Science.gov

Sample records for 30-meter 99-foot spatial

  1. Feasibility of a 30-meter space based laser transmitter

    NASA Technical Reports Server (NTRS)

    Berggren, R. R.; Lenertz, G. E.

    1975-01-01

    A study was made of the application of large expandable mirror structures in future space missions to establish the feasibility and define the potential of high power laser systems for such applications as propulsion and power transmission. Application of these concepts requires a 30-meter diameter, diffraction limited mirror for transmission of the laser energy. Three concepts for the transmitter are presented. These concepts include consideration of continuous as well as segmented mirror surfaces and the major stow-deployment categories of inflatable, variable geometry and assembled-in-space structures. The mirror surface for each concept would be actively monitored and controlled to maintain diffraction limited performance at 10.6 microns during operation. The proposed mirror configurations are based on existing aerospace state-of-the-art technology. The assembled-in-space concept appears to be the most feasible, at this time.

  2. A 1-degree FOV 30-meter telescope concept revisited

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.; McGrath, Andrew J.; Gillingham, Peter R.; Harmer, Charles F.

    2004-10-01

    The science case for wide fields on ELTs is well developed and justifies the implementation of 20 arc-minute and larger fields-of-view with seeing-limited performance on a 20 to 30-meter telescope. However, the practical implementation of a wide field can prove to be challenging with classical telescope design when low-thermal emissivity performance is also being optimized. Segmented mirrors assemblies need not be full aperture, axially symmetric structures. Space for secondary, tertiary, and quaternary mirror support structures that do not cross the optical path can be achieved with off-axis mirror assemblies. Barden, Harmer, Claver, and Dey described a 4-mirror, 1-degree FOV 30-meter telescope. We take that concept further with an off-axis approach. Three conic mirrors are required to produce excellent image quality in the 1-degree FOV (diffraction limited across the central few arc-minutes, better than 0.3" imaging performance at the edge of the field). A flat quaternary mirror is utilized both as a beam steering mirror to different instrument ports on the lower side of the telescope and as an adaptive mirror for wind-buffeting and possible ground layer AO correction. The final f/2.2 focal ratio allows the use of an echidna-style fiber positioner for very dense target field acquisition. Extreme AO and Ground Layer AO ports can both be implemented as well. Diffraction characteristics may possibly be improved given the lack of a spider mount for the secondary mirror but will be elliptical rather than circular.

  3. 49 CFR 210.31 - Operation standards (stationary locomotives at 30 meters).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Operation standards (stationary locomotives at 30 meters). 210.31 Section 210.31 Transportation Other Regulations Relating to Transportation (Continued... REGULATIONS Inspection and Testing § 210.31 Operation standards (stationary locomotives at 30 meters). (a)...

  4. 49 CFR 210.31 - Operation standards (stationary locomotives at 30 meters).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Operation standards (stationary locomotives at 30 meters). 210.31 Section 210.31 Transportation Other Regulations Relating to Transportation (Continued... REGULATIONS Inspection and Testing § 210.31 Operation standards (stationary locomotives at 30 meters). (a)...

  5. 49 CFR 210.31 - Operation standards (stationary locomotives at 30 meters).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Operation standards (stationary locomotives at 30 meters). 210.31 Section 210.31 Transportation Other Regulations Relating to Transportation (Continued... REGULATIONS Inspection and Testing § 210.31 Operation standards (stationary locomotives at 30 meters). (a)...

  6. 49 CFR 210.31 - Operation standards (stationary locomotives at 30 meters).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Operation standards (stationary locomotives at 30 meters). 210.31 Section 210.31 Transportation Other Regulations Relating to Transportation (Continued... REGULATIONS Inspection and Testing § 210.31 Operation standards (stationary locomotives at 30 meters). (a)...

  7. ASTER-Derived 30-Meter-Resolution Digital Elevation Models of Afghanistan

    USGS Publications Warehouse

    Chirico, Peter G.; Warner, Michael B.

    2007-01-01

    INTRODUCTION The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument aboard the Terra satellite, launched on December 19, 1999, as part of the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). The ASTER sensor consists of three subsystems: the visible and near infrared (VNIR), the shortwave infrared (SWIR), and the thermal infrared (TIR), each with a different spatial resolution (VNIR, 15 meters; SWIR, 30 meters, TIR 90 meters). The VNIR system has the capability to generate along-track stereo images that can be used to create digital elevation models (DEMs) at 30-meter resolution. Currently, the only available DEM dataset for Afghanistan is the 90-meter-resolution Shuttle Radar Topography Mission (SRTM) data. This dataset is appropriate for macroscale DEM analysis and mapping. However, ASTER provides a low cost opportunity to generate higher resolution data. For this publication, study areas were identified around populated areas and areas where higher resolution elevation data were desired to assist in natural resource assessments. The higher resolution fidelity of these DEMs can also be used for other terrain analysis including landform classification and geologic structure analysis. For this publication, ASTER scenes were processed and mosaicked to generate 36 DEMs which were created and extracted using PCI Geomatics' OrthoEngine 3D Stereo software. The ASTER images were geographically registered to Landsat data with at least 15 accurate and well distributed ground control points with a root mean square error (RMSE) of less that one pixel (15 meters). An elevation value was then assigned to each ground control point by extracting the elevation from the 90-meter SRTM data. The 36 derived DEMs demonstrate that the software correlated on nearly flat surfaces and smooth slopes accurately. Larger errors occur in cloudy and snow-covered areas, lakes, areas with steep slopes, and

  8. 49 CFR 210.31 - Operation standards (stationary locomotives at 30 meters).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Operation standards (stationary locomotives at 30 meters). 210.31 Section 210.31 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD NOISE EMISSION COMPLIANCE REGULATIONS Inspection and Testing §...

  9. Development and Implementation of the DTOPLATS-MP land surface model over the Continental US at 30 meters

    NASA Astrophysics Data System (ADS)

    Chaney, N.; Wood, E. F.

    2014-12-01

    The increasing accessibility of high-resolution land data (< 100 m) and high performance computing allows improved parameterizations of subgrid hydrologic processes in macroscale land surface models. Continental scale fully distributed modeling at these spatial scales is possible; however, its practicality for operational use is still unknown due to uncertainties in input data, model parameters, and storage requirements. To address these concerns, we propose a modeling framework that provides the spatial detail of a fully distributed model yet maintains the benefits of a semi-distributed model. In this presentation we will introduce DTOPLATS-MP, a coupling between the NOAH-MP land surface model and the Dynamic TOPMODEL hydrologic model. This new model captures a catchment's spatial heterogeneity by clustering high-resolution land datasets (soil, topography, and land cover) into hundreds of hydrologic similar units (HSUs). A prior DEM analysis defines the connections between each HSU. At each time step, the 1D land surface model updates each HSU; the HSUs then interact laterally via the subsurface and surface. When compared to the fully distributed form of the model, this framework allows a significant decrease in computation and storage while providing most of the same information and enabling parameter transferability. As a proof of concept, we will show how this new modeling framework can be run over CONUS at a 30-meter spatial resolution. For each catchment in the WBD HUC-12 dataset, the model is run between 2002 and 2012 using available high-resolution continental scale land and meteorological datasets over CONUS (dSSURGO, NLCD, NED, and NCEP Stage IV). For each catchment, the model is run with 1000 model parameter sets obtained from a Latin hypercube sample. This exercise will illustrate the feasibility of running the model operationally at continental scales while accounting for model parameter uncertainty.

  10. dSSURGO: Development and validation of a 30 meter digital soil class product over the 8-million square kilometer contiguous United States

    NASA Astrophysics Data System (ADS)

    Chaney, Nathaniel W.; Hempel, Jonathan W.; Odgers, Nathan; McBratney, Alexander B.; Wood, Eric F.

    2015-04-01

    An increase in computing resources and accessibility of high-resolution land data allows us to address many unresolved earth science challenges, such as the lack of high-resolution soil data at continental scales. This data would be helpful for agriculture, hydrologic modeling, and resource planning. Current available continental soil datasets are mainly based on legacy polygon datasets built from surveys and local expert knowledge. These products are difficult to use at regional to continental scales due to surveyor biases (e.g. county boundary discontinuities), varying effective spatial resolution, and un-surveyed areas. A path forward is to use machine learning (e.g. DSMART) to harmonize and spatially disaggregate these products by relating high resolution soil covariates to available observations. In this study, the DSMART algorithm is applied over CONUS at a 30 meter spatial resolution. The gSSURGO database provides the ground truth and the USGS NED, MLRC NLCD, and USGS aeroradiometric datasets the soil covariates. Using a moving window approach, random forests are fit and used to estimate the 50 most probable soil classes and their associated probabilities at each 30 meter grid cell over CONUS (~9 billion grid cells). We will discuss the value and accessibility of the new dataset, its potential applications, and preliminary validation results.

  11. Experimental demonstration of laser tomographic adaptive optics on a 30-meter telescope at 800 nm

    NASA Astrophysics Data System (ADS)

    Ammons, S., Mark; Johnson, Luke; Kupke, Renate; Gavel, Donald T.; Max, Claire E.

    2010-07-01

    A critical goal in the next decade is to develop techniques that will extend Adaptive Optics correction to visible wavelengths on Extremely Large Telescopes (ELTs). We demonstrate in the laboratory the highly accurate atmospheric tomography necessary to defeat the cone effect on ELTs, an essential milestone on the path to this capability. We simulate a high-order Laser Tomographic AO System for a 30-meter telescope with the LTAO/MOAO testbed at UCSC. Eight Sodium Laser Guide Stars (LGSs) are sensed by 99x99 Shack-Hartmann wavefront sensors over 75". The AO system is diffraction-limited at a science wavelength of 800 nm (S ~ 6-9%) over a field of regard of 20" diameter. Openloop WFS systematic error is observed to be proportional to the total input atmospheric disturbance and is nearly the dominant error budget term (81 nm RMS), exceeded only by tomographic wavefront estimation error (92 nm RMS). The total residual wavefront error for this experiment is comparable to that expected for wide-field tomographic adaptive optics systems of similar wavefront sensor order and LGS constellation geometry planned for Extremely Large Telescopes.

  12. 40 CFR 201.23 - Test site, weather conditions and background noise criteria for measurement at a 30 meter (100...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Test site, weather conditions and background noise criteria for measurement at a 30 meter (100 feet) distance of the noise from locomotive and... TRANSPORTATION EQUIPMENT; INTERSTATE RAIL CARRIERS Measurement Criteria § 201.23 Test site, weather...

  13. 40 CFR 201.23 - Test site, weather conditions and background noise criteria for measurement at a 30 meter (100...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Test site, weather conditions and background noise criteria for measurement at a 30 meter (100 feet) distance of the noise from locomotive and... TRANSPORTATION EQUIPMENT; INTERSTATE RAIL CARRIERS Measurement Criteria § 201.23 Test site, weather...

  14. POLARIS: A 30-meter probabilistic soil series map of the contiguous United States

    USGS Publications Warehouse

    Chaney, Nathaniel W; Wood, Eric F; McBratney, Alexander B; Hempel, Jonathan W; Nauman, Travis; Brungard, Colby W.; Odgers, Nathan P

    2016-01-01

    A new complete map of soil series probabilities has been produced for the contiguous United States at a 30 m spatial resolution. This innovative database, named POLARIS, is constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm (DSMART-HPC) to remap the Soil Survey Geographic (SSURGO) database. This 9 billion grid cell database is possible using available high performance computing resources. POLARIS provides a spatially continuous, internally consistent, quantitative prediction of soil series. It offers potential solutions to the primary weaknesses in SSURGO: 1) unmapped areas are gap-filled using survey data from the surrounding regions, 2) the artificial discontinuities at political boundaries are removed, and 3) the use of high resolution environmental covariate data leads to a spatial disaggregation of the coarse polygons. The geospatial environmental covariates that have the largest role in assembling POLARIS over the contiguous United States (CONUS) are fine-scale (30 m) elevation data and coarse-scale (~ 2 km) estimates of the geographic distribution of uranium, thorium, and potassium. A preliminary validation of POLARIS using the NRCS National Soil Information System (NASIS) database shows variable performance over CONUS. In general, the best performance is obtained at grid cells where DSMART-HPC is most able to reduce the chance of misclassification. The important role of environmental covariates in limiting prediction uncertainty suggests including additional covariates is pivotal to improving POLARIS' accuracy. This database has the potential to improve the modeling of biogeochemical, water, and energy cycles in environmental models; enhance availability of data for precision agriculture; and assist hydrologic monitoring and forecasting to ensure food and water security.

  15. Systematic High-Resolution (30 meter) Inventory of Global Lakes: Pan-Arctic and Beyond

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Wang, J.; Smith, L. C.; Lyons, E. A.; Te, G.; Woods, J.; Garibay, D.; Knox, B.

    2014-12-01

    [Abstract] Lakes play a crucial role in the global water cycle and balance, are sensitive to global warming, and are vital for human water supply. There clearly is a pressing need to understand temporal and spatial variations in lake water storage globally, especially in the lake-rich Arctic/Sub-Arctic regions. An accurate systematic lake inventory, however, is unavailable at global scales. Owing to its broad spatial coverage and repeat-pass monitoring capability, satellite remote sensing is the only feasible approach to inventory global lake dynamics. Global lake mapping at high resolutions is a rather challenging task. Since lakes are abundant in small-size classes and their seasonality varies from region to region, a huge number of high-resolution satellite images need to be acquired in "appropriate" seasons. The appropriate seasons refer to the period in a typical year when lakes are relatively stable, and are determined spatially using precipitation and temperature datasets. Thousands of cloud-free Landsat images at 30 m resolution have been acquired during lake-stable seasons. Satellite lake mapping succeeds at different levels from place to place and from season to season. A set of highly replicable automated lake mapping methods and tools have been developed to tackle various situations across the entire Earth and to handle such a large volume of satellite data. The current goal is to produce a circa 2000 high-resolution global lake database in a systematic way. Millions of lakes larger than 0.5 ha have been inventoried. The product is currently examined in an intensive quality control and quality assurance process. Over six million lakes in pan-Arctic (45 deg N and above) are captured in the database and have been validated for release.

  16. Towards global scale coastal flood hazard in Delta Cities with 30-meter SRTM and 3D_i

    NASA Astrophysics Data System (ADS)

    Winsemius, Hessel; Verhoeven, Govert; Van Leeuwen, Elgard; Van der Klis, Hanneke; Van Wesenbeeck, Bregje; Cumiskey, Lydia; Verlaan, Martin; Muis, Sanne; Ward, Philip; Kwadijk, Jaap

    2015-04-01

    Most attempts to globally simulate inundation at the land-coast interface rely on maximum flood level GIS-based flood spreading models. These are generally not mass conservative, do not account for the genesis of tidal and surges in time, and do not include channel geometry and surface roughness. Furthermore, these methods cannot be used to study the impact of hazard reducing intervention measures that increase roughness at the land-coast interface. These measures include breakwaters and coastal ecosystems, such as mangrove forests and shell fish and coral reefs. Recently, new datasets and models are becoming available that allow us to greatly improve simulation of inundation in global deltas in a rapid and computationally feasible way. In this poster we demonstrate the feasibility of modelling all global deltas with strongly urbanised areas explicitly using these datasets and models. This will allow initiatives such as the 100 resilient cities (Rockefeller foundation) and the 'making cities resilient' campaign (UNISDR) to tackle the issue of coastal flood risk efficiently. We propose to use the following materials: A subgrid enabling 1D-2D model code Outputs from a global tidal and storm surge model Open topographical data We demonstrate the feasibility of this approach by modelling the Mississippi delta with: a) a lidar derived topography dataset (www.gis.ms.gov/); and b) the recently released 30 meter elevation dataset from the Shuttle Radar Topography Mission. We use the new 3Di subgrid code to rapidly schematise the vast delta area with a quadtree mesh. We force the model at the boundaries with water level estimates during the Katrina cyclone. We invite scientists working on global scale inundation modelling to visit our poster in order to discuss possibilities and limitations of the proposed methods related to model codes, data quality and calibration.

  17. Assessing Landscape Connectivity and River Water Quality Changes Using an 8-Day, 30-Meter Land Cover Dataset

    NASA Astrophysics Data System (ADS)

    Kamarinas, I.; Julian, J.; Owsley, B.; de Beurs, K.; Hughes, A.

    2014-12-01

    Water quality is dictated by interactions among geomorphic processes, vegetation characteristics, weather patterns, and anthropogenic land uses over multiple spatio-temporal scales. In order to understand how changes in climate and land use impact river water quality, a suite of data with high temporal resolution over a long period is needed. Further, all of this data must be analyzed with respect to connectivity to the river, thus requiring high spatial resolution data. Here, we present how changes in climate and land use over the past 25 years have affected water quality in the 268 sq. km Hoteo River catchment in New Zealand. Hydro-climatic data included daily solar radiation, temperature, soil moisture, rainfall, drought indices, and runoff at 5-km resolution. Land cover changes were measured every 8 days at 30-m resolution by fusing Landsat and MODIS satellite imagery. Water quality was assessed using 15-min turbidity (2011-2014) and monthly data for a suite of variables (1990-2014). Watershed connectivity was modeled using a corrected 15-m DEM and a high-resolution drainage network. Our analyses revealed that this catchment experiences cyclical droughts which, when combined with intense land uses such as livestock grazing and plantation forest harvesting, leaves many areas in the catchment disturbed (i.e. exposed soil) that are connected to the river through surface runoff. As a result, flow-normalized turbidity was elevated during droughts and remained relatively low during wet periods. For example, disturbed land area decreased from 9% to 4% over 2009-2013, which was a relatively wet period. During the extreme drought of 2013, disturbed area increased to 6% in less than a year due mainly to slow pasture recovery after heavy stocking rates. The relationships found in this study demonstrate that high spatiotemporal resolution land cover datasets are very important to understanding the interactions between landscape and climate, and how these interactions

  18. Computer Programs to Display and Modify Data in Geographic Coordinates and Methods to Transfer Positions to and from Maps, with Applications to Gravity Data Processing, Global Positioning Systems, and 30-Meter Digital Elevation Models

    USGS Publications Warehouse

    Plouff, Donald

    1998-01-01

    Computer programs were written in the Fortran language to process and display gravity data with locations expressed in geographic coordinates. The programs and associated processes have been tested for gravity data in an area of about 125,000 square kilometers in northwest Nevada, southeast Oregon, and northeast California. This report discusses the geographic aspects of data processing. Utilization of the programs begins with application of a template (printed in PostScript format) to transfer locations obtained with Global Positioning Systems to and from field maps and includes a 5-digit geographic-based map naming convention for field maps. Computer programs, with source codes that can be copied, are used to display data values (printed in PostScript format) and data coverage, insert data into files, extract data from files, shift locations, test for redundancy, and organize data by map quadrangles. It is suggested that 30-meter Digital Elevation Models needed for gravity terrain corrections and other applications should be accessed in a file search by using the USGS 7.5-minute map name as a file name, for example, file '40117_B8.DEM' contains elevation data for the map with a southeast corner at lat 40? 07' 30' N. and lon 117? 52' 30' W.

  19. Spatial cognition

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary Kister; Remington, Roger

    1988-01-01

    Spatial cognition is the ability to reason about geometric relationships in the real (or a metaphorical) world based on one or more internal representations of those relationships. The study of spatial cognition is concerned with the representation of spatial knowledge, and our ability to manipulate these representations to solve spatial problems. Spatial cognition is utilized most critically when direct perceptual cues are absent or impoverished. Examples are provided of how human spatial cognitive abilities impact on three areas of space station operator performance: orientation, path planning, and data base management. A videotape provides demonstrations of relevant phenomena (e.g., the importance of orientation for recognition of complex, configural forms). The presentation is represented by abstract and overhead visuals only.

  20. Thermal maps of Jupiter - Spatial organization and time dependence of stratospheric temperatures, 1980 to 1990

    NASA Technical Reports Server (NTRS)

    Orton, Glenn S.; Friedson, A. James; Baines, Kevin H.; Martin, Terry Z.; West, Robert A.; Caldwell, John; Hammel, Heidi B.; Bergstralh, Jay T.; Malcolm, Michael E.

    1991-01-01

    The spatial organization and time dependence of Jupiter's stratospheric temperatures have been measured by observing thermal emission from the 7.8-micrometer CH4 band. These temperatures, observed through the greater part of a Jovian year, exhibit the influence of seasonal radiative forcing. Distinct bands of high temperature are located at the poles and midlatitudes, while the equator alternates between warm and cold with a period of approximately 4 years. Substantial longitudinal variability is often observed within the warm midlatitude bands, and occasionally elsewhere on the planet. This variability includes small, localized structures, as well as large-scale waves with wavelengths longer than about 30,000 kilometers. The amplitudes of the waves vary on a time scale of about 1 month; structures on a smaller scale may have lifetimes of only days. Waves observed in 1985, 1987, and 1988 propagated with group velocities less than + or - 30 meters/sec.

  1. Spatial Displays and Spatial Instruments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor); Kaiser, Mary K. (Editor); Grunwald, Arthur J. (Editor)

    1989-01-01

    The conference proceedings topics are divided into two main areas: (1) issues of spatial and picture perception raised by graphical electronic displays of spatial information; and (2) design questions raised by the practical experience of designers actually defining new spatial instruments for use in new aircraft and spacecraft. Each topic is considered from both a theoretical and an applied direction. Emphasis is placed on discussion of phenomena and determination of design principles.

  2. Spatial Techniques

    NASA Astrophysics Data System (ADS)

    Jabeur, Nafaa; Sahli, Nabil

    The environment, including the Earth and the immense space, is recognized to be the main source of useful information for human beings. During several decades, the acquisition of data from this environment was constrained by tools and techniques with limited capabilities. However, thanks to continuous technological advances,spatial data are available in huge quantities for different applications. The technological advances have been achieved in terms of hardware and software as well. They are allowing for better accuracy and availability, which in turn improves the quality and quantity of useful knowledge that can be extracted from the environment. They have been applied to geography, resulting in geospatial techniques. Applied to both science and technology, geospatial techniques resulted in areas of expertise, such as land surveying, cartography, navigation, remote sensing, Geographic Infor-mation Systems (GISs), and Global Positioning Systems (GPSs). They had evolved quickly with advances in computing, satellite technology and a growing demand to understand our global environment. In this chapter, we will discuss three important techniques that are widely used in spatial data acquisition and analysis: GPS and remote sensing techniques that are used to collect spatial data and a GIS that is used to store, manipulate, analyze, and visualize spatial data. Later in this book, we will discuss the techniques that are currently available for spatial knowledge discovery.

  3. Spatial networks

    NASA Astrophysics Data System (ADS)

    Barthélemy, Marc

    2011-02-01

    Complex systems are very often organized under the form of networks where nodes and edges are embedded in space. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, and neural networks, are all examples where space is relevant and where topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields, ranging from urbanism to epidemiology. An important consequence of space on networks is that there is a cost associated with the length of edges which in turn has dramatic effects on the topological structure of these networks. We will thoroughly explain the current state of our understanding of how the spatial constraints affect the structure and properties of these networks. We will review the most recent empirical observations and the most important models of spatial networks. We will also discuss various processes which take place on these spatial networks, such as phase transitions, random walks, synchronization, navigation, resilience, and disease spread.

  4. Spatial alexia.

    PubMed

    Ardila, A; Rosselli, M

    1994-05-01

    Twenty-one patients with right hemisphere damage were studied (11 men, 10 women; average age = 41.33; range = 19-65). Patients were divided in two groups: pre-Rolandic (six patients) and retro-Rolandic (15 patients) right hemisphere damage. A special reading test was given to each patient. The observed errors included: literal errors (substitutions, additions, and omissions of letters), substitutions of syllables and pseudowords for meaningful words, left hemispatial neglect, confabulation, splitting of words, verbal errors (substitutions, additions, and omission of words), grouping of letters belonging to two different words, misuse of punctuation marks, and errors in following lines. It was proposed that spatial alexia is characterized by: (1) some difficulties in the recognition of the spatial orientation in letters; (2) left hemispatial neglect; (3) tendency to "complete" the sense of words and sentences; (4) inability to follow lines when reading texts, and sequentially explore the spatial distribution of the written material; and (5) grouping and fragmentation of words, most likely as a consequence of the inability to interpret the relative value of spaces between letters correctly. PMID:7960468

  5. Synergy Between the Jansky Very Large Array, LSST and the Next Generation 30 Meter Telescopes

    NASA Astrophysics Data System (ADS)

    Baum, Stefi

    2014-07-01

    This talk will discuss the science capabilities of the JVLA in the context of the next generation ground based optical/ir telescopes LSST and TMT. Examples will be provided of the kind of survey and targeted science JVLA can contribute to major optical/ir science themes.

  6. Regional correlations of VS30 averaged over depths less than and greater than 30 meters

    USGS Publications Warehouse

    Boore, David M.; Thompson, Eric M.; Cadet, Héloïse

    2011-01-01

    Using velocity profiles from sites in Japan, California, Turkey, and Europe, we find that the time-averaged shear-wave velocity to 30 m (VS30), used as a proxy for site amplification in recent ground-motion prediction equations (GMPEs) and building codes, is strongly correlated with average velocities to depths less than 30 m (VSz, with z being the averaging depth). The correlations for sites in Japan (corresponding to the KiK-net network) show that VSz is systematically larger for a given VSz than for profiles from the other regions. The difference largely results from the placement of the KiK-net station locations on rock and rocklike sites, whereas stations in the other regions are generally placed in urban areas underlain by sediments. Using the KiK-net velocity profiles, we provide equations relating VS30 to VSz for z ranging from 5 to 29 m in 1-m increments. These equations (and those for California velocity profiles given in Boore, 2004b) can be used to estimate VS30 from VSz for sites in which velocity profiles do not extend to 30 m. The scatter of the residuals decreases with depth, but, even for an averaging depth of 5 m, a variation in logVS30 of ±1 standard deviation maps into less than a 20% uncertainty in ground motions given by recent GMPEs at short periods. The sensitivity of the ground motions to VS30 uncertainty is considerably larger at long periods (but is less than a factor of 1.2 for averaging depths greater than about 20 m). We also find that VS30 is correlated with VSz for z as great as 400 m for sites of the KiK-net network, providing some justification for using VS30 as a site-response variable for predicting ground motions at periods for which the wavelengths far exceed 30 m.

  7. Large Steel Tank Fails and Rockets to Height of 30 meters - Rupture Disc Installed Incorrectly.

    PubMed

    Hedlund, Frank H; Selig, Robert S; Kragh, Eva K

    2016-06-01

    At a brewery, the base plate-to-shell weld seam of a 90-m(3) vertical cylindrical steel tank failed catastrophically. The 4 ton tank "took off" like a rocket leaving its contents behind, and landed on a van, crushing it. The top of the tank reached a height of 30 m. The internal overpressure responsible for the failure was an estimated 60 kPa. A rupture disc rated at < 50 kPa provided overpressure protection and thus prevented the tank from being covered by the European Pressure Equipment Directive. This safeguard failed and it was later discovered that the rupture disc had been installed upside down. The organizational root cause of this incident may be a fundamental lack of appreciation of the hazards of large volumes of low-pressure compressed air or gas. A contributing factor may be that the standard piping and instrumentation diagram (P&ID) symbol for a rupture disc may confuse and lead to incorrect installation. Compressed air systems are ubiquitous. The medium is not toxic or flammable. Such systems however, when operated at "slight overpressure" can store a great deal of energy and thus constitute a hazard that ought to be addressed by safety managers. PMID:27340600

  8. Operating experience with the southwire 30-meter high-temperature superconducting power cable

    NASA Astrophysics Data System (ADS)

    Stovall, J. P.; Lue, J. W.; Demko, J. A.; Fisher, P. W.; Gouge, M. J.; Hawsey, R. A.; Armstrong, J. W.; Hughey, R. L.; Lindsay, D. T.; Roden, M. L.; Sinha, U. K.; Tolbert, J. C.

    2002-05-01

    Southwire Company is operating a high-temperature superconducting (HTS) cable system at its corporate headquarters. The 30-m long, 3-phase cable system is powering three Southwire manufacturing plants and is rated at 12.4-kV, 1250-A, 60-Hz. Cooling is provided by a pressurized liquid nitrogen system operating at 70-80 K. The cables were energized on January 5, 2000 for on-line testing and operation and in April 2000 were placed into extended service. As of June 1, 2001, the HTS cables have provided 100% of the customer load for 8000 hours. The cryogenic system has been in continuous operation since November 1999. The HTS cable system has not been the cause of any power outages to the average 20 MW industrial load served by the cable. The cable has been exposed to short-circuit currents caused by load-side faults without damage. Based upon field measurements described herein, the cable critical current-a key performance parameter-remains the same and has not been affected by the hours of real-world operation, further proving the viability of this promising technology.

  9. Spatial Encounters: Exercises in Spatial Awareness.

    ERIC Educational Resources Information Center

    New Mexico Univ., Albuquerque.

    This series of activities on spatial relationships was designed to help users acquire the skills of spatial visualization and orientation and to improve their effectiveness in applying those skills. The series contains an introduction to spatial orientation with several self-directed activities to help improve that skill. It also contains seven…

  10. Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru

    PubMed Central

    LaCon, Genevieve; Morrison, Amy C.; Astete, Helvio; Stoddard, Steven T.; Paz-Soldan, Valerie A.; Elder, John P.; Halsey, Eric S.; Scott, Thomas W.; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M.

    2014-01-01

    Background Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Methodologies/Principal Findings Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Conclusions/Significance Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically

  11. Spatial attention systems in spatial neglect.

    PubMed

    Karnath, Hans-Otto

    2015-08-01

    It has been established that processes relating to 'spatial attention' are implemented at cortical level by goal-directed (top-down) and stimulus-driven (bottom-up) networks. Spatial neglect in brain-damaged individuals has been interpreted as a distinguished exemplar for a disturbance of these processes. The present paper elaborates this assumption. Functioning of the two attentional networks seem to dissociate in spatial neglect; behavioral studies of patients' orienting and exploration behavior point to a disturbed stimulus-driven but preserved goal-directed attention system. When a target suddenly appears somewhere in space, neglect patients demonstrate disturbed detection and orienting if it is located in contralesional direction. In contrast, if neglect patients explore a scene with voluntarily, top-down controlled shifts of spatial attention, they perform movements that are oriented into all spatial directions without any direction-specific disturbances. The paper thus argues that not the top-down control of spatial attention itself, rather a body-related matrix on top of which this process is executed, seems affected. In that sense, the traditional role of spatial neglect as a stroke model for 'spatial attention' requires adjustment. Beyond its insights into the human stimulus-driven attentional system, the disorder most notably provides vistas in how our brain encodes topographical information and organizes spatially oriented action - including the top-down control of spatial attention - in relation to body position. PMID:26004064

  12. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.

  13. Differentiating Spatial Memory from Spatial Transformations

    ERIC Educational Resources Information Center

    Street, Whitney N.; Wang, Ranxiao Frances

    2014-01-01

    The perspective-taking task is one of the most common paradigms used to study the nature of spatial memory, and better performance for certain orientations is generally interpreted as evidence of spatial representations using these reference directions. However, performance advantages can also result from the relative ease in certain…

  14. Providing a Spatial Context for Crop Insurance in Ethiopia: Multiscale Comparisons of Vegetation Metrics in Tigray

    NASA Astrophysics Data System (ADS)

    Mann, B. F.; Small, C.

    2014-12-01

    Weather-based index insurance projects are rapidly expanding across the developing world. Many of these projects use satellite-based observations to detect extreme weather events, which inform and trigger payouts to smallholder farmers. While most index insurance programs use precipitation measurements to determine payouts, the use of remotely sensed observations of vegetation is currently being explored. In order to use vegetation indices as a basis for payouts, it is necessary to establish a consistent relationship between the vegetation index and the health and abundance of agriculture on the ground. The accuracy with which remotely sensed vegetation indices can detect changes in agriculture depends on both the spatial scale of the agriculture and the spatial resolution of the sensor. This study analyzes the relationship between meter and decameter scale vegetation fraction estimates derived from linear spectral mixture models with a more commonly used vegetation index (NDVI, EVI) at hectometer spatial scales. In addition, the analysis incorporates land cover/land use field observations collected in Tigray Ethiopia in July 2013. . It also tests the flexibility and utility of a standardized spectral mixture model in which land cover is represented as continuous fields of rock and soil substrate (S), vegetation (V) and dark surfaces (D; water, shadow). This analysis found strong linear relationships with vegetation metrics at 1.6-meter, 30-meter and 250-meter resolutions across spectrally diverse subsets of Tigray, Ethiopia and significantly correlated relationships using the Spearman's rho statistic. The observed linear scaling has positive implications for future use of moderate resolution vegetation indices in similar landscapes; especially index insurance projects that are scaling up across the developing world using remotely-sensed environmental information.

  15. Effects of spatial resolution

    NASA Technical Reports Server (NTRS)

    Abrams, M.

    1982-01-01

    Studies of the effects of spatial resolution on extraction of geologic information are woefully lacking but spatial resolution effects can be examined as they influence two general categories: detection of spatial features per se; and the effects of IFOV on the definition of spectral signatures and on general mapping abilities.

  16. Spatial Language Learning

    ERIC Educational Resources Information Center

    Fu, Zhengling

    2016-01-01

    Spatial language constitutes part of the basic fabric of language. Although languages may have the same number of terms to cover a set of spatial relations, they do not always do so in the same way. Spatial languages differ across languages quite radically, thus providing a real semantic challenge for second language learners. The essay first…

  17. Spatially-Heterodyned Holography

    SciTech Connect

    Thomas, Clarence E; Hanson, Gregory R

    2006-02-21

    A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.

  18. Spatial services grid

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Li, Qi; Cheng, Jicheng

    2005-10-01

    This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.

  19. A Key Concept: Spatial Organization

    ERIC Educational Resources Information Center

    Kostrowicki, Jerzy

    1975-01-01

    The application of geography to spatial planning is discussed. Concepts presented include the regional concept, the typological concept, and spatial structure, spatial processes, and spatial organization. For address of journal see SO 504 028. (Author/RM)

  20. Spatial capture-recapture

    USGS Publications Warehouse

    Royle, J. Andrew; Chandler, Richard B.; Sollmann, Rahel; Gardner, Beth

    2013-01-01

    Spatial Capture-Recapture provides a revolutionary extension of traditional capture-recapture methods for studying animal populations using data from live trapping, camera trapping, DNA sampling, acoustic sampling, and related field methods. This book is a conceptual and methodological synthesis of spatial capture-recapture modeling. As a comprehensive how-to manual, this reference contains detailed examples of a wide range of relevant spatial capture-recapture models for inference about population size and spatial and temporal variation in demographic parameters. Practicing field biologists studying animal populations will find this book to be a useful resource, as will graduate students and professionals in ecology, conservation biology, and fisheries and wildlife management.

  1. Spatial Data Analysis.

    PubMed

    Banerjee, Sudipto

    2016-03-18

    With increasing accessibility to geographic information systems (GIS) software, statisticians and data analysts routinely encounter scientific data sets with geocoded locations. This has generated considerable interest in statistical modeling for location-referenced spatial data. In public health, spatial data routinely arise as aggregates over regions, such as counts or rates over counties, census tracts, or some other administrative delineation. Such data are often referred to as areal data. This review article provides a brief overview of statistical models that account for spatial dependence in areal data. It does so in the context of two applications: disease mapping and spatial survival analysis. Disease maps are used to highlight geographic areas with high and low prevalence, incidence, or mortality rates of a specific disease and the variability of such rates over a spatial domain. They can also be used to detect hot spots or spatial clusters that may arise owing to common environmental, demographic, or cultural effects shared by neighboring regions. Spatial survival analysis refers to the modeling and analysis for geographically referenced time-to-event data, where a subject is followed up to an event (e.g., death or onset of a disease) or is censored, whichever comes first. Spatial survival analysis is used to analyze clustered survival data when the clustering arises from geographical regions or strata. Illustrations are provided in these application domains. PMID:26789381

  2. Individual Differences in Spatial Text Processing: High Spatial Ability Can Compensate for Spatial Working Memory Interference

    ERIC Educational Resources Information Center

    Meneghetti, Chiara; Gyselinck, Valerie; Pazzaglia, Francesca; De Beni, Rossana

    2009-01-01

    The present study investigates the relation between spatial ability and visuo-spatial and verbal working memory in spatial text processing. In two experiments, participants listened to a spatial text (Experiments 1 and 2) and a non-spatial text (Experiment 1), at the same time performing a spatial or a verbal concurrent task, or no secondary task.…

  3. Suitable Site Selection of Small Dams Using Geo-Spatial Technique: a Case Study of Dadu Tehsil, Sindh

    NASA Astrophysics Data System (ADS)

    Khalil, Zahid

    2016-07-01

    Decision making about identifying suitable sites for any project by considering different parameters, is difficult. Using GIS and Multi-Criteria Analysis (MCA) can make it easy for those projects. This technology has proved to be an efficient and adequate in acquiring the desired information. In this study, GIS and MCA were employed to identify the suitable sites for small dams in Dadu Tehsil, Sindh. The GIS software is used to create all the spatial parameters for the analysis. The parameters that derived are slope, drainage density, rainfall, land use / land cover, soil groups, Curve Number (CN) and runoff index with a spatial resolution of 30m. The data used for deriving above layers include 30 meter resolution SRTM DEM, Landsat 8 imagery, and rainfall from National Centre of Environment Prediction (NCEP) and soil data from World Harmonized Soil Data (WHSD). Land use/Land cover map is derived from Landsat 8 using supervised classification. Slope, drainage network and watershed are delineated by terrain processing of DEM. The Soil Conservation Services (SCS) method is implemented to estimate the surface runoff from the rainfall. Prior to this, SCS-CN grid is developed by integrating the soil and land use/land cover raster. These layers with some technical and ecological constraints are assigned weights on the basis of suitability criteria. The pair wise comparison method, also known as Analytical Hierarchy Process (AHP) is took into account as MCA for assigning weights on each decision element. All the parameters and group of parameters are integrated using weighted overlay in GIS environment to produce suitable sites for the Dams. The resultant layer is then classified into four classes namely, best suitable, suitable, moderate and less suitable. This study reveals a contribution to decision making about suitable sites analysis for small dams using geo-spatial data with minimal amount of ground data. This suitability maps can be helpful for water resource

  4. Design and control of one precise tracking simulation bed for Chinese 20/30 meter optic/infrared telescope

    NASA Astrophysics Data System (ADS)

    Ren, Changzhi; Li, Xiaoyan; Song, Xiaoli; Niu, Yong; Li, Aihua; Zhang, Zhenchao

    2012-09-01

    Direct drive technology is the key to solute future 30-m and larger telescope motion system to guarantee a very high tracking accuracy, in spite of unbalanced and sudden loads such as wind gusts and in spite of a structure that, because of its size, can not be infinitely stiff. However, this requires the design and realization of unusually large torque motor that the torque slew rate must be extremely steep too. A conventional torque motor design appears inadequate. This paper explores one redundant unit permanent magnet synchronous motor and its simulation bed for 30-m class telescope. Because its drive system is one high integrated electromechanical system, one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. This paper discusses the design and control of the precise tracking simulation bed in detail.

  5. 40 CFR 201.23 - Test site, weather conditions and background noise criteria for measurement at a 30 meter (100...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... rail car operations and locomotive load cell test stands. 201.23 Section 201.23 Protection of... locomotive and rail car operations and locomotive load cell test stands. (a) The standard test site shall be... contribution from the operation of the load cell, if any, including load cell contribution during test....

  6. 40 CFR 201.23 - Test site, weather conditions and background noise criteria for measurement at a 30 meter (100...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rail car operations and locomotive load cell test stands. 201.23 Section 201.23 Protection of... locomotive and rail car operations and locomotive load cell test stands. (a) The standard test site shall be... contribution from the operation of the load cell, if any, including load cell contribution during test....

  7. 40 CFR 201.23 - Test site, weather conditions and background noise criteria for measurement at a 30 meter (100...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... rail car operations and locomotive load cell test stands. 201.23 Section 201.23 Protection of... locomotive and rail car operations and locomotive load cell test stands. (a) The standard test site shall be... contribution from the operation of the load cell, if any, including load cell contribution during test....

  8. Spatial interpolation approach based on IDW with anisotropic spatial structures

    NASA Astrophysics Data System (ADS)

    Li, Jia; Duan, Ping; Sheng, Yehua; Lv, Haiyang

    2015-12-01

    In many interpolation methods, with its simple interpolation principle, Inverse distance weighted (IDW) interpolation is one of the most common interpolation method. There are anisotropic spatial structures with actual geographical spatial phenomenon. When the IDW interpolation is used, anisotropic spatial structures should be considered. Geostatistical theory has a characteristics of exploring anisotropic spatial structures. In this paper, spatial interpolation approach based on IDW with anisotropic spatial structures is proposed. The DEM data is tested in this paper to prove reliability of the IDW interpolation considering anisotropic spatial structures. Experimental results show that IDW interpolation considering anisotropic spatial structures can improve interpolation precision when sampling data has anisotropic spatial structures feature.

  9. Robustness of spatial micronetworks

    NASA Astrophysics Data System (ADS)

    McAndrew, Thomas C.; Danforth, Christopher M.; Bagrow, James P.

    2015-04-01

    Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure.

  10. Robustness of spatial micronetworks.

    PubMed

    McAndrew, Thomas C; Danforth, Christopher M; Bagrow, James P

    2015-04-01

    Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure. PMID:25974553

  11. The spatial rotator.

    PubMed

    Rasmusson, A; Hahn, U; Larsen, J O; Gundersen, H J G; Jensen, E B Vedel; Nyengaard, J R

    2013-05-01

    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making the spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient than the traditional local volume estimators. Furthermore, the spatial rotator can be seen as a further development of the Cavalieri estimator, which does not require randomization of sectioning or viewing direction. The tissue may thus be sectioned in any arbitrary direction, making it easy to identify the specific tissue region under study. In order to use the spatial rotator in practice, however, it is necessary to be able to identify intersection points between cell boundaries and test rays in a series of parallel focal planes, also at the peripheral parts of the cell boundaries. In cases where over- and underprojection phenomena are not negligible, they should therefore be corrected for if the spatial rotator is to be applied. If such a correction is not possible, it is needed to avoid these phenomena by using microscopy with increased resolution in the focal plane. PMID:23488880

  12. Children's Spatial Thinking: Does Talk about the Spatial World Matter?

    ERIC Educational Resources Information Center

    Pruden, Shannon M.; Levine, Susan C.; Huttenlocher, Janellen

    2011-01-01

    In this paper we examine the relations between parent spatial language input, children's own production of spatial language, and children's later spatial abilities. Using a longitudinal study design, we coded the use of spatial language (i.e. words describing the spatial features and properties of objects; e.g. big, tall, circle, curvy, edge) from…

  13. Spatial Light Amplifier Modulators

    NASA Technical Reports Server (NTRS)

    Eng, Sverre T.; Olsson, N. Anders

    1992-01-01

    Spatial light amplifier modulators (SLAM's) are conceptual devices that effect two-dimensional spatial modulation in optical computing and communication systems. Unlike current spatial light modulators, these provide gain. Optical processors incorporating SLAM's designed to operate in reflection or transmission mode. Each element of planar SLAM array is optical amplifier - surface-emitting diode laser. Array addressed electrically with ac modulating signals superimposed on dc bias currents supplied to lasers. SLAM device provides both desired modulation and enough optical gain to enable splitting of output signal into many optical fibers without excessive loss of power.

  14. Electromagnetic spatial coherence wavelets.

    PubMed

    Castaneda, Roman; Garcia-Sucerquia, Jorge

    2006-01-01

    The recently introduced concept of spatial coherence wavelets is generalized to describe the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows for the analysis of the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides further insight about the causal relationship between the polarization states at different planes along the propagation path. PMID:16478063

  15. Spatial Data Supply Chains

    NASA Astrophysics Data System (ADS)

    Varadharajulu, P.; Azeem Saqiq, M.; Yu, F.; McMeekin, D. A.; West, G.; Arnold, L.; Moncrieff, S.

    2015-06-01

    This paper describes current research into the supply of spatial data to the end user in as close to real time as possible via the World Wide Web. The Spatial Data Infrastructure paradigm has been discussed since the early 1990s. The concept has evolved significantly since then but has almost always examined data from the perspective of the supplier. It has been a supplier driven focus rather than a user driven focus. The current research being conducted is making a paradigm shift and looking at the supply of spatial data as a supply chain, similar to a manufacturing supply chain in which users play a significant part. A comprehensive consultation process took place within Australia and New Zealand incorporating a large number of stakeholders. Three research projects that have arisen from this consultation process are examining Spatial Data Supply Chains within Australia and New Zealand and are discussed within this paper.

  16. Spatial Visualizing in Children

    ERIC Educational Resources Information Center

    Smothergill, Daniel W.; And Others

    1975-01-01

    Reports four experiments with preschool and elementary school children. The first study involved a localization task and the remaining three required the mental manipulation of spatial information. (Author/SDH)

  17. Geologic spatial analysis

    SciTech Connect

    Thiessen, R.L.; Eliason, J.R.

    1989-01-01

    This report describes the development of geologic spatial analysis research which focuses on conducting comprehensive three-dimensional analysis of regions using geologic data sets that can be referenced by latitude, longitude, and elevation/depth. (CBS)

  18. Subsurface information for risk-sensitive urban spatial planning in Dhaka Metropolitan City, Bangladesh

    NASA Astrophysics Data System (ADS)

    Günther, Andreas; Aziz Patwary, Mohammad Abdul; Bahls, Rebecca; Asaduzzaman, Atm; Ludwig, Rüdiger; Ashraful Kamal, Mohammad; Nahar Faruqa, Nurun; Jabeen, Sarwat

    2016-04-01

    Dhaka Metropolitan City (including Dhaka and five adjacent municipal areas) is one of the fastest developing urban regions in the world. Densely build-up areas in the developed metropolitan area of Dhaka City are subject to extensive restructuring as common six- or lower storied buildings are replaced by higher and heavier constructions. Additional stories are built on existing houses, frequently exceeding the allowable bearing pressure on the subsoil as supported by the foundations. In turn, newly developing city areas are projected in marshy terrains modified by extensive, largely unengineered landfills. In most areas, these terrains bear unfavorable building ground conditions within 30 meters. Within a collaborative technical cooperation project between Bangladesh and Germany, BGR supports GSB in the provision of geo-information for the Capital Development Authority (RAJUK). For general urban planning, RAJUK successively develops a detailed area plan (DAP) at scale 1 : 50000 for the whole Dhaka Metropolitan City area (approx. 1700 km2). Geo-information have not been considered in the present DAP. Within the project, geospatial information in form of a geomorphic map, a digital terrain model and a 3-D subsurface model covering the whole city area have been generated at a scale of 1 : 50000. An extensive engineering geological data base consisting of more than 2200 borehole data with associated Standard Penetration Testing (SPT) and lab data has been compiled. With the field testing (SPT) and engineering geological lab data, the 3-D subsurface model can be parameterized to derive important spatial subsurface information for urban planning like bearing capacity evaluations for different foundation designs or soil liquefaction potential assessments for specific earthquake scenarios. In conjunction with inundation potential evaluations for different flooding scenarios, comprehensive building ground suitability information can be derived to support risk

  19. Diffusion on spatial network

    NASA Astrophysics Data System (ADS)

    Hui, Zi; Tang, Xiaoyue; Li, Wei; Greneche, Jean-Marc; Wang, Qiuping A.

    2015-04-01

    In this work, we study the problem of diffusing a product (idea, opinion, disease etc.) among agents on spatial network. The network is constructed by random addition of nodes on the planar. The probability for a previous node to be connected to the new one is inversely proportional to their spatial distance to the power of α. The diffusion rate between two connected nodes is inversely proportional to their spatial distance to the power of β as well. Inspired from the Fick's first law, we introduce the diffusion coefficient to measure the diffusion ability of the spatial network. Using both theoretical analysis and Monte Carlo simulation, we get the fact that the diffusion coefficient always decreases with the increasing of parameter α and β, and the diffusion sub-coefficient follows the power-law of the spatial distance with exponent equals to -α-β+2. Since both short-range diffusion and long-range diffusion exist, we use anomalous diffusion method in diffusion process. We get the fact that the slope index δ in anomalous diffusion is always smaller that 1. The diffusion process in our model is sub-diffusion.

  20. Temporal and spatial variations in erosion rate in the Sikkim Himalaya as a function of climate and tectonics

    NASA Astrophysics Data System (ADS)

    Abrahami, R.; Van Der Beek, P.; Huyghe, P.; Carcaillet, J.

    2014-12-01

    The Tista River, a major tributary of the Brahmaputra drainage system (Eastern Himalaya -Sikkim) has recently incised its megafan at the topographic front of the mountain range by 30 meters. Neither the timing of deposition/incision of the megafan sediments, nor the erosion rates of the source areas have yet been investigated in detail. To constrain erosion rates in the hinterland at different temporal scales, we report cosmogenic nuclide (10Be) and thermochronological (apatite fission-track) data on modern river sands and map the results to evidence spatial variations of erosion/exhumation rates in Sikkim. Millennial erosion rates are significantly higher than geological exhumation rates, display stronger spatial variability and a contrasting pattern, suggesting that the processes controlling these rates are decoupled. Strong exhumation rates at geological timescales in southwest Sikkim (1.2 mm.yr-1) may be structurally controlled by uplift of the Lesser Himalayan duplex, while strong erosion rates at millennial scales in north Sikkim (5-6 mm.yr-1) suggest a climatic control. Cosmogenic nuclides were also used to date the onset of incision of the megafan. In addition, isotope geochemistry (ɛNd, 87Sr/86Sr) on modern river sands and late-Quaternary megafan sediments allows characterizing the isotopic signature of the different source areas and constraining variations in provenance of the Tista megafan deposits through time. Results show that the Tista fan deposits are mainly sourced from the High Himalayan Crystalline domain with excursions more influenced by the Lesser Himalaya domain. These results are consistent with the higher erosion rates identified in north Sikkim at millennial timescale. These data provide a new comprehensive view on modern erosion and long-term exhumation of the Sikkim Himalaya. This study will help our knowledge and understanding of erosional processes and sediment fluxes in mountainous environments as a function of climate and tectonics.

  1. Spatial Knowledge Capture Library

    2005-05-16

    The Spatial Knowledge Capture Library is a set of algorithms to capture regularities in shapes and trajectories through space and time. We have applied Spatial Knowledge Capture to model the actions of human experts in spatial domains, such as an AWACS Weapons Director task simulation. The library constructs a model to predict the expert’s response to sets of changing cues, such as the movements and actions of adversaries on a battlefield, The library includes amore » highly configurable feature extraction functionality, which supports rapid experimentation to discover causative factors. We use k-medoid clustering to group similar episodes of behavior, and construct a Markov model of system state transitions induced by agents’ actions.« less

  2. The Spatial Standard Observer

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J, Jr.

