the strongest predictors of Sdec (r(2) = 0.89) and TT (r(2) = 0.95) during our RSA test. In the Qatar national soccer team, players' power-related qualities and RSA are associated with a high muscular profile and a low adiposity. This supports the relevance of explosive power for the soccer players and the larger importance of neuromuscular qualities determining the RSA.

  8. The Physiological Mechanisms of Performance Enhancement with Sprint Interval Training Differ between the Upper and Lower Extremities in Humans

    PubMed Central

    Zinner, Christoph; Morales-Alamo, David; Ørtenblad, Niels; Larsen, Filip J.; Schiffer, Tomas A.; Willis, Sarah J.; Gelabert-Rebato, Miriam; Perez-Valera, Mario; Boushel, Robert; Calbet, Jose A. L.; Holmberg, Hans-Christer

    2016-01-01

    To elucidate the mechanisms underlying the differences in adaptation of arm and leg muscles to sprint training, over a period of 11 days 16 untrained men performed six sessions of 4–6 × 30-s all-out sprints (SIT) with the legs and arms, separately, with a 1-h interval of recovery. Limb-specific VO2peak, sprint performance (two 30-s Wingate tests with 4-min recovery), muscle efficiency and time-trial performance (TT, 5-min all-out) were assessed and biopsies from the m. vastus lateralis and m. triceps brachii taken before and after training. VO2peak and Wmax increased 3–11% after training, with a more pronounced change in the arms (P < 0.05). Gross efficiency improved for the arms (+8.8%, P < 0.05), but not the legs (−0.6%). Wingate peak and mean power outputs improved similarly for the arms and legs, as did TT performance. After training, VO2 during the two Wingate tests was increased by 52 and 6% for the arms and legs, respectively (P < 0.001). In the case of the arms, VO2 was higher during the first than second Wingate test (64 vs. 44%, P < 0.05). During the TT, relative exercise intensity, HR, VO2, VCO2, VE, and Vt were all lower during arm-cranking than leg-pedaling, and oxidation of fat was minimal, remaining so after training. Despite the higher relative intensity, fat oxidation was 70% greater during leg-pedaling (P = 0.017). The aerobic energy contribution in the legs was larger than for the arms during the Wingate tests, although VO2 for the arms was enhanced more by training, reducing the O2 deficit after SIT. The levels of muscle glycogen, as well as the myosin heavy chain composition were unchanged in both cases, while the activities of 3-hydroxyacyl-CoA-dehydrogenase and citrate synthase were elevated only in the legs and capillarization enhanced in both limbs. Multiple regression analysis demonstrated that the variables that predict TT performance differ for the arms and legs. The primary mechanism of adaptation to SIT by both the arms and legs

  9. Effects of an In-season Plyometric Training Program on Repeated Change of Direction and Sprint Performance in the Junior Soccer Player.

    PubMed

    Hammami, Mehréz; Negra, Yassine; Aouadi, Ridha; Shephard, Roy J; Chelly, Mohamed Souhaiel

    2016-12-01

    Hammami, M, Negra, Y, Aouadi, R, Shephard, RJ, and Chelly, MS. Effects of an in-season plyometric training program on repeated change of direction and sprint performance in the junior soccer player. J Strength Cond Res 30(12): 3312-3320, 2016-We aimed to determine the gains in explosive movements of male junior soccer players induced by incorporating an 8-week plyometric training program (PTP) into a standard soccer conditioning regimen 5 months after the beginning of the competitive season. Our hypothesis was that PTP would enhance explosive movements, and thus sprint running, repeated shuttle sprint ability (RSSA), agility and the ability to make repeated changes of direction (RCOD). A group of junior soccer players were randomly divided into 2 groups: an experimental group (E, n = 15, age 15.7 ± 0.2 years) and a control group (C, n = 13, age 15.8 ± 0.2 years). The participants in E and C performed training exercises and matches together, but for an 8-week period in the latter part of the season, the experimental group replaced a part of the normal regimen (the tactical session) by a biweekly course of PTP (hurdle and drop jumps). Two familiarization sessions were held 2 weeks before definitive testing. The ability of the players was assessed by 3 agility tests (a sprint test with 180° turns, a 9-3-6-3-9 m sprint with backward and forward running, and a four 5-m sprint test with turns); 2 repeated sprint tests (RSSA and RCOD); and running times over 5-, 10-, 20-, 30-, and 40-m distances. Participants in E showed gains relative to C in sprint times (p ≤ 0.05 for 5, 10, and 20 m), and 2 of 3 the RCOD parameters (RCOD best, p ≤ 0.001; RCOD total, p ≤ 0.05). However, with the pattern of plyometric training that we adopted, and perhaps because participants were in good initial physical condition, the agility and RSSA test scores remained unchanged. Nevertheless, we conclude that our PTP can be commended to junior soccer players as a means of improving

  10. Forced inspiratory volume in the first second as predictor of front-crawl performance in young sprint swimmers.

    PubMed

    Noriega-Sánchez, Saúl A; Legaz-Arrese, Alejandro; Suarez-Arrones, Luis; Santalla, Alfredo; Floría, Pablo; Munguía-Izquierdo, Diego

    2015-01-01

    The purposes of this study were to determine the extent to which specific anthropometric, conditional, and pulmonary function variables predict 100-m front-crawl performance in national swimmers and compare anthropometric, conditional, and pulmonary function variables between both genders. Two groups (male, n = 8 and female, n = 9) of sprint swimmers (mean age ± SD = 19.4 ± 0.7 years and 16.9 ± 3.2 years, respectively) of national competitive level volunteered for this study. Swimmers performed an all-out 100-m front-crawl swimming test. Physiological parameters of lung function were measured using portable spirometer. Basic anthropometry included body height, body mass, and skinfold thickness. Lower limb strength was measured by countermovement and squat jump tests. Correlation and regression analyses were calculated to quantify the relationships between trial time and each variable potentially predictive. Differences between means of both gender groups were analyzed. Results showed that 100-m race performance correlated significantly with forced inspiratory volume in the first second (FIV1) in male swimmers and with FIV1 and forced vital capacity in female swimmers. Stepwise multiple regressions revealed that FIV1 was the only predictor of 100-m race performance, explaining 66% of 100-m time trial variance in male swimmers and 58% in female swimmers. Gender comparisons indicated significant differences in anthropometric, conditional, pulmonary function, and performance variables. The findings suggest that FIV1 could be a good predictor of performance and it should be evaluated routinely and used by coaches in front-crawl sprint swimmers.

  11. Effects of a back squat training program on leg power, jump, and sprint performances in junior soccer players.

    PubMed

    Chelly, Mohamed Souhaiel; Fathloun, Mourad; Cherif, Najet; Ben Amar, Mohamed; Tabka, Zouhair; Van Praagh, Emmanuel

    2009-11-01

    The aim of the present study was to investigate the effects of voluntary maximal leg strength training on peak power output (Wpeak), vertical jump performance, and field performances in junior soccer players. Twenty-two male soccer players participated in this investigation and were divided into 2 groups: A resistance training group (RTG; age 17 +/- 0.3 years) and a control group (CG; age 17 +/- 0.5 years). Before and after the training sessions (twice a week for 2 months), Wpeak was determined by means of a cycling force-velocity test. Squat jump (SJ), countermovement jump (CMJ), and 5-jump test (5-JT) performances were assessed. Kinematics analyses were made using a video camera during a 40-m sprint running test and the following running velocities were calculated: The first step after the start (V(first step)), the first 5 m (V(first 5 meters)), and between the 35 m and 40 m (V(max)). Back half squat exercises were performed to determine 1-repetition maximum (1-RM). Leg and thigh muscle volume and mean thigh cross-sectional area (CSA) were assessed by anthropometry. The resistance training group showed improvement in Wpeak (p < 0.05), jump performances (SJ, p < 0.05 and 5-JT, p < 0.001), 1-RM (p < 0.001) and all sprint running calculated velocities (p < 0.05 for both V(first step) and V(first 5 meters), p < 0.01 for V(max)). Both typical force-velocity relationships and mechanical parabolic curves between power and velocity increased after the strength training program. Leg and thigh muscle volume and CSA of RTG remained unchanged after strength training. Back half squat exercises, including adapted heavy loads and only 2 training sessions per week, improved athletic performance in junior soccer players. These specific dynamic constant external resistance exercises are highly recommended as part of an annual training program for junior soccer players.

  12. Countermovement jump peak force relative to body weight and jump height as predictors for sprint running performances: (in)homogeneity of track and field athletes?

    PubMed

    Markström, Jonas L; Olsson, Carl-Johan

    2013-04-01

    The purpose of this study was to investigate: (a) If variables from 1-leg drop jump (DJ), DJ, squat jump (SJ), and countermovement jump (CMJ) tests can predict sprint performances for sprinters. (b) If sprinters and jumpers can be distinguished based on variables from 1-leg DJ, DJ, SJ, and CMJ tests, also if sprinters and throwers can be distinguished based on variables from stiff leg jump (SLJ), SJ, and CMJ tests. A single linear regression and multiple linear regression analysis approach with models including 2 or 3 variables were used when predicting sprint performances. Five elite sprinters (1 woman) participated in the first subexamination and 5 sprinters (1 woman) vs. 5 jumpers and 6 sprinters vs. 6 throwers (4 women) participated in the second. The force variable CMJ peak force (PF) relative to body weight significantly predicted the sprint performances maximal running velocity through 10-m (V[Combining Dot Above]O2max10m) and 60-m time. The Vmax10m was also predicted by CMJ height. Jump heights from SJ and DJ did not predict sprint performances. The between-group analysis of the athletes showed a nonsignificant group difference with respect to the jump variables. However, planned comparisons between sprinters and throwers showed significant differences in a number of SLJ variables. When constructing training programs for sprinters, the aim should be to improve CMJ PF and CMJ height because of the prediction of Vmax10-m and 60-m time, presumably because of velocity specificity components.

  13. Effect of strength and high-intensity training on jumping, sprinting, and intermittent endurance performance in prepubertal soccer players.

    PubMed

    Ferrete, Carlos; Requena, Bernardo; Suarez-Arrones, Luís; de Villarreal, Eduardo Sáez

    2014-02-01

    The purpose of this study was to examine the effects of a 26-week on-field combined strength and high-intensity training on the physical performance capacity among prepubertal soccer players who were undertaking a competitive phase of training. Twenty-four prepubertal soccer players between the age of 8 and 9 years were randomly assigned to 2 groups: a control (C; n = 13) and an experimental group (S; n = 11). Both groups performed an identical soccer-training program, whereas the S group also performed combined strength and high-intensity training before the soccer-specific training. The 15-m sprint time (seconds), countermovement jump (CMJ) displacement, Yo-Yo intermittent endurance test (Yo-Yo IE), and Sit and Reach flexibility were each measured before (baseline) and after 9 (T2), 18 (T3), and 26 weeks (posttest) of training. There were no significant differences between the groups in any of the variables tested at baseline. After 26 weeks, significant improvements were found in the CMJ (6.72%; effect size [ES] = 0.37), Yo-Yo IE (49.57%, ES = 1.39), and Flexibility (7.26%; ES = 0.37) variables for the S group. Conversely, significant decreases were noted for the CMJ (-10.82%; ES = 0.61) and flexibility (-13.09%; ES = 0.94) variables in the C group. A significant negative correlation was found between 15-m sprint time and CMJ (r = -0.77) and Yo-Yo IE (r = -0.77) in the S group. Specific combined strength and high-intensity training in prepubertal soccer players for 26 weeks produced a positive effect on performance qualities highly specific to soccer. Therefore, we propose modifications to current training methodology for prepubertal soccer players to include strength and high-intensity training for athlete preparation in this sport.

  14. The effect of an official match on repeated sprint ability in junior basketball players.

    PubMed

    Caprino, Davide; Clarke, Neil David; Delextrat, Anne

    2012-01-01

    The aim of this study was to investigate the effect of an official basketball match on repeated sprint ability indices in male junior players. Ten (16 ± 1 years old; 183.6 ± 7.0 cm; 76.6 ± 8.0 kg) starting players for their teams performed three repeated sprint ability tests, before, at half-time and immediately after an official match. Each repeated sprint ability test consisted of 10 shuttle-run sprints of 30 m (15 + 15 m) separated by 30 seconds of passive recovery. The matches were video-taped to determine the frequency of eight types of movement patterns, and blood lactate concentration was measured before and immediately after each repeated sprint ability test. Differences in total time, ideal time and percentage decrement between tests was assessed by a one-way analysis of variance (ANOVA) with repeated measures, while a two-way ANOVA with repeated measures was used to identify differences in blood lactate concentration. The main results indicated a significant decrease in total movement frequency (-9.9%), high-intensity activity frequency (-13.3%), run frequency (-13.0%) and sprint frequency (-23.3%) in the second compared to the first half, and significantly worse total time and ideal time at the end of the match, compared to the start and half-time (differences ranging from -2.1% to -2.9%, P < 0.05). The practical implications of these findings suggest that regional basketball players should participate in conditioning sessions that focus on the improvement of repeated sprint ability.

  15. The acute effects of static stretching on the sprint performance of collegiate men in the 60- and 100-m dash after a dynamic warm-up.

    PubMed

    Kistler, Brandon M; Walsh, Mark S; Horn, Thelma S; Cox, Ronald H

    2010-09-01

    Previous research has shown that static stretching has an inhibitory effect on sprinting performances up to 50 m. The purpose of this study was to see what would happen to these effects at longer distances such as those seen in competition. This study used a within-subjects design to investigate the effects of passive static stretching vs. no stretching on the 60- and 100-m sprint performance of college track athletes after a dynamic warm-up. Eighteen male subjects completed both the static stretching and the no stretching conditions in counterbalanced order across 2 days of testing. On each day, all subjects first completed a generalized dynamic warm-up routine that included a self-paced 800-m run, followed by a series of dynamic movements, sprint, and hurdle drills. At the end of this generalized warm-up, athletes were assigned to either a static stretching or a no-stretching condition. They then immediately performed 2 100-m trials with timing gates set up at 20, 40, 60, and 100 m. Results revealed a significant slowing in performance with static stretching (p < 0.039) in the second 20 (20-40) m of the sprint trials. After the first 40 m, static stretching exhibited no additional inhibition of performance in a 100-m sprint. However, although there was no additional time loss, athletes never gained back the time that was originally lost in the first portion of the trials. Therefore, in strict terms of performance, it seems harmful to include static stretching in the warm-up protocol of collegiate male sprinters in distances up to 100 m.

  16. Sprinting performance of two Iberian fish: Luciobarbus bocagei and Pseudochondrostoma duriense in an open channel flume

    USGS Publications Warehouse

    Sanz-Ronda, Francisco Javier; Ruiz-Legazpi, Jorge; Bravo-Cordoba, Francisco Javier; Makrakis, Sergio; Castro-Santos, Theodore R.

    2015-01-01

    This paper presents sprinting data from Iberian barbel (Luciobarbus bocagei) and northern straight-mouth nase (Pseudochondrostoma duriense), volitionally swimming against high velocity flows (1.5, 2.5 and 3 m s−1) in an open channel flume. Swimming endurance and speed greatly exceeded previously published observations with both species attaining swim speeds >20 body lengths s−1. Flow velocity was the primary variable limiting the distance both species were able to traverse. Barbel swam greater distances than nase at higher flow velocities, with longer individuals attaining greater distances than smaller ones. The results challenge established fish passage guidelines, suggesting that in some cases these species are capable of passing much higher velocities than was previously believed.

  17. Short- or long-rest intervals during repeated-sprint training in soccer?

    PubMed Central

    Iaia, F. Marcello; Fiorenza, Matteo; Larghi, Luca; Alberti, Giampietro; Millet, Grégoire P.; Girard, Olivier

    2017-01-01

    The present study compared the effects of two repeated-sprint training (RST) programs, differing in duration of the between-sprint rest intervals, on various soccer-related exercise performances. For 5 weeks during the competitive season, twenty-nine young trained male soccer players either replaced two of their habitual fitness conditioning sessions with RST characterized by short (5–15; n = 9) or long (5–30; n = 10) rest intervals, or served as control (n = 10). The 5–15 and 5–30 protocols consisted of 6 repetitions of 30-m (~5 s) straight-line sprints interspersed with 15 s or 30 s of passive recovery, respectively. 5–15 improved 200-m sprint time (2.0±1.5%; p<0.05) and had a likely positive impact on 20-m sprint performance, whereas 5–30 lowered the 20-m sprint time (2.7±1.6%; p<0.05) but was only possibly effective for enhancing the 200-m sprint performance. The distance covered during the Yo-Yo Intermittent Recovery Test Level 2 increased following 5–15 (11.4±5.0%; p<0.05), which was possibly better than the non-significant 6.5% enhancement observed in 5–30. Improvements in the total time of a repeated-sprint ability test were possibly greater following 5–30 (3.6±0.9%; p<0.05) compared to 5–15 (2.6±1.1%; p<0.05). Both RST interventions led to similar beneficial (p<0.05) reductions in the percentage decrement score (~30%) of the repeated-sprint ability test as well as in blood lactate concentration during submaximal exercise (17–18%). No changes occurred in the control group. In soccer players, RST over a 5-week in-season period is an efficient means to simultaneously develop different components of fitness relevant to match performance, with different benefits induced by shorter compared to longer rest intervals. PMID:28199402

  18. Metatarsophalangeal joint function during sprinting: a comparison of barefoot and sprint spike shod foot conditions.

    PubMed

    Smith, Grace; Lake, Mark; Lees, Adrian

    2014-04-01

    The metatarsophalangeal joint is an important contributor to lower limb energetics during sprint running. This study compared the kinematics, kinetics and energetics of the metatarsophalangeal joint during sprinting barefoot and wearing standardized sprint spikes. The aim of this investigation was to determine whether standard sprinting footwear alters the natural motion and function of the metatarsophalangeal joint exhibited during barefoot sprint running. Eight trained sprinters performed maximal sprints along a runway, four sprints in each condition. Three-dimensional high-speed (1000 Hz) kinematic and kinetic data were collected at the 20 m point. Joint angle, angular velocity, moment, power and energy were calculated for the metatarsophalangeal joint. Sprint spikes significantly increase sprinting velocity (0.3 m/s average increase), yet limit the range of motion about the metatarsophalangeal joint (17.9% average reduction) and reduce peak dorsiflexion velocity (25.5% average reduction), thus exhibiting a controlling affect over the natural behavior of the foot. However, sprint spikes improve metatarsophalangeal joint kinetics by significantly increasing the peak metatarsophalangeal joint moment (15% average increase) and total energy generated during the important push-off phase (0.5 J to 1.4 J). The results demonstrate substantial changes in metatarsophalangeal function and potential improvements in performance-related parameters due to footwear.

  19. The combination of plyometric and balance training improves sprint and shuttle run performances more often than plyometric-only training with children.

    PubMed

    Chaouachi, Anis; Othman, Aymen Ben; Hammami, Raouf; Drinkwater, Eric J; Behm, David G

    2014-02-01

    Because balance is not fully developed in children and studies have shown functional improvements with balance only training studies, a combination of plyometric and balance activities might enhance static balance, dynamic balance, and power. The objective of this study was to compare the effectiveness of plyometric only (PLYO) with balance and plyometric (COMBINED) training on balance and power measures in children. Before and after an 8-week training period, testing assessed lower-body strength (1 repetition maximum leg press), power (horizontal and vertical jumps, triple hop for distance, reactive strength, and leg stiffness), running speed (10-m and 30-m sprint), static and dynamic balance (Standing Stork Test and Star Excursion Balance Test), and agility (shuttle run). Subjects were randomly divided into 2 training groups (PLYO [n = 14] and COMBINED [n = 14]) and a control group (n = 12). Results based on magnitude-based inferences and precision of estimation indicated that the COMBINED training group was considered likely to be superior to the PLYO group in leg stiffness (d = 0.69, 91% likely), 10-m sprint (d = 0.57, 84% likely), and shuttle run (d = 0.52, 80% likely). The difference between the groups was unclear in 8 of the 11 dependent variables. COMBINED training enhanced activities such as 10-m sprints and shuttle runs to a greater degree. COMBINED training could be an important consideration for reducing the high velocity impacts of PLYO training. This reduction in stretch-shortening cycle stress on neuromuscular system with the replacement of balance and landing exercises might help to alleviate the overtraining effects of excessive repetitive high load activities.

  20. Relationships Between Vertical Jump and Full Squat Power Outputs With Sprint Times in U21 Soccer Players

    PubMed Central

    López-Segovia, Manuel; Marques, Mário C.; van den Tillaar, Roland; González-Badillo, Juan J

    2011-01-01

    The aim of this study was to assess the relationship between power variables in the vertical jump and full squat with the sprint performance in soccer players. Fourteen under-21 soccer players were evaluated in two testing sessions separated by 7 days. In the first testing session, vertical jump height in countermovement was assessed, and power output for both loaded countermovement jump (CMJL) and full squat (FS) exercises in two progressive load tests. The second testing session included sprinting at 10, 20, and 30m (T10, T20, T30, T10–20, T10–30, T20–30). Power variables obtained in the loaded vertical jump with 20kg and full squat exercise with 70kg showed significant relationships with all split times (r=−0.56/–0.79; p≤ 0.01/0.01). The results suggest that power produced either with vertical jump or full squat exercises is an important factor to explain short sprint performance in soccer players. These findings might suggest that certain levels of neuromuscular activation are more related with sprint performance reflecting the greater suitability of loads against others for the improvement of short sprint ability in under-21 soccer players. PMID:23487438

  1. Relationships between vertical jump and full squat power outputs with sprint times in u21 soccer players.

    PubMed

    López-Segovia, Manuel; Marques, Mário C; van den Tillaar, Roland; González-Badillo, Juan J

    2011-12-01

    The aim of this study was to assess the relationship between power variables in the vertical jump and full squat with the sprint performance in soccer players. Fourteen under-21 soccer players were evaluated in two testing sessions separated by 7 days. In the first testing session, vertical jump height in countermovement was assessed, and power output for both loaded countermovement jump (CMJL) and full squat (FS) exercises in two progressive load tests. The second testing session included sprinting at 10, 20, and 30m (T10, T20, T30, T10-20, T10-30, T20-30). Power variables obtained in the loaded vertical jump with 20kg and full squat exercise with 70kg showed significant relationships with all split times (r=-0.56/-0.79; p≤ 0.01/0.01). The results suggest that power produced either with vertical jump or full squat exercises is an important factor to explain short sprint performance in soccer players. These findings might suggest that certain levels of neuromuscular activation are more related with sprint performance reflecting the greater suitability of loads against others for the improvement of short sprint ability in under-21 soccer players.

  2. Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers.

    PubMed

    Collomp, K; Ahmaidi, S; Chatard, J C; Audran, M; Préfaut, C

    1992-01-01

    The influence of specific training on benefits from caffeine (Caf) ingestion was examined during a sprint test in a group of highly trained swimmers (T) and compared with the response of a group of untrained occasional swimmers (UT). Seven T and seven UT subjects swam freestyle two randomly assigned 2 x 100 m distances, at maximal speed and separated by 20 min of passive recovery, once after Caf (250 mg) and once after placebo (Pla) ingestion. Anaerobic capacity was assessed by the mean velocity (meters per second) during each 100 m and blood was sampled from the fingertip just before and 1, 3, 5, 7, and 9 min after each 100 m for resting and maximal blood lactate concentration ([la-]b,max) determination. The [la-]bmax was significantly enhanced by Caf in both T and UT subjects (P less than 0.01). However, only T subjects exhibited significant improvement in their swimming velocity (P less than 0.01) after Caf or any significant impairment during the second 100 m. In light of these results, it appears that specific training is necessary to benefit from the metabolic adaptations induced by Caf during supramaximal exercise requiring a high anaerobic capacity.

  3. Effects of acute and chronic interval sprint exercise performed on a manually propelled treadmill on upper limb vascular mechanics in healthy young men.

    PubMed

    Olver, T Dylan; Reid, Steph M; Smith, Alan R; Zamir, Mair; Lemon, Peter W R; Laughlin, M Harold; Shoemaker, J Kevin

    2016-07-01

    Interval sprint exercise performed on a manually propelled treadmill, where the hands grip the handle bars, engages lower and upper limb skeletal muscle, but little is known regarding the effects of this exercise modality on the upper limb vasculature. We tested the hypotheses that an acute bout of sprint exercise and 6 weeks of training induces brachial artery (BA) and forearm vascular remodeling, favoring a more compliant system. Before and following a single bout of exercise as well as 6 weeks of training three types of vascular properties/methodologies were examined in healthy men: (1) stiffness of the entire upper limb vascular system (pulse wave velocity (PWV); (2) local stiffness of the BA; and (3) properties of the entire forearm vascular bed (determined by a modified lumped parameter Windkessel model). Following sprint exercise, PWV declined (P < 0.01), indices of BA stiffness did not change (P ≥ 0.10), and forearm vascular bed compliance increased and inertance and viscoelasticity decreased (P ≤ 0.03). Following manually propelled treadmill training, PWV remained unchanged (P = 0.31), indices of BA stiffness increased (P ≤ 0.05) and forearm vascular bed viscoelasticity declined (P = 0.02), but resistance, compliance, and inertance remained unchanged (P ≥ 0.10) compared with pretraining values. Sprint exercise induced a more compliant forearm vascular bed, without altering indices of BA stiffness. These effects were transient, as following training the forearm vascular bed was not more compliant and indices of BA stiffness increased. On the basis of these data, we conclude that adaptations to acute and chronic sprint exercise on a manually propelled treadmill are not uniform along the arterial tree in upper limb.

  4. The effects of compression garments on recovery of muscle performance following high-intensity sprint and plyometric exercise.

    PubMed

    Duffield, Rob; Cannon, Jack; King, Monique

    2010-01-01

    This study compared the effects of compression garments on recovery of evoked and voluntary performance following fatiguing exercise. Eleven participants performed 2 sessions separated by 7 days, with and without lower-body compression garments during and 24h post-exercise. Participants performed a 10-min exercise protocol of a 20-m sprint and 10 plyometric bounds every minute. Before, following, 2h and 24h post-exercise, evoked twitch properties of the knee extensors, peak concentric knee extension and flexion force were assessed, with blood samples drawn to measure lactate [La(-)], pH, creatine kinase (CK), aspartate transaminase (AST) and c-reactive protein (C-RP). Heart rate, exertion (RPE) and muscle soreness (MS) measures were obtained pre- and post-exercise. No differences (P=0.50-0.80) and small effect sizes (d<0.3) were present for 20-m sprint (3.59+/-0.22 vs. 3.59+/-0.18s) or bounding performance (17.13+/-1.4 vs. 17.21+/-1.7 m) in garment and control conditions. The decline and recovery in concentric force were not different (P=0.40) between conditions. Full recovery of voluntary performance was observed 2h post-exercise, however, evoked twitch properties remained suppressed 2h post-exercise in both conditions. No differences (P=0.40-0.80, d<0.3) were present between conditions for heart rate, RPE, [La(-)], pH, CK or C-RP. However, 24h post-exercise a smaller change (P=0.08; d=2.5) in AST (23.1+/-3.1 vs. 26.0+/-4.0) and reduced (P=0.01; d=1.1) MS (2.8+/-1.2 vs. 4.5+/-1.4) were present in the garments. In conclusion the effects of compression garments on voluntary performance and recovery were minimal; however, reduced levels of perceived MS were reported following recovery in the garments.

  5. Aerobic power and lean mass are indicators of competitive sprint performance among elite female cross-country skiers.

    PubMed

    Carlsson, Tomas; Tonkonogi, Michail; Carlsson, Magnus

    2016-01-01

    The purpose of this study was to establish the optimal allometric models to predict International Ski Federation's ski-ranking points for sprint competitions (FISsprint) among elite female cross-country skiers based on maximal oxygen uptake ( [Formula: see text]) and lean mass (LM). Ten elite female cross-country skiers (age: 24.5±2.8 years [mean ± SD]) completed a treadmill roller-skiing test to determine [Formula: see text] (ie, aerobic power) using the diagonal stride technique, whereas LM (ie, a surrogate indicator of anaerobic capacity) was determined by dual-emission X-ray anthropometry. The subjects' FISsprint were used as competitive performance measures. Power function modeling was used to predict the skiers' FISsprint based on [Formula: see text], LM, and body mass. The subjects' test and performance data were as follows: [Formula: see text], 4.0±0.3 L min(-1); LM, 48.9±4.4 kg; body mass, 64.0±5.2 kg; and FISsprint, 116.4±59.6 points. The following power function models were established for the prediction of FISsprint: [Formula: see text] and 6.95 × 10(10) · LM(-5.25); these models explained 66% (P=0.0043) and 52% (P=0.019), respectively, of the variance in the FISsprint. Body mass failed to contribute to both models; hence, the models are based on [Formula: see text] and LM expressed absolutely. The results demonstrate that the physiological variables that reflect aerobic power and anaerobic capacity are important indicators of competitive sprint performance among elite female skiers. To accurately indicate performance capability among elite female skiers, the presented power function models should be used. Skiers whose [Formula: see text] differs by 1% will differ in their FISsprint by 5.8%, whereas the corresponding 1% difference in LM is related to an FISsprint difference of 5.1%, where both differences are in favor of the skier with higher [Formula: see text] or LM. It is recommended that coaches use the absolute expression of these variables

  6. Aerobic power and lean mass are indicators of competitive sprint performance among elite female cross-country skiers

    PubMed Central

    Carlsson, Tomas; Tonkonogi, Michail; Carlsson, Magnus

    2016-01-01

    The purpose of this study was to establish the optimal allometric models to predict International Ski Federation’s ski-ranking points for sprint competitions (FISsprint) among elite female cross-country skiers based on maximal oxygen uptake ( V˙O2max) and lean mass (LM). Ten elite female cross-country skiers (age: 24.5±2.8 years [mean ± SD]) completed a treadmill roller-skiing test to determine V˙O2max (ie, aerobic power) using the diagonal stride technique, whereas LM (ie, a surrogate indicator of anaerobic capacity) was determined by dual-emission X-ray anthropometry. The subjects’ FISsprint were used as competitive performance measures. Power function modeling was used to predict the skiers’ FISsprint based on V˙O2max, LM, and body mass. The subjects’ test and performance data were as follows: V˙O2max, 4.0±0.3 L min−1; LM, 48.9±4.4 kg; body mass, 64.0±5.2 kg; and FISsprint, 116.4±59.6 points. The following power function models were established for the prediction of FISsprint: 3.91×105⋅V˙O2max−6.00 and 6.95 × 1010 · LM−5.25; these models explained 66% (P=0.0043) and 52% (P=0.019), respectively, of the variance in the FISsprint. Body mass failed to contribute to both models; hence, the models are based on V˙O2max and LM expressed absolutely. The results demonstrate that the physiological variables that reflect aerobic power and anaerobic capacity are important indicators of competitive sprint performance among elite female skiers. To accurately indicate performance capability among elite female skiers, the presented power function models should be used. Skiers whose V˙O2max differs by 1% will differ in their FISsprint by 5.8%, whereas the corresponding 1% difference in LM is related to an FISsprint difference of 5.1%, where both differences are in favor of the skier with higher V˙O2max or LM. It is recommended that coaches use the absolute expression of these variables to monitor skiers’ performance-related training adaptations

  7. Relationship between performance test and body composition/physical strength characteristic in sprint canoe and kayak paddlers

    PubMed Central

    Hamano, Saki; Ochi, Eisuke; Tsuchiya, Yosuke; Muramatsu, Erina; Suzukawa, Kazuhiro; Igawa, Shoji

    2015-01-01

    Objective Canoe sprint is divided into canoe and kayak. The difference between the two competitions is in physical performance. The aim of the present study was to compare and investigate the relationship between physical characteristics and fitness between the two canoe sprint competitors. Methods Subjects were 11 canoe paddlers (C) and 12 kayak paddlers (K). They underwent anthropometric characteristics, body composition and fitness tests, and 120 s all-out tests using a canoe and kayak ergometer. The unpaired t-test was used to test for significant differences between disciplines, while Pearson’s correlation coefficient was used to examine the association between each measurement item and the performance test. Results The age, height, body mass, body mass index, and total body fat were, C: 20.6±0.9 yr, 172.8±5.2 cm, 70.8±7.8 kg, 23.7±1.9, 14.4%±3.5%; and K: 19.7±1.2 yr, 172.8±5.3 cm, 69.5±7.8 kg, 23.2±2.1, 12.1%±3.6%, respectively. No significant differences were seen in any of the items for physical characteristics or fitness between C and K. A correlation analysis of performance tests and each measurement item revealed a positive correlation with low-speed isokinetic knee extension and flexion strength for C only (extension: r=0.761; flexion: r=0.784; P<0.01). In addition, performance tests were positively correlated with the circumference of arm (upper arm: r=0.876; forearm: r=0.820; P<0.01) and lower limb (thigh: r=0.781; calf: r=0.753; P<0.01) in C and with height (r=0.549, P<0.05), arm span (r=0.639, P<0.05), and leg length (r=0.621, P<0.01) in K. Conclusion We suggest that the factors correlating with the performance test differ depending on the competitions. PMID:26150737

  8. Improved Maximum Strength, Vertical Jump and Sprint Performance after 8 Weeks of Jump Squat Training with Individualized Loads

    PubMed Central

    Marián, Vanderka; Katarína, Longová; Dávid, Olasz; Matúš, Krčmár; Simon, Walker

    2016-01-01

    The purpose of the study was to determine the effects of 8 weeks of jump squat training on isometric half squat maximal force production (Fmax) and rate of force development over 100ms (RFD100), countermovement jump (CMJ) and squat jump (SJ) height, and 50 m sprint time in moderately trained men. Sixty eight subjects (~21 years, ~180 cm, ~75 kg) were divided into experimental (EXP; n = 36) and control (CON, n = 32) groups. Tests were completed pre-, mid- and post-training. EXP performed jump squat training 3 times per week using loads that allowed all repetitions to be performed with ≥90% of maximum average power output (13 sessions with 4 sets of 8 repetitions and 13 sessions with 8 sets of 4 repetitions). Subjects were given real-time feedback for every repetition during the training sessions. Significant improvements in Fmax from pre- to mid- (Δ ~14%, p<0.001), and from mid- to post-training (Δ ~4%, p < 0.001) in EXP were observed. In CON significantly enhanced Fmax from pre- to mid-training (Δ ~3.5%, p < 0.05) was recorded, but no other significant changes were observed in any other test. In RFD100 significant improvements from pre- to mid-training (Δ ~27%, p < 0.001), as well as from mid- to post-training (Δ ~17%, p < 0.01) were observed. CMJ and SJ height were significantly enhanced from pre- to mid-training (Δ ~10%, ~15%, respectively, p < 0.001) but no further changes occurred from mid- to post-training. Significant improvements in 50 m sprint time from pre- to mid-training (Δ -1%, p < 0.05), and from mid- to post-training (Δ -1.9%, p < 0.001) in EXP were observed. Furthermore, percent changes in EXP were greater than changes in CON during training. It appears that using jump squats with loads that allow repetitions to be performed ≥90% of maximum average power output can simultaneously improve several different athletic performance tasks in the short-term. Key points Jump squat exercise is one of many exercises to develop explosive strength

  9. Improved Maximum Strength, Vertical Jump and Sprint Performance after 8 Weeks of Jump Squat Training with Individualized Loads.

    PubMed

    Marián, Vanderka; Katarína, Longová; Dávid, Olasz; Matúš, Krčmár; Simon, Walker

    2016-09-01

    The purpose of the study was to determine the effects of 8 weeks of jump squat training on isometric half squat maximal force production (Fmax) and rate of force development over 100ms (RFD100), countermovement jump (CMJ) and squat jump (SJ) height, and 50 m sprint time in moderately trained men. Sixty eight subjects (~21 years, ~180 cm, ~75 kg) were divided into experimental (EXP; n = 36) and control (CON, n = 32) groups. Tests were completed pre-, mid- and post-training. EXP performed jump squat training 3 times per week using loads that allowed all repetitions to be performed with ≥90% of maximum average power output (13 sessions with 4 sets of 8 repetitions and 13 sessions with 8 sets of 4 repetitions). Subjects were given real-time feedback for every repetition during the training sessions. Significant improvements in Fmax from pre- to mid- (Δ ~14%, p<0.001), and from mid- to post-training (Δ ~4%, p < 0.001) in EXP were observed. In CON significantly enhanced Fmax from pre- to mid-training (Δ ~3.5%, p < 0.05) was recorded, but no other significant changes were observed in any other test. In RFD100 significant improvements from pre- to mid-training (Δ ~27%, p < 0.001), as well as from mid- to post-training (Δ ~17%, p < 0.01) were observed. CMJ and SJ height were significantly enhanced from pre- to mid-training (Δ ~10%, ~15%, respectively, p < 0.001) but no further changes occurred from mid- to post-training. Significant improvements in 50 m sprint time from pre- to mid-training (Δ -1%, p < 0.05), and from mid- to post-training (Δ -1.9%, p < 0.001) in EXP were observed. Furthermore, percent changes in EXP were greater than changes in CON during training. It appears that using jump squats with loads that allow repetitions to be performed ≥90% of maximum average power output can simultaneously improve several different athletic performance tasks in the short-term.

  10. Effects of a carbohydrate and caffeine gel on intermittent sprint performance in recreationally trained males.

    PubMed

    Cooper, Robert; Naclerio, Fernando; Allgrove, Judith; Larumbe-Zabala, Eneko

    2014-01-01

    We investigated the effects of ingesting carbohydrate gels with and without caffeine on a ~90-minute, four blocks intermittent sprint test (IST), in 12 recreationally trained male athletes. Using a cross-over design, one 70 ml dose of gel containing either 25 g of carbohydrate with (CHOCAF) or without (CHO) 100 mg of caffeine, or a non-caloric placebo (PL) was ingested on three occasions: one hour before, immediately prior to and during the IST. Blood glucose, rating of perceived exertion (RPE) and fatigue index (FI) were analysed. Glucose showed significantly higher values for both CHOCAF and CHO at the first (p=0.005 and p=0.000, respectively), second (p=0.009 and 0.008, respectively) and third (p=0.003 and 0.001, respectively) blocks when compared with PL, while only CHOCAF was significantly different to PL (p=0.002) at the fourth block. CHOCAF showed an improved FI (mean 5.0, s =1.7) compared with CHO (mean 7.6, s =2.6; p=0.006) and PL (mean 7.4, s =2.4; p=0.005), a significantly lower RPE (mean 14.2, s =2) compared with PL (mean 15.3, s =2; p=0.003) and a trend in respect of CHO (mean 14.9, s =2.3; p=0.056) after the third block. In conclusion, ingesting CHOCAF one hour before, prior to and during an IST is effective at transiently reducing fatigue and RPE whilst maintaining higher glucose levels at the final stages of the exercise.

  11. Ball-Sport Endurance and Sprint Test (BEAST90): validity and reliability of a 90-minute soccer performance test.

    PubMed

    Williams, Jeremy D; Abt, Grant; Kilding, Andrew E

    2010-12-01

    The aim of this study was to determine the validity and reliability of a 90-minute soccer performance test: Ball-sport Endurance and Sprint Test (BEAST90). Fifteen healthy male amateur soccer players participated and attended 5 testing sessions over a 10-day period to perform physiologic and soccer-specific assessments. This included familiarization sessions and 2 full trials of the BEAST90, separated by 7 days. The total 90-minute distance, mean percent peak heart rate (HRpeak), and estimated percent peak oxygen uptake of the BEAST90 were 8,097 ± 458 m, 85 ± 5% and 82 ± 14%, respectively. Measures obtained from trial 1 and trial 2 were not significantly different (p > 0.05). Reliability of measures over 90 minutes ranged from 0.9-25.5% (% typical error). The BEAST90 protocol replicated soccer match play in terms of time, movement patterns, physical demands (volume and intensity), distances, and mean and HRpeak values, as well as having an aerobic load similar to that observed during a soccer match. Reproducibility of key physical measures during the BEAST90 were mostly high, suggesting good reliability. The BEAST90 could be used in studies that wish to determine the effects of training or nutritional interventions on prolonged intermittent physical performance.

  12. Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta-analysis.

    PubMed

    Sloth, M; Sloth, D; Overgaard, K; Dalgas, U

    2013-12-01

    Recently, several studies have examined whether low-volume sprint interval training (SIT) may improve aerobic and metabolic function. The objective of this study was to systematically review the existing literature regarding the aerobic and metabolic effects of SIT in healthy sedentary or recreationally active adults. A systematic literature search was performed (Bibliotek.dk, SPORTDiscus, Embase, PEDro, SveMed+, and Pubmed). Meta-analytical procedures were applied evaluating effects on maximal oxygen consumption (VO2max). Nineteen unique studies [four randomized controlled trials (RCTs), nine matched-controlled trials and six noncontrolled studies] were identified, evaluating SIT interventions lasting 2-8 weeks. Strong evidence support improvements of aerobic exercise performance and VO2max following SIT. A meta-analysis across 13 studies evaluating effects of SIT on VO2max showed a weighted mean effects size of g = 0.63 95% CI (0.39; 0.87) and VO2max increases of 4.2-13.4%. Solid evidence support peripheral adaptations known to increase the oxidative potential of the muscle following SIT, whereas evidence regarding central adaptations was limited and equivocal. Some evidence indicated changes in substrate oxidation at rest and during exercise as well as improved glycemic control and insulin sensitivity following SIT. In conclusion, strong evidence support improvement of aerobic exercise performance and VO2max following SIT, which coincides with peripheral muscular adaptations. Future RCTs on long-term SIT and underlying mechanisms are warranted.

