Science.gov

Sample records for 300a subsurface sediments

  1. Fe(III) Reduction and U(VI) Immobilization by Paenibacillus sp. Strain 300A, Isolated from Hanford 300A Subsurface Sediments

    PubMed Central

    Ahmed, Bulbul; Cao, Bin; McLean, Jeffrey S.; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K.

    2012-01-01

    A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N′-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments. PMID:22961903

  2. Fe(III) reduction and U(VI) immobilization by Paenibacillus sp. strain 300A, isolated from Hanford 300A subsurface sediments.

    PubMed

    Ahmed, Bulbul; Cao, Bin; McLean, Jeffrey S; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K; Beyenal, Haluk

    2012-11-01

    A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N'-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments. PMID:22961903

  3. Fe(III) Reduction and U(VI) Immobilization by Paenibacillus sp. Strain 300A, Isolated from Hanford 300A Subsurface Sediments

    SciTech Connect

    Ahmed, B.; Cao, B.; McLean, Jeffrey S.; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K.; Beyenal, Haluk

    2012-11-07

    A facultative iron-reducing (Fe(III)-reducing) Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes (Fe(III)-NTA and Fe(III)-citrate) but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 µM) of either of electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 µM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We found that Paenibacillus sp. 300A also could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ~7:3 in PIPES and ~1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.

  4. Metabolic activity of subsurface life in deep-sea sediments.

    PubMed

    D'Hondt, Steven; Rutherford, Scott; Spivack, Arthur J

    2002-03-15

    Global maps of sulfate and methane in marine sediments reveal two provinces of subsurface metabolic activity: a sulfate-rich open-ocean province, and an ocean-margin province where sulfate is limited to shallow sediments. Methane is produced in both regions but is abundant only in sulfate-depleted sediments. Metabolic activity is greatest in narrow zones of sulfate-reducing methane oxidation along ocean margins. The metabolic rates of subseafloor life are orders of magnitude lower than those of life on Earth's surface. Most microorganisms in subseafloor sediments are either inactive or adapted for extraordinarily low metabolic activity. PMID:11896277

  5. Hydrogen Utilization Potential in Subsurface Sediments

    PubMed Central

    Adhikari, Rishi R.; Glombitza, Clemens; Nickel, Julia C.; Anderson, Chloe H.; Dunlea, Ann G.; Spivack, Arthur J.; Murray, Richard W.; D'Hondt, Steven; Kallmeyer, Jens

    2016-01-01

    Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones. PMID:26858697

  6. Hydrogen Utilization Potential in Subsurface Sediments.

    PubMed

    Adhikari, Rishi R; Glombitza, Clemens; Nickel, Julia C; Anderson, Chloe H; Dunlea, Ann G; Spivack, Arthur J; Murray, Richard W; D'Hondt, Steven; Kallmeyer, Jens

    2016-01-01

    Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones. PMID:26858697

  7. Plasmid incidence in bacteria from deep subsurface sediments

    SciTech Connect

    Fredrickson, J.K.; Hicks, R.J.; Li, S.W.; Brockman, F.J. )

    1988-12-01

    Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu{sup 2+}, Cr{sup 3+}, and Hg{sup 2+} for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of the individual antibiotics in the disks used for assaying resistance and to the production of low levels of {beta}-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacterial to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds.

  8. Plasmid incidence in bacteria from deep subsurface sediments.

    PubMed

    Fredrickson, J K; Hicks, R J; Li, S W; Brockman, F J

    1988-12-01

    Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu, Cr, and Hg for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of the individual antibiotics in the disks used for assaying resistance and to the production of low levels of beta-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacteria to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those for drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds. PMID:16347789

  9. Production of Abundant Hydroxyl Radicals from Oxygenation of Subsurface Sediments.

    PubMed

    Tong, Man; Yuan, Songhu; Ma, Sicong; Jin, Menggui; Liu, Deng; Cheng, Dong; Liu, Xixiang; Gan, Yiqun; Wang, Yanxin

    2016-01-01

    Hydroxyl radicals (•OH) play a crucial role in the fate of redox-active substances in the environment. Studies of the •OH production in nature has been constrained to surface environments exposed to light irradiation, but is overlooked in the subsurface under dark. Results of this study demonstrate that abundant •OH is produced when subsurface sediments are oxygenated under fluctuating redox conditions at neutral pH values. The cumulative concentrations of •OH produced within 24 h upon oxygenation of 33 sediments sampled from different redox conditions are 2-670 μmol •OH per kg dry sediment or 6.7-2521 μM •OH in sediment pore water. Fe(II)-containing minerals, particularly phyllosilicates, are the predominant contributor to •OH production. This production could be sustainable when sediment Fe(II) is regenerated by the biological reduction of Fe(III) during redox cycles. Production of •OH is further evident in a field injection-extraction test through injecting oxygenated water into a 23-m depth aquifer. The •OH produced can oxidize pollutants such as arsenic and tetracycline and contribute to CO2 emissions at levels that are comparable with soil respiration. These findings indicate that oxygenation of subsurface sediments is an important source of •OH in nature that has not been previously identified, and •OH-mediated oxidation represents an overlooked process for substance transformations at the oxic/anoxic interface. PMID:26641489

  10. Distribution and activity of hydrogenase enzymes in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Glombitza, C.; Spivack, A. J.; D'Hondt, S. L.; Kallmeyer, J.

    2013-12-01

    Metabolically active microbial communities are present in a wide range of subsurface environments. Techniques like enumeration of microbial cells, activity measurements with radiotracer assays and the analysis of porewater constituents are currently being used to explore the subsurface biosphere, alongside with molecular biological analyses. However, many of these techniques reach their detection limits due to low microbial activity and abundance. Direct measurements of microbial turnover not just face issues of insufficient sensitivity, they only provide information about a single specific process rather than an overall microbial activity. Since hydrogenase enzymes are intracellular and ubiquitous in subsurface microbial communities, the enzyme activity represents a measure of total activity of the entire microbial community. A hydrogenase activity assay could quantify total metabolic activity without having to identify specific processes. This would be a major advantage in subsurface biosphere studies, where several metabolic processes can occur simultaneously. We quantified hydrogenase enzyme activity and distribution in sediment samples from different aquatic subsurface environments (Lake Van, Barents Sea, Equatorial Pacific and Gulf of Mexico) using a tritium-based assay. We found enzyme activity at all sites and depths. Volumetric hydrogenase activity did not show much variability between sites and sampling depths, whereas cell-specific activity ranged from 10-5 to 1 nmol H2 cell-1 d-1. Activity was lowest in sediment layers where nitrate was detected. Higher activity was associated with samples in which sulfate was the predominant electron acceptor. We found highest activity in samples from environments with >10 ppm methane in the pore water. The results show that cell-specific hydrogenase enzyme activity increases with decreasing energy yield of the electron acceptor used. It is not possible to convert volumetric or cell-specific hydrogenase activity into a

  11. Effect of Extent of Natural Subsurface Bioreduction on Fe-mineralogy of Subsurface Sediments

    SciTech Connect

    Kukkadapu, Ravi K.; Qafoku, Nikolla; Arey, Bruce W.; Resch, Charles T.; Long, Philip E.

    2010-05-16

    Naturally bioreduced zones with considerable sorbed U were recently identified at a former U mining and processing site at Rifle, CO, USA. Most of the sorbed U appears to be associated with Fe minerals. Variably reduced sediment samples were analyzed by suite of techniques, primarily by room temperature Mössbauer spectroscopy. Fe-oxides of different types and crystallinity, and Fe(II)/Fe(III)-containing clays are dominant in all the sediments. The amounts of poorly crystalline Fe(III)-oxide, however, was lower in the reduced samples. In addition, framboidal pyrites with sorbed U were common in the highly reduced sediments. Overall, the information gained from this work may help develop design field strategies for immobilization and stabilization of U(VI) in contaminated subsurface environments.

  12. Stratified Communities of Active Archaea in Deep Marine Subsurface Sediments

    PubMed Central

    Sørensen, Ketil B.; Teske, Andreas

    2006-01-01

    Archaeal 16S rRNA was extracted from samples of deep marine subsurface sediments from Peru Margin site 1227, Ocean Drilling Program leg 201. The amounts of archaeal 16S rRNA in each extract were quantified by serial dilution and reverse transcription (RT)-PCR. The results indicated a 1,000-fold variation in rRNA content with depth in the sediment, with the highest concentrations found near the sediment surface and in the sulfate-methane transition zone (SMTZ). The phylogenetic composition of the active archaeal population revealed by cloning and sequencing of RT-PCR products changed with depth. Several phylotypes affiliated with marine benthic group B (MBGB) dominated clone libraries from the upper part of the SMTZ and were detected only in this layer. Members of the miscellaneous crenarchaeotal group (MCG) dominated clone libraries from the other layers. These results demonstrate that archaeal communities change in activity and community composition over short distances in geochemically distinct zones of deep subseafloor sediments and that these changes are traceable in the rRNA pool. It was shown for the first time that members of both the MCG and MBGB Archaea are more active in the SMTZ than in layers above and below. This indicates that they benefit either directly or indirectly from the anaerobic oxidation of methane. They also appear to be ecophysiologically flexible, as they have been retrieved from a wide range of marine sediments of various geochemical properties. PMID:16820449

  13. Re-Defining the Subsurface Biosphere: Characterization of Fungal Populations from Energy Limited Deep Marine Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Reese, B. K.; Ariza, M.; St. Peter, C.; Hoffman, C.; Edwards, K. J.; Mills, H. J.