    2006-01-01

    The spatial standard observer is a computational model that provides a measure of the visibility of a target in a uniform background image or of the visual discriminability of two images. Standard observers have long been used in science and industry to quantify the discriminability of colors. Color standard observers address the spectral characteristics of visual stimuli, while the spatial standard observer (SSO), as its name indicates, addresses spatial characteristics. The SSO is based on a model of human vision. The SSO was developed in a process that included evaluation of a number of earlier mathematical models that address optical, physiological, and psychophysical aspects of spatial characteristics of human visual perception. Elements of the prior models are incorporated into the SSO, which is formulated as a compromise between accuracy and simplicity. The SSO operates on a digitized monochrome still image or on a pair of such images. The SSO consists of three submodels that operate sequentially on the input image(s): 1. A contrast model, which converts an input monochrome image to a luminance contrast image, wherein luminance values are expressed as excursions from, and normalized to, a mean; 2. A contrast-sensitivity-filter model that includes an oblique-effect filter (which accounts for the decline in contrast sensitivity at oblique viewing angles); and 3. A spatial summation model, in which responses are spatially pooled by raising each pixel to the power beta, adding the results, and raising the sum to the 1/b power. In this model, b=2.9 was found to be a suitable value. The net effect of the SSO is to compute a numerical measure of the perceptual strength of the single image, or of the visible difference (denoted the perceptual distance) between two images. The unit of a measure used in the SSO is the just noticeable difference (JND), which is a standard measure of perceptual discriminability. A target that is just visible has a measure of 1 JND.

  3. Embodied spatial cognition.

    PubMed

    Trafton, J Gregory; Harrison, Anthony M

    2011-10-01

    We present a spatial system called Specialized Egocentrically Coordinated Spaces embedded in an embodied cognitive architecture (ACT-R Embodied). We show how the spatial system works by modeling two different developmental findings: gaze-following and Level 1 perspective taking. The gaze-following model is based on an experiment by Corkum and Moore (1998), whereas the Level 1 visual perspective-taking model is based on an experiment by Moll and Tomasello (2006). The models run on an embodied robotic system. PMID:25164505

  4. Planetary Spatial Analyst

    NASA Technical Reports Server (NTRS)

    Keely, Leslie

    2008-01-01

    This is a status report for the project entitled Planetary Spatial Analyst (PSA). This report covers activities from the project inception on October 1, 2007 to June 1, 2008. Originally a three year proposal, PSA was awarded funding for one year and required a revised work statement and budget. At the time of this writing the project is well on track both for completion of work as well as budget. The revised project focused on two objectives: build a solid connection with the target community and implement a prototype software application that provides 3D visualization and spatial analysis technologies for that community. Progress has been made for both of these objectives.

  5. Spatial fluctuation theorem

    NASA Astrophysics Data System (ADS)

    Pérez-Espigares, Carlos; Redig, Frank; Giardinà, Cristian

    2015-08-01

    For non-equilibrium systems of interacting particles and for interacting diffusions in d-dimensions, a novel fluctuation relation is derived. The theorem establishes a quantitative relation between the probabilities of observing two current values in different spatial directions. The result is a consequence of spatial symmetries of the microscopic dynamics, generalizing in this way the Gallavotti-Cohen fluctuation theorem related to the time-reversal symmetry. This new perspective opens up the possibility of direct experimental measurements of fluctuation relations of vectorial observables.

  6. Spatially Extended Modelocking

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Diffey, William M.; Gamble, Lisa; Keys, Andrew S.

    1999-01-01

    We examine the properties of optical fields that are extended in space over transverse dimensions of several meters or more in terms of both multiple spatial modes and also multiple temporal modes. We focus attention on the task of producing and maintaining well defined phase relationships for the set of spatial and temporal modes. In particular, we address operating regimes where the optical fields are not confined within an optical resonator, but still have well defined phase relations through the use of optical field sensing and correction techniques. Special applications of interest occur in safe beaming of optical power and in approaching optical intensities capable of producing nonlinear phenomena in the vacuum.

  7. Heredity Factors in Spatial Visualization.

    ERIC Educational Resources Information Center

    Vandenberg, S. G.

    Spatial visualization is not yet clearly understood. Some researchers have concluded that two factors or abilities are involved, spatial orientation and spatial visualization. Different definitions and different tests have been proposed for these two abilities. Several studies indicate that women generally perform more poorly on spatial tests than…

  8. Chunking in Spatial Memory

    ERIC Educational Resources Information Center

    Sargent, Jesse; Dopkins, Stephen; Philbeck, John; Chichka, David

    2010-01-01

    In order to gain insight into the nature of human spatial representations, the current study examined how those representations are affected by blind rotation. Evidence was sought on the possibility that whereas certain environmental aspects may be updated independently of one another, other aspects may be grouped (or chunked) together and updated…

  9. Handbook of Spatial Cognition

    ERIC Educational Resources Information Center

    Waller, David, Ed.; Nadel, Lynn, Ed.

    2012-01-01

    Spatial cognition is a branch of cognitive psychology that studies how people acquire and use knowledge about their environment to determine where they are, how to obtain resources, and how to find their way home. Researchers from a wide range of disciplines, including neuroscience, cognition, and sociology, have discovered a great deal about how…

  10. Grounded spatial belief revision.

    PubMed

    Nejasmic, Jelica; Bucher, Leandra; Knauff, Markus

    2015-05-01

    Beliefs frequently undergo revisions, especially when new pieces of information are true but inconsistent with current beliefs. In previous studies, we showed that linguistic asymmetries provided by relational statements, play a crucial role in spatial belief revision. Located objects (LO) are preferably revised compared to reference objects (RO), known as the LO-principle. Here we establish a connection between spatial belief revision and grounded cognition. In three experiments, we explored whether imagined physical object properties influence which object is relocated and which remains at its initial position. Participants mentally revised beliefs about the arrangements of objects which could be envisaged as light and heavy (Experiment 1), small and large (Experiment 2), or movable and immovable (Experiment 3). The results show that intrinsic object properties are differently taken into account during spatial belief revision. Object weight did not alter the LO-principle (Experiment 1), whereas object size was found to influence which object was preferably relocated (Experiment 2). Object movability did not affect relocation preferences but had an effect on relocation durations (Experiment 3). The findings support the simulation hypothesis within the grounded cognition approach and create new connections between the spatial mental model theory of reasoning and the idea of grounded cognition. PMID:25796056

  11. Bayesian Spatial Quantile Regression

    PubMed Central

    Reich, Brian J.; Fuentes, Montserrat; Dunson, David B.

    2013-01-01

    Tropospheric ozone is one of the six criteria pollutants regulated by the United States Environmental Protection Agency under the Clean Air Act and has been linked with several adverse health effects, including mortality. Due to the strong dependence on weather conditions, ozone may be sensitive to climate change and there is great interest in studying the potential effect of climate change on ozone, and how this change may affect public health. In this paper we develop a Bayesian spatial model to predict ozone under different meteorological conditions, and use this model to study spatial and temporal trends and to forecast ozone concentrations under different climate scenarios. We develop a spatial quantile regression model that does not assume normality and allows the covariates to affect the entire conditional distribution, rather than just the mean. The conditional distribution is allowed to vary from site-to-site and is smoothed with a spatial prior. For extremely large datasets our model is computationally infeasible, and we develop an approximate method. We apply the approximate version of our model to summer ozone from 1997–2005 in the Eastern U.S., and use deterministic climate models to project ozone under future climate conditions. Our analysis suggests that holding all other factors fixed, an increase in daily average temperature will lead to the largest increase in ozone in the Industrial Midwest and Northeast. PMID:23459794

  12. Bayesian Spatial Quantile Regression.

    PubMed

    Reich, Brian J; Fuentes, Montserrat; Dunson, David B

    2011-03-01

    Tropospheric ozone is one of the six criteria pollutants regulated by the United States Environmental Protection Agency under the Clean Air Act and has been linked with several adverse health effects, including mortality. Due to the strong dependence on weather conditions, ozone may be sensitive to climate change and there is great interest in studying the potential effect of climate change on ozone, and how this change may affect public health. In this paper we develop a Bayesian spatial model to predict ozone under different meteorological conditions, and use this model to study spatial and temporal trends and to forecast ozone concentrations under different climate scenarios. We develop a spatial quantile regression model that does not assume normality and allows the covariates to affect the entire conditional distribution, rather than just the mean. The conditional distribution is allowed to vary from site-to-site and is smoothed with a spatial prior. For extremely large datasets our model is computationally infeasible, and we develop an approximate method. We apply the approximate version of our model to summer ozone from 1997-2005 in the Eastern U.S., and use deterministic climate models to project ozone under future climate conditions. Our analysis suggests that holding all other factors fixed, an increase in daily average temperature will lead to the largest increase in ozone in the Industrial Midwest and Northeast. PMID:23459794

  13. ECOREGION SPATIAL DATABASE

    EPA Science Inventory

    This spatial database contains boundaries and attributes describing Level III ecoregions in EPA Region 8. The ecoregions shown here have been derived from Omernik (1987) and from refinements of Omernik's framework that have been made for other projects. These ongoing or re...

  14. The impact of spatial scales and spatial smoothing on the outcome of bayesian spatial model.

    PubMed

    Kang, Su Yun; McGree, James; Mengersen, Kerrie

    2013-01-01

    Discretization of a geographical region is quite common in spatial analysis. There have been few studies into the impact of different geographical scales on the outcome of spatial models for different spatial patterns. This study aims to investigate the impact of spatial scales and spatial smoothing on the outcomes of modelling spatial point-based data. Given a spatial point-based dataset (such as occurrence of a disease), we study the geographical variation of residual disease risk using regular grid cells. The individual disease risk is modelled using a logistic model with the inclusion of spatially unstructured and/or spatially structured random effects. Three spatial smoothness priors for the spatially structured component are employed in modelling, namely an intrinsic Gaussian Markov random field, a second-order random walk on a lattice, and a Gaussian field with Matérn correlation function. We investigate how changes in grid cell size affect model outcomes under different spatial structures and different smoothness priors for the spatial component. A realistic example (the Humberside data) is analyzed and a simulation study is described. Bayesian computation is carried out using an integrated nested Laplace approximation. The results suggest that the performance and predictive capacity of the spatial models improve as the grid cell size decreases for certain spatial structures. It also appears that different spatial smoothness priors should be applied for different patterns of point data. PMID:24146799

  15. Study of vegetation impact on the ground surface temperature using remote sensing data with different spatial resolution

    NASA Astrophysics Data System (ADS)

    Dvornikov, Yury; Heim, Birgit; Leibman, Marina

    2013-04-01

    with the field data. The comparison involves the spatial statistics calculation. The map of the surface temperature was plotted using data from Landsat 1999 with 30 meter spatial resolution (band 6-1, High Gain). First of all, an atmospheric correction of the data was made, and then surface temperature was calculated with the algorithm (Chavez, 1988). The average temperature of the surface was calculated, except for the areas of water bodies, and then the spatial statistics was calculated within the vegetation units subdivided at the initial stage of interpretation.

  16. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, Victor

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.

  17. Spatial Organization of Epigenomes

    PubMed Central

    Dubé, Jonathan Christopher; Wang, Xue Qing David; Dostie, Josée

    2016-01-01

    The role of genome architecture in transcription regulation has become the focus of an increasing number of studies over the past decade. Chromatin organization can have a significant impact on gene expression by promoting or restricting the physical proximity between regulatory DNA elements. Given that any change in chromatin state has the potential to alter DNA folding and the proximity between control elements, the spatial organization of chromatin is inherently linked to its molecular composition. In this review, we explore how modulators of chromatin state and organization might keep gene expression in check. We discuss recent findings and present some of the less well-studied aspects of spatial genome organization such as chromatin dynamics and regulation by non-coding RNAs. PMID:26986719

  18. Spatial Phase Imaging

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Frequently, scientists grow crystals by dissolving a protein in a specific liquid solution, and then allowing that solution to evaporate. The methods used next have been, variously, invasive (adding a dye that is absorbed by the protein), destructive (crushing protein/salt-crystal mixtures and observing differences between the crushing of salt and protein), or costly and time-consuming (X-ray crystallography). In contrast to these methods, a new technology for monitoring protein growth, developed in part through NASA Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center, is noninvasive, nondestructive, rapid, and more cost effective than X-ray analysis. The partner for this SBIR, Photon-X, Inc., of Huntsville, Alabama, developed spatial phase imaging technology that can monitor crystal growth in real time and in an automated mode. Spatial phase imaging scans for flaws quickly and produces a 3-D structured image of a crystal, showing volumetric growth analysis for future automated growth.

  19. Geographic representation in spatial analysis

    NASA Astrophysics Data System (ADS)

    Miller, Harvey J.

    Spatial analysis mostly developed in an era when data was scarce and computational power was expensive. Consequently, traditional spatial analysis greatly simplifies its representations of geography. The rise of geographic information science (GISci) and the changing nature of scientific questions at the end of the 20th century suggest a comprehensive re-examination of geographic representation in spatial analysis. This paper reviews the potential for improved representations of geography in spatial analysis. Existing tools in spatial analysis and new tools available from GISci have tremendous potential for bringing more sophisticated representations of geography to the forefront of spatial analysis theory and application.

  20. GENERATING SOPHISTICATED SPATIAL SURROGATES USING THE MIMS SPATIAL ALLOCATOR

    EPA Science Inventory

    The Multimedia Integrated Modeling System (MIMS) Spatial Allocator is open-source software for generating spatial surrogates for emissions modeling, changing the map projection of Shapefiles, and performing other types of spatial allocation that does not require the use of a comm...

  1. Discovering fuzzy spatial association rules

    NASA Astrophysics Data System (ADS)

    Kacar, Esen; Cicekli, Nihan K.

    2002-03-01

    Discovering interesting, implicit knowledge and general relationships in geographic information databases is very important to understand and use these spatial data. One of the methods for discovering this implicit knowledge is mining spatial association rules. A spatial association rule is a rule indicating certain association relationships among a set of spatial and possibly non-spatial predicates. In the mining process, data is organized in a hierarchical manner. However, in real-world applications it may not be possible to construct a crisp structure for this data, instead some fuzzy structures should be used. Fuzziness, i.e. partial belonging of an item to more than one sub-item in the hierarchy, could be applied to the data itself, and also to the hierarchy of spatial relations. This paper shows that, strong association rules can be mined from large spatial databases using fuzzy concept and spatial relation hierarchies.

  2. Different Dimensions of Spatial Ability.

    ERIC Educational Resources Information Center

    Eliot, John; Hauptman, Anna

    1981-01-01

    Indicates that spatial ability describes a variety of different behaviors and briefly reviews efforts to define intelligence factors and identify processes involved in solving tasks requiring spatial ability. (DS)

  3. Robust quantum spatial search

    NASA Astrophysics Data System (ADS)

    Tulsi, Avatar

    2016-07-01

    Quantum spatial search has been widely studied with most of the study focusing on quantum walk algorithms. We show that quantum walk algorithms are extremely sensitive to systematic errors. We present a recursive algorithm which offers significant robustness to certain systematic errors. To search N items, our recursive algorithm can tolerate errors of size O(1{/}√{ln N}) which is exponentially better than quantum walk algorithms for which tolerable error size is only O(ln N{/}√{N}). Also, our algorithm does not need any ancilla qubit. Thus our algorithm is much easier to implement experimentally compared to quantum walk algorithms.

  4. Spatial Manipulation with Microfluidics

    PubMed Central

    Lin, Benjamin; Levchenko, Andre

    2015-01-01

    Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well-controlled environments at cellular length scales. This review will highlight their utility for studying gradient sensing along with relevant applications to biology. PMID:25905100

  5. Spatial manipulation with microfluidics.

    PubMed

    Lin, Benjamin; Levchenko, Andre

    2015-01-01

    Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well-controlled environments at cellular length scales. This review will highlight their utility for studying gradient sensing along with relevant applications to biology. PMID:25905100

  6. Robust quantum spatial search

    NASA Astrophysics Data System (ADS)

    Tulsi, Avatar

    2016-04-01

    Quantum spatial search has been widely studied with most of the study focusing on quantum walk algorithms. We show that quantum walk algorithms are extremely sensitive to systematic errors. We present a recursive algorithm which offers significant robustness to certain systematic errors. To search N items, our recursive algorithm can tolerate errors of size O(1{/}√{N}) which is exponentially better than quantum walk algorithms for which tolerable error size is only O(ln N{/}√{N}) . Also, our algorithm does not need any ancilla qubit. Thus our algorithm is much easier to implement experimentally compared to quantum walk algorithms.

  7. Spatial Premise Integration in Hindi

    ERIC Educational Resources Information Center

    Mishra, Ramesh Kumar

    2007-01-01

    Spatial reasoning or locating objects in a spatial space has long been an important area of research in cognitive science because analyzing space categorically and finding objects is a fundamental act of mental perception and cognition. Premise integration in tasks of spatial reasoning has recently received considerable research attention. This is…

  8. Contour Integration across Spatial Frequency

    ERIC Educational Resources Information Center

    Persike, Malte; Olzak, Lynn A.; Meinhardt, Gunter

    2009-01-01

    Association field models of contour integration suggest that local band-pass elements are spatially grouped to global contours within limited bands of spatial frequency (Field, Hayes, & Hess, 1993). While results for local orientation and spacing variation render support for AF models, effects of spatial frequency (SF) have rarely been addressed.…

  9. Temporal and spatial variations in erosion rate in the Sikkim Himalaya as a function of climate and tectonics

    NASA Astrophysics Data System (ADS)

    Abrahami, Rachel; Huyghe, Pascale; van der Beek, Peter; Carcaillet, Julien

    2014-05-01

    The Tista River is a major tributary of the Brahmaputra drainage system (Eastern Himalaya). Its headwaters are located in the glaciated northernmost parts of the Sikkim and its catchment area amounts to more than 12,000 km2 including a depositional megafan (extending mostly in Bangladesh and West Bengal-India). The Tista has recently incised its megafan at the topographic front of the mountain range by about 30 meters. Neither the timing of deposition/incision of the megafan sediments, nor the erosion rates of the source areas as well as their potential relationships, have been investigated in detail. Comparing these data is essential to distinguish between a climatic and/or tectonic control of the evolution of the Sikkim Himalaya and piedmont. To constrain erosion rates in the hinterland at different temporal scales (respectively millenial and geological timescales), we report cosmogenic nuclide (10Be) and thermochronological (apatite fission-tracks) data on modern river sands. Results were mapped to evidence spatial variations of erosion/exhumation rates in the Tista catchment. Cosmogenic nuclides were also used to date the onset of incision of the megafan and relate it to potential changes in hinterland erosion. In addition, isotope geochemistry (ɛNd and 87Sr/86Sr) performed on modern river sands and Late-Quaternary megafan sediments allows characterizing the isotopic signature of the different source areas and constraining variations in provenance of the Tista megafan deposits through time in response to changing climatic conditions. Results show that the Tista fan deposits are mainly sourced from the High Himalayan Crystalline domain with excursions more influenced by the Lesser Himalaya domain. These data provide a new comprehensive view on modern erosion and long-term exhumation of the Sikkim Himalaya. This study of a "closed system" will help our knowledge and understanding of erosional processes and sediment fluxes in mountainous environments as a

  10. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.

  11. Spatial representation of soundscape

    NASA Astrophysics Data System (ADS)

    Boubezari, Mohammed; Bento Coelho, Jos-Luis

    2001-05-01

    For the last 30 years the concept of soundscape has been largely adopted in many scientific disciplines and by the urban experts for the benefit of a better comprehension and management of the sound environment. However, the spatial representation of the soundscape as a simple tool for the description, management or composition of sound environment is always needed. In this article a method is presented for the spatial sound representation with differentiated sources. The first results are shown. This method gives an account of the soundscape as close as possible to the way it can be perceived by the listener in each location. This method generates qualitative sound maps in a reduced urban scale, based on in situ measurements and on the implication of the measuring subject perception. The maps are sufficient enough to isolate many sound sources of the overall sound field. In this manner, sound quality refers to the sound attribute of a perceived object. It is neither an aesthetic judgment nor traditional psychoacoustics criteria. Concrete examples of application to squares in the city of Lisbon will be shown and discussed. The limits and the prospects of such a qualitative representation will also be presented and discussed.

  12. Spatial cyclotron damping

    NASA Technical Reports Server (NTRS)

    Olson, C. L.

    1970-01-01

    To examine spatial electron cyclotron damping in a uniform Vlasov plasma, it is noted that the plasma response to a steady-state transverse excitation consists of several terms (dielectric-pole, free-streaming, and branch-cut), but that the cyclotron-damped pole term is the dominant term for z l = c/w sub ce provided (w sub pe/w sub ce) squared (c/a) is much greater than 1. If the latter inequality does not hold, then the free-streaming and branch-cut terms persist well past z = c/w sub ce as w sub 1 approaches w sub ce, making experimental measurement of cyclotron damping essentially impossible. Considering only (w sub pe/w sub ce) squared (c/a) is much greater than 1, it is shown how collisional effects should be estimated and how a finite-width excitation usually has little effect on the cyclotron-damped part of the response. Criteria is established concerning collisional damping, measurable damping length sizes, and allowed uncertainty in the magnetic field Beta. Results of numerical calculations, showing the regions in the appropriate parameter spaces that meet these criteria, are presented. From these results, one can determine the feasibility of, or propose parameter values for, an experiment designed to measure spatial cyclotron damping. It is concluded that the electron temperature T sub e should be at least 1 ev., and preferably 10 ev. or higher, for a successful experiment.

  13. Spatial Models for Virtual Networks

    NASA Astrophysics Data System (ADS)

    Janssen, Jeannette

    This paper discusses the use of spatial graph models for the analysis of networks that do not have a direct spatial reality, such as web graphs, on-line social networks, or citation graphs. In a spatial graph model, nodes are embedded in a metric space, and link formation depends on the relative position of nodes in the space. It is argued that spatial models form a good basis for link mining: assuming a spatial model, the link information can be used to infer the spatial position of the nodes, and this information can then be used for clustering and recognition of node similarity. This paper gives a survey of spatial graph models, and discusses their suitability for link mining.

  14. Spatial organization of cooperation

    NASA Astrophysics Data System (ADS)

    Desprat, Nicolas

    The structure of the environment spatially confines bacteria inside groups where they live and evolve with their siblings. This population structure may not only select for individual abilities but also for group properties that would eventually enhance the fitness of the colony. In poor media, we might think that maximizing the contact with the environment would maximize the fitness of individual cells. However, we will show that the microcolony of P. aeruginosa adapts its morphogenesis to maximize cell-cell contacts rather than cell-environment interactions when iron becomes scarce in the environment. In this case, reducing the surface of exchange with the environment allows to limit the loss of secreted molecules required to efficiently fetch extracelllular iron at very low concentration.

  15. Spatial Standard Observer

    NASA Technical Reports Server (NTRS)

    Watson, Andrw B. (Inventor)

    2010-01-01

    The present invention relates to devices and methods for the measurement and/or for the specification of the perceptual intensity of a visual image. or the perceptual distance between a pair of images. Grayscale test and reference images are processed to produce test and reference luminance images. A luminance filter function is convolved with the reference luminance image to produce a local mean luminance reference image . Test and reference contrast images are produced from the local mean luminance reference image and the test and reference luminance images respectively, followed by application of a contrast sensitivity filter. The resulting images are combined according to mathematical prescriptions to produce a Just Noticeable Difference, JND value, indicative of a Spatial Standard Observer. SSO. Some embodiments include masking functions. window functions. special treatment for images lying on or near border and pre-processing of test images.

  16. Spatial cognition and navigation

    NASA Technical Reports Server (NTRS)

    Aretz, Anthony J.

    1989-01-01

    An experiment that provides data for the development of a cognitive model of pilot flight navigation is described. The experiment characterizes navigational awareness as the mental alignment of two frames of reference: (1) the ego centered reference frame that is established by the forward view out of the cockpit and (2) the world centered reference frame that is established by the aircraft's location on a map. The data support a model involving at least two components: (1) the perceptual encoding of the navigational landmarks and (2) the mental rotation of the map's world reference frame into alignment with the ego centered reference frame. The quantitative relationships of these two factors are provided as possible inputs for a computational model of spatial cognition during flight navigation.

  17. Spatial Standard Observer

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    2012-01-01

    The present invention relates to devices and methods for the measurement and/or for the specification of the perceptual intensity of a visual image, or the perceptual distance between a pair of images. Grayscale test and reference images are processed to produce test and reference luminance images. A luminance filter function is convolved with the reference luminance image to produce a local mean luminance reference image. Test and reference contrast images are produced from the local mean luminance reference image and the test and reference luminance images respectively, followed by application of a contrast sensitivity filter. The resulting images are combined according to mathematical prescriptions to produce a Just Noticeable Difference, JND value, indicative of a Spatial Standard Observer, SSO. Some embodiments include masking functions, window functions, special treatment for images lying on or near borders and pre-processing of test images.

  18. Spatial Pinning Control

    NASA Astrophysics Data System (ADS)

    Frasca, Mattia; Buscarino, Arturo; Rizzo, Alessandro; Fortuna, Luigi

    2012-05-01

    In this Letter, we introduce the concept of spatial pinning control for a network of mobile chaotic agents. In a planar space, N agents move as random walkers and interact according to a time-varying r-disk proximity graph. A control input is applied only to those agents which enter a given area, called control region. The control is effective in driving all the agents to a reference evolution and has better performance than pinning control on a fixed set of agents. We derive analytical conditions on the relative size of the control region and the agent density for the global convergence of the system to the reference evolution and study the system under different regimes inherited by the velocity.

  19. Land drainage system detection using IR and visual imagery taken from autonomous mapping airship and evaluation of physical and spatial parameters of suggested method

    NASA Astrophysics Data System (ADS)

    Koska, Bronislav; Křemen, Tomáš; Štroner, Martin; Pospíšil, Jiří; Jirka, Vladimír.

    2014-10-01

    An experimental approach to the land drainage system detection and its physical and spatial parameters evaluation by the form of pilot project is presented in this paper. The novelty of the approach is partly based on using of unique unmanned aerial vehicle - airship with some specific properties. The most important parameters are carrying capacity (15 kg) and long flight time (3 hours). A special instrumentation was installed for physical characteristic testing in the locality too. The most important is 30 meter high mast with 3 meter length bracket at the top with sensors recording absolute and comparative temperature, humidity and wind speed and direction in several heights of the mast. There were also installed several measuring units recording local condition in the area. Recorded data were compared with IR images taken from airship platform. The locality is situated around village Domanín in the Czech Republic and has size about 1.8 x 1.5 km. There was build a land drainage system during the 70-ties of the last century which is made from burnt ceramic blocks placed about 70 cm below surface. The project documentation of the land drainage system exists but real state surveying haveńt been never realized. The aim of the project was land surveying of land drainage system based on infrared, visual and its combination high resolution orthophotos (10 cm for VIS and 30 cm for IR) and spatial and physical parameters evaluation of the presented procedure. The orthophoto in VIS and IR spectrum and its combination seems to be suitable for the task.

  20. Quadratic spatial soliton interactions

    NASA Astrophysics Data System (ADS)

    Jankovic, Ladislav

    Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO 3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30

  1. ALGORITHM DEVELOPMENT FOR SPATIAL OPERATORS.

    USGS Publications Warehouse

    Claire, Robert W.

    1984-01-01

    An approach is given that develops spatial operators about the basic geometric elements common to spatial data structures. In this fashion, a single set of spatial operators may be accessed by any system that reduces its operands to such basic generic representations. Algorithms based on this premise have been formulated to perform operations such as separation, overlap, and intersection. Moreover, this generic approach is well suited for algorithms that exploit concurrent properties of spatial operators. The results may provide a framework for a geometry engine to support fundamental manipulations within a geographic information system.

  2. Spatial Query for Planetary Data

    NASA Technical Reports Server (NTRS)

    Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.

    2011-01-01

    Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.

  3. Spatial Aspects of Interspecific Competition

    NASA Technical Reports Server (NTRS)

    Durrett, Rick; Levin, Simon

    1998-01-01

    Using several variants of a stochastic spatial model introduced by Silvertown et al., we investigate the effect of spatial distribution of individuals on the outcome of competition. First, we prove rigorously that if one species has a competitive advantage over each of the others, then eventually it takes over all the sites in the system. Second, we examine tradeoffs between competition and dispersal distance in a two-species system. Third, we consider a cyclic competitive relationship between three types. In this case, a nonspatial treatment leads to densities that follow neutrally stable cycles or even unstable spiral solutions, while a spatial model yields a stationary distribution with an interesting spatial structure.

  4. Auditory Spatial Layout

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  5. One Spatial Map or Many? Spatial Coding of Connected Environments

    ERIC Educational Resources Information Center

    Han, Xue; Becker, Suzanna

    2014-01-01

    We investigated how humans encode large-scale spatial environments using a virtual taxi game. We hypothesized that if 2 connected neighborhoods are explored jointly, people will form a single integrated spatial representation of the town. However, if the neighborhoods are first learned separately and later observed to be connected, people will…

  6. Manakov spatial solitons

    NASA Astrophysics Data System (ADS)

    Kang, J. U.; Stegeman, G. I.; Aitchison, J. S.; Akhmediev, N.

    1996-12-01

    The Manakov soliton is a two-component soliton that was first considered by Manakov in the early 1970s.1 Based on the work of Zakharov and Shabat,2 Manakov found that the coupled nonlinear Schrodinger (CNSE) equations with special choice of the coefficients in front of nonlinear terms can be solved exactly. This system is integrable and solitons have therefore a number of special properties which might be useful in practice. In particular, for same total power, the soliton of a single nonlinear Schrodinger equation and the Manakov soliton behave similarly. There are certain conditions for the integrability of the CNSE. Namely, for the coupled set of equations with cubic nonlinearity, the ratio between the self-phase modulation (SPM) to the cross-phase modulation coefficients has to be equal to unity, and the SPM coefficients need to be equal for the two polarizations. Moreover, the energy exchange terms or four-wave mixing (FWM) terms must be zero. Physically, the Manakov soliton is a mutually trapped state of two orthogonally polarized beams where each component of the soliton experiences exactly the same index potential which is proportional to the total intensity of the beam. There are no crystal symmetries that a priori lead to a SPM/XPM ratio of unity. Thus, the Manakov soliton has not been observed experimentally prior to the work we reported.3 Based on our previous work, we found that in AlGaAs, for photon energies just below half the band gap, the conditions for integrability can be satisfied. This led to the first experimental observation of spatial Manakov solitons.

  7. Bayesian Integration of Spatial Information

    ERIC Educational Resources Information Center

    Cheng, Ken; Shettleworth, Sara J.; Huttenlocher, Janellen; Rieser, John J.

    2007-01-01

    Spatial judgments and actions are often based on multiple cues. The authors review a multitude of phenomena on the integration of spatial cues in diverse species to consider how nearly optimally animals combine the cues. Under the banner of Bayesian perception, cues are sometimes combined and weighted in a near optimal fashion. In other instances…

  8. The Space in Spatial Language

    ERIC Educational Resources Information Center

    Carlson, Laura A.; Van Deman, Shannon R.

    2004-01-01

    Projective spatial terms such as ''below'' specify the location of one object by indicating its spatial relation with respect to a reference object. These relations are defined via a reference frame that consists of a number of parameters (orientation, direction, origin, and distance) whose settings configure the space surrounding the reference…

  9. Mechanisms for Human Spatial Competence

    NASA Astrophysics Data System (ADS)

    Gunzelmann, Glenn; Lyon, Don R.

    Research spanning decades has generated a long list of phenomena associated with human spatial information processing. Additionally, a number of theories have been proposed about the representation, organization and processing of spatial information by humans. This paper presents a broad account of human spatial competence, integrated with the ACT-R cognitive architecture. Using a cognitive architecture grounds the research in a validated theory of human cognition, enhancing the plausibility of the overall account. This work posits a close link of aspects of spatial information processing to vision and motor planning, and integrates theoretical perspectives that have been proposed over the history of research in this area. In addition, the account is supported by evidence from neuropsychological investigations of human spatial ability. The mechanisms provide a means of accounting for a broad range of phenomena described in the experimental literature.

  10. Marine spatial planning in practice

    NASA Astrophysics Data System (ADS)

    Collie, Jeremy S.; (Vic) Adamowicz, W. L.; Beck, Michael W.; Craig, Bethany; Essington, Timothy E.; Fluharty, David; Rice, Jake; Sanchirico, James N.

    2013-01-01

    Multiple competing uses of continental-shelf environments have led to a proliferation of marine spatial planning initiatives, together with expert guidance on marine spatial planning. This study provides an empirical review of marine spatial plans, their attributes, and the extent to which the expert guidance is actually being followed. We performed a structured review of 16 existing marine spatial plans and created an idealized marine spatial plan from the steps included in recent expert papers. A cluster analysis of the yes/no answers to 28 questions was used to ordinate the 16 marine spatial plans and to compare them with the idealized plan. All the plans that have been implemented have a high-level government mandate and the authority to implement spatial planning vested in existing institutions. Almost all the plans used data with clear criteria for data inclusion. Stakeholders were included in almost all the plans; they did not participate in all stages of the planning process but their roles were generally clearly defined. Decision-support tools were applied inconsistently across plans and were seldom used dynamically over time. Most spatial planning processes did not select specific outcomes, such as preferred use scenarios. Success is defined inconsistently across plans; in half the cases there are no metrics of success with reference benchmarks. Although monitoring is included in the majority of plans, only in some cases do monitoring results feed back into management decisions. The process of marine spatial planning had advanced in that some of the more recent plans were developed more quickly and contain more desirable attributes than earlier plans. Even so, existing marine spatial plans are heterogeneous—there are essential ingredients, but no single recipe for success.

  11. Six Myths About Spatial Thinking

    NASA Astrophysics Data System (ADS)

    Newcombe, Nora S.; Stieff, Mike

    2012-04-01

    Visualizations are an increasingly important part of scientific education and discovery. However, users often do not gain knowledge from them in a complete or efficient way. This article aims to direct research on visualizations in science education in productive directions by reviewing the evidence for widespread assumptions that learning styles, sex differences, developmental stages, and spatial language determine the impact of visualizations on science learning. First, we examine the assumption that people differ in their verbal versus visual learning style. Due to the lack of rigorous evaluation, there is no current support for this distinction. Future research should distinguish between two different kinds of visual learning style. Second, we consider the belief that there are large and intractable sex differences in spatial ability resultant from immutable biological reasons. Although there are some spatial sex differences (in some types of spatial tests although not all), there is actually only very mixed support for biological causation. Most important, there is conclusive evidence that spatial skills can be improved through training and education. Third, we explore educators' use of Piaget's ideas about spatial development to draw conclusions about 'developmental appropriateness'. However, recent research on spatial development has focused on identifying sequences that begin with early starting points of skill, and spatial education is possible in some form at all ages. Fourth, although spatial language does not determine spatial thought, it does frame attention in a way that can have impact on learning and understanding. We examine the empirical support for each assumption and its relevance to future research on visualizations in science education.

  12. The emergence of spatial cyberinfrastructure.

    PubMed

    Wright, Dawn J; Wang, Shaowen

    2011-04-01

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge. PMID:21467227

  13. The emergence of spatial cyberinfrastructure

    PubMed Central

    Wright, Dawn J.; Wang, Shaowen

    2011-01-01

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge. PMID:21467227

  14. Spatial memory in foraging games.

    PubMed

    Kerster, Bryan E; Rhodes, Theo; Kello, Christopher T

    2016-03-01

    Foraging and foraging-like processes are found in spatial navigation, memory, visual search, and many other search functions in human cognition and behavior. Foraging is commonly theorized using either random or correlated movements based on Lévy walks, or a series of decisions to remain or leave proximal areas known as "patches". Neither class of model makes use of spatial memory, but search performance may be enhanced when information about searched and unsearched locations is encoded. A video game was developed to test the role of human spatial memory in a canonical foraging task. Analyses of search trajectories from over 2000 human players yielded evidence that foraging movements were inherently clustered, and that clustering was facilitated by spatial memory cues and influenced by memory for spatial locations of targets found. A simple foraging model is presented in which spatial memory is used to integrate aspects of Lévy-based and patch-based foraging theories to perform a kind of area-restricted search, and thereby enhance performance as search unfolds. Using only two free parameters, the model accounts for a variety of findings that individually support competing theories, but together they argue for the integration of spatial memory into theories of foraging. PMID:26752603

  15. Mathematical Modeling of spatial disease variables by Spatial Fuzzy Logic for Spatial Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Platz, M.; Rapp, J.; Groessler, M.; Niehaus, E.; Babu, A.; Soman, B.

    2014-11-01

    A Spatial Decision Support System (SDSS) provides support for decision makers and should not be viewed as replacing human intelligence with machines. Therefore it is reasonable that decision makers are able to use a feature to analyze the provided spatial decision support in detail to crosscheck the digital support of the SDSS with their own expertise. Spatial decision support is based on risk and resource maps in a Geographic Information System (GIS) with relevant layers e.g. environmental, health and socio-economic data. Spatial fuzzy logic allows the representation of spatial properties with a value of truth in the range between 0 and 1. Decision makers can refer to the visualization of the spatial truth of single risk variables of a disease. Spatial fuzzy logic rules that support the allocation of limited resources according to risk can be evaluated with measure theory on topological spaces, which allows to visualize the applicability of this rules as well in a map. Our paper is based on the concept of a spatial fuzzy logic on topological spaces that contributes to the development of an adaptive Early Warning And Response System (EWARS) providing decision support for the current or future spatial distribution of a disease. It supports the decision maker in testing interventions based on available resources and apply risk mitigation strategies and provide guidance tailored to the geo-location of the user via mobile devices. The software component of the system would be based on open source software and the software developed during this project will also be in the open source domain, so that an open community can build on the results and tailor further work to regional or international requirements and constraints. A freely available EWARS Spatial Fuzzy Logic Demo was developed wich enables a user to visualize risk and resource maps based on individual data in several data formats.

  16. Spatial Data Management System (SDMS)

    NASA Technical Reports Server (NTRS)

    Hutchison, Mark W.

    1994-01-01

    The Spatial Data Management System (SDMS) is a testbed for retrieval and display of spatially related material. SDMS permits the linkage of large graphical display objects with detail displays and explanations of its smaller components. SDMS combines UNIX workstations, MIT's X Window system, TCP/IP and WAIS information retrieval technology to prototype a means of associating aggregate data linked via spatial orientation. SDMS capitalizes upon and extends previous accomplishments of the Software Technology Branch in the area of Virtual Reality and Automated Library Systems.

  17. Routing Algorithm Exploits Spatial Relations

    NASA Technical Reports Server (NTRS)

    Okino, Clayton; Jennings, Esther

    2004-01-01

    A recently developed routing algorithm for broadcasting in an ad hoc wireless communication network takes account of, and exploits, the spatial relationships among the locations of nodes, in addition to transmission power levels and distances between the nodes. In contrast, most prior algorithms for discovering routes through ad hoc networks rely heavily on transmission power levels and utilize limited graph-topology techniques that do not involve consideration of the aforesaid spatial relationships. The present algorithm extracts the relevant spatial-relationship information by use of a construct denoted the relative-neighborhood graph (RNG).

  18. Spatial filtering through elementary examples

    NASA Astrophysics Data System (ADS)

    Gluskin, Emanuel

    2004-05-01

    The spatial filtering features of resistive grids have become important in microelectronics in the last two decades, in particular because of the current interest in the design of 'vision chips.' However, these features of the grids are unexpected for many who received a basic physics or electrical engineering education. The author's opinion is that the concept of spatial filtering is important in itself, and should be introduced and separately considered at an early educational stage. We thus discuss some simple examples, of both continuous and discrete systems in which spatial filtering may be observed, using only basic physics concepts.

  19. Spatial degradation of satellite data

    NASA Technical Reports Server (NTRS)

    Justice, C. O.; Markham, B. L.; Townshend, J. R. G.; Kennard, R. L.

    1989-01-01

    Consideration is given to a technique for spatially degrading high-resolution satellite data to produce comparable data sets over a range of coarser resolutions. Landsat MSS data is used to produce seven spatial resolution data sets by applying a spatial filter designed to simulate sensor response. Also, spatial degradation of coarse resolution data to provide data compression for the production of global-scale data sets is examined. NOAA AVHRR Global Area Coverage data is compared to other sampling procedures. It is found that sampling procedures that incorporate averaging result in decreased variance, while sampling procedures adopting single-value selection have higher variances and produce data values comparable with those from the original data.

  20. Evidence accumulation for spatial reasoning

    NASA Technical Reports Server (NTRS)

    Matsuyama, T.; Hwang, V. S. S.; Davis, L. S.

    1984-01-01

    The evidence accumulation proces of an image understanding system is described enabling the system to perform top-down(goal-oriented) picture processing as well as bottom-up verification of consistent spatial relations among objects.

  1. Thermodynamic Model of Spatial Memory

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Allen, P.

    1998-03-01

    We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.

  2. The Detection of Clusters with Spatial Heterogeneity

    ERIC Educational Resources Information Center

    Zhang, Zuoyi

    2011-01-01

    This thesis consists of two parts. In Chapter 2, we focus on the spatial scan statistics with overdispersion and Chapter 3 is devoted to the randomized permutation test for identifying local patterns of spatial association. The spatial scan statistic has been widely used in spatial disease surveillance and spatial cluster detection. To apply it, a…

  3. Spatial distribution and seasonal variability of chlorophyll-a concentration in the Azov Sea turbid waters by means of remote sensing and continuous fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Saprygin, V. V.

    2011-12-01

    The goal of this study was to apply continuous fluorometric and remote estimation of chlorophyll-a concentration (Cchl) techniques to complex turbid waters of Azov Sea and explore Cchl temporal variation and spatial pattern. Azov Sea is the shallowest sea in the world with maximum depth below 15 m. Its maximum salinity is about 14%; total suspended solids and chlorophyll-a concentrations reach 120 [tex]g m^{-3}[/tex] and 100 [tex]mg m^{-3}[/tex] respectively in Taganrog Bay, daily production varies up to 3.5 [tex]gC_{org} m^{-3}[/tex]. Chlorophyll-a concentrations were measured in 2008-2010 year-round spectrophotometrically, 446 water samples were taken to calibrate fluorometerical and remote sensing data. The highest recorded concentration was 149.3, the lowest - 0.3 [tex]mg m^{-3}[/tex]. Continuous-flow fluorometer was applied in the course of 3 expeditions to Taganrog Bay to measure chlorophyll-a fluorescence (Fchl) each 30 meters along the ship path. Two-cuvette fluorometer was used to discount the influence of dissolved organic matter. Fchl measurements were calibrated and Cchl profiles derieved to estimate Cchl spatial heterogeneity in close scale. Fchl measurements were also made during moorings each 6 seconds to estimate temporal Cchl variability. Recently published algorithm based on reflectance in the red and the near-infrared (NIR) spectral regions was applied to MERIS data for the remote estimation of Cchl. Taking in account fluorometric Cchl spatial heterogeneity estimation, the algorithm for culling the outliers in Cchl fields derived from satellite data was developed. 74 images were processed to Cchl maps and then averaged monthly. Consequently, Cchl spatial distribution and seasonal variability were studied. Spectrophotometric, flourumetric measurements and values obtained by NIR-red algorithm showed strong correlation in turbid Case II waters of Azov Sea. Fluorometric and remote measurements showed high Cchl variations in short and long terms

  4. Spatial Information of Sound Fields

    NASA Astrophysics Data System (ADS)

    Oikawa, Yasuhiro

    The nature of a sound field can only be fully understood when we have spatial information about it. Being able to visualize a sound field is a very useful way of understanding it. This section describes how to estimate many direction of arrivals (DOAs) by using two microphones, how to get spatial information by using four closely located microphones, and how to visualize and measure sound fields by using a laser Doppler vibrometer (LVB).

  5. Dealing with spatial heterogeneity

    NASA Astrophysics Data System (ADS)

    Marsily, Gh.; Delay, F.; Gonçalvès, J.; Renard, Ph.; Teles, V.; Violette, S.

    2005-03-01

    Heterogeneity can be dealt with by defining homogeneous equivalent properties, known as averaging, or by trying to describe the spatial variability of the rock properties from geologic observations and local measurements. The techniques available for these descriptions are mostly continuous Geostatistical models, or discontinuous facies models such as the Boolean, Indicator or Gaussian-Threshold models and the Markov chain model. These facies models are better suited to treating issues of rock strata connectivity, e.g. buried high permeability channels or low permeability barriers, which greatly affect flow and, above all, transport in aquifers. Genetic models provide new ways to incorporate more geology into the facies description, an approach that has been well developed in the oil industry, but not enough in hydrogeology. The conclusion is that future work should be focused on improving the facies models, comparing them, and designing new in situ testing procedures (including geophysics) that would help identify the facies geometry and properties. A world-wide catalog of aquifer facies geometry and properties, which could combine site genesis and description with methods used to assess the system, would be of great value for practical applications. On peut aborder le problème de l'hétérogénéité en s'efforçant de définir une perméabilité équivalente homogène, par prise de moyenne, ou au contraire en décrivant la variation dans l'espace des propriétés des roches à partir des observations géologiques et des mesures locales. Les techniques disponibles pour une telle description sont soit continues, comme l'approche Géostatistique, soit discontinues, comme les modèles de faciès, Booléens, ou bien par Indicatrices ou Gaussiennes Seuillées, ou enfin Markoviens. Ces modèles de faciès sont mieux capables de prendre en compte la connectivité des strates géologiques, telles que les chenaux enfouis à forte perméabilité, ou au contraire les faci

  6. Dealing with spatial heterogeneity

    NASA Astrophysics Data System (ADS)

    Marsily, Gh.; Delay, F.; Gonçalvès, J.; Renard, Ph.; Teles, V.; Violette, S.

    2005-03-01

    Heterogeneity can be dealt with by defining homogeneous equivalent properties, known as averaging, or by trying to describe the spatial variability of the rock properties from geologic observations and local measurements. The techniques available for these descriptions are mostly continuous Geostatistical models, or discontinuous facies models such as the Boolean, Indicator or Gaussian-Threshold models and the Markov chain model. These facies models are better suited to treating issues of rock strata connectivity, e.g. buried high permeability channels or low permeability barriers, which greatly affect flow and, above all, transport in aquifers. Genetic models provide new ways to incorporate more geology into the facies description, an approach that has been well developed in the oil industry, but not enough in hydrogeology. The conclusion is that future work should be focused on improving the facies models, comparing them, and designing new in situ testing procedures (including geophysics) that would help identify the facies geometry and properties. A world-wide catalog of aquifer facies geometry and properties, which could combine site genesis and description with methods used to assess the system, would be of great value for practical applications. On peut aborder le problème de l'hétérogénéité en s'efforçant de définir une perméabilité équivalente homogène, par prise de moyenne, ou au contraire en décrivant la variation dans l'espace des propriétés des roches à partir des observations géologiques et des mesures locales. Les techniques disponibles pour une telle description sont soit continues, comme l'approche Géostatistique, soit discontinues, comme les modèles de faciès, Booléens, ou bien par Indicatrices ou Gaussiennes Seuillées, ou enfin Markoviens. Ces modèles de faciès sont mieux capables de prendre en compte la connectivité des strates géologiques, telles que les chenaux enfouis à forte perméabilité, ou au contraire les faci

  7. Virtual collaboration: effect of spatial configuration on spatial statements production.

    PubMed

    Pouliquen-Lardy, Lauriane; Mars, Franck; Guillaume, François; Milleville-Pennel, Isabelle

    2015-09-01

    When guiding a remote collaborator in a virtual environment, people often take an addressee-perspective, which may have a high cognitive cost. In order to improve collaborative virtual environments, a better understanding of how operators share spatial information is needed. This work aimed to study the cognitive workload linked to spatial statements production in situations in which the relative positions of speaker, addressee and target were varied. Twenty-two participants were asked to give--in one go--instructions to a virtual collaborator on how to find a target in a 3D environment. The scene showed an avatar in the center of eight tables. Sixty-four configurations of avatar orientation (eight possibilities) and target location (on the eight tables) were tested. We measured the delay in starting the instruction once the target appeared, the instruction duration and the subjective evaluation of mental demand. Each instruction was classified according to the spatial reference frame used. The delay was influenced by the processing of spatial information in ego-centered and addressee-centered reference frames. All subsequent measures were determined by mental transformations in addressee-centered coordinates. One condition in particular, when the target was situated diagonally behind the addressee, gave rise to a higher mental demand for the speaker, which points to the investment made by the speaker in achieving the least collaborative effort. Further work should seek to develop efficient tools to facilitate spatial communication in situations that induce the most mental workload. PMID:26209301

  8. Spatial Statistical Data Fusion (SSDF)

    NASA Technical Reports Server (NTRS)

    Braverman, Amy J.; Nguyen, Hai M.; Cressie, Noel

    2013-01-01

    As remote sensing for scientific purposes has transitioned from an experimental technology to an operational one, the selection of instruments has become more coordinated, so that the scientific community can exploit complementary measurements. However, tech nological and scientific heterogeneity across devices means that the statistical characteristics of the data they collect are different. The challenge addressed here is how to combine heterogeneous remote sensing data sets in a way that yields optimal statistical estimates of the underlying geophysical field, and provides rigorous uncertainty measures for those estimates. Different remote sensing data sets may have different spatial resolutions, different measurement error biases and variances, and other disparate characteristics. A state-of-the-art spatial statistical model was used to relate the true, but not directly observed, geophysical field to noisy, spatial aggregates observed by remote sensing instruments. The spatial covariances of the true field and the covariances of the true field with the observations were modeled. The observations are spatial averages of the true field values, over pixels, with different measurement noise superimposed. A kriging framework is used to infer optimal (minimum mean squared error and unbiased) estimates of the true field at point locations from pixel-level, noisy observations. A key feature of the spatial statistical model is the spatial mixed effects model that underlies it. The approach models the spatial covariance function of the underlying field using linear combinations of basis functions of fixed size. Approaches based on kriging require the inversion of very large spatial covariance matrices, and this is usually done by making simplifying assumptions about spatial covariance structure that simply do not hold for geophysical variables. In contrast, this method does not require these assumptions, and is also computationally much faster. This method is

  9. Design and implementation of spatial knowledge grid for integrated spatial analysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiangnan; Guan, Li; Wang, Ping

    2006-10-01

    Supported by spatial information grid(SIG), the spatial knowledge grid (SKG) for integrated spatial analysis utilizes the middleware technology in constructing the spatial information grid computation environment and spatial information service system, develops spatial entity oriented spatial data organization technology, carries out the profound computation of the spatial structure and spatial process pattern on the basis of Grid GIS infrastructure, spatial data grid and spatial information grid (specialized definition). At the same time, it realizes the complex spatial pattern expression and the spatial function process simulation by taking the spatial intelligent agent as the core to establish space initiative computation. Moreover through the establishment of virtual geographical environment with man-machine interactivity and blending, complex spatial modeling, network cooperation work and spatial community decision knowledge driven are achieved. The framework of SKG is discussed systematically in this paper. Its implement flow and the key technology with examples of overlay analysis are proposed as well.