  13. How 100-m event analyses improve our understanding of world-class men's and women's sprint performance.

    PubMed

    Slawinski, J; Termoz, N; Rabita, G; Guilhem, G; Dorel, S; Morin, J-B; Samozino, P

    2017-01-01

    This study aimed to compare the force (F)-velocity (v)-power (P)-time (t) relationships of female and male world-class sprinters. A total of 100 distance-time curves (50 women and 50 men) were computed from international 100-m finals, to determine the acceleration and deceleration phases of each race: (a) mechanical variables describing the velocity, force, and power output; and (b) F-P-v relationships and associated maximal power output, theoretical force and velocity produced by each athlete (Pmax , F0 , and V0 ). The results showed that the maximal sprint velocity (Vmax ) and mean power output (W/kg) developed over the entire 100 m strongly influenced 100-m performance (r > -0.80; P ≤ 0.001). With the exception of mean force (N/kg) developed during the acceleration phase or during the entire 100 m, all of the mechanicals variables observed over the race were greater in men. Shorter acceleration and longer deceleration in women may explain both their lower Vmax and their greater decrease in velocity, and in turn their lower performance level, which can be explained by their higher V0 and its correlation with performance. This highlights the importance of the capability to keep applying horizontal force to the ground at high velocities.

  14. Performance changes and relationship between vertical jump measures and actual sprint performance in elite sprinters with visual impairment throughout a Parapan American games training season.

    PubMed

    Loturco, Irineu; Winckler, Ciro; Kobal, Ronaldo; Cal Abad, Cesar C; Kitamura, Katia; Veríssimo, Amaury W; Pereira, Lucas A; Nakamura, Fábio Y

    2015-01-01

    The aims of this study were to estimate the magnitude of variability and progression in actual competitive and field vertical jump test performances in elite Paralympic sprinters with visual impairment in the year leading up to the 2015 Parapan American Games, and to investigate the relationships between loaded and unloaded vertical jumping test results and actual competitive sprinting performance. Fifteen Brazilian Paralympic sprinters with visual impairment attended seven official competitions (four national, two international and the Parapan American Games 2015) between April 2014 and August 2015, in the 100- and 200-m dash. In addition, they were tested in five different periods using loaded (mean propulsive power [MPP] in jump squat [JS] exercise) and unloaded (squat jump [SJ] height) vertical jumps within the 3 weeks immediately prior to the main competitions. The smallest important effect on performances was calculated as half of the within-athlete race-to-race (or test-to-test) variability and a multiple regression analysis was performed to predict the 100- and 200-m dash performances using the vertical jump test results. Competitive performance was enhanced during the Parapan American Games in comparison to the previous competition averages, overcoming the smallest worthwhile enhancement in both the 100- (0.9%) and 200-m dash (1.43%). In addition, The SJ and JS explained 66% of the performance variance in the competitive results. This study showed that vertical jump tests, in loaded and unloaded conditions, could be good predictors of the athletes' sprinting performance, and that during the Parapan American Games the Brazilian team reached its peak competitive performance.

  15. Performance changes and relationship between vertical jump measures and actual sprint performance in elite sprinters with visual impairment throughout a Parapan American games training season

    PubMed Central

    Loturco, Irineu; Winckler, Ciro; Kobal, Ronaldo; Cal Abad, Cesar C.; Kitamura, Katia; Veríssimo, Amaury W.; Pereira, Lucas A.; Nakamura, Fábio Y.

    2015-01-01

    The aims of this study were to estimate the magnitude of variability and progression in actual competitive and field vertical jump test performances in elite Paralympic sprinters with visual impairment in the year leading up to the 2015 Parapan American Games, and to investigate the relationships between loaded and unloaded vertical jumping test results and actual competitive sprinting performance. Fifteen Brazilian Paralympic sprinters with visual impairment attended seven official competitions (four national, two international and the Parapan American Games 2015) between April 2014 and August 2015, in the 100- and 200-m dash. In addition, they were tested in five different periods using loaded (mean propulsive power [MPP] in jump squat [JS] exercise) and unloaded (squat jump [SJ] height) vertical jumps within the 3 weeks immediately prior to the main competitions. The smallest important effect on performances was calculated as half of the within-athlete race-to-race (or test-to-test) variability and a multiple regression analysis was performed to predict the 100- and 200-m dash performances using the vertical jump test results. Competitive performance was enhanced during the Parapan American Games in comparison to the previous competition averages, overcoming the smallest worthwhile enhancement in both the 100- (0.9%) and 200-m dash (1.43%). In addition, The SJ and JS explained 66% of the performance variance in the competitive results. This study showed that vertical jump tests, in loaded and unloaded conditions, could be good predictors of the athletes' sprinting performance, and that during the Parapan American Games the Brazilian team reached its peak competitive performance. PMID:26594181

  16. Changes in Sprint and Jump Performances After Traditional, Plyometric, and Combined Resistance Training in Male Youth Pre- and Post-Peak Height Velocity.

    PubMed

    Lloyd, Rhodri S; Radnor, John M; De Ste Croix, Mark B A; Cronin, John B; Oliver, Jon L

    2016-05-01

    The purpose of this study was to compare the effectiveness of 6-week training interventions using different modes of resistance (traditional strength, plyometric, and combined training) on sprinting and jumping performances in boys before and after peak height velocity (PHV). Eighty school-aged boys were categorized into 2 maturity groups (pre- or post-PHV) and then randomly assigned to (a) plyometric training, (b) traditional strength training, (c) combined training, or (d) a control group. Experimental groups participated in twice-weekly training programs for 6 weeks. Acceleration, maximal running velocity, squat jump height, and reactive strength index data were collected pre- and postintervention. All training groups made significant gains in measures of sprinting and jumping irrespective of the mode of resistance training and maturity. Plyometric training elicited the greatest gains across all performance variables in pre-PHV children, whereas combined training was the most effective in eliciting change in all performance variables for the post-PHV cohort. Statistical analysis indicated that plyometric training produced greater changes in squat jump and acceleration performances in the pre-PHV group compared with the post-PHV cohort. All other training responses between pre- and post-PHV cohorts were not significant and not clinically meaningful. The study indicates that plyometric training might be more effective in eliciting short-term gains in jumping and sprinting in boys who are pre-PHV, whereas those who are post-PHV may benefit from the additive stimulus of combined training.

  17. Effects of heat exposure and 3% dehydration achieved via hot water immersion on repeated cycle sprint performance.

    PubMed

    Kraft, Justin A; Green, James M; Bishop, Phillip A; Richardson, Mark T; Neggers, Yasmin H; Leeper, James D

    2011-03-01

    This study examined effects of heat exposure with and without dehydration on repeated anaerobic cycling. Males (n = 10) completed 3 trials: control (CT), water-bath heat exposure (∼39°C) to 3% dehydration (with fluid replacement) (HE), and similar heat exposure to 3% dehydration (DEHY). Hematocrit increased significantly from pre to postheat immersion in both HE and DEHY. Participants performed 6 × 15s cycle sprints (30s active recovery). Mean Power (MP) was significantly lower vs. CT (596 ± 66 W) for DEHY (569 ± 72 W), and the difference approached significance for HE (582 ± 76 W, p = 0.07). Peak Power (PP) was significantly lower vs. CT (900 ± 117 W) for HE (870 ± 128 W) and approached significance for DEHY (857 ± 145 W, p = 0.07). Postsprint ratings of perceived exertion was higher during DEHY (6.4 ± 2.0) and HE (6.3 ± 1.6) than CT (5.7 ± 2.1). Combined heat and dehydration impaired MP and PP (decrements greatest in later bouts) with HE performance intermediate to CT and DEHY.

  18. Effect of Low- vs. Moderate-Load Squat Training on Strength, Jump and Sprint Performance in Physically Active Women.

    PubMed

    Mora-Custodio, R; Rodríguez-Rosell, D; Pareja-Blanco, F; Yañez-García, J M; González-Badillo, J J

    2016-06-01

    This study aimed to analyze the effects of resistance training (RT) load on neuromuscular performance. Twenty-seven physically active women were randomly distributed into 3 groups: a low-load group (LLG); a moderate-load group (MLG); and a control group (CG). The RT consisted of full squat exercise with a low load (40-60% 1RM, LLG) or a moderate load (65-80% 1RM, MLG). Sprint times (T10, T20, and T10-20), countermovement jump (CMJ), estimated one-repetition maximum (1RMest) and velocity attained against the first (FMPV) and the last load (LMPV) common to both tests were assessed pre- and post-test. Both experimental groups showed significant (P<0.05-0.001) improvements in all variables, except MLG for T10-20 and FMPV. The LLG achieved significantly (P<0.05-0.001) greater percent changes than CG in all variables except in T10 and T10-20, while MLG presented significantly (P<0.05-0.001) higher improvements than CG in T10, 1RMest and LMPV. The LLG presented a possibly better effect than MLG in T10-20, T20 and1RMest. In addition, LLG obtained a higher degree of transfer than MLG in all variables except in T10. These results suggest that a low-load training program produces similar or more beneficial effects on neuromuscular performance than moderate-load training.

  19. Diurnal variations of plasma homocysteine, total antioxidant status, and biological markers of muscle injury during repeated sprint: effect on performance and muscle fatigue--a pilot study.

    PubMed

    Hammouda, Omar; Chtourou, Hamdi; Chahed, Henda; Ferchichi, Salyma; Kallel, Choumous; Miled, Abdelhedi; Chamari, Karim; Souissi, Nizar

    2011-12-01

    The aim of this study was (i) to evaluate whether homocysteine (Hcy), total antioxidant status (TAS), and biological markers of muscle injury would be affected by time of day (TOD) in football players and (ii) to establish a relationship between diurnal variation of these biomarkers and the daytime rhythm of power and muscle fatigue during repeated sprint ability (RSA) exercise. In counterbalanced order, 12 football (soccer) players performed an RSA test (5 x[6 s of maximal cycling sprint + 24 s of rest]) on two different occasions: 07:00-08:30 h and 17:00-18:30 h. Fasting blood samples were collected from a forearm vein before and 3-5 min after each RSA test. Core temperature, rating of perceived exertion, and performances (i.e., Sprint 1, Sprint 2, and power decrease) during the RSA test were significantly higher at 17:00 than 07:00 h (p < .001, p < .05, and p < .05, respectively). The results also showed significant diurnal variation of resting Hcy levels and all biological markers of muscle injury with acrophases (peak times) observed at 17:00 h. These fluctuations persisted after the RSA test. However, biomarkers of antioxidant status' resting levels (i.e., total antioxidant status, uric acid, and total bilirubin) were higher in the morning. This TOD effect was suppressed after exercise for TAS and uric acid. In conclusion, the present study confirms diurnal variation of Hcy, selected biological markers of cellular damage, and antioxidant status in young football players. Also, the higher performances and muscle fatigue showed in the evening during RSA exercise might be due to higher levels of biological markers of muscle injury and lower antioxidant status at this TOD.

  20. Traditional vs. Sport-Specific Vertical Jump Tests: Reliability, Validity, and Relationship With the Legs Strength and Sprint Performance in Adult and Teen Soccer and Basketball Players.

    PubMed

    Rodríguez-Rosell, David; Mora-Custodio, Ricardo; Franco-Márquez, Felipe; Yáñez-García, Juan M; González-Badillo, Juan J

    2017-01-01

    Rodríguez-Rosell, D, Mora-Custodio, R, Franco-Márquez, F, Yáñez-García, JM, González-Badillo, JJ. Traditional vs. sport-specific vertical jump tests: reliability, validity, and relationship with the legs strength and sprint performance in adult and teen soccer and basketball players. J Strength Cond Res 31(1): 196-206, 2017-The vertical jump is considered an essential motor skill in many team sports. Many protocols have been used to assess vertical jump ability. However, controversy regarding test selection still exists based on the reliability and specificity of the tests. The main aim of this study was to analyze the reliability and validity of 2 standardized (countermovement jump [CMJ] and Abalakov jump [AJ]) and 2 sport-specific (run-up with 2 [2-LEGS] or 1 leg [1-LEG] take-off jump) vertical jump tests, and their usefulness as predictors of sprint and strength performance for soccer (n = 127) and basketball (n = 59) players in 3 different categories (Under-15, Under-18, and Adults). Three attempts for each of the 4 jump tests were recorded. Twenty-meter sprint time and estimated 1 repetition maximum in full squat were also evaluated. All jump tests showed high intraclass correlation coefficients (0.969-0.995) and low coefficients of variation (1.54-4.82%), although 1-LEG was the jump test with the lowest absolute and relative reliability. All selected jump tests were significantly correlated (r = 0.580-0.983). Factor analysis resulted in the extraction of one principal component, which explained 82.90-95.79% of the variance of all jump tests. The 1-LEG test showed the lowest associations with sprint and strength performance. The results of this study suggest that CMJ and AJ are the most reliable tests for the estimation of explosive force in soccer and basketball players in different age categories.

  1. Multidirectional sprints and small-sided games training effect on agility and change of direction abilities in youth soccer.

    PubMed

    Chaouachi, Anis; Chtara, Moktar; Hammami, Raouf; Chtara, Hichem; Turki, Olfa; Castagna, Carlo

    2014-11-01

    The aim of this study was to compare the training effects of a small-sided game (SSG) and multidirectional sprint intervention on agility and change of direction (COD) ability in young male soccer players. Thirty-six soccer players (age: 14.2 ± 0.9 years; height: 167.2 ± 5.7 cm; body mass: 54.1 ± 6.3 kg, body fat: 12.5 ± 2.2%) participated in a short-term (6 weeks) randomized parallel fully controlled training study, with pre-to-post measurements. Players were randomly assigned to 2 experimental groups: training with preplanned COD drills (CODG, n = 12) or using SSGs (SSGG, n = 12) and to a control group (CONG, n = 12). Pre- and post-training players completed a test battery involving linear sprinting (15- and 30-m sprint), COD sprinting (COD: 15 m, ball: 15 m, 10-8-8-10 m, zigzag: 20 m), reactive agility test (RAT, RAT-ball), and vertical and horizontal jumping (countermovement jump and 5-jump, respectively). A significant (p ≤ 0.05) group × time effect was detected for all variables in CODG and SSGG. Improvements in sprint, agility without ball, COD, and jumping performances, were higher in CODG than in the other groups. The SSGG improved significantly more (p ≤ 0.05) than other groups in agility tests with the ball. The CONG showed significant improvements (p ≤ 0.05) on linear sprinting over a distance longer than 10 m and in all the agility and COD tests used in this study. It is concluded that in young male soccer players, agility can be improved either using purpose-built SSG or preplanned COD sprints. However, the use of specifically designed SSG may provide superior results in match-relevant variables.

  2. Concurrent validity and test-retest reliability of a global positioning system (GPS) and timing gates to assess sprint performance variables.

    PubMed

    Waldron, Mark; Worsfold, Paul; Twist, Craig; Lamb, Kevin

    2011-12-01

    There has been no previous investigation of the concurrent validity and reliability of the current 5 Hz global positioning system (GPS) to assess sprinting speed or the reliability of integrated GPS-accelerometer technology. In the present study, we wished to determine: (1) the concurrent validity and reliability of a GPS and timing gates to measure sprinting speed or distance, and (2) the reliability of proper accelerations recorded via GPS-accelerometer integration. Nineteen elite youth rugby league players performed two over-ground sprints and were simultaneously assessed using GPS and timing gates. The GPS measurements systematically underestimated both distance and timing gate speed. The GPS measurements were reliable for all variables of distance and speed (coefficient of variation [CV] = 1.62% to 2.3%), particularly peak speed (95% limits of agreement [LOA] = 0.00 ± 0.8 km · h(-1); CV = 0.78%). Timing gates were more reliable (CV = 1% to 1.54%) than equivalent GPS measurements. Accelerometer measurements were least reliable (CV = 4.69% to 5.16%), particularly for the frequency of proper accelerations (95% LOA = 1.00 ± 5.43; CV = 14.12%). Timing gates and GPS were found to reliably assess speed and distance, although the validity of the GPS remains questionable. The error found in accelerometer measurements indicates the limits of this device for detecting changes in performance.

  3. The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation.

    PubMed

    Waterhouse, J; Atkinson, G; Edwards, B; Reilly, T

    2007-12-01

    The aim of this study was to determine the effects of a post-lunch nap on subjective alertness and performance following partial sleep loss. Ten healthy males (mean age 23.3 years, s = 3.4) either napped or sat quietly from 13:00 to 13:30 h after a night of shortened sleep (sleep 23:00-03:00 h only). Thirty minutes after the afternoon nap or control (no-nap) condition, alertness, short-term memory, intra-aural temperature, heart rate, choice reaction time, grip strength, and times for 2-m and 20-m sprints were recorded. The afternoon nap lowered heart rate and intra-aural temperature. Alertness, sleepiness, short-term memory, and accuracy at the 8-choice reaction time test were improved by napping (P < 0.05), but mean reaction times and grip strength were not affected (P > 0.05). Sprint times were improved. Mean time for the 2-m sprints fell from 1.060 s (s(x) = 0.018) to 1.019 s (s(x) = 0.019) (P = 0.031 paired t-test); mean time for the 20-m sprints fell from 3.971 s (s(x) = 0.054) to 3.878 s (s(x) = 0.047) (P = 0.013). These results indicate that a post-lunch nap improves alertness and aspects of mental and physical performance following partial sleep loss, and have implications for athletes with restricted sleep during training or before competition.

  4. Validity of the running anaerobic sprint test for assessing anaerobic power and predicting short-distance performances.

    PubMed

    Zagatto, Alessandro M; Beck, Wladimir R; Gobatto, Claudio A

    2009-09-01

    The purpose of this study was to investigate the reliability and validity of the running anaerobic sprint test (RAST) in anaerobic assessment and predicting short-distance performance. Forty members of the armed forces were recruited for this study (age 19.78 +/- 1.18 years; body mass 70.34 +/- 8.10 kg; height 1.76 +/- 0.53 m; body fat 15.30 +/- 5.65 %). The RAST test was applied to six 35-meter maximal running performances with a 10-second recovery between each run; the peak power, mean power, and the fatigue index were measured. The study was divided in two stages. The first stage investigated the reliability of the RAST using a test-retest method; the second stage aimed to evaluate the validity of the RAST comparing the results with the Wingate test and running performances of 35, 50, 100, 200, and 400 m. There were not significant differences between test-retest scores in the first stage of the study (p > 0.05) and were found significant correlations between these variables (intraclass correlation coefficient approximately = 0.88). The RAST had significant correlations with the Wingate test (peak power r = 0.46; mean power r = 0.53; fatigue index r = 0.63) and 35, 50, 100, 200, and 400 m performances scores (p < 0.05). The advantage of using the RAST for measuring anaerobic power is that it allows for the execution of movements more specific to sporting events that use running as the principal style of locomotion, is easily applied and low cost, and due to its simplicity can easily be incorporated into routine training. We concluded that this procedure is reliable and valid, and can be used to measure running anaerobic power and predict short-distance performances.

  5. Aerobic Capacity is Related to Repeated Sprint Ability with Sprint Distances Less Than 40 Meters

    PubMed Central

    SANDERS, GABRIEL J.; TURNER, ZACHARY; BOOS, BRIAN; PEACOCK, COREY A.; PEVELER, WILLARD; LIPPING, ALAR

    2017-01-01

    Research is inconclusive regarding the association between aerobic fitness (objectively measured VO2max) and repeated sprint performance when the sprints are less than 40 meters. Soccer athletes must be able to repeat sprints without significant decreases in speed and strength and conditioning coaches need to better understand if aerobic fitness is related to repeated sprint ability (RSA). Twenty (10 male, 10 female) Division I soccer athletes first completed a graded maximal treadmill test to measure VO2max. Then on a separate day, athletes completed the RSA test. The RSA test consisted of 10, 30-meter sprints which athletes repeated every 30 seconds. There were significant negative correlations (r ≤ −0.69, P < 0.001) between VO2max and all 10-sprint times and average sprint time. More aerobically fit Division I soccer athletes were faster at all time points during the RSA test. Aerobic fitness is associated with faster sprint times during a more anaerobic RSA test when sprint distances are less than 40 meters. PMID:28344734

  6. Aerobic Capacity is Related to Repeated Sprint Ability with Sprint Distances Less Than 40 Meters.

    PubMed

    Sanders, Gabriel J; Turner, Zachary; Boos, Brian; Peacock, Corey A; Peveler, Willard; Lipping, Alar

    2017-01-01

    Research is inconclusive regarding the association between aerobic fitness (objectively measured VO2max) and repeated sprint performance when the sprints are less than 40 meters. Soccer athletes must be able to repeat sprints without significant decreases in speed and strength and conditioning coaches need to better understand if aerobic fitness is related to repeated sprint ability (RSA). Twenty (10 male, 10 female) Division I soccer athletes first completed a graded maximal treadmill test to measure VO2max. Then on a separate day, athletes completed the RSA test. The RSA test consisted of 10, 30-meter sprints which athletes repeated every 30 seconds. There were significant negative correlations (r ≤ -0.69, P < 0.001) between VO2max and all 10-sprint times and average sprint time. More aerobically fit Division I soccer athletes were faster at all time points during the RSA test. Aerobic fitness is associated with faster sprint times during a more anaerobic RSA test when sprint distances are less than 40 meters.

  7. Effects of acute supplementation of L-arginine and nitrate on endurance and sprint performance in elite athletes.

    PubMed

    Sandbakk, Silvana Bucher; Sandbakk, Øyvind; Peacock, Oliver; James, Philip; Welde, Boye; Stokes, Keith; Böhlke, Nikolai; Tjønna, Arnt Erik

    2015-08-01

    This study examined the effects of acute supplementation with L-arginine and nitrate on running economy, endurance and sprint performance in endurance-trained athletes. In a randomised cross-over, double-blinded design we compared the effects of combined supplementation with 6 g L-arginine and 614 mg nitrate against 614 mg nitrate alone and placebo in nine male elite cross-country skiers (age 18 ± 0 years, VO2max 69.3 ± 5.8 ml ⋅ min(-1) ⋅ kg(-1)). After a 48-hour standardisation of nutrition and exercise the athletes were tested for plasma nitrate and nitrite concentrations, blood pressure, submaximal running economy at 10 km ⋅ h(-1) and 14 km ⋅ h(-1) at 1% incline and 180 m as well as 5-km time-trial running performances. Plasma nitrite concentration following L-arginine + nitrate supplementation (319 ± 54 nmol ⋅ L(-1)) did not differ from nitrate alone (328 ± 107 nmol ⋅ L(-1)), and both were higher than placebo (149 ± 64 nmol ⋅ L(-1), p < 0.01). There were no differences in physiological responses during submaximal running or in 5-km performance between treatments. The plasma nitrite concentrations indicate greater nitric oxide availability both following acute supplementation of L-arginine + nitrate and with nitrate alone compared to placebo, but no additional effect was revealed when L-arginine was added to nitrate. Still, there were no effects of supplementation on exercise economy or endurance running performance in endurance-trained cross-country skiers.

  8. Effects of Different Contextual Interference Training Programs on Straight Sprinting and Agility Performance of Primary School Students

    PubMed Central

    Yanci, Javier; Reina, Raúl; Los Arcos, Asier; Camara, Jesús

    2013-01-01

    The aim of this study was to evaluate the effect of a different degree of contextual interference (CI) training program on the change of direction ability (CODA) itself and on the straight sprinting (SSP) performance (5 m and 15 m) in students in the first year of primary school. It also evaluated which CI training program was more effective. Eighty eight students (6.42 ± 0.38 yr) volunteered as participants for the present study. Participants were randomized into 5 different CI training programs (LCI: low contextual interference, MCI: moderate contextual interference, HCI: high contextual interference, VCI: variable contextual interference, and CG: control group) during a 3 week period. Significant CODA improvements (p < 0.05) in pre-post-test were found in MCI (4.39%, ES 0.41) and VCI (9.37%, ES 1. 12) groups. Furthermore, LCI, MCI and HCI groups ameliorated their SSP performance, both in 5 m (5. 92%, ES 0.81; 6.67%, ES 0.90; 8.05%, ES 1.33 respectively) and 15 m SSP (5.86%, ES 0.76; 6.47%, ES 0.80; 2.47% ES 0.41 respectively). These results suggest that training through games of tag (VCI) was the most effective in improving the CODA and training with moderate contextual interference (MCI) was the only type which induced improvements in both capacities (SSP and CODA). Key Points We investigated the CODA and SSP performance of students in the first year of primary school and the influence of 5 different training programs on their CODA and SSP ability. Training through games of tag (VCI) was the most effective in improving the CODA Training with moderate contextual interference (MCI) was the only one which induced improvements in both capacities (SSP and CODA). PMID:24149171

  9. Aerobic and anaerobic determinants of repeated sprint ability in team sports athletes

    PubMed Central

    Dardouri, W; Haj-Sassi, R; Chamari, K; Souissi, N

    2015-01-01

    The aim of this study was to examine in team sports athletes the relationship between repeated sprint ability (RSA) indices and both aerobic and anaerobic fitness components. Sixteen team-sport players were included (age, 23.4 ± 2.3 years; weight, 71.2 ± 8.3 kg; height, 178 ± 7 cm; body mass index, 22.4 ± 2 kg · m−2; estimated VO2max, 54.16 ± 3.5 mL · kg−1 · min−1). Subjects were licensed in various team sports: soccer (n = 8), basketball (n = 5), and handball (n = 3). They performed 4 tests: the 20 m multi-stage shuttle run test (MSRT), the 30-s Wingate test (WingT), the Maximal Anaerobic Shuttle Running Test (MASRT), and the RSA test (10 repetitions of 30 m shuttle sprints (15 + 15 m with 180° change of direction) with 30 s passive recovery in between). Pearson's product moment of correlation among the different physical tests was performed. No significant correlations were found between any RSA test indices and WingT. However, negative correlations were found between MASRT and RSA total sprint time (TT) and fatigue index (FI) (r = -0.53, p < 0.05 and r = -0.65, p < 0.01, respectively). No significant relationship between VO2max and RSA peak sprint time (PT) and total sprint time (TT) was found. Nevertheless, VO2max was significantly correlated with the RSA FI (r = -0.57, p < 0.05). In conclusion, aerobic fitness is an important factor influencing the ability to resist fatigue during RSA exercise. Our results highlighted the usefulness of MASRT, in contrast to WingT, as a specific anaerobic testing procedure to identify the anaerobic energy system contribution during RSA. PMID:26424923

  10. Torque and power-velocity relationships in cycling: relevance to track sprint performance in world-class cyclists.

    PubMed

    Dorel, S; Hautier, C A; Rambaud, O; Rouffet, D; Van Praagh, E; Lacour, J-R; Bourdin, M

    2005-11-01

    The aims of the present study were both to describe anthropometrics and cycling power-velocity characteristics in top-level track sprinters, and to test the hypothesis that these variables would represent interesting predictors of the 200 m track sprint cycling performance. Twelve elite cyclists volunteered to perform a torque-velocity test on a calibrated cycle ergometer, after the measurement of their lean leg volume (LLV) and frontal surface area (A(p)), in order to draw torque- and power-velocity relationships, and to evaluate the maximal power (P(max)), and both the optimal pedalling rate (f(opt)) and torque (T(opt)) at which P (max) is reached. The 200 m performances--i.e. velocity (V200) and pedalling rate (f 200)--were measured during international events (REC) and in the 2002 French Track Cycling Championships (NAT). P(max), f(opt), and T(opt) were respectively 1600 +/- 116 W, 129.8 +/- 4.7 rpm and 118.5 +/- 9.8 N . m. P(max) was strongly correlated with T(opt) (p < 0.001), which was correlated with LLV (p < 0.01). V200 was related to P(max) normalized by A(p) (p < or = 0.05) and also to f(opt) (p < 0.01) for REC and NAT. f 200 (155.2 +/- 3, REC; 149 +/- 4.3, NAT) were significantly higher than f(opt) (p < 0.001). These findings demonstrated that, in this population of world-class track cyclists, the optimization of the ratio between P(max) and A(p) represents a key factor of 200 m performance. Concerning the major role also played by f(opt), it is assumed that, considering high values of f 200, sprinters with a high value of optimal pedalling rate (i.e. lower f200-f(opt) difference) could be theoretically in better conditions to maximize their power output during the race and hence performance.

  11. Hand Grip Strength Vs. Sprint Effectiveness in Amputee Soccer Players.

    PubMed

    Wieczorek, Marta; Wiliński, Wojciech; Struzik, Artur; Rokita, Andrzej

    2015-11-22

    Amputee soccer is one of the types of soccer designed for the disabled, especially those who have undergone amputations, as well as those with extremity dysfunction. The objective of the study was to find the relationship between hand grip strength and sprint time in amputee soccer players. Thirteen field amputee soccer players participated in the study. A SAEHAN hydraulic hand dynamometer manufactured by Jamar was used for hand grip strength measurements. The sprint running test was conducted over a distance of 30 m. The Fusion Smart Speed System was employed for running time measurements. No statistically significant relationships were found between hand grip strength of the left or right hand, and sprint times over 1, 5, 10, 15, 20, 25 and 30 m. Analysis of the running velocity curve of the subjects showed an interesting profile characterized by a 15 meter-long acceleration phase and a significant velocity increase over a distance of 20 - 25 m. The study suggests that there is no relationship between hand grip strength and sprint effectiveness in amputee soccer players. The specificity of locomotion with the use of elbow crutches among elite Polish amputee soccer players probably accounts for the profile of the sprint velocity curve. Extension of the acceleration phase in the sprint run and a velocity increase in the subsequent part of the run were observed.

  12. Peak oxygen uptake in a sprint interval testing protocol vs. maximal oxygen uptake in an incremental testing protocol and their relationship with cross-country mountain biking performance.

    PubMed

    Hebisz, Rafał; Hebisz, Paulina; Zatoń, Marek; Michalik, Kamil

    2017-04-01

    In the literature, the exercise capacity of cyclists is typically assessed using incremental and endurance exercise tests. The aim of the present study was to confirm whether peak oxygen uptake (V̇O2peak) attained in a sprint interval testing protocol correlates with cycling performance, and whether it corresponds to maximal oxygen uptake (V̇O2max) determined by an incremental testing protocol. A sample of 28 trained mountain bike cyclists executed 3 performance tests: (i) incremental testing protocol (ITP) in which the participant cycled to volitional exhaustion, (ii) sprint interval testing protocol (SITP) composed of four 30 s maximal intensity cycling bouts interspersed with 90 s recovery periods, (iii) competition in a simulated mountain biking race. Oxygen uptake, pulmonary ventilation, work, and power output were measured during the ITP and SITP with postexercise blood lactate and hydrogen ion concentrations collected. Race times were recorded. No significant inter-individual differences were observed in regards to any of the ITP-associated variables. However, 9 individuals presented significantly increased oxygen uptake, pulmonary ventilation, and work output in the SITP compared with the remaining cyclists. In addition, in this group of 9 cyclists, oxygen uptake in SITP was significantly higher than in ITP. After the simulated race, this group of 9 cyclists achieved significantly better competition times (99.5 ± 5.2 min) than the other cyclists (110.5 ± 6.7 min). We conclude that mountain bike cyclists who demonstrate higher peak oxygen uptake in a sprint interval testing protocol than maximal oxygen uptake attained in an incremental testing protocol demonstrate superior competitive performance.

  13. Determinants of a simulated cross-country skiing sprint competition using V2 skating technique on roller skis.

    PubMed

    Mikkola, Jussi; Laaksonen, Marko; Holmberg, Hans-Christer; Vesterinen, Ville; Nummela, Ari

    2010-04-01

    The present study investigated the performance-predicting factors of a simulated cross-country (XC) skiing sprint competition on roller skis, on a slow surface. Sixteen elite male XC skiers performed a simulated sprint competition (4 x 850 m heat with a 20-minute recovery) using V2 skating technique on an indoor tartan track. Heat velocities, oxygen consumption, and peak lactate were measured during or after the heats. Maximal skiing velocity was measured by performing a 30-m speed test. Explosive and maximal force production in the upper body was determined by bench press (BP). Subjects also performed maximal anaerobic skiing test (MAST) and the 2 x 2-km double poling (DP) test. The maximal velocity of MAST (VMAST) and velocities at 3 (V3), 5 (V5), 7 (V7) mmol.L lactate levels in MAST were determined. In the 2 x 2-km test, DP economy (VO2SUBDP) and maximal 2-km DP velocity (VDP2KM) were determined. The best single performance-predicting factors for the sprint performance were VDP2KM (r = 0.73, p < 0.01), V7 (r = 0.70, p < 0.01), and VO2SUBDP (r = -0.70, p < 0.01). Faster skiers in sprint simulation had a higher absolute VO2 (L.min) (p < 0.05-0.01) during sprint heats, and higher anaerobic skiing power (VMAST, p < 0.05) and better anaerobic skiing economy (V3, V5, V7, p < 0.05-0.001) than slower skiers. Faster skiers were also stronger in BP, with regard to both absolute (p < 0.01) and relative (p < 0.05) values. In addition, anaerobic characteristics seem to be of importance at the beginning of the XC skiing sprint competition, whereas the aerobic characteristics become more important as the XC skiing sprint competition progressed. This study indicates that sprint skiers should emphasize sport-specific upper body training, and training skiing economy at high speeds.

  14. Repeated-sprint and effort ability in rugby league players.

    PubMed

    Johnston, Rich D; Gabbett, Tim J

    2011-10-01

    The aim of this study was to (a) investigate the influence of tackling on repeated-sprint performance; (b) determine whether repeated-sprint ability (RSA) and repeated-effort ability (REA) are 2 distinct qualities; and (c) assess the test-retest reliability of repeated-sprint and repeated-effort tests in rugby league. Twelve rugby league players performed a repeated-sprint (12 × 20-m sprints performed on a 20-second cycle) and a repeated-effort (12 × 20-m sprints with intermittent tackling, performed on a 20-second cycle) test 7 days apart. The test-retest reliability of these tests was also established. Heart rate and rating of perceived exertion were recorded throughout the tests. There was a significantly greater (p ≤ 0.05) and large effect size (ES) differences for total sprint time (ES = 1.19), average heart rate (ES = 1.64), peak heart rate (ES = 1.35), and perceived exertion (ES = 3.39) for the repeated-effort test compared with the repeated-sprint test. A large difference (ES = 1.02, p = 0.06) was detected for percentage decrement between the 2 tests. No significant relationship was found between the repeated-sprint and repeated-effort tests for any of the dependent variables. Both tests proved reliable, with total sprint time being the most reliable method of assessing performance. This study demonstrates that the addition of tackling significantly increases the physiological response to repeated-sprint exercise and reduces repeated-sprint performance in rugby league players. Furthermore, RSA and REA appear to be 2 distinct qualities that can be reliably assessed with total time being the most reliable measure of performance.

  15. Interactions between a lizard and its thermal environment: implications for sprint performance and space utilization in the lizard Uta stansburiana

    SciTech Connect

    Waldschmidt, S.; Tracy, C.R.

    1983-06-01

    At the end of their breeding season, male side-blotched lizards, Uta stansburiana from western Colorado decreased their home range to a size not different from that of females. Both males and females showed a high degree of overlap in home ranges, not found in populations previously studied in Texas. Uta's sprint speed was dependent on body temperature, with maximum sprint speed occurring at body temperatures between 35/sup 0/C and 38/sup 0/C, with lower speeds at higher and lower temperatures. An energy budget model was used to predict the range of body temperatures (and thus sprint speeds) available to lizards in four microhabitats within each animal's home range. Predicted body temperatures were converted to a space-time index. The distribution of the space-time index in each microhabitat was used to predict the spatial and temporal distributions of lizards. Predicted distributions accurately reflected the measured distributions of lizards in the morning and late afternoon, but did not reflect the measured distributions during midday. These inconsistencies are thought to be the result of lizard responses to other temperature-dependent processes, such as evaporite water loss.

  16. Are "classical" tests of repeated-sprint ability in football externally valid? A new approach to determine in-game sprinting behaviour in elite football players.

    PubMed

    Schimpchen, Jan; Skorski, Sabrina; Nopp, Stephan; Meyer, Tim

    2016-01-01

    The aim of this study was to investigate the occurrence of repeated sprinting bouts in elite football. Furthermore, the construct validity of current tests assessing repeated-sprint ability (RSA) was analysed using information of sprinting sequences as they actually occurred during match-play. Sprinting behaviour in official competition was analysed for 19 games of the German national team between August 2012 and June 2014. A sprinting threshold was individually calculated based on the peak velocity reached during in-game sprinting. Players performed 17.2 ± 3.9 sprints per game and during the entire 19 games a total of 35 bouts of repeated sprinting (a minimum of three consecutive sprints with a recovery duration <30 s separating efforts). This averages one bout of repeated sprinting per player every 463 min. No general decrement in maximal sprinting speed was observed during bouts with up to five consecutive sprints. Results of the present study question the importance of RSA as it is classically defined. They indicate that shorter accelerations are more important in game-specific situations which do not reach speeds necessary to qualify them as sprints. The construct validity of classic tests of RSA in football is not supported by these observations.

  17. Core temperature responses and match running performance during intermittent-sprint exercise competition in warm conditions.

    PubMed

    Duffield, Rob; Coutts, Aaron J; Quinn, John

    2009-07-01

    This study investigated the thermoregulatory responses and match running performance of elite team sport competitors (Australian Rules football) during preseason games in a warm environment. During 2 games in dry bulb temperatures above 29 degrees C (>27 degrees C wet bulb globe temperature), 10 players were monitored for core temperature (Tcore) via a telemetric capsule, in-game motion patterns, blood lactate ([La]), body mass changes, urine specific gravity, and pre- and postgame vertical jump performance. The results showed that peak Tcore was achieved during the final quarter at 39.3 +/- 0.7 degrees C and that several players reached values near 40.0 degrees C. Further, the largest proportion of the total rise in Tcore (2.1 +/- 0.7 degrees C) occurred during the first quarter of the match, with only small increases during the remainder of the game. The game distance covered was 9.4 +/- 1.5 km, of which 2.7 +/- 0.9 km was at high-intensity speeds (>14.4 km x h(-1)). The rise in Tcore was correlated with first-quarter high-intensity running velocity (r = 0.72) and moderate-intensity velocity (r = 0.68), second-quarter Tcore and low-intensity activity velocity (r = -0.90), second-quarter Tcore and moderate-intensity velocity (r = 0.88), fourth-quarter rise in Tcore and very-high-intensity running distance (r = 0.70), and fourth-quarter Tcore and moderate-intensity velocity (r = 0.73). Additional results included mean game [La-] values of 8.7 +/- 0.1 mmol x L(-1), change in body mass of 2.1 +/- 0.8 kg, and no change (p > 0.05) in pre- to postgame vertical jump. These findings indicate that the plateau in Tcore may be regulated by the reduction in low-intensity activity and that pacing strategies may be employed during competitive team sports in the heat to ensure control of the internal heat load.

  18. Performance and energy systems contributions during upper-body sprint interval exercise

    PubMed Central

    Franchini, Emerson; Takito, Monica Yuri; Dal’Molin Kiss, Maria Augusta Peduti

    2016-01-01

    The main purpose of this study was to investigate the performance and energy systems contribution during four upper-body Wingate tests interspersed by 3-min intervals. Fourteen well-trained male adult Judo athletes voluntarily took part in the present study. These athletes were from state to national level, were in their competitive period, but not engaged in any weight loss procedure. Energy systems contributions were estimated using oxygen uptake and blood lactate measurements. The main results indicated that there was higher glycolytic contribution compared to oxidative (P<0.001) during bout 1, but lower glycolytic contribution was observed compared to the phosphagen system (adenosine triphosphate-creatine phosphate, ATP-PCr) contribution during bout 3 (P<0.001), lower glycolytic contribution compared to oxidative and ATP-PCr (P<0.001 for both comparisons) contributions during bout 4 and lower oxidative compared to ATP-PCr during bout 4 (P=0.040). For the energy system contribution across Wingate bouts, the ATP-PCr contribution during bout 1 was lower than that observed during bout 4 (P=0.005), and the glycolytic system presented higher percentage contribution in the first bout compared to the third and fourth bouts (P<0.001 for both comparisons), and higher percentage participation in the second compared to the fourth bout (P<0.001). These results suggest that absolute oxidative and ATP-PCr participations were kept constant across Wingate tests, but there was an increase in relative participation of ATP-PCr in bout 4 compared to bout 1, probably due to the partial phosphocreatine resynthesis during intervals and to the decreased glycolytic activity. PMID:28119874

  19. Soccer fatigue, sprinting and hamstring injury risk.

    PubMed

    Small, K; McNaughton, L R; Greig, M; Lohkamp, M; Lovell, R

    2009-08-01

    The aim of this study was to investigate the effect of a multi-directional soccer-specific fatigue protocol on sprinting kinematics in relation to hamstring injury risk. Nine semi-professional soccer players (Mean +/- SD: Age: 21.3 +/- 2.9 year; Height 185.0 +/- 8.7 cm; Body Mass 81.6 +/- 6.7 kg) completed the SAFT(90); a multi-directional, intermittent 90 min exercise protocol representative of soccer match-play. The 10m sprint times and three-dimensional kinematic data were recorded using a high-speed motion capture system (Qualisys Track Manager) every 15 min during the SAFT(90). A significant time dependent increase was observed in sprint time during the SAFT(90) (P<0.01) with a corresponding significant decrease in stride length (P<0.01). Analysis of the kinematic sprint data revealed significantly reduced combined maximal hip flexion and knee extension angle, indicating reduced hamstring length, between pre-exercise and half-time (P<0.01) and pre-exercise and full-time (P<0.05). These findings revealed that the SAFT(90) produced time dependent impairments in sprinting performance and kinematics of technique which may result from shorter hamstring muscle length. Alterations in sprinting technique may have implications for the increased predisposition to hamstring strain injury during the latter stages of soccer match-play.

  20. Core temperature changes and sprint performance of elite female soccer players after a 15-minute warm-up in a hot-humid environment.