    2012-12-01

    The detection and characterization of metabolically active fungal populations within the deep marine subsurface will alter current ecosystem models that are limited to bacterial and archaeal populations. Although marine fungi have been studied for over fifty years, a detailed description of fungal populations within the deep subsurface is lacking. Fungi possess metabolic pathways capable of utilizing previously considered non-bioavailable energy reserves. Therefore, metabolically active fungi would occupy a unique niche within subsurface ecosystems, with the potential to provide an organic carbon source for heterotrophic prokaryotic populations not currently being considered in subsurface energy budgets. Sediments from the South Pacific Gyre subsurface, one of the most energy-limited environments on Earth, were collected during the Integrated Ocean Drilling Program (IODP) Expedition 329. Anaerobic and aerobic sediment slurry cultures using fresh sediment began directly following the completion of the Expedition (December 2010). From these cultures, multiple fungal lineages have been isolated on several media types that vary in carbon concentrations. Physical growth parameters of these subsurface fungal isolates were determined and compared to previously characterized lineages. Additionally, the overall diversity of metabolically active and dormant fungal populations was determined using high throughput sequencing of nucleic acids extracted from in situ cryopreserved South Pacific Gyre sediments. This project provides a robust step in determining the importance and impact of fungal populations within the marine subsurface biosphere.

  14. Iodide sorption to subsurface sediments and illitic minerals

    SciTech Connect

    Kaplan, Daniel I.; Serne, R. Jeffrey; Parker, Kent E.; Kutnyakov, Igor V.

    2000-02-01

    Laboratory studies were conducted to quantify and understand the processes by which iodide (I-) adsorbs to subsurface arid sediments. A surprisingly large amount of I- sorbed (distribution coefficients [Kd?s] ranged from 1 to 10 mL/g and averaged 3.3 mL/g) to three alkaline subsurface sediments that were low in organic matter content. Experiments with pure mineral isolates, similar to the minerals identified in the clay fraction of the sediments, showed that there was little or no I- sorption. The pure minerals that had low iodide sorption include montmorillonite (Kd = -0.42 +/- 0.08 mL/g), quartz (Kd = 0.04 +/- 0.02 mL/g), vermiculite (Kd = 0.56 +/- 0.21 mL/g), calcite (Kd = 0.04 +/- 0.01 mL/g), goethite (Kd = 0.10 +/- 0.03 mL/g), or chlorite (Kd = -0.22 +/- 0.06 mL/g). Conversely, a significant amount of I- sorbed to illite (Kd = 15.14 +/- 2.84 mL/g). Upon treating the iodide-laden illite with dissolved F-, Cl-, Br-, or I-127, desorption (or isotopic exchange in the case of I-127) removed, respectively, 57 +/- 3%, 55 +/- 0%, 48 +/- 3, and 17 +/- 1% of the I- originally adsorbed to the illite. The fact that such large amounts of I- could be desorbed suggests that the I- was weakly adsorbed, and not chemically bonded to a soft metal, such as mercury or silver, that may have existed in the illite structure as trace impurities. Finally, I- sorption to illite was strongly pH-dependent; the Kd values decreased from 46 to 22 mL/g as the pH increased from 3.6 to 9.4. Importantly, I- sorbed to illite even under alkaline conditions. Together, these experiments suggest that illite removed I- from the aqueous phase predominantly by reversible physical adsorption to the pH-dependent edge sites. Illites may constitute a substantial proportion of the clay-size fraction of many arid sediments and therefore may play an important role in retarding I- movement in these sediments.

  15. Iodide Sorption to Subsurface Sediments and Illitic Minerals

    SciTech Connect

    Kaplan, D.I.; Serne, R.J.; Parker, K.E.; Kutnyakov, I.V.

    2000-01-01

    Laboratory studies were conducted to quantify and identify the key processes by which iodide (I{sup {minus}}) sorbs to subsurface arid sediments. A surprisingly large amount of I{sup {minus}} sorbed to three alkaline subsurface sediments that were low in organic matter content; distribution coefficients (K{sub d}'s) ranged from 1 to 10 mL/g and averaged 3.3 mL/g. Experiments with pure mineral isolates, similar to the minerals identified in the clay fraction of the sediments, showed that there was little or no I{sup {minus}} sorption to calcite (K{sub d} = 0.04 {+-} 0.01 mL/g), chlorite (K{sub d} = {minus}0.22 {+-} 0.06 mL/g), goethite (K{sub d} = 0.10 {+-} 0.03 mL/g), montmorillonite (K{sub d} = {minus}0.42 {+-} 0.08 mL/g), quartz (K{sub d} = 0.04 {+-} 0.02 mL/g), or vermiculite (K{sub d} = 0.56 {+-} 0.21 mL/g). Conversely, a significant amount of I{sup {minus}} sorbed to illite (K{sub d} = 15.14 {+-} 2.84 mL/g). Treating the {sup 125}I{sup {minus}}-laden illite mixtures with dissolved F{sup {minus}}, Cl{sup {minus}}, Br{sup {minus}}, or {sup 127}I{sup {minus}}, caused 43 {+-} 3%, 45 {+-} 0%, 52 {+-} 3%, and 83 {+-} 1%, respectively, of the adsorbed I{sup {minus}} to desorb. Finally, I{sup {minus}} sorption to illite was strongly pH-dependent; the K{sub d} values decreased from 46 to 22 mL/g as the pH values increased from 3.6 to 9.4. An appreciable amount of I{sup {minus}} sorbed to illite even under alkaline conditions. These experiments suggest that illite removed I{sup {minus}} from the aqueous phase predominantly by reversible physical adsorption to the pH-dependent edge sites. Illites may constitute a substantial proportion of the clay-size fraction of many arid sediments and therefore may play an important role in retarding I{sup {minus}} movement in these sediments.

  16. Iodide sorption to subsurface sediments and illitic minerals

    SciTech Connect

    Kaplan, D.I.; Serne, R.J.; Parker, K.E.; Kutnyakov, I.V.

    2000-02-01

    Laboratory studies were conducted to quantify and identify the key processes by which iodide (I{sup {minus}}) sorbs to subsurface arid sediments. A surprisingly large amount of I{sup {minus}} sorbed to three alkaline subsurface sediments that were low in organic matter content; distribution coefficients (K{sub d}'s) ranged from 1 to 10 mL/g and averaged 3.3 mL/g. Experiments with pure mineral isolates, similar to the minerals identified in the clay fraction of the sediments, showed that there was little or no I{sup {minus}} sorption to calcite (K{sub d} = 0.04 {+-} 0.01 mL/g), chlorite (K{sub d} = {minus}0.22 {+-} 0.06 mL/g), goethite (K{sub d} = 0.10 {+-} 0.03 mL/g), montmorillonite (K{sub d} = {minus}0.42 {+-} 0.08 mL/g), quartz (K{sub d} = 0.04 {+-} 0.02 mL/g), or vermiculite (K{sub d} = 0.56 {+-} 0.21 mL/g). Conversely, a significant amount of I{sup {minus}} sorbed to illite (K{sub d} = 15.14 {+-} 2.84 mL/g). Treating the {sup 125}I{sup {minus}}-laden illite mixtures with dissolved F{sup {minus}}, Cl{sup {minus}}, Br{sup {minus}}, or {sup 127}I{sup {minus}}, caused 43 {+-} 3%, 45 {+-} 0%, 52 {+-} 3%, and 83 {+-} 1%, respectively, of the adsorbed I{sup {minus}} to desorb. Finally, I{sup {minus}} sorption to illite was strongly pH-dependent; the K{sub d} values decreased from 46 to 22 mL/g as the pH values increased from 3.6 to 9.4. An appreciable amount of I{sup {minus}} sorbed to illite even under alkaline conditions. These experiments suggest that illite removed I{sup {minus}} from the aqueous phase predominantly by reversible physical adsorption to the pH-dependent edge sites. Illites may constitute a substantial proportion of the clay-size fraction of many arid sediments and therefore may play an important role in retarding I{sup {minus}} movement in these sediments.

  17. Radiolytic Hydrogen and Microbial Respiration in Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Blair, Carly C.; D'Hondt, Steven; Spivack, Arthur J.; Kingsley, Richard H.