  10. Spatial and Spatiotemporal Data Mining: Recent Advances

    SciTech Connect

    Shekhar, Shashi; Vatsavai, Raju; Celik, Mete

    2008-01-01

    Explosive growth in geospatial data and the emergence of new spatial technologies emphasize the need for automated discovery of spatial knowledge. Spatial data mining is the process of discovering interesting and previously unknown, but potentially useful patterns from large spatial databases. The complexity of spatial data and intrinsic spatial relationships limits the usefulness of conventional data mining techniques for extracting spatial patterns. In this chapter we explore the emerging field of spatial data mining, focusing on four major topics: prediction and classification, outlier detection, co-location mining, and clustering. Spatiotemporal data mining is also briefly discussed.

  11. Vestibular modulation of spatial perception.

    PubMed

    Ferrè, Elisa R; Longo, Matthew R; Fiori, Federico; Haggard, Patrick

    2013-01-01

    Vestibular inputs make a key contribution to the sense of one's own spatial location. While the effects of vestibular stimulation on visuo-spatial processing in neurological patients have been extensively described, the normal contribution of vestibular inputs to spatial perception remains unclear. To address this issue, we used a line bisection task to investigate the effects of galvanic vestibular stimulation (GVS) on spatial perception, and on the transition between near and far space. Brief left-anodal and right-cathodal GVS or right-anodal and left-cathodal GVS were delivered. A sham stimulation condition was also included. Participants bisected lines of different lengths at six distances from the body using a laser pointer. Consistent with previous results, our data showed an overall shift in the bisection bias from left to right as viewing distance increased. This pattern suggests leftward bias in near space, and rightward bias in far space. GVS induced strong polarity dependent effects in spatial perception, broadly consistent with those previously reported in patients: left-anodal and right-cathodal GVS induced a leftward bisection bias, while right-anodal and left-cathodal GVS reversed this effect, and produced bisection bias toward the right side of the space. Interestingly, the effects of GVS were comparable in near and far space. We speculate that vestibular-induced biases in space perception may optimize gathering of information from different parts of the environment. PMID:24133440

  12. Spatial Vision in Bombus terrestris

    PubMed Central

    Chakravarthi, Aravin; Baird, Emily; Dacke, Marie; Kelber, Almut

    2016-01-01

    Bombus terrestris is one of the most commonly used insect models to investigate visually guided behavior and spatial vision in particular. Two fundamental measures of spatial vision are spatial resolution and contrast sensitivity. In this study, we report the threshold of spatial resolution in B. terrestris and characterize the contrast sensitivity function of the bumblebee visual system for a dual choice discrimination task. We trained bumblebees in a Y-maze experimental set-up to associate a vertical sinusoidal grating with a sucrose reward, and a horizontal grating with absence of a reward. Using a logistic psychometric function, we estimated a resolution threshold of 0.21 cycles deg−1 of visual angle. This resolution is in the same range but slightly lower than that found in honeybees (Apis mellifera and A. cerana) and another bumblebee species (B. impatiens). We also found that the contrast sensitivity of B. terrestris was 1.57 for the spatial frequency 0.090 cycles deg−1 and 1.26 for 0.18 cycles deg−1. PMID:26912998

  13. Spatialization of Time in Mian

    PubMed Central

    Fedden, Sebastian; Boroditsky, Lera

    2012-01-01

    We examine representations of time among the Mianmin of Papua New Guinea. We begin by describing the patterns of spatial and temporal reference in Mian. Mian uses a system of spatial terms that derive from the orientation and direction of the Hak and Sek rivers and the surrounding landscape. We then report results from a temporal arrangement task administered to a group of Mian speakers. The results reveal evidence for a variety of temporal representations. Some participants arranged time with respect to their bodies (left to right or toward the body). Others arranged time as laid out on the landscape, roughly along the east/west axis (either east to west or west to east). This absolute pattern is consistent both with the axis of the motion of the sun and the orientation of the two rivers, which provides the basis for spatial reference in the Mian language. The results also suggest an increase in left to right temporal representations with increasing years of formal education (and the reverse pattern for absolute spatial representations for time). These results extend previous work on spatial representations for time to a new geographical region, physical environment, and linguistic and cultural system. PMID:23181037

  14. Spatial Vision in Bombus terrestris.

    PubMed

    Chakravarthi, Aravin; Baird, Emily; Dacke, Marie; Kelber, Almut

    2016-01-01

    Bombus terrestris is one of the most commonly used insect models to investigate visually guided behavior and spatial vision in particular. Two fundamental measures of spatial vision are spatial resolution and contrast sensitivity. In this study, we report the threshold of spatial resolution in B. terrestris and characterize the contrast sensitivity function of the bumblebee visual system for a dual choice discrimination task. We trained bumblebees in a Y-maze experimental set-up to associate a vertical sinusoidal grating with a sucrose reward, and a horizontal grating with absence of a reward. Using a logistic psychometric function, we estimated a resolution threshold of 0.21 cycles deg(-1) of visual angle. This resolution is in the same range but slightly lower than that found in honeybees (Apis mellifera and A. cerana) and another bumblebee species (B. impatiens). We also found that the contrast sensitivity of B. terrestris was 1.57 for the spatial frequency 0.090 cycles deg(-1) and 1.26 for 0.18 cycles deg(-1). PMID:26912998

  15. Spatial filtering with photonic crystals

    SciTech Connect

    Maigyte, Lina; Staliunas, Kestutis

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

  16. Spatial memory: are lizards really deficient?

    PubMed Central

    LaDage, L. D.; Roth, T. C.; Cerjanic, A. M.; Sinervo, B.; Pravosudov, V. V.

    2012-01-01

    In many animals, behaviours such as territoriality, mate guarding, navigation and food acquisition rely heavily on spatial memory abilities; this has been demonstrated in diverse taxa, from invertebrates to mammals. However, spatial memory ability in squamate reptiles has been seen as possible, at best, or non-existent, at worst. Of the few previous studies testing for spatial memory in squamates, some have found no evidence of spatial memory while two studies have found evidence of spatial memory in snakes, but have been criticized based on methodological issues. We used the Barnes maze, a common paradigm to test spatial memory abilities in mammals, to test for spatial memory abilities in the side-blotched lizard (Uta stansburiana). We found the existence of spatial memory in this species using this spatial task. Thus, our study supports the existence of spatial memory in this squamate reptile species and seeks to parsimoniously align this species with the diverse taxa that demonstrate spatial memory ability. PMID:22933038

  17. Spatial processes in linear ordering.

    PubMed

    von Hecker, Ulrich; Klauer, Karl Christoph; Wolf, Lukas; Fazilat-Pour, Masoud

    2016-07-01

    Memory performance in linear order reasoning tasks (A > B, B > C, C > D, etc.) shows quicker, and more accurate responses to queries on wider (AD) than narrower (AB) pairs on a hypothetical linear mental model (A - B - C - D). While indicative of an analogue representation, research so far did not provide positive evidence for spatial processes in the construction of such models. In a series of 7 experiments we report such evidence. Participants respond quicker when the dominant element in a pair is presented on the left (or top) rather than on the right (or bottom). The left-anchoring tendency reverses in a sample with Farsi background (reading/writing from right to left). Alternative explanations and confounds are tested. A theoretical model is proposed that integrates basic assumptions about acquired reading/writing habits as a scaffold for spatial simulation, and primacy/dominance representation within such spatial simulations. (PsycINFO Database Record PMID:26641448

  18. Spatial methods for nonstationary fields

    NASA Astrophysics Data System (ADS)

    Nychka, D. W.

    2012-12-01

    Kriging is a non-parametric regression method used in geostatistics for estimating curves and surfaces and forms the core of most statistical methods for spatial data. In climate science these methods are very useful for estimating how climate varies over a geographic region when the observational data is sparse or the computer model runs are limited. A statistical challenge is to implement spatial methods for large sample sizes and also the heterogenity in the physical fields. Both common features of many geophysical problems. Equally important is to provide companion measures of uncertainty so that the estimated surfaces can be compared and interpreted in an objective way. Here we present a new statistical method that can represent nonstationary structure in a field and also scale to large numbers of spatial locations. A practical example is also presented for a subset of the North American Regional Climate Change and Assessment Program model data.

  19. How Attention Affects Spatial Resolution

    PubMed Central

    Carrasco, Marisa; Barbot, Antoine

    2015-01-01

    We summarize and discuss a series of psychophysical studies on the effects of spatial covert attention on spatial resolution, our ability to discriminate fine patterns. Heightened resolution is beneficial in most, but not all, visual tasks. We show how endogenous attention (voluntary, goal driven) and exogenous attention (involuntary, stimulus driven) affect performance on a variety of tasks mediated by spatial resolution, such as visual search, crowding, acuity, and texture segmentation. Exogenous attention is an automatic mechanism that increases resolution regardless of whether it helps or hinders performance. In contrast, endogenous attention flexibly adjusts resolution to optimize performance according to task demands. We illustrate how psychophysical studies can reveal the underlying mechanisms of these effects and allow us to draw linking hypotheses with known neurophysiological effects of attention. PMID:25948640

  20. Spatial habit competes with effort to determine human spatial organization.

    PubMed

    Zhu, Mona J H; Risko, Evan F

    2016-07-01

    Despite the important role that the physical environment plays in shaping human cognition, few studies have endeavoured to experimentally examine the principles underlying how individuals organize objects in their space. The current investigation examines the idea that humans organize objects in their space in order to minimize effort or maximize performance. We devised a novel spatial organization task whereby participants freely arranged objects in the context of a writing task. Critically, we manipulated the frequency with which each object was used and assessed participants' spontaneous placements. In the first set of experiments, participants showed a counterintuitive tendency to match pen pairs with their initial placements rather than placing pens in the less effortful configuration. However, in Experiment 2, where the difference in physical effort between different locations was increased, participants were more likely to reorganize the pens into the less effortful configuration. We begin developing a theory of human spatial organization wherein the observed initial bias may represent a kind of spatial habit formation that competes with effort/performance considerations to shape future spatial organization. PMID:26912422

  1. Constructing Spatial Meaning: Spatial Affordances in Museum Design

    ERIC Educational Resources Information Center

    Wineman, Jean D.; Peponis, John

    2010-01-01

    Informal education in museums is structured through movement in space. This article summarizes a range of research that examines the role of spatial layout in shaping the ways in which visitors explore, engage, and understand museums and museum exhibitions. It is demonstrated that behavior patterns are systematically linked to spatial…

  2. From plane to spatial angles: PTB's spatial angle autocollimator calibrator

    NASA Astrophysics Data System (ADS)

    Kranz, Oliver; Geckeler, Ralf D.; Just, Andreas; Krause, Michael; Osten, Wolfgang

    2015-10-01

    Electronic autocollimators are utilised versatilely for non-contact angle measurements in applications like straightness measurements and profilometry. Yet, no calibration of the angle measurement of an autocollimator has been available when both its measurement axes are engaged. Additionally, autocollimators have been calibrated at fixed distances to the reflector, although its distance may vary during the use of an autocollimator. To extend the calibration capabilities of the Physikalisch-Technische Bundesanstalt (PTB) regarding spatial angles and variable distances, a novel calibration device has been set up: the spatial angle autocollimator calibrator (SAAC). In this paper, its concept and its mechanical realisation will be presented. The focus will be on the system's mathematical modelling and its application in spatial angle calibrations. The model considers the misalignments of the SAAC's components, including the non-orthogonalities of the measurement axes of the autocollimators and of the rotational axes of the tilting unit. It allows us to derive specific measurement procedures to determine the misalignments in situ and, in turn, to correct the measurements of the autocollimators. Finally, the realisation and the results of a traceable spatial angle calibration of an autocollimator will be presented. This is the first calibration of this type worldwide.

  3. Spatial analysis of news sources.

    PubMed

    Mehler, Andrew; Bao, Yunfan; Li, Xin; Wang, Yue; Skiena, Steven

    2006-01-01

    People in different places talk about different things. This interest distribution is reflected by the newspaper articles circulated in a particular area. We use data from our large-scale newspaper analysis system (Lydia) to make entity datamaps, a spatial visualization of the interest in a given named entity. Our goal is to identify entities which display regional biases. We develop a model of estimating the frequency of reference of an entity in any given city from the reference frequency centered in surrounding cities, and techniques for evaluating the spatial significance of this distribution. PMID:17080798

  4. Spatial kinetics in fast reactors

    NASA Astrophysics Data System (ADS)

    Seleznev, E. F.; Belov, A. A.; Panova, I. S.; Matvienko, I. P.; Zhukov, A. M.

    2013-12-01

    The analysis of the solution to the spatial nonstationary equation of neutron transport is presented by the example of a fast reactor. Experiments in spatial kinetics conducted recently at the complex of critical assemblies (fast physical stand) and computations of their data using the TIMER code (for solving the nonstationary equation in multidimensional diffusion approximation for direct and inverse problems of reactor kinetics) have shown that kinetics of fast reactors substantially differs from kinetics of thermal reactors. The difference is connected with influence of the delayed neutron spectrum on rates of the process in a fast reactor.

  5. A comparison of levels of bat flight and foraging activity at 10 meters and 30 meters above drained Carolina bays and reference bays, prior to bay restoration.

    SciTech Connect

    Menzel, Michael, A.; Ford, W., Mark; Edwards, John, W.; Kilgo, John, C.

    2001-08-01

    A technical report of a monitoring study of bat flight and foraging activity above drained and undrained Carolina bays at the Savannah River Site (SRS), located near Aiken, South Carolina. In order to determine if the vegetational community type or structure of the forest community surrounding the bays affected bat activity levels, bat activity was monitored over 3 drained and 3 undrained reference bays surrounded by pine/mixed hardwood communities and 3 drained and 3 undrained reference bays surrounded by pine monocultures. Bat activity was monitored using time expansion bat detectors. Calls were recorded to Sony Professional tape recorders (Sony WMD3). Detectors positioned at 10 m heights were linked directly to the tape recorders. Time expansion radiomicrophones were used to monitor activity at 30 m heights. The radiomicrophones were attached to 2-m diameter helium balloons and suspended approximately 30 m above the forest floor. Calls detected by the radiomicrophones were transmitted via a FM narrowband frequency to a scanner on the ground.

  6. USING 30-METER RESOLUTION DIGITAL ELEVATION DATA FOR BASIN ANALYSIS-A PRACTICAL UTILIZATION OF USGS 24K DIGITAL ELEVATION DATA-COMPLICATIONS AND SOLUTIONS. (R826595)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Doppler recordings after diving to depth of 30 meters at high altitude of 4,919 meters (16,138 feet) during the Tilicho Lake Expedition 2007.

    PubMed

    Kot, J; Sicko, Z; Zyszkowski, M; Brajta, M

    2014-01-01

    When going to high altitude (higher than 2,400 meters above mean sea level [about 8,200 feet]), human physiology is strongly affected by changes in atmospheric conditions, including decreased ambient pressure and hypobaric hypoxia, which can lead to severe hypoxemia, brain and/or pulmonary edema, negative changes in body and blood composition, as well as disturbances in regional microcirculation. When adding other factors, such as dehydration, physical exercise and exposure to low temperature, it is likely that nitrogen desaturation after diving at such environmental conditions is far from optimal, There are only single reports on diving at high alti-tudes. In 2007 a Polish team of climbers and divers participated in the Tilicho Lake and Peak Expedition to the Himalaya Mountains in Nepal. During this expedition, four divers conducted six dives in the Tilicho Lake at altitude of 4,919 meters above mean sea level equivalent (16,138 feet) to a maximum depth of 15 meters of fresh water (mfw) (equivalent to 28 mfw at sea level by the Cross Correction method) and 30 mfw (equivalent to 57 mfw at sea level "by Cross correction). Decompression debt was calculated using Cross Correction with some additional safety add-ons. Precordial Doppler recordings were taken every 15 minutes until 90 minutes after surfacing. No signs or symptoms of decompression sickness were observed after diving but in one diver, very high bubble grade Doppler signals were recorded. It can be concluded that diving at high altitude should be accompanied by additional safety precautions as well as taking into account personal sensitivity for such conditions. PMID:25562943

  8. Design and initial testing of a one-bladed 30-meter-diameter rotor on the NASA/DOE mod-O wind turbine

    NASA Technical Reports Server (NTRS)

    Corrigan, R. D.; Ensworth, C. B. F.

    1986-01-01

    The concept of a one-bladed horizontal-axis wind turbine has been of interest to wind turbine designers for many years. Many designs and economic analyses of one-bladed wind turbines have been undertaken by both United States and European wind energy groups. The analyses indicate significant economic advantages but at the same time, significant dynamic response concerns. In an effort to develop a broad data base on wind turbine design and operations, the NASA Wind Energy Project Office has tested a one-bladed rotor at the NASA/DOE Mod-O Wind Turbine Facility. This is the only known test on an intermediate-sized one-bladed rotor in the United States. The 15.2-meter-radius rotor consists of a tip-controlled blade and a counterweight assembly. A rigorous test series was conducted in the Fall of 1985 to collect data on rotor performance, drive train/generator dynamics, structural dynamics, and structural loads. This report includes background information on one-bladed rotor concepts, and Mod-O one-bladed rotor test configuration, supporting design analysis, the Mod-O one-blade rotor test plan, and preliminary test results.

  9. Testing of a one-bladed 30-meter-diameter rotor on the DOE/NASA Mod-O wind turbine

    NASA Technical Reports Server (NTRS)

    Ensworth, C. B. F., III; Corrigan, R. D.; Berkowitz, B. M.

    1988-01-01

    Tests were conducted on the DOE/NASA Mod-O 200-kW horizontal-axis wind turbine in a one-bladed rotor configuration. The objectives of the test were to evaluate the performance, loads, and dynamic characteristics of a one-bladed rotor, and then to compare these parameters with those of an aerodynamically similar two-bladed rotor configuration. Test operations showed that this intermediate-size (15.2-m radius) one-bladed rotor configuration can be operated successfully. Test results show that the one-bladed rotor had cyclic blade loads comparable to those of a two-bladed rotor. A moderate power penalty equivalent to a reduction in windspeed of 1 m/sec occurred with the one-bladed rotor when operated at a rotor speed 50 percent higher than that of the two-bladed rotor.

  10. 40 CFR 201.24 - Procedures for measurement at a 30 meter (100 feet) distance of the noise from locomotive and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... meter (100 feet) distance of the noise from locomotive and rail car operations and locomotive load cell... locomotive and rail car operations and locomotive load cell test stands. (a) Microphone positions. (1) The... measured. (b) Stationary locomotive and locomotive load cell test stand tests. (1) For...

  11. 40 CFR 201.24 - Procedures for measurement at a 30 meter (100 feet) distance of the noise from locomotive and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... meter (100 feet) distance of the noise from locomotive and rail car operations and locomotive load cell... locomotive and rail car operations and locomotive load cell test stands. (a) Microphone positions. (1) The... measured. (b) Stationary locomotive and locomotive load cell test stand tests. (1) For...

  12. 40 CFR 201.24 - Procedures for measurement at a 30 meter (100 feet) distance of the noise from locomotive and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... meter (100 feet) distance of the noise from locomotive and rail car operations and locomotive load cell... locomotive and rail car operations and locomotive load cell test stands. (a) Microphone positions. (1) The... measured. (b) Stationary locomotive and locomotive load cell test stand tests. (1) For...

  13. 40 CFR 201.24 - Procedures for measurement at a 30 meter (100 feet) distance of the noise from locomotive and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... meter (100 feet) distance of the noise from locomotive and rail car operations and locomotive load cell... locomotive and rail car operations and locomotive load cell test stands. (a) Microphone positions. (1) The... measured. (b) Stationary locomotive and locomotive load cell test stand tests. (1) For...

  14. 40 CFR 201.24 - Procedures for measurement at a 30 meter (100 feet) distance of the noise from locomotive and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... meter (100 feet) distance of the noise from locomotive and rail car operations and locomotive load cell... locomotive and rail car operations and locomotive load cell test stands. (a) Microphone positions. (1) The... measured. (b) Stationary locomotive and locomotive load cell test stand tests. (1) For...

  15. Fostering Spatial vs. Metric Understanding in Geometry

    ERIC Educational Resources Information Center

    Kinach, Barbara M.

    2012-01-01

    Learning to reason spatially is increasingly recognized as an essential component of geometry education. Generally taken to be the "ability to represent, generate, transform, communicate, document, and reflect on visual information," "spatial reasoning" uses the spatial relationships between objects to form ideas. Spatial thinking takes a variety…

  16. Neurophysiological Factors in Spatial Development.

    ERIC Educational Resources Information Center

    Harris, Lauren Jay

    Some of the major lines of investigation that point to neurophysiological factors in spatial skill are presented. These lines include: the two hemispheres of the brain, recent studies, tachistoscopic studies, morphological differences between the cerebral hemispheres, Geschwind and Levitsky's discovery, cerebral dominance re-examined, sex…

  17. Spatial Grouping Determines Temporal Integration

    ERIC Educational Resources Information Center

    Hermens, Frouke; Scharnowski, Frank; Herzog, Michael H.

    2009-01-01

    To make sense out of a continuously changing visual world, people need to integrate features across space and time. Despite more than a century of research, the mechanisms of features integration are still a matter of debate. To examine how temporal and spatial integration interact, the authors measured the amount of temporal fusion (a measure of…

  18. On evolutionary spatial heterogeneous games

    NASA Astrophysics Data System (ADS)

    Fort, H.

    2008-03-01

    How cooperation between self-interested individuals evolve is a crucial problem, both in biology and in social sciences, that is far from being well understood. Evolutionary game theory is a useful approach to this issue. The simplest model to take into account the spatial dimension in evolutionary games is in terms of cellular automata with just a one-parameter payoff matrix. Here, the effects of spatial heterogeneities of the environment and/or asymmetries in the interactions among the individuals are analysed through different extensions of this model. Instead of using the same universal payoff matrix, bimatrix games in which each cell at site ( i, j) has its own different ‘temptation to defect’ parameter T(i,j) are considered. First, the case in which these individual payoffs are constant in time is studied. Second, an evolving evolutionary spatial game such that T=T(i,j;t), i.e. besides depending on the position evolves (by natural selection), is used to explore the combination of spatial heterogeneity and natural selection of payoff matrices.

  19. Spatial interferometry in optical astronomy

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude

    1990-01-01

    A bibliographic guide is presented to publications of spatial interferometry techniques applied to optical astronomy. Listings appear in alphabetical order, by first author, as well as in specific subject categories listed in chronological order, including imaging theory and speckle interferometry, experimental techniques, and observational results of astronomical studies of stars, the Sun, and the solar system.

  20. How Infants Encode Spatial Extent

    ERIC Educational Resources Information Center

    Duffy, Sean; Huttenlocher, Janellen; Levine, Susan; Duffy, Renee

    2005-01-01

    This study explores how infants encode an object's spatial extent. We habituated 6.5-month-old infants to a dowel inside a container and then tested whether they dishabituate to a change in absolute size when the relation between dowel and container is held constant (by altering the size of both container and dowel) and when the relation changes…

  1. Spatial Visualization by Isometric View

    ERIC Educational Resources Information Center

    Yue, Jianping

    2007-01-01

    Spatial visualization is a fundamental skill in technical graphics and engineering designs. From conventional multiview drawing to modern solid modeling using computer-aided design, visualization skills have always been essential for representing three-dimensional objects and assemblies. Researchers have developed various types of tests to measure…

  2. Classification of spatially unresolved objects

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Horwitz, H. M.; Hyde, P. D.; Morgenstern, J. P.

    1972-01-01

    A proportion estimation technique for classification of multispectral scanner images is reported that uses data point averaging to extract and compute estimated proportions for a single average data point to classify spatial unresolved areas. Example extraction calculations of spectral signatures for bare soil, weeds, alfalfa, and barley prove quite accurate.

  3. Building Bridges to Spatial Reasoning

    ERIC Educational Resources Information Center

    Shumway, Jessica F.

    2013-01-01

    Spatial reasoning, which involves "building and manipulating mental representations of two-and three-dimensional objects and perceiving an object from different perspectives" is a critical aspect of geometric thinking and reasoning. Through building, drawing, and analyzing two-and three-dimensional shapes, students develop a foundation…

  4. Characterization of Spatial Memory Reconsolidation

    ERIC Educational Resources Information Center

    De Jaeger, Xavier; Courtey, Julie; Brus, Maïna; Artinian, Julien; Villain, Hélène; Bacquié, Elodie; Roullet, Pascal

    2014-01-01

    Reconsolidation is necessary for the restabilization of reactivated memory traces. However, experimental parameters have been suggested as boundary conditions for this process. Here we investigated the role of a spatial memory trace's age, strength, and update on the reconsolidation process in mice. We first found that protein synthesis is…

  5. Revoicing Classrooms: A Spatial Manifesto

    ERIC Educational Resources Information Center

    Fisher, Kenn

    2004-01-01

    Why is the physical learning environment in schools largely ignored by teachers within pedagogical practice? The cellular classroom has remained seemingly immutable since the Industrial Revolution, with spatiality playing a silent and subconscious role in schooling other than related to concerns around surveillance. Previous studies have shown…

  6. Cognitive Strategies in Spatial Performance.

    ERIC Educational Resources Information Center

    Cochran, Kathryn F.; Wheatley, Grayson H.

    Individual differences in verbal/analytic and nonverbal/holistic cognitive strategies were studied in relationship to performance levels in spatial tasks, sex and handedness. Analytic processes are described as sequential, resulting in decomposition of stimulus information, and holistic processes, as parallel, involving information synthesis.…

  7. Spatial Clustering during Memory Search

    ERIC Educational Resources Information Center

    Miller, Jonathan F.; Lazarus, Eben M.; Polyn, Sean M.; Kahana, Michael J.

    2013-01-01

    In recalling a list of previously experienced items, participants are known to organize their responses on the basis of the items' semantic and temporal similarities. Here, we examine how spatial information influences the organization of responses in free recall. In Experiment 1, participants studied and subsequently recalled lists of landmarks.…

  8. Learning Anatomy Enhances Spatial Ability

    ERIC Educational Resources Information Center

    Vorstenbosch, Marc A. T. M.; Klaassen, Tim P. F. M.; Donders, A. R. T.; Kooloos, Jan G. M.; Bolhuis, Sanneke M.; Laan, Roland F. J. M.

    2013-01-01

    Spatial ability is an important factor in learning anatomy. Students with high scores on a mental rotation test (MRT) systematically score higher on anatomy examinations. This study aims to investigate if learning anatomy also oppositely improves the MRT-score. Five hundred first year students of medicine ("n" = 242, intervention) and…

  9. Spatial auditory processing in pinnipeds

    NASA Astrophysics Data System (ADS)

    Holt, Marla M.

    Given the biological importance of sound for a variety of activities, pinnipeds must be able to obtain spatial information about their surroundings thorough acoustic input in the absence of other sensory cues. The three chapters of this dissertation address spatial auditory processing capabilities of pinnipeds in air given that these amphibious animals use acoustic signals for reproduction and survival on land. Two chapters are comparative lab-based studies that utilized psychophysical approaches conducted in an acoustic chamber. Chapter 1 addressed the frequency-dependent sound localization abilities at azimuth of three pinniped species (the harbor seal, Phoca vitulina, the California sea lion, Zalophus californianus, and the northern elephant seal, Mirounga angustirostris). While performances of the sea lion and harbor seal were consistent with the duplex theory of sound localization, the elephant seal, a low-frequency hearing specialist, showed a decreased ability to localize the highest frequencies tested. In Chapter 2 spatial release from masking (SRM), which occurs when a signal and masker are spatially separated resulting in improvement in signal detectability relative to conditions in which they are co-located, was determined in a harbor seal and sea lion. Absolute and masked thresholds were measured at three frequencies and azimuths to determine the detection advantages afforded by this type of spatial auditory processing. Results showed that hearing sensitivity was enhanced by up to 19 and 12 dB in the harbor seal and sea lion, respectively, when the signal and masker were spatially separated. Chapter 3 was a field-based study that quantified both sender and receiver variables of the directional properties of male northern elephant seal calls produce within communication system that serves to delineate dominance status. This included measuring call directivity patterns, observing male-male vocally-mediated interactions, and an acoustic playback study

  10. Parcellating connectivity in spatial maps

    PubMed Central

    Beck, Diane M.; Fei-Fei, Li

    2015-01-01

    A common goal in biological sciences is to model a complex web of connections using a small number of interacting units. We present a general approach for dividing up elements in a spatial map based on their connectivity properties, allowing for the discovery of local regions underlying large-scale connectivity matrices. Our method is specifically designed to respect spatial layout and identify locally-connected clusters, corresponding to plausible coherent units such as strings of adjacent DNA base pairs, subregions of the brain, animal communities, or geographic ecosystems. Instead of using approximate greedy clustering, our nonparametric Bayesian model infers a precise parcellation using collapsed Gibbs sampling. We utilize an infinite clustering prior that intrinsically incorporates spatial constraints, allowing the model to search directly in the space of spatially-coherent parcellations. After showing results on synthetic datasets, we apply our method to both functional and structural connectivity data from the human brain. We find that our parcellation is substantially more effective than previous approaches at summarizing the brain’s connectivity structure using a small number of clusters, produces better generalization to individual subject data, and reveals functional parcels related to known retinotopic maps in visual cortex. Additionally, we demonstrate the generality of our method by applying the same model to human migration data within the United States. This analysis reveals that migration behavior is generally influenced by state borders, but also identifies regional communities which cut across state lines. Our parcellation approach has a wide range of potential applications in understanding the spatial structure of complex biological networks. PMID:25737822

  11. Radiometric and Spatial Characterization of High-Spatial Resolution Sensors

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Zanoni, Vicki (Technical Monitor)

    2002-01-01

    The development and improvement of commercial hyperspatial sensors in recent years has increased the breadth of information that can be retrieved from spaceborne and airborne imagery. NASA, through it's Scientific Data Purchases, has successfully provided such data sets to its user community. A key element to the usefulness of these data are an understanding of the radiometric and spatial response quality of the imagery. This proposal seeks funding to examine the absolute radiometric calibration of the Ikonos sensor operated by Space Imaging and the recently-launched Quickbird sensor from DigitalGlobe. In addition, we propose to evaluate the spatial response of the two sensors. The proposed methods rely on well-understood, ground-based targets that have been used by the University of Arizona for more than a decade.

  12. Spatial frequency domain error budget

    SciTech Connect

    Hauschildt, H; Krulewich, D

    1998-08-27

    The aim of this paper is to describe a methodology for designing and characterizing machines used to manufacture or inspect parts with spatial-frequency-based specifications. At Lawrence Livermore National Laboratory, one of our responsibilities is to design or select the appropriate machine tools to produce advanced optical and weapons systems. Recently, many of the component tolerances for these systems have been specified in terms of the spatial frequency content of residual errors on the surface. We typically use an error budget as a sensitivity analysis tool to ensure that the parts manufactured by a machine will meet the specified component tolerances. Error budgets provide the formalism whereby we account for all sources of uncertainty in a process, and sum them to arrive at a net prediction of how "precisely" a manufactured component can meet a target specification. Using the error budget, we are able to minimize risk during initial stages by ensuring that the machine will produce components that meet specifications before the machine is actually built or purchased. However, the current error budgeting procedure provides no formal mechanism for designing machines that can produce parts with spatial-frequency-based specifications. The output from the current error budgeting procedure is a single number estimating the net worst case or RMS error on the work piece. This procedure has limited ability to differentiate between low spatial frequency form errors versus high frequency surface finish errors. Therefore the current error budgeting procedure can lead us to reject a machine that is adequate or accept a machine that is inadequate. This paper will describe a new error budgeting methodology to aid in the design and characterization of machines used to manufacture or inspect parts with spatial-frequency-based specifications. The output from this new procedure is the continuous spatial frequency content of errors that result on a machined part. If the machine

  13. The Role of Spatial Ability and Strategy Preference for Spatial Problem Solving in Organic Chemistry

    ERIC Educational Resources Information Center

    Stieff, Mike; Ryu, Minjung; Dixon, Bonnie; Hegarty, Mary

    2012-01-01

    In organic chemistry, spatial reasoning is critical for reasoning about spatial relationships in three dimensions and representing spatial information in diagrams. Despite its importance, little is known about the underlying cognitive components of spatial reasoning and the strategies that students employ to solve spatial problems in organic…

  14. Spatially Characterizing Effective Timber Supply

    NASA Technical Reports Server (NTRS)

    Berry, J. K.; Sailor, J.

    1982-01-01

    The structure of a computer-oriented cartographic model for assessing roundwood supply for generation of base load electricity is discussed. The model provides an analytical procedure for coupling spatial information of harvesting economics and owner willingness to sell stumpages. Supply is characterized in terms of standing timber; of accessibility considering various harvesting and hauling factors; and of availability as affected by ownership and residential patterns. Factors governing accessibility to timber include effective harvesting distance to haulic roads as modified by barriers and slopes. Haul distance is expressed in units that take into account the relative ease of travel along various road types to a central processing facility. Areas of accessible timber are grouped into spatial units, termed 'timbersheds', of common access to particular haul road segments that belong to unique 'transport zones'. Timber availability considerations include size of ownership parcels, housing density and excluded areas. The analysis techniques are demonstrated for a cartographic data base in western Massachusetts.

  15. Micropolar continuum in spatial description

    NASA Astrophysics Data System (ADS)

    Ivanova, Elena A.; Vilchevskaya, Elena N.

    2016-06-01

    Within the spatial description, it is customary to refer thermodynamic state quantities to an elementary volume fixed in space containing an ensemble of particles. During its evolution, the elementary volume is occupied by different particles, each having its own mass, tensor of inertia, angular and linear velocities. The aim of the present paper is to answer the question of how to determine the inertial and kinematic characteristics of the elementary volume. In order to model structural transformations due to the consolidation or defragmentation of particles or anisotropic changes, one should consider the fact that the tensor of inertia of the elementary volume may change. This means that an additional constitutive equation must be formulated. The paper suggests kinetic equations for the tensor of inertia of the elementary volume. It also discusses the specificity of the inelastic polar continuum description within the framework of the spatial description.

  16. Spatial prediction and ordinary kriging

    SciTech Connect

    Cressie, N.

    1988-05-01

    Suppose data /Z(s/sub i/):i = 1,...,n/ are observed at spatial locations /s/sub i/:i = 1,...,n/. From these data, an unknown Z(s/sub 0/) is to be predicted at a known location s/sub 0/, or, if Z(s/sub 0/) has a component of measurement error, then a smooth version S(s/sub 0/) should be predicted. This article considers the assumptions needed to carry out the spatial prediction using ordinary kriging, and looks at how nugget effect, range, and sill of the variogram affect the predictor. It is concluded that certain commonly held interpretations of these variogram parameters should be modified.

  17. Sustainable Development and Spatial Inhomogeneities

    NASA Astrophysics Data System (ADS)

    Weisbuch, Gérard

    2013-05-01

    Historical data, theory and computer simulations support a connection between growth and economic inequality. Our present world with large regional differences in economic activity is a result of fast economic growth during the last two centuries. Because of limits to growth we might expect a future world to develop differently with far less growth. The question that we here address is: "Would a world with a sustainable economy be less unequal?" We then develop integrated spatial economic models based on limited resources consumption and technical knowledge accumulation and study them by the way of computer simulations. When the only coupling between world regions is diffusion we do not observe any spatial unequality. By contrast, highly localized economic activities are maintained by global market mechanisms. Structures sizes are determined by transportation costs. Wide distributions of capital and production are also predicted in this regime.

  18. Spatial clustering during memory search.

    PubMed

    Miller, Jonathan F; Lazarus, Eben M; Polyn, Sean M; Kahana, Michael J

    2013-05-01

    In recalling a list of previously experienced items, participants are known to organize their responses on the basis of the items' semantic and temporal similarities. Here, we examine how spatial information influences the organization of responses in free recall. In Experiment 1, participants studied and subsequently recalled lists of landmarks. In Experiment 2, participants played a game in which they delivered objects to landmarks in a virtual environment and later recalled the delivered objects. Participants in both experiments were simply asked to recall as many items as they could remember in any order. By analyzing the conditional probabilities of recall transitions, we demonstrate strong spatial and temporal organization of studied items in both experiments. PMID:22905933

  19. Spatial gradient tuning in metamaterials

    NASA Astrophysics Data System (ADS)

    Driscoll, Tom; Goldflam, Michael; Jokerst, Nan; Basov, Dimitri; Smith, David

    2011-03-01

    Gradient Index (GRIN) metamaterials have been used to create devices inspired by, but often surpassing the potential of, conventional GRIN optics. The unit-cell nature of metamaterials presents the opportunity to exert much greater control over spatial gradients than is possible in natural materials. This is true not only during the design phase but also offers the potential for real-time reconfiguration of the metamaterial gradient. This ability fits nicely into the picture of transformation-optics, in which spatial gradients can enable an impressive suite of innovative devices. We discuss methods to exert control over metamaterial response, focusing on our recent demonstrations using Vanadium Dioxide. We give special attention to role of memristance and mem-capacitance observed in Vanadium Dioxide, which simplify the demands of stimuli and addressing, as well as intersecting metamaterials with the field of memory-materials.

  20. Deformable Surface Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Hess, K.; Dandliker, R.; Thalmann, R.

    1987-05-01

    A spatial light modulator (SLM) based on a deformable gel surface is presented. It has remarkable optical properties and its construction and operation are comparatively simple. It can be optically addressed through a photoconductor layer. The surface relief pattern is read out by total reflection and a schlieren optical system. The device provides good wavefront quality (X/10 over the whole aperture of 30 x 50 mm2) and has a spatial resolution of 10 line pairs/mm. Contrast ratios for modulation up to 40:1 were measured. The input sensitivity is typically 0.3 mW/cm2. The rise and decay times are both approximately 20 ms. Besides its primary application as a light valve in large screen TV projection, it can be used in optical information processing systems, e.g., as an incoherent-to-coherent transducer. Combined with a CRT, the SLM can be addressed electronically.

  1. Spatial Stream Segregation by Cats.

    PubMed

    Javier, Lauren K; McGuire, Elizabeth A; Middlebrooks, John C

    2016-06-01

    Listeners can perceive interleaved sequences of sounds from two or more sources as segregated streams. In humans, physical separation of sound sources is a major factor enabling such stream segregation. Here, we examine spatial stream segregation with a psychophysical measure in domestic cats. Cats depressed a pedal to initiate a target sequence of brief sound bursts in a particular rhythm and then released the pedal when the rhythm changed. The target bursts were interleaved with a competing sequence of bursts that could differ in source location but otherwise were identical to the target bursts. This task was possible only when the sources were heard as segregated streams. When the sound bursts had broad spectra, cats could detect the rhythm change when target and competing sources were separated by as little as 9.4°. Essentially equal levels of performance were observed when frequencies were restricted to a high, 4-to-25-kHz, band in which the principal spatial cues presumably were related to sound levels. When the stimulus band was restricted from 0.4 to 1.6 kHz, leaving interaural time differences as the principal spatial cue, performance was severely degraded. The frequency sensitivity of cats in this task contrasts with that of humans, who show better spatial stream segregation with low- than with high-frequency sounds. Possible explanations for the species difference includes the smaller interaural delays available to cats due to smaller sizes of their heads and the potentially greater sound-level cues available due to the cat's frontally directed pinnae and higher audible frequency range. PMID:26993807

  2. Bootstrap percolation on spatial networks

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Zhou, Tao; Hu, Yanqing

    2015-10-01

    Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around -1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value -1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading.

  3. Spatial Distributions of Young Stars

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Hillenbrand, Lynne A.

    2008-10-01

    We analyze the spatial distribution of young stars in Taurus-Auriga and Upper Sco, as determined from the two-point correlation function (i.e., the mean surface density of neighbors). The corresponding power-law fits allow us to determine the fractal dimensions of each association's spatial distribution, measure the stellar velocity dispersions, and distinguish between the bound binary population and chance alignments of members. We find that the fractal dimension of Taurus is D ~ 1.05, consistent with its filamentary structure. The fractal dimension of Upper Sco may be even shallower (D ~ 0.7), but this fit is uncertain due to the limited area and possible spatially variable incompleteness. We also find that random stellar motions have erased all primordial structure on scales of lsim0.07° in Taurus and lsim1.7° in Upper Sco; given ages of ~1 and ~5 Myr, the corresponding internal velocity dispersions are ~0.2 and ~1.0 km s-1, respectively. Finally, we find that binaries can be distinguished from chance alignments at separations of lsim120'' (17,000 AU) in Taurus and lsim75'' (11,000 AU) in Upper Sco. The binary populations in these associations that we previously studied, spanning separations of 3''-30'', is dominated by binary systems. However, the few lowest mass pairs (Mprim <~ 0.3 M⊙) might be chance alignments.

  4. Spatial vegetation patterns and desertification

    NASA Astrophysics Data System (ADS)

    Rietkerk, M.; Kéfi, S.

    2009-04-01

    Arid ecosystems are amongst the most sensitive ecosystems to human pressure and climate change, and are liable to undergo desertification. This is a main concern because this may occur abruptly and irreversibly, with concomitant losses of ecological and economic resources. Such ecosystem shifts have been theoretically attributed to positive feedback and alternative stable ecosystem states. However, verifications and predictive power with respect to such ecosystem dynamics are lacking for spatially extensive ecosystems. Therefore, management and recovery strategies against desertification for arid ecosystems are difficult to achieve. Theoretical models predict that so-called regular vegetation patterns observed in large areas in arid ecosystems world-wide are a result of spatial self-organization, and the shapes of the patterns are associated with approaching desertification thresholds. Also, patch-size distribution of the vegetation in various arid ecosystems follows a power law, and consistent deviations from power laws occur if grazing pressure is high. Model analysis suggests that such deviations from power laws may be a warning signal for the onset of desertification, independent of the vegetation cover. So, spatial patterns of vegetation, not cover, can be used to assess the vulnerability of arid ecosystems to increased human pressure or ongoing climate change. Common ecological mechanisms that account for these patterns are scale-dependent feedback and local facilitation. Our results are relevant to identify areas that are vulnerable to desertification in the face of increased human pressure and ongoing global climate change, as well as for the restoration of areas that are already degraded.

  5. Spatial Reasoning in Tenejapan Mayans

    PubMed Central

    Li, Peggy; Abarbanell, Linda; Gleitman, Lila; Papafragou, Anna

    2011-01-01

    Language communities differ in their stock of reference frames (coordinate systems for specifying locations and directions). English typically uses egocentrically defined axes (e.g., “left-right”), especially when describing small-scale relationships. Other languages such as Tseltal Mayan prefer to use geocentrically-defined axes (e.g., “north-south”) and do not use any type of projective body-defined axes. It has been argued that the availability of specific frames of reference in language determines the availability or salience of the corresponding spatial concepts. In four experiments, we explored this hypothesis by testing Tseltal speakers’ spatial reasoning skills. Whereas most prior tasks in this domain were open-ended (allowing several correct solutions), the present tasks required a unique solution that favored adopting a frame of reference that was either congruent or incongruent with what is habitually lexicalized in the participants’ language. In these tasks, Tseltal speakers easily solved the language-incongruent problems, and performance was generally more robust for these than for the language-congruent problems that favored geocentrically-defined coordinates. We suggest thatlisteners’ probabilistic inferences when instruction is open to more than one interpretation account for why there are greater cross-linguistic differences in the solutions to open-ended spatial problems than to less ambiguous ones. PMID:21481854

  6. Spatial Solitons in Algaas Waveguides

    NASA Astrophysics Data System (ADS)

    Kang, Jin Ung

    In this work, by measuring the two-, three-photon absorption, and the nonlinear refractive index coefficients, a useful bandwidth for an all-optical switching applications in the AlGaAs below half the band gap is identified. Operating in this material system, several types of spatial solitons such as fundamental bright solitons, Vector solitons, and Manakov solitons are experimentally demonstrated. The propagation and the interaction behaviors of these solitons are studied experimentally and numerically. The distinct properties of each soliton are discussed along with some possible applications. Some applications, such as all -optical switching based on spatial soliton dragging and the efficient guiding of orthogonally polarized femtosecond pulses by a bright spatial soliton, are experimentally demonstrated. The signal gain due to an ultrafast polarization coupling, better known as Four Wave Mixing (FWM) is demonstrated in a channel waveguide. The effects of FWM are studied experimentally and numerically. This effect is also used to demonstrate polarization switching. The linear and nonlinear properties of AlGaAs/GaAs multiple quantum well waveguides are measured. Anisotropic two photon absorption and nonlinear refractive indices near half the band gap are measured along with the linear birefringence for several different quantum well structures. The usefulness of multiple quantum well structures for an all -optical switching because of anisotropic nature of this material system is discussed.

  7. Bootstrap percolation on spatial networks

    PubMed Central

    Gao, Jian; Zhou, Tao; Hu, Yanqing

    2015-01-01

    Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around −1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value −1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading. PMID:26423347

  8. Entropy, complexity, and spatial information

    NASA Astrophysics Data System (ADS)

    Batty, Michael; Morphet, Robin; Masucci, Paolo; Stanilov, Kiril

    2014-10-01

    We pose the central problem of defining a measure of complexity, specifically for spatial systems in general, city systems in particular. The measures we adopt are based on Shannon's (in Bell Syst Tech J 27:379-423, 623-656, 1948) definition of information. We introduce this measure and argue that increasing information is equivalent to increasing complexity, and we show that for spatial distributions, this involves a trade-off between the density of the distribution and the number of events that characterize it; as cities get bigger and are characterized by more events—more places or locations, information increases, all other things being equal. But sometimes the distribution changes at a faster rate than the number of events and thus information can decrease even if a city grows. We develop these ideas using various information measures. We first demonstrate their applicability to various distributions of population in London over the last 100 years, then to a wider region of London which is divided into bands of zones at increasing distances from the core, and finally to the evolution of the street system that characterizes the built-up area of London from 1786 to the present day. We conclude by arguing that we need to relate these measures to other measures of complexity, to choose a wider array of examples, and to extend the analysis to two-dimensional spatial systems.

  9. Entropy, complexity, and spatial information

    NASA Astrophysics Data System (ADS)

    Batty, Michael; Morphet, Robin; Masucci, Paolo; Stanilov, Kiril

    2014-09-01

    We pose the central problem of defining a measure of complexity, specifically for spatial systems in general, city systems in particular. The measures we adopt are based on Shannon's (in Bell Syst Tech J 27:379-423, 623-656, 1948) definition of information. We introduce this measure and argue that increasing information is equivalent to increasing complexity, and we show that for spatial distributions, this involves a trade-off between the density of the distribution and the number of events that characterize it; as cities get bigger and are characterized by more events—more places or locations, information increases, all other things being equal. But sometimes the distribution changes at a faster rate than the number of events and thus information can decrease even if a city grows. We develop these ideas using various information measures. We first demonstrate their applicability to various distributions of population in London over the last 100 years, then to a wider region of London which is divided into bands of zones at increasing distances from the core, and finally to the evolution of the street system that characterizes the built-up area of London from 1786 to the present day. We conclude by arguing that we need to relate these measures to other measures of complexity, to choose a wider array of examples, and to extend the analysis to two-dimensional spatial systems.

  10. Multiple spatial mappings in numerical cognition.

    PubMed

    Shaki, Samuel; Fischer, Martin H

    2012-06-01

    A recent cross-cultural comparison (Shaki, Fischer, & Petrusic, 2009) suggested that spatially consistent processing habits for words and numbers are a necessary condition for the spatial representation of numbers (Spatial-Numerical Association of Response Codes; SNARC effect). Here we reexamine the SNARC in Israelis who read text from right to left but numbers from left to right. We show that, despite these spatially inconsistent processing habits, a SNARC effect still emerges when the response dimension is spatially orthogonal to the conflicting processing dimension. These results clarify the cognitive conditions for spatial-numerical mappings. PMID:22428673

  11. Spatial Moran models, II: cancer initiation in spatially structured tissue

    PubMed Central

    Foo, J; Leder, K

    2016-01-01

    We study the accumulation and spread of advantageous mutations in a spatial stochastic model of cancer initiation on a lattice. The parameters of this general model can be tuned to study a variety of cancer types and genetic progression pathways. This investigation contributes to an understanding of how the selective advantage of cancer cells together with the rates of mutations driving cancer, impact the process and timing of carcinogenesis. These results can be used to give insights into tumor heterogeneity and the “cancer field effect,” the observation that a malignancy is often surrounded by cells that have undergone premalignant transformation. PMID:26126947

  12. Fusion and clustering algorithms for spatial data

    NASA Astrophysics Data System (ADS)

    Kuntala, Pavani

    Spatial clustering is an approach for discovering groups of related data points in spatial data. Spatial clustering has attracted a lot of research attention due to various applications where it is needed. It holds practical importance in application domains such as geographic knowledge discovery, sensors, rare disease discovery, astronomy, remote sensing, and so on. The motivation for this work stems from the limitations of the existing spatial clustering methods. In most conventional spatial clustering algorithms, the similarity measurement mainly considers the geometric attributes. However, in many real applications, users are concerned about both the spatial and the non-spatial attributes. In conventional spatial clustering, the input data set is partitioned into several compact regions and data points that are similar to one another in their non-spatial attributes may be scattered over different regions, thus making the corresponding objective difficult to achieve. In this dissertation, a novel clustering methodology is proposed to explore the clustering problem within both spatial and non-spatial domains by employing a fusion-based approach. The goal is to optimize a given objective function in the spatial domain, while satisfying the constraint specified in the non- spatial attribute domain. Several experiments are conducted to provide insights into the proposed methodology. The algorithm first captures the spatial cores having the highest structure and then employs an iterative, heuristic mechanism to find the optimal number of spatial cores and non-spatial clusters that exist in the data. Such a fusion-based framework allows for the handling of data streams and provides a framework for comparing spatial clusters. The correctness and efficiency of the proposed clustering model is demonstrated on real world and synthetic data sets.