    PubMed

    Somboonwong, Juraiporn; Chutimakul, Ladawan; Sanguanrungsirikul, Sompol

    2014-11-25

    Warm-up session should be modified according to the environmental conditions. However, there is limited evidence regarding the proper soccer warm-up time for female players in the heat. The purpose of the present study was to examine the rise in core body temperature and the sprint performance after a 15-minute warm-up in a hot-humid environment using female soccer players during different phases of their menstrual cycle. Thirteen eumenorrheic national female soccer players (aged 18.8±1.3years, VO2max53.05±6.66 mL·kg·min) performed a 15-minute warm-up protocol at an ambient temperature of 32.5±1.6C with a relative humidity of 53.6±10.2% during their early follicular and mid-luteal phases of their cycle. The warm-up protocol is composed of jogging, skipping by moving the legs in various directions, and sprinting alternated with jogging, followed by a 45-minute recovery period. Rectal temperatures were recorded during the rest period and every 5 minutes throughout the warm-up and recovery phases of the study. Heart rate was monitored at rest and every 5 minutes during warm-up. Forty-yard sprint time was assessed immediately after the completion of warm-up which was later compared to the time at baseline. The value for the baseline was obtained at least 2 days prior to the experiment. During the early follicular and mid-luteal phases, the rectal temperatures obtained at the end of the warm-up period were significantly (P<0.05) higher by 1.26C (95% CI = +0.46 to +2.06C) and 1.18 C (95% CI = +0.53 to +1.83C) whereas the heart rates increased to 153.67±20.34 and 158.38±15.19 beats per mins, respectively. After 20 minutes of the recovery period, the rectal temperature decreased by approximately 50%. The sprint times were significantly (P<0.05) faster post-warm-up during both the early follicular (5.52 s; 95% CI = 5.43-5.60 s) and mid-luteal phases (5.51 s; 95% CI = 5.41-5.60 s) compared to the baseline time (5.66 s; 95% CI = 5.58-5.74 s). There were no significant

  1. Core temperature changes and sprint performance of elite female soccer players after a 15-minute warm-up in a hot-humid environment.

    PubMed

    Somboonwong, Juraiporn; Chutimakul, Ladawan; Sanguanrungsirikul, Sompol

    2015-01-01

    Warm-up session should be modified according to the environmental conditions. However, there is limited evidence regarding the proper soccer warm-up time for female players in the heat. The purpose of this study was to examine the rise in core body temperature and the sprint performance after a 15-minute warm-up in a hot-humid environment using female soccer players during the different phases of their menstrual cycle. Thirteen eumenorrheic national female soccer players (aged 18.8 ± 1.3 years, (Equation is included in full-text article.)53.05 ± 6.66 ml·kg·min) performed a 15-minute warm-up protocol at an ambient temperature of 32.5 ± 1.6° C with a relative humidity of 53.6 ± 10.2% during their early follicular and midluteal phases of their cycle. The warm-up protocol is composed of jogging, skipping by moving the legs in various directions, and sprinting alternated with jogging, followed by a 45-minute recovery period. Rectal temperatures were recorded during the rest period and every 5 minutes throughout the warm-up and recovery phases of the study. Heart rate was monitored at rest and every 5 minutes during the warm-up. Forty-yard sprint time was assessed immediately after the completion of warm-up, which was later compared with the time at baseline. The value for the baseline was obtained at least 2 days before the experiment. During the early follicular and midluteal phases, the rectal temperatures obtained at the end of the warm-up period were significantly (p < 0.05) higher by 1.26° C (95% confidence interval [CI] = +0.46 to +2.06° C) and 1.18° C (95% CI = +0.53 to +1.83° C), whereas the heart rates increased to 153.67 ± 20.34 and 158.38 ± 15.19 b·min, respectively. After 20 minutes of the recovery period, the rectal temperature decreased by approximately 50%. The sprint times were significantly (p < 0.05) faster post-warm-up during both the early follicular (5.52 seconds; 95% CI = 5.43-5.60 seconds) and midluteal phases (5.51 seconds; 95% CI

  2. β-Alanine Supplementation Improves Throwing Velocities in Repeated Sprint Ability and 200-m Swimming Performance in Young Water Polo Players.

    PubMed

    Claus, Gabriel Machado; Redkva, Paulo Eduardo; Brisola, Gabriel Mota Pinheiro; Malta, Elvis Sousa; de Poli, Rodrigo de Araujo Bonetti; Miyagi, Willian Eiji; Zagatto, Alessandro Moura

    2017-01-25

    The purpose of this study was to investigate the effects of β-alanine supplementation on specific tests for water polo. Fifteen young water polo players (16±2years) underwent a 200-m swimming performance, repeated-sprint ability test (RSA) with free throw (shooting), and 30-s maximal teth-ered eggbeater kicks. Participants were randomly allocated into two groups (placebo x β-alanine) and supplemented with 6.4g∙day(-1) of β-alanine or a placebo for six weeks. The mean and total RSA times, the magnitude based inference analysis showed a likely beneficial effect for β-alanine sup-plementation (both 79.9%). The ball velocity measured in the throwing performance after each sprint in the RSA presented a very like beneficial inference in the β-alanine group for mean (96.4%) and percentage decrement of ball velocity (92.5%, likely beneficial). Furthermore, the percentage change for mean ball velocity was different between groups (β-alanine=+2.5% and placebo=-3.5%) (p=.034). In the 30-s maximal tethered eggbeater kicks the placebo group presented decreased peak force, mean force, and fatigue index, while the β-alanine group maintained performance in mean force (44.1%, possibly beneficial), only presenting decreases in peak force. The 200-m swimming performance showed a possibly beneficial effect (68.7%). Six weeks of β-alanine supplementation was effective for improving ball velocity shooting in the RSA, maintaining performance in the 30-s test, and providing possibly beneficial effects in the 200-m swimming performance.

  3. The Effects of in-Season Repeated Sprint Training Compared to Regular Soccer Training

    PubMed Central

    Nedrehagen, Eirik Solberg; Saeterbakken, Atle Hole

    2015-01-01

    The aim of this study was to compare the effects of repeated sprints (RSA) training and regular soccer training on Yo-Yo IR-1 and RSA performance (6 x 40 m shuttle sprints). Thirteen semi-professional female soccer players and nine amateur male soccer players were randomised into a repeated sprint group (RSG; n = 12) or a regular soccer training group (STG; n = 10). The RSG soccer players executed 3–4 sets of 4–6 repeated sprints (30 m with 180° directional changes) weekly during the last eight weeks of the in-season. In parallel, the STG soccer players performed low- to moderate intensity soccer training in form of technical or tactical skills. The RSG showed 15% improvement in Yo-Yo IR-1 (p = 0.04; ES = 1.83) and their mean RSA times were reduced by 1.5% (p = 0.02; ES = 0.89). No significant changes were found for the STG (Yo-Yo IR-1, p = 0.13; RSA, p = 0.49). Comparing the groups, greater improvements were observed in Yo-Yo IR-1 for the RSG (p = 0.02; ES = 1.15), but not for the RSA (p = 0.23; ES = −0.33). Similar training volumes and intensities (% of HFmax) were observed between the groups (p = 0.22 and p = 0.79). In conclusion, a weekly RSA session integrated into a regular soccer regime improved in-season RSA and Yo-Yo IR-1 performance compared to regular soccer training. PMID:26839624

  4. Repeated sprint ability in young basketball players: one vs. two changes of direction (Part 1).

    PubMed

    Padulo, Johnny; Laffaye, Guillaume; Haddad, Monoem; Chaouachi, Anis; Attene, Giuseppe; Migliaccio, Gian Mario; Chamari, Karim; Pizzolato, Fabio

    2015-01-01

    The present study aimed to compare the changes of direction on repeated sprint ability (RSA) vs. intensive repeated sprint ability (IRSA) protocols in basketball. Eighteen young male basketball players performed on RSA [10 × 30-m (15 + 15-m, one change of direction)] and IRSA [10 × 30-m (10 + 10 + 10-m, two changes of direction)]. A correlation matrix between RSA, IRSA, "squat jump (SJ)-countermovement jump (CMJ)", footstep analysis and total distance in Yo-Yo intermittent recovery level 1 was performed. The best time, worst time, total time and the number of footsteps were significantly smaller in the RSA test compared to IRSA test (P < 0.001), even though they were significantly correlated with each other (r > 0.80, P < 0.05). Blood lactate level and fatigue index did not show any difference between tests. The sensibility of the two tests assessed by the Bland-Altman analysis revealed a small bias (<1.5%) for almost all variables. Moreover, almost all time variables of the two tests were significantly correlated with the SJ (r > 0.478, P < 0.05), CMJ (r > 0.515, P < 0.05) and Yo-Yo (r > 0.489, P < 0.05) performances. The IRSA provided a reliable method for assessing specific sprint ability (with 10-m legs for IRSA ~2.3 s vs. 15 m for RSA ~3 s) with a closer link to basketball game's actions (~2 s). Besides, IRSA could be an appropriate choice for assessing both RSA and changes of direction capacities in basketball players.

  5. The Effects of Muscular Fatigue on the Kinetics of Sprint Running.

    ERIC Educational Resources Information Center

    Sprague, Paul; Mann, Ralph V.

    1983-01-01

    To compare the kinematic and kinetic effects of fatigue on the biomechanics of sprint running, male subjects were filmed performing a short maximal exertion sprint and a long fatiguing sprint. Observable differences in the productive muscular activity of the better and the poorer sprinters occurred during the ground-phase of their strides.…

  6. The effect of ego depletion on sprint start reaction time.

    PubMed

    Englert, Chris; Bertrams, Alex

    2014-10-01

    In the current study, we consider that optimal sprint start performance requires the self-control of responses. Therefore, start performance should depend on athletes' self-control strength. We assumed that momentary depletion of self-control strength (ego depletion) would either speed up or slow down the initiation of a sprint start, where an initiation that was sped up would carry the increased risk of a false start. Applying a mixed between- (depletion vs. nondepletion) and within- (before vs. after manipulation of depletion) subjects design, we tested the start reaction times of 37 sport students. We found that participants' start reaction times decelerated after finishing a depleting task, whereas it remained constant in the nondepletion condition. These results indicate that sprint start performance can be impaired by unrelated preceding actions that lower momentary self-control strength. We discuss practical implications in terms of optimizing sprint starts and related overall sprint performance.

  7. Relationship between brief and prolonged repeated sprint ability.

    PubMed

    Oliver, Jonathan L; Armstrong, Neil; Williams, Craig A

    2009-01-01

    Repeated sprint ability (RSA) is often assessed over a brief time period with limited recovery between sprints; however, it is not known how performance in such tests is related to the ability to perform repeated sprints over a more prolonged duration. Eighteen boys aged 15.3+/-0.5 years completed both a brief and prolonged RSA test on a non-motorised treadmill. The brief RSA test consisted of seven 5s sprints with 20s of recovery between sprints and the prolonged RSA test lasted for 42min and included a 5s sprint every 2min. There was a moderate but significant relationship between the mean speed in both tests (r=0.51, p<0.05). The maximal speed achieved in a single sprint provided strong relationships with both brief RSA speed (r> or =0.72, p<0.001) and prolonged RSA speed (r> or =0.77, p<0.001). Total work done during the brief protocol was significantly correlated to both total work (r=0.81, p<0.001) and total sprint distance (r=0.79, p<0.001) during the prolonged test. There were no significant relationships between percentage decrement scores across the two protocols (r< or =0.33, p>0.05). Maximal speed in a single sprint and total work done during repeated sprints represent general qualities related to RSA that are independent of the test protocol. The mean speed and decrements in performance represent specific RSA qualities, which are dependent on the frequency of sprints and duration of the test protocol.

  8. Effects of in-season short-term plyometric training program on leg power, jump- and sprint performance of soccer players.

    PubMed

    Chelly, Mohamed Souhaiel; Ghenem, Mohamed Ali; Abid, Khalil; Hermassi, Souhail; Tabka, Zouhair; Shephard, Roy J

    2010-10-01

    Our hypothesis was that the addition of an 8-week lower limb plyometric training program (hurdle and depth jumping) to normal in-season conditioning would enhance measures of competitive potential (peak power output [PP], jump force, jump height, and lower limb muscle volume) in junior soccer players. The subjects (23 men, age 19 ± 0.7 years, body mass 70.5 ± 4.7 kg, height 1.75 ± 0.06 m, body fat 14.7 ± 2.6%) were randomly assigned to a control (normal training) group (Gc; n = 11) and an experimental group (Gex, n = 12) that also performed biweekly plyometric training. A force-velocity ergometer test determined PP. Characteristics of the squat jump (SJ) and the countermovement jump (CMJ) (jump height, maximal force and velocity before take-off, and average power) were determined by force platform. Video-camera kinematic analyses over a 40-m sprint yielded running velocities for the first step (VS), the first 5 m (V5m) and between 35 and 40 m (Vmax). Leg muscle volume was estimated using a standard anthropometric kit. Gex showed gains relative to controls in PP (p < 0.01); SJ (height p < 0.01; velocity p < 0.001), CMJ (height p < 0.001; velocity p < 0.001, average power p < 0.01) and all sprint velocities (p < 0.001 for V5m and Vmax, p < 0.01 for VS). There was also a significant increase (p < 0.05) in thigh muscle volume, but leg muscle volume and mean thigh cross-sectional area remain unchanged. We conclude that biweekly plyometric training of junior soccer players (including adapted hurdle and depth jumps) improved important components of athletic performance relative to standard in-season training. Accordingly, such exercises are highly recommended as part of an annual soccer training program.

  9. Sprint kayaking and canoeing performance prediction based on the relationship between maturity status, anthropometry and physical fitness in young elite paddlers.

    PubMed

    López-Plaza, Daniel; Alacid, Fernando; Muyor, José María; López-Miñarro, Pedro Ángel

    2017-06-01

    This study aimed to identify the maturity-related differences and its influence on the physical fitness, morphological and performance characteristics of young elite paddlers. In total, 89 kayakers and 82 canoeists, aged 13.69 ± 0.57 years (mean ± s), were allocated in three groups depending on their age relative to the age at peak height velocity (pre-APHV, circum-APHV and post-APHV) and discipline (kayak and canoe). Nine anthropometric variables, a battery of four physical fitness tests (overhead medicine ball throw, countermovement jump, sit-and-reach test and 20 m multistage shuttle run test) and three specific performance tests (1000, 500 and 200 m) were assessed. Both disciplines presented significant maturity-based differences in all anthropometric parameters (except for fat and muscle mass percentage), overhead medicine ball throw and all performance times (pre > circum > post; P < 0.05). Negative and significant correlations (P < 0.01) were detected between performance times, chronological age and anthropometry (body mass, height, sitting height and maturity status), overhead medicine ball throw and sit and reach for all distances. These findings confirm the importance of maturity status in sprint kayaking and canoeing since the more mature paddlers were also those who revealed largest body size, physical fitness level and best paddling performance. Additionally, the most important variables predicting performance times in kayaking and canoeing were maturity status and chronological age, respectively.

  10. The effect of resisted sprint training on maximum sprint kinetics and kinematics in youth.

    PubMed

    Rumpf, Michael C; Cronin, John B; Mohamad, Ikhwan N; Mohamad, Sharil; Oliver, Jon L; Hughes, Michael G

    2015-01-01

    Resisted sled towing is a popular and efficient training method to improve sprint performance in adults, however, has not been utilised in youth populations. The purpose therefore was to investigate the effect of resisted sled towing training on the kinematics and kinetics of maximal sprint velocity in youth of different maturation status. Pre- and post-intervention 30 metre sprint performance of 32 children, 18 pre-peak height velocity (PHV) and 14 mid-/post-PHV, were tested on a non-motorised treadmill. The 6-week intervention consisted of ∼12 sessions for pre-PHV and 14 for mid-/post-PHV of resisted sled towing training with each sessions comprised of 8-10 sprints covering 15-30 metres with a load of 2.5, 5, 7.5 or 10% body mass. Pre-PHV participants did not improve sprint performance, while the mid-/post-PHV participants had significant (P < 0.05) reductions (percent change, effect size) in sprint time (-5.76, -0.74), relative leg stiffness (-45.0, -2.16) and relative vertical stiffness (-17.4, -0.76) and a significant increase in average velocity (5.99, 0.76), average step rate (5.65, 0.53), average power (6.36, 0.31), peak horizontal force (9.70, 0.72), average relative vertical forces (3.45, 1.70) and vertical displacement (14.6, 1.46). It seems that sled towing may be a more suitable training method in mid-/post-PHV athletes to improve 30 metre sprint performance.

  11. The effect of 40-m repeated sprint training on maximum sprinting speed, repeated sprint speed endurance, vertical jump, and aerobic capacity in young elite male soccer players.

    PubMed

    Tønnessen, Espen; Shalfawi, Shaher A I; Haugen, Thomas; Enoksen, Eystein

    2011-09-01

    The purpose of this study was to examine the effect of 10 weeks' 40-m repeated sprint training program that does not involve strength training on sprinting speed and repeated sprint speed on young elite soccer players. Twenty young well-trained elite male soccer players of age (±SD) 16.4 (±0.9) years, body mass 67.2 (±9.1) kg, and stature 176.3 (±7.4) cm volunteered to participate in this study. All participants were tested on 40-m running speed, 10 × 40-m repeated sprint speed, 20-m acceleration speed, 20-m top speed, countermovement jump (CMJ), and aerobic endurance (beep test). Participants were divided into training group (TG) (n = 10) and control group (CG) (n = 10). The study was conducted in the precompetition phase of the training program for the participants and ended 13 weeks before the start of the season; the duration of the precompetition period was 26 weeks. The TG followed a Periodized repeated sprint training program once a week. The training program consisted of running 40 m with different intensities and duration from week to week. Within-group results indicate that TG had a statistically marked improvement in their performance from pre to posttest in 40-m maximum sprint (-0.06 seconds), 10 × 40-m repeated sprint speed (-0.12 seconds), 20- to 40-m top speed (-0.05 seconds), and CMJ (2.7 cm). The CG showed only a statistically notable improvement from pre to posttest in 10 × 40-m repeated sprint speed (-0.06 seconds). Between-group differences showed a statistically marked improvement for the TG over the CG in 10 × 40-m repeated sprint speed (-0.07 seconds) and 20- to 40-m top speed (-0.05 seconds), but the effect of the improvement was moderate. The results further indicate that a weekly training with repeated sprint gave a moderate but not statistically marked improvement in 40-m sprinting, CMJ, and beep test. The results of this study indicate that the repeated sprint program had a positive effect on several of the parameters tested

  12. A 6-week Sprint Interval Training Program Changes Anaerobic Power, Quadriceps Moment, and Subcutaneous Tissue Thickness.

    PubMed

    Han, Seunguk; Lee, Hyungkyu; Kim, Hyungkee; Kim, Dasol; Choi, Changkyu; Park, Jihong

    2017-02-01

    We examined the effects of a 6-week 40-m one-way sprint interval training program (based on sprint time). 13 untrained healthy male collegiate students performed six 40-m sprints with a 60-s resting interval between sprints during the first week, and one sprint was added each week until the sixth week. If the 40-m sprint time exceeded 110% of the fastest baseline 40-m sprint time, the run was repeated. Repeated-sprint cycling test (every 3 weeks), quadriceps moment (every 2 weeks), and abdominal and thigh subcutaneous tissue thickness (every 2 weeks) were measured. Compared to baseline, mean power output improved at week 3 (16.27 vs. 17.73 Watt/kg, p=0.004). Regardless of side, quadriceps moment began to increase at week 4 (2.88 vs. 3.15 N·m/kg, p=0.03). Subcutaneous tissue thickness was reduced at week 2 (abdominal: 11.19 vs. 9.65 mm, p=0.01; thigh: 9.17 vs. 8.12 mm, p=0.009). Our results suggest that (1) sprint training with an intensity of 110% of the fastest baseline 40-m sprint time with the addition of one sprint per week produces similar effects to other training programs, and (2) untrained individuals need 4 weeks of training for strength development in the quadriceps and 2 weeks for reduction in fat tissue thickness.

  13. Caffeine Ingestion Improves Repeated Freestyle Sprints in Elite Male Swimmers

    PubMed Central

    Goods, Paul S.R.; Landers, Grant; Fulton, Sacha

    2017-01-01

    The purpose of this investigation was to determine the efficacy of a moderate dose of caffeine to improve repeat-sprint performance in elite freestyle sprinters. Nine highly trained male swimmers performed 6 x 75 m freestyle sprints on two occasions 1-h after consuming either 3 mg·kg-1 caffeine (CAF), or placebo, in a cross-over manner. Capillary blood samples for the analysis of blood lactate concentration and pH were collected after the 1st, 3rd, and 5th sprint, while heart rate and perceived exertion (RPE) were collected after every sprint. There was a moderate effect for improved mean sprint time in the CAF condition (0.52 s; 1.3%; d = 0.50). When assessed individually, there was a large effect for improved performance in sprints 3 (1.00 s; 2.5%; d = 1.02) and 4 (0.84 s; 2.1%; d = 0.84) in CAF compared to placebo, with worthwhile performance improvement found for each of the first 5 sprints. There was a significant treatment effect for higher blood lactate concentration for CAF (p = 0.029), and a significant treatment*time effect for reduced pH in the CAF condition (p = 0.004). Mean heart rate (167 ± 9 bpm vs 169 ± 7 bpm) and RPE (17 ± 1 vs 17 ± 1) were not different between placebo and CAF trials, respectively. This investigation is the first to demonstrate enhanced repeat-sprint ability in swimmers following acute caffeine ingestion. It appears likely that the combination of a moderate dose of caffeine (3-6 mg·kg-1) with trained athletes is most likely to enhance repeat-sprint ability in various athletic populations; however, the exact mechanism(s) for an improved repeat-sprint ability following acute caffeine ingestion remain unknown. Key points A moderate dose of caffeine (3 mg·kg-1) ingested 1 h before a repeat-sprint freestyle set significantly improves mean sprint time in elite swimmers. The combination of at least a moderate dose of caffeine (>3 mg·kg-1) with trained athletes appears the most likely to result in ergogenic benefit to anaerobic

  14. Effect of the coefficient of friction of a running surface on sprint time in a sled-towing exercise.

    PubMed

    Linthorne, Nicholas P; Cooper, James E

    2013-06-01

    This study investigated the effect of the coefficient of friction of a running surface on an athlete's sprint time in a sled-towing exercise. The coefficients of friction of four common sports surfaces (a synthetic athletics track, a natural grass rugby pitch, a 3G football pitch, and an artificial grass hockey pitch) were determined from the force required to tow a weighted sled across the surface. Timing gates were then used to measure the 30-m sprint time for six rugby players when towing a sled of varied weight across the surfaces. There were substantial differences between the coefficients of friction for the four surfaces (micro = 0.21-0.58), and in the sled-towing exercise the athlete's 30-m sprint time increased linearly with increasing sled weight. The hockey pitch (which had the lowest coefficient of friction) produced a substantially lower rate of increase in 30-m sprint time, but there were no significant differences between the other surfaces. The results indicate that although an athlete's sprint time in a sled-towing exercise is affected by the coefficient offriction of the surface, the relationship relationship between the athlete's rate of increase in 30-m sprint time and the coefficient of friction is more complex than expected.

  15. Relationship between sprint ability and loaded/unloaded jump tests in elite sprinters.

    PubMed

    Loturco, Irineu; DʼAngelo, Ricardo A; Fernandes, Victor; Gil, Saulo; Kobal, Ronaldo; Cal Abad, Cesar C; Kitamura, Katia; Nakamura, Fabio Y

    2015-03-01

    The neuromechanical determinants of sprint running performance have been investigated in team sports athletes and non-elite sprinters. The aim of this study was to quantify the relationships between kinetic and performance parameters, obtained in loaded and unloaded vertical and horizontal jumps, and sprinting in elite athletes. Twenty-two sprinters performed squat jumps, countermovement jumps, horizontal jumps, and jump squats with different loads on a force platform, in addition to a 50-m sprint. Results indicated that jumping height and distance in vertical and horizontal jumps are more strongly correlated (R ≈ 0.81) to sprinting speed than the respective peak forces (R ≈ 0.36). Furthermore, the optimum load generating the maximum power in the jump squat is also highly correlated to sprint performance (R ≈ 0.72). These results reveal that vertical and horizontal jump tests may be used by coaches for assessing and monitoring qualities related to sprinting performance in elite sprinters.

  16. Repeated sprint training in normobaric hypoxia.

    PubMed

    Galvin, Harvey M; Cooke, Karl; Sumners, David P; Mileva, Katya N; Bowtell, Joanna L

    2013-12-01

    Repeated sprint ability (RSA) is a critical success factor for intermittent sport performance. Repeated sprint training has been shown to improve RSA, we hypothesised that hypoxia would augment these training adaptations. Thirty male well-trained academy rugby union and rugby league players (18.4 ± 1.5 years, 1.83 ± 0.07 m, 88.1 ± 8.9 kg) participated in this single-blind repeated sprint training study. Participants completed 12 sessions of repeated sprint training (10 × 6 s, 30 s recovery) over 4 weeks in either hypoxia (13% FiO₂) or normoxia (21% FiO₂). Pretraining and post-training, participants completed sports specific endurance and sprint field tests and a 10 × 6 s RSA test on a non-motorised treadmill while measuring speed, heart rate, capillary blood lactate, muscle and cerebral deoxygenation and respiratory measures. Yo-Yo Intermittent Recovery Level 1 test performance improved after RS training in both groups, but gains were significantly greater in the hypoxic (33 ± 12%) than the normoxic group (14 ± 10%, p<0.05). During the 10 × 6 s RS test there was a tendency for greater increases in oxygen consumption in the hypoxic group (hypoxic 6.9 ± 9%, normoxic (-0.3 ± 8.8%, p=0.06) and reductions in cerebral deoxygenation (% changes for both groups, p=0.09) after hypoxic than normoxic training. Twelve RS training sessions in hypoxia resulted in twofold greater improvements in capacity to perform repeated aerobic high intensity workout than an equivalent normoxic training. Performance gains are evident in the short term (4 weeks), a period similar to a preseason training block.

  17. Repeated sprint training in normobaric hypoxia

    PubMed Central

    Galvin, Harvey M; Cooke, Karl; Sumners, David P; Mileva, Katya N; Bowtell, Joanna L

    2013-01-01

    Repeated sprint ability (RSA) is a critical success factor for intermittent sport performance. Repeated sprint training has been shown to improve RSA, we hypothesised that hypoxia would augment these training adaptations. Thirty male well-trained academy rugby union and rugby league players (18.4±1.5 years, 1.83±0.07 m, 88.1±8.9 kg) participated in this single-blind repeated sprint training study. Participants completed 12 sessions of repeated sprint training (10×6 s, 30 s recovery) over 4 weeks in either hypoxia (13% FiO2) or normoxia (21% FiO2). Pretraining and post-training, participants completed sports specific endurance and sprint field tests and a 10×6 s RSA test on a non-motorised treadmill while measuring speed, heart rate, capillary blood lactate, muscle and cerebral deoxygenation and respiratory measures. Yo-Yo Intermittent Recovery Level 1 test performance improved after RS training in both groups, but gains were significantly greater in the hypoxic (33±12%) than the normoxic group (14±10%, p<0.05). During the 10×6 s RS test there was a tendency for greater increases in oxygen consumption in the hypoxic group (hypoxic 6.9±9%, normoxic (−0.3±8.8%, p=0.06) and reductions in cerebral deoxygenation (% changes for both groups, p=0.09) after hypoxic than normoxic training. Twelve RS training sessions in hypoxia resulted in twofold greater improvements in capacity to perform repeated aerobic high intensity workout than an equivalent normoxic training. Performance gains are evident in the short term (4 weeks), a period similar to a preseason training block. PMID:24282212

  18. Effects of a contrast training program without external load on vertical jump, kicking speed, sprint, and agility of young soccer players.

    PubMed

    García-Pinillos, Felipe; Martínez-Amat, Antonio; Hita-Contreras, Fidel; Martínez-López, Emilio J; Latorre-Román, Pedro A

    2014-09-01

    The purpose of this study was to determine the effects of a 12-week contrast training (CT) program (isometric + plyometric), with no external loads, on the vertical jump, kicking speed, sprinting, and agility skills of young soccer players. Thirty young soccer players (age, 15.9 ± 1.43 years; weight, 65.4 ± 10.84 kg; height, 171.0 ± 0.06 cm) were randomized in a control group (n = 13) and an experimental group (n = 17). The CT program was included in the experimental group's training sessions, who undertook it twice a week as a part of their usual weekly training regime. This program included 3 exercises: 1 isometric and 2 plyometric, without external loads. These exercises progressed in volume throughout the training program. Performance in countermovement jump (CMJ), Balsom agility test (BAT), 5-, 10-, 20-, and 30-m sprint, and soccer kick were assessed before and after the training program. A 2-factor (group and time) analysis of variance revealed significant improvements (p < 0.001) in CMJ, BAT, and kicking speed in the experimental group players. Control group remained unchanged in these variables. Both groups significantly reduced sprint times over 5, 10, 20, and 30 m (p ≤ 0.05). A significant correlation (r = 0.492, p < 0.001) was revealed between ΔBAT and Δaverage kicking speed. Results suggest that a specific CT program without external loads is effective for improving soccer-specific skills such as vertical jump, sprint, agility, and kicking speed in young soccer players.

  19. Relationship between vertical and horizontal jump variables and muscular performance in athletes.

    PubMed

    Dobbs, Caleb W; Gill, Nicholas D; Smart, Daniel J; McGuigan, Michael R

    2015-03-01

    This study investigated the relationship between vertical and horizontal measures in bilateral and unilateral countermovement jump, drop jump and squat jump (SJ), and sprinting speed and muscle architecture of both the vastus lateralis and gastrocnemius. Subjects (n = 17) completed a 30-m sprint test, muscle stiffness test; ultrasound measures, and a jump testing session. Measures of horizontal peak and mean force, in both bilateral and unilateral jumps, tended to have greater relationships to sprint speeds (R = 0.132-0.576) than peak and mean force in the vertical plane (R = 0.008-0.504). Vertical velocity variables also showed some large and very large correlations to sprint speed (R = 0.062-0.635). Unilateral measures of velocity tended to have larger correlations to sprint performance than their bilateral counterparts across all jump types and peak and mean velocity in SJ showed large and very large correlations to sprint speed (bilateral R = 0.227-0.635; unilateral 0.393-0.574). Few large correlations were shown between muscle stiffness measures of muscle architecture and kinetic and kinematic variables in either vertical or horizontal jumps. The present findings suggest that sport scientists and strength and conditioning practitioners concerned with the prognostic value of kinetic variables to functional movements such as sprint speed should also use horizontal jumps in addition to vertical jumps in testing and training.

  20. The Effect of Acute Vibration Exercise on Short-Distance Sprinting and Reactive Agility

    PubMed Central

    Cochrane, Darryl J.

    2013-01-01

    Vibration exercise (VbX) has been a popular modality to enhancing physical performance, where various training methods and techniques have been employed to improve immediate and long-term sprint performance. However, the use of acute side-alternating VbX on sprint and agility performance remains unclear. Eight female athletes preformed side-alternating vibration exercise (VbX) and control (no VbX) in a cross over randomised design that was conducted one week apart. After performing a warm-up, the athletes undertook maximal 5m sprints and maximal reactive agility sprints (RAT), this was followed by side-alternating VbX (26 Hz, 6mm) or control (no VbX). Immediately following the intervention, post-sprint tests and RAT were performed. There was a significant treatment effect but there was no time effect (pre vs. post) or interaction effect for sprint and RAT; however, side-alternating VbX did not compromise sprint and agility performance. Key Points Acute VbX could be beneficial for the acceleration phase (1.5m) of a short-distance sprint. Acute VbX does not have positive influence on short-distance (3m & 5m) sprint performance. Acute VbX does not enhance reactive agility performance. PMID:24149157

  1. Sprint Conditioning of Junior Soccer Players: Effects of Training Intensity and Technique Supervision

    PubMed Central

    Haugen, Thomas; Tønnessen, Espen; Øksenholt, Øyvind; Haugen, Fredrik Lie; Paulsen, Gøran; Enoksen, Eystein; Seiler, Stephen

    2015-01-01

    The aims of the present study were to compare the effects of 1) training at 90 and 100% sprint velocity and 2) supervised versus unsupervised sprint training on soccer-specific physical performance in junior soccer players. Young, male soccer players (17 ±1 yr, 71 ±10 kg, 180 ±6 cm) were randomly assigned to four different treatment conditions over a 7-week intervention period. A control group (CON, n=9) completed regular soccer training according to their teams’ original training plans. Three training groups performed a weekly repeated-sprint training session in addition to their regular soccer training sessions performed at A) 100% intensity without supervision (100UNSUP, n=13), B) 90% of maximal sprint velocity with supervision (90SUP, n=10) or C) 90% of maximal sprint velocity without supervision (90UNSUP, n=13). Repetitions x distance for the sprint-training sessions were 15x20 m for 100UNSUP and 30x20 m for 90SUP and 90UNSUP. Single-sprint performance (best time from 15x20 m sprints), repeated-sprint performance (mean time over 15x20 m sprints), countermovement jump and Yo-Yo Intermittent Recovery Level 1 (Yo-Yo IR1) were assessed during pre-training and post-training tests. No significant differences in performance outcomes were observed across groups. 90SUP improved Yo-Yo IR1 by a moderate margin compared to controls, while all other effect magnitudes were trivial or small. In conclusion, neither weekly sprint training at 90 or 100% velocity, nor supervised sprint training enhanced soccer-specific physical performance in junior soccer players. PMID:25798601

  2. Sprint conditioning of junior soccer players: effects of training intensity and technique supervision.

    PubMed

    Haugen, Thomas; Tønnessen, Espen; Øksenholt, Øyvind; Haugen, Fredrik Lie; Paulsen, Gøran; Enoksen, Eystein; Seiler, Stephen

    2015-01-01

    The aims of the present study were to compare the effects of 1) training at 90 and 100% sprint velocity and 2) supervised versus unsupervised sprint training on soccer-specific physical performance in junior soccer players. Young, male soccer players (17 ± 1 yr, 71 ± 10 kg, 180 ± 6 cm) were randomly assigned to four different treatment conditions over a 7-week intervention period. A control group (CON, n = 9) completed regular soccer training according to their teams' original training plans. Three training groups performed a weekly repeated-sprint training session in addition to their regular soccer training sessions performed at A) 100% intensity without supervision (100UNSUP, n = 13), B) 90% of maximal sprint velocity with supervision (90SUP, n = 10) or C) 90% of maximal sprint velocity without supervision (90UNSUP, n=13). Repetitions x distance for the sprint-training sessions were 15 x 20 m for 100UNSUP and 30 x 20 m for 90SUP and 90UNSUP. Single-sprint performance (best time from 15 x 20 m sprints), repeated-sprint performance (mean time over 15 x 20 m sprints), countermovement jump and Yo-Yo Intermittent Recovery Level 1 (Yo-Yo IR1) were assessed during pre-training and post-training tests. No significant differences in performance outcomes were observed across groups. 90SUP improved Yo-Yo IR1 by a moderate margin compared to controls, while all other effect magnitudes were trivial or small. In conclusion, neither weekly sprint training at 90 or 100% velocity, nor supervised sprint training enhanced soccer-specific physical performance in junior soccer players.

  3. Static stretching can impair explosive performance for at least 24 hours.

    PubMed

    Haddad, Monoem; Dridi, Amir; Chtara, Moktar; Chaouachi, Anis; Wong, Del P; Behm, David; Chamari, Karim

    2014-01-01

    The aim of this study was to compare the effects of static vs. dynamic stretching (DS) on explosive performances and repeated sprint ability (RSA) after a 24-hour delay. Sixteen young male soccer players performed 15 minutes of static stretching (SS), DS, or a no-stretch control condition (CC) 24 hours before performing explosive performances and RSA tests. This was a within-subject repeated measures study with SS, DS, and CC being counterbalanced. Stretching protocols included 2 sets of 7 minutes 30 seconds (2 repetitions of 30 seconds with a 15-second passive recovery) for 5 muscle groups (quadriceps, hamstring, calves, adductors, and hip flexors). Twenty-four hours later (without any kind of stretching in warm-up), the players were tested for the 30-m sprint test (with 10- and 20-m lap times), 5 jump test (5JT), and RSA test. Significant differences were observed between CC, SS, and DS with 5JT (F = 9.99, p < 0.00, effect size [ES] = 0.40), 10-m sprint time (F = 46.52, p < 0.00, ES = 0.76), 20-m sprint time (F = 18.44, p < 0.000, ES = 0.55), and 30-m sprint time (F = 34.25, p < 0.000, ES = 0.70). The significantly better performance (p < 0.05) was observed after DS as compared with that after CC and SS in 5JT, and sprint times for 10, 20, and 30 m. In contrast, significantly worse performance (p < 0.05) was observed after SS as compared with that after CC in 5JT, and sprint times for 10, 20, and 30 m. With RSA, no significant difference was observed between different stretching protocols in the total time (F = 1.55, p > 0.05), average time (F = 1.53, p > 0.05), and fastest time (F = 2.30, p > 0.05), except for the decline index (F = 3.54, p < 0.04, ES = 0.19). Therefore, the SS of the lower limbs and hip muscles had a negative effect on explosive performances up to 24 hours poststretching with no major effects on the RSA. Conversely, the DS of the same muscle groups are highly recommended 24 hours before performing sprint and long-jump performances. In

  4. Global 30m Height Above the Nearest Drainage

    NASA Astrophysics Data System (ADS)

    Donchyts, Gennadii; Winsemius, Hessel; Schellekens, Jaap; Erickson, Tyler; Gao, Hongkai; Savenije, Hubert; van de Giesen, Nick

    2016-04-01

    Variability of the Earth surface is the primary characteristics affecting the flow of surface and subsurface water. Digital elevation models, usually represented as height maps above some well-defined vertical datum, are used a lot to compute hydrologic parameters such as local flow directions, drainage area, drainage network pattern, and many others. Usually, it requires a significant effort to derive these parameters at a global scale. One hydrological characteristic introduced in the last decade is Height Above the Nearest Drainage (HAND): a digital elevation model normalized using nearest drainage. This parameter has been shown to be useful for many hydrological and more general purpose applications, such as landscape hazard mapping, landform classification, remote sensing and rainfall-runoff modeling. One of the essential characteristics of HAND is its ability to capture heterogeneities in local environments, difficult to measure or model otherwise. While many applications of HAND were published in the academic literature, no studies analyze its variability on a global scale, especially, using higher resolution DEMs, such as the new, one arc-second (approximately 30m) resolution version of SRTM. In this work, we will present the first global version of HAND computed using a mosaic of two DEMS: 30m SRTM and Viewfinderpanorama DEM (90m). The lower resolution DEM was used to cover latitudes above 60 degrees north and below 56 degrees south where SRTM is not available. We compute HAND using the unmodified version of the input DEMs to ensure consistency with the original elevation model. We have parallelized processing by generating a homogenized, equal-area version of HydroBASINS catchments. The resulting catchment boundaries were used to perform processing using 30m resolution DEM. To compute HAND, a new version of D8 local drainage directions as well as flow accumulation were calculated. The latter was used to estimate river head by incorporating fixed and

  5. Relationships of peak leg power, 1 maximal repetition half back squat, and leg muscle volume to 5-m sprint performance of junior soccer players.

    PubMed

    Chelly, Mohamed Souhaiel; Chérif, Najet; Amar, Mohamed Ben; Hermassi, Souhail; Fathloun, Mourad; Bouhlel, Ezdine; Tabka, Zouhair; Shephard, Roy J

    2010-01-01

    Performance over very short distances (1-5 m) is important in soccer. We investigated this in 23 male regional-level soccer players aged 17.2 +/- 0.7 years, filming body markers to determine the average velocity and acceleration over the first step (V(S) and A(S)) and the first 5 m (V(5), A(5)). Data were related to scores on a force-velocity test, squat jump (SJ), countermovement jump (CMJ), and 1 maximal repetition (1 RM) half back squat. Leg and thigh muscle volumes were also assessed anthropometrically. V(5) was positively correlated with leg and thigh muscle volumes (r = 0.61, p < 0.05; r = 0.43, p < 0.05, respectively), SJ power (absolute and relative to body mass, r = 0.45, p < 0.05; r = 0.43, p < 0.05, respectively), absolute force-velocity leg power (r = 0.49, p < 0.05), and 1 RM half back squat (r = 0.66, p < 0.001). The use of dimensional exponents did not change coefficients materially. V(S) was also correlated with leg muscle volume and 1 RM back half squat (r = 0.56, p < 0.01; r = 0.58, p < 0.01, respectively) and more weakly with force-velocity leg power and SJ force (r = 0.49, p < 0.05; r = 0.46, p < 0.5, respectively). However, the CMJ was unrelated to velocity or acceleration. Sprinting ability is correlated with measures of power and force such as the force-velocity test, SJ, and 1 RM half back squat; such measures thus offer useful guidance to soccer coaches who wish to improve the short-distance velocity of their players.