    2007-12-01

    Radiolysis of water may provide a continuous flux of an electron donor (molecular hydrogen) to subsurface microbial communities. We assessed the significance of this process in anoxic marine sediments by comparing calculated radiolytic H2 production rates to estimates of net (organic-fueled) respiration at several Ocean Drilling Program (ODP) Leg 201 sites. Radiolytic H2 yield calculations are based on abundances of radioactive elements (uranium, thorium, and potassium), porosity, grain density, and a model of water radiolysis. Net respiration estimates are based on fluxes of dissolved electron acceptors and their products. Comparison of radiolytic H2 yields and respiration at multiple sites suggests that radiolysis gains importance as an electron donor source as net respiration and organic carbon content decrease. Our results suggest that radiolytic production of H2 may fuel 10% of the metabolic respiration at the Leg 201 site where organic-fueled respiration is lowest (ODP Site 1231). In sediments with even lower rates of organic-fueled respiration, water radiolysis may be the principal source of electron donors. Marine sedimentary ecosystems may be useful models for non-photosynthetic ecosystems on early Earth and on other planets and moons, such as Mars and Europa.

  18. Youhaiella tibetensis gen. nov., sp. nov., isolated from subsurface sediment.

    PubMed

    Wang, Yun-xiang; Huang, Fa-qi; Nogi, Yuichi; Pang, Shou-Ji; Wang, Ping-kang; Lv, Jie

    2015-07-01

    A Gram-reaction-negative bacterial strain, designated fig4(T), was isolated from a subsurface sediment core of Qiangtang Basin permafrost in China. Cells were catalase- and oxidase-positive and rods. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain fig4(T )was a member of the family Hyphomicrobiaceae and was most closely related to members of the genera Pelagibacterium, Vasilyevaea and Devosia with 93.8-96.2% sequence similarities. The major cellular fatty acids were C16 : 0, C18 : 0, 11-methyl C18 : 1 ω7c, C19 : 0 cyclo ω8c and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The major respiratory quinone was Q-10 and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and two unknown glycolipids. The DNA G+C content was 60.7 mol%. Based on the phenotypic, phylogenetic and genotypic data, strain fig4(T) is considered to represent a novel species of a new genus in the family Hyphomicrobiaceae, for which the name Youhaiella tibetensis gen. nov., sp. nov. is proposed. The type strain is fig4(T) ( = CGMCC 1.12719(T) = JCM 19854(T)). PMID:25829329

  19. Giant lacustrine pockmarks with subaqueous groundwater discharge and subsurface sediment mobilization

    NASA Astrophysics Data System (ADS)

    Reusch, Anna; Loher, Markus; Bouffard, Damien; Moernaut, Jasper; Hellmich, Franziska; Anselmetti, Flavio S.; Bernasconi, Stefano M.; Hilbe, Michael; Kopf, Achim; Lilley, Marvin D.; Meinecke, Gerrit; Strasser, Michael

    2015-05-01

    Subsurface fluid flow in oceans and lakes affects bathymetric morphology, sediment distribution, and water composition. We present newly discovered giant lacustrine pockmarks in Lake Neuchâtel (up to 160 m diameter and 30 m deep) that rank among the largest known pockmarks in lakes. Our multidisciplinary study reveals ~60 m of suspended sediment inside a pockmark. The sediment suspension is 2.6° warmer and isotopically lighter in δ18OH2O by 1.5‰ than the ambient lake water, documenting currently active fluid flow by karstic groundwater discharge from the Jura Mountain front into the Swiss Plateau hydrological system. Strikingly, the levees of the pockmarks comprise subsurface sediment mobilization deposits representing episodic phases of sediment expulsion during the past. They strongly resemble subsurface fluid flow features in the marine realm. Comparable processes are expected to also be relevant for other carbonate-dominated mountain front ranges, where karstic groundwater discharges into lacustrine or marine settings.

  20. U(VI) Reduction in Sulfate-Reducing Subsurface Sediments Amended with Ethanol or Acetate

    PubMed Central

    Converse, Brandon J.; Wu, Tao; Findlay, Robert H.

    2013-01-01

    An experiment was conducted with subsurface sediments from Oak Ridge National Laboratory to determine the potential for reduction of U(VI) under sulfate-reducing conditions with either ethanol or acetate as the electron donor. The results showed extensive U(VI) reduction in sediments supplied with either electron donor, where geochemical and microbiological analyses demonstrated active sulfate reduction. PMID:23624470

  1. Measurement of bacterial growth rates in subsurface sediments using the incorporation of tritiated thymidine into DNA.

    PubMed

    Thorn, P M; Ventullo, R M

    1988-07-01

    Microbial growth rates in subsurface sediment from three sites were measured using incorporation of tritiated thymidine into DNA. Sampling sites included Lula, Oklahoma, Traverse City, Michigan, and Summit Lake, Wisconsin. Application of the thymidine method to subsurface sediments required (1) thymidine concentrations greater than 125 nM, (2) incubation periods of less than 4 hours, (3) addition of SDS and EDTA for optimum macromolecular extraction, and (4) DNA purification, in order to accurately measure the rate of thymidine incorporation into DNA. Macromolecule extraction recoveries, as well as the percentage of tritium label incorporated into the DNA fraction, were variable and largely dependent upon sediment composition. In general, sandy sediments yielded higher extraction recoveries and demonstrated a larger percentage of label incorporated into DNA than sediments that contained a high silt-clay component. Reported results also indicate that the acid-base hydrolysis procedure routinely used for macromolecular fractionation in water samples may not be routinely applicable to the modified sediment procedure where addition of SDS and EDTA are required for macromolecule extraction. Growth rates exhibited by subsurface communities are relatively slow, ranging from 5.1 to 10.2×10(5) cells g(-1) day(-1). These rates are 2-1,000-fold lower than growth rates measured in surface sediments. These data lend support to the supposition that subsurface microbial communities are nutritionally stressed. PMID:24201529

  2. NEPTUNIUM IV AND V SORPTIN TO END-MEMBER SUBSURFACE SEDIMENTS TO THE SAVANNAH RIVER SITE

    SciTech Connect

    Kaplan, D.

    2009-11-13

    Migration of Np through the subsurface is expected to be primarily controlled by sorption to sediments. Therefore, understanding and quantifying Np sorption to sediments and sediments from the Savannah River Site (SRS) is vital to ensure safe disposal of Np bearing wastes. In this work, Np sorption to two sediments representing the geological extremes with respect to sorption properties expected in the SRS subsurface environment (named 'subsurface sandy sediment' and 'subsurface clayey sediment') was examined under a variety of conditions. First a series of baseline sorption tests at pH 5.5 under an oxic atmosphere was performed to understand Np sorption under typical subsurface conditions. These experiments indicated that the baseline K{sub d} values for the subsurface sandy and subsurface clayey sediments are 4.26 {+-} 0.24 L kg{sup -1} and 9.05 {+-} 0.61 L kg{sup -1}, respectively. These Np K{sub d} values of SRS sediments are the first to be reported since Sheppard et al. (1979). The previous values were 0.25 and 0.16 L kg{sup -1} for a low pH sandy sediment. To examine a possible range of K{sub d} values under various environmental scenarios, the effects of natural organic matter (NOM, also a surrogate for cellulose degradation products), the presence of various chemical reductants, and an anaerobic atmosphere on Np sorption were examined. The presence of NOM resulted in an increase in the Np K{sub d} values for both sediments. This behavior is hypothesized to be the result of formation of a ternary Np-NOM-sediment complex. Slight increases in the Np sorption (K{sub d} 13-24 L kg{sup -1}) were observed when performing experiments in the presence of chemical reductants (dithionite, ascorbic acid, zero-valent iron) or under anaerobic conditions. Presumably, the increased sorption can be attributed to a slight reduction of Np(V) to Np(IV), the stronger sorbing form of Np. The most significant result of this study is the finding that Np weakly sorbs to both end

  3. Sediment delivery from agricultural land to rivers via subsurface drainage

    NASA Astrophysics Data System (ADS)

    Chapman, A. S.; Foster, I. D. L.; Lees, J. A.; Hodgkinson, R. A.

    2005-10-01

    Diffuse sources of sediment and sediment-associated nutrients are of increasing environmental concern because of their impacts on receiving water courses. The aim of the research reported here was to monitor the outflow from four field (land) drains at two farms in the English Midlands in order to estimate the quantity of sediment delivered to the local rivers and the most likely sources and processes involved. A multiparameter sediment unmixing model was employed, using environmental magnetic, geochemical and radionuclide tracers in order to determine the most likely origin of sediments transported through the drains. Results demonstrated that there was a generally linear relationship between drainflow sediment loss and drainflow volume and that the majority (>70%) of the sediment exported from the drains was derived from topsoil. Macropore flow through heavily cracked soils is supported by the data to be the most likely means of sediment delivery to the drains. In one catchment, drains contributed over 50% of the annual sediment budget. Spatial and temporal variations in the sources of sediment reaching one drain outlet were investigated in detail. A link between soil moisture deficit (SMD) and the frequency of high-intensity rainfall events was used to explain the appearance and persistence of a new sediment source in this drain after October 1998. It is concluded that field drains have the potential to be significant conduits of sediment and agrochemicals in a wide variety of environments in the UK. It is also suggested that this potential may increase if projected climate change leads to more intense rainfall events and increases in SMD across a greater area of the UK.