  13. Spatial visualization in physics problem solving.

    PubMed

    Kozhevnikov, Maria; Motes, Michael A; Hegarty, Mary

    2007-07-01

    Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naíve students were administered kinematics problems and spatial visualization ability tests. In Study 2, 17 (8 high- and 9 low-spatial ability) additional students completed think-aloud protocols while they solved the kinematics problems. In Study 3, the eye movements of fifteen (9 high- and 6 low-spatial ability) students were recorded while the students solved kinematics problems. In contrast to high-spatial students, most low-spatial students did not combine two motion vectors, were unable to switch frames of reference, and tended to interpret graphs literally. The results of the study suggest an important relationship between spatial visualization ability and solving kinematics problems with multiple spatial parameters. PMID:21635308

  14. Liquid crystal television spatial light modulators

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Chao, Tien-Hsin

    1989-01-01

    The spatial light modulation characteristics and capabilities of the liquid crystal television (LCTV) spatial light modulators (SLMs) are discussed. A comparison of Radio Shack, Epson, and Citizen LCTV SLMs is made.

  15. MAPPING SPATIAL THEMATIC ACCURACY WITH FUZZY SETS

    EPA Science Inventory

    Thematic map accuracy is not spatially homogenous but variable across a landscape. Properly analyzing and representing spatial pattern and degree of thematic map accuracy would provide valuable information for using thematic maps. However, current thematic map accuracy measures (...

  16. Incorporating Spatial Data into Enterprise Applications

    NASA Astrophysics Data System (ADS)

    Akiki, Pierre; Maalouf, Hoda

    The main goal of this chapter is to discuss the usage of spatial data within enterprise as well as smaller line-of-business applications. In particular, this chapter proposes new methodologies for storing and manipulating vague spatial data and provides methods for visualizing both crisp and vague spatial data. It also provides a comparison between different types of spatial data, mainly 2D crisp and vague spatial data, and their respective fields of application. Additionally, it compares existing commercial relational database management systems, which are the most widely used with enterprise applications, and discusses their deficiencies in terms of spatial data support. A new spatial extension package called Spatial Extensions (SPEX) is provided in this chapter and is tested on a software prototype.

  17. Spatial patterns of tidal heating

    NASA Astrophysics Data System (ADS)

    Beuthe, Mikael

    2013-03-01

    In a body periodically strained by tides, heating produced by viscous friction is far from homogeneous. The spatial distribution of tidal heating depends in a complicated way on the tidal potential and on the internal structure of the body. I show here that the distribution of the dissipated power within a spherically stratified body is a linear combination of three angular functions. These angular functions depend only on the tidal potential whereas the radial weights are specified by the internal structure of the body. The 3D problem of predicting spatial patterns of dissipation at all radii is thus reduced to the 1D problem of computing weight functions. I compute spatial patterns in various toy models without assuming a specific rheology: a viscoelastic thin shell stratified in conductive and convective layers, an incompressible homogeneous body and a two-layer model of uniform density with a liquid or rigid core. For a body in synchronous rotation undergoing eccentricity tides, dissipation in a mantle surrounding a liquid core is highest at the poles. Within a soft layer (or asthenosphere) in contact with a more rigid layer, the same tides generate maximum heating in the equatorial region with a significant degree-four structure if the soft layer is thin. The asthenosphere can be a layer of partial melting in the upper mantle or, very differently, an icy layer in contact with a silicate mantle or solid core. Tidal heating patterns are thus of three main types: mantle dissipation (with the icy shell above an ocean as a particular case), dissipation in a thin soft layer and dissipation in a thick soft layer. Finally, I show that the toy models predict well patterns of dissipation in Europa, Titan and Io. The formalism described in this paper applies to dissipation within solid layers of planets and satellites for which internal spherical symmetry and viscoelastic linear rheology are good approximations.

  18. Pixelated filters for spatial imaging

    NASA Astrophysics Data System (ADS)

    Mathieu, Karine; Lequime, Michel; Lumeau, Julien; Abel-Tiberini, Laetitia; Savin De Larclause, Isabelle; Berthon, Jacques

    2015-10-01

    Small satellites are often used by spatial agencies to meet scientific spatial mission requirements. Their payloads are composed of various instruments collecting an increasing amount of data, as well as respecting the growing constraints relative to volume and mass; So small-sized integrated camera have taken a favored place among these instruments. To ensure scene specific color information sensing, pixelated filters seem to be more attractive than filter wheels. The work presented here, in collaboration with Institut Fresnel, deals with the manufacturing of this kind of component, based on thin film technologies and photolithography processes. CCD detectors with a pixel pitch about 30 μm were considered. In the configuration where the matrix filters are positioned the closest to the detector, the matrix filters are composed of 2x2 macro pixels (e.g. 4 filters). These 4 filters have a bandwidth about 40 nm and are respectively centered at 550, 700, 770 and 840 nm with a specific rejection rate defined on the visible spectral range [500 - 900 nm]. After an intense design step, 4 thin-film structures have been elaborated with a maximum thickness of 5 μm. A run of tests has allowed us to choose the optimal micro-structuration parameters. The 100x100 matrix filters prototypes have been successfully manufactured with lift-off and ion assisted deposition processes. High spatial and spectral characterization, with a dedicated metrology bench, showed that initial specifications and simulations were globally met. These excellent performances knock down the technological barriers for high-end integrated specific multi spectral imaging.

  19. Spatial Reasoning and Data Displays.

    PubMed

    VanderPlas, Susan; Hofmann, Heike

    2016-01-01

    Graphics convey numerical information very efficiently, but rely on a different set of mental processes than tabular displays. Here, we present a study relating demographic characteristics and visual skills to perception of graphical lineups. We conclude that lineups are essentially a classification test in a visual domain, and that performance on the lineup protocol is associated with general aptitude, rather than specific tasks such as card rotation and spatial manipulation. We also examine the possibility that specific graphical tasks may be associated with certain visual skills and conclude that more research is necessary to understand which visual skills are required in order to understand certain plot types. PMID:26390492

  20. Spatial periphery of lithium isotopes

    SciTech Connect

    Galanina, L. I. Zelenskaja, N. S.

    2013-12-15

    The spatial structure of lithium isotopes is studied with the aid of the charge-exchange and (t, p) reactions on lithium nuclei. It is shown that an excited isobaric-analog state of {sup 6}Li (0{sup +}, 3.56MeV) has a halo structure formed by a proton and a neutron, that, in the {sup 9}Li nucleus, there is virtually no neutron halo, and that {sup 11}Li is a Borromean nucleus formed by a {sup 9}Li core and a two-neutron halo manifesting itself in cigar-like and dineutron configurations.

  1. Block Talk: Spatial Language during Block Play

    ERIC Educational Resources Information Center

    Ferrara, Katrina; Hirsh-Pasek, Kathy; Newcombe, Nora S.; Golinkoff, Roberta Michnick; Lam, Wendy Shallcross

    2011-01-01

    Spatial skills are a central component of intellect and show marked individual differences. There is evidence that variations in the spatial language young children hear, which directs their attention to important aspects of the spatial environment, may be one of the mechanisms that contributes to these differences. To investigate how play affects…

  2. Multiple Spatial Mappings in Numerical Cognition

    ERIC Educational Resources Information Center

    Shaki, Samuel; Fischer, Martin H.

    2012-01-01

    A recent cross-cultural comparison (Shaki, Fischer, & Petrusic, 2009) suggested that spatially consistent processing habits for words and numbers are a necessary condition for the spatial representation of numbers (Spatial-Numerical Association of Response Codes; SNARC effect). Here we reexamine the SNARC in Israelis who read text from right to…

  3. Four-Dimensional Spatial Reasoning in Humans

    ERIC Educational Resources Information Center

    Aflalo, T. N.; Graziano, M. S. A.

    2008-01-01

    Human subjects practiced navigation in a virtual, computer-generated maze that contained 4 spatial dimensions rather than the usual 3. The subjects were able to learn the spatial geometry of the 4-dimensional maze as measured by their ability to perform path integration, a standard test of spatial ability. They were able to travel down a winding…

  4. Sex Differences in Spatial Ability: A Critique.

    ERIC Educational Resources Information Center

    Clear, Sarah-Jane

    1978-01-01

    Explores (1) problems of the validity of tests of spatial ability, and (2) problems of the recessive gene influence theory of the origin of sex differences in spatial ability. Studies of cognitive strategies in spatial problem solving are suggested as a way to further investigate recessive gene influence. (Author/RH)

  5. Issues of Authenticity of Spatial Data.

    ERIC Educational Resources Information Center

    McGlamery, Patrick

    This paper discusses the authenticity of digital spatial data. The first section describes three formats for digital spatial data: vector, raster, and thematic. The second section addresses the integrity of spatial data, including six possible formats for the same information: (1) aerial photographic prints, time stamped, primary, remotely sensed…

  6. Development of a Geometric Spatial Visualization Tool

    ERIC Educational Resources Information Center

    Ganesh, Bibi; Wilhelm, Jennifer; Sherrod, Sonya

    2009-01-01

    This paper documents the development of the Geometric Spatial Assessment. We detail the development of this instrument which was designed to identify middle school students' strategies and advancement in understanding of four geometric concept domains (geometric spatial visualization, spatial projection, cardinal directions, and periodic patterns)…

  7. A Structural Theory of Spatial Abilities.

    ERIC Educational Resources Information Center

    Guttman, Ruth; And Others

    1990-01-01

    After a brief review of the contributions of factor analysis and regional analysis to the elaboration of the structures of spatial abilities, a facet design and regional model for spatial abilities are presented. A cylindrical-wedge model is proposed to represent the correlational structure of spatial ability tests. (SLD)

  8. Effect of GIS Learning on Spatial Thinking

    ERIC Educational Resources Information Center

    Lee, Jongwon; Bednarz, Robert

    2009-01-01

    A spatial-skills test is used to examine the effect of GIS learning on the spatial thinking ability of college students. Eighty students at a large state university completed pre- and post- spatial-skills tests administered during the 2003 fall semester. Analysis of changes in the students' test scores revealed that GIS learning helped students…

  9. Future Teachers' Spatial Thinking Skills and Attitudes

    ERIC Educational Resources Information Center

    Shin, Euikyung E.; Milson, Andrew J.; Smith, Thomas J.

    2016-01-01

    The spatial thinking skills and attitudes of geography majors were compared with those of future teachers majoring in elementary education and secondary social studies education. Scores were obtained for each group on two measures: the spatial skills test and the attitude toward spatial thinking inventory. Mean differences were examined based on…

  10. Spatial analysis of hyperspectral vegetation index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced remote sensing technologies provide researchers an innovative way of collecting spatial data for use in precision agriculture. Sensor information and spatial analysis together allow for a completely understanding of the spatial complexity of a field and its crop. The objective of the study ...

  11. SPATIAL PREDICTION USING COMBINED SOURCES OF DATA

    EPA Science Inventory

    For improved environmental decision-making, it is important to develop new models for spatial prediction that accurately characterize important spatial and temporal patterns of air pollution. As the U .S. Environmental Protection Agency begins to use spatial prediction in the reg...

  12. Dynamic Spatial Performance and General Intelligence.

    ERIC Educational Resources Information Center

    Jackson, Douglas N., III; And Others

    1993-01-01

    In a computerized video-game-like spatial ability measure administered to 94 university students, the number of target hits was correlated with verbal intelligence quotient. The dynamic spatial measure does not load substantially on a general intellectual ability factor, but it does provide additional evidence that dynamic spatial ability is…

  13. Development: Ages & Stages--Spatial Awareness

    ERIC Educational Resources Information Center

    Poole, Carla; Miller, Susan A.; Church, Ellen Booth

    2006-01-01

    Spatial concepts such as a sense of distance are learned through movement and exploration which is the most effective way for children to gain body awareness and an understanding of spatial relationships. It simultaneously develops muscle strength, coordination, self-confidence, and thinking skills. Spatial awareness can be defined as "an…

  14. Spatial Abilities across the Adult Life Span

    ERIC Educational Resources Information Center

    Borella, Erika; Meneghetti, Chiara; Ronconi, Lucia; De Beni, Rossana

    2014-01-01

    The study investigates age-related effects across the adult life span on spatial abilities (testing subabilities based on a distinction between spatial visualization, mental rotation, and perspective taking) and spatial self-assessments. The sample consisted of 454 participants (223 women and 231 men) from 20 to 91 years of age. Results showed…

  15. Temporal asynchrony and spatial perception

    PubMed Central

    Lev, Maria; Polat, Uri

    2016-01-01

    Collinear facilitation is an enhancement in the visibility of a target by laterally placed iso-oriented flankers in a collinear (COL) configuration. Iso-oriented flankers placed in a non-collinear configuration (side-by-side, SBS) produce less facilitation. Surprisingly, presentation of both configurations simultaneously (ISO-CROSS) abolishes the facilitation rather than increases it - a phenomenon that can’t be fully explained by the spatial properties of the target and flankers. Based on our preliminary data and recent studies, we hypothesized that there might be a novel explanation based on the temporal properties of the excitation and inhibition, resulting in asynchrony between the lateral inputs received from COL and SBS, leading to cancelation of the facilitatory component in ISO-CROSS. We explored this effect using a detection task in humans. The results replicated the previous results showing that the preferred facilitation for COL and SBS was abolished for the ISO-CROSS configuration. However, presenting the SBS flankers, but not the COL flankers 20 msec before ISO-CROSS restored the facilitatory effect. We propose a novel explanation that the perceptual advantage of collinear facilitation may be cancelled by the delayed input from the sides; thus, the final perception is determined by the overall spatial-temporal integration of the lateral interactions. PMID:27460532

  16. Fourth order spatial derivative gravity

    NASA Astrophysics Data System (ADS)

    Bemfica, F. S.; Gomes, M.

    2011-10-01

    In this work, we study a modified theory of gravity that contains up to fourth order spatial derivatives as a model for the Hořava-Lifshitz gravity. The propagator is evaluated and, as a result, one extra pole is obtained, corresponding to a spin-2 nonrelativistic massless particle, an extra term which jeopardizes renormalizability, besides the unexpected general relativity unmodified propagator. Then unitarity is proved at the tree level, where the general relativity pole has been shown to have no dynamics, remaining only the 2 degrees of freedom of the new pole. Next, the nonrelativistic effective potential is determined from a scattering process of two identical massive gravitationally interacting bosons. In this limit, Newton’s potential is obtained, together with a Darwin-like term that comes from the extra nonpole term in the propagator. Regarding renormalizability, this extra term may be harmful by power counting, but it can be eliminated by adjusting the free parameters of the model. This adjustment is in accord with the detailed balance condition suggested in the literature and shows that the way in which extra spatial derivative terms are added is of fundamental importance.

  17. Spatial curvature falsifies eternal inflation

    NASA Astrophysics Data System (ADS)

    Kleban, Matthew; Schillo, Marjorie

    2012-06-01

    Inflation creates large-scale cosmological density perturbations that are characterized by an isotropic, homogeneous, and Gaussian random distribution about a locally flat background. Even in a flat universe, the spatial curvature measured within one Hubble volume receives contributions from long wavelength perturbations, and will not in general be zero. These same perturbations determine the Cosmic Microwave Background (CMB) temperature fluctuations, which are Script O(10-5). Consequently, the low-l multipole moments in the CMB temperature map predict the value of the measured spatial curvature Ωk. On this basis we argue that a measurement of |Ωk| > 10-4 would rule out slow-roll eternal inflation in our past with high confidence, while a measurement of Ωk < -10-4 (which is positive curvature, a locally closed universe) rules out false-vacuum eternal inflation as well, at the same confidence level. In other words, negative curvature (a locally open universe) is consistent with false-vacuum eternal inflation but not with slow-roll eternal inflation, and positive curvature falsifies both. Near-future experiments will dramatically extend the sensitivity of Ωk measurements and constitute a sharp test of these predictions.

  18. Spatially oriented plasmonic 'nanograter' structures.

    PubMed

    Liu, Zhe; Cui, Ajuan; Gong, Zhijie; Li, Hongqiang; Xia, Xiaoxiang; Shen, Tiehan H; Li, Junjie; Yang, Haifang; Li, Wuxia; Gu, Changzhi

    2016-01-01

    One of the key motivations in producing 3D structures has always been the realization of metamaterials with effective constituent properties that can be tuned in all propagation directions at various frequencies. Here, we report the investigation of spatially oriented "Nanograter" structures with orientation-dependent responses over a wide spectrum by focused-ion-beam based patterning and folding of thin film nanostructures. Au nano units of different shapes, standing along specifically designated orientations, were fabricated. Experimental measurements and simulation results show that such structures offer an additional degree of freedom for adjusting optical properties with the angle of inclination, in additional to the size of the structures. The response frequency can be varied in a wide range (8 μm-14 μm) by the spatial orientation (0°-180°) of the structures, transforming the response from magnetic into electric coupling. This may open up prospects for the fabrication of 3D nanostructures as optical interconnects, focusing elements and logic elements, moving toward the realization of 3D optical circuits. PMID:27357610

  19. Adaptation Driven by Spatial Heterogeneities

    NASA Astrophysics Data System (ADS)

    Hermsen, Rutger

    2011-03-01

    Biological evolution and ecology are intimately linked, because the reproductive success or ``fitness'' of an organism depends crucially on its ecosystem. Yet, most models of evolution (or population genetics) consider homogeneous, fixed-size populations subjected to a constant selection pressure. To move one step beyond such ``mean field'' descriptions, we discuss stochastic models of evolution driven by spatial heterogeneity. We imagine a population whose range is limited by a spatially varying environmental parameter, such as a temperature or the concentration of an antibiotic drug. Individuals in the population replicate, die and migrate stochastically. Also, by mutation, they can adapt to the environmental stress and expand their range. This way, adaptation and niche expansion go hand in hand. This mode of evolution is qualitatively different from the usual notion of a population climbing a fitness gradient. We analytically calculate the rate of adaptation by solving a first passage time problem. Interestingly, the joint effects of reproduction, death, mutation and migration result in two distinct parameter regimes depending on the relative time scales of mutation and migration. We argue that the proposed scenario may be relevant for the rapid evolution of antibiotic resistance. This work was supported by the Center for Theoretical Biological Physics sponsored by the National Science Foundation (NSF) (Grant PHY-0822283).

  20. Spatial Reorientation Following Space Flight

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The short-arm centrifuge subjects an astronaut to conflicting sensory input and study the astronaut's perception of motion. It is one of several instruments used in the Spatial Reorientation Following Space Flight investigation to be conducted after astronauts return to Earth. During space flight, the vestibular organs no longer respond in a familiar way. Instead, inputs from the irner ear do not match those coming from the eyes. While on Earth, you can open your eyes to see if you truly are spinning, but astronauts do not have this luxury. Astronauts can see the floor, but have no sense of down; when they bend their heads forward, the otoliths are not stimulated properly. This state, called sensory conflict, must be resolved by the brain to maintain orientation. When they first return to Earth, astronauts are again disoriented because of sensory conflict. They undergo a period of spatial reorientation, as their brains reconcile what their eyes see and what their vestibular system senses. Recovery can take anywhere from hours to days depending on the length of the mission. Principal Investigator: Dr. William Paloski, Johnson Space Center, Houston, TX.

  1. Spatial Reorientation Following Space Flight

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The short-arm centrifuge subjects an astronaut to conflicting sensory input and study the astronaut's perception of motion. It is one of several instruments used in the Spatial Reorientation Following Space Flight investigation to be conducted on crewmembers. During space flight, the vestibular organs no longer respond in a familiar way. Instead, inputs from the irner ear do not match those coming from the eyes. While on Earth, you can open your eyes to see if you truly are spinning, but astronauts do not have this luxury. Astronauts can see the floor, but have no sense of down; when they bend their heads forward, the otoliths are not stimulated properly. This state, called sensory conflict, must be resolved by the brain to maintain orientation. When they first return to Earth, astronauts are again disoriented because of sensory conflict. They undergo a period of spatial reorientation, as their brains reconcile what their eyes see and what their vestibular system senses. Recovery can take anywhere from hours to days depending on the length of the mission. Principal Investigator: Dr. William Paloski, Johnson Space Center, Houston, TX.

  2. Fourth order spatial derivative gravity

    SciTech Connect

    Bemfica, F. S.; Gomes, M.

    2011-10-15

    In this work, we study a modified theory of gravity that contains up to fourth order spatial derivatives as a model for the Horava-Lifshitz gravity. The propagator is evaluated and, as a result, one extra pole is obtained, corresponding to a spin-2 nonrelativistic massless particle, an extra term which jeopardizes renormalizability, besides the unexpected general relativity unmodified propagator. Then unitarity is proved at the tree level, where the general relativity pole has been shown to have no dynamics, remaining only the 2 degrees of freedom of the new pole. Next, the nonrelativistic effective potential is determined from a scattering process of two identical massive gravitationally interacting bosons. In this limit, Newton's potential is obtained, together with a Darwin-like term that comes from the extra nonpole term in the propagator. Regarding renormalizability, this extra term may be harmful by power counting, but it can be eliminated by adjusting the free parameters of the model. This adjustment is in accord with the detailed balance condition suggested in the literature and shows that the way in which extra spatial derivative terms are added is of fundamental importance.

  3. Two cases of spatial transformations.

    PubMed

    Silveirinha, Mário G; Giovampaola, Cristian Della; Engheta, Nader

    2015-08-28

    Here, we give an overview of our work on two topics related to the theme of spatial transformations in wave theory, namely the concepts of transformation electronics and 'digital' metamaterials. In the first topic, we show that the notion of transformation optics can be extended to other physical phenomena such as tailoring the effective mass of charged carriers, e.g. electrons, in specially designed semiconductor superlattices. We discuss how the combination of thin layers of electronic materials with different effective mass of electrons may lead to bulk composite structures in which the effective mass of electrons may exhibit extreme anisotropy. For the second case, we show that any desired electromagnetic permittivity can, in principle, be engineered with proper combinations of two deeply subwavelength building blocks with relative permittivity values whose real parts have opposite signs. Owing to the presence of a plasmonic resonance between the two building blocks with oppositely signed dielectric constants, the achieved effective relative permittivity for the bulk composite may have values outside the range defined by the two permittivity values of the building blocks. We discuss some of the salient features of these two spatial transformation phenomena. PMID:26217063

  4. Percolation of spatially constraint networks

    NASA Astrophysics Data System (ADS)

    Li, Daqing; Li, Guanliang; Kosmidis, Kosmas; Stanley, H. E.; Bunde, Armin; Havlin, Shlomo

    2011-03-01

    We study how spatial constraints are reflected in the percolation properties of networks embedded in one-dimensional chains and two-dimensional lattices. We assume long-range connections between sites on the lattice where two sites at distance r are chosen to be linked with probability p(r)~r-δ. Similar distributions have been found in spatially embedded real networks such as social and airline networks. We find that for networks embedded in two dimensions, with 2<δ<4, the percolation properties show new intermediate behavior different from mean field, with critical exponents that depend on δ. For δ<2, the percolation transition belongs to the universality class of percolation in Erdös-Rényi networks (mean field), while for δ>4 it belongs to the universality class of percolation in regular lattices. For networks embedded in one dimension, we find that, for δ<1, the percolation transition is mean field. For 1<δ<2, the critical exponents depend on δ, while for δ>2 there is no percolation transition as in regular linear chains.

  5. Spatial Representation of Ordinal Information

    PubMed Central

    Zhang, Meng; Gao, Xuefei; Li, Baichen; Yu, Shuyuan; Gong, Tianwei; Jiang, Ting; Hu, Qingfen; Chen, Yinghe

    2016-01-01

    Right hand responds faster than left hand when shown larger numbers and vice-versa when shown smaller numbers (the SNARC effect). Accumulating evidence suggests that the SNARC effect may not be exclusive for numbers and can be extended to other ordinal sequences (e.g., months or letters in the alphabet) as well. In this study, we tested the SNARC effect with a non-numerically ordered sequence: the Chinese notations for the color spectrum (Red, Orange, Yellow, Green, Blue, Indigo, and Violet). Chinese color word sequence reserves relatively weak ordinal information, because each element color in the sequence normally appears in non-sequential contexts, making it ideal to test the spatial organization of sequential information that was stored in the long-term memory. This study found a reliable SNARC-like effect for Chinese color words (deciding whether the presented color word was before or after the reference color word “green”), suggesting that, without access to any quantitative information or exposure to any previous training, ordinal representation can still activate a sense of space. The results support that weak ordinal information without quantitative magnitude encoded in the long-term memory can activate spatial representation in a comparison task. PMID:27092100

  6. Spatial Representation of Ordinal Information.

    PubMed

    Zhang, Meng; Gao, Xuefei; Li, Baichen; Yu, Shuyuan; Gong, Tianwei; Jiang, Ting; Hu, Qingfen; Chen, Yinghe

    2016-01-01

    Right hand responds faster than left hand when shown larger numbers and vice-versa when shown smaller numbers (the SNARC effect). Accumulating evidence suggests that the SNARC effect may not be exclusive for numbers and can be extended to other ordinal sequences (e.g., months or letters in the alphabet) as well. In this study, we tested the SNARC effect with a non-numerically ordered sequence: the Chinese notations for the color spectrum (Red, Orange, Yellow, Green, Blue, Indigo, and Violet). Chinese color word sequence reserves relatively weak ordinal information, because each element color in the sequence normally appears in non-sequential contexts, making it ideal to test the spatial organization of sequential information that was stored in the long-term memory. This study found a reliable SNARC-like effect for Chinese color words (deciding whether the presented color word was before or after the reference color word "green"), suggesting that, without access to any quantitative information or exposure to any previous training, ordinal representation can still activate a sense of space. The results support that weak ordinal information without quantitative magnitude encoded in the long-term memory can activate spatial representation in a comparison task. PMID:27092100

  7. Spatial resolution in visual memory.

    PubMed

    Ben-Shalom, Asaf; Ganel, Tzvi

    2015-04-01

    Representations in visual short-term memory are considered to contain relatively elaborated information on object structure. Conversely, representations in earlier stages of the visual hierarchy are thought to be dominated by a sensory-based, feed-forward buildup of information. In four experiments, we compared the spatial resolution of different object properties between two points in time along the processing hierarchy in visual short-term memory. Subjects were asked either to estimate the distance between objects or to estimate the size of one of the objects' features under two experimental conditions, of either a short or a long delay period between the presentation of the target stimulus and the probe. When different objects were referred to, similar spatial resolution was found for the two delay periods, suggesting that initial processing stages are sensitive to object-based properties. Conversely, superior resolution was found for the short, as compared with the long, delay when features were referred to. These findings suggest that initial representations in visual memory are hybrid in that they allow fine-grained resolution for object features alongside normal visual sensitivity to the segregation between objects. The findings are also discussed in reference to the distinction made in earlier studies between visual short-term memory and iconic memory. PMID:25112394

  8. On aggregation in spatial econometric modelling

    NASA Astrophysics Data System (ADS)

    Paelinck, Jean H. P.

    The spatial aggregation problem - also termed the modifiable areal unit problem - has attracted regular attention in spatial statistics and econometrics. In this study econometric aggregation analysis is used to investigate the formal composition of meso-areal parameters given micro-areal underlying relations with spatial dependence. Impact on stochastic terms (possible meso-areal spatial autocorrelation) is also studied. Finally consequences for meso-areal estimation are derived, the general finding having been that spatial aggregation leads to meso-region specific parameter values, with the estimation problems this implies.

  9. Gender Differences in Spatial Ability: "Relationship to Spatial Experience among Chinese Gifted Students in Hong Kong"

    ERIC Educational Resources Information Center

    Chan, David W.

    2007-01-01

    Spatial ability based on measures of mental rotation, and spatial experience based on self-reported participation in visual-arts as well as spatial-orientation activities were assessed in a sample of 337 Chinese, gifted students. Consistent with past findings for the general population, there were gender differences in spatial ability favoring…

  10. The Spatial Scaffold: The Effects of Spatial Context on Memory for Events

    ERIC Educational Resources Information Center

    Robin, Jessica; Wynn, Jordana; Moscovitch, Morris

    2016-01-01

    Events always unfold in a spatial context, leading to the claim that it serves as a scaffold for encoding and retrieving episodic memories. The ubiquitous co-occurrence of spatial context with events may induce participants to generate a spatial context when hearing scenarios of events in which it is absent. Spatial context should also serve as an…

  11. Spatial information semantic query based on SPARQL

    NASA Astrophysics Data System (ADS)

    Xiao, Zhifeng; Huang, Lei; Zhai, Xiaofang

    2009-10-01

    How can the efficiency of spatial information inquiries be enhanced in today's fast-growing information age? We are rich in geospatial data but poor in up-to-date geospatial information and knowledge that are ready to be accessed by public users. This paper adopts an approach for querying spatial semantic by building an Web Ontology language(OWL) format ontology and introducing SPARQL Protocol and RDF Query Language(SPARQL) to search spatial semantic relations. It is important to establish spatial semantics that support for effective spatial reasoning for performing semantic query. Compared to earlier keyword-based and information retrieval techniques that rely on syntax, we use semantic approaches in our spatial queries system. Semantic approaches need to be developed by ontology, so we use OWL to describe spatial information extracted by the large-scale map of Wuhan. Spatial information expressed by ontology with formal semantics is available to machines for processing and to people for understanding. The approach is illustrated by introducing a case study for using SPARQL to query geo-spatial ontology instances of Wuhan. The paper shows that making use of SPARQL to search OWL ontology instances can ensure the result's accuracy and applicability. The result also indicates constructing a geo-spatial semantic query system has positive efforts on forming spatial query and retrieval.

  12. Spatial uncertainty analysis of population models

    SciTech Connect

    Jager, Yetta; King, Anthony Wayne; Schumaker, Nathan; Ashwood, Tom L; Jackson, Barbara L

    2004-01-01

    This paper describes an approach for conducting spatial uncertainty analysis of spatial population models, and illustrates the ecological consequences of spatial uncertainty for landscapes with different properties. Spatial population models typically simulate birth, death, and migration on an input map that describes habitat. Typically, only a single reference map is available, but we can imagine that a collection of other, slightly different, maps could be drawn to represent a particular species' habitat. As a first approximation, our approach assumes that spatial uncertainty (i.e., the variation among values assigned to a location by such a collection of maps) is constrained by characteristics of the reference map, regardless of how the map was produced. Our approach produces lower levels of uncertainty than alternative methods used in landscape ecology because we condition our alternative landscapes on local properties of the reference map. Simulated spatial uncertainty was higher near the borders of patches. Consequently, average uncertainty was highest for reference maps with equal proportions of suitable and unsuitable habitat, and no spatial autocorrelation. We used two population viability models to evaluate the ecological consequences of spatial uncertainty for landscapes with different properties. Spatial uncertainty produced larger variation among predictions of a spatially explicit model than those of a spatially implicit model. Spatially explicit model predictions of final female population size varied most among landscapes with enough clustered habitat to allow persistence. In contrast, predictions of population growth rate varied most among landscapes with only enough clustered habitat to support a small population, i.e., near a spatially mediated extinction threshold. We conclude that spatial uncertainty has the greatest effect on persistence when the amount and arrangement of suitable habitat are such that habitat capacity is near the minimum

  13. Impaired spatial working memory maintenance in schizophrenia involves both spatial coordinates and spatial reference frames.

    PubMed

    Mazhari, Shahrzad; Badcock, Johanna C; Waters, Flavie A; Dragović, Milan; Badcock, David R; Jablensky, Assen

    2010-10-30

    Spatial working memory (SWM) dysfunction is a central finding in schizophrenia; however, more evidence of impaired maintenance over time is required. Consequently, the present study examined SWM maintenance over short unfilled delays, and with encoding equated. The influence of a vertical reference frame to support maintenance was also investigated. The performance of 58 patients with schizophrenia and 50 healthy controls was assessed using the Visuo-Spatial Working Memory (VSWM) Test across three unfilled delays (0, 2, and 4s). Inaccuracy of direction and distance responses was examined at each delay duration. The results showed that performance was significantly less accurate for both distance and direction responses at 2 and 4s delays in schizophrenia, but was not significantly different from controls at the 0s delay. Patients showed a particularly marked loss of accuracy between the time interval of 0-2s. Furthermore, schizophrenia participants exhibited significantly greater response variability at the vertical axis of symmetry than controls at the 2 and 4s delays, but not at the 0s delay. These data clearly show both impaired maintenance over time and difficulty using a vertical frame of reference in schizophrenia. The latter findings may reflect, in part, dysfunctional reference-related inhibition. PMID:20493553

  14. Multiwavelength metasurfaces through spatial multiplexing

    PubMed Central

    Arbabi, Ehsan; Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Faraon, Andrei

    2016-01-01

    Metasurfaces are two-dimensional arrangements of optical scatterers rationally arranged to control optical wavefronts. Despite the significant advances made in wavefront engineering through metasurfaces, most of these devices are designed for and operate at a single wavelength. Here we show that spatial multiplexing schemes can be applied to increase the number of operation wavelengths. We use a high contrast dielectric transmittarray platform with amorphous silicon nano-posts to demonstrate polarization insensitive metasurface lenses with a numerical aperture of 0.46, that focus light at 915 and 1550 nm to the same focal distance. We investigate two different methods, one based on large scale segmentation and one on meta-atom interleaving, and compare their performances. An important feature of this method is its simple generalization to adding more wavelengths or new functionalities to a device. Therefore, it provides a relatively straightforward method for achieving multi-functional and multiwavelength metasurface devices. PMID:27597568

  15. Spatially anisotropic Heisenberg kagome antiferromagnet

    NASA Astrophysics Data System (ADS)

    Apel, W.; Yavors'kii, T.; Everts, H.-U.

    2007-04-01

    In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies (Hiroi et al 2001 J. Phys. Soc. Japan 70 3377; Fukaya et al 2003 Phys. Rev. Lett. 91 207603; Bert et al 2004 J. Phys.: Condens. Matter 16 S829; Bert et al 2005 Phys. Rev. Lett. 95 087203). It has been suggested that the magnetic properties of this material are described by a spin-1/2 Heisenberg model on the kagome lattice with spatially anisotropic exchange couplings. We report on investigations of the {\\mathrm {Sp}}(\\mathcal {N}) symmetric generalization of this model in the large \\mathcal {N} limit. We obtain a detailed description of the dependence of possible ground states on the anisotropy and on the spin length S. A fairly rich phase diagram with a ferrimagnetic phase, incommensurate phases with and without long-range order and a decoupled chain phase emerges.

  16. Concerning the Spatial Heterodyne Spectrometer.

    PubMed

    Lenzner, Matthias; Diels, Jean-Claude

    2016-01-25

    A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order of the effective aperture of the device. The limits of usability are shown here together with some measurements of known spectral lines. PMID:26832561

  17. Spatial model of autocatalytic reactions

    NASA Astrophysics Data System (ADS)

    de Anna, Pietro; di Patti, Francesca; Fanelli, Duccio; McKane, Alan J.; Dauxois, Thierry

    2010-05-01

    Biological cells with all of their surface structure and complex interior stripped away are essentially vesicles—membranes composed of lipid bilayers which form closed sacs. Vesicles are thought to be relevant as models of primitive protocells, and they could have provided the ideal environment for prebiotic reactions to occur. In this paper, we investigate the stochastic dynamics of a set of autocatalytic reactions, within a spatially bounded domain, so as to mimic a primordial cell. The discreteness of the constituents of the autocatalytic reactions gives rise to large sustained oscillations even when the number of constituents is quite large. These oscillations are spatiotemporal in nature, unlike those found in previous studies, which consisted only of temporal oscillations. We speculate that these oscillations may have a role in seeding membrane instabilities which lead to vesicle division. In this way synchronization could be achieved between protocell growth and the reproduction rate of the constituents (the protogenetic material) in simple protocells.

  18. Concerning the Spatial Heterodyne Spectrometer

    DOE PAGESBeta

    Lenzner, Matthias; Diels, Jean -Claude

    2016-01-22

    A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order ofmore » the effective aperture of the device. In conclusion, the limits of usability are shown here together with some measurements of known spectral lines.« less

  19. Spatial filters for shape control

    NASA Technical Reports Server (NTRS)

    Lindner, Douglas K.; Reichard, Karl M.

    1992-01-01

    Recently there has emerged a new class of sensors, called spatial filters, for structures which respond over a significant gauge length. Examples include piezoelectric laminate PVDF film, modal domain optical fiber sensors, and holographic sensors. These sensors have a unique capability in that they can be fabricated to locally alter their sensitivity to the measurand. In this paper we discuss how these sensors can be used for the implementation of control algorithms for the suppression of acoustic radiation from flexible structures. Based on this relationship between the total power radiated to the far field to the modal velocities of the structure, we show how the sensor placement to optimize the control algorithm to suppress the radiated power.

  20. Reflective coherent spatial light modulator

    DOEpatents

    Simpson, John T.; Richards, Roger K.; Hutchinson, Donald P.; Simpson, Marcus L.

    2003-04-22

    A reflective coherent spatial light modulator (RCSLM) includes a subwavelength resonant grating structure (SWS), the SWS including at least one subwavelength resonant grating layer (SWL) have a plurality of areas defining a plurality of pixels. Each pixel represents an area capable of individual control of its reflective response. A structure for modulating the resonant reflective response of at least one pixel is provided. The structure for modulating can include at least one electro-optic layer in optical contact with the SWS. The RCSLM is scalable in both pixel size and wavelength. A method for forming a RCSLM includes the steps of selecting a waveguide material and forming a SWS in the waveguide material, the SWS formed from at least one SWL, the SWL having a plurality of areas defining a plurality of pixels.

  1. Spatial characterization of BNCT beams.

    PubMed

    Marek, M; Viererbl, L

    2004-11-01

    The space distribution of the epithermal neutron flux was determined for the epithermal neutron beams of several NCT facilities in USA (FCB at MIT), Europe (HFR at JRC, Petten; FiR at VTT, Espoo; LVR-15 at NRI, Rez) and Japan (JRR-4 at JAERI, Tokai). Using p-n diodes with (6)Li radiator and the set of Bonner sphere spectrometer (BSS) the beams were quantified in-air. Axial beam profiles along the beam axes and the radial distributions at two distances from the beam aperture were measured. Except for the well-collimated HFR beam, the spatial characteristics of the other studied beams were found generally similar, which results from their similar designs. PMID:15308191

  2. Spatial patterns in ant colonies.

    PubMed

    Theraulaz, Guy; Bonabeau, Eric; Nicolis, Stamatios C; Solé, Ricard V; Fourcassié, Vincent; Blanco, Stéphane; Fournier, Richard; Joly, Jean-Louis; Fernández, Pau; Grimal, Anne; Dalle, Patrice; Deneubourg, Jean-Louis

    2002-07-23

    The origins of large-scale spatial patterns in biology have been an important source of theoretical speculation since the pioneering work by Turing (1952) on the chemical basis of morphogenesis. Knowing how these patterns emerge and their functional role is important to our understanding of the evolution of biocomplexity and the role played by self organization. However, so far, conclusive evidence for local activation-long-range inhibition mechanisms in real biological systems has been elusive. Here a well-defined experimental and theoretical analysis of the pattern formation dynamics exhibited by clustering behavior in ant colonies is presented. These experiments and a simple mathematical model show that these colonies do indeed use this type of mechanism. All microscopic variables have been measured and provide the first evidence, to our knowledge, for this type of self-organized behavior in complex biological systems, supporting early conjectures about its role in the organization of insect societies. PMID:12114538

  3. Spatial light interference tomography (SLIT).

    PubMed

    Wang, Zhuo; Marks, Daniel L; Carney, Paul Scott; Millet, Larry J; Gillette, Martha U; Mihi, Agustin; Braun, Paul V; Shen, Zhen; Prasanth, Supriya G; Popescu, Gabriel

    2011-10-10

    We present spatial light interference tomography (SLIT), a label-free method for 3D imaging of transparent structures such as live cells. SLIT uses the principle of interferometric imaging with broadband fields and combines the optical gating due to the micron-scale coherence length with that of the high numerical aperture objective lens. Measuring the phase shift map associated with the object as it is translated through focus provides full information about the 3D distribution associated with the refractive index. Using a reconstruction algorithm based on the Born approximation, we show that the sample structure may be recovered via a 3D, complex field deconvolution. We illustrate the method with reconstructed tomographic refractive index distributions of microspheres, photonic crystals, and unstained living cells. PMID:21996999

  4. Multiwavelength metasurfaces through spatial multiplexing.

    PubMed

    Arbabi, Ehsan; Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Faraon, Andrei

    2016-01-01

    Metasurfaces are two-dimensional arrangements of optical scatterers rationally arranged to control optical wavefronts. Despite the significant advances made in wavefront engineering through metasurfaces, most of these devices are designed for and operate at a single wavelength. Here we show that spatial multiplexing schemes can be applied to increase the number of operation wavelengths. We use a high contrast dielectric transmittarray platform with amorphous silicon nano-posts to demonstrate polarization insensitive metasurface lenses with a numerical aperture of 0.46, that focus light at 915 and 1550 nm to the same focal distance. We investigate two different methods, one based on large scale segmentation and one on meta-atom interleaving, and compare their performances. An important feature of this method is its simple generalization to adding more wavelengths or new functionalities to a device. Therefore, it provides a relatively straightforward method for achieving multi-functional and multiwavelength metasurface devices. PMID:27597568

  5. Marine spatial planning in Cyprus

    NASA Astrophysics Data System (ADS)

    Hadjimitsis, Diofantos; Agapiou, Athos; Mettas, Christodoulos; Themistocleous, Kyriacos; Evagorou, Evagoras; Cuca, Branka; Papoutsa, Christiana; Nisantzi, Argyro; Mamouri, Rodanthi-Elisavet; Soulis, George; Xagoraris, Zafiris; Lysandrou, Vasiliki; Aliouris, Kyriacos; Ioannou, Nicolas; Pavlogeorgatos, Gerasimos

    2015-06-01

    Marine Spatial Planning (MSP), which is in concept similar to land-use planning, is a public process by which the relevant Member State's authorities analyse and organise human activities in marine areas to achieve ecological, economic and social objectives. MSP aims to promote sustainable growth of maritime economies, sustainable development of marine areas and sustainable use of marine resources. This paper highlights the importance of MSP and provides basic outcomes of the main European marine development. The already successful MSP plans can provide useful feedback and guidelines for other countries that are in the process of implementation of an integrated MSP, such as Cyprus. This paper presents part of the MSP project, of which 80% funded by the European Regional Development Fund (ERDF) and 20% from national contribution. An overview of the project is presented, including data acquisition, methodology and preliminary results for the implementation of MSP in Cyprus.

  6. Visualizing Spatially Varying Distribution Data

    NASA Technical Reports Server (NTRS)

    Kao, David; Luo, Alison; Dungan, Jennifer L.; Pang, Alex; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Box plot is a compact representation that encodes the minimum, maximum, mean, median, and quarters information of a distribution. In practice, a single box plot is drawn for each variable of interest. With the advent of more accessible computing power, we are now facing the problem of visual icing data where there is a distribution at each 2D spatial location. Simply extending the box plot technique to distributions over 2D domain is not straightforward. One challenge is reducing the visual clutter if a box plot is drawn over each grid location in the 2D domain. This paper presents and discusses two general approaches, using parametric statistics and shape descriptors, to present 2D distribution data sets. Both approaches provide additional insights compared to the traditional box plot technique

  7. Natural Resources and Spatial Spillovers

    NASA Astrophysics Data System (ADS)

    Batbold, Dulguun

    Regions going through a natural resource boom tend to have higher average incomes and employment relative to the rest of the country. For policy analysis, a question that often needs to be answered is to what extent the economic growth in the extraction region spills over to neighboring areas. This thesis develops a detailed methodology for analyzing the economic effects of geographically localized shocks within the framework of a parsimonious spatial general equilibrium model, including various methods for estimating key parameters. This model-based approach is being offered as a complementary tool for applied researchers conducting economic impact analysis. Existing empirical methods such as input-output analysis or difference-in-difference estimation techniques are often not optimal for analyzing spatially correlated data, and this model-based methodology can be used to overcome their limitations. Another important advantage of this methodology is that it is computationally tractable and has a relatively low data requirement, which can make a particularly big difference in studying developing countries where data quality and availability can often be an insurmountable challenge. Following the exposition of the methodology, this thesis presents two separate applications, one involving a developed nation and the other a developing one. In the first case, the methodology is applied to analyze the economic impact of the shale energy boom that's been occurring in and around Bakken counties in western North Dakota and eastern Montana over the past decade. In the second case, the methodology is used to analyze the economic impact of the Oyu Tolgoi copper-gold mining project in the Southern Gobi region of Mongolia. A common conclusion that is drawn from the two applications mentioned above is that economic booms fueled by natural resource extracting industries are largely local and have limited spillover effects on neighboring regions.

  8. Spatial Uncertainty Analysis of Ecological Models

    SciTech Connect

    Jager, H.I.; Ashwood, T.L.; Jackson, B.L.; King, A.W.

    2000-09-02

    The authors evaluated the sensitivity of a habitat model and a source-sink population model to spatial uncertainty in landscapes with different statistical properties and for hypothetical species with different habitat requirements. Sequential indicator simulation generated alternative landscapes from a source map. Their results showed that spatial uncertainty was highest for landscapes in which suitable habitat was rare and spatially uncorrelated. Although, they were able to exert some control over the degree of spatial uncertainty by varying the sampling density drawn from the source map, intrinsic spatial properties (i.e., average frequency and degree of spatial autocorrelation) played a dominant role in determining variation among realized maps. To evaluate the ecological significance of landscape variation, they compared the variation in predictions from a simple habitat model to variation among landscapes for three species types. Spatial uncertainty in predictions of the amount of source habitat depended on both the spatial life history characteristics of the species and the statistical attributes of the synthetic landscapes. Species differences were greatest when the landscape contained a high proportion of suitable habitat. The predicted amount of source habitat was greater for edge-dependent (interior) species in landscapes with spatially uncorrelated(correlated) suitable habitat. A source-sink model demonstrated that, although variation among landscapes resulted in relatively little variation in overall population growth rate, this spatial uncertainty was sufficient in some situations, to produce qualitatively different predictions about population viability (i.e., population decline vs. increase).

  9. Spatial-Operator Algebra For Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.

    1991-01-01

    Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.

  10. Auditory spatial processing in Alzheimer's disease.

    PubMed

    Golden, Hannah L; Nicholas, Jennifer M; Yong, Keir X X; Downey, Laura E; Schott, Jonathan M; Mummery, Catherine J; Crutch, Sebastian J; Warren, Jason D

    2015-01-01

    The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer's disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer's disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer's disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer's disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer's disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer's disease

  11. Spatial filter for Q-switched lasers

    NASA Technical Reports Server (NTRS)

    Wuerker, R. F.; Heflinger, L. O. (Inventor)

    1977-01-01

    A spatial filtered Q-switched laser system is reported that prevents ionization of air in close proximity to the aperture of the spatial filter. A compound lens system having an astigmatic focus is positioned between the laser and the spatial filter for defocusing the light beam emanating from the laser in the vicinity of the aperture of the spatial filter to an intensity below that which produces ionization of air. The preferred construction of the compound lens system as viewed from the laser comprises a cylindrical lens and a pair of positive lenses.

  12. Spatial Text Visualization Using Automatic Typographic Maps.

    PubMed

    Afzal, S; Maciejewski, R; Jang, Yun; Elmqvist, N; Ebert, D S

    2012-12-01

    We present a method for automatically building typographic maps that merge text and spatial data into a visual representation where text alone forms the graphical features. We further show how to use this approach to visualize spatial data such as traffic density, crime rate, or demographic data. The technique accepts a vector representation of a geographic map and spatializes the textual labels in the space onto polylines and polygons based on user-defined visual attributes and constraints. Our sample implementation runs as a Web service, spatializing shape files from the OpenStreetMap project into typographic maps for any region. PMID:26357164

  13. Leveraging Spatial Model to Improve Indoor Tracking

    NASA Astrophysics Data System (ADS)

    Liu, L.; Xu, W.; Penard, W.; Zlatanova, S.

    2015-05-01

    In this paper, we leverage spatial model to process indoor localization results and then improve the track consisting of measured locations. We elaborate different parts of spatial model such as geometry, topology and semantics, and then present how they contribute to the processing of indoor tracks. The initial results of our experiment reveal that spatial model can support us to overcome problems such as tracks intersecting with obstacles and unstable shifts between two location measurements. In the future, we will investigate more exceptions of indoor tracking results and then develop additional spatial methods to reduce errors of indoor tracks.

  14. An Empirical Bayes Approach to Spatial Analysis

    NASA Technical Reports Server (NTRS)

    Morris, C. N.; Kostal, H.

    1983-01-01

    Multi-channel LANDSAT data are collected in several passes over agricultural areas during the growing season. How empirical Bayes modeling can be used to develop crop identification and discrimination techniques that account for spatial correlation in such data is considered. The approach models the unobservable parameters and the data separately, hoping to take advantage of the fact that the bulk of spatial correlation lies in the parameter process. The problem is then framed in terms of estimating posterior probabilities of crop types for each spatial area. Some empirical Bayes spatial estimation methods are used to estimate the logits of these probabilities.

  15. NASA World Wind: Infrastructure for Spatial Data

    NASA Technical Reports Server (NTRS)

    Hogan, Patrick

    2011-01-01

    The world has great need for analysis of Earth observation data, be it climate change, carbon monitoring, disaster response, national defense or simply local resource management. To best provide for spatial and time-dependent information analysis, the world benefits from an open standards and open source infrastructure for spatial data. In the spirit of NASA's motto "for the benefit of all" NASA invites the world community to collaboratively advance this core technology. The World Wind infrastructure for spatial data both unites and challenges the world for innovative solutions analyzing spatial data while also allowing absolute command and control over any respective information exchange medium.

  16. Spatial search by quantum walk

    SciTech Connect

    Childs, Andrew M.; Goldstone, Jeffrey

    2004-08-01

    Grover's quantum search algorithm provides a way to speed up combinatorial search, but is not directly applicable to searching a physical database. Nevertheless, Aaronson and Ambainis showed that a database of N items laid out in d spatial dimensions can be searched in time of order {radical}(N) for d>2, and in time of order {radical}(N) poly(log N) for d=2. We consider an alternative search algorithm based on a continuous-time quantum walk on a graph. The case of the complete graph gives the continuous-time search algorithm of Farhi and Gutmann, and other previously known results can be used to show that {radical}(N) speedup can also be achieved on the hypercube. We show that full {radical}(N) speedup can be achieved on a d-dimensional periodic lattice for d>4. In d=4, the quantum walk search algorithm takes time of order {radical}(N) poly(log N), and in d<4, the algorithm does not provide substantial speedup.