  6. Effects of heat exposure in the absence of hyperthermia on power output during repeated cycling sprints

    PubMed Central

    Arimitsu, T; Yunoki, T; Kimura, T; Yamanaka, R; Yano, T

    2014-01-01

    The aim of this study was to investigate the effects of heat exposure in the absence of hyperthermia on power output during repeated cycling sprints. Seven males performed four 10-s cycling sprints interspersed by 30 s of active recovery on a cycle ergometer in hot-dry and thermoneutral environments. Changes in rectal temperature were similar under the two ambient conditions. The mean 2-s power output over the 1st–4th sprints was significantly lower under the hot-dry condition than under the thermoneutral condition. The amplitude of the electromyogram was lower under the hot-dry condition than under the thermoneutral condition during the early phase (0–3 s) of each cycling sprint. No significant difference was observed for blood lactate concentration between the two ambient conditions. Power output at the onset of a cycling sprint during repeated cycling sprints is decreased due to heat exposure in the absence of hyperthermia. PMID:25729145

  7. Acute effects of prolonged intermittent low-intensity isometric warm-up schemes on jump, sprint, and agility performance in collegiate soccer players

    PubMed Central

    Pojskić, H; Babajić, F; Užičanin, E; Muratović, M; Tomljanović, M

    2015-01-01

    The aim of the present study was to compare the effects of different warm-up interventions on jump, sprint and agility performance in collegiate soccer players. Twenty-one healthy male college soccer players (age: 20.14 ± 1.65 years; body height: 179.9 ± 8.34 cm; body mass: 74.4 ± 13.0 kg; % body fat: 9.45 ± 4.8) participated in the study. Subjects underwent four different randomized warm-up protocols separated by at least 48 hours. The warm-up schemes were: 1. no conditioning contraction protocol (NCC); 2. dynamic stretching (DS); 3. prolonged intermittent low-intensity isometric exercise (ST); and, 4. ST with an additional external load equal to 30% of body weight (ST + 30% BW). All interventions were preceded by a general warm-up. Results from one-way repeated measures ANOVA demonstrated a significant difference in countermovement jump (CMJ) at F(3,60) = 10.2, ηρ2 = 0.337, p < 0.01. Post hoc analysis revealed a significant difference in CMJ performance in DS when compared to NCC and ST + 30% BW. No significant difference in CMJ was observed between DS and ST. CMJ scores in NCC, ST, and ST + 30% BW were non-significant. There was a significant difference in speed; F(3, 60) = 6.61, ηρ2 = 0.248, p < 0.01. Post hoc analysis revealed significantly better time in DS than NCC and ST. However, no difference in speed was observed between DS and ST + 30% BW. Similarly, speed was similar in NCC, ST and ST + 30% BW. A significant difference in agility performance was also observed; F(3, 60) = 24.1, ηρ2= 0.546, p < 0.01. Post hoc analysis revealed significantly greater performance gains in DS than NCC. No significant difference in agility was observed in DS, ST and ST + 30% BW. In conclusion, a prolonged intermittent low-intensity isometric protocol using bodyweight only showed similar benefits with dynamic stretching in countermovement jump performance. When the same isometric condition with additional load equal to 30% of bodyweight was applied, effects in speed

  8. Effects of Sprint versus High-Intensity Aerobic Interval Training on Cross-Country Mountain Biking Performance: A Randomized Controlled Trial

    PubMed Central

    Inoue, Allan; Impellizzeri, Franco M.; Pires, Flávio O.; Pompeu, Fernando A. M. S.; Deslandes, Andrea C.; Santos, Tony M.

    2016-01-01

    Objectives The current study compared the effects of high-intensity aerobic training (HIT) and sprint interval training (SIT) on mountain biking (MTB) race simulation performance and physiological variables, including peak power output (PPO), lactate threshold (LT) and onset of blood lactate accumulation (OBLA). Methods Sixteen mountain bikers (mean ± SD: age 32.1 ± 6.4 yr, body mass 69.2 ± 5.3 kg and VO2max 63.4 ± 4.5 mL∙kg-1∙min-1) completed graded exercise and MTB performance tests before and after six weeks of training. The HIT (7–10 x [4–6 min—highest sustainable intensity / 4–6 min—CR100 10–15]) and SIT (8–12 x [30 s—all-out intensity / 4 min—CR100 10–15]) protocols were included in the participants’ regular training programs three times per week. Results Post-training analysis showed no significant differences between training modalities (HIT vs. SIT) in body mass, PPO, LT or OBLA (p = 0.30 to 0.94). The Cohen’s d effect size (ES) showed trivial to small effects on group factor (p = 0.00 to 0.56). The interaction between MTB race time and training modality was almost significant (p = 0.08), with a smaller ES in HIT vs. SIT training (ES = -0.43). A time main effect (pre- vs. post-phases) was observed in MTB race performance and in several physiological variables (p = 0.001 to 0.046). Co-variance analysis revealed that the HIT (p = 0.043) group had significantly better MTB race performance measures than the SIT group. Furthermore, magnitude-based inferences showed HIT to be of likely greater benefit (83.5%) with a lower probability of harmful effects (0.8%) compared to SIT. Conclusion The results of the current study suggest that six weeks of either HIT or SIT may be effective at increasing MTB race performance; however, HIT may be a preferable strategy. Trial Registration ClinicalTrials.gov NCT01944865 PMID:26789124

  9. The influence of upper-body strength on flat-water sprint kayak performance in elite athletes.

    PubMed

    McKean, Mark R; Burkett, Brendan J

    2014-07-01

    Dry-land strength training is a fundamental component for elite kayak performance. The aims of this research were 3-fold: 1st, to determine the relationship between performance time and strength scores for elite kayakers; 2nd, to identify how strength changes (gains or losses) over 3 training y relate with changes in performance time for elite kayakers; and 3rd, to compare the progression in performance times for elite athletes with the top 3 performers from the national championships. The performance data for 15 elite male and 10 elite female kayakers were collected over 2 y. This group was reduced to 9 men and 8 women in the 3rd and final year. There were direct and significant correlations between strength scores and performance times across the 3 y. Bench-press 1RM increased by 34.8% for men and 42.3% for women. Over the 3 seasons, mean 1000-m time decreased by approximately 4.8%, 500-m times decreased by 7.3% (women), and 200-m times decreased by 9.1%. The women's 500-m changed from 11.9% difference from medalists to within 1.1% during the 3 y. During the 3 y of this study a change in 1-repetitionmaximum (1RM) bench press of 13% for men and 6.5% in women coincided with a change in performance times of 1%. For 1RM pull-up a change of 10% in men and 2.3% in women coincided with a change in performance times of 1%.

  10. Inspiratory muscle fatigue affects latissimus dorsi but not pectoralis major activity during arms only front crawl sprinting.

    PubMed

    Lomax, Mitch; Tasker, Louise; Bostanci, Ozgur

    2014-08-01

    The purpose of this study was to determine whether inspiratory muscle fatigue (IMF) affects the muscle activity of the latissimus dorsi and pectoralis major during maximal arms only front crawl swimming. Eight collegiate swimmers were recruited to perform 2 maximal 20-second arms only front crawl sprints in a swimming flume. Both sprints were performed on the same day, and IMF was induced 30 minutes after the first (control) sprint. Maximal inspiratory and expiratory mouth pressures (PImax and PEmax, respectively) were measured before and after each sprint. The median frequency (MDF) of the electromyographic signal burst was recorded from the latissimus dorsi and pectoralis major during each 20-second sprint along with stroke rate and breathing frequency. Median frequency was assessed in absolute units (Hz) and then referenced to the start of the control sprint for normalization. After IMF inducement, stroke rate increased from 56 ± 4 to 59 ± 5 cycles per minute, and latissimus dorsi MDF fell from 67 ± 11 Hz at the start of the sprint to 61 ± 9 Hz at the end. No change was observed in the MDF of the latissimus dorsi during the control sprint. Conversely, the MDF of the pectoralis major shifted to lower frequencies during both sprints but was unaffected by IMF. As the latter induced fatigue in the latissimus dorsi, which was not otherwise apparent during maximal arms only control sprinting, the presence of IMF affects the activity of the latissimus dorsi during front crawl sprinting.

  11. The longitudinal effects of resisted sprint training using weighted sleds vs. weighted vests.

    PubMed

    Clark, Kenneth P; Stearne, David J; Walts, Cory T; Miller, Anthony D

    2010-12-01

    The purpose of this study was to determine the longitudinal effects of weighted sled (WS) and weighted vest (WV) sprint training on maximum velocity sprint performance and kinematics. Twenty male collegiate lacrosse players were randomly assigned to a WS group (n = 7) towing 10% body mass, a WV group (n = 6) loaded with 18.5% body mass, or an unresisted (UR) active control group (n = 7). All subjects completed 13 training sessions over 7 weeks. Pre- and post-test measures of sprint time and average velocity across the distance interval of 18.3 to 54.9 m were used to assess sprint performance, whereas high-speed video (300 Hz) and motion-analysis software were used to analyze stride length, stride rate, ground contact time, and flight time. A 3 × 2 repeated measures analysis of variance was performed for each dependent variable and revealed no significant between-group differences for any of the sprint performance or kinematic stride cycle measures. Effect size statistics suggested small improvements in 18.3- to 54.9-m sprint time and average velocity for the UR group but only trivial improvements for the WS and WV groups. With regard to sprint performance, the results indicate that WS and WV training had no beneficial effect compared with UR training. In fact, for the loads used by WS and WV in this study, UR training may actually be superior for improving sprint performance in the 18.3- to 54.9-m interval.

  12. Effects of forward trunk lean on hamstring muscle kinematics during sprinting.

    PubMed

    Higashihara, Ayako; Nagano, Yasuharu; Takahashi, Kazumasa; Fukubayashi, Toru

    2015-01-01

    This study aimed to investigate the effects of forward trunk lean on hamstring muscle kinematics during sprinting. Eight male sprinters performed maximal-effort sprints in two trunk positions: forward lean and upright. A three-dimensional musculoskeletal model was used to compute the musculotendon lengths and velocity of the biceps femoris long head, semitendinosus, and semimembranosus muscles during the sprinting gait cycle. The musculotendon lengths of all the three hamstring muscles at foot strike and toe-off were significantly greater during the forward trunk lean sprint than during the upright trunk sprint. In addition, a positive peak musculotendon lengthening velocity was observed in the biceps femoris long head and semimembranosus muscles during the late stance phase, and musculotendon lengths at that instant were significantly greater during the forward trunk lean sprint than during the upright trunk sprint. The present study provides significant evidence that a potential for hamstring muscle strain injury involving forward trunk lean sprinting would exist during the stance phase. The results also indicate that the biceps femoris long head and semimembranosus muscles are stretched during forward trunk lean sprinting while contracting eccentrically in the late stance phase; thus, the elongation load on these muscles could be increased.

  13. The relationship between repeated sprint ability and the aerobic and anaerobic energy systems.

    PubMed

    Wadley, G; Le Rossignol, P

    1998-06-01

    A large number of team games require participants to repeatedly produce maximal or near maximal sprints of short duration with brief recovery periods. The purpose of the present study was to determine the relationship between a repeated sprint ability (RSA) test that is specific to the energy demands of Australian Rules football (ARF), and the aerobic and anaerobic energy systems. Seventeen ARF players participated in the study. Each participant was assessed for VO2 max, accumulated oxygen deficit (AOD), best 20 m sprint time and RSA. The RSA test involved 12x20 m sprints departing every 20 s. When including the work performed during the time taken to decelerate, the test involved a work to rest ratio of approximately 1:3. Total sprinting time and the percentage decrement of repeated sprinting times were the two derived measures of RSA. The results indicate that the best 20 m sprint time was the only factor to correlate significantly with total sprinting time (r = 0.829, P < 0.001) and percentage decrement (r = -0.722, P < 0.01). VO2 max and AOD were not related to the total sprinting time or the percentage decrement that was produced by the RSA test. This was interpreted to signify that the phosphagen system was the major energy contributor for this test.

  14. Experimental results of a 30 m, 3-core HTSC cable

    NASA Astrophysics Data System (ADS)

    Masuda, Takato; Kato, Takeshi; Yumura, Hiroyasu; Hirose, Masayuki; Isojima, Shigeki; Honjo, Shoichi; Matsuo, Kimiyoshi; Mimura, Tomoo; Takahashi, Yoshihisa

    2002-08-01

    A high temperature superconducting (HTSC) cable is expected to transport large electric power with a compact size because of its high critical current density. We have been developing a 3-core 66 kV class HTSC cable, which is applied to the ∅150 mm duct, and is composed of a conductor and a shield wound with Ag-Mn sheathed Bi-2223 tapes, electrical insulation with polypropylene laminated paper impregnated with liquid nitrogen and thermal insulation with co-axial corrugated pipes. A 30 m, 3-core cable system has been constructed to verify the 3-core performance after its production, laying and cooling. The cable had good performance to mechanical stress in the factory process. The critical current of the cable was more than 2.4 kA at 77 K. The AC loss of the conductor part was 0.5 W/m/phase at 1 kA rms, which agreed well with the calculated value of the spiral pitch adjustment technique. A 130 kV rms AC was successfully applied without any change in tan δ and capacitance. As a next step, a 100 m HTSC cable has been designed and developed based on these experimental results.

  15. No Additional Benefit of Repeat-Sprint Training in Hypoxia than in Normoxia on Sea-Level Repeat-Sprint Ability

    PubMed Central

    Goods, Paul S.R.; Dawson, Brian; Landers, Grant J.; Gore, Christopher J.; Peeling, Peter

    2015-01-01

    To assess the impact of ‘top-up’ normoxic or hypoxic repeat-sprint training on sea-level repeat-sprint ability, thirty team sport athletes were randomly split into three groups, which were matched in running repeat-sprint ability (RSA), cycling RSA and 20 m shuttle run performance. Two groups then performed 15 maximal cycling repeat-sprint training sessions over 5 weeks, in either normoxia (NORM) or hypoxia (HYP), while a third group acted as a control (CON). In the post-training cycling RSA test, both NORM (13.6%; p = 0.0001, and 8.6%; p = 0.001) and HYP (10.3%; p = 0.007, and 4.7%; p = 0.046) significantly improved overall mean and peak power output, respectively, whereas CON did not change (1.4%; p = 0.528, and -1.1%; p = 0.571, respectively); with only NORM demonstrating a moderate effect for improved mean and peak power output compared to CON. Running RSA demonstrated no significant between group differences; however, the mean sprint times improved significantly from pre- to post-training for CON (1.1%), NORM (1.8%), and HYP (2.3%). Finally, there were no group differences in 20 m shuttle run performance. In conclusion, ‘top-up’ training improved performance in a task-specific activity (i.e. cycling); however, there was no additional benefit of conducting this ‘top-up’ training in hypoxia, since cycle RSA improved similarly in both HYP and NORM conditions. Regardless, the ‘top-up’ training had no significant impact on running RSA, therefore the use of cycle repeat-sprint training should be discouraged for team sport athletes due to limitations in specificity. Key points ‘Top-up’ repeat-sprint training performed on a cycle ergometer enhances cycle repeat-sprint ability compared to team sport training only in football players. The addition of moderate hypoxia to repeat-sprint training provides no additional performance benefits to sea-level repeat-sprint ability or endurance performance than normoxic repeat-sprint training.

  16. No Additional Benefit of Repeat-Sprint Training in Hypoxia than in Normoxia on Sea-Level Repeat-Sprint Ability.

    PubMed

    Goods, Paul S R; Dawson, Brian; Landers, Grant J; Gore, Christopher J; Peeling, Peter

    2015-09-01

    To assess the impact of 'top-up' normoxic or hypoxic repeat-sprint training on sea-level repeat-sprint ability, thirty team sport athletes were randomly split into three groups, which were matched in running repeat-sprint ability (RSA), cycling RSA and 20 m shuttle run performance. Two groups then performed 15 maximal cycling repeat-sprint training sessions over 5 weeks, in either normoxia (NORM) or hypoxia (HYP), while a third group acted as a control (CON). In the post-training cycling RSA test, both NORM (13.6%; p = 0.0001, and 8.6%; p = 0.001) and HYP (10.3%; p = 0.007, and 4.7%; p = 0.046) significantly improved overall mean and peak power output, respectively, whereas CON did not change (1.4%; p = 0.528, and -1.1%; p = 0.571, respectively); with only NORM demonstrating a moderate effect for improved mean and peak power output compared to CON. Running RSA demonstrated no significant between group differences; however, the mean sprint times improved significantly from pre- to post-training for CON (1.1%), NORM (1.8%), and HYP (2.3%). Finally, there were no group differences in 20 m shuttle run performance. In conclusion, 'top-up' training improved performance in a task-specific activity (i.e. cycling); however, there was no additional benefit of conducting this 'top-up' training in hypoxia, since cycle RSA improved similarly in both HYP and NORM conditions. Regardless, the 'top-up' training had no significant impact on running RSA, therefore the use of cycle repeat-sprint training should be discouraged for team sport athletes due to limitations in specificity. Key points'Top-up' repeat-sprint training performed on a cycle ergometer enhances cycle repeat-sprint ability compared to team sport training only in football players.The addition of moderate hypoxia to repeat-sprint training provides no additional performance benefits to sea-level repeat-sprint ability or endurance performance than normoxic repeat-sprint training.'Top-up' cycling repeat-sprint training

  17. Effect of 6 weeks of sprint training on growth hormone responses to sprinting.

    PubMed

    Stokes, Keith A; Nevill, Mary E; Cherry, Paul W; Lakomy, Henryk K A; Hall, George M

    2004-06-01

    This study examined the effect of 6 weeks of prescribed sprint training on the human growth hormone (hGH) response to cycle ergometer sprinting. Sixteen male subjects were randomly assigned to a training (n=8) or a control (n=8) group. Each subject completed two main trials, consisting of two all-out 30-s cycle-ergometer sprints separated by 60 min of passive recovery, once before, and once after a 6-week training period. The training group completed three supervised sprint-training sessions per week in addition to their normal activity, whilst control subjects continued with their normal activity. In the training group, peak and mean power increased post-training by 6% (P<0.05) and 5% (P<0.05), respectively. Post-exercise blood pH did not change following training, but the highest post-exercise blood lactate concentrations were greater [highest measured value: 13.3 (1.0) vs 15.0 (1.1) mmol l(-1)], with lower blood lactate concentrations for the remainder of the recovery period (P<0.05). Post-exercise plasma ammonia concentrations were lower after training [mean highest measured value: 184.1 (9.8) vs 139.0 (11.7) micromol l(-1), P<0.05]. Resting serum hGH concentrations did not change following training, but the peak values measured post-exercise decreased by over 40% in the training group [10.3 (3.1) vs 5.8 (2.5) microg l(-1), P<0.05], and mean integrated serum hGH concentrations were 55% lower after training [567 (158) vs 256 (121) min microg l(-1), P<0.05]. The hGH response to the second sprint was attenuated similarly before and after training. This study showed that 6 weeks of combined speed- and speed-endurance training blunted the human growth hormone response to sprint exercise, despite an improvement in sprint performance.

  18. ISS Update: SPRINT Exercise Program

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Lori Ploutz-Snyder, Ph.D., NASA Lead Exercise Physiology Scientist, about the SPRINT exercise program used by the crew members aboard the Inter...

  19. Lower extremity kinematics of athletics curve sprinting.

    PubMed

    Alt, Tobias; Heinrich, Kai; Funken, Johannes; Potthast, Wolfgang

    2015-01-01

    Curve running requires the generation of centripetal force altering the movement pattern in comparison to the straight path run. The question arises which kinematic modulations emerge while bend sprinting at high velocities. It has been suggested that during curve sprints the legs fulfil different functions. A three-dimensional motion analysis (16 high-speed cameras) was conducted to compare the segmental kinematics of the lower extremity during the stance phases of linear and curve sprints (radius: 36.5 m) of six sprinters of national competitive level. Peak joint angles substantially differed in the frontal and transversal plane whereas sagittal plane kinematics remained unchanged. During the prolonged left stance phase (left: 107.5 ms, right: 95.7 ms, straight: 104.4 ms) the maximum values of ankle eversion (left: 12.7°, right: 2.6°, straight: 6.6°), hip adduction (left: 13.8°, right: 5.5°, straight: 8.8°) and hip external rotation (left: 21.6°, right: 12.9°, straight: 16.7°) were significantly higher. The inside leg seemed to stabilise the movement in the frontal plane (eversion-adduction strategy) whereas the outside leg provided and controlled the motion in the horizontal plane (rotation strategy). These results extend the principal understanding of the effects of curve sprinting on lower extremity kinematics. This helps to increase the understanding of nonlinear human bipedal locomotion, which in turn might lead to improvements in athletic performance and injury prevention.

  20. Kinematics of transition during human accelerated sprinting

    PubMed Central

    Nagahara, Ryu; Matsubayashi, Takeo; Matsuo, Akifumi; Zushi, Koji

    2014-01-01

    ABSTRACT This study investigated kinematics of human accelerated sprinting through 50 m and examined whether there is transition and changes in acceleration strategies during the entire acceleration phase. Twelve male sprinters performed a 60-m sprint, during which step-to-step kinematics were captured using 60 infrared cameras. To detect the transition during the acceleration phase, the mean height of the whole-body centre of gravity (CG) during the support phase was adopted as a measure. Detection methods found two transitions during the entire acceleration phase of maximal sprinting, and the acceleration phase could thus be divided into initial, middle, and final sections. Discriminable kinematic changes were found when the sprinters crossed the detected first transition—the foot contacting the ground in front of the CG, the knee-joint starting to flex during the support phase, terminating an increase in step frequency—and second transition—the termination of changes in body postures and the start of a slight decrease in the intensity of hip-joint movements, thus validating the employed methods. In each acceleration section, different contributions of lower-extremity segments to increase in the CG forward velocity—thigh and shank for the initial section, thigh, shank, and foot for the middle section, shank and foot for the final section—were verified, establishing different acceleration strategies during the entire acceleration phase. In conclusion, there are presumably two transitions during human maximal accelerated sprinting that divide the entire acceleration phase into three sections, and different acceleration strategies represented by the contributions of the segments for running speed are employed. PMID:24996923

  1. Not quite so fast: effect of training at 90% sprint speed on maximal and repeated-sprint ability in soccer players.

    PubMed

    Haugen, Thomas; Tonnessen, Espen; Leirstein, Svein; Hem, Erlend; Seiler, Stephen

    2014-12-01

    Abstract The aim of the present study was to investigate the effect of training at an intensity eliciting 90% of maximal sprinting speed on maximal and repeated-sprint performance in soccer. It was hypothesised that sprint training at 90% of maximal velocity would improve soccer-related sprinting. Twenty-two junior club-level male and female soccer players (age 17 ± 1 year, body mass 64 ± 8 kg, body height 174 ± 8 cm) completed an intervention study where the training group (TG) replaced one of their weekly soccer training sessions with a repeated-sprint training session performed at 90% of maximal sprint speed, while the control group (CG) completed regular soccer training according to their teams' original training plans. Countermovement jump, 12 × 20-m repeated-sprint, VO2max and the Yo-Yo Intermittent Recovery Level 1 test were performed prior to and after a 9-week intervention period. No significant between-group differences were observed for any of the performance indices and effect magnitudes were trivial or small. Before rejecting the hypothesis, we recommend that future studies should perform intervention programmes with either stronger stimulus or at other times during the season where total training load is reduced.

  2. Interrelationships between different loads in resisted sprints, half-squat 1 RM and kinematic variables in trained athletes.

    PubMed

    Martínez-Valencia, María Asunción; González-Ravé, José M; Santos-García, Daniel Juárez; Alcaraz Ramón, Pedro E; Navarro-Valdivielso, Fernando

    2014-01-01

    Resisted sprint running is a common training method for improving sprint-specific strength. It is well-known that an athlete's time to complete a sled-towing sprint increases linearly with increasing sled load. However, to our knowledge, the relationship between the maximum load in sled-towing sprint and the sprint time is unknown, The main purpose of this research was to analyze the relationship between the maximum load in sled-towing sprint, half-squat maximal dynamic strength and the velocity in the acceleration phase in 20-m sprint. A second aim was to compare sprint performance when athletes ran under different conditions: un-resisted and towing sleds. Twenty-one participants (17.86 ± 2.27 years; 1.77 ± 0.06 m and 69.24 ± 7.20 kg) completed a one repetition maximum test (1 RM) from a half-squat position (159.68 ± 22.61 kg) and a series of sled-towing sprints with loads of 0, 5, 10, 15, 20, 25, 30% body mass (Bm) and the maximum resisted sprint load. No significant correlation (P<0.05) was found between half-squat 1 RM and the sprint time in different loaded conditions. Conversely, significant correlations (P<0.05) were found between maximum load in resisted sprint and sprint time (20-m sprint time, r=-0.71; 5% Bm, r=-0.73; 10% Bm, r=-0.53; 15% Bm, r=-0.55; 20% Bm, r=-0.65; 25% Bm, r=-0.44; 30% Bm, r=-0.63; MaxLoad, r= 0.93). The sprinting velocity significantly decreased by 4-22% with all load increases. Stride length (SL) also decreased (17%) significantly across all resisted conditions. In addition, there were significant differences in stride frequency (SF) with loads over 15% Bm. It could be concluded that the knowledge of the individual maximal load in resisted sprint and the effects on the sprinting kinematic with different loads, could be interesting to determinate the optimal load to improve the acceleration phase at sprint running.

  3. Muscle Oxygen Changes following Sprint Interval Cycling Training in Elite Field Hockey Players

    PubMed Central

    Jones, Ben; Hamilton, David K.; Cooper, Chris E.

    2015-01-01

    This study examined the effects of Sprint Interval Cycling (SIT) on muscle oxygenation kinetics and performance during the 30-15 intermittent fitness test (IFT). Twenty-five women hockey players of Olympic standard were randomly selected into an experimental group (EXP) and a control group (CON). The EXP group performed six additional SIT sessions over six weeks in addition to their normal training program. To explore the potential training-induced change, EXP subjects additionally completed 5 x 30s maximal intensity cycle testing before and after training. During these tests near-infrared spectroscopy (NIRS) measured parameters; oxyhaemoglobin + oxymyoglobin (HbO2+ MbO2), tissue deoxyhaemoglobin + deoxymyoglobin (HHb+HMb), total tissue haemoglobin (tHb) and tissue oxygenation (TSI %) were taken. In the EXP group (5.34±0.14 to 5.50±0.14m.s-1) but not the CON group (pre = 5.37±0.27 to 5.39±0.30m.s-1) significant changes were seen in the 30-15IFT performance. EXP group also displayed significant post-training increases during the sprint cycling: ΔTSI (−7.59±0.91 to −12.16±2.70%); ΔHHb+HMb (35.68±6.67 to 69.44±26.48μM.cm); and ΔHbO2+ MbO2 (−74.29±13.82 to −109.36±22.61μM.cm). No significant differences were seen in ΔtHb (−45.81±15.23 to −42.93±16.24). NIRS is able to detect positive peripheral muscle oxygenation changes when used during a SIT protocol which has been shown to be an effective training modality within elite athletes. PMID:25807517

  4. Reliability of the Spatiotemporal Determinants of Maximal Sprint Speed in Adolescent Boys Over Single and Multiple Steps.

    PubMed

    Meyers, Robert W; Oliver, Jon L; Hughes, Michael G; Lloyd, Rhodri Steffan; Cronin, John

    2015-08-01

    The purpose of this study was to examine the reliability of the spatiotemporal determinants of maximal sprinting speed in boys over single and multiple steps. Fifty-four adolescent boys (age = 14.1 ± 0.7 years [range = 12.9-15.7 years]; height = 1.63 ± 0.09 m; body mass = 55.3 ± 13.3 kg; -0.31 ± 0.90 age from Peak Height Velocity (PHV) in years; mean ± s) volunteered to complete a 30 m sprint test on 3 occasions over a 2-week period. Speed, step length, step frequency, contact time, and flight time were assessed via an optical measurement system. Speed and step characteristics were obtained from the single-fastest step and average of the 2 and 4 fastest consecutive steps. Pairwise comparison of consecutive trials revealed the coefficient of variation (CV) for speed was greater in 4-step (CV = 7.3 & 7.5%) compared with 2-step (CV = 4.2 & 4.1%) and 1-step (CV = 4.8 & 4.6%) analysis. The CV of step length, step frequency and contact time ranged from 4.8 to 7.5% for 1-step, 3.8-5.0% for 2-step and 4.2-7.5% for 4-step analyses across all trials. An acceptable degree of reliability was achieved for the spatiotemporal and performance variables assessed in this study. Two-step analysis demonstrated the highest degree of reliability for the key spatiotemporal variables, and therefore may be the most suitable approach to monitor the spatiotemporal characteristics of maximal sprint speed in boys.

  5. Does Vibration Warm-up Enhance Kinetic and Temporal Sprint Parameters?

    PubMed

    Cochrane, D J; Cronin, M J; Fink, P W

    2015-08-01

    The aim of this study was to investigate the efficacy of vibration warm-up to enhance sprint performance. 12 males involved in representative team sports performed 4 warm-up conditions in a randomised order performed at least 24 h apart; VbX warm-up (VbX-WU); Neural activation warm-up (Neu-WU); Dynamic warm-up (Dyn-WU) and Control (No VbX). Participants completed 5 m sprint at 30 s, 2:30 min and 5 min post warm-up where sprint time, kinetics, and temporal components were recorded. There was no significant (p>0.05) main effect or interaction effect between the split sprint times of 1 m, 2.5 m, and 5 m. There was a condition effect where vertical mean force was significantly higher (p<0.05) in Dyn-WU and Control compared to Neu-WU. No other significant (p>0.05) main and interaction effects in sprint kinetic and temporal parameters existed. Overall, all 4 warm-up conditions produced comparable results for sprint performance, and there was no detrimental effect on short-duration sprint performance using VbX-WU. Therefore, VbX could be useful for adding variety to the training warm-up or be included into the main warm-up routine as a supplementary modality.

  6. Methods for quantifying training in sprint kayak.

    PubMed

    Borges, Thiago Oliveira; Bullock, Nicola; Duff, Christine; Coutts, Aaron J

    2014-02-01

    The aims of this study were to determine the validity of the session rating of perceived exertion (session-RPE) method by comparing 3 different scales of perceived exertion with common measures of training load (TL). A secondary aim was to verify the relationship between TLs, fitness, and performance in Sprint Kayak athletes. After laboratory assessment of maximal oxygen uptake (V[Combining Dot Above]O2peak) and lactate threshold, the athletes performed on water time trials over 200 and 1,000 m. Training load was quantified for external (distance and speed) and internal (session-RPE: 6-20, category ratio [CR]-10 and CR-100 scales, training impulse [TRIMP], and individual TRIMP). Ten (6 male, 4 female) well-trained junior Sprint Kayak athletes (age 17.1 ± 1.2 years; V[Combining Dot Above]O2peak 4.2 ± 0.7 L·min) were monitored over a 7-week period. There were large-to-very large within-individual correlations between the session distance and the various heart rate (HR) and RPE-based methods for quantifying TL (0.58-0.91). Correlations between the mean session speed and various HR- and RPE-based methods for quantifying TL were small to large (0.12-0.50). The within-individual relationships between the various objective and subjective methods of internal TL were large to very large (0.62-0.94). Moderate-to-large inverse relationships were found between mean session-RPE TL and various aerobic fitness variables (-0.58 to -0.37). Large-to-very large relationships were found between mean session-RPE TL and on water performance (0.57-0.75). In conclusion, session-RPE is a valid method for monitoring TL for junior Sprint Kayak athletes, regardless of the RPE scale used. The session-RPE TL relates to fitness and performance, supporting the use of session-RPE in Sprint Kayak training.

  7. Mechanical Alterations Associated with Repeated Treadmill Sprinting under Heat Stress

    PubMed Central

    Brocherie, Franck; Morin, Jean-Benoit; Racinais, Sébastien; Millet, Grégoire P.; Périard, Julien D.

    2017-01-01

    Purpose Examine the mechanical alterations associated with repeated treadmill sprinting performed in HOT (38°C) and CON (25°C) conditions. Methods Eleven recreationally active males performed a 30-min warm-up followed by three sets of five 5-s sprints with 25-s recovery and 3-min between sets in each environment. Constant-velocity running for 1-min at 10 and 20 km.h-1 was also performed prior to and following sprinting. Results Mean skin (37.2±0.7 vs. 32.7±0.8°C; P<0.001) and core (38.9±0.2 vs. 38.8±0.3°C; P<0.05) temperatures, together with thermal comfort (P<0.001) were higher following repeated sprinting in HOT vs. CON. Step frequency and vertical stiffness were lower (-2.6±1.6% and -5.5±5.5%; both P<0.001) and contact time (+3.2±2.4%; P<0.01) higher in HOT for the mean of sets 1–3 compared to CON. Running distance per sprint decreased from set 1 to 3 (-7.0±6.4%; P<0.001), with a tendency for shorter distance covered in HOT vs. CON (-2.7±3.4%; P = 0.06). Mean vertical (-2.6±5.5%; P<0.01), horizontal (-9.1±4.4%; P<0.001) and resultant ground reaction forces (-3.0±2.8%; P<0.01) along with vertical stiffness (-12.9±2.3%; P<0.001) and leg stiffness (-8.4±2.7%; P<0.01) decreased from set 1 to 3, independently of conditions. Propulsive power decreased from set 1 to 3 (-16.9±2.4%; P<0.001), with lower propulsive power values in set 2 (-6.6%; P<0.05) in HOT vs. CON. No changes in constant-velocity running patterns occurred between conditions, or from pre-to-post repeated-sprint exercise. Conclusions Thermal strain alters step frequency and vertical stiffness during repeated sprinting; however without exacerbating mechanical alterations. The absence of changes in constant-velocity running patterns suggests a strong link between fatigue-induced velocity decrements during sprinting and mechanical alterations. PMID:28146582

  8. Contribution of trunk muscularity on sprint run.

    PubMed

    Kubo, T; Hoshikawa, Y; Muramatsu, M; Iida, T; Komori, S; Shibukawa, K; Kanehisa, H

    2011-03-01

    This study aimed to investigate how the trunk muscularity is related to sprint running performance. In 23 youth soccer players, the cross-sectional images at the mid level of each of L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1 were obtained using magnetic resonance imaging to determine the cross-sectional areas (CSAs) of rectus abdominis, oblique, psoas major, quadratus lumborum and erector spinae muscles. The times taken to sprint over 20 m were measured, and the mean velocity of running was calculated for each of the 2 distances (V (10 m) and V (20 m)) and for the distance from 10 m to 20 m (V (10-20 m)). The CSA values of the 5 slice levels for all muscles except for the quadratus lumborum and those of the 3 slice levels (L1-L2, L2-L3 and L3-L4) for the quadratus lumborum were averaged and expressed relative to the two-third power of body mass (CSA/BM (2/3)). The CSA/BM (2/3) values of the erector spinae and quadratus lumborum were selected as significant contributors to predict V (10 m) ( R(2)=0.450), V (20 m) ( R(2)=0.504) and V (10-20 m) ( R(2)=0.420). The current results indicate that the muscularity of the erector spinae and quadratus lumborum contributes to achieving a high performance in sprint running over distances of less than 20 m.

  9. Appropriate Loads for Peak-Power During Resisted Sprinting on a Non-Motorized Treadmill

    PubMed Central

    Andre, Matthew J.; Fry, Andrew C.; Lane, Michael T.

    2013-01-01

    The purpose of this study was to determine the load which allows the highest peak power for resisted sprinting on a non-motorized treadmill and to determine if other variables are related to individual differences. Thirty college students were tested for vertical jump, vertical jump peak and mean power, 10 m sprint, 20 m sprint, leg press 1 RM, leg press 1 RM relative to body weight, leg press 1 RM relative to lean body mass, leg press 1 RM power, and leg press power at 80% of 1 RM. Participants performed eight resisted sprints on a non-motorized treadmill, with increasing relative loads expressed as percent of body weight. Sprint peak power was measured for each load. Pearson correlations were used to determine if relationships between the sprint peak power load and the other variables were significant. The sprint peak power load had a mode of 35% with 73% of all participants having a relative sprint peak power load between 25–35%. Significant correlations occurred between sprint peak power load and body weight, lean body mass, vertical jump peak and mean power, leg press 1 RM, leg press 1 RM relative to lean body mass, leg press 1 RM power, and leg press power at 80% of 1 RM (r = 0.44, 0.43, 0.39, 0.37, 0.47, 0.39, 0.46, and 0.47, respectively). Larger, stronger, more powerful athletes produced peak power at a higher relative load during resisted sprinting on a non-motorized treadmill. PMID:24233103

  10. Effects of 18-week in-season heavy-resistance and power training on throwing velocity, strength, jumping, and maximal sprint swim performance of elite male water polo players.

    PubMed

    Ramos Veliz, Rafael; Requena, Bernardo; Suarez-Arrones, Luis; Newton, Robert U; Sáez de Villarreal, Eduardo

    2014-04-01

    We examined the effects of 18 weeks of strength and high-intensity training on key sport performance measures of elite male water polo (WP) players. Twenty-seven players were randomly assigned to 2 groups, control (in-water training only) and strength group, (strength training sessions [twice per week] + in-water training). In-water training was conducted 5 d·wk. Twenty-meter maximal sprint swim, maximal dynamic strength 1-repetition maximum (1RM) for upper bench press (BP) and lower full squat (FS) body, countermovement jump (CMJ), and throwing velocity were measured before and after the training. The training program included upper and lower body strength and high-intensity exercises (BP, FS, military press, pull-ups, CMJ loaded, and abs). Baseline-training results showed no significant differences between the groups in any of the variables tested. No improvement was found in the control group; however, meaningful improvement was found in all variables in the experimental group: CMJ (2.38 cm, 6.9%, effect size [ES] = 0.48), BP (9.06 kg, 10.53%, ES = 0.66), FS (11.06 kg, 14.21%, ES = 0.67), throwing velocity (1.76 km·h(-1), 2.76%, ES = 0.25), and 20-m maximal sprint swim (-0.26 seconds, 2.25%, ES = 0.29). Specific strength and high-intensity training in male WP players for 18 weeks produced a positive effect on performance qualities highly specific to WP. Therefore, we propose modifications to the current training methodology for WP players to include strength and high-intensity training for athlete preparation in this sport.

  11. Assisted and resisted sprint training in swimming.

    PubMed

    Girold, Sébastien; Calmels, Paul; Maurin, Didier; Milhau, Nicolas; Chatard, Jean-Claude

    2006-08-01

    This study was undertaken to determine whether the resisted-sprint in overstrength (OSt) or the assisted-sprint in overspeed (OSp) could be efficient training methods to increase 100-m front crawl performance. Thirty-seven (16 men, 21 women) competition-level swimmers (mean +/- SD: age 17.5 +/- 3.5 years, height 173 +/- 14 cm, weight 63 +/- 14 kg) were randomly divided into 3 groups: OSt, OSp, and control (C). All swimmers trained 6 days per week for 3 weeks, including 3 resisted or assisted training sessions per week for the groups OSt and OSp respectively. Elastic tubes were used to generate swimming overstrength and overspeed. Three 100-m events were performed before, during, and after the training period. Before each 100-m event, strength of the elbow flexors and extensors was measured with an isokinetic dynamometer. Stroke rate and stroke length were evaluated using the video-recorded 100-m events. In the OSt group, elbow extensor strength, swimming velocity, and stroke rate significantly increased (p < 0.05), while stroke length remained unchanged after the 3-week training period. In the OSp group, stroke rate significantly increased (p < 0.05) and stroke length significantly decreased (p < 0.05) without changes in swimming velocity. No significant variations in the C group were observed. Both OSt and OSp proved to be more efficient than the traditional training program. However, the OSt training program had a larger impact on muscle strength, swimming performance, and stroke technique than the OSp program.

  12. Research into the Health Benefits of Sprint Interval Training Should Focus on Protocols with Fewer and Shorter Sprints.

    PubMed

    Vollaard, Niels B J; Metcalfe, Richard S

    2017-04-08

    Over the past decade, it has been convincingly shown that regularly performing repeated brief supramaximal cycle sprints (sprint interval training [SIT]) is associated with aerobic adaptations and health benefits similar to or greater than with moderate-intensity continuous training (MICT). SIT is often promoted as a time-efficient exercise strategy, but the most commonly studied SIT protocol (4-6 repeated 30-s Wingate sprints with 4 min recovery, here referred to as 'classic' SIT) takes up to approximately 30 min per session. Combined with high associated perceived exertion, this makes classic SIT unsuitable as an alternative/adjunct to current exercise recommendations involving MICT. However, there are no indications that the design of the classic SIT protocol has been based on considerations regarding the lowest number or shortest duration of sprints to optimise time efficiency while retaining the associated health benefits. In recent years, studies have shown that novel SIT protocols with both fewer and shorter sprints are efficacious at improving important risk factors of noncommunicable diseases in sedentary individuals, and provide health benefits that are no worse than those associated with classic SIT. These shorter/easier protocols have the potential to remove many of the common barriers to exercise in the general population. Thus, based on the evidence summarised in this current opinion paper, we propose that there is a need for a fundamental change in focus in SIT research in order to move away from further characterising the classic SIT protocol and towards establishing acceptable and effective protocols that involve minimal sprint durations and repetitions.

  13. Repeated-sprint sequences during female soccer matches using fixed and individual speed thresholds.

    PubMed

    Nakamura, Fábio Y; Pereira, Lucas A; Loturco, Irineu; Rosseti, Marcelo; Moura, Felipe A; Bradley, Paul S

    2016-09-20

    The main objective of this study was to characterize the occurrence of single sprint and repeated-sprint sequences (RSS) during elite female soccer matches, using fixed (20 kmh) and individually based speed thresholds (>90% of the mean speed from a 20 m sprint test). Eleven elite female soccer players from the same team participated in the study. All players performed a 20 m linear sprint test, and were assessed in up to 10 official matches using Global Positioning System (GPS) technology. Magnitude-based inferences were used to test for meaningful differences. Results revealed that irrespective of adopting fixed or individual speed thresholds, female players produced only a few RSS during matches (2.3 ± 2.4 sequences using the fixed threshold and 3.3 ± 3.0 sequences using the individually based threshold), with most sequences composing of just two sprints. Additionally, central defenders performed fewer sprints (10.2 ± 4.1) than other positions (full backs: 28.1 ± 5.5; midfielders: 21.9 ± 10.5; forwards: 31.9 ± 11.1; with likely to almost certainly differences associated with effect sizes ranging from 1.65 to 2.72) and sprinting ability declined in the second half. The data do not support the notion that RSS occurs frequently during soccer matches in female players, irrespective of using fixed or individual speed thresholds to define sprint occurrence. However, repeated sprint ability development cannot be ruled out from soccer training programs due to its association with match-related performance.

  14. Effect of load carriage on performance of an explosive, anaerobic military task.

    PubMed

    Treloar, Alison K Laing; Billing, Daniel C

    2011-09-01

    This study examined the effects of load carriage on performance of an explosive, anaerobic military task. A task-specific assessment requiring five 30-m timed sprints was developed to address this question. Seventeen soldiers (female = 5, male = 12) volunteered to undergo the test under two experimental conditions: unloaded (combat uniform and boots) and loaded (unloaded plus 21.6 kg fighting load, comprising webbing, weapon, helmet, and combat body armor). When loaded, there was a significant increase in the mean 30-m sprint time compared to unloaded (8.2 +/- 1.4 seconds vs. 6.2 +/- 0.8 seconds; p < 0.01). Of the total increase in mean sprint time, 51.7% occurred within the first 5 m. Female sprint times were affected to a larger extent than male (36% vs. 29%, respectively) as a result of the increased load. Fighting load significantly affected soldier mobility when conducting explosive, anaerobic military tasks, particularly among females, and specific physical conditioning should be considered to minimize this effect.