  4. EFFECT OF A SUBSURFACE SEDIMENT ON HYDROLYSIS OF HALOALKANES AND EPOXIDES

    EPA Science Inventory

    Neutral and base-catalyzed hydrolyses of isopropyl bromide, 1,1,2,2-tetrachloroethane, 1,1,1-trichloroethane, and ethylene dibromide were studied in pure water and in barely saturated subsurface sediment at 25-60 deg C. No significant differences in the kinetics or products were ...

  5. Microbiological Comparisons within and across Contiguous Lacustrine, Paleosol, and Fluvial Subsurface Sediments

    PubMed Central

    Kieft, T. L.; Fredrickson, J. K.; McKinley, J. P.; Bjornstad, B. N.; Rawson, S. A.; Phelps, T. J.; Brockman, F. J.; Pfiffner, S. M.

    1995-01-01

    Twenty-six subsurface samples were collected from a borehole at depths of 173.3 to 196.8 m in the saturated zone at the Hanford Site in south-central Washington State. The sampling was performed throughout strata that included fine-grained lacustrine (lake) sediments, a paleosol (buried soil) sequence, and coarse-grained fluvial (river) sediments. A subcoring method and tracers were used to minimize and quantify contamination to obtain samples that were representative of subsurface strata. Sediment samples were tested for total organic carbon, inorganic carbon, total microorganisms by direct microscopic counts, culturable aerobic heterotrophs by plate counts, culturable anaerobes by most-probable-number enumeration, basal respiration rates, and mineralization of (sup14)C-labeled glucose and acetate. Total direct microscopic counts of microorganisms were low, ranging from below detection to 1.9 x 10(sup5) cells g (dry weight)(sup-1). Culturable aerobes and anaerobes were below minimum levels of detection in most samples. Direct microscopic counts, basal respiration rates, and (sup14)C-glucose mineralization were all positively correlated with total organic carbon and were highest in the lacustrine sediments. In contrast to previous subsurface studies, these saturated-zone samples did not have higher microbial abundance and activities than unsaturated sediments sampled from the same borehole, the fine-textured lacustrine sediment had higher microbial numbers and activities than the coarse-textured fluvial sands, and the paleosol samples did not have higher biomass and activities relative to the other sediments. The results of this study expand the subsurface microbiology database to include information from an environment very different from those previously studied. PMID:16534940

  6. Distribution of subsurface hydrocarbon seepage in near surface marine sediments

    SciTech Connect

    Abrams, M.A. )

    1993-02-01

    Hydrocarbon seeps in surficial marine sediments are of two types: ACTIVE: Where gas bubbles, pockmarks, or bright spots are visible on seismic records and/or the presence of chemosynthetic communities in conjunction with large concentrations of migrated-hydrocarbons. Generally in areas where generation and migration of hydrocarbons from the source rock is ongoing today (i.e., maximum burial) and/or where significant migration pathways have developed from tectonic activity. PASSIVE: Where concentrations of migrated hydrocarbons are so low that few or no geophysical anomalies are seen. Typically in areas where generation and expulsion is relict (no longer at maximum burial) and/or regional seals prevent significant vertical migration. The type of seep strongly controls the distribution of migrated hydrocarbons in the near surface sediments and should dictate the sampling equipment and approach required to detect seeps. Active seeps or macroseeps, usually can be detected near the water-sediment interface, within the water column, and at relatively large distances from major leak points. Most conventional sediment and water samplers will capture active seeps, Precise location of sampling is typically not critical to detect active seeps. The Gulf of Mexico, Santa Barbara Channel, and parts of the North Sea have active hydrocarbon seeps.

  7. Survival and Phospholipid Fatty Acid Profiles of Surface and Subsurface Bacteria in Natural Sediment Microcosms

    PubMed Central

    Kieft, T. L.; Wilch, E.; O'Connor, K.; Ringelberg, D. B.; White, D. C.

    1997-01-01

    Although starvation survival has been characterized for many bacteria, few subsurface bacteria have been tested, and few if any have been tested in natural subsurface porous media. We hypothesized that subsurface bacteria may be uniquely adapted for long-term survival in situ. We further hypothesized that subsurface conditions (sediment type and moisture content) would influence microbial survival. We compared starvation survival capabilities of surface and subsurface strains of Pseudomonas fluorescens and a novel Arthrobacter sp. in microcosms composed of natural sediments. Bacteria were incubated for up to 64 weeks under saturated and unsaturated conditions in sterilized microcosms containing either a silty sand paleosol (buried soil) or a sandy silt nonpaleosol sediment. Direct counts, plate counts, and cell sizes were measured. Membrane phospholipid fatty acid (PLFA) profiles were quantified to determine temporal patterns of PLFA stress signatures and differences in PLFAs among strains and treatments. The Arthrobacter strains survived better than the P. fluorescens strains; however, differences in survival between surface and subsurface strains of each genus were not significant. Bacteria survived better in the paleosol than in the nonpaleosol and survived better under saturated conditions than under unsaturated conditions. Cell volumes of all strains decreased; however, sediment type and moisture did not influence rates of miniaturization. Both P. fluorescens strains showed PLFA stress signatures typical for gram-negative bacteria: increased ratios of saturated to unsaturated fatty acids, increased ratios of trans- to cis-monoenoic fatty acids, and increased ratios of cyclopropyl to monoenoic precursor fatty acids. The Arthrobacter strains showed few changes in PLFAs. Environmental conditions strongly influenced PLFA profiles. PMID:16535578

  8. Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms

    SciTech Connect

    Kieft, T.L.; Wilch, E.; O`Connor, K.

    1997-04-01

    Although starvation survival has been characterized for many bacteria, few subsurface bacteria have been tested, and few if any have been tested in natural subsurface porous media. We hypothesized that subsurface bacteria may be uniquely adapted for long-term survival in situ. We further hypothesized that subsurface conditions (sediment type and moisture content) would influence microbial survival. We compared starvation survival capabilities of surface and subsurface strains of Pseudomonas fluorescens and a novel Arthrobacter sp. in microcosms composed of natural sediments. Bacteria were incubated for up to 64 weeks under saturated and unsaturated conditions in sterilized microcosms containing either a silty sand paleosol (buried soil) or a sandy silt nonpaleosol sediment. Direct counts, plate counts, and cell sizes were measured. Membrane phospholipid fatty acid (PLFA) profiles were quantified to determine temporal patterns of PLFA stress signatures and differences in PLFAs among strains and treatments. The Arthrobacter strains survived better than the P. fluorescens strains; however, differences in survival between surface and subsurface strains of each genus were not significant. Bacteria survived better in the paleosol than in the nonpaleosol and survived better under saturated conditions than under unsaturated conditions. Cell volumes of all strains decreased; however, sediment type and moisture did not influence rates of miniaturization. Both P.fluorescens strains showed PLFA stress signatures typical for gram-negative bacteria: increased ratios of saturated to unsaturated fatty acids, increased ratios of trans- to cis-monoenoic fatty acids, and increased ratios of cyclopropyl to monoenoic precursor fatty acids. The Arthrobacter strains showed few changes in PLFAs. Environmental conditions strongly influenced PLFA profiles. 40 refs., 7 figs.

  9. Fossilization and degradation of intact polar lipids in deep subsurface sediments: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Schouten, Stefan; Middelburg, Jack J.; Hopmans, Ellen C.; Sinninghe Damsté, Jaap S.

    2010-07-01

    Intact polar membrane lipids (IPLs) are frequently used as markers for living microbial cells in sedimentary environments. The assumption with these studies is that IPLs are rapidly degraded upon cell lysis and therefore IPLs present in sediments are derived from in situ microbial production. We used a theoretical approach to assess whether IPLs in surface sediments can potentially represent fossilized IPLs derived from the upper part of the water column and whether IPLs can be preserved during sediment burial. Previous studies which examined the degradation kinetics of IPLs show that phospholipids, i.e. ester-linked lipids with a phosphor-containing head group, degrade more rapidly than glycosidic ether lipids, i.e. ether-linked lipids with a glycosidically bound sugar moiety. Based on these studies, we calculate that only a minor fraction of phospholipids but a major fraction of glycosidic ether lipids biosynthesized in the upper part of the water column can potentially reach deep-sea surface sediments. Using a simple model and power law kinetic degradation parameters reported in the literature, we also evaluated the degradation of IPLs during sediment burial. Our model predicts a log-log relationship between IPL concentrations and depth, consistent with what has been observed in studies of IPLs in subsurface sediments. Although our results do not exclude production of IPLs in subsurface sediment, they do suggest that IPLs present in the deep biosphere may contain a substantial fossil component potentially masking in situ IPL production.