  17. Spatial filtering improved tomographic PIV

    NASA Astrophysics Data System (ADS)

    Discetti, Stefano; Natale, Andrea; Astarita, Tommaso

    2013-04-01

    Tomographic reconstruction accuracy is of fundamental importance to obtain reliable three-dimensional three-components velocity field measurements when implementing tomographic particle image velocimetry. Algebraic methods (Herman and Lent 1976) are quite well established to handle the problem in case of high spatial frequency spots on a dark background imaged by a limited number of simultaneous views; however, their efficacy is limited in case of dense distributions to be reconstructed. In the present work, an easy implementable modified version of the commonly used multiplicative algebraic reconstruction technique is proposed, allowing a remarkable improvement of the tomographic reconstruction quality only slightly increasing the computational cost. The technique is based on artificial diffusion applied by Gaussian smoothing after each iteration of the reconstruction procedure. Numerical simulations show that the increase in the reconstruction quality leads to a significant reduction of the modulation effects in the velocity measurement due to the coherent ghost particles motion. An experimental application in fractal grid turbulence highlights an improvement of the signal strength and a reduction of the uncertainty in the velocity measurement.

  18. Spatial processing in color reproduction

    NASA Astrophysics Data System (ADS)

    Liu, Li; Yang, Yongyi; Stark, Henry

    2005-08-01

    We consider the reproduction of color subject to material and neighborhood constraints. By 'material constraints,' we mean any constraints that are applied to the amount of ink, lights, voltages, and currents that are used in the generation of color. In the first instance we consider the problem of reproducing a target color constrained by maximum additive color signals, such as in the phosphorescence process in a cathode ray tube. In the second instance we consider the more difficult problem of reproducing color subject to constraints on the maximum primary color variations in a (spatial) neighborhood. We introduce the idea of adjacent color variance (ACV) and then attempt to reproduce colors subject to an upper bound on the ACV. An algorithm that is suitable for this task is the method of vector space projections (VSP). In order to use VSP for constrained color reproduction, we use a novel approach to linearize nonlinear CIE-Lab space constraints. Experimental results are furnished that demonstrate that using the ACV as a bound helps to reduce reproduction artifacts in a color image.

  19. Bioconvection in spatially extended domains

    NASA Astrophysics Data System (ADS)

    Karimi, A.; Paul, M. R.

    2013-05-01

    We numerically explore gyrotactic bioconvection in large spatially extended domains of finite depth using parameter values from available experiments with the unicellular alga Chlamydomonas nivalis. We numerically integrate the three-dimensional, time-dependent continuum model of Pedley [J. Fluid Mech.10.1017/S0022112088002393 195, 223 (1988)] using a high-order, parallel, spectral-element approach. We explore the long-time nonlinear patterns and dynamics found for layers with an aspect ratio of 10 over a range of Rayleigh numbers. Our results yield the pattern wavelength and pattern dynamics which we compare with available theory and experimental measurement. There is good agreement for the pattern wavelength at short times between numerics, experiment, and a linear stability analysis. At long times we find that the general sequence of patterns given by the nonlinear evolution of the governing equations correspond qualitatively to what has been described experimentally. However, at long times the patterns in numerics grow to larger wavelengths, in contrast to what is observed in experiment where the wavelength is found to decrease with time.

  20. Dimension of spatially embedded networks

    NASA Astrophysics Data System (ADS)

    Daqing, Li; Kosmidis, Kosmas; Bunde, Armin; Havlin, Shlomo

    2011-06-01

    The dimension of a system is one of the most fundamental quantities to characterize its structure and basic physical properties. Diffusion and vibrational excitations, for example, as well as the universal features of a system near a critical point depend crucially on its dimension. However, in the theory of complex networks the concept of dimension has been rarely discussed. Here we study models for spatially embedded networks and show how their dimension can be determined. Our results indicate that networks characterized by a broad distribution of link lengths have a dimension higher than that of the embedding space. We illustrate our findings using the global airline network and the Internet and argue that although these networks are embedded in two-dimensional space they should be regarded as systems with dimension close to 3 and 4.5, respectively. We show that the network dimension is a key concept to understand not only network topology, but also dynamical processes on networks, such as diffusion and critical phenomena including percolation.

  1. Spatial layout affects speed discrimination

    NASA Technical Reports Server (NTRS)

    Verghese, P.; Stone, L. S.

    1997-01-01

    We address a surprising result in a previous study of speed discrimination with multiple moving gratings: discrimination thresholds decreased when the number of stimuli was increased, but remained unchanged when the area of a single stimulus was increased [Verghese & Stone (1995). Vision Research, 35, 2811-2823]. In this study, we manipulated the spatial- and phase relationship between multiple grating patches to determine their effect on speed discrimination thresholds. In a fusion experiment, we merged multiple stimulus patches, in stages, into a single patch. Thresholds increased as the patches were brought closer and their phase relationship was adjusted to be consistent with a single patch. Thresholds increased further still as these patches were fused into a single patch. In a fission experiment, we divided a single large patch into multiple patches by superimposing a cross with luminance equal to that of the background. Thresholds decreased as the large patch was divided into quadrants and decreased further as the quadrants were maximally separated. However, when the cross luminance was darker than the background, it was perceived as an occluder and thresholds, on average, were unchanged from that for the single large patch. A control experiment shows that the observed trend in discrimination thresholds is not due to the differences in perceived speed of the stimuli. These results suggest that the parsing of the visual image into entities affects the combination of speed information across space, and that each discrete entity effectively provides a single independent estimate of speed.

  2. Semantics of directly manipulating spatializations.

    PubMed

    Hu, Xinran; Bradel, Lauren; Maiti, Dipayan; House, Leanna; North, Chris; Leman, Scotland

    2013-12-01

    When high-dimensional data is visualized in a 2D plane by using parametric projection algorithms, users may wish to manipulate the layout of the data points to better reflect their domain knowledge or to explore alternative structures. However, few users are well-versed in the algorithms behind the visualizations, making parameter tweaking more of a guessing game than a series of decisive interactions. Translating user interactions into algorithmic input is a key component of Visual to Parametric Interaction (V2PI) [13]. Instead of adjusting parameters, users directly move data points on the screen, which then updates the underlying statistical model. However, we have found that some data points that are not moved by the user are just as important in the interactions as the data points that are moved. Users frequently move some data points with respect to some other 'unmoved' data points that they consider as spatially contextual. However, in current V2PI interactions, these points are not explicitly identified when directly manipulating the moved points. We design a richer set of interactions that makes this context more explicit, and a new algorithm and sophisticated weighting scheme that incorporates the importance of these unmoved data points into V2PI. PMID:24051771

  3. The Joint Role of Spatial Ability and Imagery Strategy in Sustaining the Learning of Spatial Descriptions under Spatial Interference

    ERIC Educational Resources Information Center

    Meneghetti, Chiara; De Beni, Rossana; Gyselinck, Valerie; Pazzaglia, Francesca

    2013-01-01

    The present study investigates the joint role of spatial ability, imagery strategy and visuospatial working memory (VSWM) in spatial text processing. A set of 180 participants, half of them trained on the use of imagery strategy (training vs no-training groups), was further divided according to participants' high or low mental rotation ability…

  4. Comparing Spatial and Non-Spatial Hierarchical Models for Mapping Forest Soil Organic Carbon at Large Spatial Scales.

    NASA Astrophysics Data System (ADS)

    Clough, B. J.; Green, E. J.

    2014-12-01

    Spatially referenced soil inventory datasets facilitate the mapping of forest soil organic carbon (SOC) at large spatial scales via statistical interpolation. When spatial autocorrelation is present in these data, geostatistical modeling strategies may lead to improved accuracy and a better understanding of the uncertainty within the predictive model. In this study, we compared spatial and non-spatial Bayesian hierarchical models for predicting SOC across forested lands in the nation of Germany. We used observations from the E.U. Joint Research Centre's LUCAS topsoil database, coupled with predictor variables drawn from remote sensing data products, to address the following objectives: (1) examine patterns of spatial autocorrelation in a national forest SOC dataset; (2) compare spatial and non-spatial models for predicting forest SOC at new locations; and (3) apply the selected model to map predicted soil carbon, along with associated uncertainty estimates, across a grid covering all German forests. Exploratory analyses indicate that there is spatial autocorrelation in the SOC data, and our results suggest that incorporating this spatial dependence within the model framework offers a 9-10 percent reduction in root mean square prediction error (RMSPE) relative to non-spatial models within our study region. By adopting a Bayesian hierarchical approach, where full posterior distributions may be generated at each prediction location, we found significant uncertainty relative to mean estimates when scaling up plot data to the national scale, even when spatial dependence was accounted for. Our results suggest that while accounting for spatial dependence improves predictive performance, difficulty associated with establishing clear relationships between forest SOC and predictor variables limits model precision. By conditioning predictions on both the model parameters and input data, Bayesian hierarchical models were important to our understanding of the model uncertainty

  5. Children’s spatial thinking: Does talk about the spatial world matter?

    PubMed Central

    Pruden, Shannon M.; Levine, Susan C.; Huttenlocher, Janellen

    2012-01-01

    In this paper we examine the relations between parent spatial language input, children’s own production of spatial language, and children’s later spatial abilities. Using a longitudinal study design, we coded the use of spatial language (i.e., words describing the spatial features and properties of objects; e.g., big, tall, circle, curvy, edge) from child age 14 to 46 months in a diverse sample of 52 parent-child dyads interacting in their home settings. These same children were given three non-verbal spatial tasks, items from a Spatial Transformation task (Levine et al., 1999), the Block Design subtest from the WPPSI-III (Wechsler, 2002), and items on the Spatial Analogies subtest from Primary Test of Cognitive Skills (Huttenlocher & Levine, 1990) at 54 months of age. We find that parents vary widely in the amount of spatial language they use with their children during everyday interactions. This variability in spatial language input, in turn, predicts the amount of spatial language children produce, controlling for overall parent language input. Furthermore, children who produce more spatial language are more likely to perform better on spatial problem solving tasks at a later age. PMID:22010900

  6. Tactile feedback improves auditory spatial localization.

    PubMed

    Gori, Monica; Vercillo, Tiziana; Sandini, Giulio; Burr, David

    2014-01-01

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback, or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject's forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially congruent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality. PMID:25368587

  7. Loss of form vision impairs spatial imagery

    PubMed Central

    Occelli, Valeria; Lin, Jonathan B.; Lacey, Simon; Sathian, K.

    2014-01-01

    Previous studies have reported inconsistent results when comparing spatial imagery performance in the blind and the sighted, with some, but not all, studies demonstrating deficits in the blind. Here, we investigated the effect of visual status and individual preferences (“cognitive style”) on performance of a spatial imagery task. Participants with blindness resulting in the loss of form vision at or after age 6, and age- and gender-matched sighted participants, performed a spatial imagery task requiring memorization of a 4 × 4 lettered matrix and subsequent mental construction of shapes within the matrix from four-letter auditory cues. They also completed the Santa Barbara Sense of Direction Scale (SBSoDS) and a self-evaluation of cognitive style. The sighted participants also completed the Object-Spatial Imagery and Verbal Questionnaire (OSIVQ). Visual status affected performance on the spatial imagery task: the blind performed significantly worse than the sighted, independently of the age at which form vision was completely lost. Visual status did not affect the distribution of preferences based on self-reported cognitive style. Across all participants, self-reported verbalizer scores were significantly negatively correlated with accuracy on the spatial imagery task. There was a positive correlation between the SBSoDS score and accuracy on the spatial imagery task, across all participants, indicating that a better sense of direction is related to a more proficient spatial representation and that the imagery task indexes ecologically relevant spatial abilities. Moreover, the older the participants were, the worse their performance was, indicating a detrimental effect of age on spatial imagery performance. Thus, spatial skills represent an important target for rehabilitative approaches to visual impairment, and individual differences, which can modulate performance, should be taken into account in such approaches. PMID:24678294

  8. Loss of form vision impairs spatial imagery.

    PubMed

    Occelli, Valeria; Lin, Jonathan B; Lacey, Simon; Sathian, K

    2014-01-01

    Previous studies have reported inconsistent results when comparing spatial imagery performance in the blind and the sighted, with some, but not all, studies demonstrating deficits in the blind. Here, we investigated the effect of visual status and individual preferences ("cognitive style") on performance of a spatial imagery task. Participants with blindness resulting in the loss of form vision at or after age 6, and age- and gender-matched sighted participants, performed a spatial imagery task requiring memorization of a 4 × 4 lettered matrix and subsequent mental construction of shapes within the matrix from four-letter auditory cues. They also completed the Santa Barbara Sense of Direction Scale (SBSoDS) and a self-evaluation of cognitive style. The sighted participants also completed the Object-Spatial Imagery and Verbal Questionnaire (OSIVQ). Visual status affected performance on the spatial imagery task: the blind performed significantly worse than the sighted, independently of the age at which form vision was completely lost. Visual status did not affect the distribution of preferences based on self-reported cognitive style. Across all participants, self-reported verbalizer scores were significantly negatively correlated with accuracy on the spatial imagery task. There was a positive correlation between the SBSoDS score and accuracy on the spatial imagery task, across all participants, indicating that a better sense of direction is related to a more proficient spatial representation and that the imagery task indexes ecologically relevant spatial abilities. Moreover, the older the participants were, the worse their performance was, indicating a detrimental effect of age on spatial imagery performance. Thus, spatial skills represent an important target for rehabilitative approaches to visual impairment, and individual differences, which can modulate performance, should be taken into account in such approaches. PMID:24678294

  9. Plasticity of human spatial cognition: spatial language and cognition covary across cultures.

    PubMed

    Haun, Daniel B M; Rapold, Christian J; Janzen, Gabriele; Levinson, Stephen C

    2011-04-01

    The present paper explores cross-cultural variation in spatial cognition by comparing spatial reconstruction tasks by Dutch and Namibian elementary school children. These two communities differ in the way they predominantly express spatial relations in language. Four experiments investigate cognitive strategy preferences across different levels of task-complexity and instruction. Data show a correlation between dominant linguistic spatial frames of reference and performance patterns in non-linguistic spatial memory tasks. This correlation is shown to be stable across an increase of complexity in the spatial array. When instructed to use their respective non-habitual cognitive strategy, participants were not easily able to switch between strategies and their attempts to do so impaired their performance. These results indicate a difference not only in preference but also in competence and suggest that spatial language and non-linguistic preferences and competences in spatial cognition are systematically aligned across human populations. PMID:21238953

  10. Misprojection of Landmarks onto the Spatial Map

    ERIC Educational Resources Information Center

    Toraldo, Alessio; Reverberi, Carlo

    2004-01-01

    It has been suggested that neglect patients misrepresent the metric spatial relations along the horizontal axis (anisometry). The ''fabric'' of their internal spatial medium would be distorted in such a way that physically equal distances appear relatively shorter on the contralesional side (canonical anisometry). The case of GL, a 76-year-old…

  11. Concrete Spatial Language: See What I Mean?

    ERIC Educational Resources Information Center

    Wallentin, M.; Ostergaard, S.; Lund, T.E.; Ostergaard, L.; Roepstorff, A.

    2005-01-01

    Conveying complex mental scenarios is at the heart of human language. Advances in cognitive linguistics suggest this is mediated by an ability to activate cognitive systems involved in non-linguistic processing of spatial information. In this fMRI-study, we compare sentences with a concrete spatial meaning to sentences with an abstract meaning.…

  12. Modeling Mental Spatial Reasoning about Cardinal Directions

    ERIC Educational Resources Information Center

    Schultheis, Holger; Bertel, Sven; Barkowsky, Thomas

    2014-01-01

    This article presents research into human mental spatial reasoning with orientation knowledge. In particular, we look at reasoning problems about cardinal directions that possess multiple valid solutions (i.e., are spatially underdetermined), at human preferences for some of these solutions, and at representational and procedural factors that lead…

  13. Spatial Language, Visual Attention, and Perceptual Simulation

    ERIC Educational Resources Information Center

    Coventry, Kenny R.; Lynott, Dermot; Cangelosi, Angelo; Monrouxe, Lynn; Joyce, Dan; Richardson, Daniel C.

    2010-01-01

    Spatial language descriptions, such as "The bottle is over the glass", direct the attention of the hearer to particular aspects of the visual world. This paper asks how they do so, and what brain mechanisms underlie this process. In two experiments employing behavioural and eye tracking methodologies we examined the effects of spatial language on…

  14. Spatial Ability through Engineering Graphics Education

    ERIC Educational Resources Information Center

    Marunic, Gordana; Glazar, Vladimir

    2013-01-01

    Spatial ability has been confirmed to be of particular importance for successful engineering graphics education and to be a component of human intelligence that can be improved through instruction and training. Consequently, the creation and communication by means of graphics demand careful development of spatial skills provided by the balanced…

  15. Spatial abstraction for autonomous robot navigation.

    PubMed

    Epstein, Susan L; Aroor, Anoop; Evanusa, Matthew; Sklar, Elizabeth I; Parsons, Simon

    2015-09-01

    Optimal navigation for a simulated robot relies on a detailed map and explicit path planning, an approach problematic for real-world robots that are subject to noise and error. This paper reports on autonomous robots that rely on local spatial perception, learning, and commonsense rationales instead. Despite realistic actuator error, learned spatial abstractions form a model that supports effective travel. PMID:26227680

  16. Spatial Updating of Environments Described in Texts

    ERIC Educational Resources Information Center

    Avraamides, Marios N.

    2003-01-01

    People update egocentric spatial relations in an effortless and on-line manner when they move in the environment, but not when they only imagine themselves moving. In contrast to previous studies, the present experiments examined egocentric updating with spatial scenes that were encoded linguistically instead of perceived directly. Experiment 1…

  17. Intelligent spatial ecosystem modeling using parallel processors

    SciTech Connect

    Maxwell, T.; Costanza, R. )

    1993-05-01

    Spatial modeling of ecosystems is essential if one's modeling goals include developing a relatively realistic description of past behavior and predictions of the impacts of alternative management policies on future ecosystem behavior. Development of these models has been limited in the past by the large amount of input data required and the difficulty of even large mainframe serial computers in dealing with large spatial arrays. These two limitations have begun to erode with the increasing availability of remote sensing data and GIS systems to manipulate it, and the development of parallel computer systems which allow computation of large, complex, spatial arrays. Although many forms of dynamic spatial modeling are highly amenable to parallel processing, the primary focus in this project is on process-based landscape models. These models simulate spatial structure by first compartmentalizing the landscape into some geometric design and then describing flows within compartments and spatial processes between compartments according to location-specific algorithms. The authors are currently building and running parallel spatial models at the regional scale for the Patuxent River region in Maryland, the Everglades in Florida, and Barataria Basin in Louisiana. The authors are also planning a project to construct a series of spatially explicit linked ecological and economic simulation models aimed at assessing the long-term potential impacts of global climate change.

  18. The Spatial Behaviour of Animals and Men

    ERIC Educational Resources Information Center

    Brindley, T. S.

    1973-01-01

    Describes some common patterns of animal spatial behavior, and discusses spatial relationships that can be observed as an important component of human social behavior. Reports the results of a study relating to the interpersonal distances of people in bus queues in Britain. (JR)

  19. Adaptive Assessment of Spatial Abilities. Final Report.

    ERIC Educational Resources Information Center

    Bejar, Isaac I.

    This report summarizes the results of research designed to study the psychometric and technological feasibility of adaptive testing to assess spatial ability. Data was collected from high school students on two types of spatial items: three-dimensional cubes and hidden figure items. The analysis of the three-dimensional cubes focused on the fit of…

  20. Spatially variant periodic structures in electromagnetics.

    PubMed

    Rumpf, Raymond C; Pazos, Javier J; Digaum, Jennefir L; Kuebler, Stephen M

    2015-08-28

    Spatial transforms are a popular technique for designing periodic structures that are macroscopically inhomogeneous. The structures are often required to be anisotropic, provide a magnetic response, and to have extreme values for the constitutive parameters in Maxwell's equations. Metamaterials and photonic crystals are capable of providing these, although sometimes only approximately. The problem still remains about how to generate the geometry of the final lattice when it is functionally graded, or spatially varied. This paper describes a simple numerical technique to spatially vary any periodic structure while minimizing deformations to the unit cells that would weaken or destroy the electromagnetic properties. New developments in this algorithm are disclosed that increase efficiency, improve the quality of the lattices and provide the ability to design aplanatic metasurfaces. The ability to spatially vary a lattice in this manner enables new design paradigms that are not possible using spatial transforms, three of which are discussed here. First, spatially variant self-collimating photonic crystals are shown to flow unguided waves around very tight bends using ordinary materials with low refractive index. Second, multi-mode waveguides in spatially variant band gap materials are shown to guide waves around bends without mixing power between the modes. Third, spatially variant anisotropic materials are shown to sculpt the near-field around electric components. This can be used to improve electromagnetic compatibility between components in close proximity. PMID:26217058

  1. Spatial Memory in Rats after 25 Hours

    ERIC Educational Resources Information Center

    Crystal, Jonathon D.; Babb, Stephanie J.

    2008-01-01

    We investigated the time course of spatial-memory decay in rats using an eight-arm radial maze. It is well established that performance remains high with retention intervals as long as 4 h, but declines to chance with a 24-h retention interval (Beatty, W. W., & Shavalia, D. A. (1980b). Spatial memory in rats: time course of working memory and…

  2. Object Orientation Affects Spatial Language Comprehension

    ERIC Educational Resources Information Center

    Burigo, Michele; Sacchi, Simona

    2013-01-01

    Typical spatial descriptions, such as "The car is in front of the house," describe the position of a located object (LO; e.g., the car) in space relative to a reference object (RO) whose location is known (e.g., the house). The orientation of the RO affects spatial language comprehension via the reference frame selection process.…

  3. Hungry for Early Spatial and Algebraic Reasoning

    ERIC Educational Resources Information Center

    Cross, Dionne I.; Adefope, Olufunke; Lee, Mi Yeon; Perez, Arnulfo

    2012-01-01

    Tasks that develop spatial and algebraic reasoning are crucial for learning and applying advanced mathematical ideas. In this article, the authors describe how two early childhood teachers used stories as the basis for a unit that supports spatial reasoning in kindergartners and first graders. Having mathematical experiences that go beyond…

  4. Neurodynamics With Spatial Self-Organization

    NASA Technical Reports Server (NTRS)

    Zak, Michail A.

    1993-01-01

    Report presents theoretical study of dynamics of neural network organizing own response in both phase space and in position space. Postulates several mathematical models of dynamics including spatial derivatives representing local interconnections among neurons. Shows how neural responses propagate via these interconnections and how spatial pattern of neural responses formed in homogeneous biological neural network.

  5. Sociospatial Schooling Practices: A Spatial Capital Approach

    ERIC Educational Resources Information Center

    Barthon, Catherine; Monfroy, Brigitte

    2010-01-01

    This paper highlights the importance today of the spatial dimension within the analysis of parents' education strategies concerning their school choices at the secondary school level. This study is based on the 2 dimensions of the concept of spatial capital (Levy, 1994): position capital and situation capital. It explores sociospatial schooling…

  6. Two-wavelength spatial-heterodyne holography

    DOEpatents

    Hanson, Gregory R.; Bingham, Philip R.; Simpson, John T.; Karnowski, Thomas P.; Voelkl, Edgar

    2007-12-25

    Systems and methods are described for obtaining two-wavelength differential-phase holograms. A method includes determining a difference between a filtered analyzed recorded first spatially heterodyne hologram phase and a filtered analyzed recorded second spatially-heterodyned hologram phase.

  7. Spatial Mismatch: A Third Generation Survey.

    ERIC Educational Resources Information Center

    Eagan, J. Vincent

    1999-01-01

    The spatial mismatch argument hypothesizes that racial discrimination in the housing market, together with the suburbanization of low skilled jobs, contributes significantly to the high unemployment and/or low wages of inner city minority workers. Surveys recent spatial mismatch literature and discusses policy alternatives, focusing on areas…

  8. Subcycle spatial mapping of recollision dynamics

    SciTech Connect

    Dudovich, N.; Tate, J. L.; Gaarde, M. B.; Mairesse, Y.; Villeneuve, D. M.; Corkum, P. B.

    2009-07-15

    We present a method for controlling the spatial properties of a high-order harmonic beam on a subcycle time scale. By adding a second-harmonic field to the driving laser field, we modify the spatiotemporal structure of the harmonic beam and manipulate it with attosecond resolution. Such a manipulation maps the subcycle dynamics of a recolliding electron to the spatial domain.

  9. SPATIAL APPROACH TO PLANNING THE PHYSICAL ENVIRONMENT.

    ERIC Educational Resources Information Center

    BELLOMY, CLEON C.; CAUDILL, WILLIAM W.

    THE PURPOSE OF THIS REPORT DEFINES THE SPATIAL APPROACH TO PLANNING THE PHYSICAL ENVIRONMENT AND SUGGESTS A MORE NATURAL APPROACH TO A LESS RESTRICTED ARCHITECTURE. ONE OF THE TWO BASIC ARCHITECTURAL ELEMENTS IN THE SPATIAL CONCEPT IS THE HORIZONTAL SCREEN WHICH KEEPS THE SUN AND RAIN OFF, LETS IN LIGHT, KEEPS OUT SUN HEAT, RETAINS ROOM HEAT, AND…

  10. Improving Student Understanding of Spatial Ecology Statistics

    ERIC Educational Resources Information Center

    Hopkins, Robert, II; Alberts, Halley

    2015-01-01

    This activity is designed as a primer to teaching population dispersion analysis. The aim is to help improve students' spatial thinking and their understanding of how spatial statistic equations work. Students use simulated data to develop their own statistic and apply that equation to experimental behavioral data for Gambusia affinis (western…

  11. Chapter 12: spatial or area repellents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial repellents a three-dimensional zone of protection around a host from attacks by biting arthropods. This chapter reviews current knowledge and outlines future directions for utilization of spatial repellents. Current knowledge includes the kinds of products, both active and passive devices,...

  12. Spatially variant periodic structures in electromagnetics

    PubMed Central

    Rumpf, Raymond C.; Pazos, Javier J.; Digaum, Jennefir L.; Kuebler, Stephen M.

    2015-01-01

    Spatial transforms are a popular technique for designing periodic structures that are macroscopically inhomogeneous. The structures are often required to be anisotropic, provide a magnetic response, and to have extreme values for the constitutive parameters in Maxwell's equations. Metamaterials and photonic crystals are capable of providing these, although sometimes only approximately. The problem still remains about how to generate the geometry of the final lattice when it is functionally graded, or spatially varied. This paper describes a simple numerical technique to spatially vary any periodic structure while minimizing deformations to the unit cells that would weaken or destroy the electromagnetic properties. New developments in this algorithm are disclosed that increase efficiency, improve the quality of the lattices and provide the ability to design aplanatic metasurfaces. The ability to spatially vary a lattice in this manner enables new design paradigms that are not possible using spatial transforms, three of which are discussed here. First, spatially variant self-collimating photonic crystals are shown to flow unguided waves around very tight bends using ordinary materials with low refractive index. Second, multi-mode waveguides in spatially variant band gap materials are shown to guide waves around bends without mixing power between the modes. Third, spatially variant anisotropic materials are shown to sculpt the near-field around electric components. This can be used to improve electromagnetic compatibility between components in close proximity. PMID:26217058

  13. Spatial and temporal variation in evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial and temporal variation in evapotranspiration occurs at multiple scales as the result of several different spatial and temporal patterns in precipitation, soil water holding capacity, cloudiness (available energy), types of crops, and residue and tillage management practices. We have often as...

  14. Does Spatial Training Improve Children's Mathematics Ability?

    ERIC Educational Resources Information Center

    Cheng, Yi-Ling; Mix, Kelly

    2011-01-01

    The authors' primary aim was to investigate a potential causal relationship between spatial ability and math ability. To do so, they used a pretest-training-posttest experimental design in which children received short-term spatial training and were tested on problem solving in math. They focused on first and second graders because earlier studies…

  15. Visual-somatotopic interactions in spatial perception.

    PubMed

    Samad, Majed; Shams, Ladan

    2016-02-10

    Ventriloquism is a well-studied multisensory illusion of audiovisual spatial perception in which the perceived location of an auditory stimulus is shifted in the direction of a synchronous, but spatially discrepant visual stimulus. This effect is because of vision's superior acuity in the spatial dimension, but has also been shown to be influenced by the perception of unity of the two signals. We sought to investigate whether a similar phenomenon may occur between vision and somatosensation along the surface of the body as vision is known to possess superior spatial acuity to somatosensation. We report the first demonstration of the visuotactile ventriloquist illusion: individuals were instructed to localize visual stimuli (small white disks) or tactile stimuli (brief localized vibrations) that were presented concurrently or individually along the surface of the forearm, where bimodal presentations included spatially congruent and incongruent stimuli. Participants showed strong visual-tactile interactions. The tactile localization was strongly biased in the direction of the visual stimulus and the magnitude of this bias decreased as the spatial disparity between the two stimuli increased. The Bayesian causal inference model that has previously been shown to account for auditory-visual spatial localization and the ventriloquism effect also accounted well for the present data. Therefore, crossmodal interactions involving spatial representation along the surface of the body follow the same rules as crossmodal interactions involving representations of external space (auditory-visual). PMID:26709693

  16. Connecting Spatial Memories of Two Nested Spaces

    ERIC Educational Resources Information Center

    Zhang, Hui; Mou, Weimin; McNamara, Timothy P.; Wang, Lin

    2014-01-01

    Four experiments investigated the manner in which people use spatial reference directions to organize spatial memories of 2 conceptually nested layouts. Participants learned directions of 8 remote cities centered to Beijing or Edmonton, where the experiments occurred, using a map or using direct pointing. The map and the environment were aligned,…

  17. Spatial and Social Networks in Organizational Innovation

    ERIC Educational Resources Information Center

    Wineman, Jean D.; Kabo, Felichism W.; Davis, Gerald F.

    2009-01-01

    Research on the enabling factors of innovation has focused on either the social component of organizations or on the spatial dimensions involved in the innovation process. But no one has examined the aggregate consequences of the link from spatial layout, to social networks, to innovation. This project enriches our understanding of how innovation…

  18. Why Do Spatial Abilities Predict Mathematical Performance?

    ERIC Educational Resources Information Center

    Tosto, Maria Grazia; Hanscombe, Ken B.; Haworth, Claire M. A.; Davis, Oliver S. P.; Petrill, Stephen A.; Dale, Philip S.; Malykh, Sergey; Plomin, Robert; Kovas, Yulia

    2014-01-01

    Spatial ability predicts performance in mathematics and eventual expertise in science, technology and engineering. Spatial skills have also been shown to rely on neuronal networks partially shared with mathematics. Understanding the nature of this association can inform educational practices and intervention for mathematical underperformance.…

  19. SPATIALLY-BALANCED SAMPLING OF NATURAL RESOURCES

    EPA Science Inventory

    The spatial distribution of a natural resource is an important consideration in designing an efficient survey or monitoring program for the resource. Generally, sample sites that are spatially-balanced, that is, more or less evenly dispersed over the extent of the resource, will ...

  20. A Computational Model of Spatial Visualization Capacity

    ERIC Educational Resources Information Center

    Lyon, Don R.; Gunzelmann, Glenn; Gluck, Kevin A.

    2008-01-01

    Visualizing spatial material is a cornerstone of human problem solving, but human visualization capacity is sharply limited. To investigate the sources of this limit, we developed a new task to measure visualization accuracy for verbally-described spatial paths (similar to street directions), and implemented a computational process model to…

  1. Updating in Models of Spatial Memory

    NASA Astrophysics Data System (ADS)

    Rump, Björn; McNamara, Timothy P.

    This chapter discusses a new model of spatial memory and updating. The model includes an egocentric subsystem that computes and represents transient self-to-object spatial relations and an environmental subsystem that forms enduring representations of environments using intrinsic reference systems. Updating occurs in both subsystems, but only the egocentric subsystem readily provides object locations relative to any adopted orientation. In the absence of visual support, updating in the egocentric subsystem is limited, and object locations may have to be retrieved from the orientation dependent environmental subsystem. The model is evaluated in light of the results of numerous studies from the areas of spatial memory and spatial updating and contrasted with two alternative models. Furthermore, results are presented that suggest that interobject spatial relations are preferentially represented when they are aligned with intrinsic reference directions in the environmental subsystem.

  2. Air flow cued spatial learning in mice.

    PubMed

    Bouchekioua, Youcef; Mimura, Masaru; Watanabe, Shigeru

    2015-01-01

    Spatial learning experiments in rodents typically employ visual cues that are associated with a goal place, even though it is now well established that they have poor visual acuity. We assessed here the possibility of spatial learning in mice based on an air flow cue in a dry version of the Morris water maze task. A miniature fan was placed at each of the four cardinal points of the circular maze, but only one blew air towards the centre of the maze. The three other fans were blowing towards their own box. The mice were able to learn the task only if the spatial relationship between the air flow cue and the position of the goal place was kept constant across trials. A change of this spatial relationship resulted in an increase in the time to find the goal place. We report here the first evidence of spatial learning relying on an air flow cue. PMID:25257773

  3. Visual Spatial Cognition in Neurodegenerative Disease

    PubMed Central

    Possin, Katherine L.

    2011-01-01

    Visual spatial impairment is often an early symptom of neurodegenerative disease; however, this multi-faceted domain of cognition is not well-assessed by most typical dementia evaluations. Neurodegenerative diseases cause circumscribed atrophy in distinct neural networks, and accordingly, they impact visual spatial cognition in different and characteristic ways. Anatomically-focused visual spatial assessment can assist the clinician in making an early and accurate diagnosis. This article will review the literature on visual spatial cognition in neurodegenerative disease clinical syndromes, and where research is available, by neuropathologic diagnoses. Visual spatial cognition will be organized primarily according to the following schemes: bottom-up / top-down processing, dorsal / ventral stream processing, and egocentric / allocentric frames of reference. PMID:20526954

  4. Neural realignment of spatially separated sound components.

    PubMed

    Salminen, Nelli H; Takanen, Marko; Santala, Olli; Alku, Paavo; Pulkki, Ville

    2015-06-01

    Natural auditory scenes often consist of several sound sources overlapping in time, but separated in space. Yet, location is not fully exploited in auditory grouping: spatially separated sounds can get perceptually fused into a single auditory object and this leads to difficulties in the identification and localization of concurrent sounds. Here, the brain mechanisms responsible for grouping across spatial locations were explored in magnetoencephalography (MEG) recordings. The results show that the cortical representation of a vowel spatially separated into two locations reflects the perceived location of the speech sound rather than the physical locations of the individual components. In other words, the auditory scene is neurally rearranged to bring components into spatial alignment when they were deemed to belong to the same object. This renders the original spatial information unavailable at the level of the auditory cortex and may contribute to difficulties in concurrent sound segregation. PMID:26093425

  5. Dynamic survival models with spatial frailty.

    PubMed

    Bastos, Leonardo Soares; Gamerman, Dani

    2006-12-01

    In many survival studies, covariates effects are time-varying and there is presence of spatial effects. Dynamic models can be used to cope with the variations of the effects and spatial components are introduced to handle spatial variation. This paper proposes a methodology to simultaneously introduce these components into the model. A number of specifications for the spatial components are considered. Estimation is performed via a Bayesian approach through Markov chain Monte Carlo methods. Models are compared to assess relevance of their components. Analysis of a real data set is performed, showing the relevance of both time-varying covariate effects and spatial components. Extensions to the methodology are proposed along with concluding remarks. PMID:17031498

  6. Developing Spatial Orientation and Spatial Memory with a Treasure Hunting Game

    ERIC Educational Resources Information Center

    Lin, Chien-Heng; Chen, Chien-Min; Lou, Yu-Chiung

    2014-01-01

    The abilities of both spatial orientation and spatial memory play very important roles in human navigation and spatial cognition. Since such abilities are difficult to strengthen through books or classroom instruction, there are no particular curricula or methods to assist in their development. Therefore, this study develops a spatial…

  7. Comprehension of Spatial Language in Williams Syndrome: Evidence for Impaired Spatial Representation of Verbal Descriptions

    ERIC Educational Resources Information Center

    Laing, Emma; Jarrold, Christopher

    2007-01-01

    Individuals with the rare genetic disorder, Williams syndrome, have an unusual cognitive profile with relatively good language abilities but poor non-verbal and spatial skills. This study explored the interaction between linguistic and spatial functioning in Williams syndrome by investigating individuals' comprehension of spatial language. A group…

  8. The Role of Visuo-Spatial Abilities in Recall of Spatial Descriptions: A Mediation Model

    ERIC Educational Resources Information Center

    Meneghetti, Chiara; De Beni, Rossana; Pazzaglia, Francesca; Gyselinck, Valerie

    2011-01-01

    This research investigates how visuo-spatial abilities (such as mental rotation--MR--and visuo-spatial working memory--VSWM--) work together to influence the recall of environmental descriptions. We tested a mediation model in which VSWM was assumed to mediate the relationship between MR and spatial text recall. First, 120 participants were…

  9. Plasticity of Human Spatial Cognition: Spatial Language and Cognition Covary across Cultures

    ERIC Educational Resources Information Center

    Haun, Daniel B. M.; Rapold, Christian J.; Janzen, Gabriele; Levinson, Stephen C.

    2011-01-01

    The present paper explores cross-cultural variation in spatial cognition by comparing spatial reconstruction tasks by Dutch and Namibian elementary school children. These two communities differ in the way they predominantly express spatial relations in language. Four experiments investigate cognitive strategy preferences across different levels of…

  10. Spatial Pattern Analysis of Heavy Metals in Beijing Agricultural Soils Based on Spatial Autocorrelation Statistics

    PubMed Central

    Huo, Xiao-Ni; Zhang, Wei-Wei; Sun, Dan-Feng; Li, Hong; Zhou, Lian-Di; Li, Bao-Guo

    2011-01-01

    This study explored the spatial pattern of heavy metals in Beijing agricultural soils using Moran’s I statistic of spatial autocorrelation. The global Moran’s I result showed that the spatial dependence of Cr, Ni, Zn, and Hg changed with different spatial weight matrixes, and they had significant and positive global spatial correlations based on distance weight. The spatial dependence of the four metals was scale-dependent on distance, but these scale effects existed within a threshold distance of 13 km, 32 km, 50 km, and 29 km, respectively for Cr, Ni, Zn, and Hg. The maximal spatial positive correlation range was 57 km, 70 km, 57 km, and 55 km for Cr, Ni, Zn, and Hg, respectively and these were not affected by sampling density. Local spatial autocorrelation analysis detected the locations of spatial clusters and spatial outliers and revealed that the pollution of these four metals occurred in significant High-high spatial clusters, Low-high, or even High-low spatial outliers. Thus, three major areas were identified and should be receiving more attention: the first was the northeast region of Beijing, where Cr, Zn, Ni, and Hg had significant increases. The second was the southeast region of Beijing where wastewater irrigation had strongly changed the content of metals, particularly of Cr and Zn, in soils. The third area was the urban fringe around city, where Hg showed a significant increase. PMID:21776217

  11. Spatial Working Memory Interferes with Explicit, but Not Probabilistic Cuing of Spatial Attention

    ERIC Educational Resources Information Center

    Won, Bo-Yeong; Jiang, Yuhong V.

    2015-01-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal…

  12. Covert Auditory Spatial Orienting: An Evaluation of the Spatial Relevance Hypothesis

    ERIC Educational Resources Information Center

    Roberts, Katherine L.; Summerfield, A. Quentin; Hall, Deborah A.

    2009-01-01

    The spatial relevance hypothesis (J. J. McDonald & L. M. Ward, 1999) proposes that covert auditory spatial orienting can only be beneficial to auditory processing when task stimuli are encoded spatially. We present a series of experiments that evaluate 2 key aspects of the hypothesis: (a) that "reflexive activation of location-sensitive neurons is…

  13. Low Voltage Spatial Light Modulator

    SciTech Connect

    Papavasiliou, A

    2003-02-19

    This project studied the feasibility of a Low-Voltage actuator technology that promises to reduce the switched voltage requirements and linearize the response of spatial light modulators. We created computer models that demonstrate substantial advantages offered by this technology, and fabricated and tested those devices. SLMs are electro-optic devices for modulating the phase, amplitude or angle of light beams, laser or other. Applications for arrays of SLMs include turbulence correction for high-speed optical communications, imaging through distorting media, input devices for holographic memories, optical manipulation of DNA molecules, and optical computers. Devices based on micro electro-mechanical systems (MEMS) technology have recently become of special interest because of their potential for greatly improved performance at a much lower cost than piezoelectric or liquid crystal based devices. The new MEMS-based SLM devices could have important applications in high-speed optical communication and remote optical sensing, in support of DoD and DOE missions. Virtually all previously demonstrated MEMS SLMs are based on parallel-plate capacitors where an applied voltage causes a mirror attached to a suspended electrode to move towards a fixed electrode. They require relatively high voltages, typically on the order of 100 V, resulting in (1) large transistor sizes, available only from specialized foundries at significant cost and limiting the amount/sophistication of electronics under each SLM pixel, and (2) large power dissipation/area, resulting in a heat removal issue because of the optical precision required ({approx} 1/50-th of a wavelength). The actuator described in this process uses an advanced geometry that was invented at LLNL and is currently still proprietary. The new geometry allows the application of a bias voltage. This applied bias voltage results in a reduction of the required switched voltage and a linearization of the response curve. When this

  14. Spatially extended atmospheric plasma arrays

    NASA Astrophysics Data System (ADS)

    Cao, Z.; Nie, Q.; Bayliss, D. L.; Walsh, J. L.; Ren, C. S.; Wang, D. Z.; Kong, M. G.

    2010-04-01

    This paper reports a systematic study of spatially extended atmospheric plasma (SEAP) arrays employing many parallel plasma jets packed densely and arranged in an honeycomb configuration. The work is motivated by the challenge of using inherently small atmospheric plasmas to address many large-scale processing applications including plasma medicine. The first part of the study considers a capillary-ring electrode configuration as the elemental jet with which to construct a 2D SEAP array. It is shown that its plasma dynamics is characterized by strong interaction between two plasmas initially generated near the two electrodes. Its plume length increases considerably when the plasma evolves into a high-current continuous mode from the usual bullet mode. Its electron density is estimated to be at the order of 3.7 × 1012 cm-3. The second part of the study considers 2D SEAP arrays constructed from parallelization of identical capillary-ring plasma jets with very high jet density of 0.47-0.6. Strong jet-jet interactions of a 7-jet 2D array are found to depend on the excitation frequency, and are effectively mitigated with the jet-array structure that acts as an effective ballast. The impact range of the reaction chemistry of the array exceeds considerably the cross-sectional dimension of the array itself, and the physical reach of reactive species generated by any single jet exceeds significantly the jet-jet distance. As a result, the jet array can treat a large sample surface without relative sample-array movement. A 37-channel SEAP array is used to indicate the scalability with an impact range of up to 48.6 mm in diameter, a step change in capability from previously reported SEAP arrays. 2D SEAP arrays represent one of few current options as large-scale low-temperature atmospheric plasma technologies with distinct capability of directed delivery of reactive species and effective control of the jet-jet and jet-sample interactions.

  15. Solving Large-scale Spatial Optimization Problems in Water Resources Management through Spatial Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Wang, J.; Cai, X.

    2007-12-01

    A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators

  16. Exploring the Structure of Spatial Representations.

    PubMed

    Madl, Tamas; Franklin, Stan; Chen, Ke; Trappl, Robert; Montaldi, Daniela

    2016-01-01

    It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these 'cognitive maps' are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants' psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants' cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants' spatial representations, providing further support for clustering in spatial memory. PMID:27347681

  17. Exploring the Structure of Spatial Representations

    PubMed Central

    Madl, Tamas; Franklin, Stan; Chen, Ke; Trappl, Robert; Montaldi, Daniela

    2016-01-01

    It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these ‘cognitive maps’ are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants’ psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants’ cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants’ spatial representations, providing further support for clustering in spatial memory. PMID:27347681

  18. Spatial relations for tactical robot navigation

    NASA Astrophysics Data System (ADS)

    Skubic, Majorie A.; Chronis, George; Matsakis, Pascal; Keller, James M.

    2001-09-01

    In this paper, we provide an overview of our on-going work using spatial relations for mobile robot navigation. Using the histogram of forces, we show how linguistic expressions can be generated to describe a qualitative view of the robot with respect to its environment. The linguistic expressions provide a symbolic link between the robot and a human user, thus facilitating two-way, human-like communication. In this paper, we present two ways in which spatial relations can be used for robot navigation. First, egocentric spatial relations provide a robot-centered view of the environment (e.g., there is an object on the left). Navigation can be described in terms of spatial relations (e.g., move forward while there is an object on the left, then turn right), such that a complete navigation task is generated as a sequence of navigation states with corresponding behaviors. Second, spatial relations can be used to analyze maps and facilitate their use in communicating navigation tasks. For example, the user can draw an approximate map on a PDA and then draw the desired robot trajectory also on the PDA, relative to the map. Spatial relations can then be used to convert the relative trajectory to a corresponding navigation behavior sequence. Examples are included using a comparable scene from both a robot environment and a PDA-sketched trajectory showing the corresponding generated linguistic spatial expressions.

  19. Remote state preparation of spatial qubits

    SciTech Connect

    Solis-Prosser, M. A.; Neves, L.

    2011-07-15

    We study the quantum communication protocol of remote state preparation (RSP) for pure states of qubits encoded in single photons transmitted through a double slit, the so-called spatial qubits. Two measurement strategies that one can adopt to remotely prepare the states are discussed. The first strategy is the well-known spatial postselection, where a single-pixel detector measures the transverse position of the photon between the focal and the image plane of a lens. The second strategy, proposed by ourselves, is a generalized measurement divided into two steps: the implementation of a two-outcome positive operator-valued measurement (POVM) followed by the spatial postselection at the focal plane of the lens by a two-pixel detector in each output of the POVM. In both cases we analyze the effects of the finite spatial resolution of the detectors over three figures of merit of the protocol, namely, the probability of preparation, the fidelity, and purity of the remotely prepared states. It is shown that our strategy improves these figures compared with spatial postselection, at the expense of increasing the classical communication cost as well as the required experimental resources. In addition, we present a modified version of our strategy for RSP of spatial qudits which is able to prepare arbitrary pure states, unlike spatial postselection alone. We expect that our study may also be extended for RSP of the angular spectrum of a single-photon field as an alternative for quantum teleportation which requires very inefficient nonlinear interactions.

  20. Why do spatial abilities predict mathematical performance?

    PubMed

    Tosto, Maria Grazia; Hanscombe, Ken B; Haworth, Claire M A; Davis, Oliver S P; Petrill, Stephen A; Dale, Philip S; Malykh, Sergey; Plomin, Robert; Kovas, Yulia

    2014-05-01

    Spatial ability predicts performance in mathematics and eventual expertise in science, technology and engineering. Spatial skills have also been shown to rely on neuronal networks partially shared with mathematics. Understanding the nature of this association can inform educational practices and intervention for mathematical underperformance. Using data on two aspects of spatial ability and three domains of mathematical ability from 4174 pairs of 12-year-old twins, we examined the relative genetic and environmental contributions to variation in spatial ability and to its relationship with different aspects of mathematics. Environmental effects explained most of the variation in spatial ability (~70%) and in mathematical ability (~60%) at this age, and the effects were the same for boys and girls. Genetic factors explained about 60% of the observed relationship between spatial ability and mathematics, with a substantial portion of the relationship explained by common environmental influences (26% and 14% by shared and non-shared environments respectively). These findings call for further research aimed at identifying specific environmental mediators of the spatial-mathematics relationship. PMID:24410830

  1. Sensorial countermeasures for vestibular spatial disorientation.

    PubMed

    Paillard, Aurore C; Quarck, Gaëlle; Denise, Pierre

    2014-05-01

    Spatial disorientation is defined as an erroneous body orientation perceived by pilots during flights. Limits of the vestibular system provoke frequent spatial disorientation mishaps. Although vestibular spatial disorientation is experienced frequently in aviation, there is no intuitive countermeasure against spatial disorientation mishaps to date. The aim of this review is to describe the current sensorial countermeasures and to examine future leads in sensorial ergonomics for vestibular spatial disorientation. This work reviews: 1) the visual ergonomics, 2) the vestibular countermeasures, 3) the auditory displays, 4) the somatosensory countermeasures, and, finally, 5) the multisensory displays. This review emphasizes the positive aspects of auditory and somatosensory countermeasures as well as multisensory devices. Even if some aspects such as sensory conflict and motion sickness need to be assessed, these countermeasures should be taken into consideration for ergonomics work in the future. However, a recent development in aviation might offer new and better perspectives: unmanned aerial vehicles. Unmanned aerial vehicles aim to go beyond the physiological boundaries of human sensorial systems and would allow for coping with spatial disorientation and motion sickness. Even if research is necessary to improve the interaction between machines and humans, this recent development might be incredibly useful for decreasing or even stopping vestibular spatial disorientation. PMID:24834571

  2. Abstract spatial reasoning as an autistic strength.

    PubMed

    Stevenson, Jennifer L; Gernsbacher, Morton Ann

    2013-01-01

    Autistic individuals typically excel on spatial tests that measure abstract reasoning, such as the Block Design subtest on intelligence test batteries and the Raven's Progressive Matrices nonverbal test of intelligence. Such well-replicated findings suggest that abstract spatial processing is a relative and perhaps absolute strength of autistic individuals. However, previous studies have not systematically varied reasoning level--concrete vs. abstract--and test domain--spatial vs. numerical vs. verbal, which the current study did. Autistic participants (N = 72) and non-autistic participants (N = 72) completed a battery of 12 tests that varied by reasoning level (concrete vs. abstract) and domain (spatial vs. numerical vs. verbal). Autistic participants outperformed non-autistic participants on abstract spatial tests. Non-autistic participants did not outperform autistic participants on any of the three domains (spatial, numerical, and verbal) or at either of the two reasoning levels (concrete and abstract), suggesting similarity in abilities between autistic and non-autistic individuals, with abstract spatial reasoning as an autistic strength. PMID:23533615

  3. Bibliography of spatial interferometry in optical astronomy

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude

    1990-01-01

    The Bibliography of Spatial Interferometry in Optical Astronomy is a guide to the published literature in applications of spatial interferometry techniques to astronomical observations, theory and instrumentation at visible and infrared wavelengths. The key words spatial and optical define the scope of this discipline, distinguishing it from spatial interferometry at radio wavelengths, interferometry in the frequency domain applied to spectroscopy, or more general electro-optics theoretical and laboratory research. The main bibliography is a listing of all technical articles published in the international scientific literature and presented at the major international meetings and workshops attended by the spatial interferometry community. Section B summarizes publications dealing with the basic theoretical concepts and algorithms proposed and applied to optical spatial interferometry and imaging through a turbulent atmosphere. The section on experimental techniques is divided into twelve categories, representing the most clearly identified major areas of experimental research work. Section D, Observations, identifies publications dealing specifically with observations of astronomical sources, in which optical spatial interferometry techniques have been applied.