  15. Correlation between agility and sprinting according to student age.

    PubMed

    Yanci, Javier; Los Arcos, Asier; Grande, Ignacio; Gil, Eneko; Cámara, Jesús

    2014-06-01

    The purposes of the study were to assess sprinting and agility performance characteristics and to determine the relationship between these two motor skills in elementary education students. Sprinting and agility performance were assessed in 176 children (88 boys and 88 girls) divided into three groups: Group 1 (G1, N = 98; 48 boys and 50 girls), from the first year of elementary education; Group 2 (G2, N = 38; 15 boys and 23 girls), from the second year of elementary education; Group 3 (G3, N = 40; 25 boys and 15 girls), from the third year of elementary education. Significant differences (p < 0.001) were found in agility ability among the groups and between G1-G3 and G2-G3 in the 5 and 15 m sprint. Regarding gender of the students of the same age, significant differences (p < 0.001) between boys and girls in group G1 and G2 were obtained in the 5 and 15 m sprint. The correlation between agility and acceleration was significant but moderate (0.3 < r < 0.7) in all groups (G1, G2, and G3), in most cases. When the gender factor was included, the results were heterogeneous. Assessing this correlation according to age and gender produced heterogeneous results. For this reason, we think that both are independent qualities and that age and gender are two factors that influence the correlation results.

  16. Running mechanical alterations during repeated treadmill sprints in hot versus hypoxic environments. A pilot study.

    PubMed

    Girard, Olivier; Brocherie, Franck; Morin, Jean-Benoit; Millet, Grégoire P

    2016-01-01

    We determined if performance and mechanical running alterations during repeated treadmill sprinting differ between severely hot and hypoxic environments. Six male recreational sportsmen (team- and racket-sport background) performed five 5-s sprints with 25-s recovery on an instrumented treadmill, allowing the continuous (step-by-step) measurement of running kinetics/kinematics and spring-mass characteristics. These were randomly conducted in control (CON; 25°C/45% RH, inspired fraction of oxygen = 20.9%), hot (HOT; 38°C/21% RH, inspired fraction of oxygen = 20.9%; end-exercise core temperature: ~38.6°C) and normobaric hypoxic (HYP, 25°C/45% RH, inspired fraction of oxygen = 13.3%/simulated altitude of ~3600 m; end-exercise pulse oxygen saturation: ~84%) environments. Running distance was lower (P < 0.05) in HOT compared to CON and HYP for the first sprint but larger (P < 0.05) sprint decrement score occurred in HYP versus HOT and CON. Compared to CON, the cumulated distance covered over the five sprints was lower (P < 0.01) in HYP but not in HOT. Irrespective of the environmental condition, significant changes occurred from the first to the fifth sprint repetitions (all three conditions compounded) in selected running kinetics (mean horizontal forces, P < 0.01) or kinematics (contact and swing times, both P < 0.001; step frequency, P < 0.001) and spring-mass characteristics (vertical stiffness, P < 0.001; leg stiffness, P < 0.01). No significant interaction between sprint number and condition was found for any mechanical data. Preliminary evidence indicates that repeated-sprint ability is more impaired in hypoxia than in a hot environment, when compared to a control condition. However, as sprints are repeated, mechanical alterations appear not to be exacerbated in severe (heat, hypoxia) environmental conditions.

  17. Smaller muscle ATP reduction in women than in men by repeated bouts of sprint exercise.

    PubMed

    Esbjörnsson-Liljedahl, Mona; Bodin, Kristina; Jansson, Eva

    2002-09-01

    It was hypothesized that the reduction of high-energy phosphates in muscle after repeated sprints is smaller in women than in men. Fifteen healthy and physically active women and men with an average age of 25 yr (range of 19-42 yr) performed three 30-s cycle sprints (Wingate test) with 20 min of rest between sprints. Repeated blood and muscle samples were obtained. Freeze-dried pooled muscle fibers of types I and II were analyzed for high-energy phosphates and their breakdown products and for glycogen. Accumulation of plasma ATP breakdown products, plasma catecholamines, and blood lactate, as well as glycogen reduction in type I fibers, was all lower in women than in men during sprint exercise. Repeated sprints induced smaller reduction of ATP and smaller accumulation of IMP and inosine in women than in men in type II muscle fibers, with no gender differences in changes of ATP and its breakdown products during the bouts of exercise themselves. This indicates that the smaller ATP reduction in women than in men during repeated sprints was created during recovery periods between the sprint exercises and that women possess a faster recovery of ATP via reamination of IMP during these recovery periods.

  18. Efficacy of a Four-Week Uphill Sprint Training Intervention in Field Hockey Players.

    PubMed

    Jakeman, John R; McMullan, Judith; Babraj, John A

    2016-10-01

    Jakeman, JR, McMullan, J, and Babraj, JA. Efficacy of a four-week uphill sprint training intervention in field hockey players. J Strength Cond Res 30(10): 2761-2766, 2016-Current evidence increasingly suggests that very short, supramaximal bouts of exercise can have significant health and performance benefits. Most research conducted in the area, however, uses laboratory-based protocols, which can lack ecological validity. The purpose of this study was to examine the effects of a high-intensity sprint training program on hockey-related performance measures. Fourteen semiprofessional hockey players either completed a 4-week high-intensity training (HIT) intervention, consisting of a total of 6 sessions of HIT, which progressively increased in volume (n = 7), or followed their normal training program (Con; n = 7). Straight-line sprint speed, with and without a hockey stick and ball, and slalom sprint speed, with and without a hockey stick and ball, were used as performance indicators. Maximal sprint speed over 22.9 m was also assessed. On completion of the 4-week intervention, straight-line sprint speed improved significantly in the HIT group (∼3%), with no changes in performance for the Con group. Slalom sprint speed, both with and without a hockey ball, was not significantly different after the training program in either group. Maximal sprint speed improved significantly (12.1%) in the HIT group, but there was no significant performance change in the Con group. The findings of this study indicate that a short period of HIT can significantly improve hockey-related performance measures and could be beneficial to athletes and coaches in field settings.

  19. Effects of Combined Foot/Ankle Electromyostimulation and Resistance Training on the In-Shoe Plantar Pressure Patterns during Sprint in Young Athletes

    PubMed Central

    Fourchet, François; Kuitunen, Sami; Girard, Olivier; Beard, Adam J.; Millet, Grégoire P.

    2011-01-01

    Several studies have already reported that specific foot/ankle muscle reinforcement strategies induced strength and joint position sense performance enhancement. Nevertheless the effects of such protocols on sprint performance and plantar loading distribution have not been addressed yet. The objective of the study is to investigate the influence of a 5-wk foot/ankle strength training program on plantar loading characteristics during sprinting in adolescent males. Sixteen adolescent male athletes of a national training academy were randomly assigned to either a combined foot/ankle electromyostimulation and resistance training (FAST) or a control (C) group. FAST consisted of foot medial arch and extrinsic ankle muscles reinforcement exercises, whereas C maintained their usual training routine. Before and after training, in-shoe loading patterns were measured during 30-m running sprints using pressure sensitive insoles (right foot) and divided into nine regions for analysis. Although sprint times remained unchanged in both groups from pre- to post- training (3.90 ± 0.32 vs. 3.98 ± 0.46 s in FAST and 3.83 ± 0.42 vs. 3.81 ± 0.44 s in C), changes in force and pressure appeared from heel to forefoot between FAST and C. In FAST, mean pressure and force increased in the lateral heel area from pre- to post- training (67.1 ± 44.1 vs. 82.9 ± 28.6 kPa [p = 0.06]; 25.5 ± 17.8 vs. 34.1 ± 14.3 N [p = 0.05]) and did not change in the medial forefoot (151.0 ± 23.2 vs. 146.1 ± 30.0 kPa; 142.1 ± 29.4 vs. 136.0 ± 33.8; NS). Mean area increased in FAST under the lateral heel from pre- to post- (4.5 ± 1.3 vs. 5.7 ± 1.6 cm2 [p < 0.05]) and remained unchanged in C (5.5 ± 2.8 vs. 5.0 ± 3.0 cm2). FAST program induced significant promising lateral and unwanted posterior transfer of the plantar loads without affecting significantly sprinting performance. Key points We have evaluated the effects of a foot/ankle strength training program on sprint performance and on related

  20. Relationships between repeated sprint ability, mechanical parameters, and blood metabolites in professional soccer players.

    PubMed

    Morcillo, Jose A; Jiménez-Reyes, Pedro; Cuadrado-Peñafiel, Victor; Lozano, Emilio; Ortega-Becerra, Manuel; Párraga, Juan

    2015-06-01

    This study analyzed the acute metabolic and mechanical responses to a specific repeated sprint ability (RSA) test. Eighteen male professional soccer players from a team of the First Division of Spanish National League participated. A 12 × 30-m RSA test with 30-second recovery together with countermovement jump test (CMJ) pre a post RSA test was performed. Mechanical responses (i.e., height performance in CMJ and speed loss) and metabolic responses (i.e., blood lactate and ammonia concentrations) were measured before and after exercise. A related sample t-test was used to analyze CMJ height pre-post changes as well as to compare pre- and post-exercise lactate and ammonia levels. Countermovement jump height loss pre-post session (8%) was significant, and fatigue, measured as CMJ height loss, was strongly correlated to lactate (r = 0.97; p < 0.001) and ammonia (r = 0.92; p < 0.001) for all players. The relationships between the variables studied were determined by calculating the Pearson correlation coefficients. The metabolic stress developed during the effort can be estimated by controlling CMJ because of the high correlation between CMJ and blood lactate and ammonia concentrations. The high correlations found between mechanical (speed and CMJ height losses) and metabolic (lactate and ammonia) measures of fatigue highlight the utility and validity of using CMJ to monitor training load and quantify objectively neuromuscular fatigue during RSA.

  1. Relationship between traditional and ballistic squat exercise with vertical jumping and maximal sprinting.

    PubMed

    Requena, Bernardo; García, Inmaculada; Requena, Francisco; de Villarreal, Eduardo Sáez-Sáez; Cronin, John B

    2011-08-01

    The purpose of this study was to quantify the magnitude of the relationship between vertical jumping and maximal sprinting at different distances with performance in the traditional and ballistic concentric squat exercise in well-trained sprinters. Twenty-one men performed 2 types of barbell squats (ballistic and traditional) across different loads with the aim of determining the maximal peak and average power outputs and 1 repetition maximum (1RM) values. Moreover, vertical jumping (countermovement jump test [CMJ]) and maximal sprints over 10, 20, 30, 40, 60, and 80 m were also assessed. In respect to 1RM in traditional squat, (a) no significant correlation was found with CMJ performance; (b) positive strong relationships (p < 0.01) were obtained with all the power measures obtained during both ballistic and traditional squat exercises (r = 0.53-0.90); (c) negative significant correlations (r = -0.49 to -0.59, p < 0.05) were found with sprint times in all the sprint distances measured when squat strength was expressed as a relative value; however, in the absolute mode, no significant relationships were observed with 10- and 20-m sprint times. No significant relationship was found between 10-m sprint time and relative or absolute power outputs using either ballistic or traditional squat exercises. Sprint time at 20 m was only related to ballistic and traditional squat performance when power values were expressed in relative terms. Moderate significant correlations (r = -0.39 to -0.56, p < 0.05) were observed between sprint times at 30 and 40 m and the absolute/relative power measures attained in both ballistic and traditional squat exercises. Sprint times at 60 and 80 m were mainly related to ballistic squat power outputs. Although correlations can only give insights into associations and not into cause and effect, from this investigation, it can be seen that traditional squat strength has little in common with CMJ performance and that relative 1RM and power

  2. Effects of vest loading on sprint kinetics and kinematics.

    PubMed

    Cross, Matt R; Brughelli, Matt E; Cronin, John B

    2014-07-01

    The effects of vest loading on sprint kinetics and kinematics during the acceleration and maximum velocity phases of sprinting are relatively unknown. A repeated measures analysis of variance with post hoc contrasts was used to determine whether performing 6-second maximal exertion sprints on a nonmotorized force treadmill, under 2 weighted vest loading conditions (9 and 18 kg) and an unloaded baseline condition, affected the sprint mechanics of 13 males from varying sporting backgrounds. Neither vest load promoted significant change in peak vertical ground reaction force (GRF-z) outputs compared with baseline during acceleration, and only 18-kg loading increased GRF-z at the maximum velocity (8.8%; effect size [ES] = 0.70). The mean GRF-z significantly increased with 18-kg loading during acceleration and maximum velocity (11.8-12.4%; ES = 1.17-1.33). Horizontal force output was unaffected, although horizontal power was decreased with the 18-kg vest during maximum velocity (-14.3%; ES = -0.48). Kinematic analysis revealed decreasing velocity (-3.6 to -5.6%; ES = -0.38 to -0.61), decreasing step length (-4.2%; ES = -0.33 to -0.34), increasing contact time (5.9-10.0%; ES = 1.01-1.71), and decreasing flight time (-17.4 to -26.7%; ES = -0.89 to -1.50) with increased loading. As a vertical vector-training stimulus, it seems that vest loading decreases flight time, which in turn reduces GRF-z. Furthermore, it seems that heavier loads than that are traditionally recommended are needed to promote increases in the GRF-z output during maximum velocity sprinting. Finally, vest loading offers little as a horizontal vector-training stimulus and actually compromises horizontal power output.

  3. Acute Effects of Loaded Half-Squat Jumps on Sprint Running Speed in Track and Field Athletes and Soccer Players.

    PubMed

    Vanderka, Marián; Krčmár, Matúš; Longová, Katarína; Walker, Simon

    2016-06-01

    The purpose of the study was to determine the acute responses to a jump squat protocol designed to induce postactivation potentiation on sprint running performance in experienced track and field athletes and soccer players. Twenty-five regional level athletes (12 track and field: ∼17 years; ∼177 cm; ∼73 kg and 13 soccer: ∼18 years; ∼175 cm; ∼72 kg) performed 2 test sessions assessing 40-m sprint running performance in a balanced, crossover design. Dual-beam light timing gates measured 0-20 and 20-40 m sprint times before and after either 9 minutes of sitting (control) or 2 sets of 6 repetition half-squat jump with the load eliciting maximum power (experimental) conditions. Sprint performance was significantly enhanced over both 0-20 m (3.09 ± 0.07 to 3.04 ± 0.08 seconds; Δ ∼1.5%; p ≤ 0.05) and 20-40 m (2.42 ± 0.09 to 2.39 ± 0.09 seconds; Δ ∼1%; p ≤ 0.05) in track and field athletes only. Also, the magnitude of enhanced sprint performance was related to baseline 0-20 m sprint performance (r = 0.44; p = 0.028; n = 25). It seems that using loaded half-squat jumps to enhance sprint performance could be used in training of high-level young athletes.

  4. Rock-dwelling lizards exhibit less sensitivity of sprint speed to increases in substrate rugosity.

    PubMed

    Collins, Clint E; Self, Jessica D; Anderson, Roger A; McBrayer, Lance D

    2013-06-01

    Effectively moving across variable substrates is important to all terrestrial animals. The effects of substrates on lizard performance have ecological ramifications including the partitioning of habitat according to sprinting ability on different surfaces. This phenomenon is known as sprint sensitivity, or the decrease in sprint speed due to change in substrate. However, sprint sensitivity has been characterized only in arboreal Anolis lizards. Our study measured sensitivity to substrate rugosity among six lizard species that occupy rocky, sandy, and/or arboreal habitats. Lizards that use rocky habitats are less sensitive to changes in substrate rugosity, followed by arboreal lizards, and then by lizards that use sandy habitats. We infer from comparative phylogenetic analysis that forelimb, chest, and tail dimensions are important external morphological features related to sensitivity to changes in substrate rugosity.

  5. Relationships to skating performance in competitive hockey players.

    PubMed

    Farlinger, Chris M; Kruisselbrink, L Darren; Fowles, Jonathon R

    2007-08-01

    The purpose of this study was to identify off-ice variables that would correlate to on-ice skating sprint performance and cornering ability. Previous literature has not reported any off-ice testing variables that strongly correlate to on-ice cornering ability in ice hockey players. Thirty-six male hockey players aged 15-22 years (mean +/- SD: 16.3 +/- 1.7 years; weight = 70.8 +/- 10.4 kg; height = 175.6 +/- 4.1 cm) with an average of 10.3 +/- 3.0 years hockey playing experience (most at AA and AAA levels) participated in the study. The on-ice tests included a 35-m sprint and the cornering S test. The off-ice tests included the following: 30-m sprint, vertical jump, broad jump, 3 hop jump, Edgren side shuffle, Hexagon agility, side support, push-ups, and 15-second modified Wingate. The on-ice sprint test and cornering S test were strongly correlated (r = 0.70; p < 0.001). While many off-ice tests correlated with on-ice skating, measures of horizontal leg power (off-ice sprint and 3 hop jump) were the best predictors of on-ice skating performance, once weight and playing level were accounted for. These 4 variables accounted for a total of 78% (p < 0.0001) of the variance in on-ice sprint performance. No off-ice test accounted for unique variance in S-cornering performance beyond weight, playing level, and skating sprint performance. These data indicate that coaches should include horizontal power tests of off-ice sprint and 3 hop jump to adequately assess skating ability. To improve on-ice skating performance and cornering ability, coaches should also focus on the development of horizontal power through specific off-ice training, although future research will determine whether off-ice improvements in horizontal power directly transfer to improvements in on-ice skating.

  6. Critical role for free radicals on sprint exercise-induced CaMKII and AMPKα phosphorylation in human skeletal muscle.

    PubMed

    Morales-Alamo, David; Ponce-González, Jesús Gustavo; Guadalupe-Grau, Amelia; Rodríguez-García, Lorena; Santana, Alfredo; Cusso, Roser; Guerrero, Mario; Dorado, Cecilia; Guerra, Borja; Calbet, José A L

    2013-03-01

    The extremely high energy demand elicited by sprint exercise is satisfied by an increase in O2 consumption combined with a high glycolytic rate, leading to a marked lactate accumulation, increased AMP-to-ATP ratio, and reduced NAD(+)/NADH.H(+) and muscle pH, which are accompanied by marked Thr(172) AMP-activated protein kinase (AMPK)-α phosphorylation during the recovery period by a mechanism not fully understood. To determine the role played by reactive nitrogen and oxygen species (RNOS) on Thr(172)-AMPKα phosphorylation in response to cycling sprint exercise, nine voluntary participants performed a single 30-s sprint (Wingate test) on two occasions: one 2 h after the ingestion of placebo and another after the intake of antioxidants (α-lipoic acid, vitamin C, and vitamin E) in a double-blind design. Vastus lateralis muscle biopsies were obtained before, immediately postsprint, and 30 and 120 min postsprint. Performance and muscle metabolism were similar during both sprints. The NAD(+)-to-NADH.H(+) ratio was similarly reduced (84%) and the AMP-to-ATP ratio was similarly increased (×21-fold) immediately after the sprints. Thr(286) Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and Thr(172)-AMPKα phosphorylations were increased after the control sprint (with placebo) but not when the sprints were preceded by the ingestion of antioxidants. Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation, a known inhibitory mechanism of Thr(172)-AMPKα phosphorylation, was increased only with antioxidant ingestion. In conclusion, RNOS play a crucial role in AMPK-mediated signaling after sprint exercise in human skeletal muscle. Antioxidant ingestion 2 h before sprint exercise abrogates the Thr(172)-AMPKα phosphorylation response observed after the ingestion of placebo by reducing CaMKII and increasing Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation. Sprint performance, muscle metabolism, and AMP-to-ATP and NAD(+)-to-NADH.H(+) ratios are not affected by the acute

  7. Physiological characteristics of well-trained junior sprint kayak athletes.

    PubMed

    Borges, Thiago Oliveira; Dascombe, Ben; Bullock, Nicola; Coutts, Aaron J

    2015-07-01

    This study aimed to profile the physiological characteristics of junior sprint kayak athletes (n=21, VO2max 4.1±0.7 L/min, training experience 2.7±1.2 y) and to establish the relationship between physiological variables (VO2max, VO2 kinetics, muscle-oxygen kinetics, paddling efficiency) and sprint kayak performance. VO2max, power at VO2max, power:weight ratio, paddling efficiency, VO2 at lactate threshold, and whole-body and muscle oxygen kinetics were determined on a kayak ergometer in the laboratory. Separately, on-water time trials (TT) were completed over 200 m and 1000 m. Large to nearly perfect (-.5 to -.9) inverse relationships were found between the physiological variables and on-water TT performance across both distances. Paddling efficiency and lactate threshold shared moderate to very large correlations (-.4 to -.7) with 200- and 1000-m performance. In addition, trivial to large correlations (-.11 to -.5) were observed between muscle-oxygenation parameters, muscle and whole-body oxygen kinetics, and performance. Multiple regression showed that 88% of the unadjusted variance for the 200-m TT performance was explained by VO2max, peripheral muscle deoxygenation, and maximal aerobic power (P<.001), whereas 85% of the unadjusted variance in 1000-m TT performance was explained by VO2max and deoxyhemoglobin (P<.001). The current findings show that well-trained junior sprint kayak athletes possess a high level of relative aerobic fitness and highlight the importance of the peripheral muscle metabolism for sprint kayak performance, particularly in 200-m races, where finalists and nonfinalists are separated by very small margins. Such data highlight the relative aerobic-fitness variables that can be used as benchmarks for talent-identification programs or monitoring longitudinal athlete development. However, such approaches need further investigation.

  8. What Research Tells the Coach About Sprinting.

    ERIC Educational Resources Information Center

    Dintiman, George B.

    This booklet on sprinting is divided into four chapters. Chapter 1 "Introduction," provides an analysis of the 100-meter dash, summarizes world records, and discusses the reliability of timing the sprint race. Chapter 2, "Describing the Sprinter," discusses the following topics: anatomical characteristics, flexibility, reaction, strength/power,…

  9. Evaluating sprinting ability, density of acceleration, and speed dribbling ability of professional soccer players with respect to their positions.

    PubMed

    Taskin, Halil

    2008-09-01

    The aim of this study is to evaluate sprinting ability, density of acceleration, and speed dribbling ability of professional soccer players with respect to their positions.A total of 243 professional soccer players were examined. These soccer players are playing in different leagues of Turkey. The F-MARC test battery, which was designed by FIFA, was used for soccer players. We did not find any statistical differences for 30-m sprint test and four-line sprint test values with respect to positions of soccer players (p > 0.05). On the other hand, there was a statistical difference for speed dribbling test values in terms of positions of soccer players (p < 0.05). It was found that the test values of defense players, midfielders, and forwards were better than the test values of goalkeepers (p < 0.05). In conclusion, this study, which was done during the training season, shows that there is a similarity between the abilities of professional soccer players for 30-m sprint and four-line sprint tests. Therefore, it is believed that there must be fast players in all positions in terms of sprint ability. There is a similarity among defenders, midfielders, and forwards in terms of speed dribbling ability; in contrast, the speed dribbling ability of goal keepers is different from the players in those three positions. Although there are many more speed dribbling exercises within the training programs of defenders, midfielders, and forwards, the speed dribbling ability test is not used much for goal keepers. Correspondingly, speed dribbling ability is not a specific indicator for goal keepers, and this test should not be used for the choice of goalkeepers.

  10. Relationship between Repeated Sprint Ability and Aerobic Capacity in Professional Soccer Players

    PubMed Central

    Jones, Rhys M.; Cook, Christian C.; Kilduff, Liam P.; Milanović, Zoran; James, Nic; Sporiš, Goran; Fiorentini, Bruno; Fiorentini, Fredi; Turner, Anthony; Vučković, Goran

    2013-01-01

    Aim. The aim of the present study was to investigate the relationship between maximal aerobic capacity (VO2 max) and repeated sprint ability (RSA) in a group of professional soccer players. Methods. Forty-one professional soccer players (age 23 ± 4 yrs, height 180.0 ± 5.3 cm, weight 79.6 ± 5.3 kg) were required to perform tests to assess RSA and VO2 max on two separate days with at least 48 hr rest between testing sessions. Each player performed a treadmill test to determine their VO2 max and a test for RSA involving the players completing 6 × 40 m sprints (turn after 20 m) with 20 s active recovery between each sprint. Results. There was a significant negative correlation between body mass normalised VO2 max and mean sprint time (RSAmean) (r = −0.655; P < 0.01) and total sprint time (RSAtotal) (r = −0.591, P < 0.01). Conclusion. Results of the current study indicate that VO2 max is one important factor aiding soccer players in the recovery from repeated sprint type activities. PMID:24198732

  11. Overestimation of required recovery time during repeated sprint exercise with self-regulated recovery.

    PubMed

    Phillips, Shaun M; Thompson, Richard; Oliver, Jon L

    2014-12-01

    This study investigated the reliability and accuracy of self-regulated recovery time and performance during repeated sprinting. On 4 occasions, 14 men (24.5 ± 5.0 years) completed 10 × 6 seconds cycle sprints against 7.5% body mass, self-regulating (SR) recovery time to maintain performance. Subjects then repeated the test, but with a reduced recovery (RR) of 10% less recovery time. Across the first 4 trials, there were no between-trial differences in peak power output (PPO) or mean power output (MPO), recovery time, or fatigue index (p > 0.05). Random variation in recovery time was reduced across trials 3-4 (coefficient of variation [CV] = 7.5%, 95% confidence limits [CL] = 5.4-12.4%) compared with trials 1-2 (CV = 16.0, 95% CL = 11.4-27.0%) and 2-3 (CV = 10.1%, 95% CL = 7.2-16.7%) but was consistent across trials for PPO and MPO (between-trials CV, ≤3.3%). There were no trial effects for any performance, physiological, or perceptual measures when comparing SR with RR (p > 0.05), although heart rate and perceptual measures increased with subsequent sprint efforts (p ≤ 0.05). After 2 familiarization trials, subjects can reliably self-regulate recovery time to maintain performance during repeated sprints. However, subjects overestimate the amount of recovery time required, as reducing this time by 10% had no effect on performance, perceptual, or physiological parameters. Self-regulated sprinting is potentially a reliable training tool, particularly for sprint training where maintenance of work is desired. However, overestimation of required recovery time means that performance improvements may not be achieved if the goal of training is improvement of repeated sprint performance with incomplete recovery.

  12. Shuttle-Run Sprint Training in Hypoxia for Youth Elite Soccer Players: A Pilot Study

    PubMed Central

    Gatterer, Hannes; Philippe, Marc; Menz, Verena; Mosbach, Florian; Faulhaber, Martin; Burtscher, Martin

    2014-01-01

    The purposes of the present study were to investigate if a) shuttle-run sprint training performed in a normobaric hypoxia chamber of limited size (4.75x2.25m) is feasible, in terms of producing the same absolute training load, when compared to training in normoxia, and b) if such training improves the repeated sprint ability (RSA) and the Yo-Yo intermittent recovery (YYIR) test outcome in young elite soccer players. Players of an elite soccer training Centre (age: 15.3 ± 0.5 years, height: 1.73 ± 0.07 m, body mass: 62.6 ± 6.6 kg) were randomly assigned to a hypoxia or a normoxia training group. Within a 5-week period, players, who were not informed about the hypoxia intervention, performed at least 7 sessions of identical shuttle-run sprint training either in a normal training room (FiO2 = 20.95%) or in a hypoxic chamber (FiO2 = 14.8%; approximately 3300m), both equipped with the same floor. Each training session comprised 3 series of 5x10s back and forth sprints (4.5m) performed at maximal intensity. Recovery time between repetitions was 20s and between series 5min. Before and after the training period the RSA (6 x 40m shuttle sprint with 20 s rest between shuttles) and the YYIR test were performed. The size of the chamber did not restrict the training intensity of the sprint training (both groups performed approximately 8 shuttles during 10s). Training in hypoxia resulted in a lower fatigue slope which indicates better running speed maintenance during the RSA test (p = 0.024). YYIR performance increased over time (p = 0.045) without differences between groups (p > 0.05). This study showed that training intensity of the shuttle-run sprint training was not restricted in a hypoxic chamber of limited size which indicates that such training is feasible. Furthermore, hypoxia compared to normoxia training reduced the fatigue slope during the RSA test in youth soccer players. Key Points Shuttle-run sprint training is feasible in hypoxic chambers of limited size (i

  13. Shuttle-run sprint training in hypoxia for youth elite soccer players: a pilot study.

    PubMed

    Gatterer, Hannes; Philippe, Marc; Menz, Verena; Mosbach, Florian; Faulhaber, Martin; Burtscher, Martin

    2014-12-01

    The purposes of the present study were to investigate if a) shuttle-run sprint training performed in a normobaric hypoxia chamber of limited size (4.75x2.25m) is feasible, in terms of producing the same absolute training load, when compared to training in normoxia, and b) if such training improves the repeated sprint ability (RSA) and the Yo-Yo intermittent recovery (YYIR) test outcome in young elite soccer players. Players of an elite soccer training Centre (age: 15.3 ± 0.5 years, height: 1.73 ± 0.07 m, body mass: 62.6 ± 6.6 kg) were randomly assigned to a hypoxia or a normoxia training group. Within a 5-week period, players, who were not informed about the hypoxia intervention, performed at least 7 sessions of identical shuttle-run sprint training either in a normal training room (FiO2 = 20.95%) or in a hypoxic chamber (FiO2 = 14.8%; approximately 3300m), both equipped with the same floor. Each training session comprised 3 series of 5x10s back and forth sprints (4.5m) performed at maximal intensity. Recovery time between repetitions was 20s and between series 5min. Before and after the training period the RSA (6 x 40m shuttle sprint with 20 s rest between shuttles) and the YYIR test were performed. The size of the chamber did not restrict the training intensity of the sprint training (both groups performed approximately 8 shuttles during 10s). Training in hypoxia resulted in a lower fatigue slope which indicates better running speed maintenance during the RSA test (p = 0.024). YYIR performance increased over time (p = 0.045) without differences between groups (p > 0.05). This study showed that training intensity of the shuttle-run sprint training was not restricted in a hypoxic chamber of limited size which indicates that such training is feasible. Furthermore, hypoxia compared to normoxia training reduced the fatigue slope during the RSA test in youth soccer players. Key PointsShuttle-run sprint training is feasible in hypoxic chambers of limited size (i

  14. The millimeter IRAM-30 m line survey toward IK Tauri

    NASA Astrophysics Data System (ADS)

    Velilla Prieto, L.; Sánchez Contreras, C.; Cernicharo, J.; Agúndez, M.; Quintana-Lacaci, G.; Bujarrabal, V.; Alcolea, J.; Balança, C.; Herpin, F.; Menten, K. M.; Wyrowski, F.

    2017-01-01

    Aims: We aim to investigate the physical and chemical properties of the molecular envelope of the oxygen-rich AGB star IK Tau. Methods: We carried out a millimeter wavelength line survey between 79 and 356 GHz with the IRAM-30 m telescope. We analysed the molecular lines detected in IK Tau using the population diagram technique to derive rotational temperatures and column densities. We conducted a radiative transfer analysis of the SO2 lines, which also helped us to verify the validity of the approximated method of the population diagram for the rest of the molecules. Results: For the first time in this source we detected rotational lines in the ground vibrational state of HCO+, NS, NO, and H2CO, as well as several isotopologues of molecules previously identified, namely, C18O, Si17O, Si18O, 29SiS, 30SiS, Si34S, H13CN, 13CS, C34S, H234S, 34SO, and 34SO2. We also detected several rotational lines in vibrationally excited states of SiS and SiO isotopologues, as well as rotational lines of H2O in the vibrationally excited state ν2 = 2. We have also increased the number of rotational lines detected of molecules that were previously identified toward IK Tau, including vibrationally excited states, enabling a detailed study of the molecular abundances and excitation temperatures. In particular, we highlight the detection of NS and H2CO with fractional abundances of f(NS) 10-8 and f(H2CO) [10-7-10-8]. Most of the molecules display rotational temperatures between 15 and 40 K. NaCl and SiS isotopologues display rotational temperatures higher than the average ( 65 K). In the case of SO2 a warm component with Trot 290 K is also detected. Conclusions: With a total of 350 lines detected of 34 different molecular species (including different isotopologues), IK Tau displays a rich chemistry for an oxygen-rich circumstellar envelope. The detection of carbon bearing molecules like H2CO, as well as the discrepancies found between our derived abundances and the predictions from

  15. Positional relationships between various sprint and jump abilities in elite American football players.

    PubMed

    Robbins, Daniel W; Young, Warren B

    2012-02-01

    The purpose of this study was to investigate positional relationships between sprint and jump abilities and body mass in elite college American football players (n = 1,136). Data from the annual National Football League combine over the years 2005-2009 were examined. The measures included for examination were the 9.1-, 18.3-, 36.6-, and flying 18.3-m sprints and the vertical and horizontal jumps. Pearson's correlation coefficients (r) were calculated to determine the relationships between the tests, and coefficients of determination (r2) were used to determine common variance. With the exception of the relationship between the 9.1-m and the flying 18.3-m sprints, the relationships between all sprints are very strong. Vertical jump ability is more strongly associated with maximum speed, as compared with acceleration. Horizontal jump ability is similarly associated with maximum speed and acceleration. The 9.1-, 18.3-, and flying 18.3-m sprints and the jump tests would appear to measure independent skills. Stationary start sprints up to 36.6 m appear to be heavily influenced by acceleration and may thus measure similar characteristics. The flying 18.3-m sprint is recommended as a measure of maximum speed. Body mass was most strongly associated with performance in the lineman group. When body mass was controlled for, correlations weakened across all the groups. The role of body mass remains unclear. Regardless of sport, the present research supports the notion that the relationships between various sprint and jump abilities warrant positional consideration. Coaches and practitioners will be able to use the findings of this research to better test and monitor athletes requiring different skills.

  16. Validity and reliability of hand and electronic timing for 40-yd sprint in college football players.

    PubMed

    Mann, J Bryan; Ivey, Pat J; Brechue, William F; Mayhew, Jerry L

    2015-06-01

    The 40-yd sprint is the premier event for evaluating sprint speed among football players at all competitive levels. Some questions remain concerning the validity of hand timing compared with electronic timing, as well as the lack of assessment and reliability of each method. The purpose of this study was to evaluate the validity of hand timing by experienced and novice timers compared with electronic timing and to establish the reliability and smallest worthwhile difference (SWD) of each method for the 40-yd sprint. National Collegiate Athletic Association (NCAA) Division I college football players (n = 81) ran two 40-yd sprint trials, with each being timed electronically (touch pad start and infrared beam stop) and with hand-held stopwatches by 2 experienced and 4 novice timers. There was no significant difference between trials timed electronically or by experienced and novice timers. Hand timing (experienced = 4.90 ± 0.34 seconds; novice = 4.86 ± 0.33 seconds) produced a significantly faster 40-yd sprint time than electronic timing (5.12 ± 0.35 seconds) by 0.22 ± 0.07 and 0.26 ± 0.08 seconds, respectively. Relative reliability was extremely high for all comparisons with intraclass correlation coefficient >0.987. The SWD was 0.12 seconds with electronic timing and 0.14 seconds with hand timing. In conclusion, hand timing produces faster sprint times than electronic timing in college football players, independent of timer experience. Repeated 40-yd sprint trials have high relative reliability regardless of timing method. A meaningful change in 40-yd sprint performance is dependent on timing method used.

  17. Predictors of sprint start speed: the effects of resistive ground-based vs. inclined treadmill training.

    PubMed

    Myer, Gregory D; Ford, Kevin R; Brent, Jensen L; Divine, Jon G; Hewett, Timothy E

    2007-08-01

    There is currently no consensus with regard to the most effective method to train for improved acceleration, or with regard to which kinematic variable provides the greatest opportunity for improvement in this important performance characteristic. The purpose of this study was to determine the effects of resistive ground-based speed training and incline treadmill speed training on speed-related kinematic measures and sprint start speed. The hypothesis tested was that incline treadmill training would improve sprint start time, while the ground-based resistive training would not. Corollary hypotheses were that treadmill training would increase stride frequency and ground-based training would not affect kinematics during the sprint start. Thirty-one high school female soccer players (15.7 +/- 0.5 years) were assigned to either treadmill (n = 17) or ground-based (n = 14) training groups and trained 2 times a week for 6 weeks. The treadmill group utilized incline speed training on a treadmill, while the ground-based group utilized partner band resistance ground-based techniques. Three-dimensional motion analysis was used (4.5 m mark) before and after training to quantify kinematics during the fastest of 3 recorded sprint starts (9.1 m). Both groups decreased average sprint start time from 1.75 +/- 0.12 to 1.68 +/- 0.08 seconds (p < 0.001). Training increased stride frequency (p = 0.030) but not stride length. After training, total vertical pelvic displacement and stride length predicted 62% of the variance in sprint start time for the resistive ground-based group, while stride length and stride frequency accounted for 67% prediction of the variance in sprint start time for the treadmill group. The results of this study indicate that both incline treadmill and resistive ground-based training are effective at improving sprint start speed, although they potentially do so through differing mechanisms.

  18. Relation between maximal aerobic power and the ability to repeat sprints in young basketball players.

    PubMed

    Castagna, Carlo; Manzi, Vincenzo; D'Ottavio, Stefano; Annino, Giuseppe; Padua, Elvira; Bishop, David

    2007-11-01

    The aim of this study was to examine the effects of maximal aerobic power (V(.-)O2max peak) level on the ability to repeat sprints (calculated as performance decrement and total sprinting time) in young basketball players. Subjects were 18 junior, well-trained basketball players (age, 16.8 +/- 1.2 years; height, 181.3 +/- 5.7 cm; body mass, 73 +/- 10 kg; V(.-)O2max peak, 59.6 +/- 6.9 ml x kg(-1) x min(-1)). Match analysis and time-motion analysis of competitive basketball games was used to devise a basketball-specific repeated-sprint ability protocol consisting of ten 15-m shuttle run sprints with 30 s of passive recovery. Pre, post, and post plus 3-minute blood lactate concentrations were 2.5 +/- 0.7, 13.6 +/- 3.1, and 14.2 +/- 3.5 mmol x L(-1), respectively. The mean fatigue index (FI) value was 3.4 +/- 2.3% (range, 1.1-9.1%). No significant correlations were found between V(.-)O2max peak and either FI or total sprint time. A negative correlation (r = -0.75, p = 0.01) was found between first-sprint time and FI. The results of this study showed that V(.-)O2max peak is not a predictor of repeated-sprint ability in young basketball players. The high blood lactate concentrations found at the end of the repeated-sprint ability protocol suggest its use for building lactate tolerance in conditioned basketball players.

  19. Acceleration and sprint profiles of a professional elite football team in match play.

    PubMed

    Ingebrigtsen, Jørgen; Dalen, Terje; Hjelde, Geir Håvard; Drust, Barry; Wisløff, Ulrik

    2015-01-01

    The aim of this study was to characterise the acceleration and sprint profiles of elite football match play in one Norwegian elite football team (Rosenborg FC). Fifteen professional players in five playing positions took part in the study (n = 101 observations). Player movement was recorded during every domestic home game of one full season (n = 15) by an automatic tracking system based on microwave technology. Each player performed 91 ± 21 accelerations per match, with a lower number in the second compared with the first half (47 ± 12 vs. 44 ± 12). Players in lateral positions accelerated more often compared to players in central positions (98.3 ± 20.5 vs. 85.3 ± 19.5, p < 0.05). Average sprint distance was 213 ± 111 m distributed between 16.6 ± 7.9 sprints, with no differences between first (106 ± 60 m, 8.2 ± 4.2 sprints) and second halves (107 ± 72 m, 8.3 ± 4.8 sprints). Players in lateral positions sprinted longer distances (287 ± 211 m vs. 160 ± 76 m, p < 0.05) and tended to sprint more often (21.6 ± 7.8 vs. 13.0 ± 5.7, p = 0.064) compared to players in central positions. We found more walking and less of the more intense activities during the last third of the season compared to the first. The main finding in this study was that Norwegian elite players had substantially less number of accelerations and fewer but longer sprints than previous studies reported for higher-ranked leagues. Also, less high-intensity activity was found towards the end of the season. Ultimately, these data provide useful information for the fitness coach (1) in planning of position-specific football training and (2) to avoid the decline in high-intensity activities the last third of the competitive season.