  10. Final report - Microbial pathways for the reduction of mercury in saturated subsurface sediments

    SciTech Connect

    Tamar barkay; Lily Young; Gerben Zylstra

    2009-08-25

    Mercury is a component of mixed wastes that have contaminated vast areas of the deep subsurface as a result of nuclear weapon and energy production. While this mercury is mostly bound to soil constituents episodes of groundwater contamination are known in some cases resulting in potable water super saturated with Hg(0). Microbial processes that reduce Hg(II) to the elemental form Hg(0) in the saturated subsurface sediments may contribute to this problem. When we started the project, only one microbial pathway for the reduction of Hg(II), the one mediated by the mer operon in mercury resistant bacteria was known. As we had previously demonstrated that the mer mediated process occurred in highly contaminated environments (Schaefer et al., 2004), and mercury concentrations in the subsurface were reported to be low (Krabbenhoft and Babiarz, 1992), we hypothesized that other microbial processes might be active in reducing Hg(II) to Hg(0) in saturated subsurface environments. The specific goals of our projects were: (1) Investigating the potential for Hg(II) reduction under varying electron accepting conditions in subsurface sediments and relating these potential to mer gene distribution; and (2) Examining the physiological and biochemical characteristics of the interactions of anaerobic bacteria with mercury. The results are briefly summarized with references to published papers and manuscripts in preparation where details about our research can be found. Additional information may be found in copies of our published manuscripts and conference proceedings, and our yearly reports that were submitted through the RIMS system.

  11. Sediment mobilization deposits from episodic subsurface fluid flow - A new tool to reveal long-term earthquake records?

    NASA Astrophysics Data System (ADS)

    Reusch, Anna; Moernaut, Jasper; Anselmetti, Flavio S.; Strasser, Michael

    2016-04-01

    Subsurface fluid flow can be affected by earthquakes: increased spring activity, mud volcano eruptions, groundwater fluctuations, changes in geyser frequency and other forms of altered subsurface fluid flow have been documented during, after, or even prior to earthquakes. Recently discovered giant pockmarks on the bottom of Lake Neuchâtel, Switzerland, are the lake-floor expression of subsurface fluid flow. They discharge karstic groundwater from the Jura Mountains and experience episodically increased subsurface fluid flow documented by subsurface sediment mobilization deposits at the levees of the pockmarks. In this study, we present the spatio-temporal distribution of event deposits from phases of sediment expulsion and their time correlative multiple mass-transport deposits. We report striking evidence for five events of concurrent multiple subsurface sediment deposits and multiple mass-transport deposits since Late Glacial times, for which we propose past earthquakes as trigger. Comparison of this new event catalogue with historic earthquakes and other independent paleoseismic records suggests that initiation of sediment expulsion requires a minimum macroseismic intensity of VII. Thus, our study presents for the first time sedimentary deposits resulting from increased subsurface fluid flow as new paleoseismic proxy. Comparable processes must also be relevant for other mountain front ranges and coastal mountain ranges, where groundwater flow triggers subsurface sediment mobilization and discharges into lacustrine and marine settings.

  12. Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site

    SciTech Connect

    Xu, Chen; Kaplan, Daniel I.; Zhang, Saijin; Athon, Matthew; Ho, Yi-Fang; Li, Hsiu-Ping; Yeager, Chris; Schwehr, Kathy; Grandbois, Russell; Wellman, Dawn M.; Santschi, Peter H.

    2015-01-01

    During the last few decades, considerable research efforts have been extended to identify more effective remediation treatment technologies to lower the 129I concentrations to below federal drinking water standards at the Hanford Site (Richland, USA). Few studies have taken iodate into consideration, though recently iodate, instead of iodide, was identified as the major species in the groundwater of 200-West Area within the Hanford Site. The objective of this study was thus to quantify and understand aqueous radioiodine species transformations and uptake by three sediments collected from the semiarid, carbonate-rich environment of the Hanford subsurface. All three sediments reduced iodate (IO-) to iodide (I-), but the loamy-sand sediment reduced more IO3- (100% reduced within 7 days) than the two sand-textured sediments (~20% reduced after 28 days). No dissolved organo-iodine species were observed in any of these studies.

  13. Microbial Reductive Transformation of Phyllosilicate Fe(III) and U(VI) in Fluvial Subsurface Sediments

    SciTech Connect

    Lee, Ji-Hoon; Fredrickson, Jim K.; Kukkadapu, Ravi K.; Boyanov, Maxim I.; Kemner, Kenneth M.; Lin, Xueju; Kennedy, David W.; Bjornstad, Bruce N.; Konopka, Allan; Moore, Dean A.; Resch, Charles T.; Phillips, Jerry L.

    2012-03-14

    The microbial reduction of Fe(III) and U(VI) were investigated in shallow aquifer sediments collected from subsurface Pleistocene flood deposits near the Hanford Reach of the Columbia River in Washington State. Increases in 0.5 N HCl-extractable Fe(II) were observed in incubated sediments and 57Fe Mössbauer spectroscopy revealed that Fe(III) associated with phyllosilicates and pyroxene was reduced to Fe(II). Aqueous uranium(VI) concentrations decreased in incubated Hanford sediments with the rate and extent being greater in sediment amended with organic carbon. X-ray absorption spectroscopy of bioreduced sediments indicated that 67-77% of the U signal was U(VI), probably as an adsorbed species associated with a new or modified reactive mineral phase. Phylotypes within the Deltaproteobacteria were more common in Hanford sediments incubated with U(VI) than without and in U(VI)-free incubations, members of the Clostridiales were dominant with sulfate-reducing phylotypes more common in the sulfate-amended sediments. These results demonstrate the potential for anaerobic reduction phyllosilicate Fe(III) and sulfate in Hanford unconfined aquifer sediments and biotransformations involving reduction and adsorption leading to decreased aqueous U concentrations.

  14. Methane production from protozoan endosymbionts following stimulation of microbial metabolism within subsurface sediments

    PubMed Central

    Holmes, Dawn E.; Giloteaux, Ludovic; Orellana, Roberto; Williams, Kenneth H.; Robbins, Mark J.; Lovley, Derek R.

    2014-01-01

    Previous studies have suggested that protozoa prey on Fe(III)- and sulfate-reducing bacteria that are enriched when acetate is added to uranium contaminated subsurface sediments to stimulate U(VI) reduction. In order to determine whether protozoa continue to impact subsurface biogeochemistry after these acetate amendments have stopped, 18S rRNA and ß-tubulin sequences from this phase of an in situ uranium bioremediation field experiment were analyzed. Sequences most similar to Metopus species predominated, with the majority of sequences most closely related to M. palaeformis, a cilitated protozoan known to harbor methanogenic symbionts. Quantification of mcrA mRNA transcripts in the groundwater suggested that methanogens closely related to Metopus endosymbionts were metabolically active at this time. There was a strong correlation between the number of mcrA transcripts from the putative endosymbiotic methanogen and Metopus ß-tubulin mRNA transcripts during the course of the field experiment, suggesting that the activity of the methanogens was dependent upon the activity of the Metopus species. Addition of the eukaryotic inhibitors cyclohexamide and colchicine to laboratory incubations of acetate-amended subsurface sediments significantly inhibited methane production and there was a direct correlation between methane concentration and Metopus ß-tubulin and putative symbiont mcrA gene copies. These results suggest that, following the stimulation of subsurface microbial growth with acetate, protozoa harboring methanogenic endosymbionts become important members of the microbial community, feeding on moribund biomass and producing methane. PMID:25147543

  15. Biogeography and diversity of methane and sulfur-cycling ecotypes in deep subsurface sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Biddle, J.; Girguis, P. R.

    2013-12-01

    The microbially mediated anaerobic oxidation of methane (AOM) is critical for regulating the flux of methane from the ocean. AOM is coupled to sulfate availability in many anoxic marine environments, which has been extensively studied at cold seeps, hydrothermal vents, and the sulfate-methane transition zone at the seafloor. The microbes known to catalyze AOM form phylogenetically distinct anaerobic methanotroph (ANME) clusters and sometimes live in concert with sulfate-reducing bacteria (SRB). Strikingly, certain ANME groups and subgroups have been shown to occupy different ecological niches in both hydrocarbon seep and hydrothermal vent sediments. However, the environmental parameters that select for certain phylogenetic variants or 'ecotypes' in a wide range of marine systems are still unknown. A marine environment that remains elusive to characterization of potential ANME and SRB ecotype diversity is methane hydrate formations in the deep subsurface. Current estimates indicate that seafloor hydrates may exceed 10,000 GtC at standard temperature and pressure conditions. However, only a handful of studies have investigated the potential for AOM in the deep subsurface associated with methane hydrates. To gain a better understanding of the distribution of methane- and sulfur- cycling ecotypes in biogeochemically distinct marine subsurface ecosystems, we generated a substantial library of 16S rRNA gene sequences for these uncultivable deep sea microorganisms using Illumina sequencing. Sediment strata were collected from the methane-hydrate associated deep subsurface of Hydrate Ridge (30 - 100 mbsf), hydrocarbon cold seeps of Monterey Bay, metalliferous sedimented hydrothermal vents of Juan de Fuca Ridge, and organic-rich hydrothermally influenced sediments of Guaymas Basin. We used the Illumina MiSeq sequencing platform to assess Archaeal and Bacterial richness in a total of 36 deep sea sediment samples followed by qPCR for quantification of ANME and SRB phylotype

  16. Don Quixote Pond Sediments: Surface and Subsurface Chemistry and Mineralogy

    NASA Astrophysics Data System (ADS)

    Englert, P. A. J.; Bishop, J. L.; Patel, S.; Gibson, E. K.; Koeberl, C.