  4. Bibliography of spatial interferometry in optical astronomy

    NASA Astrophysics Data System (ADS)

    Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude

    1990-02-01

    The Bibliography of Spatial Interferometry in Optical Astronomy is a guide to the published literature in applications of spatial interferometry techniques to astronomical observations, theory and instrumentation at visible and infrared wavelengths. The key words spatial and optical define the scope of this discipline, distinguishing it from spatial interferometry at radio wavelengths, interferometry in the frequency domain applied to spectroscopy, or more general electro-optics theoretical and laboratory research. The main bibliography is a listing of all technical articles published in the international scientific literature and presented at the major international meetings and workshops attended by the spatial interferometry community. Section B summarizes publications dealing with the basic theoretical concepts and algorithms proposed and applied to optical spatial interferometry and imaging through a turbulent atmosphere. The section on experimental techniques is divided into twelve categories, representing the most clearly identified major areas of experimental research work. Section D, Observations, identifies publications dealing specifically with observations of astronomical sources, in which optical spatial interferometry techniques have been applied.

  5. Rasdaman for Big Spatial Raster Data

    NASA Astrophysics Data System (ADS)

    Hu, F.; Huang, Q.; Scheele, C. J.; Yang, C. P.; Yu, M.; Liu, K.

    2015-12-01

    Spatial raster data have grown exponentially over the past decade. Recent advancements on data acquisition technology, such as remote sensing, have allowed us to collect massive observation data of various spatial resolution and domain coverage. The volume, velocity, and variety of such spatial data, along with the computational intensive nature of spatial queries, pose grand challenge to the storage technologies for effective big data management. While high performance computing platforms (e.g., cloud computing) can be used to solve the computing-intensive issues in big data analysis, data has to be managed in a way that is suitable for distributed parallel processing. Recently, rasdaman (raster data manager) has emerged as a scalable and cost-effective database solution to store and retrieve massive multi-dimensional arrays, such as sensor, image, and statistics data. Within this paper, the pros and cons of using rasdaman to manage and query spatial raster data will be examined and compared with other common approaches, including file-based systems, relational databases (e.g., PostgreSQL/PostGIS), and NoSQL databases (e.g., MongoDB and Hive). Earth Observing System (EOS) data collected from NASA's Atmospheric Scientific Data Center (ASDC) will be used and stored in these selected database systems, and a set of spatial and non-spatial queries will be designed to benchmark their performance on retrieving large-scale, multi-dimensional arrays of EOS data. Lessons learnt from using rasdaman will be discussed as well.

  6. Gesture is more effective than spatial language in encoding spatial information.

    PubMed

    So, Wing-Chee; Shum, Priscilla Lok-Chee; Wong, Miranda Kit-Yi

    2015-01-01

    The present research investigates whether producing gestures with and without speech facilitates route learning at different levels of route complexity and in learners with different levels of spatial skills. It also examines whether the facilitation effect of gesture is stronger than that of spatial language. Adults studied routes with 10, 13, and 16 steps and reconstructed them with sticks, either without rehearsal or after rehearsal by producing gestures with speech, gestures alone, or speech only. For all levels of route complexity and spatial skills, participants who were encouraged to gesture (with or without speech) during rehearsal had the best recall. Additionally, we found that number of steps rehearsed in gesture, but not that rehearsed in speech, predicted the recall accuracy. Thus, gesture is more effective than spatial language in encoding spatial information, and thereby enhancing spatial recall. These results further corroborate the beneficial nature of gesture in processing spatial information. PMID:25671654

  7. A spatial reference frame model of Beijing based on spatial cognitive experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Zhang, Jing; Liu, Yu

    2006-10-01

    Orientation relation in the spatial relation is very important in GIS. People can obtain orientation information by making use of map reading and the cognition of the surrounding environment, and then create the spatial reference frame. City is a kind of special spatial environment, a person with life experiences has some spatial knowledge about the city where he or she lives in. Based on the spatial knowledge of the city environment, people can position, navigate and understand the meaning embodied in the environment correctly. Beijing as a real geographic space, its layout is very special and can form a kind of new spatial reference frame. Based on the characteristics of the layout of Beijing city, this paper will introduce a new spatial reference frame of Beijing and use two psychological experiments to validate its cognitive plausibility.

  8. Spatial language facilitates spatial cognition: evidence from children who lack language input.

    PubMed

    Gentner, Dedre; Ozyürek, Asli; Gürcanli, Ozge; Goldin-Meadow, Susan

    2013-06-01

    Does spatial language influence how people think about space? To address this question, we observed children who did not know a conventional language, and tested their performance on nonlinguistic spatial tasks. We studied deaf children living in Istanbul whose hearing losses prevented them from acquiring speech and whose hearing parents had not exposed them to sign. Lacking a conventional language, the children used gestures, called homesigns, to communicate. In Study 1, we asked whether homesigners used gesture to convey spatial relations, and found that they did not. In Study 2, we tested a new group of homesigners on a Spatial Mapping Task, and found that they performed significantly worse than hearing Turkish children who were matched to the deaf children on another cognitive task. The absence of spatial language thus went hand-in-hand with poor performance on the nonlinguistic spatial task, pointing to the importance of spatial language in thinking about space. PMID:23542409

  9. A pathway for spatial memory encoding.

    PubMed

    Gibson, Brett M; Mair, Robert

    2016-06-01

    The medial prefrontal cortex has been shown to play a role for rodents in successful completion of tasks that require spatial memory, but the pathways responsible for the transmission of spatial information to the mPFC, and the nature and timing of such information, are unknown. Recently, Spellman, Rigotti, Ahmari, Fusi, Gogos, and Gordon (Nature, 522, 309-314, 2015) addressed these questions in an eloquent and ingenious series of experiments, which we review in the broader context of the neurobiology of spatial memory. PMID:26902364

  10. Spatial multipartite entanglement and localization of entanglement

    SciTech Connect

    Daems, D.; Cerf, N. J.

    2010-09-15

    We present a simple model together with its physical implementation which allows one to generate multipartite entanglement between several spatial modes of the electromagnetic field. It is based on parametric down-conversion with N pairs of symmetrically tilted plane waves serving as a pump. The characteristics of this spatial entanglement are investigated in the cases of zero as well as nonzero phase mismatch. Furthermore, the phenomenon of entanglement localization in just two spatial modes is studied in detail and shown to result in an enhancement of the entanglement by a factor {radical}(N).

  11. Decomposition of Variance for Spatial Cox Processes

    PubMed Central

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    2012-01-01

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introduce a general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models with additive or log linear random intensity functions. We moreover consider a new and flexible class of pair correlation function models given in terms of normal variance mixture covariance functions. The proposed methodology is applied to point pattern data sets of locations of tropical rain forest trees. PMID:23599558

  12. Spatial adaptation on video display terminals

    SciTech Connect

    Greenhouse, D.S.; Bailey, I.L.; Howarth, P.A.; Berman, S.M.

    1989-01-01

    Spatial adaptation, in the form of a frequency-specific reduction in contrast sensitivity, can occur when the visual system is exposed to certain stimuli. We employed vertical sinusoidal test gratings to investigate adaptation to the horizontal structure of text presented on a standard video display terminal. The parameters of the contrast sensitivity test were selected on the basis of waveform analysis of spatial luminance scans of the text stimulus. We found that subjects exhibited a small, but significant, frequency-specific adaptation consistent with the spatial frequency spectrum of the stimulus. Theoretical and practical significance of this finding are discussed. 6 refs., 4 figs.

  13. Spatial transformations: from fundamentals to applications

    PubMed Central

    Foster, Robert; Grant, Patrick; Hao, Yang; Hibbins, Alastair; Philbin, Thomas; Sambles, Roy

    2015-01-01

    This paper forms the introduction to this themed issue of Philosophical Transactions of the Royal Society A on ‘Spatial transformations’, arising from the Royal Society Scientific Discussion Meeting held in January 2015. The paper begins with a review of the concepts and history of spatial transformations, followed by a discussion of the contributions from the papers in this themed issue. A summary of the advantages and current limitations of spatial transformations concludes the paper, with the key challenges identified at the Scientific Discussion Meeting also given. PMID:26217061

  14. Minimal model for spatial coherence resonance.

    PubMed

    Perc, Matjaz; Marhl, Marko

    2006-06-01

    We show that a planar medium, locally modeled by a simple one-dimensional excitable system with a piece-wise linear potential, can serve as a minimal model for spatial coherence resonance. Via an analytical treatment of the spatially extended system, we derive the dependence of the resonant wave number on several crucial system parameters, ranging from the diffusion coefficient to the local excursion time of constitutive excitable units. Thus, we provide vital insights into mechanisms that enable the emergence of exclusively noise-induced spatial periodicity in excitable media. PMID:16906944

  15. Spatial Patterns of Inshore Marine Soundscapes.

    PubMed

    McWilliam, Jamie

    2016-01-01

    Passive acoustic monitoring was employed to investigate spatial patterns of soundscapes within a marine reserve. High energy level broadband snaps dominated nearly all habitat soundscapes. Snaps, the principal acoustic feature of soundscapes, were primarily responsible for the observed spatial patterns, and soundscapes appeared to retain a level of compositional and configurational stability. In the presence of high-level broadband snaps, soundscape composition was more influenced by geographic location than habitat type. Future research should focus on investigating the spatial patterns of soundscapes across a wider range of coastal and offshore seascapes containing a variety of distinct ecosystems and habitats. PMID:26611021

  16. Spatial biostratigraphy of NW Pakistan

    NASA Astrophysics Data System (ADS)

    Shafique, Naseer Ahmed

    2001-07-01

    Mesozoic to Cenozoic biostratigraphy of NW Pakistan has been conducted in order to document the temporal and spatial relationship between different marine strata with the help of remote sensing and Geographic Information Systems (GIS). These relationships were then used to help distinguish different tectonostratigraphic units in the Waziristan and the Kurram areas located at the northwestern margin of the Indo-Pakistani craton. Extensive biostratigraphic work in the Waziristan and Kurram areas enabled to distinguish five tectonostratigraphic units and two significant unconformities in the study area. Different foraminiferal zones from Early Jurassic to Middle Eocenewere developed, although due to random samples these zones are not continuous in the sedimentary record. However continuous biozonation from the Late Paleocene P4 to the Early Eocene P9 (Bolli, 1985) biozone was observed. It is observed that the Santonian stage is generally missing in the sedimentary sequence, and it is only found in the olistoliths. This implies that during the Campanian stage there was instability in the shelf due to ophiolite obduction, which caused the displacement of the Santonian strata. The absence of Early Paleocene (Zone P1--P3) microfauna is suggested by rapid subsidence of the NW Indian shelf beginning in the early Paleocene. Moreover, index fossils for the Palpha, P1a, b, c, d, P2 and P3 biozones are absent in the melange of the Thal area suggesting regional uplift during the Paleocene. The presence of Planorotalites pseudomenardii P4 zone microfauna above the unconformable Upper Cretaceous Kahi melange strata suggest the India-Asia collision age between 58 Ma--56 Ma. Foraminiferal biostratigraphy of upper Cretaceous olistoliths was conducted from the Mughal Kot gorge, Baluchistan, Pakistan in order to reveal the depositional history of Late Santonian aged (Dicarinella asymmetrica zone) olistoliths and associated upper Cretaceous to early Tertiary Indo-Pakistani shelf strata

  17. Spatial Autocorrelation Analysis of Migration and Selection

    PubMed Central

    Sokal, R. R.; Jacquez, G. M.; Wooten, M. C.

    1989-01-01

    We test various assumptions necessary for the interpretation of spatial autocorrelation analysis of gene frequency surfaces, using simulations of Wright's isolation-by-distance model with migration or selection superimposed. Increasing neighborhood size enhances spatial autocorrelation, which is reduced again for the largest neighborhood sizes. Spatial correlograms are independent of the mean gene frequency of the surface. Migration affects surfaces and correlograms when immigrant gene frequency differentials are substantial. Multiple directions of migration are reflected in the correlograms. Selection gradients yield clinal correlograms; other selection patterns are less clearly reflected in their correlograms. Sequential migration from different directions and at different gene frequencies can be disaggregated into component migration vectors by means of principal components analysis. This encourages analysis by such methods of gene frequency surfaces in nature. The empirical results of these findings lend support to the inference structure developed earlier for spatial autocorrelation analysis. PMID:2721935

  18. Multichannel Spatial Auditory Display for Speed Communications

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Erbe, Tom

    1994-01-01

    A spatial auditory display for multiple speech communications was developed at NASA/Ames Research Center. Input is spatialized by the use of simplifiedhead-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four-letter call signs used by launch personnel at NASA against diotic speech babble. Spatial positions at 30 degree azimuth increments were evaluated. The results from eight subjects showed a maximum intelligibility improvement of about 6-7 dB when the signal was spatialized to 60 or 90 degree azimuth positions.

  19. Multichannel spatial auditory display for speech communications

    NASA Technical Reports Server (NTRS)

    Begault, D. R.; Erbe, T.; Wenzel, E. M. (Principal Investigator)

    1994-01-01

    A spatial auditory display for multiple speech communications was developed at NASA/Ames Research Center. Input is spatialized by the use of simplified head-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four-letter call signs used by launch personnel at NASA against diotic speech babble. Spatial positions at 30 degrees azimuth increments were evaluated. The results from eight subjects showed a maximum intelligibility improvement of about 6-7 dB when the signal was spatialized to 60 or 90 degrees azimuth positions.

  20. Spatial Symmetries of the Local Densities

    SciTech Connect

    Rohozinski, S.; Dobaczewski, J.; Nazarewicz, Witold

    2010-01-01

    Spatial symmetries of the densities appearing in the nuclear Density Functional Theory are discussed. General forms of the local densities are derived by using methods of construction of isotropic tensor fields. The spherical and axial cases are considered.

  1. Modularizing Spatial Ontologies for Assisted Living Systems

    NASA Astrophysics Data System (ADS)

    Hois, Joana

    Assisted living systems are intended to support daily-life activities in user homes by automatizing and monitoring behavior of the environment while interacting with the user in a non-intrusive way. The knowledge base of such systems therefore has to define thematically different aspects of the environment mostly related to space, such as basic spatial floor plan information, pieces of technical equipment in the environment and their functions and spatial ranges, activities users can perform, entities that occur in the environment, etc. In this paper, we present thematically different ontologies, each of which describing environmental aspects from a particular perspective. The resulting modular structure allows the selection of application-specific ontologies as necessary. This hides information and reduces complexity in terms of the represented spatial knowledge and reasoning practicability. We motivate and present the different spatial ontologies applied to an ambient assisted living application.

  2. a New Spatial and Temporal Fusion Model

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Huang, Bo

    2016-06-01

    As Moderate Resolution Imaging Spectroradiometer (MODIS) and Enhanced Thematic Mapper Plus (ETM+) has a tradeoff between the high temporal resolution and high spatial resolution, this paper proposed a spatial and temporal model with auto-regression error correction (AREC) method to blend the two types of images in order to obtain the composed image with both high spatial and temporal resolution. Experiments and validation were conducted on a data set located in Shenzhen, China and compared with Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) in several objective indexes and visual analysis. It was found that AREC could effectively predict the land cover changes and the fusion results had better performances versus the ones of STARFM.

  3. CERES Spatial Extent and Scan Modes

    Atmospheric Science Data Center

    2013-04-03

    ... CERES Examples: Spatial Extent and Scan Modes The first three images shown below show the areal coverage for ... the areal coverage and characteristics of particular CERES scan modes performed by the CERES instruments. The Cross-Track mode, a Fixed ...

  4. Spatial Relational Memory Requires Hippocampal Adult Neurogenesis

    PubMed Central

    Koehl, Muriel; Ichas, François; De Giorgi, Francesca; Costet, Pierre; Abrous, Djoher Nora; Piazza, Pier Vincenzo

    2008-01-01

    The dentate gyrus of the hippocampus is one of the few regions of the mammalian brain where new neurons are generated throughout adulthood. This adult neurogenesis has been proposed as a novel mechanism that mediates spatial memory. However, data showing a causal relationship between neurogenesis and spatial memory are controversial. Here, we developed an inducible transgenic strategy allowing specific ablation of adult-born hippocampal neurons. This resulted in an impairment of spatial relational memory, which supports a capacity for flexible, inferential memory expression. In contrast, less complex forms of spatial knowledge were unaltered. These findings demonstrate that adult-born neurons are necessary for complex forms of hippocampus-mediated learning. PMID:18509506

  5. Navigation in spatial networks: A survey

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Chen, Shengyong; Wang, Wanliang

    2014-01-01

    The study on the navigation process in spatial networks has attracted much attention in recent years due to the universal applications in real communication networks. This article surveys recent advances of the navigation problem in spatial networks. Due to the ability to overcome scaling limitations in utilizing geometric information for designing navigation algorithms in spatial networks, we summarize here several important navigation algorithms based on geometric information on both homogeneous and heterogeneous spatial networks. Due to the geometric distance employed, the cost associated with the lengths of additional long-range connections is also taken into account in this survey. Therefore, some contributions reporting how the distribution of long-range links’ lengths affects the average navigation time are summarized. We also briefly discuss two other related processes, i.e. the random walk process and the transportation process. Finally, a few open discussions are included at the end of this survey.

  6. Users as essential contributors to spatial cyberinfrastructures

    PubMed Central

    Poore, Barbara S.

    2011-01-01

    Current accounts of spatial cyberinfrastructure development tend to overemphasize technologies to the neglect of critical social and cultural issues on which adoption depends. Spatial cyberinfrastructures will have a higher chance of success if users of many types, including nonprofessionals, are made central to the development process. Recent studies in the history of infrastructures reveal key turning points and issues that should be considered in the development of spatial cyberinfrastructure projects. These studies highlight the importance of adopting qualitative research methods to learn how users work with data and digital tools, and how user communities form. The author's empirical research on data sharing networks in the Pacific Northwest salmon crisis at the turn of the 21st century demonstrates that ordinary citizens can contribute critical local knowledge to global databases and should be considered in the design and construction of spatial cyberinfrastructures. PMID:21444825

  7. Users as essential contributors to spatial cyberinfrastructures

    USGS Publications Warehouse

    Poore, B.S.

    2011-01-01

    Current accounts of spatial cyberinfrastructure development tend to overemphasize technologies to the neglect of critical social and cultural issues on which adoption depends. Spatial cyberinfrastructures will have a higher chance of success if users of many types, including nonprofessionals, are made central to the development process. Recent studies in the history of infrastructures reveal key turning points and issues that should be considered in the development of spatial cyberinfrastructure projects. These studies highlight the importance of adopting qualitative research methods to learn how users work with data and digital tools, and how user communities form. The author's empirical research on data sharing networks in the Pacific Northwest salmon crisis at the turn of the 21st century demonstrates that ordinary citizens can contribute critical local knowledge to global databases and should be considered in the design and construction of spatial cyberinfrastructures.

  8. A spatial light modulator for terahertz beams

    SciTech Connect

    Chen, Hou-tong; Taylor, Antoinette J

    2009-01-01

    Spatial light modulators that control the spatial transmission of a terahertz beam either electrically or optically, have been difficult to build due to the lack of suitable materials. Here we propose the use of active terahertz metamaterials for the construction of a multi-pixel spatial modulator for terahertz beams. Our first-generation device consists of a 4 x 4 pixel array, where each pixel is an array of sub-wavelength-sized split-ring resonator elements fabricated on a semiconductor substrate, and is independently controlled by applying an external voltage. Through terahertz transmission experiments, we show that the spatial modulator has a uniform modulation depth of around 40 percent across all pixels at the resonant frequency. Around this operating frequency, the crosstalk between pixels is negligible. This device can operate under small voltage levels, at room temperature, with low power consumption and reasonably high switching speed, and can therefore benefit future applications in terahertz imaging and communications.

  9. Architectural Implications for Spatial Object Association Algorithms

    SciTech Connect

    Kumar, V S; Kurc, T; Saltz, J; Abdulla, G; Kohn, S R; Matarazzo, C

    2009-01-29

    Spatial object association, also referred to as cross-match of spatial datasets, is the problem of identifying and comparing objects in two or more datasets based on their positions in a common spatial coordinate system. In this work, we evaluate two crossmatch algorithms that are used for astronomical sky surveys, on the following database system architecture configurations: (1) Netezza Performance Server R, a parallel database system with active disk style processing capabilities, (2) MySQL Cluster, a high-throughput network database system, and (3) a hybrid configuration consisting of a collection of independent database system instances with data replication support. Our evaluation provides insights about how architectural characteristics of these systems affect the performance of the spatial crossmatch algorithms. We conducted our study using real use-case scenarios borrowed from a large-scale astronomy application known as the Large Synoptic Survey Telescope (LSST).

  10. Experiments in spatial coherent optical filtering

    NASA Technical Reports Server (NTRS)

    Larsen, R. K.

    1971-01-01

    Coherent optical techniques provide a means of processing entire pictures in parallel. Experiments were performed demonstrating the effectiveness of spatial frequency filtering in a coherent optical data processing system.

  11. Architectural Implications for Spatial Object Association Algorithms*

    PubMed Central

    Kumar, Vijay S.; Kurc, Tahsin; Saltz, Joel; Abdulla, Ghaleb; Kohn, Scott R.; Matarazzo, Celeste

    2013-01-01

    Spatial object association, also referred to as crossmatch of spatial datasets, is the problem of identifying and comparing objects in two or more datasets based on their positions in a common spatial coordinate system. In this work, we evaluate two crossmatch algorithms that are used for astronomical sky surveys, on the following database system architecture configurations: (1) Netezza Performance Server®, a parallel database system with active disk style processing capabilities, (2) MySQL Cluster, a high-throughput network database system, and (3) a hybrid configuration consisting of a collection of independent database system instances with data replication support. Our evaluation provides insights about how architectural characteristics of these systems affect the performance of the spatial crossmatch algorithms. We conducted our study using real use-case scenarios borrowed from a large-scale astronomy application known as the Large Synoptic Survey Telescope (LSST). PMID:25692244

  12. Spatial Stability of Adult Aedes aegypti Populations

    PubMed Central

    Barrera, Roberto

    2011-01-01

    Vector control programs could be more efficient by identifying the location of highly productive sites of Aedes aegypti. This study explored if the number of female adults of Ae. aegypti in BG-Sentinel traps was clustered and if their spatial distribution changed in time in two neighborhoods in San Juan, Puerto Rico. Traps were uniformly distributed across each neighborhood (130 m from each other), and samples were taken every 3 weeks. Global and local spatial autocorrelations were explored. Spatial stability existed if the rank order of trap captures was kept in time. There was lack of global autocorrelation in both neighborhoods, precluding their stratification for control purposes. Hot and cold spots were identified, revealing the highly focal nature of Ae. aegypti. There was significant spatial stability throughout the study in both locations. The consistency in trap productivity in time could be used to increase the effectiveness of vector and dengue control programs. PMID:22144449

  13. Users as essential contributors to spatial cyberinfrastructures.

    PubMed

    Poore, Barbara S

    2011-04-01

    Current accounts of spatial cyberinfrastructure development tend to overemphasize technologies to the neglect of critical social and cultural issues on which adoption depends. Spatial cyberinfrastructures will have a higher chance of success if users of many types, including nonprofessionals, are made central to the development process. Recent studies in the history of infrastructures reveal key turning points and issues that should be considered in the development of spatial cyberinfrastructure projects. These studies highlight the importance of adopting qualitative research methods to learn how users work with data and digital tools, and how user communities form. The author's empirical research on data sharing networks in the Pacific Northwest salmon crisis at the turn of the 21st century demonstrates that ordinary citizens can contribute critical local knowledge to global databases and should be considered in the design and construction of spatial cyberinfrastructures. PMID:21444825

  14. Spatial Heterogeneity in the Tumor Microenvironment.

    PubMed

    Yuan, Yinyin

    2016-01-01

    Recent developments in studies of tumor heterogeneity have provoked new thoughts on cancer management. There is a desperate need to understand influence of the tumor microenvironment on cancer development and evolution. Applying principles and quantitative methods from ecology can suggest novel solutions to fulfil this need. We discuss spatial heterogeneity as a fundamental biological feature of the microenvironment, which has been largely ignored. Histological samples can provide spatial context of diverse cell types coexisting within the microenvironment. Advanced computer-vision techniques have been developed for spatial mapping of cells in histological samples. This has enabled the applications of experimental and analytical tools from ecology to cancer research, generating system-level knowledge of microenvironmental spatial heterogeneity. We focus on studies of immune infiltrate and tumor resource distribution, and highlight statistical approaches for addressing the emerging challenges based on these new approaches. PMID:27481837

  15. High-order local spatial context modeling by spatialized random forest.

    PubMed

    Ni, Bingbing; Yan, Shuicheng; Wang, Meng; Kassim, Ashraf A; Tian, Qi

    2013-02-01

    In this paper, we propose a novel method for spatial context modeling toward boosting visual discriminating power. We are particularly interested in how to model high-order local spatial contexts instead of the intensively studied second-order spatial contexts, i.e., co-occurrence relations. Motivated by the recent success of random forest in learning discriminative visual codebook, we present a spatialized random forest (SRF) approach, which can encode an unlimited length of high-order local spatial contexts. By spatially random neighbor selection and random histogram-bin partition during the tree construction, the SRF can explore much more complicated and informative local spatial patterns in a randomized manner. Owing to the discriminative capability test for the random partition in each tree node's split process, a set of informative high-order local spatial patterns are derived, and new images are then encoded by counting the occurrences of such discriminative local spatial patterns. Extensive comparison experiments on face recognition and object/scene classification clearly demonstrate the superiority of the proposed spatial context modeling method over other state-of-the-art approaches for this purpose. PMID:23060330

  16. Hedonic approaches based on spatial econometrics and spatial statistics: application to evaluation of project benefits

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Morito; Seya, Hajime

    2009-12-01

    This study discusses the theoretical foundation of the application of spatial hedonic approaches—the hedonic approach employing spatial econometrics or/and spatial statistics—to benefits evaluation. The study highlights the limitations of the spatial econometrics approach since it uses a spatial weight matrix that is not employed by the spatial statistics approach. Further, the study presents empirical analyses by applying the Spatial Autoregressive Error Model (SAEM), which is based on the spatial econometrics approach, and the Spatial Process Model (SPM), which is based on the spatial statistics approach. SPMs are conducted based on both isotropy and anisotropy and applied to different mesh sizes. The empirical analysis reveals that the estimated benefits are quite different, especially between isotropic and anisotropic SPM and between isotropic SPM and SAEM; the estimated benefits are similar for SAEM and anisotropic SPM. The study demonstrates that the mesh size does not affect the estimated amount of benefits. Finally, the study provides a confidence interval for the estimated benefits and raises an issue with regard to benefit evaluation.

  17. [Prediction of spatial distribution of forest carbon storage in Heilongjiang Province using spatial error model].

    PubMed

    Liu, Chang; Li, Feng-Ri; Zhen, Zhen

    2014-10-01

    Abstract: Based on the data from Chinese National Forest Inventory (CNFI) and Key Ecological Benefit Forest Monitoring plots (5075 in total) in Heilongjiang Province in 2010 and concurrent meteorological data coming from 59 meteorological stations located in Heilongjiang, Jilin and Inner Mongolia, this paper established a spatial error model (SEM) by GeoDA using carbon storage as dependent variable and several independent variables, including diameter of living trees (DBH), number of trees per hectare (TPH), elevation (Elev), slope (Slope), and product of precipitation and temperature (Rain_Temp). Global Moran's I was computed for describing overall spatial autocorrelations of model results at different spatial scales. Local Moran's I was calculated at the optimal bandwidth (25 km) to present spatial distribution residuals. Intra-block spatial variances were computed to explain spatial heterogeneity of residuals. Finally, a spatial distribution map of carbon storage in Heilongjiang was visualized based on predictions. The results showed that the distribution of forest carbon storage in Heilongjiang had spatial effect and was significantly influenced by stand, topographic and meteorological factors, especially average DBH. SEM could solve the spatial autocorrelation and heterogeneity well. There were significant spatial differences in distribution of forest carbon storage. The carbon storage was mainly distributed in Zhangguangcai Mountain, Xiao Xing'an Mountain and Da Xing'an Mountain where dense, forests existed, rarely distributed in Songnen Plains, while Wanda Mountain had moderate-level carbon storage. PMID:25796882

  18. Spatial Autocorrelation in Mass Spectrometry Imaging.

    PubMed

    Cassese, Alberto; Ellis, Shane R; Ogrinc Potočnik, Nina; Burgermeister, Elke; Ebert, Matthias; Walch, Axel; van den Maagdenberg, Arn M J M; McDonnell, Liam A; Heeren, Ron M A; Balluff, Benjamin

    2016-06-01

    Mass spectrometry imaging (MSI) is a powerful molecular imaging technique. In microprobe MSI, images are created through a grid-wise interrogation of individual spots by mass spectrometry across a surface. Classical statistical tests for within-sample comparisons fail as close-by measurement spots violate the assumption of independence of these tests, which can lead to an increased false-discovery rate. For spatial data, this effect is referred to as spatial autocorrelation. In this study, we investigated spatial autocorrelation in three different matrix-assisted laser desorption/ionization MSI data sets. These data sets cover different molecular classes (metabolites/drugs, lipids, and proteins) and different spatial resolutions ranging from 20 to 100 μm. Significant spatial autocorrelation was detected in all three data sets and found to increase with decreasing pixel size. To enable statistical testing for differences in mass signal intensities between regions of interest within MSI data sets, we propose the use of Conditional Autoregressive (CAR) models. We show that, by accounting for spatial autocorrelation, discovery rates (i.e., the ratio between the features identified and the total number of features) could be reduced between 21% and 69%. The reliability of this approach was validated by control mass signals based on prior knowledge. In light of the advent of larger MSI data sets based on either an increased spatial resolution or 3D data sets, accounting for effects due to spatial autocorrelation becomes even more indispensable. Here, we propose a generic and easily applicable workflow to enable within-sample statistical comparisons. PMID:27180608

  19. The Validation of the Spatial Hearing Questionnaire

    PubMed Central

    Tyler, Richard S.; Perreau, Ann E.; Ji, Haihong

    2009-01-01

    Objectives Subjective questionnaires are informative in understanding the difficulties faced by patients with hearing loss. Our intent was to establish and validate a new questionnaire that encompasses situations emphasizing binaural hearing. The Spatial Hearing Questionnaire is a self-report assessment tool utilizing eight subscales representing questions pertaining to the perception of male, female, and children’s voices, music in quiet, source localization, understanding speech in quiet, and understanding speech in noise. Design The Spatial Hearing Questionnaire, composed of 24 items, is scored from 0–100. It was administered to 142 subjects using one or two cochlear implants. Speech perception and localization abilities were measured, and the Speech, Spatial and Other Qualities (SSQ) questionnaire was completed to evaluate validity of the questionnaire. Psychometric tests were done to test the reliability and factor structure of the Spatial Hearing Questionnaire. Results Results showed high internal consistency reliability (Cronbach’s α = 0.98) and good construct validity (correlations between the Spatial Hearing Questionnaire and other test measures, including the SSQ, were significant). A preliminary factor analysis revealed scores loaded on three factors, representing the following conditions: localization, speech in noise and music in quiet, and speech in quiet, explaining 64.9, 13.0, and 5.3% of the variance, respectively. Most of the questionnaire items (12/24) loaded onto the first factor which represents the subscale related to source localization. Mean scores on the Spatial Hearing Questionnaire were higher for subjects with bilateral cochlear implants over subjects with a unilateral cochlear implant, consistent with other research and supporting construct validity. Conclusions The Spatial Hearing Questionnaire is a reliable and valid questionnaire which can be completed independently by most patients in about 10 minutes. It is likely to be a

  20. Spatially Assisted Schwinger Mechanism and Magnetic Catalysis.

    PubMed

    Copinger, Patrick; Fukushima, Kenji

    2016-08-19

    Using the worldline formalism we compute an effective action for fermions under a temporally modulated electric field and a spatially modulated magnetic field. It is known that the former leads to an enhanced Schwinger mechanism, while we find that the latter can also result in enhanced particle production and even cause a reorganization of the vacuum to acquire a larger dynamical mass in equilibrium which spatially assists the magnetic catalysis. PMID:27588845

  1. Understanding the brain through its spatial structure

    NASA Astrophysics Data System (ADS)

    Morrison, Will Zachary

    The spatial location of cells in neural tissue can be easily extracted from many imaging modalities, but the information contained in spatial relationships between cells is seldom utilized. This is because of a lack of recognition of the importance of spatial relationships to some aspects of brain function, and the reflection in spatial statistics of other types of information. The mathematical tools necessary to describe spatial relationships are also unknown to many neuroscientists, and biologists in general. We analyze two cases, and show that spatial relationships can be used to understand the role of a particular type of cell, the astrocyte, in Alzheimer's disease, and that the geometry of axons in the brain's white matter sheds light on the process of establishing connectivity between areas of the brain. Astrocytes provide nutrients for neuronal metabolism, and regulate the chemical environment of the brain, activities that require manipulation of spatial distributions (of neurotransmitters, for example). We first show, through the use of a correlation function, that inter-astrocyte forces determine the size of independent regulatory domains in the cortex. By examining the spatial distribution of astrocytes in a mouse model of Alzheimer's Disease, we determine that astrocytes are not actively transported to fight the disease, as was previously thought. The paths axons take through the white matter determine which parts of the brain are connected, and how quickly signals are transmitted. The rules that determine these paths (i.e. shortest distance) are currently unknown. By measurement of axon orientation distributions using three-point correlation functions and the statistics of axon turning and branching, we reveal that axons are restricted to growth in three directions, like a taxicab traversing city blocks, albeit in three-dimensions. We show how geometric restrictions at the small scale are related to large-scale trajectories. Finally we discuss the

  2. Five challenges for spatial epidemic models.

    PubMed

    Riley, Steven; Eames, Ken; Isham, Valerie; Mollison, Denis; Trapman, Pieter

    2015-03-01

    Infectious disease incidence data are increasingly available at the level of the individual and include high-resolution spatial components. Therefore, we are now better able to challenge models that explicitly represent space. Here, we consider five topics within spatial disease dynamics: the construction of network models; characterising threshold behaviour; modelling long-distance interactions; the appropriate scale for interventions; and the representation of population heterogeneity. PMID:25843387

  3. [Development of spatial orientation during pilot training].

    PubMed

    Ivanov, V V; Vorob'ev, O A; Snipkov, Iu Iu

    1988-01-01

    The problem of spatial orientation of pilots flying high-altitude aircraft is in the focus of present-day aviation medicine because of a growing number of accidents in the air. One of the productive lines of research is to study spatial orientation in terms of active formation and maintenance of its imagery in a complex environment. However investigators usually emphasize the role of visual (instrumental) information in the image construction, almost ignoring the sensorimotor component of spatial orientation. The theoretical analysis of the process of spatial orientation has facilitated the development of the concept assuming that the pattern of space perception changes with growing professional experience. The concept is based on an active approach to the essence, emergence, formation and variation in the pattern of sensory perception of space in man's consciousness. This concept asserts that as pilot's professional expertise increases, the pattern of spatial orientation becomes geocentric because a new system of spatial perception evolves which is a result of the development of a new (instrumental) type of motor activity in space. This finds expression in the fact that perception of spatial position inflight occurs when man has to resolve a new motor task--movement along a complex trajectory in the three-dimensional space onboard a flying vehicle. The meaningful structure of this problem which is to be implemented through controlling movements of the pilot acts as a factor that forms this new system of perception. All this underlies the arrangement of meaningful collection of instrumental data and detection of noninstrumental signals in the comprehensive perception of changes in the spatial position of a flying vehicle. PMID:3226091

  4. Five challenges for spatial epidemic models

    PubMed Central

    Riley, Steven; Eames, Ken; Isham, Valerie; Mollison, Denis; Trapman, Pieter

    2015-01-01

    Infectious disease incidence data are increasingly available at the level of the individual and include high-resolution spatial components. Therefore, we are now better able to challenge models that explicitly represent space. Here, we consider five topics within spatial disease dynamics: the construction of network models; characterising threshold behaviour; modelling long-distance interactions; the appropriate scale for interventions; and the representation of population heterogeneity. PMID:25843387

  5. Building a North American Spatial Data Infrastructure

    USGS Publications Warehouse

    Coleman, D.J.; Nebert, D.D.

    1998-01-01

    This paper addresses the state of spatial data infrastructures within North America in late 1997. After providing some background underlying the philosophy and development of the SDI concept, the authors discuss effects of technology, institutions, and standardization that confront the cohesive implementation of a common infrastructure today. The paper concludes with a comparative framework and specific examples of elements and initiatives defining respective spatial data infrastructure initiatives in the United States and Canada.

  6. Focal plane scanner with reciprocating spatial window

    NASA Technical Reports Server (NTRS)

    Mao, Chengye (Inventor)

    2000-01-01

    A focal plane scanner having a front objective lens, a spatial window for selectively passing a portion of the image therethrough, and a CCD array for receiving the passed portion of the image. All embodiments have a common feature whereby the spatial window and CCD array are mounted for simultaneous relative reciprocating movement with respect to the front objective lens, and the spatial window is mounted within the focal plane of the front objective. In a first embodiment, the spatial window is a slit and the CCD array is one-dimensional, and successive rows of the image in the focal plane of the front objective lens are passed to the CCD array by an image relay lens interposed between the slit and the CCD array. In a second embodiment, the spatial window is a slit, the CCD array is two-dimensional, and a prism-grating-prism optical spectrometer is interposed between the slit and the CCD array so as to cause the scanned row to be split into a plurality of spectral separations onto the CCD array. In a third embodiment, the CCD array is two-dimensional and the spatial window is a rectangular linear variable filter (LVF) window, so as to cause the scanned rows impinging on the LVF to be bandpass filtered into spectral components onto the CCD array through an image relay lens interposed between the LVF and the CCD array.

  7. Exogenous spatial attention decreases audiovisual integration.

    PubMed

    Van der Stoep, N; Van der Stigchel, S; Nijboer, T C W

    2015-02-01

    Multisensory integration (MSI) and spatial attention are both mechanisms through which the processing of sensory information can be facilitated. Studies on the interaction between spatial attention and MSI have mainly focused on the interaction between endogenous spatial attention and MSI. Most of these studies have shown that endogenously attending a multisensory target enhances MSI. It is currently unclear, however, whether and how exogenous spatial attention and MSI interact. In the current study, we investigated the interaction between these two important bottom-up processes in two experiments. In Experiment 1 the target location was task-relevant, and in Experiment 2 the target location was task-irrelevant. Valid or invalid exogenous auditory cues were presented before the onset of unimodal auditory, unimodal visual, and audiovisual targets. We observed reliable cueing effects and multisensory response enhancement in both experiments. To examine whether audiovisual integration was influenced by exogenous spatial attention, the amount of race model violation was compared between exogenously attended and unattended targets. In both Experiment 1 and Experiment 2, a decrease in MSI was observed when audiovisual targets were exogenously attended, compared to when they were not. The interaction between exogenous attention and MSI was less pronounced in Experiment 2. Therefore, our results indicate that exogenous attention diminishes MSI when spatial orienting is relevant. The results are discussed in terms of models of multisensory integration and attention. PMID:25341648

  8. Randomized spatial context for object search.

    PubMed

    Jiang, Yuning; Meng, Jingjing; Yuan, Junsong; Luo, Jiebo

    2015-06-01

    Searching visual objects in large image or video data sets is a challenging problem, because it requires efficient matching and accurate localization of query objects that often occupy a small part of an image. Although spatial context has been shown to help produce more reliable detection than methods that match local features individually, how to extract appropriate spatial context remains an open problem. Instead of using fixed-scale spatial context, we propose a randomized approach to deriving spatial context, in the form of spatial random partition. The effect of spatial context is achieved by averaging the matching scores over multiple random patches. Our approach offers three benefits: 1) the aggregation of the matching scores over multiple random patches provides robust local matching; 2) the matched objects can be directly identified on the pixelwise confidence map, which results in efficient object localization; and 3) our algorithm lends itself to easy parallelization and also allows a flexible tradeoff between accuracy and speed through adjusting the number of partition times. Both theoretical studies and experimental comparisons with the state-of-the-art methods validate the advantages of our approach. PMID:25781874

  9. Spatial orienting in complex audiovisual environments.

    PubMed

    Nardo, Davide; Santangelo, Valerio; Macaluso, Emiliano

    2014-04-01

    Previous studies on crossmodal spatial orienting typically used simple and stereotyped stimuli in the absence of any meaningful context. This study combined computational models, behavioural measures and functional magnetic resonance imaging to investigate audiovisual spatial interactions in naturalistic settings. We created short videos portraying everyday life situations that included a lateralised visual event and a co-occurring sound, either on the same or on the opposite side of space. Subjects viewed the videos with or without eye-movements allowed (overt or covert orienting). For each video, visual and auditory saliency maps were used to index the strength of stimulus-driven signals, and eye-movements were used as a measure of the efficacy of the audiovisual events for spatial orienting. Results showed that visual salience modulated activity in higher-order visual areas, whereas auditory salience modulated activity in the superior temporal cortex. Auditory salience modulated activity also in the posterior parietal cortex, but only when audiovisual stimuli occurred on the same side of space (multisensory spatial congruence). Orienting efficacy affected activity in the visual cortex, within the same regions modulated by visual salience. These patterns of activation were comparable in overt and covert orienting conditions. Our results demonstrate that, during viewing of complex multisensory stimuli, activity in sensory areas reflects both stimulus-driven signals and their efficacy for spatial orienting; and that the posterior parietal cortex combines spatial information about the visual and the auditory modality. PMID:23616340

  10. Stereo Pair, Lake Palanskoye Landslide, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Lake Palanskoye in northern Kamchatka was formed when a large landslide disrupted the drainage pattern, forming a natural dam. The area is volcanically and tectonically active and it is likely that the landslide -- which covers about 80 square kilometers (30 square miles) --was triggered by an earthquake sometime in the past 10,000 years. The source area of the landslide is the ridge between the two bright rocky features to the lower left of the lake. In 3-D, the steep topographic scar at the head of the slide and the broad expanse of hummocky landslide debris that covers the valley just below the lake are visible. This Landsat/SRTM stereoscopic view is an enhanced true color image: Vegetation appears green, rocks are brownish, snow is white and water (such as the lake) appears very dark.

    This stereoscopic image pair was generated using topographic data from SRTM combined with a Landsat 7 satellite image collected the previous summer. The topography data were used to create two differing perspectives of a single image -- one for each eye. Depending on its elevation, each point in the image was shifted slightly. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30 meter(99 foot) spatial resolution of most Landsat images and will provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, South Dakota.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space

  11. Anaglyph, Lake Palanskoye Landslide, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Lake Palanskoye in northern Kamchatka was formed when a large landslide disrupted the drainage pattern, forming a natural dam. The area is volcanically and tectonically active and it is likely that the landslide -- which covers about 80 square kilometers (30 square miles) --was triggered by an earthquake sometime in the past 10,000 years. The source area of the landslide is the ridge to the upper left of the lake. The steep topographic scar at the head of the slide and the broad expanse of hummocky landslide debris that covers the valley to the left of the lake are visible in 3D.

    This anaglyph was generated by first draping a Landsat Thematic Mapper near-infrared image over a topographic map from the Shuttle Radar Topography Mission, then using the topographic data to create two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30 meter (99 foot) spatial resolution of most Landsat images and will provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, South Dakota.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface on its 11-day mission. To collect the 3-D data, engineers added a 60-meter

  12. Anaglyph, Landsat Overlay: Wellington, New Zealand

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Wellington, the capital city of New Zealand, is located on the shores of Port Nicholson, a natural harbor at the south end of North Island. The city was founded in 1840 by British emigrants and now has a regional population of more than 400,000 residents. As seen here, the natural terrain imposes strong control over the urban growth pattern. Rugged hills generally rising to 300 meters (1,000 feet) help protect the city and harbor from strong winter winds.

    New Zealand is seismically active and faults are readily seen in the topography. The Wellington Fault forms the straight northwestern (upper left) shoreline of the harbor. Toward the southwest (lower left) the fault crosses through the city, then forms linear canyons in the hills before continuing offshore. Toward the northeast (upper right) the fault forms the sharp mountain front along the northern edge of the heavily populated Hutt Valley.

    This anaglyph was generated by first draping a Landsat Thematic Mapper image over a topographic map from the Shuttle Radar Topography Mission, then using the topographic data to create two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30 meter (99 foot) spatial resolution of most Landsat images and will provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) data Center, Sioux Falls, South Dakota.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space

  13. Stereo Pair: Wellington, New Zealand

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Wellington, the capital city of New Zealand, is located on the shores of Port Nicholson, a natural harbor at the south end of North Island. The city was founded in 1840 by British emigrants and now has a regional population of more than 400,000 residents. As seen here, the natural terrain imposes strong control over the urban growth pattern (urban features generally appear gray or white in this view). Rugged hills generally rising to 300 meters (1,000 feet) help protect the city and harbor from strong winter winds

    New Zealand is seismically active and faults are readily seen in the topography. The Wellington Fault forms the straight northwestern (left) shoreline of the harbor. Toward the southwest (down) the fault crosses through the city, then forms linear canyons in the hills before continuing offshore at the bottom. Toward the northeast (upper right) the fault forms the sharp mountain front along the northern edge of the heavily populated Hutt Valley.

    This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced true color Landsat7 satellite image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30 meter (99 foot) spatial resolution of most Landsat images and will provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) data Center, Sioux Falls, South Dakota.

    Elevation data

  14. Spatial and temporal heterogeneity explain disease dynamics in a spatially explicit network model.

    PubMed

    Brooks, Christopher P; Antonovics, Janis; Keitt, Timothy H

    2008-08-01

    There is an increasing recognition that individual-level spatial and temporal heterogeneity may play an important role in metapopulation dynamics and persistence. In particular, the patterns of contact within and between aggregates (e.g., demes) at different spatial and temporal scales may reveal important mechanisms governing metapopulation dynamics. Using 7 years of data on the interaction between the anther smut fungus (Microbotryum violaceum) and fire pink (Silene virginica), we show how the application of spatially explicit and implicit network models can be used to make accurate predictions of infection dynamics in spatially structured populations. Explicit consideration of both spatial and temporal organization reveals the role of each in spreading risk for both the host and the pathogen. This work suggests that the application of spatially explicit network models can yield important insights into how heterogeneous structure can promote the persistence of species in natural landscapes. PMID:18662121

  15. Self-locomotion and spatial language and spatial cognition: insights from typical and atypical development

    PubMed Central

    Oudgenoeg-Paz, Ora; Rivière, James

    2014-01-01

    Various studies have shown that occurrence of locomotion in infancy is correlated with the development of spatial cognitive competencies. Recent evidence suggests that locomotor experience might also be important for the development of spatial language. Together these findings suggest that locomotor experience might play a crucial role in the development of linguistic-cognitive spatial skills. However, some studies indicate that, despite their total deprivation of locomotor experience, young children with spinal muscular atrophy (SMA) have the capacity to acquire and use rich spatial representations including good spatial language. Nonetheless, we have to be cautious about what the striking performances displayed by SMA children can reveal on the link between motor and spatial development, as the dynamics of brain development in atypically developing children are different from typically developing children. PMID:24917836

  16. Evaluating spatial patterns in hydrological modeling

    NASA Astrophysics Data System (ADS)

    Koch, Julian; Stisen, Simon; Høgh Jensen, Karsten

    2014-05-01

    Recent advances in hydrological modeling towards fully distributed grid based model codes, increased availability of spatially distributed data (remote sensing and intensive field studies) and more computational power allow a shift towards a spatial model evaluation away from the traditional aggregated evaluation. The consideration of spatially aggregated observations, in form of river discharge, in the evaluation process does not ensure a correct simulation of catchment-inherent distributed variables. The integration of spatial data and hydrological models is limited due to a lack of suitable metrics to evaluate similarity of spatial patterns. This study is engaged with the development of a novel set of performance metrics that capture spatial patterns and go beyond global statistics. The metrics are required to be easy, flexible and especially targeted to compare observed and simulated spatial patterns of hydrological variables. Four quantitative methodologies for comparing spatial patterns are brought forward: (1) A fuzzy set approach that incorporates both fuzziness of location and fuzziness of category. (2) Kappa statistic that expresses the similarity between two maps based on a contingency table (error matrix). (3) An extended version of (2) by considering both fuzziness in location and fuzziness in category. (4) Increasing the information content of a single cell by aggregating neighborhood cells at different window sizes; then computing mean and standard deviation. The identified metrics are tested on observed and simulated land surface temperature maps in a groundwater dominated catchment in western Denmark. The observed data originates from the MODIS satellite and MIKE SHE, a coupled and fully distributed hydrological model, serves as the modelling tool. Synthetic land surface temperature maps are generated to further address strengths and weaknesses of the metrics. The metrics are tested in different parameter optimizing frameworks, where they are

  17. Global Data Spatially Interrelate System for Scientific Big Data Spatial-Seamless Sharing

    NASA Astrophysics Data System (ADS)

    Yu, J.; Wu, L.; Yang, Y.; Lei, X.; He, W.

    2014-04-01

    A good data sharing system with spatial-seamless services will prevent the scientists from tedious, boring, and time consuming work of spatial transformation, and hence encourage the usage of the scientific data, and increase the scientific innovation. Having been adopted as the framework of Earth datasets by Group on Earth Observation (GEO), Earth System Spatial Grid (ESSG) is potential to be the spatial reference of the Earth datasets. Based on the implementation of ESSG, SDOG-ESSG, a data sharing system named global data spatially interrelate system (GASE) was design to make the data sharing spatial-seamless. The architecture of GASE was introduced. The implementation of the two key components, V-Pools, and interrelating engine, and the prototype is presented. Any dataset is firstly resampled into SDOG-ESSG, and is divided into small blocks, and then are mapped into hierarchical system of the distributed file system in V-Pools, which together makes the data serving at a uniform spatial reference and at a high efficiency. Besides, the datasets from different data centres are interrelated by the interrelating engine at the uniform spatial reference of SDOGESSG, which enables the system to sharing the open datasets in the internet spatial-seamless.