  20. Global land cover mapping at 30 m resolution: A POK-based operational approach

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Chen, Jin; Liao, Anping; Cao, Xin; Chen, Lijun; Chen, Xuehong; He, Chaoying; Han, Gang; Peng, Shu; Lu, Miao; Zhang, Weiwei; Tong, Xiaohua; Mills, Jon

    2015-05-01

    Global Land Cover (GLC) information is fundamental for environmental change studies, land resource management, sustainable development, and many other societal benefits. Although GLC data exists at spatial resolutions of 300 m and 1000 m, a 30 m resolution mapping approach is now a feasible option for the next generation of GLC products. Since most significant human impacts on the land system can be captured at this scale, a number of researchers are focusing on such products. This paper reports the operational approach used in such a project, which aims to deliver reliable data products. Over 10,000 Landsat-like satellite images are required to cover the entire Earth at 30 m resolution. To derive a GLC map from such a large volume of data necessitates the development of effective, efficient, economic and operational approaches. Automated approaches usually provide higher efficiency and thus more economic solutions, yet existing automated classification has been deemed ineffective because of the low classification accuracy achievable (typically below 65%) at global scale at 30 m resolution. As a result, an approach based on the integration of pixel- and object-based methods with knowledge (POK-based) has been developed. To handle the classification process of 10 land cover types, a split-and-merge strategy was employed, i.e. firstly each class identified in a prioritized sequence and then results are merged together. For the identification of each class, a robust integration of pixel-and object-based classification was developed. To improve the quality of the classification results, a knowledge-based interactive verification procedure was developed with the support of web service technology. The performance of the POK-based approach was tested using eight selected areas with differing landscapes from five different continents. An overall classification accuracy of over 80% was achieved. This indicates that the developed POK-based approach is effective and feasible

  1. Nitrate Intake Promotes Shift in Muscle Fiber Type Composition during Sprint Interval Training in Hypoxia

    PubMed Central

    De Smet, Stefan; Van Thienen, Ruud; Deldicque, Louise; James, Ruth; Sale, Craig; Bishop, David J.; Hespel, Peter

    2016-01-01

    Purpose: We investigated the effect of sprint interval training (SIT) in normoxia, vs. SIT in hypoxia alone or in conjunction with oral nitrate intake, on buffering capacity of homogenized muscle (βhm) and fiber type distribution, as well as on sprint and endurance performance. Methods: Twenty-seven moderately-trained participants were allocated to one of three experimental groups: SIT in normoxia (20.9% FiO2) + placebo (N), SIT in hypoxia (15% FiO2) + placebo (H), or SIT in hypoxia + nitrate supplementation (HN). All participated in 5 weeks of SIT on a cycle ergometer (30-s sprints interspersed by 4.5 min recovery-intervals, 3 weekly sessions, 4–6 sprints per session). Nitrate (6.45 mmol NaNO3) or placebo capsules were administered 3 h before each session. Before and after SIT participants performed an incremental VO2max-test, a 30-min simulated cycling time-trial, as well as a 30-s cycling sprint test. Muscle biopsies were taken from m. vastus lateralis. Results: SIT decreased the proportion of type IIx muscle fibers in all groups (P < 0.05). The relative number of type IIa fibers increased (P < 0.05) in HN (P < 0.05 vs. H), but not in the other groups. SIT had no significant effect on βhm. Compared with H, SIT tended to enhance 30-s sprint performance more in HN than in H (P = 0.085). VO2max and 30-min time-trial performance increased in all groups to a similar extent. Conclusion: SIT in hypoxia combined with nitrate supplementation increases the proportion of type IIa fibers in muscle, which may be associated with enhanced performance in short maximal exercise. Compared with normoxic training, hypoxic SIT does not alter βhm or endurance and sprinting exercise performance. PMID:27378942

  2. Effects of hamstring-emphasized neuromuscular training on strength and sprinting mechanics in football players.

    PubMed

    Mendiguchia, J; Martinez-Ruiz, E; Morin, J B; Samozino, P; Edouard, P; Alcaraz, P E; Esparza-Ros, F; Mendez-Villanueva, A

    2015-12-01

    The objective of this study was to examine the effects of a neuromuscular training program combining eccentric hamstring muscle strength, plyometrics, and free/resisted sprinting exercises on knee extensor/flexor muscle strength, sprinting performance, and horizontal mechanical properties of sprint running in football (soccer) players. Sixty footballers were randomly assigned to an experimental group (EG) or a control group (CG). Twenty-seven players completed the EG and 24 players the CG. Both groups performed regular football training while the EG performed also a neuromuscular training during a 7-week period. The EG showed a small increases in concentric quadriceps strength (ES = 0.38/0.58), a moderate to large increase in concentric (ES = 0.70/0.74) and eccentric (ES = 0.66/0.87) hamstring strength, and a small improvement in 5-m sprint performance (ES = 0.32). By contrast, the CG presented lower magnitude changes in quadriceps (ES = 0.04/0.29) and hamstring (ES = 0.27/0.34) concentric muscle strength and no changes in hamstring eccentric muscle strength (ES = -0.02/0.11). Thus, in contrast to the CG (ES = -0.27/0.14), the EG showed an almost certain increase in the hamstring/quadriceps strength functional ratio (ES = 0.32/0.75). Moreover, the CG showed small magnitude impairments in sprinting performance (ES = -0.35/-0.11). Horizontal mechanical properties of sprint running remained typically unchanged in both groups. These results indicate that a neuromuscular training program can induce positive hamstring strength and maintain sprinting performance, which might help in preventing hamstring strains in football players.

  3. Validity of a squash-specific test of multiple-sprint ability.

    PubMed

    Wilkinson, Michael; McCord, Andrew; Winter, Edward M

    2010-12-01

    We examined the validity and reproducibility of a squash-specific multiple-sprint test. Eight male squash and 8 male soccer players performed Baker's 8 × 40-m sprints and a squash-specific-multiple-sprint test on separate days. The sum of individual sprint times in each test was recorded. Six squash and 6 soccer players repeated the tests 7 days later to assess reproducibility using intraclass correlation. In addition, 2 England Squash coaches independently ranked the squash players using knowledge of the player and recent performances in local leagues. Performance on the squash-specific (r = 0.97 and 0.90) and Baker's test (r = 0.95 and 0.83) was reproducible in squash and soccer players, respectively, and did not differ on Baker's test (mean ± SD 72.9 ± 3.9 and 72.9 ± 2.8 seconds for squash and soccer players, p = 0.969, effect size = 0.03). Squash players (232 ± 32 seconds) outperformed soccer players (264 ± 14 seconds) on the squash-specific test (p = 0.02, effect size = 1.39). Performance on Baker's and the squash-specific test were related in squash players (r = 0.98, p < 0.001) but not in soccer players (r = -0.08, p = 0.87). Squash-player rank correlated with performance on the squash-specific (ρ = 0.79, p = 0.02) but not the Baker's test (ρ = 0.55, p = 0.16). The squash-specific test discriminated between groups with similar non-sport-specific multiple-sprint ability and in squash players. In conjunction with the relationship between test performances, the results suggest that the squash-specific test is a valid and reproducible measure of multiple-sprint ability in squash players and could be used for assessing and tracking training-induced changes in multiple-sprint ability.

  4. Repeated sprint ability is not enhanced by caffeine, arginine, and branched-chain amino acids in moderately trained soccer players

    PubMed Central

    Ermolao, Andrea; Zanotto, Tobia; Carraro, Nicolò; Fornasier, Tommaso; Zaccaria, Marco; Neunhaeuserer, Daniel; Bergamin, Marco

    2017-01-01

    The aim was to investigate the effect of a dietary supplementation on the repeated sprint ability (RSA) performance in recreationally trained team sports athletes. Twelve young men underwent a RSA exercise protocol in five trials, in which participants ingested carbohydrates (CHO) plus caffeine (Caf), CHO plus arginine (Arg), CHO plus branched-chain amino acids (BCAA), CHO plus Caf, Arg, and BCAA (ALL), and CHO only. Heart rate, oxygen saturation, hematic lactate, ratings of perceived exertion, average sprint time, total time, best sprint time, peak power, and average power were taken. Data revealed no significant effects neither on physiological nor performance parameters with any of the supplements. PMID:28349034

  5. The Influence of Serial Carbohydrate Mouth Rinsing on Power Output during a Cycle Sprint

    PubMed Central

    Phillips, Shaun M.; Findlay, Scott; Kavaliauskas, Mykolas; Grant, Marie Clare

    2014-01-01

    The objective of the study was to investigate the influence of serial administration of a carbohydrate (CHO) mouth rinse on performance, metabolic and perceptual responses during a cycle sprint. Twelve physically active males (mean (± SD) age: 23.1 (3.0) years, height: 1.83 (0.07) m, body mass (BM): 86.3 (13.5) kg) completed the following mouth rinse trials in a randomized, counterbalanced, double-blind fashion; 1. 8 x 5 second rinses with a 25 ml CHO (6% w/v maltodextrin) solution, 2. 8 x 5 second rinses with a 25 ml placebo (PLA) solution. Following mouth rinse administration, participants completed a 30 second sprint on a cycle ergometer against a 0.075 g·kg-1 BM resistance. Eight participants achieved a greater peak power output (PPO) in the CHO trial, resulting in a significantly greater PPO compared with PLA (13.51 ± 2.19 vs. 13.20 ± 2.14 W·kg-1, p < 0.05). Magnitude inference analysis reported a likely benefit (81% likelihood) of the CHO mouth rinse on PPO. In the CHO trial, mean power output (MPO) showed a trend for being greater in the first 5 seconds of the sprint and lower for the remainder of the sprint compared with the PLA trial (p > 0.05). No significant between-trials difference was reported for fatigue index, perceived exertion, arousal and nausea levels, or blood lactate and glucose concentrations. Serial administration of a CHO mouth rinse may significantly improve PPO during a cycle sprint. This improvement appears confined to the first 5 seconds of the sprint, and may come at a greater relative cost for the remainder of the sprint. Key points The paper demonstrates that repeated administration of a carbohydrate mouth rinse can significantly improve peak power output during a single 30 second cycle sprint. The ergogenic effect of the carbohydrate mouth rinse may relate to the duration of exposure of the oral cavity to the mouth rinse, and associated greater stimulation of oral carbohydrate receptors. The significant increase in peak power

  6. Accounting for elite indoor 200 m sprint results

    PubMed Central

    Usherwood, James R; Wilson, Alan M

    2005-01-01

    Times for indoor 200 m sprint races are notably worse than those for outdoor races. In addition, there is a considerable bias against competitors drawn in inside lanes (with smaller bend radii). Centripetal acceleration requirements increase average forces during sprinting around bends. These increased forces can be modulated by changes in duty factor (the proportion of stride the limb is in contact with the ground). If duty factor is increased to keep limb forces constant, and protraction time and distance travelled during stance are unchanging, bend-running speeds are reduced. Here, we use results from the 2004 Olympics and World Indoor Championships to show quantitatively that the decreased performances in indoor competition, and the bias by lane number, are consistent with this ‘constant limb force’ hypothesis. Even elite athletes appear constrained by limb forces. PMID:17148323

  7. JCESR Scientific Sprints – Better Polymers for Better Batteries

    SciTech Connect

    Brushett, Fikile; Moore, Jeff; Zhang, Lu; Rodriguez-Lopez, Joaquin; Sevov, Christo; Gavvalapalli, Nagarjuna; Montoto, Elena

    2016-02-19

    Argonne National Laboratory leads the Joint Center for Energy Storage Research (JCESR), a major collaborative research partnership with the goal of developing next-generation energy storage technologies. JCESR supplements its traditional project management approach with scientific “Sprints.” The Sprint described in this video involved a multidisciplinary team from Argonne, the University of Illinois at Urbana-Champaign, Massachusetts Institute of Technology, and the University of Michigan. As they studied how polymers in solution can react electrochemically to store energy, the team solved a crucial battery problem: “crossover,” which is caused by molecules mixing together when they should not, resulting in reduced performance. Many possible materials were tested, and a set of candidate polymers were chosen that are stable, cheap to make, and suitable for conditions required in batteries. The collaboration allowed timely development that would have taken much longer had the groups been working independently.

  8. The Effect of Different Beverage Consumption (Dough, Non-Alcoholic Beer, Carbohydrated Replacement Drink) on Performance, Lipids Profile, Inflammatory Biomarkers After Running-Based Anaerobic Sprint Test in Taekwondo Players

    PubMed Central

    Shiranian, Afshin; Darvishi, Leila; Askari, Gholamreza; Ghiasvand, Reza; Feyzi, Awat; Hariri, Mitra; Mashhadi, Nafiseh Shokri; Mehrabani, Sanaz

    2013-01-01

    Background: After exercise, recovery is very essential in professional sport. Athletes use sport beverages to enhance endurance and physical performance. The purpose of this study was to examine the effects of Dough versus non-alcoholic beer and carbohydrate (CHO) fluid on performance, lipids profile, inflammatory biomarkers after Running-based Anaerobic Sprint Test (R.A.S.T) in Taekwondo players. Methods: This study was conducted as repeated measures crossover design with 22 men Taekwondo player. Subjects completed standard protocol R.A.S.T so that immediately and 1 h posterior R.A.S.T protocol received number 1 beverage. Subjects spend 2 h recovery periods. Second and third sessions trial were similar to prior trial, separated by at least 4 days, instead of number 1 beverage, participants received number 2 and number 3 beverage. Results: Data showed that average pre- and post-recovery in C-reactive protein (CRP) or Dough significantly decreased (P < 0.05), while for CHO drink and non-alcoholic beer, were not statistically significant. Moreover, the mean pre- and post-recovery in VO2 max for Dough and non-alcoholic beer significantly increased, but for other beverages, there was no significant difference (P > 0.05). About mean pre- and post-recovery in low density lipoprotein (LDL) and high density lipoprotein (HDL) there were no significant differences in all three beverages. Besides, amount of CRP was significant between three beverages (P < 0.05). There were no other within-subject differences for any of the other variables measured, including HDL, LDL, and VO2max. In addition, no significant different (P > 0.05) in dietary intake were observed between three treatment periods. Conclusions: Dough was effective in reducing LDL and reducing inflammatory biomarkers including CRP with little effect on performance in subjects. PMID:23717770

  9. Specific Measurement of Tethered Running Kinetics and its Relationship to Repeated Sprint Ability

    PubMed Central

    Sousa, Filipe; dos Reis, Ivan; Ribeiro, Luiz; Martins, Luiz; Gobatto, Claudio

    2015-01-01

    Repeated sprint ability has been widely studied by researchers, however, analysis of the relationship between most kinetic variables and the effect of fatigue is still an ongoing process. To search for the best biomechanical parameter to evaluate repeated sprint ability, several kinetic variables were measured in a tethered field running test and compared regarding their sensitivity to fatigue and correlation with time trials in a free running condition. Nine male sprint runners (best average times: 100 m = 10.45 ± 0.07 s; 200 m = 21.36 ± 0.17 s; 400 m = 47.35 ± 1.09 s) completed two test sessions on a synthetic track. Each session consisted of six 35 m sprints interspersed by 10 s rest under tethered field running or free running conditions. Force, power, work, an impulse and a rate of force development were all directly measured using the sensors of a new tethered running apparatus, and a one-way ANOVA with Scheffé post-hoc test used to verify differences between sprints (p < 0.05). Pearson product-moment correlation measured the relationship between mechanical variables and free running performance. A total impulse, the rate of force development and maximum force did not show significant differences for most sprints. These three variables presented low to moderate correlations with free running performance (r between 0.01 and −0.35). Maximum and mean power presented the strongest correlations with free running performance (r = −0.71 and −0.76, respectively; p < 0.001), followed by mean force (r = −0.61; p < 0.001) and total work (r = −0.50; p < 0.001). It was concluded that under a severe work-to-rest ratio condition, power variables were better suited to evaluating repeated sprint ability than the other studied variables. PMID:26839625

  10. Effects of resisted sprint training on acceleration with three different loads accounting for 5, 12.5, and 20% of body mass.

    PubMed

    Bachero-Mena, Beatriz; González-Badillo, Juan José

    2014-10-01

    The optimal resisted load for sprint training has not been established yet, although it has been suggested that a resistance reducing the athlete's velocity by more than 10% from unloaded sprinting would entail substantial changes in the athlete's sprinting mechanics. This investigation has evaluated the effects of a 7-week, 14-session, sled-resisted sprint training on acceleration with 3 different loads according to a % of body mass (BM): low load (LL: 5% BM, n = 7), medium load (ML: 12.5% BM, n = 6), and high load (HL: 20% BM, n = 6), in young male students. Besides, the effects on untrained exercises: countermovement jump (CMJ), loaded vertical jump squat (JS), and full squat (SQ) were analyzed. The 3 groups followed the same training program consisting in maximal effort sprint accelerations with the respective loads assigned. Significant differences between groups only occurred between LL and ML in CMJ (p ≤ 0.05), favoring ML. Paired t-tests demonstrated statistical improvements in 0-40 m sprint times for the 3 groups (p ≤ 0.05), and in 0-20 m (p ≤ 0.05) and 0-30 m (p < 0.01) sprint times for HL. Sprint times in 10-40 m (p < 0.01) and 20-40 m (p ≤ 0.05) were improved in LL. Time intervals in 20-30 m and 20-40 m (p ≤ 0.05) were statistically reduced in ML. As regards, the untrained exercises, CMJ and SQ for ML and HL (p ≤ 0.05) and JS for HL were improved. The results show that depending on the magnitude of load used, the related effects will be attained in different phases of the 40 m. It would seem that to improve the initial phase of acceleration up to 30 m, loads around 20% of BM should be used, whereas to improve high-speed acceleration phases, loads around 5-12.5% of BM should be preferred. Moreover, sprint-resisted training with ML and HL would enhance vertical jump and leg strength in moderately trained subjects.

  11. Reliability of sprint test indices in well-trained cyclists.

    PubMed

    Coleman, D A; Wiles, J D; Nunn, M; Smith, M F

    2005-06-01

    The study aim was to assess reliability of repeated laboratory sprint tests in well-trained endurance cyclists. Eleven male cyclists (mean +/- standard deviation: 27 +/- 6 yr, 1.79 +/- 0.04 m, 70.1 +/- 3.3 kg) performed a maximal 30-second sprint test on four separate occasions using their own bicycle fitted with an SRM powermeter on a Kingcycle air-braked ergometer. Peak power output (W (peak)), mean power (W (mean)) and an index of fatigue (FI) were calculated. Three minutes post sprint, capillarised blood lactate measurements were taken and analysed. No significant differences (p > 0.05) were found between trials for W (peak), W (mean), FI and blood lactate concentration. Repeatability of W (peak), W (mean), and fatigue index improved across trials 2 and 3 when compared to trials 1 and 2. The highest CV for these variables was recorded between trials 3 and 4. The CV for W (peak) was 4.5 +/- 1.6 %, W (mean) 2.4 +/- 1.2 %, and FI 17.2 +/- 7.1 %. Intraclass reliability coefficients were 0.93 (95 % CI 0.84 - 0.98), 0.94 (95 % CI 0.86 - 0.98) and 0.89 (95 % CI 0.69 - 0.95) respectively. Blood lactate concentration ranged between 5.35 and 14.52 mmol.l(-1), with a mean CV of 12.1 +/- 4.2 %. The CV for trials 2 and 3 revealed the highest CV for blood lactate concentration (15.1 %). The lowest CV for this variable (10.2 %) was recorded between trials 3 and 4. The intraclass reliability coefficient for blood lactate concentration was 0.79 (95 % CI 0.58 - 0.93). The results of this study indicate that there is no improvement in the reliability of sprint test indices when assessing well-trained, experienced cyclists, riding on their own cycle equipment.

  12. Effects of sodium phosphate and caffeine loading on repeated-sprint ability.

    PubMed

    Buck, Christopher; Guelfi, Kym; Dawson, Brian; McNaughton, Lars; Wallman, Karen

    2015-01-01

    The effects of sodium phosphate and caffeine supplementation were assessed on repeated-sprint ability. Using a randomised, double-blind, Latin-square design, 12 female, team-sport players participated in four trials: (1) sodium phosphate and caffeine, (2) sodium phosphate and placebo (for caffeine), (3) caffeine and placebo (for sodium phosphate) and (4) placebo (for sodium phosphate and caffeine), with ~21 days separating each trial. After each trial, participants performed a simulated team-game circuit (4 × 15 min quarters) with 6 × 20-m repeated-sprints performed once before (Set 1), at half-time (Set 2), and after end (Set 3). Total sprint times were faster after sodium phosphate and caffeine supplementation compared with placebo (Set 1: P = 0.003; Set 2: d = -0.51; Set 3: P < 0.001; overall: P = 0.020), caffeine (Set 3: P = 0.004; overall: P = 0.033) and sodium phosphate (Set 3: d = -0.67). Furthermore, total sprint times were faster after sodium phosphate supplementation compared with placebo (Set 1: d = -0.52; Set 3: d = -0.58). Best sprint results were faster after sodium phosphate and caffeine supplementation compared with placebo (Set 3: P = 0.007, d = -0.90) and caffeine (Set 3: P = 0.024, d = -0.73). Best sprint times were also faster after sodium phosphate supplementation compared with placebo (d = -0.54 to -0.61 for all sets). Sodium phosphate and combined sodium phosphate and caffeine loading improved repeated-sprint ability.

  13. Association of acceleration with spatiotemporal variables in maximal sprinting.

    PubMed

    Nagahara, R; Naito, H; Morin, J-B; Zushi, K

    2014-08-01

    This study clarified the association between acceleration and the rates of changes in spatiotemporal variables on a step-to-step basis during the entire acceleration phase of maximal sprinting. 21 male sprinters performed a 60-m sprint, during which step-to-step acceleration and rates of changes in step length (RSL) and step frequency (RSF) were calculated. The coefficients of correlation between acceleration and other variables were tested at each step. There were positive correlations between acceleration and the RSF up to the second step. Acceleration was positively correlated with the RSL from the 5(th) to the 19(th) step. At the third and from the 16(th) to the 22(nd) step and from the 20(th) to the 21(st) step, there was no significant correlation, but weak relationships were found between acceleration and the RSF and RSL. The results suggest that the acceleration phase can be divided into 3 sections, and for sprinting to be effective, it is important to accelerate by increasing the step frequency to the third step, increasing the step length from the 5(th) to the 15(th) step, and increasing the step length or frequency (no systematic relative importance of step length or frequency) from the 16(th) step in the entire acceleration phase.

  14. Trunk inclination estimate during the sprint start using an inertial measurement unit: a validation study.

    PubMed

    Bergamini, Elena; Guillon, Pélagie; Camomilla, Valentina; Pillet, Hélène; Skalli, Wafa; Cappozzo, Aurelio

    2013-10-01

    The proper execution of the sprint start is crucial in determining the performance during a sprint race. In this respect, when moving from the crouch to the upright position, trunk kinematics is a key element. The purpose of this study was to validate the use of a trunk-mounted inertial measurement unit (IMU) in estimating the trunk inclination and angular velocity in the sagittal plane during the sprint start. In-laboratory sprint starts were performed by five sprinters. The local acceleration and angular velocity components provided by the IMU were processed using an adaptive Kalman filter. The accuracy of the IMU inclination estimate and its consistency with trunk inclination were assessed using reference stereophotogrammetric measurements. A Bland-Altman analysis, carried out using parameters (minimum, maximum, and mean values) extracted from the time histories of the estimated variables, and curve similarity analysis (correlation coefficient > 0.99, root mean square difference < 7 deg) indicated the agreement between reference and IMU estimates, opening a promising scenario for an accurate in-field use of IMUs for sprint start performance assessment.

  15. Neuro-mechanical determinants of repeated treadmill sprints - Usefulness of an “hypoxic to normoxic recovery” approach

    PubMed Central

    Girard, Olivier; Brocherie, Franck; Morin, Jean-Benoit; Millet, Grégoire P.

    2015-01-01

    To improve our understanding of the limiting factors during repeated sprinting, we manipulated hypoxia severity during an initial set and examined the effects on performance and associated neuro-mechanical alterations during a subsequent set performed in normoxia. On separate days, 13 active males performed eight 5-s sprints (recovery = 25 s) on an instrumented treadmill in either normoxia near sea-level (SL; FiO2 = 20.9%), moderate (MH; FiO2 = 16.8%) or severe normobaric hypoxia (SH; FiO2 = 13.3%) followed, 6 min later, by four 5-s sprints (recovery = 25 s) in normoxia. Throughout the first set, along with distance covered [larger sprint decrement score in SH (−8.2%) compared to SL (−5.3%) and MH (−7.2%); P < 0.05], changes in contact time, step frequency and root mean square activity (surface electromyography) of the quadriceps (Rectus femoris muscle) in SH exceeded those in SL and MH (P < 0.05). During first sprint of the subsequent normoxic set, the distance covered (99.6, 96.4, and 98.3% of sprint 1 in SL, MH, and SH, respectively), the main kinetic (mean vertical, horizontal, and resultant forces) and kinematic (contact time and step frequency) variables as well as surface electromyogram of quadriceps and plantar flexor muscles were fully recovered, with no significant difference between conditions. Despite differing hypoxic severity levels during sprints 1–8, performance and neuro-mechanical patterns did not differ during the four sprints of the second set performed in normoxia. In summary, under the circumstances of this study (participant background, exercise-to-rest ratio, hypoxia exposure), sprint mechanical performance and neural alterations were largely influenced by the hypoxia severity in an initial set of repeated sprints. However, hypoxia had no residual effect during a subsequent set performed in normoxia. Hence, the recovery of performance and associated neuro-mechanical alterations was complete after resting for 6 min near sea level

  16. Sprint Acceleration Mechanics: The Major Role of Hamstrings in Horizontal Force Production

    PubMed Central

    Morin, Jean-Benoît; Gimenez, Philippe; Edouard, Pascal; Arnal, Pierrick; Jiménez-Reyes, Pedro; Samozino, Pierre; Brughelli, Matt; Mendiguchia, Jurdan

    2015-01-01

    Recent literature supports the importance of horizontal ground reaction force (GRF) production for sprint acceleration performance. Modeling and clinical studies have shown that the hip extensors are very likely contributors to sprint acceleration performance. We experimentally tested the role of the hip extensors in horizontal GRF production during short, maximal, treadmill sprint accelerations. Torque capabilities of the knee and hip extensors and flexors were assessed using an isokinetic dynamometer in 14 males familiar with sprint running. Then, during 6-s sprints on an instrumented motorized treadmill, horizontal and vertical GRF were synchronized with electromyographic (EMG) activity of the vastus lateralis, rectus femoris, biceps femoris, and gluteus maximus averaged over the first half of support, entire support, entire swing and end-of-swing phases. No significant correlations were found between isokinetic or EMG variables and horizontal GRF. Multiple linear regression analysis showed a significant relationship (P = 0.024) between horizontal GRF and the combination of biceps femoris EMG activity during the end of the swing and the knee flexors eccentric peak torque. In conclusion, subjects who produced the greatest amount of horizontal force were both able to highly activate their hamstring muscles just before ground contact and present high eccentric hamstring peak torque capability. PMID:26733889

  17. Specificity of jumping, sprinting, and quick change-of-direction motor abilities.

    PubMed

    Salaj, Sanja; Markovic, Goran

    2011-05-01

    Despite being addressed in a number of previous studies, the controversy regarding the generality vs. specificity of jumping, sprinting, and change-of-direction speed (CODS) abilities still remains unresolved. Here, we tested the hypotheses that jumping, sprinting, and CODS represent separate and specific motor abilities, and that the jumping ability based on concentric and slow stretch-shortening cycle (SSC) is relatively independent of the same ability based on fast SSC. Eighty-seven male college athletes performed 3 concentric/slow SSC and 3 fast SSC jump tests, 4 sprint tests, and 3 CODS tests. The hypotheses were tested by means of the principal component factor analysis (PCA). The applied procedure reduced the greater number of manifest variables to a smaller number of independent latent dimensions or factors and, thereafter, assessed the relationships among them. The PCA revealed a relatively simple and consistent structure consisting of 4 separate factors that explained nearly 80% of variance of the applied tests. The factors appeared to correspond to the sprinting ability, concentric/slow SSC jumping ability, fast SSC jumping ability, and CODS ability. Further analyses revealed that the extracted factors were mainly independent, because they shared only between 6 and 23% of the common variance. These results supported our hypotheses regarding the specificity of jumping, sprinting, and CODS abilities, and specificity of the concentric/slow SSC and fast SSC jumping abilities. Coaches and strength and conditioning professionals should, therefore, use separate performance tests for the assessment of the studied abilities.

  18. Faster Futsal Players Perceive Higher Training Loads and Present Greater Decreases in Sprinting Speed During the Preseason.

    PubMed

    Nakamura, Fábio Y; Pereira, Lucas A; Rabelo, Felipe N; Ramirez-Campillo, Rodrigo; Loturco, Irineu

    2016-06-01

    The aims of this study were to assess the speed-power characteristics of professional futsal players before and after a 9-week preseason and to explore possible relationships with internal training loads. Ten under-20 professional Brazilian futsal players performed unloaded (squat jump [SJ] and countermovement jump [CMJ]) and loaded (jump squat [JS]) jumps and a 20-m sprint test before and after the preseason. Weekly training loads as measured by session rating of perceived exertion (s-RPE) varied between 2,179 and 5,519 a.u. The magnitude-based inference statistics revealed that performance in the SJ, CMJ, and 20-m sprint very likely decreased (effect size [ES] = -0.64, -0.49, and -0.92, respectively), whereas mean propulsive power in the JS likely increased (ES = 0.42) in response to the preseason. The Pearson coefficient of correlation between velocity in the 20 m sprint test and s-RPE during the first 2 weeks of training was 0.66 (p ≤ 0.05) while no significant correlation was detected between total s-RPE (i.e., 9 weeks) and changes in the power-speed tests. The baseline 20-m sprint velocity was very largely and inversely (r = -0.90) correlated with the change in the 20-m sprint performance. In conclusion, futsal preseason training leads to impaired unloaded vertical jump and sprint test performance, with speed decreasing more in faster than slower players. In addition, because of the large correlation between baseline sprint ability and s-RPE, coaches are advised to assess sprinting performance at the beginning of the preseason to finely adjust the training stimuli to each athlete.

  19. Energy Systems Contribution in the Running-based Anaerobic Sprint Test.

    PubMed

    Milioni, F; Zagatto, A M; Barbieri, R A; Andrade, V L; Dos Santos, J W; Gobatto, C A; da Silva, A S R; Santiago, P R P; Papoti, M

    2017-03-01

    The aims of the present study were to verify the contributions of the energy systems during repeated sprints with a short recovery time and the associations of the time- and power-performance of repeated sprints with energetic contributions and aerobic and anaerobic variables. 13 healthy men performed the running-based anaerobic sprint test (RAST) followed by an incremental protocol for lactate minimum intensity determination. During the RAST, the net energy system was estimated using the oxygen consumption and the blood lactate responses. The relative contributions of oxidative phosphorylation, glycolytic, and phosphagen pathways were 38, 34, and 28%, respectively. The contribution of the oxidative pathway increased significantly during RAST especially from the third sprint, at the same time that power- and time-performances decreases significantly. The phosphagen pathway was associated with power-performance (peak power=432±107 W, r=0.65; mean power=325±80 W, r=0.65; minimum power=241±77 W, r=0.57; force impulse=1 846±478 N·s, r=0.74; p<0.05). The time-performance (total time=37.9±2.5 s; best time=5.7±0.4 s; mean time=6.3±0.4 s; worst time=7.0±0.6 s) was significantly correlated with the oxidative phosphorylation pathway (0.57+0.65; p<0.05) and glycolytic pathway (0.57+<+r>0.58; p<0.05). The oxidative pathway appears to play an important role in better recovery between sprints, and the continued use of the glycolytic metabolic pathway seems to decrease sprint performances. Finally, the phosphagen pathway was linked to power production/maintenance.

  20. Metabolic and respiratory adaptations during intense exercise following long-sprint training of short duration.

    PubMed

    Thomas, Claire; Bernard, Olivier; Enea, Carina; Jalab, Chadi; Hanon, Christine

    2012-02-01

    This study aimed to determine metabolic and respiratory adaptations during intense exercise and improvement of long-sprint performance following six sessions of long-sprint training. Nine subjects performed before and after training (1) a 300-m test, (2) an incremental exercise up to exhaustion to determine the velocity associated with maximal oxygen uptake (v-VO(2max)), (3) a 70-s constant exercise at intensity halfway between the v-VO(2max) and the velocity performed during the 300-m test, followed by a 60-min passive recovery to determine an individual blood lactate recovery curve fitted to the bi-exponential time function: [Formula: see text], and blood metabolic and gas exchange responses. The training program consisted of 3-6 repetitions of 150-250 m interspersed with rest periods with a duration ratio superior or equal to 1:10, 3 days a week, for 2 weeks. After sprint training, reduced metabolic disturbances, characterized by a lower peak expired ventilation and carbon dioxide output, in addition to a reduced peak lactate (P < 0.05), was observed. Training also induced significant decrease in the net amount of lactate released at the beginning of recovery (P < 0.05), and significant decrease in the net lactate release rate (NLRR) (P < 0.05). Lastly, a significant improvement of the 300-m performance was observed after training. These results suggest that long-sprint training of short durations was effective to rapidly prevent metabolic disturbances, with alterations in lactate accumulation and gas exchange, and improvement of the NLRR. Furthermore, only six long-sprint training sessions allow long-sprint performance improvement in active subjects.

  1. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion.

    PubMed

    Rabita, G; Dorel, S; Slawinski, J; Sàez-de-Villarreal, E; Couturier, A; Samozino, P; Morin, J-B

    2015-10-01

    The objective of this study was to characterize the mechanics of maximal running sprint acceleration in high-level athletes. Four elite (100-m best time 9.95-10.29 s) and five sub-elite (10.40-10.60 s) sprinters performed seven sprints in overground conditions. A single virtual 40-m sprint was reconstructed and kinetics parameters were calculated for each step using a force platform system and video analyses. Anteroposterior force (FY), power (PY), and the ratio of the horizontal force component to the resultant (total) force (RF, which reflects the orientation of the resultant ground reaction force for each support phase) were computed as a function of velocity (V). FY-V, RF-V, and PY-V relationships were well described by significant linear (mean R(2) of 0.892 ± 0.049 and 0.950 ± 0.023) and quadratic (mean R(2) = 0.732 ± 0.114) models, respectively. The current study allows a better understanding of the mechanics of the sprint acceleration notably by modeling the relationships between the forward velocity and the main mechanical key variables of the sprint. As these findings partly concern world-class sprinters tested in overground conditions, they give new insights into some aspects of the biomechanical limits of human locomotion.

  2. The effects of short-cycle sprints on power, strength, and salivary hormones in elite rugby players.

    PubMed

    Crewther, Blair T; Cook, Christian J; Lowe, Tim E; Weatherby, Robert P; Gill, Nicholas

    2011-01-01

    This study examined the effects of short-cycle sprints on power, strength, and salivary hormones in elite rugby players. Thirty male rugby players performed an upper-body power and lower-body strength (UPLS) and/or a lower-body power and upper-body strength (LPUS) workout using a crossover design (sprint vs. control). A 40-second upper-body or lower-body cycle sprint was performed before the UPLS and LPUS workouts, respectively, with the control sessions performed without the sprints. Bench throw (BT) power and box squat (BS) 1 repetition maximum (1RM) strength were assessed in the UPLS workout, and squat jump (SJ) power and bench press (BP) 1RM strength were assessed in the LPUS workout. Saliva was collected across each workout and assayed for testosterone (Sal-T) and cortisol (Sal-C). The cycle sprints improved BS (2.6 ± 1.2%) and BP (2.8 ± 1.0%) 1RM but did not affect BT and SJ power. The lower-body cycle sprint produced a favorable environment for the BS by elevating Sal-T concentrations. The upper-body cycle sprint had no hormonal effect, but the workout differences (%) in Sal-T (r = -0.59) and Sal-C (r = 0.42) concentrations correlated to the BP, along with the Sal-T/C ratio (r = -0.49 to -0.66). In conclusion, the cycle sprints improved the BP and BS 1RM strength of elite rugby players but not power output in the current format. The improvements noted may be explained, in part, by the changes in absolute or relative hormone concentrations. These findings have practical implications for prescribing warm-up and training exercises.

  3. Overall view from south to north of remote sprint launch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall view from south to north of remote sprint launch sprint launch site #3. Remote launch operations building on left, exclusion area sentry station at distant center, and limited area sentry station on right - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 3, North of State Route 5, approximately 10 miles Southwest of Walhalla, ND, Nekoma, Cavalier County, ND

  4. Human torque velocity adaptations to sprint, endurance, or combined modes of training

    NASA Technical Reports Server (NTRS)

    Shealy, M. J.; Callister, R.; Dudley, G. A.; Fleck, S. J.

    1992-01-01

    We had groups of athletes perform sprint and endurance run training independently or concurrently for 8 weeks to examine the voluntary in vivo mechanical responses to each type of training. Pre- and posttraining angle-specific peak torque during knee extension and flexion were determined at 0, 0.84, 1.65, 2.51, 3.35, 4.19, and 5.03 radian.sec-1 and normalized for lean body mass. Knee extension torque in the sprint-trained group increased across all test velocities, the endurance-trained group increased at 2.51, 3.34, 4.19, and 5.03 radian.sec-1, and the group performing the combined training showed no change at any velocity. Knee flexion torque of the sprint and combined groups decreased at 0.84, 1.65, and 2.51 radian.sec-1. Knee flexion torque in the sprint-trained group also decreased at 0 radian.sec-1 and in the combined group at 3.34 radian.sec-1. Knee flexion torque in the endurance-trained group showed no change at any velocity of contraction. Mean knee flexion:extension ratios across the test velocities significantly decreased in the sprint-trained group. Knee extension endurance during 30 seconds of maximal contractions significantly increased in all groups. Only the sprint-trained group showed a significant increase in endurance of the knee flexors. These data suggest that changes in the voluntary in vivo mechanical characteristics of knee extensor and flexor skeletal muscles are specific to the type of run training performed.

  5. Developing a 30-m grassland productivity estimation map for central Nebraska using 250-m MODIS and 30-m Landsat-8 observations

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.

    2015-01-01

    Accurately estimating aboveground vegetation biomass productivity is essential for local ecosystem assessment and best land management practice. Satellite-derived growing season time-integrated Normalized Difference Vegetation Index (GSN) has been used as a proxy for vegetation biomass productivity. A 250-m grassland biomass productivity map for the Greater Platte River Basin had been developed based on the relationship between Moderate Resolution Imaging Spectroradiometer (MODIS) GSN and Soil Survey Geographic (SSURGO) annual grassland productivity. However, the 250-m MODIS grassland biomass productivity map does not capture detailed ecological features (or patterns) and may result in only generalized estimation of the regional total productivity. Developing a high or moderate spatial resolution (e.g., 30-m) productivity map to better understand the regional detailed vegetation condition and ecosystem services is preferred. The 30-m Landsat data provide spatial detail for characterizing human-scale processes and have been successfully used for land cover and land change studies. The main goal of this study is to develop a 30-m grassland biomass productivity estimation map for central Nebraska, leveraging 250-m MODIS GSN and 30-m Landsat data. A rule-based piecewise regression GSN model based on MODIS and Landsat (r = 0.91) was developed, and a 30-m MODIS equivalent GSN map was generated. Finally, a 30-m grassland biomass productivity estimation map, which provides spatially detailed ecological features and conditions for central Nebraska, was produced. The resulting 30-m grassland productivity map was generally supported by the SSURGO biomass production map and will be useful for regional ecosystem study and local land management practices.

  6. Exploiting Parallel R in the Cloud with SPRINT

    PubMed Central

    Piotrowski, M.; McGilvary, G.A.; Sloan, T. M.; Mewissen, M.; Lloyd, A.D.; Forster, T.; Mitchell, L.; Ghazal, P.; Hill, J.

    2012-01-01

    Background Advances in DNA Microarray devices and next-generation massively parallel DNA sequencing platforms have led to an exponential growth in data availability but the arising opportunities require adequate computing resources. High Performance Computing (HPC) in the Cloud offers an affordable way of meeting this need. Objectives Bioconductor, a popular tool for high-throughput genomic data analysis, is distributed as add-on modules for the R statistical programming language but R has no native capabilities for exploiting multi-processor architectures. SPRINT is an R package that enables easy access to HPC for genomics researchers. This paper investigates: setting up and running SPRINT-enabled genomic analyses on Amazon’s Elastic Compute Cloud (EC2), the advantages of submitting applications to EC2 from different parts of the world and, if resource underutilization can improve application performance. Methods The SPRINT parallel implementations of correlation, permutation testing, partitioning around medoids and the multi-purpose papply have been benchmarked on data sets of various size on Amazon EC2. Jobs have been submitted from both the UK and Thailand to investigate monetary differences. Results It is possible to obtain good, scalable performance but the level of improvement is dependent upon the nature of algorithm. Resource underutilization can further improve the time to result. End-user’s location impacts on costs due to factors such as local taxation. Conclusions: Although not designed to satisfy HPC requirements, Amazon EC2 and cloud computing in general provides an interesting alternative and provides new possibilities for smaller organisations with limited funds. PMID:23223611

  7. Field monitoring of sprinting power-force-velocity profile before, during and after hamstring injury: two case reports.

    PubMed

    Mendiguchia, J; Edouard, P; Samozino, P; Brughelli, M; Cross, M; Ross, A; Gill, N; Morin, J B

    2016-01-01

    Very little is currently known about the effects of acute hamstring injury on over-ground sprinting mechanics. The aim of this research was to describe changes in power-force-velocity properties of sprinting in two injury case studies related to hamstring strain management: Case 1: during a repeated sprint task (10 sprints of 40 m) when an injury occurred (5th sprint) in a professional rugby player; and Case 2: prior to (8 days) and after (33 days) an acute hamstring injury in a professional soccer player. A sports radar system was used to measure instantaneous velocity-time data, from which individual mechanical profiles were derived using a recently validated method based on a macroscopic biomechanical model. Variables of interest included: maximum theoretical velocity (V0) and horizontal force (F(H0)), slope of the force-velocity (F-v) relationship, maximal power, and split times over 5 and 20 m. For Case 1, during the injury sprint (sprint 5), there was a clear change in the F-v profile with a 14% greater value of F(H0) (7.6-8.7 N/kg) and a 6% decrease in V0 (10.1 to 9.5 m/s). For Case 2, at return to sport, the F-v profile clearly changed with a 20.5% lower value of F(H0) (8.3 vs. 6.6 N/kg) and no change in V0. The results suggest that the capability to produce horizontal force at low speed (F(H0)) (i.e. first metres of the acceleration phase) is altered both before and after return to sport from a hamstring injury in these two elite athletes with little or no change of maximal velocity capabilities (V0), as evidenced in on-field conditions. Practitioners should consider regularly monitoring horizontal force production during sprint running both from a performance and injury prevention perspective.