    2014-12-01

    Don Quixote Pond, like Don Juan Pond in the South Fork of Wright Valley, Antarctica, is a model for calcium and chlorine weathering and distribution on Mars. It is located in the western part of the North Fork about 100 m above Mean Seawater Level; its brine is seasonally frozen [1]. Field observations show zones of discoloration which grow lighter with distance from the pond edges. Four sediment cores, a set of radial surface samples, special surface samples, and samples of local rocks were obtained [2]. We report on chemical and mineral analyses of traverse samples and on two cores. Core DQ20 is a northeastern shoreline core. Its soluble salt concentration exceeds 200 micromoles/g in the top 5 cm, and then falls to less than 70 micromoles/g at the permafrost depth of 15 cm. These concentrations are low when compared to similarly positioned locations at Don Juan Pond and to cores from Prospect Mesa close to Lake Vanda, Wright Valley. Halite, soda niter, tachyhydrite and/bischovite are suggested from the ionic molar relationships Measured halite concentrations of surface samples, collected along a traverse of 35 m from the pond outwards, range from over 5% to trace amounts, decreasing with distance. Gypsum is also present in almost all of these samples ranging from 0.2% to 2.6%, but does not exhibit a trend. However, in core DQ35, located at a distance of 15 m along the traverse, gypsum decreases from 2.5% to 0.6% from the surface to the permafrost depth of 12 cm. While DQ35 and radial samples show high quartz and albite abundance, samples that contained visible encrustations and evaporites are low in these minerals and rich in highly diverse alteration products. Don Juan Basin ponds may have formed by a complex surface water mobilization of weathering products [3] and local groundwater action [4,5]. In contrast, Don Quixote pond mineralogy and chemistry may be consistent with a less complex shallow and deep groundwater system origin [1]. [1] Harris H

  17. DISTRIBUTION AND ACTIVITY OF MICROORGANISMS IN SUBSURFACE SEDIMENTS OF A PRISTINE STUDY SITE IN OKLAHOMA (JOURNAL VERSION)

    EPA Science Inventory

    Distribution and activity of microorganisms in surface soil and subsurface sediments were studied in depth profiles of six different microbial biomass and activity indicators (total direct counts, number of cells capable of electron transport system activity, viable cell plate co...

  18. In Situ Expression of nifD in Geobacteraceae in Subsurface Sediments

    PubMed Central

    Holmes, Dawn E.; Nevin, Kelly P.; Lovley, Derek R.

    2004-01-01

    In order to determine whether the metabolic state of Geobacteraceae involved in bioremediation of subsurface sediments might be inferred from levels of mRNA for key genes, in situ expression of nifD, a highly conserved gene involved in nitrogen fixation, was investigated. When Geobacter sulfurreducens was grown without a source of fixed nitrogen in chemostats with acetate provided as the limiting electron donor and Fe(III) as the electron acceptor, levels of nifD transcripts were 4 to 5 orders of magnitude higher than in chemostat cultures provided with ammonium. In contrast, the number of transcripts of recA and the 16S rRNA gene were slightly lower in the absence of ammonium. The addition of acetate to organic- and nitrogen-poor subsurface sediments stimulated the growth of Geobacteraceae and Fe(III) reduction, as well as the expression of nifD in Geobacteraceae. Levels of nifD transcripts in Geobacteraceae decreased more than 100-fold within 2 days after the addition of 100 μM ammonium, while levels of recA and total bacterial 16S rRNA in Geobacteraceae remained relatively constant. Ammonium amendments had no effect on rates of Fe(III) reduction in acetate-amended sediments or toluene degradation in petroleum-contaminated sediments, suggesting that other factors, such as the rate that Geobacteraceae could access Fe(III) oxides, limited Fe(III) reduction. These results demonstrate that it is possible to monitor one aspect of the in situ metabolic state of Geobacteraceae species in subsurface sediments via analysis of mRNA levels, which is the first step toward a more global analysis of in situ gene expression related to nutrient status and stress response during bioremediation by Geobacteraceae. PMID:15574924

  19. Immobilization and Natural Attenuation of Arsenic in Surface and Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    O'Day, P. A.; Illera, V.; Choi, S.; Vlassopoulos, D.

    2008-12-01

    Understanding of molecular-scale biogeochemical processes that control the mobilization and distribution of As and other oxyanions can be used to develop remediation strategies that take advantage of natural geochemical and hydrologic gradients. Arsenic and other toxic oxyanions can be mobilized at low bulk sediment concentrations (ppm range) and thus, treatment technologies are challenged by low contaminant concentrations, widespread sources, variable pH and Eh conditions, and inaccessibility of subsurface environments. In situ chemical amendments to soils and sediments can be used to decrease the mobility and bioaccessibility of As and oxyanions through sorption to, or precipitation with, stabilizing phases. At a site near San Francisco Bay (CA, USA), treatment of As-contaminated soils with sulfate-cement amendments has effectively immobilized As. Laboratory experiments with field soils and spectroscopic characterizations showed that in high pH cement-type treatments, As is precipitated in ettringite-type phases (Ca-Al sulfates), whereas in low pH ferrous sulfate treatments, As is associated with an iron-arsenate phase (angellelite). The presence of As-associated ettringite-type phases in field sediments amended more than a decade ago indicates long-term stability of these neophases, as long as environmental conditions are relatively constant. At sites of subsurface contamination, monitored natural attenuation (MNA) as a remediation approach for As is gaining interest and acceptance. Successful implementation of MNA requires a mechanistic understanding of As sequestration processes and of the subsurface conditions that may enhance or reduce long-term effectiveness. At a former military site (MA, USA), naturally occurring As was mobilized from sediments as a result of reducing conditions from addition of organic carbon as a biodegradation treatment of chlorinated solvents. Elevated As concentrations were not detected further than about 30 m downgradient of the

  20. Bioremediation of subsurface sediment and groundwater contaminated with pyridine and pyridine derivatives

    SciTech Connect

    Ronen, Z.

    1992-01-01

    The presence of toxic organic chemicals such as pyridine and its alkyl derivatives, found in groundwater as a consequence of industrial activities, present a direct hazard to human health and to the environment. The toxicity of these compounds, their teratogenic properties, and their irritating odor require urgent remediation. Physical, chemical, and biological treatments are commonly applied for the removal of organic pollutants from groundwater. In this investigation, the potential of a biological treatment was evaluated for the clean-up of subsurface and groundwater contaminated with pyridine and its alkyl derivatives. A pyridine-degrading denitrifying bacterium, an Alcaligenes sp., isolated from a polluted aquifer, successfully mineralized pyridine in the subsurface sediment under anaerobic conditions. Moreover, the isolated bacterium was much more effective, when compared to chemical treatment (Fenton's reagent), in mineralizing pyridine in the groundwater and subsurface sediments. In contrast to pyridine, alkylpyridines were not degraded under anaerobic conditions. However, under aerobic conditions indigenous bacteria were able to degrade all investigated contaminants. Thus, oxygen was the limiting factor for biodegradation of alkylpyridines. Degradation of these compounds also occurred in soil columns. In addition, a mixed culture capable of degrading 14 different alkylpyridine isomers was selected from the sediment and appeared to be very effective in removing pollutants from groundwater. Characterization of the different bacteria showed that all strains were gram-negative rods. The above findings suggest that bioremediation of pyridine-contaminated groundwater is feasible. Bioremediation may be in situ using either inoculation of the subsurface with pyridine-degrading bacteria or stimulation of native microorganisms.

  1. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater.

    PubMed

    Anawar, Hossain M; Akai, Junji; Sakugawa, Hiroshi

    2004-02-01

    Arsenic leaching by bicarbonate ions has been investigated in this study. Subsurface sediment samples from Bangladesh were treated with different carbonate and bicarbonate ions and the results demonstrate that the arsenic leaching efficiency of the carbonate solutions decreased in the order of Na2CO3>NaHCO3>BaCO3>MnCO3. Sodium carbonate and bicarbonate ions extracted arsenic most efficiently; Na2CO3 leached maximum 118.12 microg/l of arsenic, and NaHCO3, 94.56 microg/l of arsenic from the Ganges delta sediments after six days of incubation. The arsenic concentrations extracted in the batch experiments correlated very well with the bicarbonate concentrations. The kinetics study of arsenic release indicates that arsenic-leaching rate increased with reaction time in bicarbonate solutions. Bicarbonate ions can extract arsenic from sediment samples in both oxic and anoxic conditions. A linear relationship found between arsenic contents in core samples and those in leachates suggests that dissolved arsenic concentration in groundwater is related to the amount of arsenic in aquifer sediments. In batch experiment, bicarbonate solutions effectively extracted arsenic from arsenic adsorbed iron oxyhydroxide, reflecting that bicarbonate solutions may mobilize arsenic from iron and manganese oxyhydroxide in sediments that are ubiquitous in subsurface core samples. Carbonate ion may form complexes on the surface sites of iron hydroxide and substitute arsenic from the surface of minerals and sediments resulting in release of arsenic to groundwater. Like in the batch experiment, arsenic and bicarbonate concentrations in groundwater of Bangladesh correlated very well. Therefore, bicarbonate leaching is presumed to be one important mechanism to mobilize arsenic in bicarbonate dominated reducing aquifer of Bangladesh and other parts of the world as well. PMID:14602108

  2. Electron flow in acidic subsurface sediments co-contaminated with nitrate and uranium

    NASA Astrophysics Data System (ADS)

    Edwards, Lainie; Küsel, Kirsten; Drake, Harold; Kostka, Joel E.