  18. Resolving the temporal-spatial ambiguity with the Auroral Spatial Structures Probe

    NASA Astrophysics Data System (ADS)

    Farr, Daniel

    The Auroral Spatial Structures Probe (ASSP) is a National Aeronautics and Space Administration (NASA) sounding rocket mission to measure small scale temporal and spatial variations in the Earth's electric and magnetic fields during breakup aurora conditions. Multiple time-separated measurements of the same spatial location must be made in order to resolve the temporal-spatial ambiguity. ASSP achieves multipoint measurements by ejecting a constellation of six subpayloads from the main payload. This thesis develops a method for identifying the optimal ejection vector, propose an automated test plan for calibrating the seven payloads, and discuss several challenges relating to the interpretation of ASSP data.

  19. Spatial Ability Development in the Geosciences

    NASA Astrophysics Data System (ADS)

    Baldwin, T. K.; Hall-Wallace, M. K.

    2003-12-01

    We designed an experiment to evaluate change in students' spatial skills as a result of completing an earth science course. Our test subjects included high school students in earth science classes, college level non-science majors enrolled in large enrollment introductory geoscience courses and introductory level geoscience majors. They also varied as to whether their course had a hand-on laboratory experience or used supplemental Geographic Information System (GIS) based activities. We measured all students' ability to mentally rotate three-dimensional objects and to construct a three-dimensional object from a two-dimensional representation before and after taking the earth science course. Results show an improvement in spatial skills for all groups after completing the science course. We also observed a consistent improvement in spatial skills overall from high school level science to courses for majors, which is possibly related to their increased exposure to science. A subgroup of the test subjects among both high school and the college non-science majors completed supplementary GIS activities. The GIS implementation at the high school level was more extensive and resulted in significant improvements in both categories of spatial ability. At the college level, the non-science majors that used the GIS curriculum showed no significant difference from those that did not, probably because the time spent on the curriculum was too short. At the college level, the geoscience majors had nearly three times the improvement of non-science majors in both categories of spatial ability. This can most likely be attributed to hands-on, weekly laboratory experiences, which were not part of the course for non-science majors. Students choosing science majors typically have much higher spatial skills than the average first or second year non-science major, however there were large variations in spatial ability within all groups. These results suggest that we evaluate teaching

  20. The spatial resolution of epidemic peaks.

    PubMed

    Mills, Harriet L; Riley, Steven

    2014-04-01

    The emergence of novel respiratory pathogens can challenge the capacity of key health care resources, such as intensive care units, that are constrained to serve only specific geographical populations. An ability to predict the magnitude and timing of peak incidence at the scale of a single large population would help to accurately assess the value of interventions designed to reduce that peak. However, current disease-dynamic theory does not provide a clear understanding of the relationship between: epidemic trajectories at the scale of interest (e.g. city); population mobility; and higher resolution spatial effects (e.g. transmission within small neighbourhoods). Here, we used a spatially-explicit stochastic meta-population model of arbitrary spatial resolution to determine the effect of resolution on model-derived epidemic trajectories. We simulated an influenza-like pathogen spreading across theoretical and actual population densities and varied our assumptions about mobility using Latin-Hypercube sampling. Even though, by design, cumulative attack rates were the same for all resolutions and mobilities, peak incidences were different. Clear thresholds existed for all tested populations, such that models with resolutions lower than the threshold substantially overestimated population-wide peak incidence. The effect of resolution was most important in populations which were of lower density and lower mobility. With the expectation of accurate spatial incidence datasets in the near future, our objective was to provide a framework for how to use these data correctly in a spatial meta-population model. Our results suggest that there is a fundamental spatial resolution for any pathogen-population pair. If underlying interactions between pathogens and spatially heterogeneous populations are represented at this resolution or higher, accurate predictions of peak incidence for city-scale epidemics are feasible. PMID:24722420

  1. Design & implementation of distributed spatial computing node based on WPS

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Li, Guoqing; Xie, Jibo

    2014-03-01

    Currently, the research work of SIG (Spatial Information Grid) technology mostly emphasizes on the spatial data sharing in grid environment, while the importance of spatial computing resources is ignored. In order to implement the sharing and cooperation of spatial computing resources in grid environment, this paper does a systematical research of the key technologies to construct Spatial Computing Node based on the WPS (Web Processing Service) specification by OGC (Open Geospatial Consortium). And a framework of Spatial Computing Node is designed according to the features of spatial computing resources. Finally, a prototype of Spatial Computing Node is implemented and the relevant verification work under the environment is completed.

  2. Compatible Spatial Discretizations for Partial Differential Equations

    SciTech Connect

    Arnold, Douglas, N, ed.

    2004-11-25

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical

  3. Turning the tables: language and spatial reasoning.

    PubMed

    Li, Peggy; Gleitman, Lila

    2002-04-01

    This paper investigates possible influences of the lexical resources of individual languages on the spatial organization and reasoning styles of their users. That there are such powerful and pervasive influences of language on thought is the thesis of the Whorf-Sapir linguistic relativity hypothesis which, after a lengthy period in intellectual limbo, has recently returned to prominence in the anthropological, linguistic, and psycholinguistic literatures. Our point of departure is an influential group of cross-linguistic studies that appear to show that spatial reasoning is strongly affected by the spatial lexicon in everyday use in a community (e.g. Brown, P., & Levinson, S. C. (1993). Linguistic and nonlinguistic coding of spatial arrays: explorations in Mayan cognition (Working Paper No. 24). Nijmegen: Cognitive Anthropology Research Group, Max Planck Institute for Psycholinguistics; Cognitive Linguistics 6 (1995) 33). Specifically, certain groups customarily use an externally referenced spatial-coordinate system to refer to nearby directions and positions ("to the north") whereas English speakers usually employ a viewer-perspective system ("to the left"). Prior findings and interpretations have been to the effect that users of these two types of spatial system solve rotation problems in different ways, reasoning strategies imposed by habitual use of the language-particular lexicons themselves. The present studies reproduce these different problem-solving strategies in speakers of a single language (English) by manipulating landmark cues, suggesting that language itself may not be the key causal factor in choice of spatial perspective. Prior evidence on rotation problem solution from infants (e.g. Acredolo, L.P. (1979). Laboratory versus home: the effect of environment on the 9-month-old infant's choice of spatial reference system. Developmental Psychology, 15 (6), 666-667) and from laboratory animals (e.g. Restle, F. (1975). Discrimination of cues in mazes: a

  4. Moment equations in spatial evolutionary ecology.

    PubMed

    Lion, Sébastien

    2016-09-21

    How should we model evolution in spatially structured populations? Here, I review an evolutionary ecology approach based on the technique of spatial moment equations. I first provide a mathematical underpinning to the derivation of equations for the densities of various spatial configurations in network-based models. I then show how this spatial ecological framework can be coupled with an adaptive dynamics approach to compute the invasion fitness of a rare mutant in a resident population at equilibrium. Under the additional assumption that mutations have small phenotypic effects, I show that the selection gradient can be expressed as a function of neutral measures of genetic and demographic structure. I discuss the connections between this approach and inclusive fitness theory, as well as the applicability and limits of this technique. My main message is that spatial moment equations can be used as a means to obtain compact qualitative arguments about the evolution of life-history traits for a variety of life cycles. PMID:26555844

  5. Mismatch removal via coherent spatial relations

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Ma, Jiayi; Yang, Changcai; Tian, Jinwen

    2014-07-01

    We propose a method for removing mismatches from the given putative point correspondences in image pairs based on "coherent spatial relations." Under the Bayesian framework, we formulate our approach as a maximum likelihood problem and solve a coherent spatial relation between the putative point correspondences using an expectation-maximization (EM) algorithm. Our approach associates each point correspondence with a latent variable indicating it as being either an inlier or an outlier, and alternatively estimates the inlier set and recovers the coherent spatial relation. It can handle not only the case of image pairs with rigid motions but also the case of image pairs with nonrigid motions. To parameterize the coherent spatial relation, we choose two-view geometry and thin-plate spline as models for rigid and nonrigid cases, respectively. The mismatches could be successfully removed via the coherent spatial relations after the EM algorithm converges. The quantitative results on various experimental data demonstrate that our method outperforms many state-of-the-art methods, it is not affected by low initial correct match percentages, and is robust to most geometric transformations including a large viewing angle, image rotation, and affine transformation.

  6. Integrating scientific guidance into marine spatial planning

    PubMed Central

    Rassweiler, Andrew; Costello, Christopher; Hilborn, Ray; Siegel, David A.

    2014-01-01

    Marine spatial planning (MSP), whereby areas of the ocean are zoned for different uses, has great potential to reduce or eliminate conflicts between competing management goals, but only if strategically applied. The recent literature overwhelmingly agrees that including stakeholders in these planning processes is critical to success; but, given the countless alternative ways even simple spatial regulations can be configured, how likely is it that a stakeholder-driven process will generate plans that deliver on the promise of MSP? Here, we use a spatially explicit, dynamic bioeconomic model to show that stakeholder-generated plans are doomed to fail in the absence of strong scientific guidance. While strategically placed spatial regulations can improve outcomes remarkably, the vast majority of possible plans fail to achieve this potential. Surprisingly, existing scientific rules of thumb do little to improve outcomes. Here, we develop an alternative approach in which models are used to identify efficient plans, which are then modified by stakeholders. Even if stakeholders alter these initial proposals considerably, results hugely outperform plans guided by scientific rules of thumb. Our results underscore the importance of spatially explicit dynamic models for the management of marine resources and illustrate how such models can be harmoniously integrated into a stakeholder-driven MSP process. PMID:24573841

  7. Gender differences in multitasking reflect spatial ability.

    PubMed

    Mäntylä, Timo

    2013-04-01

    Demands involving the scheduling and interleaving of multiple activities have become increasingly prevalent, especially for women in both their paid and unpaid work hours. Despite the ubiquity of everyday requirements to multitask, individual and gender-related differences in multitasking have gained minimal attention in past research. In two experiments, participants completed a multitasking session with four gender-fair monitoring tasks and separate tasks measuring executive functioning (working memory updating) and spatial ability (mental rotation). In both experiments, males outperformed females in monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of monitoring accuracy, but only spatial ability mediated gender differences in multitasking. Menstrual changes accentuated these effects, such that gender differences in multitasking (and spatial ability) were eliminated between males and females who were in the menstrual phase of the menstrual cycle but not between males and females who were in the luteal phase. These findings suggest that multitasking involves spatiotemporal task coordination and that gender differences in multiple-task performance reflect differences in spatial ability. PMID:23462757

  8. Temporal dynamics of divided spatial attention.

    PubMed

    Itthipuripat, Sirawaj; Garcia, Javier O; Serences, John T

    2013-05-01

    In naturalistic settings, observers often have to monitor multiple objects dispersed throughout the visual scene. However, the degree to which spatial attention can be divided across spatially noncontiguous objects has long been debated, particularly when those objects are in close proximity. Moreover, the temporal dynamics of divided attention are unclear: is the process of dividing spatial attention gradual and continuous, or does it onset in a discrete manner? To address these issues, we recorded steady-state visual evoked potentials (SSVEPs) as subjects covertly monitored two flickering targets while ignoring an intervening distractor that flickered at a different frequency. All three stimuli were clustered within either the lower left or the lower right quadrant, and our dependent measure was SSVEP power at the target and distractor frequencies measured over time. In two experiments, we observed a temporally discrete increase in power for target- vs. distractor-evoked SSVEPs extending from ∼350 to 150 ms prior to correct (but not incorrect) responses. The divergence in SSVEP power immediately prior to a correct response suggests that spatial attention can be divided across noncontiguous locations, even when the targets are closely spaced within a single quadrant. In addition, the division of spatial attention appears to be relatively discrete, as opposed to slow and continuous. Finally, the predictive relationship between SSVEP power and behavior demonstrates that these neurophysiological measures of divided attention are meaningfully related to cognitive function. PMID:23390315

  9. Spatial Control of Condensation using Chemical Micropatterns

    NASA Astrophysics Data System (ADS)

    Murphy, Kevin; Hansen, Ryan; Nath, Saurabh; Retterer, Scott; Collier, Patrick; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team; CenterNanophase Materials Sciences Team

    2015-11-01

    Surfaces exhibiting wettability patterns can spatially control the nucleation of condensation to enable enhanced fog harvesting and phase-change heat transfer. To date, studies of patterned condensation have utilized a combination of chemical and topographical features, making it difficult to isolate the effects of intrinsic wettability versus surface roughness on spatially controlling the condensate. Here, we fabricate chemical micropatterns consisting of hydrophilic silicon oxide and a smooth hydrophobic silane monolayer to isolate the effects of changes in intrinsic wettability on the spatial control of condensation. Complete spatial control, defined as every nucleation and growth event occurring exclusively on the hydrophilic features, was observed even for supercooled droplets at high water vapor supersaturation. However, this complete spatial control was found to break down beyond a critical spacing that depended upon the extent of supersaturation. The average diameter of condensate was found to be smaller for the chemically micropatterned surfaces compared to a uniformly hydrophobic surface. Control of inter-droplet spacing between supercooled condensate through chemical patterning can be employed to minimize the growth of inter-droplet frost on cold surfaces.

  10. Dynamic Scene Classification Using Redundant Spatial Scenelets.

    PubMed

    Du, Liang; Ling, Haibin

    2016-09-01

    Dynamic scene classification started drawing an increasing amount of research efforts recently. While existing arts mainly rely on low-level features, little work addresses the need of exploring the rich spatial layout information in dynamic scene. Motivated by the fact that dynamic scenes are characterized by both dynamic and static parts with spatial layout priors, we propose to use redundant spatial grouping of a large number of spatiotemporal patches, named scenelet, to represent a dynamic scene. Specifically, each scenelet is associated with a category-dependent scenelet model to encode the likelihood of a specific scene category. All scenelet models for a scene category are jointly learned to encode the spatial interactions and redundancies among them. Subsequently, a dynamic scene sequence is represented as a collection of category likelihoods estimated by these scenelet models. Such presentation effectively encodes the spatial layout prior together with associated semantic information, and can be used for classifying dynamic scenes in combination with a standard learning algorithm such as k -nearest neighbor or linear support vector machine. The effectiveness of our approach is clearly demonstrated using two dynamic scene benchmarks and a related application for violence video classification. In the nearest neighbor classification framework, for dynamic scene classification, our method outperforms previous state-of-the-arts on both Maryland "in the wild" dataset and "stabilized" dynamic scene dataset. For violence video classification on a benchmark dataset, our method achieves a promising classification rate of 87.08%, which significantly improves previous best result of 81.30%. PMID:26302526

  11. Threshold modeling of extreme spatial rainfall

    NASA Astrophysics Data System (ADS)

    Thibaud, E.; Davison, A.

    2013-12-01

    Complex events such as sustained extreme precipitation have major effects on human populations and environmental sustainability, and there is a growing interest in modeling them realistically. For risk assessment based on spatial quantities such as the total amount of rainfall falling over a region, it is necessary to properly model the dependence among extremes over that region, based on data from perhaps only a few sites within it. We propose an approach to spatial modeling of extreme rainfall, based on max-stable processes fitted using partial duration series and a censored threshold likelihood function. The resulting models are coherent with classical extreme-value theory and allow the consistent treatment of spatial dependence of rainfall using ideas related to those of classical geostatistics. The method can be used to produce simulations needed for hydrological models, and in particular for the generation of spatially heterogeneous extreme rainfall fields over catchments. We illustrate the ideas through data from the Val Ferret watershed in the Swiss Alps, based on daily cumulative rainfall totals recorded at 24 stations for four summers, augmented by a longer series from nearby. References: Davison, A. C., Huser, R., Thibaud, E. (2013). Geostatistics of Dependent and Asymptotically Independent Extremes, Mathematical Geosciences, vol. 45, num. 5, p. 511-529, 2013, doi:10.1007/s11004-013-9469-y Thibaud, E., Mutzner, R., Davison A. C. (2013, to appear). Threshold modeling of extreme spatial rainfall, Water Resources Research, doi:10.1002/wrcr.20329

  12. Spatial Competition: Roughening of an Experimental Interface

    PubMed Central

    Allstadt, Andrew J.; Newman, Jonathan A.; Walter, Jonathan A.; Korniss, G.; Caraco, Thomas

    2016-01-01

    Limited dispersal distance generates spatial aggregation. Intraspecific interactions are then concentrated within clusters, and between-species interactions occur near cluster boundaries. Spread of a locally dispersing invader can become motion of an interface between the invading and resident species, and spatial competition will produce variation in the extent of invasive advance along the interface. Kinetic roughening theory offers a framework for quantifying the development of these fluctuations, which may structure the interface as a self-affine fractal, and so induce a series of temporal and spatial scaling relationships. For most clonal plants, advance should become spatially correlated along the interface, and width of the interface (where invader and resident compete directly) should increase as a power function of time. Once roughening equilibrates, interface width and the relative location of the most advanced invader should each scale with interface length. We tested these predictions by letting white clover (Trifolium repens) invade ryegrass (Lolium perenne). The spatial correlation of clover growth developed as anticipated by kinetic roughening theory, and both interface width and the most advanced invader’s lead scaled with front length. However, the scaling exponents differed from those predicted by recent simulation studies, likely due to clover’s growth morphology. PMID:27465518

  13. Spatial turnover in the global avifauna

    PubMed Central

    Gaston, Kevin J; Davies, Richard G; Orme, C. David L; Olson, Valerie A; Thomas, Gavin H; Ding, Tzung-Su; Rasmussen, Pamela C; Lennon, Jack J; Bennett, Peter M; Owens, Ian P.F; Blackburn, Tim M

    2007-01-01

    Despite its wide implications for many ecological issues, the global pattern of spatial turnover in the occurrence of species has been little studied, unlike the global pattern of species richness. Here, using a database on the breeding distributions of birds, we present the first global maps of variation in spatial turnover for an entire taxonomic class, a pattern that has to date remained largely a matter of conjecture, based on theoretical expectations and extrapolation of inconsistent patterns from different biogeographic realms. We use these maps to test four predictions from niche theory as to the form that this variation should take, namely that turnover should increase with species richness, towards lower latitudes, and with the steepness of environmental gradients and that variation in turnover is determined principally by rare (restricted) species. Contrary to prediction, we show that turnover is high both in areas of extremely low and high species richness, does not increase strongly towards the tropics, and is related both to average environmental conditions and spatial variation in those conditions. These results are closely associated with a further important and novel finding, namely that global patterns of spatial turnover are driven principally by widespread species rather than the restricted ones. This complements recent demonstrations that spatial patterns of species richness are also driven principally by widespread species, and thus provides an important contribution towards a unified model of how terrestrial biodiversity varies both within and between the Earth's major land masses. PMID:17472910

  14. Spatial relation query based on geographic ontology

    NASA Astrophysics Data System (ADS)

    Du, Chong; Xu, Jun; Zhang, Jing; Si, Wangli; Liu, Bao; Zhang, Dapeng

    2010-11-01

    The description of a spatial relation is the reflection of human's cognition of spatial objects. It is not only affected by topology and metric, but also affected by geographic semantics, such as the categories of geographic entities and contexts. Currently, the researches about language aspects of spatial relations mostly focus on natural-language formalization, parsing of query sentences, and natural-language query interface. However, geographic objects are not simple geometric points, lines or polygons. In order to get a sound answer according with human cognition in spatial relation queries, we have to take geographic semantics into account. In this paper, the functions of natural-language spatial terms are designed based on previous work on natural-language formalization and human-subject tests. Then, the paper builds a geographic knowledge base based on geographic ontology using Protégé for discriminating geographic semantics. Finally, using the geographic knowledge in the knowledge base, a prototype of a query system is implemented on GIS platform.

  15. Optimization techniques for integrating spatial data

    USGS Publications Warehouse

    Herzfeld, U.C.; Merriam, D.F.

    1995-01-01

    Two optimization techniques ta predict a spatial variable from any number of related spatial variables are presented. The applicability of the two different methods for petroleum-resource assessment is tested in a mature oil province of the Midcontinent (USA). The information on petroleum productivity, usually not directly accessible, is related indirectly to geological, geophysical, petrographical, and other observable data. This paper presents two approaches based on construction of a multivariate spatial model from the available data to determine a relationship for prediction. In the first approach, the variables are combined into a spatial model by an algebraic map-comparison/integration technique. Optimal weights for the map comparison function are determined by the Nelder-Mead downhill simplex algorithm in multidimensions. Geologic knowledge is necessary to provide a first guess of weights to start the automatization, because the solution is not unique. In the second approach, active set optimization for linear prediction of the target under positivity constraints is applied. Here, the procedure seems to select one variable from each data type (structure, isopachous, and petrophysical) eliminating data redundancy. Automating the determination of optimum combinations of different variables by applying optimization techniques is a valuable extension of the algebraic map-comparison/integration approach to analyzing spatial data. Because of the capability of handling multivariate data sets and partial retention of geographical information, the approaches can be useful in mineral-resource exploration. ?? 1995 International Association for Mathematical Geology.

  16. Dengue Vectors and their Spatial Distribution

    PubMed Central

    Higa, Yukiko

    2011-01-01

    The distribution of dengue vectors, Ae. aegypti and Ae. albopictus, is affected by climatic factors. In addition, since their life cycles are well adapted to the human environment, environmental changes resulting from human activity such as urbanization exert a great impact on vector distribution. The different responses of Ae. aegypti and Ae albopictus to various environments result in a difference in spatial distribution along north-south and urban-rural gradients, and between the indoors and outdoors. In the north-south gradient, climate associated with survival is an important factor in spatial distribution. In the urban-rural gradient, different distribution reflects a difference in adult niches and is modified by geographic and human factors. The direct response of the two species to the environment around houses is related to different spatial distribution indoors and outdoors. Dengue viruses circulate mainly between human and vector mosquitoes, and the vector presence is a limiting factor of transmission. Therefore, spatial distribution of dengue vectors is a significant concern in the epidemiology of the disease. Current technologies such as GIS, satellite imagery and statistical models allow researchers to predict the spatial distribution of vectors in the changing environment. Although it is difficult to confirm the actual effect of environmental and climate changes on vector abundance and vector-borne diseases, environmental changes caused by humans and human behavioral changes due to climate change can be expected to exert an impact on dengue vectors. Longitudinal monitoring of dengue vectors and viruses is therefore necessary. PMID:22500133

  17. Spatial Inference for Distributed Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Braverman, A. J.; Katzfuss, M.; Nguyen, H.

    2014-12-01

    Remote sensing data are inherently spatial, and a substantial portion of their value for scientific analyses derives from the information they can provide about spatially dependent processes. Geophysical variables such as atmopsheric temperature, cloud properties, humidity, aerosols and carbon dioxide all exhibit spatial patterns, and satellite observations can help us learn about the physical mechanisms driving them. However, remote sensing observations are often noisy and incomplete, so inferring properties of true geophysical fields from them requires some care. These data can also be massive, which is both a blessing and a curse: using more data drives uncertainties down, but also drives costs up, particularly when data are stored on different computers or in different physical locations. In this talk I will discuss a methodology for spatial inference on massive, distributed data sets that does not require moving large volumes of data. The idea is based on a combination of ideas including modeling spatial covariance structures with low-rank covariance matrices, and distributed estimation in sensor or wireless networks.

  18. Spatial entanglement of nonvacuum Gaussian states

    NASA Astrophysics Data System (ADS)

    Kiałka, Filip; Ahmadi, Mehdi; Dragan, Andrzej

    2016-06-01

    The vacuum state of a relativistic quantum field contains entanglement between regions separated by spacelike intervals. Such spatial entanglement can be revealed using an operational method introduced in [M. Rodriguez-Vazquez, M. del Rey, H. Westman, and J. Leon, Ann. Phys. (N.Y.) 351, 112 (2014), E. G. Brown, M. del Rey, H. Westman, J. Leon, and A. Dragan, Phys. Rev. D 91, 016005 (2015)]. In this approach, a cavity is instantaneously divided into halves by an introduction of an extra perfect mirror. Causal separation of the two regions of the cavity reveals nonlocal spatial correlations present in the field, which can be quantified by measuring particles generated in the process. We use this method to study spatial entanglement properties of nonvacuum Gaussian field states. In particular, we show how to enhance the amount of harvested spatial entanglement by an appropriate choice of the initial state of the field in the cavity. We find a counterintuitive influence of the initial entanglement between cavity modes on the spatial entanglement which is revealed by dividing the cavity in half.

  19. Culturally inconsistent spatial structure reduces learning.

    PubMed

    McCrink, Koleen; Shaki, Samuel

    2016-09-01

    Human adults tend to use a spatial continuum to organize any information they consider to be well-ordered, with a sense of initial and final position. The directionality of this spatial mapping is mediated by the culture of the subject, largely as a function of the prevailing reading and writing habits (for example, from left-to-right for English speakers or right-to-left for Hebrew speakers). In the current study, we tasked American and Israeli subjects with encoding and recalling a set of arbitrary pairings, consisting of frequently ordered stimuli (letters with shapes: Experiment 1) or infrequently ordered stimuli (color terms with shapes: Experiment 2), that were serially presented in a left-to-right, right-to-left, or central-only manner. The subjects were better at recalling information that contained ordinal stimuli if the spatial flow of presentation during encoding matched the dominant directionality of the subjects' culture, compared to information encoded in the non-dominant direction. This phenomenon did not extend to infrequently ordered stimuli (e.g., color terms). These findings suggest that adults implicitly harness spatial organization to support memory, and this harnessing process is culturally mediated in tandem with our spatial biases. PMID:27208418

  20. Temporal dynamics of divided spatial attention

    PubMed Central

    Garcia, Javier O.; Serences, John T.

    2013-01-01

    In naturalistic settings, observers often have to monitor multiple objects dispersed throughout the visual scene. However, the degree to which spatial attention can be divided across spatially noncontiguous objects has long been debated, particularly when those objects are in close proximity. Moreover, the temporal dynamics of divided attention are unclear: is the process of dividing spatial attention gradual and continuous, or does it onset in a discrete manner? To address these issues, we recorded steady-state visual evoked potentials (SSVEPs) as subjects covertly monitored two flickering targets while ignoring an intervening distractor that flickered at a different frequency. All three stimuli were clustered within either the lower left or the lower right quadrant, and our dependent measure was SSVEP power at the target and distractor frequencies measured over time. In two experiments, we observed a temporally discrete increase in power for target- vs. distractor-evoked SSVEPs extending from ∼350 to 150 ms prior to correct (but not incorrect) responses. The divergence in SSVEP power immediately prior to a correct response suggests that spatial attention can be divided across noncontiguous locations, even when the targets are closely spaced within a single quadrant. In addition, the division of spatial attention appears to be relatively discrete, as opposed to slow and continuous. Finally, the predictive relationship between SSVEP power and behavior demonstrates that these neurophysiological measures of divided attention are meaningfully related to cognitive function. PMID:23390315

  1. Spatial Competition: Roughening of an Experimental Interface.

    PubMed

    Allstadt, Andrew J; Newman, Jonathan A; Walter, Jonathan A; Korniss, G; Caraco, Thomas

    2016-01-01

    Limited dispersal distance generates spatial aggregation. Intraspecific interactions are then concentrated within clusters, and between-species interactions occur near cluster boundaries. Spread of a locally dispersing invader can become motion of an interface between the invading and resident species, and spatial competition will produce variation in the extent of invasive advance along the interface. Kinetic roughening theory offers a framework for quantifying the development of these fluctuations, which may structure the interface as a self-affine fractal, and so induce a series of temporal and spatial scaling relationships. For most clonal plants, advance should become spatially correlated along the interface, and width of the interface (where invader and resident compete directly) should increase as a power function of time. Once roughening equilibrates, interface width and the relative location of the most advanced invader should each scale with interface length. We tested these predictions by letting white clover (Trifolium repens) invade ryegrass (Lolium perenne). The spatial correlation of clover growth developed as anticipated by kinetic roughening theory, and both interface width and the most advanced invader's lead scaled with front length. However, the scaling exponents differed from those predicted by recent simulation studies, likely due to clover's growth morphology. PMID:27465518

  2. Extreme Learning Machines for spatial environmental data

    NASA Astrophysics Data System (ADS)

    Leuenberger, Michael; Kanevski, Mikhail

    2015-12-01

    The use of machine learning algorithms has increased in a wide variety of domains (from finance to biocomputing and astronomy), and nowadays has a significant impact on the geoscience community. In most real cases geoscience data modelling problems are multivariate, high dimensional, variable at several spatial scales, and are generated by non-linear processes. For such complex data, the spatial prediction of continuous (or categorical) variables is a challenging task. The aim of this paper is to investigate the potential of the recently developed Extreme Learning Machine (ELM) for environmental data analysis, modelling and spatial prediction purposes. An important contribution of this study deals with an application of a generic self-consistent methodology for environmental data driven modelling based on Extreme Learning Machine. Both real and simulated data are used to demonstrate applicability of ELM at different stages of the study to understand and justify the results.

  3. Optical vortex array in spatially varying lattice

    NASA Astrophysics Data System (ADS)

    Kapoor, Amit; Kumar, Manish; Senthilkumaran, P.; Joseph, Joby

    2016-04-01

    We present an experimental method based on a modified multiple beam interference approach to generate an optical vortex array arranged in a spatially varying lattice. This method involves two steps which are: numerical synthesis of a consistent phase mask by using two-dimensional integrated phase gradient calculations and experimental implementation of produced phase mask by utilizing a phase only spatial light modulator in an optical 4f Fourier filtering setup. This method enables an independent variation of the orientation and period of the vortex lattice. As working examples, we provide the experimental demonstration of various spatially variant optical vortex lattices. We further confirm the existence of optical vortices by formation of fork fringes. Such lattices may find applications in size dependent trapping, sorting, manipulation and photonic crystals.

  4. Emergent universe in spatially flat cosmological model

    SciTech Connect

    Zhang, Kaituo; Yu, Hongwei; Wu, Puxun E-mail: wpx0227@gmail.com

    2014-01-01

    The scenario of an emergent universe provides a promising resolution to the big bang singularity in universes with positive or negative spatial curvature. It however remains unclear whether the scenario can be successfully implemented in a spatially flat universe which seems to be favored by present cosmological observations. In this paper, we study the stability of Einstein static state solutions in a spatially flat Shtanov-Sahni braneworld scenario. With a negative dark radiation term included and assuming a scalar field as the only matter energy component, we find that the universe can stay at an Einstein static state past eternally and then evolve to an inflation phase naturally as the scalar field climbs up its potential slowly. In addition, we also propose a concrete potential of the scalar field that realizes this scenario.

  5. Cosmological signatures of anisotropic spatial curvature

    NASA Astrophysics Data System (ADS)

    Pereira, Thiago S.; Mena Marugán, Guillermo A.; Carneiro, Saulo

    2015-07-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.

  6. Using Spatial Gradients to Model Localization Phenomena

    SciTech Connect

    D.J.Bammann; D.Mosher; D.A.Hughes; N.R.Moody; P.R.Dawson

    1999-07-01

    We present the final report on a Laboratory-Directed Research and Development project, Using Spatial Gradients to Model Localization Phenomena, performed during the fiscal years 1996 through 1998. The project focused on including spatial gradients in the temporal evolution equations of the state variables that describe hardening in metal plasticity models. The motivation was to investigate the numerical aspects associated with post-bifurcation mesh dependent finite element solutions in problems involving damage or crack propagation as well as problems in which strain Localizations occur. The addition of the spatial gradients introduces a mathematical length scale that eliminates the mesh dependency of the solution. In addition, new experimental techniques were developed to identify the physical mechanism associated with the numerical length scale.

  7. Spatial audio through a bone conduction interface.

    PubMed

    MacDonald, Justin A; Henry, Paula P; Letowski, Tomasz R

    2006-10-01

    Headphones are the standard presentation device for radio communication in the military. Although bone conduction devices possess several advantages over headphones for some military applications, they are generally considered inappropriate for inclusion in a multi-channel system. The current study tested the feasibility of a multi-channel bone conduction system by measuring the localizability of spatialized auditory stimuli presented through a pair of bone conduction vibrators. Listeners localized a Gaussian noise stimulus spatialized with individualized head-related transfer functions (HRTFs). The sounds were presented from eight virtual locations on the horizontal plane (0, +/-45, +/-90, +/-135, and 180 degrees ) through either stereo headphones or a stereo bone conduction system. Localization performance was found to be nearly identical for both audio systems, indicating that bone conduction systems can be effectively used for displaying spatial information. PMID:17062501

  8. Spatially selective photoconductive stimulation of live neurons

    PubMed Central

    Campbell, Jacob; Singh, Dipika; Hollett, Geoffrey; Dravid, Shashank M.; Sailor, Michael J.; Arikkath, Jyothi

    2014-01-01

    Synaptic activity is intimately linked to neuronal structure and function. Stimulation of live cultured primary neurons, coupled with fluorescent indicator imaging, is a powerful technique to assess the impact of synaptic activity on neuronal protein trafficking and function. Current technology for neuronal stimulation in culture include chemical techniques or microelectrode or optogenetic based techniques. While technically powerful, chemical stimulation has limited spatial resolution and microelectrode and optogenetic techniques require specialized equipment and expertise. We report an optimized and improved technique for laser based photoconductive stimulation of live neurons using an inverted confocal microscope that overcomes these limitations. The advantages of this approach include its non-invasive nature and adaptability to temporal and spatial manipulation. We demonstrate that the technique can be manipulated to achieve spatially selective stimulation of live neurons. Coupled with live imaging of fluorescent indicators, this simple and efficient technique should allow for significant advances in neuronal cell biology. PMID:24904287

  9. Videogame interventions and spatial ability interactions.

    PubMed

    Redick, Thomas S; Webster, Sean B

    2014-01-01

    Numerous research studies have been conducted on the use of videogames as tools to improve one's cognitive abilities. While meta-analyses and qualitative reviews have provided evidence that some aspects of cognition such as spatial imagery are modified after exposure to videogames, other evidence has shown that matrix reasoning measures of fluid intelligence do not show evidence of transfer from videogame training. In the current work, we investigate the available evidence for transfer specifically to nonverbal intelligence and spatial ability measures, given recent research that these abilities may be most sensitive to training on cognitive and working memory tasks. Accordingly, we highlight a few studies that on the surface provide evidence for transfer to spatial abilities, but a closer look at the pattern of data does not reveal a clean interpretation of the results. We discuss the implications of these results in relation to research design and statistical analysis practices. PMID:24723880

  10. Some topics in the spatial bispectra

    SciTech Connect

    Sullivan, E.

    1994-11-15

    The bispectrum can be defined as the triple fourier transform of the third order cumulant of a data series. Up to the present, except in image analysis, most work on the bispectrum has treated time series. Recently, however, there has been interest in using the bispectrum in acoustic array processing. After a look at some issues involving sampling frequencies and symmetries of the bispectrum in general, two applications of the spatial bispectrum to underwater acoustic array processing will be discussed. One is a method of processing against loss of spatial coherence in towed arrays, which takes the form of a one-dimensional image, and the other is a look at the role of spatial bispectra in matched-field processing, which is a form of model-based processing used for the localization of acoustic sound sources.

  11. Optimized spatial matrix representations of quantum Hamiltonians

    NASA Astrophysics Data System (ADS)

    Lv, Q. Z.; Jennings, D. J.; Betke, J.; Su, Q.; Grobe, R.

    2016-01-01

    We examine the accuracy of several approaches to represent the quantum mechanical Schrödinger, Klein-Gordon and Dirac Hamilton operators by optimized spatial matrices. Two of the approaches are based on periodic and reflecting boundaries and have an error scaling with the number of spatial grid points that is significantly better than the ones based on the usual approaches where the momentum operator is approximated by finite-difference schemes. These N × N matrices are optimum in the sense that their eigenvalues and eigenvectors are exact representations on the spatial grid for the continuous solutions of the corresponding force-free Hamiltonian. As an example, we apply these techniques to compute the vacuum's polarization charge density from the Dirac and Foldy-Wouthuysen theory.

  12. Standing variation in spatially growing populations

    NASA Astrophysics Data System (ADS)

    Fusco, Diana; Gralka, Matti; Kayser, Jona; Hallatschek, Oskar

    Patterns of genetic diversity not only reflect the evolutionary history of a species but they can also determine the evolutionary response to environmental change. For instance, the standing genetic diversity of a microbial population can be key to rescue in the face of an antibiotic attack. While genetic diversity is in general shaped by both demography and evolution, very little is understood when both factors matter, as e.g. for biofilms with pronounced spatial organization. Here, we quantitatively explore patterns of genetic diversity by using microbial colonies and well-mixed test tube populations as antipodal model systems with extreme and very little spatial structure, respectively. We find that Eden model simulations and KPZ theory can remarkably reproduce the genetic diversity in microbial colonies obtained via population sequencing. The excellent agreement allows to draw conclusions on the resilience of spatially-organized populations and to uncover new strategies to contain antibiotic resistance.

  13. Monopolar needle electrode spatial recording characteristics.

    PubMed

    King, J C; Dumitru, D; Stegeman, D

    1996-10-01

    The recording characteristics of the monopolar needle in three dimensions have not been well established. A simple spherical recording territory is commonly assumed with the very tip proposed to have a greater spatial recording sensitivity by some authors. We demonstrate by enlarged physical modeling in a homogeneous volume conductor that the recorded amplitude diminishes more gradually radially away from the conical surface than distally past the tip or proximal to the insulation edge. The sensitivity over the exposed metallic surface is found to be uniformly proportional to the area, which results in relatively less sensitivity at the tip than the middle and proximal portions of the conical recording surface. The overall spatial amplitude recording characteristics can be better described by an apple shape than a sphere, centered at the midportion of the exposed conical surface. A better appreciation of the actual spatial recording characteristics of the monopolar needle electrode can result in more accurate physiologic interpretations of quantitative motor unit analysis. PMID:8808657

  14. Videogame interventions and spatial ability interactions

    PubMed Central

    Redick, Thomas S.; Webster, Sean B.

    2014-01-01

    Numerous research studies have been conducted on the use of videogames as tools to improve one’s cognitive abilities. While meta-analyses and qualitative reviews have provided evidence that some aspects of cognition such as spatial imagery are modified after exposure to videogames, other evidence has shown that matrix reasoning measures of fluid intelligence do not show evidence of transfer from videogame training. In the current work, we investigate the available evidence for transfer specifically to nonverbal intelligence and spatial ability measures, given recent research that these abilities may be most sensitive to training on cognitive and working memory tasks. Accordingly, we highlight a few studies that on the surface provide evidence for transfer to spatial abilities, but a closer look at the pattern of data does not reveal a clean interpretation of the results. We discuss the implications of these results in relation to research design and statistical analysis practices. PMID:24723880

  15. Optimal Spatial Prediction Using Ensemble Machine Learning.

    PubMed

    Davies, Molly Margaret; van der Laan, Mark J

    2016-05-01

    Spatial prediction is an important problem in many scientific disciplines. Super Learner is an ensemble prediction approach related to stacked generalization that uses cross-validation to search for the optimal predictor amongst all convex combinations of a heterogeneous candidate set. It has been applied to non-spatial data, where theoretical results demonstrate it will perform asymptotically at least as well as the best candidate under consideration. We review these optimality properties and discuss the assumptions required in order for them to hold for spatial prediction problems. We present results of a simulation study confirming Super Learner works well in practice under a variety of sample sizes, sampling designs, and data-generating functions. We also apply Super Learner to a real world dataset. PMID:27130244

  16. Measuring spatial variability in soil characteristics

    DOEpatents

    Hoskinson, Reed L.; Svoboda, John M.; Sawyer, J. Wayne; Hess, John R.; Hess, J. Richard

    2002-01-01

    The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.

  17. Statistical dispersion relation for spatially broadband fields.

    PubMed

    Shan, Mingguang; Nastasa, Viorel; Popescu, Gabriel

    2016-06-01

    The dispersion relation is fundamental to a physical phenomenon that develops in both space and time. This equation connects the spatial and temporal frequencies involved in the dynamic process through the material constants. Electromagnetic plane waves propagating in homogeneous media are bound by simple dispersion relation, which sets the magnitude of the spatial frequency, k, as being proportional to the temporal frequency, ω, with the proportionality constant dependent on the refractive index, n, and the speed of light in vacuum, c. Here we show that, for spatially broadband fields, an analog dispersion relation can be derived, except in this case the k-vector variance is connected with the temporal frequency through the statistics of the refractive index fluctuations in the medium. We discuss how this relationship can be used to retrieve information about refractive index distributions in biological tissues. This result is particularly significant in measurements of angular light scattering and quantitative phase imaging of biological structures. PMID:27244396

  18. High Spatial Resolution Thermal Satellite Technologies

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    This document in the form of viewslides, reviews various low-cost alternatives to high spatial resolution thermal satellite technologies. There exists no follow-on to Landsat 7 or ASTER high spatial resolution thermal systems. This document reviews the results of the investigation in to the use of new technologies to create a low-cost useful alternative. Three suggested technologies are examined. 1. Conventional microbolometer pushbroom modes offers potential for low cost Landsat Data Continuity Mission (LDCM) thermal or ASTER capability with at least 60-120 ground sampling distance (GSD). 2. Backscanning could produce MultiSpectral Thermal Imager performance without cooled detectors. 3. Cooled detector could produce hyperspectral thermal class system or extremely high spatial resolution class instrument.

  19. Spatial determinants of poverty in rural Kenya

    PubMed Central

    Okwi, Paul O.; Ndeng'e, Godfrey; Kristjanson, Patti; Arunga, Mike; Notenbaert, An; Omolo, Abisalom; Henninger, Norbert; Benson, Todd; Kariuki, Patrick; Owuor, John

    2007-01-01

    This article investigates the link between poverty incidence and geographical conditions within rural locations in Kenya. Evidence from poverty maps for Kenya and other developing countries suggests that poverty and income distribution are not homogenous. We use spatial regression techniques to explore the effects of geographic factors on poverty. Slope, soil type, distance/travel time to public resources, elevation, type of land use, and demographic variables prove to be significant in explaining spatial patterns of poverty. However, differential influence of these and other factors at the location level shows that provinces in Kenya are highly heterogeneous; hence different spatial factors are important in explaining welfare levels in different areas within provinces, suggesting that targeted propoor policies are needed. Policy simulations are conducted to explore the impact of various interventions on location-level poverty levels. Investments in roads and improvements in soil fertility are shown to potentially reduce poverty rates, with differential impacts in different regions. PMID:17942704

  20. Spatial Correlations in Monte Carlo Criticality Simulations

    NASA Astrophysics Data System (ADS)

    Dumonteil, E.; Malvagi, F.; Zoia, A.; Mazzolo, A.; Artusio, D.; Dieudonné, C.; De Mulatier, C.

    2014-06-01

    Temporal correlations arising in Monte Carlo criticality codes have focused the attention of both developers and practitioners for a long time. Those correlations affects the evaluation of tallies of loosely coupled systems, where the system's typical size is very large compared to the diffusion/absorption length scale of the neutrons. These time correlations are closely related to spatial correlations, both variables being linked by the transport equation. Therefore this paper addresses the question of diagnosing spatial correlations in Monte Carlo criticality simulations. In that aim, we will propose a spatial correlation function well suited to Monte Carlo simulations, and show its use while simulating a fuel pin-cell. The results will be discussed, modeled and interpreted using the tools of branching processes of statistical mechanics. A mechanism called "neutron clustering", affecting simulations, will be discussed in this frame.

  1. Optimal estimator model for human spatial orientation

    NASA Technical Reports Server (NTRS)

    Borah, J.; Young, L. R.; Curry, R. E.

    1979-01-01

    A model is being developed to predict pilot dynamic spatial orientation in response to multisensory stimuli. Motion stimuli are first processed by dynamic models of the visual, vestibular, tactile, and proprioceptive sensors. Central nervous system function is then modeled as a steady-state Kalman filter which blends information from the various sensors to form an estimate of spatial orientation. Where necessary, this linear central estimator has been augmented with nonlinear elements to reflect more accurately some highly nonlinear human response characteristics. Computer implementation of the model has shown agreement with several important qualitative characteristics of human spatial orientation, and it is felt that with further modification and additional experimental data the model can be improved and extended. Possible means are described for extending the model to better represent the active pilot with varying skill and work load levels.

  2. Random lasing with spatially nonuniform gain

    NASA Astrophysics Data System (ADS)

    Fan, Ting; Lü, Jiantao

    2016-07-01

    Spatial and spectral properties of random lasing with spatially nonuniform gain were investigated in two-dimensional (2D) disordered medium. The pumping light was described by an individual electric field and coupled into the rate equations by using the polarization equation. The spatially nonuniform gain comes from the multiple scattering of this pumping light. Numerical simulation of the random system with uniform and nonuniform gain were performed both in weak and strong scattering regime. In weak scattering sample, all the lasing modes correspond to those of the passive system whether the nonuniform gain is considered. However, in strong scattering regime, new lasing modes appear with nonuniform gain as the localization area changes. Our results show that it is more accurate to describe the random lasing behavior with introducing the nonuniform gain origins from the multiple light scattering.

  3. Physical exercise, neuroplasticity, spatial learning and memory.

    PubMed

    Cassilhas, Ricardo C; Tufik, Sergio; de Mello, Marco Túlio

    2016-03-01

    There has long been discussion regarding the positive effects of physical exercise on brain activity. However, physical exercise has only recently begun to receive the attention of the scientific community, with major interest in its effects on the cognitive functions, spatial learning and memory, as a non-drug method of maintaining brain health and treating neurodegenerative and/or psychiatric conditions. In humans, several studies have shown the beneficial effects of aerobic and resistance exercises in adult and geriatric populations. More recently, studies employing animal models have attempted to elucidate the mechanisms underlying neuroplasticity related to physical exercise-induced spatial learning and memory improvement, even under neurodegenerative conditions. In an attempt to clarify these issues, the present review aims to discuss the role of physical exercise in the improvement of spatial learning and memory and the cellular and molecular mechanisms involved in neuroplasticity. PMID:26646070

  4. Typograph: Multiscale Spatial Exploration of Text Documents

    SciTech Connect

    Endert, Alexander; Burtner, Edwin R.; Cramer, Nicholas O.; Perko, Ralph J.; Hampton, Shawn D.; Cook, Kristin A.

    2013-12-01

    Visualizing large document collections using a spatial layout of terms can enable quick overviews of information. However, these metaphors (e.g., word clouds, tag clouds, etc.) often lack interactivity to explore the information and the location and rendering of the terms are often not based on mathematical models that maintain relative distances from other information based on similarity metrics. Further, transitioning between levels of detail (i.e., from terms to full documents) can be challanging. In this paper, we present Typograph, a multi-scale spatial exploration visualization for large document collections. Based on the term-based visualization methods, Typograh enables multipel levels of detail (terms, phrases, snippets, and full documents) within the single spatialization. Further, the information is placed based on their relative similarity to other information to create the “near = similar” geography metaphor. This paper discusses the design principles and functionality of Typograph and presents a use case analyzing Wikipedia to demonstrate usage.

  5. Effect of Spatial Distribution of Rainfall on Temporal and Spatial Uncertainty of SWAT Output

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate rainfall data are critical for accurate representation of temporal and spatial uncertainties of simulated watershed-scale hydrology and water quality from models. The objective of this study was 1) to assess the impacts of different methods for incorporating spatially variable rainfall inpu...

  6. Spatial-Sequential and Spatial-Simultaneous Working Memory in Individuals with Williams Syndrome

    ERIC Educational Resources Information Center

    Lanfranchi, Silvia; De Mori, Letizia; Mammarella, Irene C.; Carretti, Barbara; Vianello, Renzo

    2015-01-01

    The aim of the present study was to compare visuospatial working memory performance in 18 individuals with Williams syndrome (WS) and 18 typically developing (TD) children matched for nonverbal mental age. Two aspects were considered: task presentation format (i.e., spatial-sequential or spatial-simultaneous), and level of attentional control…

  7. A Twin Study of Spatial and Non-Spatial Delayed Response Performance in Middle Age

    ERIC Educational Resources Information Center

    Kremen, William S.; Mai, Tuan; Panizzon, Matthew S.; Franz, Carol E.; Blankfeld, Howard M.; Xian, Hong; Eisen, Seth A.; Tsuang, Ming T.; Lyons, Michael J.

    2011-01-01

    Delayed alternation and object alternation are classic spatial and non-spatial delayed response tasks. We tested 632 middle-aged male veteran twins on variants of these tasks in order to compare test difficulty, measure their inter-correlation, test order effects, and estimate heritabilities (proportion of observed variance due to genetic…

  8. Part 2 The Link between GIS and spatial analysis . GIS, spatial econometrics and social science research

    NASA Astrophysics Data System (ADS)

    Anselin, Luc

    Some ideas are formulated on the challenges presented to GIS, spatial analysis and spatial econometrics that result from recent trends in social science research. These new developments are characterized by a focus on the geography of phenomena. Particular emphasis is placed on the need to extend concepts of space, to broaden the analytical toolbox and to develop software and advance education.

  9. [Spatial-temporal evolution of urban thermal environment based on spatial statistical features].

    PubMed

    Zhang, Wei; Jiang, Jin-gang; Zhu, Yu-bi

    2015-06-01

    A new method which aims to determine the area of urban heat island (UHI) was proposed in this paper based on spatial statistical features by means of remote sensing and GIS spatial analysis tools, and was applied in the spatial-temporal evolution analysis of UHI in Hangzhou, China. The results showed that the area of UHI in Hangzhou increased 8.66 times from 1984 to 2010. During the 26 years, the spatial structure of UHI in Hangzhou had become more and more complex, and its spatial distribution changed from single-center to multi-center. Generally speaking, the change trend of thermal environment in Hangzhou was turning from low-temperature spatial equilibrium to high-temperature spatial equilibrium. The major cause for the development of UHI in Hangzhou was urban expansion as it showed in the results of dynamic change detection. This new method considered the spatial correlation of urban land surface temperature (LST), and reflected the global statistical features of LST. It was more objective and accurate than the conventional methods, and could provide more information, which would help us to resolve the problem of being lack of generality and comparability in the current research. PMID:26572040

  10. Exploring Visuospatial Thinking in Learning about Mineralogy: Spatial Orientation Ability and Spatial Visualization Ability

    ERIC Educational Resources Information Center

    Ozdemir, Gokhan

    2010-01-01

    This mixed-method research attempted to clarify the role of visuospatial abilities in learning about mineralogy. Various sources of data--including quantitative pre- and postmeasures of spatial visualization and spatial orientation tests and achievement scores on six measures and qualitative unstructured observations, interviews, and field trip…

  11. Early Development of Spatial-Numeric Associations: Evidence from Spatial and Quantitative Performance of Preschoolers

    ERIC Educational Resources Information Center

    Opfer, John E.; Thompson, Clarissa A.; Furlong, Ellen E.