  8. Modified sprint interval training protocols. Part II. Psychological responses.

    PubMed

    Townsend, Logan K; Islam, Hashim; Dunn, Emily; Eys, Mark; Robertson-Wilson, Jennifer; Hazell, Tom J

    2017-04-01

    Sprint-interval training (SIT) is a viable method to improve health and fitness. However, researchers have questioned the utility of SIT because of its strenuous nature. The current study aimed to determine if manipulating the sprint and recovery duration, while maintaining the 1:8 work to rest ratio, could uncover a more favourable SIT protocol. Nine healthy active males (age, 23.3 ± 3.0 years; body mass index, 22.4 ± 2.2 kg·m(-2); maximal oxygen consumption, 48.9 ± 5.3 mL·kg(-1)·min(-1)) participated in 3 experimental running SIT sessions: (i) 30:240 (4 × 30-s efforts, 240-s recovery), (ii) 15:120 (8 × 15-s efforts, 120-s recovery), (iii) 5:40 (24 × 5-s efforts, 40-s recovery), and (iv) a final behavioural choice follow-up session. Affect, intentions, task self-efficacy, enjoyment, and preference were evaluated. Midway through exercise, affect became more positive for 5:40 compared with 30:240 (p < 0.05) and postexercise affect was greater for both 5:40 (p = 0.014) and 15:120 (p = 0.015) compared with 30:240. Participants expressed greater intentions to perform 5:40 3 and 5 times/week compared with 15:120 and 30:240 (p < 0.05). Participants felt more confident in their ability to perform 5:40 (p = 0.001) and 15:120 (p = 0.008) compared with 30:240. The 5:40 session was also rated as more enjoyable than 15:120 (p = 0.025) and 30:240 (p = 0.026). All participants preferred the 5:40 protocol. These data suggest that shorter sprints with more repetitions are perceived as more enjoyable and lead to greater intentions to engage in SIT.

  9. Sprint, agility, strength and endurance capacity in wheelchair basketball players

    PubMed Central

    Granados, C; Otero, M; Badiola, A; Olasagasti, J; Bidaurrazaga-Letona, I; Iturricastillo, A; Gil, SM

    2014-01-01

    The aims of the present study were, firstly, to determine the reliability and reproducibility of an agility T-test and Yo-Yo 10 m recovery test; and secondly, to analyse the physical characteristics measured by sprint, agility, strength and endurance field tests in wheelchair basketball (WB) players. 16 WB players (33.06 ± 7.36 years, 71.89 ± 21.71 kg and sitting body height 86.07 ± 6.82 cm) belonging to the national WB league participated in this study. Wheelchair sprint (5 and 20 m without ball, and 5 and 20 m with ball) agility (T-test and pick-up test) strength (handgrip and maximal pass) and endurance (Yo-Yo 10 m recovery test) were performed. T-test and Yo-Yo 10 m recovery test showed good reproducibility values (intraclass correlation coefficient, ICC = 0.74-0.94). The WB players’ results in 5 and 20 m sprints without a ball were 1.87 ± 0.21 s and 5.70 ± 0.43 s and with a ball 2.10 ± 0.30 s and 6.59 ± 0.61 s, being better than those reported in the literature. Regarding the pick-up test results (16.05 ± 0.52 s) and maximal pass (8.39 ± 1.77 m), players showed worse values than those obtained in elite players. The main contribution of the present study is the characterization of the physical performance profile of WB players using a field test battery. Furthermore, we demonstrated that the agility T-test and the aerobic Yo-Yo 10 m recovery test are reliable; consequently they may be appropriate instruments for measuring physical fitness in WB. PMID:25729153

  10. Physical determinants of interval sprint times in youth soccer players.

    PubMed

    Amonette, William E; Brown, Denham; Dupler, Terry L; Xu, Junhai; Tufano, James J; De Witt, John K

    2014-03-27

    Relationships between sprinting speed, body mass, and vertical jump kinetics were assessed in 243 male soccer athletes ranging from 10-19 years. Participants ran a maximal 36.6 meter sprint; times at 9.1 (10 y) and 36.6 m (40 y) were determined using an electronic timing system. Body mass was measured by means of an electronic scale and body composition using a 3-site skinfold measurement completed by a skilled technician. Countermovement vertical jumps were performed on a force platform - from this test peak force was measured and peak power and vertical jump height were calculated. It was determined that age (r=-0.59; p<0.01), body mass (r=-0.52; p<0.01), lean mass (r=-0.61; p<0.01), vertical jump height (r=-0.67; p<0.01), peak power (r=-0.64; p<0.01), and peak force (r=-0.56; p<0.01) were correlated with time at 9.1 meters. Time-to-complete a 36.6 meter sprint was correlated with age (r=-0.71; p<0.01), body mass (r=-0.67; p<0.01), lean mass (r=-0.76; p<0.01), vertical jump height (r=-0.75; p<0.01), peak power (r=-0.78; p<0.01), and peak force (r=-0.69; p<0.01). These data indicate that soccer coaches desiring to improve speed in their athletes should devote substantive time to fitness programs that increase lean body mass and vertical force as well as power generating capabilities of their athletes. Additionally, vertical jump testing, with or without a force platform, may be a useful tool to screen soccer athletes for speed potential.

  11. Sprint vs. interval training in football.

    PubMed

    Ferrari Bravo, D; Impellizzeri, F M; Rampinini, E; Castagna, C; Bishop, D; Wisloff, U

    2008-08-01

    The aim of this study was to compare the effects of high-intensity aerobic interval and repeated-sprint ability (RSA) training on aerobic and anaerobic physiological variables in male football players. Forty-two participants were randomly assigned to either the interval training group (ITG, 4 x 4 min running at 90 - 95 % of HRmax; n = 21) or repeated-sprint training group (RSG, 3 x 6 maximal shuttle sprints of 40 m; n = 21). The following outcomes were measured at baseline and after 7 weeks of training: maximum oxygen uptake, respiratory compensation point, football-specific endurance (Yo-Yo Intermittent Recovery Test, YYIRT), 10-m sprint time, jump height and power, and RSA. Significant group x time interaction was found for YYIRT (p = 0.003) with RSG showing greater improvement (from 1917 +/- 439 to 2455 +/- 488 m) than ITG (from 1846 +/- 329 to 2077 +/- 300 m). Similarly, a significant interaction was found in RSA mean time (p = 0.006) with only the RSG group showing an improvement after training (from 7.53 +/- 0.21 to 7.37 +/- 0.17 s). No other group x time interactions were found. Significant pre-post changes were found for absolute and relative maximum oxygen uptake and respiratory compensation point (p < 0.05). These findings suggest that the RSA training protocol used in this study can be an effective training strategy for inducing aerobic and football-specific training adaptations.

  12. Dynamics Questions Associated with the AERCam Sprint Free-Flyer

    NASA Technical Reports Server (NTRS)

    Williams, Trevor

    1997-01-01

    The International Space Station will require the development of small robotic vehicles for such tasks as external inspection, monitoring of extravehicular activities (EVA's) and station build-up, and providing additional lighting at EVA worksites. The Autonomous EVA Robotic Camera (AERCam) family of free-flyers is currently being developed at NASA Johnson Space Center to perform these functions; the first member of the family is the AERCam Sprint vehicle. Many interesting dynamical questions are associated with the Sprint free-flyer. For instance, the reaction of a vehicle which is nearly spherically symmetric (such as Sprint) to a stuck-on thruster is significantly more complicated than that obtained for an idealized, perfectly spherical, spacecraft model. In particular, the real spacecraft will experience a form of forced nutation, with convergence towards either its major or minor principal axis, depending on both the applied torque and the mass properties of the vehicle. Furthermore, the body-fixed jet force vector may have a significant component along this principal axis, so giving rise to a considerable net linear acceleration of the spacecraft. The large velocity that can result is very important, as it may lead to collision with the nearby Orbiter, and is completely overlooked in the idealized analysis. This report will firstly briefly describe the stuck-on thruster dynamics of the real vehicle, and outline how the small products of inertia of the spacecraft determine the time constants of the motion. Secondly, the dynamical effects of a failed-off jet on the Sprint free-flyer will be described in more detail, and compared with the stuck-on thruster case. This will help to show whether the two malfunctions should be dealt with differently in flight. Finally, the stuck-on thruster detection software (known as the uncommanded motion algorithm) that is proposed to be flown on the Sprint vehicle will be analyzed, and all possible perturbation sources that may

  13. Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men.

    PubMed Central

    McKenna, M J; Heigenhauser, G J; McKelvie, R S; Obminski, G; MacDougall, J D; Jones, N L

    1997-01-01

    1. This study investigated the effects of 7 weeks of sprint training on gas exchange across the lungs and active skeletal muscle during and following maximal cycling exercise in eight healthy males. 2. Pulmonary oxygen uptake (VO2) and carbon dioxide output (VCO2) were measured before and after training during incremental exercise (n = 8) and during and in recovery from a maximal 30 s sprint exercise bout by breath-by-breath analysis (n = 6). To determine gas exchange by the exercising leg muscles, brachial arterial and femoral venous blood O2 and CO2 contents and lactate concentration were measured at rest, during the final 10 s of exercise and during 10 min of recovery. 3. Training increased (P < 0.05) the maximal incremental exercise values of ventilation (VE, by 15.7 +/- 7.1%), VCO2 (by 9.3 +/- 2.1%) and VO2 (by 15.0 +/- 4.2%). Sprint exercise peak power (3.9 +/- 1.0% increase) and cumulative 30 s work (11.7 +/- 2.8% increase) were increased and fatigue index was reduced (by -9.2 +/- 1.5%) after training (P < 0.05). The highest VE, VCO2 and VO2 values attained during sprint exercise were not significantly changed after training, but a significant (P < 0.05) training effect indicated increased VE (by 19.2 +/- 7.9%), VCO2 (by 9.3 +/- 2.1%) and VO2 (by 12.7 +/- 6.5%), primarily reflecting elevated post-exercise values after training. 4. Arterial O2 and CO2 contents were lower after training, by respective mean differences of 3.4 and 21.9 ml l-1 (P < 0.05), whereas the arteriovenous O2 and CO2 content differences and the respiratory exchange ratio across the leg were unchanged by training. 5. Arterial whole blood lactate concentration and the net lactate release by exercising muscle were unchanged by training. 6. The greater peak pulmonary VO2 and VCO2 with sprint exercise, the increased maximal incremental values, unchanged arterial blood lactate concentration and greater sprint performance all point strongly towards enhanced gas exchange across the lungs and in

  14. Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men.

    PubMed

    McKenna, M J; Heigenhauser, G J; McKelvie, R S; Obminski, G; MacDougall, J D; Jones, N L

    1997-06-15

    1. This study investigated the effects of 7 weeks of sprint training on gas exchange across the lungs and active skeletal muscle during and following maximal cycling exercise in eight healthy males. 2. Pulmonary oxygen uptake (VO2) and carbon dioxide output (VCO2) were measured before and after training during incremental exercise (n = 8) and during and in recovery from a maximal 30 s sprint exercise bout by breath-by-breath analysis (n = 6). To determine gas exchange by the exercising leg muscles, brachial arterial and femoral venous blood O2 and CO2 contents and lactate concentration were measured at rest, during the final 10 s of exercise and during 10 min of recovery. 3. Training increased (P < 0.05) the maximal incremental exercise values of ventilation (VE, by 15.7 +/- 7.1%), VCO2 (by 9.3 +/- 2.1%) and VO2 (by 15.0 +/- 4.2%). Sprint exercise peak power (3.9 +/- 1.0% increase) and cumulative 30 s work (11.7 +/- 2.8% increase) were increased and fatigue index was reduced (by -9.2 +/- 1.5%) after training (P < 0.05). The highest VE, VCO2 and VO2 values attained during sprint exercise were not significantly changed after training, but a significant (P < 0.05) training effect indicated increased VE (by 19.2 +/- 7.9%), VCO2 (by 9.3 +/- 2.1%) and VO2 (by 12.7 +/- 6.5%), primarily reflecting elevated post-exercise values after training. 4. Arterial O2 and CO2 contents were lower after training, by respective mean differences of 3.4 and 21.9 ml l-1 (P < 0.05), whereas the arteriovenous O2 and CO2 content differences and the respiratory exchange ratio across the leg were unchanged by training. 5. Arterial whole blood lactate concentration and the net lactate release by exercising muscle were unchanged by training. 6. The greater peak pulmonary VO2 and VCO2 with sprint exercise, the increased maximal incremental values, unchanged arterial blood lactate concentration and greater sprint performance all point strongly towards enhanced gas exchange across the lungs and in

  15. Anthropometric-based selection and sprint kayak training in children.

    PubMed

    Aitken, D A; Jenkins, D G

    1998-08-01

    A 12 week kayak training programme was evaluated in children who either had or did not have the anthropometric characteristics identified as being unique to senior elite sprint kayakers. Altogether, 234 male and female school children were screened to select 10 children with and 10 children without the identified key anthropometric characteristics. Before and after training, the children completed an all-out 2 min kayak ergometer simulation test; measures of oxygen consumption, plasma lactate and total work accomplished were recorded. In addition, a 500 m time trial was performed at weeks 3 and 12. The coaches were unaware which 20 children possessed those anthropometric characteristics deemed to favour development of kayak ability. All children improved in both the 2 min ergometer simulation test and 500 m time trial. However, boys who were selected according to favourable anthropometric characteristics showed greater improvement than those without such characteristics in the 2 min ergometer test only. In summary, in a small group of children selected according to anthropometric data unique to elite adult kayakers, 12 weeks of intensive kayak training did not influence the rate of improvement of on-water sprint kayak performance.

  16. Effect of oral administration of sodium bicarbonate on surface EMG activity during repeated cycling sprints.

    PubMed

    Matsuura, Ryouta; Arimitsu, Takuma; Kimura, Takehide; Yunoki, Takahiro; Yano, Tokuo

    2007-11-01

    The purpose of this study was to determine the effect of oral administration of sodium bicarbonate (NaHCO3) on surface electromyogram (SEMG) activity from the vastus lateralis (VL) during repeated cycling sprints (RCS). Subjects performed two RCS tests (ten 10-s sprints) interspersed with both 30-s and 360-s recovery periods 1 h after oral administration of either NaHCO3 (RCSAlk) or CaCO3 (RCSPla) in a random counterbalanced order. Recovery periods of 360 s were set before the 5th and 9th sprints. The rate of decrease in plasma HCO3- concentration during RCS was significantly greater in RCSAlk than in RCSPla, but the rates of decline in blood pH during the two RCS tests were similar. There was no difference between change in plasma lactate concentration in RCSAlk and that in RCSPla. Performance during RCSAlk was similar to that during RCSPla. There were no differences in oxygen uptake immediately before each cycling sprint (preVO2) and in SEMG activity between RCSAlk and RCSPla. In conclusion, oral administration of NaHCO3 did not affect SEMG activity from the VL. This suggests that the muscle recruitment strategy during RCS is not determined by only intramuscular pH.

  17. Increased oxidative stress and anaerobic energy release, but blunted Thr172-AMPKα phosphorylation, in response to sprint exercise in severe acute hypoxia in humans.

    PubMed

    Morales-Alamo, David; Ponce-González, Jesús Gustavo; Guadalupe-Grau, Amelia; Rodríguez-García, Lorena; Santana, Alfredo; Cusso, Maria Roser; Guerrero, Mario; Guerra, Borja; Dorado, Cecilia; Calbet, José A L

    2012-09-01

    AMP-activated protein kinase (AMPK) is a major mediator of the exercise response and a molecular target to improve insulin sensitivity. To determine if the anaerobic component of the exercise response, which is exaggerated when sprint is performed in severe acute hypoxia, influences sprint exercise-elicited Thr(172)-AMPKα phosphorylation, 10 volunteers performed a single 30-s sprint (Wingate test) in normoxia and in severe acute hypoxia (inspired Po(2): 75 mmHg). Vastus lateralis muscle biopsies were obtained before and immediately after 30 and 120 min postsprint. Mean power output and O(2) consumption were 6% and 37%, respectively, lower in hypoxia than in normoxia. O(2) deficit and muscle lactate accumulation were greater in hypoxia than in normoxia. Carbonylated skeletal muscle and plasma proteins were increased after the sprint in hypoxia. Thr(172)-AMPKα phosphorylation was increased by 3.1-fold 30 min after the sprint in normoxia. This effect was prevented by hypoxia. The NAD(+)-to-NADH.H(+) ratio was reduced (by 24-fold) after the sprints, with a greater reduction in hypoxia than in normoxia (P < 0.05), concomitant with 53% lower sirtuin 1 (SIRT1) protein levels after the sprint in hypoxia (P < 0.05). This could have led to lower liver kinase B1 (LKB1) activation by SIRT1 and, hence, blunted Thr(172)-AMPKα phosphorylation. Ser(485)-AMPKα(1)/Ser(491)-AMPKα(2) phosphorylation, a known negative regulating mechanism of Thr(172)-AMPKα phosphorylation, was increased by 60% immediately after the sprint in hypoxia, coincident with increased Thr(308)-Akt phosphorylation. Collectively, our results indicate that the signaling response to sprint exercise in human skeletal muscle is altered in severe acute hypoxia, which abrogated Thr(172)-AMPKα phosphorylation, likely due to lower LKB1 activation by SIRT1.

  18. Effects of speed, agility, quickness training method on power performance in elite soccer players.

    PubMed

    Jovanovic, Mario; Sporis, Goran; Omrcen, Darija; Fiorentini, Fredi

    2011-05-01

    The purpose of this study was to evaluate the effects of the speed, agility, quickness (SAQ) training method on power performance in soccer players. Soccer players were assigned randomly to 2 groups: experimental group (EG; n = 50) and control group (n = 50). Power performance was assessed by a test of quickness--the 5-m sprint, a test of acceleration--the 10-m sprint, tests of maximal speed--the 20- and the 30-m sprint along with Bosco jump tests--squat jump, countermovement jump (CMJ), maximal CMJ, and continuous jumps performed with legs extended. The initial testing procedure took place at the beginning of the in-season period. The 8-week specific SAQ training program was implemented after which final testing took place. The results of the 2-way analysis of variance indicated that the EG improved significantly (p < 0.05) in 5-m (1.43 vs. 1.39 seconds) and in 10-m (2.15 vs. 2.07 seconds) sprints, and they also improved their jumping performance in countermovement (44.04 vs. 4.48 cm) and continuous jumps (41.08 vs. 41.39 cm) performed with legs extended (p < 0.05). The SAQ training program appears to be an effective way of improving some segments of power performance in young soccer players during the in-season period. Soccer coaches could use this information in the process of planning in-season training. Without proper planning of the SAQ training, soccer players will most likely be confronted with decrease in power performance during in-season period.

  19. A global, 30-m resolution land-surface water body dataset for 2000

    NASA Astrophysics Data System (ADS)

    Feng, M.; Sexton, J. O.; Huang, C.; Song, D. X.; Song, X. P.; Channan, S.; Townshend, J. R.

    2014-12-01

    amounts of Landsat images on high-performance computing machines. It has been applied to the ~9,000 Landsat scenes of the Global Land Survey (GLS) 2000 data collection to produce a global, 30m resolution inland surface water body data set, which will be made available on the Global Land Cover Facility (GLCF) website (http://www.landcover.org).

  20. Repeated sprinting on natural grass impairs vertical stiffness but does not alter plantar loading in soccer players.

    PubMed

    Girard, Olivier; Racinais, Sébastien; Kelly, Luke; Millet, Grégoire P; Brocherie, Franck

    2011-10-01

    This study aimed to determine changes in spring-mass model (SMM) characteristics, plantar pressures, and muscle activity induced by the repetition of sprints in soccer-specific conditions; i.e., on natural grass with soccer shoes. Thirteen soccer players performed 6 × 20 m sprints interspersed with 20 s of passive recovery. Plantar pressure distribution was recorded via an insole pressure recorder device divided into nine areas for analysis. Stride temporal parameters allowed to estimate SMM characteristics. Surface electromyographic activity was monitored for vastus lateralis, rectus femoris, and biceps femoris muscles. Sprint time, contact time, and total stride duration lengthened from the first to the last repetition (+6.7, +12.9, and +9.3%; all P < 0.05), while flight time, swing time, and stride length remained constant. Stride frequency decrease across repetitions approached significance (-6.8%; P = 0.07). No main effect of the sprint number or any significant interaction between sprint number and foot region was found for maximal force, mean force, peak pressure and mean pressure (all P > 0.05). Center of mass vertical displacement increased (P < 0.01) with time, together with unchanged (both P > 0.05) peak vertical force and leg compression. Vertical stiffness decreased (-15.9%; P < 0.05) across trials, whereas leg stiffness changes were not significant (-5.9%; P > 0.05). Changes in root mean square activity of the three tested muscles over sprint repetitions were not significant. Although repeated sprinting on natural grass with players wearing soccer boots impairs their leg-spring behavior (vertical stiffness), there is no substantial concomitant alterations in muscle activation levels or plantar pressure patterns.

  1. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips

    SciTech Connect

    Roychowdhury, Anita; Gubrud, M. A.; Dana, R.; Dreyer, M.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2014-04-15

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of Cu{sub x}Bi{sub 2}Se{sub 3}. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.

  2. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Anita; Gubrud, M. A.; Dana, R.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.; Dreyer, M.

    2014-04-01

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of CuxBi2Se3. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.

  3. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips.

    PubMed

    Roychowdhury, Anita; Gubrud, M A; Dana, R; Anderson, J R; Lobb, C J; Wellstood, F C; Dreyer, M

    2014-04-01

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of CuxBi2Se3. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.

  4. Changes in spring-mass model characteristics during repeated running sprints.

    PubMed

    Girard, Olivier; Micallef, Jean-Paul; Millet, Grégoire P

    2011-01-01

    This study investigated fatigue-induced changes in spring-mass model characteristics during repeated running sprints. Sixteen active subjects performed 12 × 40 m sprints interspersed with 30 s of passive recovery. Vertical and anterior-posterior ground reaction forces were measured at 5-10 m and 30-35 m and used to determine spring-mass model characteristics. Contact (P < 0.001), flight (P < 0.05) and swing times (P < 0.001) together with braking, push-off and total stride durations (P < 0.001) lengthened across repetitions. Stride frequency (P < 0.001) and push-off forces (P < 0.05) decreased with fatigue, whereas stride length (P = 0.06), braking (P = 0.08) and peak vertical forces (P = 0.17) changes approached significance. Center of mass vertical displacement (P < 0.001) but not leg compression (P > 0.05) increased with time. As a result, vertical stiffness decreased (P < 0.001) from the first to the last repetition, whereas leg stiffness changes across sprint trials were not significant (P > 0.05). Changes in vertical stiffness were correlated (r > 0.7; P < 0.001) with changes in stride frequency. When compared to 5-10 m, most of ground reaction force-related parameters were higher (P < 0.05) at 30-35 m, whereas contact time, stride frequency, vertical and leg stiffness were lower (P < 0.05). Vertical stiffness deteriorates when 40 m run-based sprints are repeated, which alters impact parameters. Maintaining faster stride frequencies through retaining higher vertical stiffness is a prerequisite to improve performance during repeated sprinting.

  5. ACTN3 R577X genotype is associated with sprinting in elite Japanese athletes.

    PubMed

    Mikami, E; Fuku, N; Murakami, H; Tsuchie, H; Takahashi, H; Ohiwa, N; Tanaka, H; Pitsiladis, Y P; Higuchi, M; Miyachi, M; Kawahara, T; Tanaka, M

    2014-02-01

    The ACTN3 R577X genotype has been found to associate with sprint/power phenotypes in all elite athlete cohorts investigated. This association has not been extensively studied in elite Asian athletes. The present study was undertaken to investigate the association between the ACTN3 R577X genotype and elite Japanese track and field athlete status. 299 elite Japanese track and field athletes (134 sprint/power athletes; 165 endurance/middle-power athletes) and 649 Japanese controls were genotyped for the ACTN3 R577X polymorphism. All athletes were of national or international level. Sprint/power athletes showed a higher frequency of RR + RX genotype than controls (111/134 [82.8%] vs. 478/649 [73.7%], P = 0.025 under the R-dominant model), while there was no significant difference between endurance/middle-power athletes and controls (126/165 [76.4%] vs. 478/649 [73.7%], P = 0.48 under the R-dominant model). Sprinters with the RR + RX genotype had significantly faster personal best times for the 100 m than those with XX genotype (10.42 ± 0.05 s vs. 10.64 ± 0.09 s, P = 0.042); no such association was found in the 400 m sprinters (47.02 ± 0.36 s vs. 47.56 ± 0.99 s, P = 0.62). ACTN3 R577X genotype is associated with sprint/power performance in elite Japanese track and field athletes, especially short sprint performance.

  6. Ergometric and metabolic adaptation to a 5-s sprint training programme.

    PubMed

    Linossier, M T; Denis, C; Dormois, D; Geyssant, A; Lacour, J R

    1993-01-01

    The effects of 7 weeks of sprint training (repeated 5-s all-out sprints) on maximal power output (Wv,max) determined during a force-velocity test and a 30-s Wingate test (Wpeak) were studied in ten students [22 (SD 2) years] exercising on a cycle ergometer. Before and after training, muscle biopsies were taken from vastus lateralis muscle at rest for the ten subjects and immediately after a training session for five of them. Sprint training induced an improvement both in peak performances by 25% (Wv,max and Wpeak) and in the 30-s total work by 16%. Before sprint training, the velocity reached with no load (v0) was related to the resting muscle phosphocreatine (PCr) stores (r = 0.87, P < 0.001). The training-induced changes in v0 were observed only when these PCr stores were lowest. This pointed to a possible limiting role of low PCr concentrations in the ability to reach a high velocity. The improvement in performances was linked to an increase in the energy production from anaerobic glycolysis. This result was suggested in muscle by the increase in lactate production measured after a training session associated with the 20% higher activity of both phosphofructokinase and lactate dehydrogenase. The sprint training also increased the proportion of slow twitch fibres closely related to the decrease in fast twitch b fibres. This result would appear to demonstrate an appropriate adaptive reaction following high-intensity intermittent training for the slow twitch fibres which exhibit a greater oxidative capacity.

  7. Biomechanical Insights Into Differences Between the Mid-Acceleration and Maximum Velocity Phases of Sprinting.

    PubMed

    Yu, Jiabin; Sun, Yuliang; Yang, Chen; Wang, Donghai; Yin, Keyi; Herzog, Walter; Liu, Yu

    2016-07-01

    Yu, J, Sun, Y, Yang, C, Wang, D, Yin, K, Herzog, W, and Liu, Y. Biomechanical insights into differences between the mid-acceleration and maximum velocity phases of sprinting. J Strength Cond Res 30(7): 1906-1916, 2016-Investigating the differences between distinct phases of sprint running may increase the knowledge about the specific physical abilities needed for different phases of sprinting. Differences between the mid-acceleration and maximum velocity phases of sprint running have not yet been adequately investigated. Twenty male sprinters performed maximum-effort sprint runs, and measurements were made at 12 m from start for the mid-acceleration phase and at 40 m from the start for the maximum velocity phase. Kinematic data and ground reaction forces (GRFs) were collected at a rate of 200 and 1000 Hz, respectively. Intersegmental dynamics analysis was performed to investigate the interaction of muscle torque (MUS) with other passive torques. The peak horizontal braking force was significantly lower for the acceleration compared with that for the maximal velocity phase, whereas the peak horizontal propulsive force was similar for both phases. The peak MUS at the hip and knee joints for the braking phase was significantly smaller in the acceleration phase than in the maximum velocity phase. In conclusion, compared with the maximum velocity phase, the lower horizontal braking force was the primary cause for the increase in running velocity during the mid-acceleration phase. The force produced by lower limb muscles required to counteract external torques caused by the horizontal braking force in the braking phase was smaller during the acceleration phase than the maximum velocity phase. Therefore, training aimed at reducing the horizontal braking force might be more important than increasing the force produced by the lower limb muscles for success of the mid-acceleration phase.

  8. Effect of expertise on postmaximal long sprint blood metabolite responses.

    PubMed

    Hanon, Christine; Rabate, Mathieu; Thomas, Claire

    2011-09-01

    The aim of this study was to describe and compare the blood metabolic responses obtained after a single maximal exercise in elite and less-successful athletes and to investigate whether these responses are related to sprint performance. Eleven elite (ELI) and 14 regional (REG) long sprint runners performed a 300-m running test as fast as possible. Blood samples were taken at rest and at 4 minutes after exercise for measurements of blood lactate concentration [La] and acid-base status. The blood metabolic responses of ELI subjects compared to those of REG subjects for pH (7.07 ± 0.05 vs. 7.14 ± 1.5), sodium bicarbonate concentration ([HCO(3)(-)], 8.1 ± 1.5 vs. 9.8 ± 1.8 mmol·L(-1)), hemoglobin O(2) saturation (SaO(2)) (94.7 ± 1.8 vs. 96.2 ± 1.6%) were significantly lower (p < 0.05), and [La] was significantly higher in ELI (21.1 ± 2.9 vs. 19.1 ± 1.2 mmol·L(-1), p < 0.05). The 300-m performance (in % world record) was negatively correlated with pH (r = -0.55, p < 0.01), SaO2 (r = -0.64, p < 0.001), [HCO(3)(-)] (r = -0.40, p < 0.05), and positively correlated with [La] (r = 0.44, p < 0.05). In conclusion, for the same quantity of work, the best athletes are able to strongly alter their blood acid-base balance compared to underperforming runners, with larger acidosis and lactate accumulation. To obtain the pH limits with acute maximal exercise, coaches must have their athletes perform a distance run with duration of exercise superior to 35 seconds. The blood lactate accumulation values (mmol·L(-1)·s(-1)) recorded in this study indicate that the maximal glycolysis rate obtained in the literature from short sprint distances is maintained, but not increased, until 35 seconds of exercise.

  9. Effect of recovery intensity on peak power output and the development of heat strain during intermittent sprint exercise while under heat stress.

    PubMed

    Maxwell, Neil S; Castle, Paul C; Spencer, Matt

    2008-09-01

    This study compared two intensities of active recovery on intermittent sprint exercise performance and the development of heat strain in hot, humid conditions. Eight male game players completed four Cycling Intermittent Sprint Protocols (CISP) consisting of twenty 2-min periods, each including 10-s passive rest, 5-s maximal sprint against a resistance of 7.5% body mass and 105-s active recovery. The CISP was performed in mean (S.D.) temperate conditions with active recovery intensities of 50% V(O)(2peak) (TEMP50) and 35% V(O)(2peak)(TEMP35) and in hot, humid [35.2 (0.4) degrees C, 80.4 (2.1)% RH] conditions with the same intensities (HOT50 and HOT35, respectively) in a randomised, counterbalanced order. Heat strain (physiological strain index (PSI)) was calculated from rectal temperature and heart rate. All subjects completed the CISP (20 sprints) in TEMP50 and TEMP35. The mean number of sprints completed for HOT50 and HOT35 was 13 (3) and 17 (2), respectively; both of which were lower than TEMP50 and TEMP35 (P<0.01) and different between hot conditions. Reductions in peak power output (PPO) occurred in the TEMP50 and HOT50 by sprint 8 (P<0.05), but in HOT35 a reduction was delayed until sprint 13 (P<0.05). The rate of PSI increase was faster in HOT50 than TEMP50 and HOT35, but peak PSI was not different. By lowering the recovery intensity, one component of the PSI (heart rate) was reduced and intermittent sprint exercise performance was maintained for longer in the heat.

  10. Effect of Ramadan intermittent fasting on aerobic and anaerobic performance and perception of fatigue in male elite judo athletes.

    PubMed

    Chaouachi, Anis; Coutts, Aaron J; Chamari, Karim; Wong, Del P; Chaouachi, Mustapha; Chtara, Moktar; Roky, Rachida; Amri, Mohamed

    2009-12-01

    The aim of the present study was to evaluate the influence of the Ramadan intermittent fast (RIF) on aerobic and anaerobic exercise performance in elite judo athletes (Judokas) maintaining their usual training loads. Physical performance tests (squat jump [SJ]), countermovement jump [CMJ], 30-second repeated jump, 30-m sprint, and the multistage fitness test) and fatigue scores were measured in 15 elite Judokas on 4 occasions: before Ramadan (T1), at the beginning of Ramadan (T2), at the end of Ramadan (T3) and 3 weeks after Ramadan. Results showed that 30-m sprint performance, multistage shuttle run test, SJ, and CMJ did not change during Ramadan. However, average power during the 30-second repeated jump test was slightly lower at the end of Ramadan (22.4 +/- 2.3 W/kg; P < 0.05) than before Ramadan (23.4 +/- 2.3 W/kg). There was a minor reduction of 1.3 kg in body mass and an increase in total fatigue scores (T2, 19 +/- 5; T3, 16 +/- 4; both P < 0.05) during Ramadan in comparison with the control period (T1, 12 +/- 3). These results show that the RIF has little effect on aerobic performance and on very short duration sprinting and jumping test performance in elite Judokas. Additionally, experienced athletes can maintain both sufficient energy intake and normal training loads during the RIF. The slight reduction in the 30-second jump test may be associated with reduced central drive and body mass. Collectively, these results suggest that the RIF has little effect on the performance of experienced Judokas, but Muslim athletes who train during the RIF should carefully periodize their training load and monitor their food intake and fatigue levels to avoid performance decrements.

  11. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia.

    PubMed

    Faiss, Raphaël; Girard, Olivier; Millet, Grégoire P

    2013-12-01

    Over the past two decades, intermittent hypoxic training (IHT), that is, a method where athletes live at or near sea level but train under hypoxic conditions, has gained unprecedented popularity. By adding the stress of hypoxia during 'aerobic' or 'anaerobic' interval training, it is believed that IHT would potentiate greater performance improvements compared to similar training at sea level. A thorough analysis of studies including IHT, however, leads to strikingly poor benefits for sea-level performance improvement, compared to the same training method performed in normoxia. Despite the positive molecular adaptations observed after various IHT modalities, the characteristics of optimal training stimulus in hypoxia are still unclear and their functional translation in terms of whole-body performance enhancement is minimal. To overcome some of the inherent limitations of IHT (lower training stimulus due to hypoxia), recent studies have successfully investigated a new training method based on the repetition of short (<30 s) 'all-out' sprints with incomplete recoveries in hypoxia, the so-called repeated sprint training in hypoxia (RSH). The aims of the present review are therefore threefold: first, to summarise the main mechanisms for interval training and repeated sprint training in normoxia. Second, to critically analyse the results of the studies involving high-intensity exercises performed in hypoxia for sea-level performance enhancement by differentiating IHT and RSH. Third, to discuss the potential mechanisms underpinning the effectiveness of those methods, and their inherent limitations, along with the new research avenues surrounding this topic.

  12. Foam Rolling for Delayed-Onset Muscle Soreness and Recovery of Dynamic Performance Measures

    PubMed Central

    Pearcey, Gregory E. P.; Bradbury-Squires, David J.; Kawamoto, Jon-Erik; Drinkwater, Eric J.; Behm, David G.; Button, Duane C.

    2015-01-01

    Context: After an intense bout of exercise, foam rolling is thought to alleviate muscle fatigue and soreness (ie, delayed-onset muscle soreness [DOMS]) and improve muscular performance. Potentially, foam rolling may be an effective therapeutic modality to reduce DOMS while enhancing the recovery of muscular performance. Objective: To examine the effects of foam rolling as a recovery tool after an intense exercise protocol through assessment of pressure-pain threshold, sprint time, change-of-direction speed, power, and dynamic strength-endurance. Design: Controlled laboratory study. Setting: University laboratory. Patients or Other Participants: A total of 8 healthy, physically active males (age = 22.1 ± 2.5 years, height = 177.0 ± 7.5 cm, mass = 88.4 ± 11.4 kg) participated. Intervention(s): Participants performed 2 conditions, separated by 4 weeks, involving 10 sets of 10 repetitions of back squats at 60% of their 1-repetition maximum, followed by either no foam rolling or 20 minutes of foam rolling immediately, 24, and 48 hours postexercise. Main Outcome Measure(s): Pressure-pain threshold, sprint speed (30-m sprint time), power (broad-jump distance), change-of-direction speed (T-test), and dynamic strength-endurance. Results: Foam rolling substantially improved quadriceps muscle tenderness by a moderate to large amount in the days after fatigue (Cohen d range, 0.59 to 0.84). Substantial effects ranged from small to large in sprint time (Cohen d range, 0.68 to 0.77), power (Cohen d range, 0.48 to 0.87), and dynamic strength-endurance (Cohen d = 0.54). Conclusions: Foam rolling effectively reduced DOMS and associated decrements in most dynamic performance measures. PMID:25415413

  13. Interrelationships among Jumping Power, Sprinting Power and Pubertal Status after Controlling for Size in Young Male Soccer Players.

    PubMed

    Cunha, Giovani S; Cumming, Sean P; Valente-Dos-Santos, João; Duarte, João P; Silva, Gustavo; Dourado, Antonio C; Leites, Gabriela T; Gaya, Adroaldo C; Reischak-Oliveira, Álvaro; Coelho-E-Silva, Manuel

    2017-04-01

    This study examined power output on jumping and sprinting tests in young soccer players of differing pubertal status, while controlling for body size with allometric scaling exponents. A total of 46 males aged 12-18 years (14.17 years) were divided into three groups: pre-pubescent ( n = 12), pubescent ( n = 22), and post-pubescent ( n = 12). Participants performed a series of tests, including the squat jump (SJ), countermovement jump (CMJ), and 10-meter and 30-meter sprint test protocols. The Post-PUB group was older ( F = 112.411, p < 0.001), more experienced in competitive soccer ( F = 8.055, p = 0.001), taller ( F = 28.940, p < 0.001), and heavier ( F = 20.618, p < 0.001), when compared to peers in the other groups. Mean differences in jumping and sprinting performances suggested a significant effect for pubertal status on performance in the 10-meter sprint (large effect size, F = 8.191, p < 0.001) and 30-meter sprint (large effect size, F = 8.093, p < 0.001) after allometric scaling. Power output derived from SJ (small effect size, F = 0.536, p = 0.001) and CMJ (small effect size, F = 1.058, p = 0.356) showed no significant differences across players of varying pubertal status. Biological maturation showed a large effect on maximal power output for sprints, but not for jumps, when the effect of body size was adjusted by statistically derived allometric exponents in young male soccer players.

  14. A DUAL-BAND MILLIMETER-WAVE KINETIC INDUCTANCE CAMERA FOR THE IRAM 30 m TELESCOPE

    SciTech Connect

    Monfardini, A.; Benoit, A.; Bideaud, A.; Swenson, L.; Cruciani, A.; Camus, P.; Hoffmann, C.; Desert, F. X.; Doyle, S.; Ade, P.; Mauskopf, P.; Tucker, C.; Roesch, M.; Leclercq, S.; Schuster, K. F.; Endo, A.; Baryshev, A.; Baselmans, J. J. A.; Ferrari, L.; Yates, S. J. C

    2011-06-01

    The Neel IRAM KIDs Array (NIKA) is a fully integrated measurement system based on kinetic inductance detectors (KIDs) currently being developed for millimeter wave astronomy. The instrument includes dual-band optics allowing simultaneous imaging at 150 GHz and 220 GHz. The imaging sensors consist of two spatially separated arrays of KIDs. The first array, mounted on the 150 GHz branch, is composed of 144 lumped-element KIDs. The second array (220 GHz) consists of 256 antenna-coupled KIDs. Each of the arrays is sensitive to a single polarization; the band splitting is achieved by using a grid polarizer. The optics and sensors are mounted in a custom dilution cryostat, with an operating temperature of {approx}70 mK. Electronic readout is realized using frequency multiplexing and a transmission line geometry consisting of a coaxial cable connected in series with the sensor array and a low-noise 4 K amplifier. The dual-band NIKA was successfully tested in 2010 October at the Institute for Millimetric Radio Astronomy (IRAM) 30 m telescope at Pico Veleta, Spain, performing in-line with laboratory predictions. An optical NEP was then calculated to be around 2 x 10{sup -16} W Hz{sup -1/2} (at 1 Hz) while under a background loading of approximately 4 pW pixel{sup -1}. This improvement in comparison with a preliminary run (2009) verifies that NIKA is approaching the target sensitivity for photon-noise limited ground-based detectors. Taking advantage of the larger arrays and increased sensitivity, a number of scientifically relevant faint and extended objects were then imaged including the Galactic Center SgrB2 (FIR1), the radio galaxy Cygnus A, and the NGC1068 Seyfert galaxy. These targets were all observed simultaneously in the 150 GHz and 220 GHz atmospheric windows.

  15. A Dual-band Millimeter-wave Kinetic Inductance Camera for the IRAM 30 m Telescope

    NASA Astrophysics Data System (ADS)

    Monfardini, A.; Benoit, A.; Bideaud, A.; Swenson, L.; Cruciani, A.; Camus, P.; Hoffmann, C.; Désert, F. X.; Doyle, S.; Ade, P.; Mauskopf, P.; Tucker, C.; Roesch, M.; Leclercq, S.; Schuster, K. F.; Endo, A.; Baryshev, A.; Baselmans, J. J. A.; Ferrari, L.; Yates, S. J. C.; Bourrion, O.; Macias-Perez, J.; Vescovi, C.; Calvo, M.; Giordano, C.

    2011-06-01

    The Néel IRAM KIDs Array (NIKA) is a fully integrated measurement system based on kinetic inductance detectors (KIDs) currently being developed for millimeter wave astronomy. The instrument includes dual-band optics allowing simultaneous imaging at 150 GHz and 220 GHz. The imaging sensors consist of two spatially separated arrays of KIDs. The first array, mounted on the 150 GHz branch, is composed of 144 lumped-element KIDs. The second array (220 GHz) consists of 256 antenna-coupled KIDs. Each of the arrays is sensitive to a single polarization; the band splitting is achieved by using a grid polarizer. The optics and sensors are mounted in a custom dilution cryostat, with an operating temperature of ~70 mK. Electronic readout is realized using frequency multiplexing and a transmission line geometry consisting of a coaxial cable connected in series with the sensor array and a low-noise 4 K amplifier. The dual-band NIKA was successfully tested in 2010 October at the Institute for Millimetric Radio Astronomy (IRAM) 30 m telescope at Pico Veleta, Spain, performing in-line with laboratory predictions. An optical NEP was then calculated to be around 2 × 10-16 W Hz-1/2 (at 1 Hz) while under a background loading of approximately 4 pW pixel-1. This improvement in comparison with a preliminary run (2009) verifies that NIKA is approaching the target sensitivity for photon-noise limited ground-based detectors. Taking advantage of the larger arrays and increased sensitivity, a number of scientifically relevant faint and extended objects were then imaged including the Galactic Center SgrB2 (FIR1), the radio galaxy Cygnus A, and the NGC1068 Seyfert galaxy. These targets were all observed simultaneously in the 150 GHz and 220 GHz atmospheric windows.