    2007-02-01

    The combination of low pH and high concentrations of nitrate and radionuclides in the subsurface is representative of many sites within the U.S. nuclear weapons complex managed by the Department of Energy (DOE), including the DOE's Environmental Remediation Sciences Program Field Research Center (ORFRC), in Oak Ridge, Tennessee. In order to provide a further understanding of the coupled microbiological and geochemical processes limiting radionuclide bioremediation, we determined the rates and pathways of terminal-electron accepting processes (TEAPs) in microcosm experiments using close to in situ conditions with ORFRC subsurface materials. At the in situ pH range of 4-5, carbon substrate utilization and TEAP rates were diminished, such that nitrate was not depleted and metal reduction was prevented. Upon biostimulation by pH neutralization and carbon substrate addition, TEAPs were stimulated to rates that rival those measured in organic-rich surficial sediments of aquatic environments, and extremely high nitrate concentrations (0.4-0.5 M) were not found to be toxic to microbial metabolism. Metal reduction under neutral pH conditions started once nitrate was depleted to low levels in response to biostimulation. Acidity controlled not only the rates but also the pathways of microbial activity. Denitrification predominated in sediments originating from neutral pH zones, while dissimilatory nitrate reduction to ammonium occurred in neutralized acidic microcosms amended with glucose. Electron donors were determined to stimulate microbial metabolism leading to metal reduction in the following order: glucose > ethanol > lactate > hydrogen. In microcosms of neutralized acidic sediments, 80-90% of C equivalents were recovered as fermentation products, mainly as acetate. Due to the stress imposed by low pH on microbial metabolism, our results indicate that the TEAPs of acidic subsurface sediment are inherently different from those of neutral pH environments and

  3. Marine Subsurface Microbial Communities Across a Hydrothermal Gradient in Okinawa Trough Sediments

    NASA Astrophysics Data System (ADS)

    Brandt, L. D.; Hser Wah Saw, J.; Ettema, T.; House, C. H.

    2015-12-01

    IODP Expedition 331 to the Okinawa backarc basin provided an opportunity to study the microbial stratigraphy within the sediments surrounding a hydrothermal vent. The Okinawa backarc basin is a sedimented region of the seafloor located on a continental margin, and also hosts a hydrothermal network within the subsurface. Site C0014 within the Iheya North hydrothermal field is located 450 m east of the active vent and has a surface temperature of 5°C with no evidence of hydrothermal alteration within the top 10 meters below sea floor (mbsf). Temperature increases with depth at an estimated rate of 3°C/m and transitions from non-hydrothermal margin sediments to a hydrothermally altered regime below 10 mbsf. In this study, we utilized deep 16S rRNA sequencing of DNA from IODP Expedition 331 Site C0014 sediment horizons in order to assess diversity throughout the sediment column as well as determine the potential limits of the biosphere. Analysis of the amplicon data shows a shift over 15 mbsf from a heterogeneous community of cosmopolitan marine subsurface taxa toward an archaeal-dominated community in the deepest horizons of the predicted biosphere. Notably, the phylum Chloroflexi represents a substantial taxon through most horizons, where it appears to be replaced below 10 mbsf by punctuations of thermophilic and methanotrophic Archaea and Miscellaneous Crenarchaeotic Group abundances. DNA from the aforementioned transition horizons was further analyzed using metagenomic sequencing. Preliminary taxonomic analysis of the metagenomic data agrees well with amplicon data in capturing the shift in relative abundance of Archaea increasing with depth. Additionally, reverse gyrase, a gene found exclusively in hyperthermophilic microorganisms, was recovered only in the metagenome of the deepest horizon. A BLAST search of this protein sequence against the GenBank non-redudnant protein database produced top hits with reverse gyrase from Thermococcus and Pyrococcus, which are

  4. Subsurface sediment mobilization and active pockmarks from sublacustrine ground-water seepage

    NASA Astrophysics Data System (ADS)

    Reusch, A.; Moernaut, J.; Loher, M.; Hilbe, M.; Meinecke, G.; Kipfer, R.; Anselmetti, F.; Bouffard, D.; Strasser, M.

    2014-12-01

    Lakes can be used as "model basins" to study fluid-flow processes with a multi-method approach in a well-defined environment. We present unprecedented insight into newly discovered pockmarks and associated subsurface sediment-mobilization structures in Lake Neuchâtel, Switzerland. A geophysical approach using multiple tools provides precise high-resolution bathymetric data and subsurface information of the sedimentary infill. We combine geophysical (300 kHz Kongsberg EM2040 multibeam, 3.5 kHz pinger seismic, deep-towed multi-frequency chirp seismic, mounted on an AUV), sedimentological (piston cores), hydrological (CTD), geochemical (methane, δ18O) and visual (ROV survey) data and observations. The data show several circular, crater-shaped pockmarks of up to 160 m in diameter and up to 30 m depth. The pockmarks are partially filled with mud in a fluid-like state. It is hypothesized that this mud is a result of active fluid flow within the pockmark. The levees of the pockmarks are characterized by high-amplitude wedge-shaped seismic reflections being intercalated with the background sediments. They are interpreted as overflow deposits originating from episodic increases in fluid flow from inside the pockmarks, causing sediment to be spilled over the margin and deposited on the levees. Data show multiple phases of sediment expulsion during discrete periods throughout the Holocene. Geochemical sediment analyses of headspace methane indicate the presence of purely microbial methane at low concentrations, thus no indications of active gas seepage. Elevated temperature values and depleted δ18O signals within the pockmark, compared to the reference sites, hint towards different water sources. We interpret these data to show two water bodies: (i) lake bottom-water, and (ii) groundwater entering as focused fluid flow through the pockmark. This multi-proxy approach shows that the newly discovered pockmarks of Lake Neuchâtel are sublacustrine springs, possibly related to

  5. Subsurface sediment contamination during borehole drilling with an air-actuated down-hole hammer.

    PubMed

    Malard, Florian; Datry, Thibault; Gibert, Janine

    2005-10-01

    Drilling methods can severely alter physical, chemical, and biological properties of aquifers, thereby influencing the reliability of water samples collected from groundwater monitoring wells. Because of their fast drilling rate, air-actuated hammers are increasingly used for the installation of groundwater monitoring wells in unconsolidated sediments. However, oil entrained in the air stream to lubricate the hammer-actuating device can contaminate subsurface sediments. Concentrations of total hydrocarbons, heavy metals (Cu, Ni, Cr, Zn, Pb, and Cd), and nutrients (particulate organic carbon, nitrogen, and phosphorus) were measured in continuous sediment cores recovered during the completion of a 26-m deep borehole drilled with a down-hole hammer in glaciofluvial deposits. Total hydrocarbons, Cu, Ni, Cr and particulate organic carbon (POC) were all measured at concentrations far exceeding background levels in most sediment cores. Hydrocarbon concentration averaged 124 +/- 118 mg kg(-1) dry sediment (n = 78 samples) with peaks at depths of 8, 14, and 20 m below the soil surface (maximum concentration: 606 mg kg(-1)). The concentrations of hydrocarbons, Cu, Ni, Cr, and POC were positively correlated and exhibited a highly irregular vertical pattern, that probably reflected variations in air loss within glaciofluvial deposits during drilling. Because the penetration of contaminated air into the formation is unpreventable, the representativeness of groundwater samples collected may be questioned. It is concluded that air percussion drilling has strong limitations for well installation in groundwater quality monitoring surveys. PMID:16091299

  6. A new DNA extraction method by controlled alkaline treatments from consolidated subsurface sediments.

    PubMed

    Kouduka, Mariko; Suko, Takeshi; Morono, Yuki; Inagaki, Fumio; Ito, Kazumasa; Suzuki, Yohey