    2010-01-01

    Numeric magnitudes often bias adults' spatial performance. Partly because the direction of this bias (left-to-right versus right-to-left) is culture-specific, it has been assumed that the orientation of spatial-numeric associations is a late development, tied to reading practice or schooling. Challenging this assumption, we found that preschoolers…

  12. Effective spatial database support for acquiring spatial information from remote sensing images

    NASA Astrophysics Data System (ADS)

    Jin, Peiquan; Wan, Shouhong; Yue, Lihua

    2009-12-01

    In this paper, a new approach to maintain spatial information acquiring from remote-sensing images is presented, which is based on Object-Relational DBMS. According to this approach, the detected and recognized results of targets are stored and able to be further accessed in an ORDBMS-based spatial database system, and users can access the spatial information using the standard SQL interface. This approach is different from the traditional ArcSDE-based method, because the spatial information management module is totally integrated into the DBMS and becomes one of the core modules in the DBMS. We focus on three issues, namely the general framework for the ORDBMS-based spatial database system, the definitions of the add-in spatial data types and operators, and the process to develop a spatial Datablade on Informix. The results show that the ORDBMS-based spatial database support for image-based target detecting and recognition is easy and practical to be implemented.

  13. Textbook Questions to Support Spatial Thinking: Differences in Spatiality by Question Location

    ERIC Educational Resources Information Center

    Jo, Injeong; Bednarz, Sarah W.

    2011-01-01

    This study investigates the location and varying spatiality of questions in geography textbooks. The results show that study questions posed in page margins address the three components of spatial thinking--concepts of space, using tools of representation, and processes of reasoning--more than questions in other locations within the text. Three…

  14. Using a spatially explicit analysis model to evaluate spatial variation of corn yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...

  15. Effects of Spatial Aggregation of Soil Spatial Information on Watershed Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Li, R.; Zhu, A.; Song, X.

    2011-12-01

    Impacts of detailed soil spatial information on hydrological modeling across different spatial scales are lack of comprehensive understanding. This paper examines such effects by comparing the simulated runoffs across scales from watershed models based on two different levels of soil spatial information, 10 meter resolution soil data derived from SoLIM and the 1:24 000 scale Soil Survey Geographic (SSURGO) data base. The examination was conducted at three different spatial scales: two at different watershed size levels and one at the model minimum simulation unit level. A fully distributed hydrologic model and a semi-distributed model were used to assess the effects. The study was conducted in a 19.5 square kilometers watershed located in northwest Dane county, Wisconsin. The results showed that differences in simulated runoff at the minimum simulation unit level are large. However, the difference gradually decreases as the spatial scale of simulation units increases. For sub-basins larger than 10 square kilometers in Brewery Creek, simulated stream flows using spatially detailed soil data, SoLIM data, would not vary significantly from those using SSURGO soil data. The unique findings of this study provide an important and unified perspective on the different views reported in the literature concerning how spatial detail of the input soil data affects watershed modeling and offer a potential useful basis for selecting the level of detail of soil spatial information appropriate for watershed modeling at a given model simulation scale.

  16. Influence of Design Training and Spatial Solution Strategies on Spatial Ability Performance

    ERIC Educational Resources Information Center

    Lin, Hanyu

    2016-01-01

    Numerous studies have reported that spatial ability improves through training. This study investigated the following: (1) whether design training enhances spatial ability and (2) whether differing solution strategies are applied or generated following design training. On the basis of these two research objectives, this study divided the…

  17. Replacing Old Spatial Empires of the Mind: Rethinking Space and Place through Network Spatiality

    ERIC Educational Resources Information Center

    Beech, Jason; Larsen, Marianne A.

    2014-01-01

    In this article we argue for the spatialization of research on educational transfer in the field of comparative education within a theoretical framework that focuses on networks, connections, and flows. We present what we call a "spatial empire of the mind," which is comprised of a set of taken-for-granted "truths" about space…

  18. Spatial Language Facilitates Spatial Cognition: Evidence from Children Who Lack Language Input

    ERIC Educational Resources Information Center

    Gentner, Dedre; Ozyurek, Asli; Gurcanli, Ozge; Goldin-Meadow, Susan

    2013-01-01

    Does spatial language influence how people think about space? To address this question, we observed children who did not know a conventional language, and tested their performance on nonlinguistic spatial tasks. We studied deaf children living in Istanbul whose hearing losses prevented them from acquiring speech and whose hearing parents had not…

  19. The Spatial and the Visual in Mental Spatial Reasoning: An Ill-Posed Distinction

    NASA Astrophysics Data System (ADS)

    Schultheis, Holger; Bertel, Sven; Barkowsky, Thomas; Seifert, Inessa

    It is an ongoing and controversial debate in cognitive science which aspects of knowledge humans process visually and which ones they process spatially. Similarly, artificial intelligence (AI) and cognitive science research, in building computational cognitive systems, tended to use strictly spatial or strictly visual representations. The resulting systems, however, were suboptimal both with respect to computational efficiency and cognitive plau sibility. In this paper, we propose that the problems in both research strands stem from a mis conception of the visual and the spatial in mental spatial knowl edge pro cessing. Instead of viewing the visual and the spatial as two clearly separable categories, they should be conceptualized as the extremes of a con tinuous dimension of representation. Regarding psychology, a continuous di mension avoids the need to exclusively assign processes and representations to either one of the cate gories and, thus, facilitates a more unambiguous rating of processes and rep resentations. Regarding AI and cognitive science, the con cept of a continuous spatial / visual dimension provides the possibility of rep re sentation structures which can vary continuously along the spatial / visual di mension. As a first step in exploiting these potential advantages of the pro posed conception we (a) introduce criteria allowing for a non-dichotomic judgment of processes and representations and (b) present an approach towards rep re sentation structures that can flexibly vary along the spatial / visual dimension.

  20. The Spatial Nature of Iogenic Plasma Source

    NASA Astrophysics Data System (ADS)

    Smyth, W. H.; Marconi, M. L.

    1999-09-01

    Io, the innermost Galilean satellite of Jupiter, supplies the primary source of heavy ion plasma for the planetary magnetosphere. Understanding the temporal and three-dimensional nature of the Iogenic plasma source (pickup ions created by ionization and charge exchange of neutrals in Io's local and extended atmosphere) is highly relevant to a large number of studies for the Io-Jupiter system. These studies include the structure and outward transport of the plasma torus and a significant number of coupled electrodynamic interactions that have been observed by ground-based, earth-orbiting, and interplanetary spacecraft instruments to occur between the plasma torus, Io, and Jupiter. To explore the nature of the Iogenic plasma source, we have undertaken neutral cloud model calculations for atmospheric gases located above Io's exobase (in the corona and extended clouds) and have calculated in three dimensions their instantaneous electron impact ionization and charge exchange production rates in the plasma torus. Here we report on the spatial nature of the Iogenic plasma source that is created by realistic incomplete collisional cascade velocity distribution sources for O and S at Io's exobase. On a large circumplanetary spatial scale, the Iogenic plasma source is highly peaked at Io's instantaneous position on its orbit about Jupiter. On finer spatial scales near Io, the three-dimensional spatial structure of this sharp peak will be presented and implications discussed. This finer spatial scale description of the Iogenic plasma source is particularly relevant to understanding the Galileo Plasma Analyzer (PLS) measured downstream spatial and velocity distributions for the ions near Io (Frank et al. Science 274 394-395, 1996) and the Galileo Magnetometer (MAG) measured magnetic field reduction near Io (Kivelson et al., Science 274, 396-398, 1996) as well as new particle and field data expected during the Galileo I24 and I25 encounters with Io.

  1. Identifying spatial priorities for protecting ecosystem services

    PubMed Central

    Luck, Gary W

    2012-01-01

    Priorities for protecting ecosystem services must be identified to ensure future human well-being. Approaches to broad-scale spatial prioritization of ecosystem services are becoming increasingly popular and are a vital precursor to identifying locations where further detailed analyses of the management of ecosystem services is required (e.g., examining trade-offs among management actions). Prioritization approaches often examine the spatial congruence between priorities for protecting ecosystem services and priorities for protecting biodiversity; therefore, the spatial prioritization method used is crucial because it will influence the alignment of service protection and conservation goals. While spatial prioritization of ecosystem services and prioritization for conservation share similarities, such as the need to document threats and costs, the former differs substantially from the latter owing to the requirement to measure the following components: supply of services; availability of human-derived alternatives to service provision; capacity to meet beneficiary demand; and site dependency in and scale of service delivery. We review studies that identify broad-scale spatial priorities for managing ecosystem services and demonstrate that researchers have used different approaches and included various measures for identifying priorities, and most studies do not consider all of the components listed above. We describe a conceptual framework for integrating each of these components into spatial prioritization of ecosystem services and illustrate our approach using a worked example for water provision. A fuller characterization of the biophysical and social context for ecosystem services that we call for should improve future prioritization and the identification of locations where ecosystem-service management is especially important or cost effective. PMID:24555017

  2. Spatial Complementarity and the Coexistence of Species

    PubMed Central

    Velázquez, Jorge; Garrahan, Juan P.; Eichhorn, Markus P.

    2014-01-01

    Coexistence of apparently similar species remains an enduring paradox in ecology. Spatial structure has been predicted to enable coexistence even when population-level models predict competitive exclusion if it causes each species to limit its own population more than that of its competitor. Nevertheless, existing hypotheses conflict with regard to whether clustering favours or precludes coexistence. The spatial segregation hypothesis predicts that in clustered populations the frequency of intra-specific interactions will be increased, causing each species to be self-limiting. Alternatively, individuals of the same species might compete over greater distances, known as heteromyopia, breaking down clusters and opening space for a second species to invade. In this study we create an individual-based model in homogeneous two-dimensional space for two putative sessile species differing only in their demographic rates and the range and strength of their competitive interactions. We fully characterise the parameter space within which coexistence occurs beyond population-level predictions, thereby revealing a region of coexistence generated by a previously-unrecognised process which we term the triadic mechanism. Here coexistence occurs due to the ability of a second generation of offspring of the rarer species to escape competition from their ancestors. We diagnose the conditions under which each of three spatial coexistence mechanisms operates and their characteristic spatial signatures. Deriving insights from a novel metric — ecological pressure — we demonstrate that coexistence is not solely determined by features of the numerically-dominant species. This results in a common framework for predicting, given any pair of species and knowledge of the relevant parameters, whether they will coexist, the mechanism by which they will do so, and the resultant spatial pattern of the community. Spatial coexistence arises from complementary combinations of traits in each

  3. Spatial-light-modulator interconnected computers

    SciTech Connect

    Mc Aulay, A.D.

    1987-10-01

    Optical technologies perform the basic computer operations of communications, switching, and storage, have already proven superior to electronics for many communications situations, and advances in devices and materials suggest that optics are important for switching and storage. The spatial light modulator (SLM) is one of the devices expected to play an important role in optical computing. An SLM acts as a piece of film whose transmittance or reflectance may be varied spatially and temporally by electronic or optical means. Types of SLMs, the use of optics for computation and three proposed, as well as diverse optical computing systems that use SLMs for interconnections are described in this article.

  4. Spatial Modulation Improves Performance in CTIS

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H.; Wilson, Daniel W.; Johnson, William R.

    2009-01-01

    Suitably formulated spatial modulation of a scene imaged by a computed-tomography imaging spectrometer (CTIS) has been found to be useful as a means of improving the imaging performance of the CTIS. As used here, "spatial modulation" signifies the imposition of additional, artificial structure on a scene from within the CTIS optics. The basic principles of a CTIS were described in "Improvements in Computed- Tomography Imaging Spectrometry" (NPO-20561) NASA Tech Briefs, Vol. 24, No. 12 (December 2000), page 38 and "All-Reflective Computed-Tomography Imaging Spectrometers" (NPO-20836), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 7a. To recapitulate: A CTIS offers capabilities for imaging a scene with spatial, spectral, and temporal resolution. The spectral disperser in a CTIS is a two-dimensional diffraction grating. It is positioned between two relay lenses (or on one of two relay mirrors) in a video imaging system. If the disperser were removed, the system would produce ordinary images of the scene in its field of view. In the presence of the grating, the image on the focal plane of the system contains both spectral and spatial information because the multiple diffraction orders of the grating give rise to multiple, spectrally dispersed images of the scene. By use of algorithms adapted from computed tomography, the image on the focal plane can be processed into an image cube a three-dimensional collection of data on the image intensity as a function of the two spatial dimensions (x and y) in the scene and of wavelength (lambda). Thus, both spectrally and spatially resolved information on the scene at a given instant of time can be obtained, without scanning, from a single snapshot; this is what makes the CTIS such a potentially powerful tool for spatially, spectrally, and temporally resolved imaging. A CTIS performs poorly in imaging some types of scenes in particular, scenes that contain little spatial or spectral variation. The computed spectra of

  5. Detection and recognition of simple spatial forms

    NASA Technical Reports Server (NTRS)

    Watson, A. B.

    1983-01-01

    A model of human visual sensitivity to spatial patterns is constructed. The model predicts the visibility and discriminability of arbitrary two-dimensional monochrome images. The image is analyzed by a large array of linear feature sensors, which differ in spatial frequency, phase, orientation, and position in the visual field. All sensors have one octave frequency bandwidths, and increase in size linearly with eccentricity. Sensor responses are processed by an ideal Bayesian classifier, subject to uncertainty. The performance of the model is compared to that of the human observer in detecting and discriminating some simple images.

  6. Spatial reasoning in remotely sensed data

    NASA Technical Reports Server (NTRS)

    Campbell, J.; Ehrich, R. W.; Elliott, D.; Haralick, R. M.; Wang, S.

    1981-01-01

    Photointerpreters employ a variety of implicit spatial models to provide interpretations from remotely sensed aerial or satellite imagery. In this paper one application is illustrated: how ridges and valleys can be automatically interpreted from Landsat imagery of a mountainous area, and how a relative elevation terrain model can be constructed from this interpretation. How to examine valleys for the possible presence of streams or rivers is shown, and how a spatial relational model can be set up to make a final interpretation of the river drainage network is explored.

  7. Luminescence-induced photorefractive spatial solitons

    NASA Astrophysics Data System (ADS)

    Fazio, E.; Alonzo, M.; Devaux, F.; Toncelli, A.; Argiolas, N.; Bazzan, M.; Sada, C.; Chauvet, M.

    2010-03-01

    We report the observation of spatial confinement of a pump beam into a photorefractive solitonic channel induced by luminescence [luminescence induced spatial soliton (LISS)]. Trapped beams have been obtained in erbium doped lithium niobate crystals at concentrations as high as 0.7 mol % of erbium. By pumping at 980 nm, erbium ions emit photons at 550 nm by two-step absorption, wavelength which can be absorbed by lithium niobate and originates the photorefractive effect. The luminescence at 550 nm generates at the same time the solitonic channel and the background illumination reaching a steady-state soliton regime.

  8. Young's experiment with electromagnetic spatial coherence wavelets.

    PubMed

    Castaneda, Roman; Carrasquilla, Juan; Garcia-Sucerquia, Jorge

    2006-10-01

    We discuss Young's experiment with electromagnetic random fields at arbitrary states of coherence and polarization within the framework of the electric spatial coherence wavelets. The use of this approach for the electromagnetic spatial coherence theory allows us to envisage the existence of polarization domains inside the observation plane. We show that it is possible to locally control those polarization domains by means of the correlation properties of the electromagnetic wave. To show the validity of this alternative approach, we derive by means of numerical modeling the classical Fresnel-Arago interference laws. PMID:16985537

  9. A simplified spatial model for BWR stability

    SciTech Connect

    Berman, Y.; Lederer, Y.; Meron, E.

    2012-07-01

    A spatial reduced order model for the study of BWR stability, based on the phenomenological model of March-Leuba et al., is presented. As one dimensional spatial dependence of the neutron flux, fuel temperature and void fraction is introduced, it is possible to describe both global and regional oscillations of the reactor power. Both linear stability analysis and numerical analysis were applied in order to describe the parameters which govern the model stability. The results were found qualitatively similar to past results. Doppler reactivity feedback was found essential for the explanation of the different regions of the flow-power stability map. (authors)

  10. Spatial Operator Algebra for multibody system dynamics

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.

    1992-01-01

    The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.

  11. Desynchronization and spatial effects in multistrain diseases

    NASA Astrophysics Data System (ADS)

    Shaw, Leah; Billings, Lora; Schwartz, Ira

    2006-03-01

    Dengue fever, a multistrain disease, has four distinct co- existing serotypes (strains). The serotypes interact by antibody- dependent enhancement (ADE), in which infection with a single serotype is asymptomatic, but contact with a second serotype leads to serious illness accompanied by greater infectivity. We present a compartmental model for multiple serotypes with ADE, and consider autonomous, seasonally driven, and stochastic versions of the model. Spatial effects are included in a multipatch model. We observe desynchronization between outbreaks of the different serotypes, as well as desynchronization between spatially distinct regions.

  12. Tunable, anomalous Mie scattering using spatial coherence.

    PubMed

    Wang, Yangyundou; Schouten, Hugo F; Visser, Taco D

    2015-10-15

    We demonstrate that a J0-Bessel-correlated beam that is incident on a homogeneous sphere produces a highly unusual distribution of the scattered field, with the maximum no longer occurring in the forward direction. Such a beam can be easily generated using a spatially incoherent, annular source. Moreover, the direction of maximal scattering can be shifted by changing the spatial coherence length. In this process, the total power that is scattered remains constant. This new tool to control scattering directionality may be used to steer the scattered field away from the forward direction and selectively address detectors situated at different angles. PMID:26469618

  13. Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators

    PubMed Central

    Zhu, Long; Wang, Jian

    2014-01-01

    Spatial structure of a light beam is an important degree of freedom to be extensively explored. By designing simple configurations with phase-only spatial light modulators (SLMs), we show the ability to arbitrarily manipulate the spatial full field information (i.e. amplitude and phase) of a light beam. Using this approach to facilitating arbitrary and independent control of spatial amplitude and phase, one can flexibly generate different special kinds of light beams for different specific applications. Multiple collinear orbital angular momentum (OAM) beams, Laguerre-Gaussian (LG) beams, and Bessel beams, having both spatial amplitude and phase distributions, are successfully generated in the experiments. Some arbitrary beams with odd-shaped intensity are also generated in the experiments. PMID:25501584

  14. What does children's spatial language reveal about spatial concepts? Evidence from the use of containment expressions.

    PubMed

    Johanson, Megan; Papafragou, Anna

    2014-06-01

    Children's overextensions of spatial language are often taken to reveal spatial biases. However, it is unclear whether extension patterns should be attributed to children's overly general spatial concepts or to a narrower notion of conceptual similarity allowing metaphor-like extensions. We describe a previously unnoticed extension of spatial expressions and use a novel method to determine its origins. English- and Greek-speaking 4- and 5-year-olds used containment expressions (e.g., English into, Greek mesa) for events where an object moved into another object but extended such expressions to events where the object moved behind or under another object. The pattern emerged in adult speakers of both languages and also in speakers of 10 additional languages. We conclude that learners do not have an overly general concept of Containment. Nevertheless, children (and adults) perceive similarities across Containment and other types of spatial scenes, even when these similarities are obscured by the conventional forms of the language. PMID:24641514

  15. Spatial decision support system for tobacco enterprise based on spatial data mining

    NASA Astrophysics Data System (ADS)

    Mei, Xin; Liu, Junyi; Zhang, Xuexia; Cui, Weihong

    2007-11-01

    Tobacco enterprise is a special enterprise, which has strong correlation to regional geography. But in the past research and application, the combination between tobacco and GIS is limited to use digital maps to assist cigarette distribution. How to comprehensively import 3S technique and spatial data mining (SDM) to construct spatial decision support system (SDSS) of tobacco enterprise is the main research aspect in this paper. The paper concretely analyzes the GIS requirements in tobacco enterprise for planning location of production, monitoring production management and product sale at the beginning. Then holistic solution is presented and frame design for tobacco enterprise spatial decision based on SDM is given. This paper describes how to use spatial analysis and data mining to realize the spatial decision processing such as monitoring tobacco planted acreage, analyzing and planning the cigarette sale network and so on.

  16. Spatial vulnerability assessments by regression kriging

    NASA Astrophysics Data System (ADS)

    Pásztor, László; Laborczi, Annamária; Takács, Katalin; Szatmári, Gábor

    2016-04-01

    Two fairly different complex environmental phenomena, causing natural hazard were mapped based on a combined spatial inference approach. The behaviour is related to various environmental factors and the applied approach enables the inclusion of several, spatially exhaustive auxiliary variables that are available for mapping. Inland excess water (IEW) is an interrelated natural and human induced phenomenon causes several problems in the flat-land regions of Hungary, which cover nearly half of the country. The term 'inland excess water' refers to the occurrence of inundations outside the flood levee that originate from sources differing from flood overflow, it is surplus surface water forming due to the lack of runoff, insufficient absorption capability of soil or the upwelling of groundwater. There is a multiplicity of definitions, which indicate the complexity of processes that govern this phenomenon. Most of the definitions have a common part, namely, that inland excess water is temporary water inundation that occurs in flat-lands due to both precipitation and groundwater emerging on the surface as substantial sources. Radon gas is produced in the radioactive decay chain of uranium, which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on soil physical and meteorological parameters and can enter and accumulate in the buildings. Health risk originating from indoor radon concentration attributed to natural factors is characterized by geogenic radon potential (GRP). In addition to geology and meteorology, physical soil properties play significant role in the determination of GRP. Identification of areas with high risk requires spatial modelling, that is mapping of specific natural hazards. In both cases external environmental factors determine the behaviour of the target process (occurrence/frequncy of IEW and grade of GRP respectively). Spatial auxiliary

  17. Double Dissociations in Visual and Spatial Short-Term Memory

    ERIC Educational Resources Information Center

    Klauer, Karl Christoph; Zhao, Zengmei

    2004-01-01

    A visual short-term memory task was more strongly disrupted by visual than spatial interference, and a spatial memory task was simultaneously more strongly disrupted by spatial than visual interference. This double dissociation supports a fractionation of visuospatial short-term memory into separate visual and spatial components. In 6 experiments,…

  18. A New Methodology of Spatial Cross-Correlation Analysis

    PubMed Central

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes. PMID:25993120

  19. Rethinking the linear regression model for spatial ecological data.

    PubMed

    Wagner, Helene H

    2013-11-01

    The linear regression model, with its numerous extensions including multivariate ordination, is fundamental to quantitative research in many disciplines. However, spatial or temporal structure in the data may invalidate the regression assumption of independent residuals. Spatial structure at any spatial scale can be modeled flexibly based on a set of uncorrelated component patterns (e.g., Moran's eigenvector maps, MEM) that is derived from the spatial relationships between sampling locations as defined in a spatial weight matrix. Spatial filtering thus addresses spatial autocorrelation in the residuals by adding such component patterns (spatial eigenvectors) as predictors to the regression model. However, space is not an ecologically meaningful predictor, and commonly used tests for selecting significant component patterns do not take into account the specific nature of these variables. This paper proposes "spatial component regression" (SCR) as a new way of integrating the linear regression model with Moran's eigenvector maps. In its unconditioned form, SCR decomposes the relationship between response and predictors by component patterns, whereas conditioned SCR provides an alternative method of spatial filtering, taking into account the statistical properties of component patterns in the design of statistical hypothesis tests. Application to the well-known multivariate mite data set illustrates how SCR may be used to condition for significant residual spatial structure and to identify additional predictors associated with residual spatial structure. Finally, I argue that all variance is spatially structured, hence spatial independence is best characterized by a lack of excess variance at any spatial scale, i.e., spatial white noise. PMID:24400490

  20. Simulation of Mid-Spatials from the Grinding Process

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Börret, R.

    2016-02-01

    This paper focuses on the simulation of the creation of mid-spatial frequencies (mid-spatials) during the grinding process of optical components. The goal is to simulate this generation process and determine the correlating grinding parameters for mid-spatials. On this base, grinding parameters which lead to less mid-spatials could be determined.

  1. Comparison of Spatial Skills of Students Entering Different Engineering Majors

    ERIC Educational Resources Information Center

    Veurink, N.; Sorby, S. A.

    2012-01-01

    Spatial skills have been shown to be important to success in an engineering curriculum, and some question if poor spatial skills prevent students from entering STEM fields or if students with weak spatial skills avoid engineering disciplines believed to highly spatially-oriented. Veurink and Hamlin (2011) found that freshmen students entering…

  2. Estimation of Spatial Dynamic Nonparametric Durbin Models with Fixed Effects

    ERIC Educational Resources Information Center

    Qian, Minghui; Hu, Ridong; Chen, Jianwei

    2016-01-01

    Spatial panel data models have been widely studied and applied in both scientific and social science disciplines, especially in the analysis of spatial influence. In this paper, we consider the spatial dynamic nonparametric Durbin model (SDNDM) with fixed effects, which takes the nonlinear factors into account base on the spatial dynamic panel…

  3. Getting the Big Picture: Development of Spatial Scaling Abilities

    ERIC Educational Resources Information Center

    Frick, Andrea; Newcombe, Nora S.

    2012-01-01

    Spatial scaling is an integral aspect of many spatial tasks that involve symbol-to-referent correspondences (e.g., map reading, drawing). In this study, we asked 3-6-year-olds and adults to locate objects in a two-dimensional spatial layout using information from a second spatial representation (map). We examined how scaling factor and reference…

  4. PREDICTION OF NONLINEAR SPATIAL FUNCTIONALS. (R827257)

    EPA Science Inventory

    Spatial statistical methodology can be useful in the arena of environmental regulation. Some regulatory questions may be addressed by predicting linear functionals of the underlying signal, but other questions may require the prediction of nonlinear functionals of the signal. ...

  5. Spatial Visualization by Realistic 3D Views

    ERIC Educational Resources Information Center

    Yue, Jianping

    2008-01-01

    In this study, the popular Purdue Spatial Visualization Test-Visualization by Rotations (PSVT-R) in isometric drawings was recreated with CAD software that allows 3D solid modeling and rendering to provide more realistic pictorial views. Both the original and the modified PSVT-R tests were given to students and their scores on the two tests were…

  6. When and How Are Spatial Perceptions Scaled?

    ERIC Educational Resources Information Center

    Witt, Jessica K.; Proffitt, Dennis R.; Epstein, William

    2010-01-01

    This research was designed to test the predictions of 2 approaches to perception. By most traditional accounts, people are thought to derive general-purpose spatial perceptions that are scaled in arbitrary, unspecified units. In contrast, action-specific approaches propose that the angular information inherent in optic flow and ocular-motor…

  7. Spatial Development Across the Life Span.

    ERIC Educational Resources Information Center

    Akiyama, M. Michael; And Others

    1985-01-01

    Fifth graders, ninth graders, college students, and persons over age sixty-five were given pencil-and-paper tasks in spatial development. Discusses results in terms of ecological validity, experience, and number of competing cues to be processed simultaneously. Used Piaget's formulation on adult cognitive development to explain elderly's…

  8. Effects of Spatial Cueing on Representational Momentum

    ERIC Educational Resources Information Center

    Hubbard, Timothy L.; Kumar, Anuradha Mohan; Carp, Charlotte L.

    2009-01-01

    Effects of a spatial cue on representational momentum were examined. If a cue was present during or after target motion and indicated the location at which the target would vanish or had vanished, forward displacement of that target decreased. The decrease in forward displacement was larger when cues were present after target motion than when cues…

  9. Computer Programming in a Spatial Analysis Course.

    ERIC Educational Resources Information Center

    Gesler, Wilbert; Kaplan, Abram

    1993-01-01

    Contends that students in spatial analysis courses generally are familiar with computer use and programs but lack basic computer programing skills. Describes four exercises in which students learn programing using BASIC and dBASE. Asserts that programming exercises help students clarify concepts, understand the rationale behind calculations, use…

  10. A spectral method for spatial downscaling.

    PubMed

    Reich, Brian J; Chang, Howard H; Foley, Kristen M

    2014-12-01

    Complex computer models play a crucial role in air quality research. These models are used to evaluate potential regulatory impacts of emission control strategies and to estimate air quality in areas without monitoring data. For both of these purposes, it is important to calibrate model output with monitoring data to adjust for model biases and improve spatial prediction. In this article, we propose a new spectral method to study and exploit complex relationships between model output and monitoring data. Spectral methods allow us to estimate the relationship between model output and monitoring data separately at different spatial scales, and to use model output for prediction only at the appropriate scales. The proposed method is computationally efficient and can be implemented using standard software. We apply the method to compare Community Multiscale Air Quality (CMAQ) model output with ozone measurements in the United States in July 2005. We find that CMAQ captures large-scale spatial trends, but has low correlation with the monitoring data at small spatial scales. PMID:24965037

  11. A Spectral Method for Spatial Downscaling

    PubMed Central

    Reich, Brian J.; Chang, Howard H.; Foley, Kristen M.

    2014-01-01

    Summary Complex computer models play a crucial role in air quality research. These models are used to evaluate potential regulatory impacts of emission control strategies and to estimate air quality in areas without monitoring data. For both of these purposes, it is important to calibrate model output with monitoring data to adjust for model biases and improve spatial prediction. In this article, we propose a new spectral method to study and exploit complex relationships between model output and monitoring data. Spectral methods allow us to estimate the relationship between model output and monitoring data separately at different spatial scales, and to use model output for prediction only at the appropriate scales. The proposed method is computationally efficient and can be implemented using standard software. We apply the method to compare Community Multiscale Air Quality (CMAQ) model output with ozone measurements in the United States in July 2005. We find that CMAQ captures large-scale spatial trends, but has low correlation with the monitoring data at small spatial scales. PMID:24965037

  12. Gesture Supports Spatial Thinking in STEM

    ERIC Educational Resources Information Center

    Stieff, Mike; Lira, Matthew E.; Scopelitis, Stephanie A.

    2016-01-01

    The present article describes two studies that examine the impact of teaching students to use gesture to support spatial thinking in the Science, Technology, Engineering, and Mathematics (STEM) discipline of chemistry. In Study 1 we compared the effectiveness of instruction that involved either watching gesture, reproducing gesture, or reading…

  13. Spatial representation: maps of fragmented space.

    PubMed

    Giocomo, Lisa M

    2015-05-01

    Grid cells in medial entorhinal cortex are thought to act as a neural metric for spatial navigation. A new study has examined the ability of grid cells to use self-motion cues to form a global map across fragmented spaces. PMID:25942547

  14. Retrieving Enduring Spatial Representations after Disorientation

    ERIC Educational Resources Information Center

    Li, Xiaoou; Mou, Weimin; McNamara, Timothy P.

    2012-01-01

    Four experiments tested whether there are enduring spatial representations of objects' locations in memory. Previous studies have shown that under certain conditions the internal consistency of pointing to objects using memory is disrupted by disorientation. This disorientation effect has been attributed to an absence of or to imprecise enduring…

  15. Spatial population structure of Yellowstone bison

    USGS Publications Warehouse

    Olexa, E.M.; Gogan, P.J.P.

    2007-01-01

    Increases in Yellowstone National Park, USA, bison (Bison bison) numbers and shifts in seasonal distribution have resulted in more frequent movements of bison beyond park boundaries and development of an interagency management plan for the Yellowstone bison population. Implementation of the plan under the adaptive management paradigm requires an understanding of the spatial and temporal structure of the population. We used polythetic agglomerative hierarchical cluster analysis of radiolocations obtained from free-ranging bison to investigate seasonal movements and aggregations. We classified radiolocations into 4 periods: annual, peak rut (15 Jul-15 Sep), extended rut (1 Jun-31 Oct), and winter (1 Nov-31 May). We documented spatial separation of Yellowstone bison into 2 segments, the northern and central herds, during all periods. The estimated year-round exchange rate (4.85-5.83%) of instrumented bison varied with the fusion strategy employed. We did not observe exchange between the 2 segments during the peak rut and it varied during the extended rut (2.15-3.23%). We estimated a winter exchange of 4.85-7.77%. The outcome and effectiveness of management actions directed at Yellowstone bison may be affected by spatial segregation and herd affinity within the population. Reductions based on total population size, but not applied to the entire population, may adversely affect one herd while having little effect on the other. Similarly, management actions targeting a segment of the population may benefit from the spatial segregation exhibited.

  16. Innovative Allies: Spatial and Creative Abilities

    ERIC Educational Resources Information Center

    Coxon, Steve V.

    2012-01-01

    Spatial and creative abilities are important for innovations in science, technology, engineering, and math (STEM) fields, but talents are rarely developed from these abilities by schools, including among gifted children and adolescents who have a high potential to become STEM innovators. This article provides an overview of each ability and makes…

  17. Spatial Attention Modulates the Precedence Effect

    ERIC Educational Resources Information Center

    London, Sam; Bishop, Christopher W.; Miller, Lee M.

    2012-01-01

    Communication and navigation in real environments rely heavily on the ability to distinguish objects in acoustic space. However, auditory spatial information is often corrupted by conflicting cues and noise such as acoustic reflections. Fortunately the brain can apply mechanisms at multiple levels to emphasize target information and mitigate such…

  18. Characterizing the spatial structure of songbird cultures.

    PubMed

    Laiolo, Paola

    2008-10-01

    Recent advances have shown that human-driven habitat transformations can affect the cultural attributes of animal populations in addition to their genetic integrity and dynamics. Here I propose using the song of oscine birds for identifying the cultural spatial structure of bird populations and highlighting critical thresholds associated with habitat fragmentation. I studied song variation over a wide geographical scale in a small and endangered passerine, the Dupont's Lark Chersophilus duponti, focusing on (1) cultural population structure, to determine a statistical representation of spatial variation in song and identify cultural units, and (2) the minimum patch size needed for an individual to develop a stable repertoire. I found that overall song diversity depends on variation among populations (beta-cultural diversity). Abrupt thresholds occurred in the relationships between individual song dissimilarity and geographic distance, and between individual song diversity and patch area. Spatial autocorrelation analysis showed that populations located as little as 5 km apart may have independently evolved their song traditions. Song diversity stabilized in patches as small as 100 ha supporting as few as 8-20 males. Song repertoires of smaller patches were significantly poorer. Almost one-quarter of the study populations inhabited patches <100 ha, and their cultural traditions appear to have eroded. The analysis of spatial patterns in birdsong may be a useful tool for detecting subpopulations prone to extinction. PMID:18839771

  19. Measuring Spatial Dependence for Infectious Disease Epidemiology

    PubMed Central

    Grabowski, M. Kate; Cummings, Derek A. T.

    2016-01-01

    Global spatial clustering is the tendency of points, here cases of infectious disease, to occur closer together than expected by chance. The extent of global clustering can provide a window into the spatial scale of disease transmission, thereby providing insights into the mechanism of spread, and informing optimal surveillance and control. Here the authors present an interpretable measure of spatial clustering, τ, which can be understood as a measure of relative risk. When biological or temporal information can be used to identify sets of potentially linked and likely unlinked cases, this measure can be estimated without knowledge of the underlying population distribution. The greater our ability to distinguish closely related (i.e., separated by few generations of transmission) from more distantly related cases, the more closely τ will track the true scale of transmission. The authors illustrate this approach using examples from the analyses of HIV, dengue and measles, and provide an R package implementing the methods described. The statistic presented, and measures of global clustering in general, can be powerful tools for analysis of spatially resolved data on infectious diseases. PMID:27196422

  20. Spatial Ability and Cerebral Sensory Interaction.

    ERIC Educational Resources Information Center

    Federico, Pat-Anthony

    To provide converging support that the proper integration of analog and propositional representational systems is associated with spatial ability, the visual, auditory, and bimodal brain event-related potentials were recorded from 50 right-handed Caucasian males. Sensory interaction indices were derived for these subjects who had taken the Surface…

  1. Spatial mosaic evolution of snail defensive traits

    PubMed Central

    Johnson, Steven G; Hulsey, C Darrin; de León, Francisco J García

    2007-01-01

    Background Recent models suggest that escalating reciprocal selection among antagonistically interacting species is predicted to occur in areas of higher resource productivity. In a putatively coevolved interaction between a freshwater snail (Mexipyrgus churinceanus) and a molluscivorous cichlid (Herichthys minckleyi), we examined three components of this interaction: 1) spatial variation in two putative defensive traits, crushing resistance and shell pigmentation; 2) whether abiotic variables or frequency of molariform cichlids are associated with spatial patterns of crushing resistance and shell pigmentation and 3) whether variation in primary productivity accounted for small-scale variation in these defensive traits. Results Using spatial autocorrelation to account for genetic and geographic divergence among populations, we found no autocorrelation among populations at small geographic and genetic distances for the two defensive traits. There was also no correlation between abiotic variables (temperature and conductivity) and snail defensive traits. However, crushing resistance and frequency of pigmented shells were negatively correlated with molariform frequency. Crushing resistance and levels of pigmentation were significantly higher in habitats dominated by aquatic macrophytes, and both traits are phenotypically correlated. Conclusion Crushing resistance and pigmentation of M. churinceanus exhibit striking variation at small spatial scales often associated with differences in primary productivity, substrate coloration and the frequency of molariform cichlids. These local geographic differences may result from among-habitat variation in how resource productivity interacts to promote escalation in prey defenses. PMID:17397540

  2. Analysis of a spatially deconvolved solar pore

    NASA Astrophysics Data System (ADS)

    Quintero Noda, C.; Shimizu, T.; Ruiz Cobo, B.; Suematsu, Y.; Katsukawa, Y.; Ichimoto, K.

    2016-08-01

    Solar pores are active regions with large magnetic field strengths and apparent simple magnetic configurations. Their properties resemble the ones found for the sunspot umbra although pores do not show penumbra. Therefore, solar pores present themselves as an intriguing phenomenon that is not completely understood. We examine in this work a solar pore observed with Hinode/SP using two state of the art techniques. The first one is the spatial deconvolution of the spectropolarimetric data that allows removing the stray light contamination induced by the spatial point spread function of the telescope. The second one is the inversion of the Stokes profiles assuming local thermodynamic equilibrium that let us to infer the atmospheric physical parameters. After applying these techniques, we found that the spatial deconvolution method does not introduce artefacts, even at the edges of the magnetic structure, where large horizontal gradients are detected on the atmospheric parameters. Moreover, we also describe the physical properties of the magnetic structure at different heights finding that, in the inner part of the solar pore, the temperature is lower than outside, the magnetic field strength is larger than 2 kG and unipolar, and the line-of-sight velocity is almost null. At neighbouring pixels, we found low magnetic field strengths of same polarity and strong downward motions that only occur at the low photosphere, below the continuum optical depth log τ = -1. Finally, we studied the spatial relation between different atmospheric parameters at different heights corroborating the physical properties described before.

  3. Augmenting Spatial Intelligence in the Geography Classroom

    ERIC Educational Resources Information Center

    Lim, Kenneth Y. T.

    2005-01-01

    This paper describes part of the results of a study investigating how adolescents, between the ages of 14 and 15, construct and share meaning about their local environments. Specifically, the results presented focus on how adolescents perceive and interpret spatial and three-dimensional data presented in various formats, such as in terms of…

  4. Experimental Analysis of Spatial Learning in Goldfish

    ERIC Educational Resources Information Center

    Saito, Kotaro; Watanabe, Shigeru

    2005-01-01

    The present study examined spatial learning in goldfish using a new apparatus that was an open-field circular pool with latticed holes. The subjects were motivated to reach the baited hole. We examined gustatory cues, intramaze cues, the possibility that the subject could see the food, etc. In Experiment 1, the position of the baited hole was…

  5. Geometric Determinants of Human Spatial Memory

    ERIC Educational Resources Information Center

    Hartley, Tom; Trinkler, Iris; Burgess, Neil

    2004-01-01

    Geometric alterations to the boundaries of a virtual environment were used to investigate the representations underlying human spatial memory. Subjects encountered a cue object in a simple rectangular enclosure, with distant landmarks for orientation. After a brief delay, during which they were removed from the arena, subjects were returned to it…

  6. Explicit cosmological coarse graining via spatial averaging

    NASA Astrophysics Data System (ADS)

    Paranjape, Aseem; Singh, T. P.

    2008-01-01

    The present matter density of the Universe, while highly inhomogeneous on small scales, displays approximate homogeneity on large scales. We propose that whereas it is justified to use the Friedmann Lemaître Robertson Walker (FLRW) line element (which describes an exactly homogeneous and isotropic universe) as a template to construct luminosity distances in order to compare observations with theory, the evolution of the scale factor in such a construction must be governed not by the standard Einstein equations for the FLRW metric, but by the modified Friedmann equations derived by Buchert (Gen Relat Gravit 32:105, 2000; 33:1381, 2001) in the context of spatial averaging in Cosmology. Furthermore, we argue that this scale factor, defined in the spatially averaged cosmology, will correspond to the effective FLRW metric provided the size of the averaging domain coincides with the scale at which cosmological homogeneity arises. This allows us, in principle, to compare predictions of a spatially averaged cosmology with observations, in the standard manner, for instance by computing the luminosity distance versus red-shift relation. The predictions of the spatially averaged cosmology would in general differ from standard FLRW cosmology, because the scale-factor now obeys the modified FLRW equations. This could help determine, by comparing with observations, whether or not cosmological inhomogeneities are an alternative explanation for the observed cosmic acceleration.

  7. Analysis of a spatially deconvolved solar pore

    NASA Astrophysics Data System (ADS)

    Quintero Noda, C.; Shimizu, T.; Cobo, B. Ruiz; Suematsu, Y.; Katsukawa, Y.; Ichimoto, K.

    2016-05-01

    Solar pores are active regions with large magnetic field strengths and apparent simple magnetic configurations. Their properties resemble the ones found for the sunspot umbra although pores do not show penumbra. Therefore, solar pores present themselves as an intriguing phenomenon that is not completely understood. We examine in this work a solar pore observed with Hinode/SP using two state of the art techniques. The first one is the spatial deconvolution of the spectropolarimetric data that allows removing the stray light contamination induced by the spatial point spread function of the telescope. The second one is the inversion of the Stokes profiles assuming local thermodynamic equilibrium that let us to infer the atmospheric physical parameters. After applying these techniques, we found that the spatial deconvolution method does not introduce artefacts, even at the edges of the magnetic structure, where large horizontal gradients are detected on the atmospheric parameters. Moreover, we also describe the physical properties of the magnetic structure at different heights finding that, in the inner part of the solar pore, the temperature is lower than outside, the magnetic field strength is larger than 2 kG and unipolar, and the LOS velocity is almost null. At neighbouring pixels, we found low magnetic field strengths of same polarity and strong downward motions that only occur at the low photosphere, below the continuum optical depth log τ = -1. Finally, we studied the spatial relation between different atmospheric parameters at different heights corroborating the physical properties described before.

  8. Spatial Reasoning and Polya's Five Planes Problem

    ERIC Educational Resources Information Center

    Madden, Sean P.; Diaz, Ricardo

    2008-01-01

    Middle and High school students of the twenty-first century possess surprising powers of spatial reasoning. They are assisted by technologies not available to earlier generations. Both of these assertions are demonstrated by students who are challenged with George Polya's classic Five Planes Problem. (Contains 5 figures.)

  9. Action, Verbal Response and Spatial Reasoning

    ERIC Educational Resources Information Center

    Wang, Ranxiao Frances

    2004-01-01

    Studies have shown that perception of distance, orientation and size can be dissociated from action tasks. The action system seems to possess more veridical, unbiased information than the perceptual/verbal system. The current study examines the nature of the distinction between action and verbal responses in a spatial reasoning task. Participants…

  10. Multisensory warning signals: when spatial correspondence matters.

    PubMed

    Ho, Cristy; Santangelo, Valerio; Spence, Charles

    2009-05-01

    We report a study designed to investigate the effectiveness of task-irrelevant unimodal and bimodal audiotactile stimuli in capturing a person's spatial attention away from a highly perceptually demanding central rapid serial visual presentation (RSVP) task. In "Experiment 1", participants made speeded elevation discrimination responses to peripheral visual targets following the presentation of auditory stimuli that were either presented alone or else were paired with centrally presented tactile stimuli. The results showed that the unimodal auditory stimuli only captured spatial attention when participants were not performing the RSVP task, while the bimodal audiotactile stimuli did not result in any performance change in any of the conditions. In "Experiment 2", spatial auditory stimuli were either presented alone or else were paired with a tactile stimulus presented from the same direction. In contrast to the results of "Experiment 1", the bimodal audiotactile stimuli were especially effective in capturing participants' spatial attention from the concurrent RSVP task. These results therefore provide support for the claim that auditory and tactile stimuli should be presented from the same direction if they are to capture attention effectively. Implications for multisensory warning signal design are discussed. PMID:19381621

  11. Spatial Clustering of Grass Seed Weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Statistical analysis of spatially-referenced data can provide us with far better understanding/appreciation of complex phenomena than more traditional, nonspatial approaches normally achieve. Numerous technical hurdles were overcome in the process of transforming an extremely large, nonspatial datab...

  12. Spatial Reference Frame of Incidentally Learned Attention

    ERIC Educational Resources Information Center

    Jiang, Yuhong V.; Swallow, Khena M.

    2013-01-01

    Visual attention prioritizes information presented at particular spatial locations. These locations can be defined in reference frames centered on the environment or on the viewer. This study investigates whether incidentally learned attention uses a viewer-centered or environment-centered reference frame. Participants conducted visual search on a…

  13. Semantic, Syntactic; and Spatial Anticipation in Reading.

    ERIC Educational Resources Information Center

    Wildman, Daniel M.; Kling, Martin

    1978-01-01

    Critically reviews studies related to readers' anticipation of semantic, syntactic, and spatial features of text in the light of current theories of reading. Concludes that the class of interactive models, which conceive simultaneous bottom-up and top-down processing, are most consistent with available evidence. (AA)

  14. Spatial Learning and Computer Simulations in Science

    ERIC Educational Resources Information Center

    Lindgren, Robb; Schwartz, Daniel L.

    2009-01-01

    Interactive simulations are entering mainstream science education. Their effects on cognition and learning are often framed by the legacy of information processing, which emphasized amodal problem solving and conceptual organization. In contrast, this paper reviews simulations from the vantage of research on perception and spatial learning,…

  15. Spatial part-set cuing facilitation.

    PubMed

    Kelley, Matthew R; Parasiuk, Yuri; Salgado-Benz, Jennifer; Crocco, Megan

    2016-07-01

    Cole, Reysen, and Kelley [2013. Part-set cuing facilitation for spatial information. Journal of Experimental Psychology: Learning, Memory, & Cognition, 39, 1615-1620] reported robust part-set cuing facilitation for spatial information using snap circuits (a colour-coded electronics kit designed for children to create rudimentary circuit boards). In contrast, Drinkwater, Dagnall, and Parker [2006. Effects of part-set cuing on experienced and novice chess players' reconstruction of a typical chess midgame position. Perceptual and Motor Skills, 102(3), 645-653] and Watkins, Schwartz, and Lane [1984. Does part-set cuing test for memory organization? Evidence from reconstructions of chess positions. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 38(3), 498-503] showed no influence of part-set cuing for spatial information when using chess boards. One key difference between the two procedures was that the snap circuit stimuli were explicitly connected to one another, whereas chess pieces were not. Two experiments examined the effects of connection type (connected vs. unconnected) and cue type (cued vs. uncued) on memory for spatial information. Using chess boards (Experiment 1) and snap circuits (Experiment 2), part-set cuing facilitation only occurred when the stimuli were explicitly connected; there was no influence of cuing with unconnected stimuli. These results are potentially consistent with the retrieval strategy disruption hypothesis, as well as the two- and three-mechanism accounts of part-set cuing. PMID:26252760

  16. Landscapes, Spatial Justice and Learning Communities

    ERIC Educational Resources Information Center

    Armstrong, Felicity

    2012-01-01

    This paper draws on a study of a community-based adult education initiative, "Cumbria Credits," which took place during the period of serious economic decline which hit sections of the farming and the wider community in Cumbria during 2001. It draws on the principles underpinning Edward Soja's notion of "spatial justice" to explore transformations…

  17. Spatial Ability Improvement and Curriculum Content

    ERIC Educational Resources Information Center

    Connolly, Patrick E.

    2009-01-01

    There has been a significant history of research on spatial ability and visualization improvement and related curriculum content presented by members of the Engineering Design Graphics Division over the past decade. Recently, interest in this topic has again been heightened thanks to the work of several division members on research such as the…

  18. Spatial Visualization in Physics Problem Solving

    ERIC Educational Resources Information Center

    Kozhevnikov, Maria; Motes, Michael A.; Hegarty, Mary

    2007-01-01

    Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naive students were administered kinematics problems and…

  19. Spatially balanced survey designs for natural resources

    EPA Science Inventory

    Ecological resource monitoring programs typically require the use of a probability survey design to select locations or entities to be physically sampled in the field. The ecological resource of interest, the target population, occurs over a spatial domain and the sample selecte...

  20. Transient, spatially varied groundwater recharge modeling

    NASA Astrophysics Data System (ADS)

    Assefa, Kibreab Amare; Woodbury, Allan D.

    2013-08-01

    The objective of this work is to integrate field data and modeling tools in producing temporally and spatially varying groundwater recharge in a pilot watershed in North Okanagan, Canada. The recharge modeling is undertaken by using the Richards equation based finite element code (HYDRUS-1D), ArcGIS™, ROSETTA, in situ observations of soil temperature and soil moisture, and a long-term gridded climate data. The public version of HYDUS-1D and another version with detailed freezing and thawing module are first used to simulate soil temperature, snow pack, and soil moisture over a one year experimental period. Statistical analysis of the results show both versions of HYDRUS-1D reproduce observed variables to the same degree. After evaluating model performance using field data and ROSETTA derived soil hydraulic parameters, the HYDRUS-1D code is coupled with ArcGIS™ to produce spatially and temporally varying recharge maps throughout the Deep Creek watershed. Temporal and spatial analysis of 25 years daily recharge results at various representative points across the study watershed reveal significant temporal and spatial variations; average recharge estimated at 77.8 ± 50.8 mm/year. Previous studies in the Okanagan Basin used Hydrologic Evaluation of Landfill Performance without any attempt of model performance evaluation, notwithstanding its inherent limitations. Thus, climate change impact results from this previous study and similar others, such as Jyrkama and Sykes (2007), need to be interpreted with caution.