  16. The force, power, and energy of the 100 meter sprint

    NASA Astrophysics Data System (ADS)

    Helene, O.; Yamashita, M. T.

    2010-03-01

    At the 2008 Summer Olympics in Beijing, Usain Bolt broke the world record for the 100 m sprint. Just one year later, at the 2009 World Championships in Athletics in Berlin he broke it again. A few months after Beijing, Eriksen et al. [Am. J. Phys. 77, 224-228 (2009)] studied Bolt's performance and predicted that Bolt could have run about one-tenth of a second faster, which was confirmed in Berlin. In this paper we extend the analysis of Eriksen et al. to model Bolt's velocity time dependence for the Beijing 2008 and Berlin 2009 records. We deduce the maximum force, the maximum power, and the total mechanical energy produced by Bolt in both races. Surprisingly, we conclude that all of these values were smaller in 2009 than in 2008.

  17. Physical Determinants of Interval Sprint Times in Youth Soccer Players

    PubMed Central

    Amonette, William E.; Brown, Denham; Dupler, Terry L.; Xu, Junhai; Tufano, James J.; De Witt, John K.

    2014-01-01

    Relationships between sprinting speed, body mass, and vertical jump kinetics were assessed in 243 male soccer athletes ranging from 10–19 years. Participants ran a maximal 36.6 meter sprint; times at 9.1 (10 y) and 36.6 m (40 y) were determined using an electronic timing system. Body mass was measured by means of an electronic scale and body composition using a 3-site skinfold measurement completed by a skilled technician. Countermovement vertical jumps were performed on a force platform - from this test peak force was measured and peak power and vertical jump height were calculated. It was determined that age (r=−0.59; p<0.01), body mass (r=−0.52; p<0.01), lean mass (r=−0.61; p<0.01), vertical jump height (r=−0.67; p<0.01), peak power (r=−0.64; p<0.01), and peak force (r=−0.56; p<0.01) were correlated with time at 9.1 meters. Time-to-complete a 36.6 meter sprint was correlated with age (r=−0.71; p<0.01), body mass (r=−0.67; p<0.01), lean mass (r=−0.76; p<0.01), vertical jump height (r=−0.75; p<0.01), peak power (r=−0.78; p<0.01), and peak force (r=−0.69; p<0.01). These data indicate that soccer coaches desiring to improve speed in their athletes should devote substantive time to fitness programs that increase lean body mass and vertical force as well as power generating capabilities of their athletes. Additionally, vertical jump testing, with or without a force platform, may be a useful tool to screen soccer athletes for speed potential. PMID:25031679

  18. Estimating V̄s(30) (or NEHRP site classes) from shallow velocity models (depths < 30 m)

    USGS Publications Warehouse

    Boore, David M.

    2004-01-01

    The average velocity to 30 m [V??s(30)] is a widely used parameter for classifying sites to predict their potential to amplify seismic shaking. In many cases, however, models of shallow shear-wave velocities, from which V??s(30) can be computed, do not extend to 30 m. If the data for these cases are to be used, some method of extrapolating the velocities must be devised. Four methods for doing this are described here and are illustrated using data from 135 boreholes in California for which the velocity model extends to at least 30 m. Methods using correlations between shallow velocity and V??s(30) result in significantly less bias for shallow models than the simplest method of assuming that the lowermost velocity extends to 30 m. In addition, for all methods the percent of sites misclassified is generally less than 10% and falls to negligible values for velocity models extending to at least 25 m. Although the methods using correlations do a better job on average of estimating V??s(30), the simplest method will generally result in a lower value of V??s(30) and thus yield a more conservative estimate of ground motion [which generally increases as V??s(30) decreases].

  19. The effects of different speed training protocols on sprint acceleration kinematics and muscle strength and power in field sport athletes.

    PubMed

    Lockie, Robert G; Murphy, Aron J; Schultz, Adrian B; Knight, Timothy J; Janse de Jonge, Xanne A K

    2012-06-01

    A variety of resistance training interventions are used to improve field sport acceleration (e.g., free sprinting, weights, plyometrics, resisted sprinting). The effects these protocols have on acceleration performance and components of sprint technique have not been clearly defined in the literature. This study assessed 4 common protocols (free sprint training [FST], weight training [WT], plyometric training [PT], and resisted sprint training [RST]) for changes in acceleration kinematics, power, and strength in field sport athletes. Thirty-five men were divided into 4 groups (FST: n = 9; WT: n = 8; PT: n = 9; RST: n = 9) matched for 10-m velocity. Training involved two 60-minute sessions per week for 6 weeks. After the interventions, paired-sample t-tests identified significant (p ≤ 0.05) within-group changes. All the groups increased the 0- to 5-m and 0- to 10-m velocity by 9-10%. The WT and PT groups increased the 5- to 10-m velocity by approximately 10%. All the groups increased step length for all distance intervals. The FST group decreased 0- to 5-m flight time and step frequency in all intervals and increased 0- to 5-m and 0- to 10-m contact time. Power and strength adaptations were protocol specific. The FST group improved horizontal power as measured by a 5-bound test. The FST, PT, and RST groups all improved reactive strength index derived from a 40-cm drop jump, indicating enhanced muscle stretch-shortening capacity during rebound from impacts. The WT group increased absolute and relative strength measured by a 3-repetition maximum squat by approximately 15%. Step length was the major limiting sprint performance factor for the athletes in this study. Correctly administered, each training protocol can be effective in improving acceleration. To increase step length and improve acceleration, field sport athletes should develop specific horizontal and reactive power.

  20. Influence of a caffeine mouth rinse on sprint cycling following glycogen depletion.

    PubMed

    Kizzi, Joseph; Sum, Alvin; Houston, Fraser E; Hayes, Lawrence D

    2016-11-01

    Attenuated performance during intense exercise with limited endogenous carbohydrate (CHO) is well documented. Therefore, this study examined whether caffeine (CAF) mouth rinsing would augment performance during repeated sprint cycling in participants with reduced endogenous CHO. Eight recreationally active males (aged 23 ± 2 yr, body mass 84 ± 4 kg, stature 178 ± 7 cm) participated in this randomized, single-blind, repeated-measures crossover investigation. Following familiarization, participants attended two separate evening glycogen depletion sessions. The following morning, participants completed five, 6 s sprints on a cycle ergometer (separated by 24 s active recovery), with mouth rinsing either (1) a placebo solution or (2) a 2% CAF solution. During a fifth visit, participants completed the sprints without prior glycogen depletion. Repeated-measures ANOVA identified significant main effect of condition (CAF, placebo, and control [P < .05; effect size (ES) = 0.850-0.897]), sprint (1-5 [P < .005; ES = 0.871-0.986]), and interaction (condition × sprint [P < .05; ES = 0.831-0.846]), for peak and mean power. The control condition exhibited the highest peak power (overall mean 760 ± 77 W) and mean power (overall mean 699 ± 83W) over the five sprints (P < .001 in both instances). CAF peak power (overall mean 643 ± 79 W) was significantly greater than placebo (mean 573 ± 79 W [P < .05; ES = 0.850]). Additionally, CAF mean power (overall mean 589 ± 80 W) was significantly greater than placebo (519 ± 82 W [P < .05; ES = 0.397]). These data indicate that mouth rinsing a caffeinated solution reduces decrements caused by CHO reduction, which may benefit athletes wishing to train in a low-CHO state.

  1. Cerebral blood flow, frontal lobe oxygenation and intra-arterial blood pressure during sprint exercise in normoxia and severe acute hypoxia in humans.

    PubMed

    Curtelin, David; Morales-Alamo, David; Torres-Peralta, Rafael; Rasmussen, Peter; Martin-Rincon, Marcos; Perez-Valera, Mario; Siebenmann, Christoph; Pérez-Suárez, Ismael; Cherouveim, Evgenia; Sheel, A William; Lundby, Carsten; Calbet, José Al

    2017-01-01

    Cerebral blood flow (CBF) is regulated to secure brain O2 delivery while simultaneously avoiding hyperperfusion; however, both requisites may conflict during sprint exercise. To determine whether brain O2 delivery or CBF is prioritized, young men performed sprint exercise in normoxia and hypoxia (PIO2 = 73 mmHg). During the sprints, cardiac output increased to ∼22 L min(-1), mean arterial pressure to ∼131 mmHg and peak systolic blood pressure ranged between 200 and 304 mmHg. Middle-cerebral artery velocity (MCAv) increased to peak values (∼16%) after 7.5 s and decreased to pre-exercise values towards the end of the sprint. When the sprints in normoxia were preceded by a reduced PETCO2, CBF and frontal lobe oxygenation decreased in parallel ( r = 0.93, P < 0.01). In hypoxia, MCAv was increased by 25%, due to a 26% greater vascular conductance, despite 4-6 mmHg lower PaCO2 in hypoxia than normoxia. This vasodilation fully accounted for the 22 % lower CaO2 in hypoxia, leading to a similar brain O2 delivery during the sprints regardless of PIO2. In conclusion, when a conflict exists between preserving brain O2 delivery or restraining CBF to avoid potential damage by an elevated perfusion pressure, the priority is given to brain O2 delivery.

  2. Comparison of lower body strength, power, acceleration, speed, agility, and sprint momentum to describe and compare playing rank among professional rugby league players.

    PubMed

    Baker, Daniel G; Newton, Robert U

    2008-01-01

    Success in rugby league football seems heavily reliant on players possessing an adequate degree of various physical fitness qualities, such as strength, power, speed, agility, and endurance, as well as the individual skills and team tactical abilities. The purpose of this study was to describe and compare the lower body strength, power, acceleration, maximal speed, agility, and sprint momentum of elite first-division national rugby league (NRL) players (n = 20) to second-division state league (SRL) players (n = 20) players from the same club. Strength and maximal power were the best discriminators of which players were in the NRL or SRL squads. None of the sprinting tests, such as acceleration (10-m sprint), maximal speed (40-m sprint), or a unique 40-m agility test, could distinguish between the NRL or SRL squads. However, sprint momentum, which was a product of 10-m velocity and body mass, was better for discriminating between NRL and SRL players as heavier, faster players would possess better drive forward and conversely be better able to repel their opponents' drive forward. Strength and conditioning specialists should therefore pay particular attention to increasing lower body strength and power and total body mass through appropriate resistance training while maintaining or improving 10-m sprint speed to provide their players with the underlying performance characteristics of play at the elite level in rugby leagues.

  3. Effect of between-set recovery durations on repeated sprint ability in young soccer players

    PubMed Central

    Haj, Sassi R; Haj, Yahmed M; Moalla, W; Elloumi, M

    2016-01-01

    The purposes of this study were to examine the effect of between-set recovery duration on physiological responses (heart rate and blood lactate), rating of perceived exertion (RPE) and performance indices of repeated sprint sets (RSS) and to investigate their relationship with aerobic power. Twenty-four young male soccer players (age: 17.4 ± 0.32 years) performed three randomized RSS protocols consisting of 2 sets of 5x20 m with 15 s recovery between sprints and 1 min (RSS1), 2 min (RSS2) and 4 min (RSS4) between sets, and a multi-stage aerobic track test to estimate VO2max. Results showed that in contrast to RSS2 and RSS4, RSS1 leads to a large decline in performance expressed as the sum of sprint times (34.0±1.0 s, 34.0±1.1s and 34.6±1.1s, respectively) and a significant increase of both mean heart rate (124.0±9.7 bpm, 112.5±6.7 bpm and 137.3±12.4, respectively) and RPE (3.2±1.5, 3.4±1.2 and 6.3±1.4, respectively) with no change in blood lactate and peak HR between the three rest conditions. No significant correlations were obtained between estimated VO2max and any of the indices of the three RSS protocols. In conclusion, 1 min of recovery between sets is sufficient to ensure a significant decrease in performance in the second set, while 2 min and 4 min of recovery were long enough to provide maintenance of high intensity work in the second set. These findings would be useful for coaches and sport scientists when attempting to assess repeated sprint abilities, allowing coaches to accurately define the intended training goals in young soccer players. PMID:27274110

  4. Effect of 2-wk intensified training and inactivity on muscle Na+-K+ pump expression, phospholemman (FXYD1) phosphorylation, and performance in soccer players.

    PubMed

    Thomassen, Martin; Christensen, Peter M; Gunnarsson, Thomas P; Nybo, Lars; Bangsbo, Jens

    2010-04-01

    The present study examined muscle adaptations and alterations in performance of highly trained soccer players with intensified training or training cessation. Eighteen elite soccer players were, for a 2-wk period, assigned to either a group that performed high-intensity training with a reduction in the amount of training (HI, n = 7), or an inactivity group without training (IN, n = 11). HI improved (P < 0.05) performance of the 4th, 6th, and 10th sprint in a repeated 20-m sprint test, and IN reduced (P < 0.05) performance in the 5th to the 10th sprints after the 2-wk intervention period. In addition, the Yo-Yo intermittent recovery level 2 test performance of IN was lowered from 845 +/- 48 to 654 +/- 30 m. In HI, the protein expression of the Na(+)-K(+) pump alpha(2)-isoform was 15% higher (P < 0.05) after the intervention period, whereas no changes were observed in alpha(1)- and beta(1)-isoform expression. In IN, Na(+)-K(+) pump expression was not changed. In HI, the FXYD1ser68-to-FXYD1 ratio was 27% higher (P < 0.01) after the intervention period, and, in IN, the AB_FXYD1ser68 signal was 18% lower (P < 0.05) after inactivity. The change in FXYD1ser68-to-FXYD1 ratio was correlated (r(2) = 0.35; P < 0.05) with change in performance in repeated sprint test. The present data suggest that short-term intensified training, even for trained soccer players, can increase muscle Na(+)-K(+) pump alpha(2)-isoform expression, and that cessation of training for 2 wk does not affect the expression of Na(+)-K(+) pump isoforms. Resting phosphorylation status of the Na(+)-K(+) pump is changed by training and inactivity and may play a role in performance during repeated, intense exercise.

  5. Sprints: From Start to Finish

    ERIC Educational Resources Information Center

    McNamara, John

    2009-01-01

    Running is an activity that can be enjoyed by people of all ages. It helps to build strong bones, a healthy body, and needs no equipment to perform. Additionally, it can be a valuable tool in physical education because it benefits students' speed, endurance, and overall health. However, limited space is often a concern when teaching, practicing,…

  6. Physiological and Neuromuscular Response to a Simulated Sprint-Distance Triathlon: Effect of Age Differences and Ability Level.

    PubMed

    García-Pinillos, Felipe; Cámara-Pérez, José C; González-Fernández, Francisco T; Párraga-Montilla, Juan A; Muñoz-Jiménez, Marcos; Latorre-Román, Pedro Á

    2016-04-01

    This study aimed to describe the acute impact of a simulated sprint-distance triathlon at physiological and neuromuscular levels and to determine whether age and athletic performance influenced the response in triathletes. Nineteen triathletes performed a sprint-distance triathlon under simulated conditions. Cardiovascular response was monitored during the race. Rate of perceived exertion along with muscular performance parameters (countermovement jump [CMJ], squat jump [SJ], and handgrip strength test [HS]) were tested at pre- and posttest and during every transition, while a 20-m sprint test (S20m) was performed before and after the race. Blood lactate was recorded postrace. A repeated measures analysis of variance showed that the neuromuscular response-in terms of CMJ, SJ, and HS-was unchanged (p ≥ 0.05), while S20m performance was impaired at posttest (p < 0.001). A linear regression analysis showed that ΔCMJ predicted the overall race time (R = 0.226; p = 0.046). In addition, 2 cluster analyses (k-means) were performed by grouping according to athletic performance and age. Between-group comparison showed no significant differences in the impact of the race at either the physiological or the neuromuscular level. The results showed that muscular performance parameters were not impaired throughout the race despite high levels of fatigue reported. However, despite maintaining initial levels of muscle force after the race, the fatigue-induced changes in S20m were significant, which could reinforce the need to train sprint ability in endurance athletes. Finally, despite the differences in ability level or in age, the acute physiological and neuromuscular responses to a simulated sprint-distance triathlon were similar.

  7. Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect.

    PubMed

    Castle, Paul; Mackenzie, Richard W; Maxwell, Neil; Webborn, Anthony D J; Watt, Peter W

    2011-08-01

    The aim of this study was to determine the effect of 10 days of heat acclimation with and without pre-cooling on intermittent sprint exercise performance in the heat. Eight males completed three intermittent cycling sprint protocols before and after 10 days of heat acclimation. Before acclimation, one sprint protocol was conducted in control conditions (21.8 ± 2.2°C, 42.8 ± 6.7% relative humidity) and two sprint protocols in hot, humid conditions (33.3 ± 0.6°C, 52.2 ± 6.8% relative humidity) in a randomized order. One hot, humid condition was preceded by 20 min of thigh pre-cooling with ice packs (-16.2 ± 4.5°C). After heat acclimation, the two hot, humid sprint protocols were repeated. Before heat acclimation, peak power output declined in the heat (P < 0.05) but pre-cooling prevented this. Ten days of heat acclimation reduced resting rectal temperature from 37.8 ± 0.3°C to 37.4 ± 0.3°C (P < 0.01). When acclimated, peak power output increased by ∼2% (P < 0.05, main effect) and no reductions in individual sprint peak power output were observed. Additional pre-cooling offered no further ergogenic effect. Unacclimated athletes competing in the heat should pre-cool to prevent reductions in peak power output, but heat acclimate for an increased peak power output.

  8. Repeated high-speed activities during youth soccer games in relation to changes in maximal sprinting and aerobic speeds.

    PubMed

    Buchheit, M; Simpson, B M; Mendez-Villanueva, A

    2013-01-01

    The aim of this study was to examine in highly-trained young soccer players whether substantial changes in either maximal sprinting speed (MSS) or maximal aerobic speed (as inferred from peak incremental test speed, V(Vam-Eval)) can affect repeated high-intensity running during games. Data from 33 players (14.5±1.3 years), who presented substantial changes in either MSS or V(Vam-Eval) throughout 2 consecutive testing periods (~3 months) were included in the final analysis. For each player, time-motion analyses were performed using a global positioning system (1-Hz) during 2-10 international club games played within 1-2 months from/to each testing period of interest (n for game analyzed=109, player-games=393, games per player per period=4±2). Sprint activities were defined as at least a 1-s run at intensities higher than 61% of individual MSS. Repeated-sprint sequences (RSS) were defined as a minimum of 2 consecutive sprints interspersed with a maximum of 60 s of recovery. Improvements in both MSS and V(Vam-Eval) were likely associated with a decreased RSS occurrence, but in some positions only (e. g., - 24% vs. - 3% for improvements in MSS in strikers vs. midfielders, respectively). The changes in the number of sprints per RSS were less clear but also position-dependent, e. g., +7 to +12% for full-backs and wingers, - 5 to - 7% for centre-backs and midfielders. In developing soccer players, changes in repeated-sprint activity during games do not necessarily match those in physical fitness. Game tactical and strategic requirements are likely to modulate on-field players' activity patterns independently (at least partially) of players' physical capacities.

  9. Interindividual variation in thermal sensitivity of maximal sprint speed, thermal behavior, and resting metabolic rate in a lizard.

    PubMed

    Artacho, Paulina; Jouanneau, Isabelle; Le Galliard, Jean-François

    2013-01-01

    Studies of the relationship of performance and behavioral traits with environmental factors have tended to neglect interindividual variation even though quantification of this variation is fundamental to understanding how phenotypic traits can evolve. In ectotherms, functional integration of locomotor performance, thermal behavior, and energy metabolism is of special interest because of the potential for coadaptation among these traits. For this reason, we analyzed interindividual variation, covariation, and repeatability of the thermal sensitivity of maximal sprint speed, preferred body temperature, thermal precision, and resting metabolic rate measured in ca. 200 common lizards (Zootoca vivipara) that varied by sex, age, and body size. We found significant interindividual variation in selected body temperatures and in the thermal performance curve of maximal sprint speed for both the intercept (expected trait value at the average temperature) and the slope (measure of thermal sensitivity). Interindividual differences in maximal sprint speed across temperatures, preferred body temperature, and thermal precision were significantly repeatable. A positive relationship existed between preferred body temperature and thermal precision, implying that individuals selecting higher temperatures were more precise. The resting metabolic rate was highly variable but was not related to thermal sensitivity of maximal sprint speed or thermal behavior. Thus, locomotor performance, thermal behavior, and energy metabolism were not directly functionally linked in the common lizard.

  10. Effect of one- vs. two-stair climb training on sprint power.

    PubMed

    Harris, Kenten B; Brown, Lee E; Statler, Traci A; Noffal, Guillermo J; Bartolini, J Albert

    2014-11-01

    Although running stairs is often used in sport conditioning programs, at present, little research has examined the effect of stair climb training on sprint power. The purpose of this study was to investigate the effects of running stairs either 1 stair (1S) or 2 stairs (2S) at a time on power. Fourteen male college track and field athletes were randomized into 3 groups; 1S, 2S, or control (C). All groups were pre- and posttested for 1S, 2S, and 40-m sprint split times. The 1S and 2S groups trained twice per week, for 4 weeks, performing 10 sets of climbing 68 total stairs with 2.5-minute rest between trials. The greatest power values (W) from pre- and poststairs and sprint splits were used for statistical analyses. There was a significant (p < 0.05) interaction of group × time for stair climb. The 1S group increased power for the 1S test (pre-1,492.89 ± 123.76; post-1,647.41 ± 73.65) with no change in the 2S test (pre-2,428.80 ± 414.81; post-2,430.32 ± 154.90), whereas the 2S group increased power for the 2S test (pre-2,343.73 ± 317.50; post-2,646.17 ± 305.43) with no change in the 1S test (pre-1,516.69 ± 210.64; post-1,529.38 ± 236.69). The C group showed no change in either stair test (1S: pre-1,403.35 ± 238.67, post-1,384.38 ± 153.32; 2S: pre-2,285.93 ± 345.03, post-2,261.85 ± 356.88). There were no significant interactions or main effects for any sprint split power (40 m: pre-5,337.13 ± 611.86, post-5,318.68 ± 586.24).Therefore, stair climb training either 1 or 2 at a time did not affect 40-m sprint split power but increased power for the specific stair training type. Coaches should choose the number of stairs that are similar in time and power output to sprint training.

  11. GISMO, an ELT in space: a giant (30-m) far-infrared and submillimeter space observatory

    NASA Astrophysics Data System (ADS)

    Hawarden, Timothy G.; Johnstone, Callum; Johnstone, Graeme

    2004-07-01

    We describe GISMO, a concept for a 30-m class achromatic diffractive Fesnel space telescope operating in the far-IR and submillimeter from ~20 μm to ~700 μm. The concept is based on the precepts of Hyde (1999). It involves two units, the Lens and Instrument spacecraft, 3 km apart in a halo orbit around the Earth-Sun L2 point. The primary lens, L1, is a 30.1-m, 32-zone f/100 Fresnel lens, fabricated from ultra-high molecular-weight polyethylene (UHMW-PE). It is 1.0 to 3.4 mm thick (the features are 2.4 mm high for a "design wavelength" of 1.2 mm) and made in 5 strips linked by fabric hinges. It is stowed for launch by folding and rolling. It is deployed warm, unrolled by pneumatic or mechanical means, unfolded by carbon-fiber struts with Shape Memory Alloy hinges and stiffened until cold by a peripheral inflatable ring. Re-oriented edgeways-on to the Sun behind a 5-layer sunshade, L1 will then cool by radiation to space, approaching ~10K after 200 - 300 days. The low equilibrium temperature occurs because the lens is very thin and has a huge view factor to space but a small one to the sunshade. The Instrument spacecraft resembles a smaller, colder (~4K) version of the James Webb Space Telescope and shares features of a concept for the SAFIR mission. A near-field Ritchey-Chretien telescope with a 3-segment off-axis 6m x 3m primary acts as field lens, re-imaging L1 on a 30-cm f/1 Fresnel Corrector lens of equal and opposite dispersion, producing an achromatic beam which is directed to a focal plane equipped with imaging and spectroscopic instruments. The "design wavelength" of the telescope is 1.2 mm and it is employed at its second and higher harmonics. The shortest wavelength, ~20μm, is set by the transmission properties of the lens material (illustrated here) and determines the design tolerances of the optical system. The overall mass is estimated at ~5 tonnes and the stowed length around 14 m. Technical challenges and areas of uncertainty for the design concept

  12. JCESR Scientific Sprints – Better Polymers for Better Batteries

    ScienceCinema

    Brushett, Fikile; Moore, Jeff; Zhang, Lu; Rodriguez-Lopez, Joaquin; Sevov, Christo; Gavvalapalli, Nagarjuna; Montoto, Elena

    2016-07-12

    Argonne National Laboratory leads the Joint Center for Energy Storage Research (JCESR), a major collaborative research partnership with the goal of developing next-generation energy storage technologies. JCESR supplements its traditional project management approach with scientific “Sprints.” The Sprint described in this video involved a multidisciplinary team from Argonne, the University of Illinois at Urbana-Champaign, Massachusetts Institute of Technology, and the University of Michigan. As they studied how polymers in solution can react electrochemically to store energy, the team solved a crucial battery problem: “crossover,” which is caused by molecules mixing together when they should not, resulting in reduced performance. Many possible materials were tested, and a set of candidate polymers were chosen that are stable, cheap to make, and suitable for conditions required in batteries. The collaboration allowed timely development that would have taken much longer had the groups been working independently.

  13. Liver transplantation and anemia in familial amyloidosis ATTR V30M.

    PubMed

    Beirão, Idalina; Lobato, Luísa; Costa, Paulo M P; Fonseca, Isabel; Silva, Manuela; Bravo, Fernanda; Cabrita, António; Porto, Graça

    2007-03-01

    Familial amyloid polyneuropathy type I (FAP-I) is caused by a mutant transthyretin (TTR V30M) produced by liver, and orthotopic liver transplantation (OLT) is a widely accepted treatment for stopping the major production of TTR V30M. Anemia affects 24.8% of symptomatic FAP-I patients with low erythropoietin (Epo) levels, suggesting a blockage of Epo-producing cells by local or circulating factors. To evaluate the putative toxicity effect of the mutant protein on Epo-producing cells and consequent Epo production, clinical and laboratory parameters of 20 FAP patients were collected before and after liver transplantation, analyzed and compared. Following OLT, the prevalence of anemia increased, with a significant decrease in transferrin saturation, but without significant change in ferritin. Serum Epo levels remained low after OLT and the observed to expected (O/E) Epo level ratio decreased even further after OLT (O/E < 0.8 rose to 70%). Despite the decrease in creatinine clearance (95.1 to 66.9 ml/min, p < 0.001), a similar median O/E Epo level was observed, independently of the presence of renal failure, excluding an important impact of renal failure on Epo production. The increase of anemia after OLT and the maintenance of a defective endogenous Epo production after liver transplantation excluded an inhibitory effect of the circulating TTR V30M on the Epo-producing cells.

  14. Interferometric 30 m bench for calibrations of 1D scales and optical distance measuring instruments

    NASA Astrophysics Data System (ADS)

    Unkuri, J.; Rantanen, A.; Manninen, J.; Esala, V.-P.; Lassila, A.

    2012-09-01

    During construction of a new metrology building for MIKES, a 30 m interferometric bench was designed. The objective was to implement a straight, stable, adjustable and multifunctional 30 m measuring bench for calibrations. Special attention was paid to eliminating the effects of thermal expansion and inevitable concrete shrinkage. The linear guide, situated on top of a monolithic concrete beam, comprises two parallel round shafts with adjustable fixtures every 1 m. A carriage is moved along the rail and its position is followed by a reference interferometer. Depending on the measurement task, one or two retro-reflectors are fixed on the carriage. A microscope with a CCD camera and a monitor can be used to detect line mark positions on different line standards. When calibrating optical distance measuring instruments, various targets can be fixed to the carriage. For the most accurate measurements an online Abbe-error correction based on simultaneous carriage pitch measurement by a separate laser interferometer is applied. The bench is used for calibrations of machinist scales, tapes, circometers, electronic distance meters, total stations and laser trackers. The estimated expanded uncertainty for 30 m displacement for highest accuracy calibrations is 2.6 µm.

  15. Predicting sprint kinematic parameters from anaerobic field tests in physical education students.

    PubMed

    Berthoin, S; Dupont, G; Mary, P; Gerbeaux, M

    2001-02-01

    The relations among kinematic parameters measured during the first 10 seconds of 100-m sprint and anaerobic tests were studied in 22 male physical education students. During the first 10 seconds of the sprint, the position of the runners was "continuously" measured with a laser telemeter. Maximal acceleration (Amax), maximal velocity (Vmax), and time to reach Vmax (tVmax) were derived from position data. In addition, the subjects performed anaerobic tests: squat jump (SJ), countermovement jump (CMJ), and force-velocity test to measure maximal power, maximal theoretical cranking velocity (VO), maximal theoretical isometric force, and the Wingate anaerobic test (30 seconds). The mean 100-m run time of the subjects was 12.6 +/- 0.9 seconds. The highest correlations were calculated between Amax and V0 (r = 0.55, p < 0.01) and CMJ (r = 0.48, p < 0.05) and Vmax and SJ (r = 0.63, p < 0.01) and CMJ (r = 0.56, p < 0.05). The tVmax was uncorrelated to other tests. Because the CMJ was the anaerobic performance best correlated to the different kinematic parameters of the run, our results fail to identify one anaerobic test that specifically explains one sprint kinematic parameter.

  16. Progression of mechanical properties during on-field sprint running after returning to sports from a hamstring muscle injury in soccer players.

    PubMed

    Mendiguchia, J; Samozino, P; Martinez-Ruiz, E; Brughelli, M; Schmikli, S; Morin, J-B; Mendez-Villanueva, A

    2014-07-01

    The objectives of this study were to examine the consequences of an acute hamstring injury on performance and mechanical properties of sprint-running at the time of returning to sports and after the subsequent ~2 months of regular soccer training after return. 28 semi-professional male soccer players, 14 with a recent history of unilateral hamstring injury and 14 without prior injury, participated in the study. All players performed two 50-m maximal sprints when cleared to return to play (Test 1), and 11 injured players performed the same sprint test about 2 months after returning to play (Test 2). Sprint performance (i. e., speed) was measured via a radar gun and used to derive linear horizontal force-velocity relationships from which the following variables obtained: theoretical maximal velocity (V(0)), horizontal force (F(H0)) and horizontal power (Pmax). Upon returning to sports the injured players were moderately slower compared to the uninjured players. F H0 and Pmax were also substantially lower in the injured players. At Test 2, the injured players showed a very likely increase in F(H0) and Pmax concomitant with improvements in early acceleration performance. Practitioners should consider assessing and training horizontal force production during sprint running after acute hamstring injuries in soccer players before they return to sports.

  17. Oligomeric TTR V30M aggregates compromise cell viability, erythropoietin gene expression and promoter activity in the human hepatoma cell line Hep3B.

    PubMed

    Moreira, Luciana; Beirão, João Melo; Beirão, Idalina; Pinho e Costa, Paulo

    2015-01-01

    Familial amyloidotic polyneuropathy, ATTRV30M (p. TTRV50M) amyloidosis, is a neurodegenerative disease characterized by systemic extracellular amyloid deposition of a mutant transthyretin, TTR V30M. Anemia, with low erythropoietin (EPO) levels and spared kidney function, affects about 25% of symptomatic patients, suggesting a blockage of EPO-producing cells. Early non-fibrillar TTR aggregates are highly cytotoxic, inducing oxidative stress, the expression of apoptosis-related molecules and secretion of pro-inflammatory cytokines, factors capable of inhibiting EPO production. Low EPO levels in these patients are not related to renal amyloid deposition or the presence of circulating TTR V30M. However, the role of early non-fibrillar TTR aggregates remains unexplored. We used the EPO producing Hep3B human hepatoma cell line to study the effect of TTR oligomeric aggregates on EPO expression. Hep3B cells were incubated with soluble and oligomeric TTR V30M, and cell proliferation as well as caspase 3/7 activation was evaluated. Relative quantification of EPO mRNA transcripts was performed by real-time PCR. Significant reductions in cell viability (13 ± 7.3%) and activation of caspases 3/7 were seen after 24 h in the presence of oligomeric TTR V30M. Also, EPO expression was significantly reduced (50 ± 2.8%), in normoxic conditions. A reporter assay was constructed with a PCR fragment of the EPO promoter linked to the luciferase gene to evaluate the role of transcription factors targeting the promoter. A significant reduction of EPO promoter activity (53 ± 6.5%) was observed in transfected cells exposed to TTR oligomers. Our results show that oligomeric TTR V30M reduces EPO expression, at least in part through inhibition of promoter activity.

  18. Validity of cycling peak power as measured by a short-sprint test versus the Wingate anaerobic test.

    PubMed

    Coso, Juan Del; Mora-Rodríguez, Ricardo

    2006-06-01

    To validate the measurement of peak power output (PPO) using a short cycling sprint test (inertial load (IL) test), we compare it to the widely accepted Wingate anaerobic test (WAnT). Fifteen healthy, young, active subjects performed 2 experimental trials. In each trial, subjects warmed up and sprinted 4 times for the IL test. After recovery, they cycled for 30 s at maximum capacity for the WAnT. The experimental trial was replicated 3 d later to test for reliability. Inter- and intra-day PPO measured with the IL test was very reliable (R(1) = 0.99 and R(1) = 0.94, respectively). The correlation between the IL and WAnT was highly significant (r = 0.82; P < 0.001), although the absolute PPO values were markedly higher for the IL test (1268 +/- 41 W vs. 786 +/- 27 W; P < 0.001). In conclusion, cycling PPO can be validly assessed with the IL test. The higher PPO attained with an IL test could be related to better identification of peak power, since both velocity and resistance are free to vary during the sprint in comparison with the WAnT, where resistance is fixed. Owing to the short duration of the sprint (4 s) and high intra-day reliability despite a short recovery time (180 s), the IL test is optimal for repeated measurements of anaerobic performance.

  19. Supervisory Presentation for Research, Information, Integration and Testing (SPRINT)

    DTIC Science & Technology

    2015-03-29

    Testing (SPRINT). 15. SUBJECT TERMS Supervisory Control, Multi-Modal Interfaces, Scalable Interfaces, Advanced Visualization, Augmented Symbology 16...Developing and testing advanced visualization concepts utilizing novel displays, mixed reality , and immersive multi-modal interfaces (full body

  20. The effects of ionized and nonionized compression garments on sprint and endurance cycling.

    PubMed

    Burden, Richard J; Glaister, Mark

    2012-10-01

    The aim of this study was to examine the effects of ionized and nonionized compression tights on sprint and endurance cycling performance. Using a randomized, blind, crossover design, 10 well-trained male athletes (age: 34.6 ± 6.8 years, height: 1.80 ± 0.05 m, body mass: 82.2 ± 10.4 kg, VO2max: 50.86 ± 6.81 ml·kg(-1)·min(-1)) performed 3 sprint trials (30-second sprint at 150% of the power output required to elicit VO2max [pVO2max] + 3 minutes recovery at 40% pVO2max + 30-second Wingate test + 3 minutes recovery at 40% pVO2max) and 3 endurance trials (30 minutes at 60% pVO2max + 5 minutes stationary recovery + 10-km time trial) wearing nonionized compression tights, ionized compression tights, or standard running tights (control). There was no significant effect of garment type on key Wingate measures of peak power (grand mean: 1,164 ± 219 W, p = 0.812), mean power (grand mean: 716 ± 68 W, p = 0.800), or fatigue (grand mean: 66.5 ± 6.9%, p = 0.106). There was an effect of garment type on blood lactate in the sprint and the endurance trials (p < 0.05), although post hoc tests only detected a significant difference between the control and the nonionized conditions in the endurance trial (mean difference: 0.55 mmol·L(-1), 95% likely range: 0.1-1.1 mmol·L(-1)). Relative to control, oxygen uptake (p = 0.703), heart rate (p = 0.774), and time trial performance (grand mean: 14.77 ± 0.74 minutes, p = 0.790) were unaffected by either type of compression garment during endurance cycling. Despite widespread use in sport, neither ionized nor nonionized compression tights had any significant effect on sprint or endurance cycling performance.

  1. Reliability and Usefulness of Linear Sprint Testing in Adolescent Rugby Union and League Players.

    PubMed

    Darrall-Jones, Joshua D; Jones, Ben; Roe, Gregory; Till, Kevin

    2016-05-01

    The purpose of this study was to evaluate (a) whether there were differences in sprint times at 5, 10, 20, 30, and 40 m between rugby union and rugby league players, (b) determine the reliability and usefulness of linear sprint testing in adolescent rugby players. Data were collected on 28 rugby union and league academy players over 2 testing sessions, with 3-day rest between sessions. Rugby league players were faster at 5 m than rugby union players, with further difference unclear. Sprint time at 10, 20, 30, and 40 m was all reliable (coefficient of variation [CV] = 3.1, 1.8, 2.0, and 1.3%) but greater than the smallest worthwhile change (SWC [0.2 × between-subject SD]), rating the test as marginal for usefulness. Although the test was incapable of detecting the SWC, we recommend that practitioners and researchers use Hopkins' proposed method; whereby plotting the change score of the individual at each split (±typical error [TE] expressed as a CV) against the SWC and visually inspecting whether the TE crosses into the SWC are capable of identifying whether a change is both real (greater than the noise of the test, i.e., >TE) and of practical significance (>SWC). Researchers and practitioners can use the TE and SWC from this study to assess changes in performance of adolescent rugby players when using single beam timing gates.

  2. Discriminant musculo-skeletal leg characteristics between sprint and endurance elite Caucasian runners.

    PubMed

    Bex, T; Iannaccone, F; Stautemas, J; Baguet, A; De Beule, M; Verhegghe, B; Aerts, P; De Clercq, D; Derave, W

    2017-03-01

    Excellence in either sprinting or endurance running requires specific musculo-skeletal characteristics of the legs. This study aims to investigate the morphology of the leg of sprinters and endurance runners of Caucasian ethnicity. Eight male sprinters and 11 male endurance runners volunteered to participate in this cross-sectional study. They underwent magnetic resonance imaging and after data collection, digital reconstruction was done to calculate muscle volumes and bone lengths. Sprinters have a higher total upper leg volume compared to endurance runners (7340 vs 6265 cm(3) ). Specifically, the rectus femoris, vastus lateralis, and hamstrings showed significantly higher muscle volumes in the sprint group. For the lower leg, only a higher muscle volume was found in the gastrocnemius lateralis for the sprinters. No differences were found in muscle volume distribution, center of mass in the different muscles, or relative bone lengths. There was a significant positive correlation between ratio hamstrings/quadriceps volume and best running performance in the sprint group. Sprinters and endurance runners of Caucasian ethnicity showed the greatest distinctions in muscle volumes, rather than in muscle distributions or skeletal measures. Sprinters show higher volumes in mainly the proximal and lateral leg muscles than endurance runners.

  3. Giving students the run of sprinting models

    NASA Astrophysics Data System (ADS)

    Heck, André; Ellermeijer, Ton

    2009-11-01

    A biomechanical study of sprinting is an interesting task for students who have a background in mechanics and calculus. These students can work with real data and do practical investigations similar to the way sports scientists do research. Student research activities are viable when the students are familiar with tools to collect and work with data from sensors and video recordings and with modeling tools for comparing simulation and experimental results. This article describes a multipurpose system, named COACH, that offers a versatile integrated set of tools for learning, doing, and teaching mathematics and science in a computer-based inquiry approach. Automated tracking of reference points and correction of perspective distortion in videos, state-of-the-art algorithms for data smoothing and numerical differentiation, and graphical system dynamics based modeling are some of the built-in techniques that are suitable for motion analysis. Their implementation and their application in student activities involving models of running are discussed.

  4. Hypertension up to date: SPRINT to SPYRAL.

    PubMed

    Kulenthiran, Saarraaken; Ewen, Sebastian; Böhm, Michael; Mahfoud, Felix

    2017-03-22

    Hypertension is the most common chronic cardiovascular condition with increasing prevalence all over the world. Treatment of patients at risk requires a multimodal therapeutic concept to adjust blood pressure, including systematic identification of secondary causes of hypertension or pseudo-resistance, lifestyle modification, polypharmacy, and as well as accompanying risk factors and comorbidities. The present review discusses recent studies on patients with increased cardiovascular risk potentially influencing future treatment strategies. It covers blood pressure targets in patients at risk (SPRINT), novel treatment options such as angiotensin receptor neprilysin inhibitors, discusses the treatment of patients with impaired glucose tolerance, and appreciates novelties in controlling therapy-resistant hypertension by fourth-line pharmacotherapies (PATHWAY), as well as new interventional approaches.

  5. Relationship Between Agility Tests and Short Sprints: Reliability and Smallest Worthwhile Difference in National Collegiate Athletic Association Division-I Football Players.

    PubMed

    Mann, J Bryan; Ivey, Pat A; Mayhew, Jerry L; Schumacher, Richard M; Brechue, William F

    2016-04-01

    The Pro-Agility test (I-Test) and 3-cone drill (3-CD) are widely used in football to assess quickness in change of direction. Likewise, the 10-yard (yd) sprint, a test of sprint acceleration, is gaining popularity for testing physical competency in football players. Despite their frequent use, little information exists on the relationship between agility and sprint tests as well the reliability and degree of change necessary to indicate meaningful improvement resulting from training. The purpose of this study was to determine the reliability and smallest worthwhile difference (SWD) of the I-Test and 3-CD and the relationship of sprint acceleration to their performance. Division-I football players (n = 64, age = 20.5 ± 1.2 years, height = 185.2 ± 6.1 cm, body mass = 107.8 ± 20.7 kg) performed duplicate trials in each test during 2 separate weeks at the conclusion of a winter conditioning period.