    2012-01-01

    Microbial communities that thrive in subterranean consolidated sediments are largely unknown owing to the difficulty of extracting DNA. As this difficulty is often attributed to DNA binding onto the silica-bearing sediment matrix, we developed a DNA extraction method for consolidated sediment from the deep subsurface in which silica minerals were dissolved by being heated under alkaline conditions. NaOH concentrations (0.07 and 0.33 N), incubation temperatures (65 and 94 °C) and incubation times (30-90 min) before neutralization were evaluated based on the copy number of extracted prokaryotic DNA. Prokaryotic DNA was detected by quantitative PCR analysis after heating the sediment sample at 94 °C in 0.33 N NaOH solution for 50-80 min. Results of 16S rRNA gene sequence analysis of the extracted DNA were all consistent with regard to the dominant occurrence of the metallophilic bacterium, Cupriavidus metallidurans, and Pseudomonas spp. Mineralogical analysis revealed that the dissolution of a silica mineral (opal-CT) during alkaline treatment was maximized at 94 °C in 0.33 N NaOH solution for 50 min, which may have resulted in the release of DNA into solution. Because the optimized protocol for DNA extraction is applicable to subterranean consolidated sediments from a different locality, the method developed here has the potential to expand our understanding of the microbial community structure of the deep biosphere. PMID:22092362

  7. Subsurface sediment contamination during borehole drilling with an air-actuated down-hole hammer

    NASA Astrophysics Data System (ADS)

    Malard, Florian; Datry, Thibault; Gibert, Janine

    2005-10-01

    Drilling methods can severely alter physical, chemical, and biological properties of aquifers, thereby influencing the reliability of water samples collected from groundwater monitoring wells. Because of their fast drilling rate, air-actuated hammers are increasingly used for the installation of groundwater monitoring wells in unconsolidated sediments. However, oil entrained in the air stream to lubricate the hammer-actuating device can contaminate subsurface sediments. Concentrations of total hydrocarbons, heavy metals (Cu, Ni, Cr, Zn, Pb, and Cd), and nutrients (particulate organic carbon, nitrogen, and phosphorus) were measured in continuous sediment cores recovered during the completion of a 26-m deep borehole drilled with a down-hole hammer in glaciofluvial deposits. Total hydrocarbons, Cu, Ni, Cr and particulate organic carbon (POC) were all measured at concentrations far exceeding background levels in most sediment cores. Hydrocarbon concentration averaged 124 ± 118 mg kg - 1 dry sediment ( n = 78 samples) with peaks at depths of 8, 14, and 20 m below the soil surface (maximum concentration: 606 mg kg - 1 ). The concentrations of hydrocarbons, Cu, Ni, Cr, and POC were positively correlated and exhibited a highly irregular vertical pattern, that probably reflected variations in air loss within glaciofluvial deposits during drilling. Because the penetration of contaminated air into the formation is unpreventable, the representativeness of groundwater samples collected may be questioned. It is concluded that air percussion drilling has strong limitations for well installation in groundwater quality monitoring surveys.

  8. Characterization of anaerobic chloroethene-dehalogenating activity in several subsurface sediments

    SciTech Connect

    Skeen, R.S.; Gao, J.; Hooker, B.S.; Quesenberry, R.D.

    1996-11-01

    Anaerobic microcosms of subsurface soils from four locations were used to investigate the separate effects of several electron donors on tetrachloroethylene (PCE) dechlorination activity. The substrates tested were methanol, formate, lactate, acetate, and sucrose. Various levels of sulfate-reducing, acetogenic, fermentative, and methanogenic activity were observed in all sediments. PCE dechlorination was detected in all microcosms, but the amount of dehalogenation varied by several orders of magnitude. Trichloroethylene was the primary dehalogenation product; however, small amounts of cis-1,2-dichloroethylene, 1,1-dichloroethylene, and vinyl chloride were also detected in several microcosms. Lactate-amended microcosms showed large amounts of dehalogenation. in three of the four sediments. One of the two sediments which showed positive activity with lactate also had large amounts of delialogenation with methanol. Sucrose, formate, and acetate also stimulated large amounts of delialogenation in one sediment that showed activity with lactate. These results suggest that lactate may be an appropriate substrate for screening sediments for PCE or TCE delialogenation activity, but that the microbial response is not sufficient for complete in situ bioremediation. A detailed study of the Victoria activity revealed that delialogenation rates were more similar to the Cornell culture than to rates measured for methanogens, or a methanol-enriched sediment culture. This may suggest that these sediments contain a highly efficient delialogenation activity similar to the Cornell culture. This assertion is supported further by the fact that an average of 3% of added reducing equivalents could be diverted to dehalogenation in tests which were conducted using PCE-saturated hexadecane as a constant source of PCE during incubation. Further evidence is needed to confirm this premise. The application of these results to in situ bioremediation of highly contaminated areas are discussed.

  9. Sulfur and iron cycling in deep-subsurface, coal bed-containing sediments off Shimokita (Japan)

    NASA Astrophysics Data System (ADS)

    Riedinger, N.; Smirnoff, M. N.; Gilhooly, W.; Phillips, S. C.; Lyons, T. W.; 337 Scientific Party, I.

    2013-12-01

    The main goal of IODP Expedition 337 was the identification and characterization of the deep coal bed biosphere and hydrocarbon system off the Shimokita Peninsula (Japan) in the northwestern Pacific using the D/V Chikyu. To accomplish this scientific objective, it was also necessary to investigate the inorganic biogeochemistry in order to identify possible electron acceptors and bio-essential nutrients. These biogeochemical parameters greatly influence both, the composition and abundance of microbial communities as well as the organic carbon cycle. In turn, the microbially mediated carbon cycle influences the diagenetic reactions in the subsurface, thus, altering geochemical and physical characteristics of the material. Here we present results from metal and sulfur geochemical analyses from the deep-subsurface sediments (about 1250 to 2466 mbsf) at Site C0020 off Shimokita. The measured concentrations of acid volatile sulfur (AVS) as well as chromium reducible sulfur (CRS) reflect the alteration of iron oxides to iron sulfides and indicate that the main sulfur-bearing phase in the investigated sediments is pyrite. Concentrations of intermediate sulfur species are minor and occur mainly in the coal-bearing interval. Our data show that the uppermost sediments contain higher amounts of pyrite (up to 1.2 wt.%) with an average of 0.5 wt.% compared to the deeper deposits (below about 1800 mbsf), which show an average of 0.16 wt.%. In contrast, iron oxide concentrations are highest in the deeper sediment sections (up to 0.4%), where pyrite concentrations are low. The alteration of iron oxides to sulfides in theses lower section was probably governed by the amount of available sulfide in the pore water. The occurrence of (bio-)reactive iron phases in these deeply buried sediments has implications for the deep biosphere as those minerals have the potential to serve as electron acceptors during burial, including reactions involving deep sourced electron donors, such as

  10. Quantifying microbial activity in deep subsurface sediments using a tritium based hydrognease enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Kallmeyer, J.

    2012-12-01

    Microbial life is widespread in Earth's subsurface and estimated to represent a significant fraction of Earth's total living biomass. However, very little is known about subsurface microbial activity and its fundamental role in biogeochemical cycles of carbon and other biologically important elements. Hydrogen is one of the most important elements in subsurface anaerobic microbial metabolism. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways. They either consume or produce protons for ATP synthesis. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy generating metabolic processes to electron acceptors such as CO2 or sulfate. H2ase enzyme targets a key metabolic compound in cellular metabolism therefore the assay can be used as a measure for total microbial activity without the need to identify any specific metabolic process. Using the highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey, in marine sediments of the Barents Sea and in deep subseafloor sediments from the Nankai Trough. H2ase activity could be quantified at all depths of all sites but the activity distribution varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from ca. 20 mmol H2 cm-3d-1 close to the sediment-water interface to 0.5 mmol H2 cm-3d-1 at a depth of 0.8 m. In samples from the Barents Sea H2ase activity ranged between 0.1 to 2.5 mmol H2 cm-3d-1 down to a depth of 1.60 m. At all sites the sulfate reduction rate profile followed the upper part of the H2ase activity profile until sulfate reduction reached the minimum detection limit (ca. 10 pmol cm-3d-1). H2ase activity could still be quantified after the decline of sulfate reduction, indicating that

  11. Sorption of Cs + to micaceous subsurface sediments from the Hanford site, USA

    NASA Astrophysics Data System (ADS)

    Zachara, John M.; Smith, Steven C.; Liu, Chongxuan; McKinley, James P.; Serne, R. Jeffrey; Gassman, Paul L.

    2002-01-01

    The sorption of Cs + was investigated over a large concentration range (10 -9-10 -2 mol/L) on subsurface sediments from a United States nuclear materials site (Hanford) where high-level nuclear wastes (HLW) have been accidentally released to the vadose zone. The sediment sorbs large amounts of radiocesium, but expedited migration has been observed when HLW (a NaNO 3 brine) is the carrier. Cs + sorption was measured on homoionic sediments (Na +, K +, Ca 2+) with electrolyte concentrations ranging from 0.01 to 1.0 mol/L. In Na + electrolyte, concentrations were extended to near saturation with NaNO 3(s) (7.0 mol/L). The sediment contained nonexpansible (biotite, muscovite) and expansible (vermiculite, smectite) phyllosilicates. The sorption data were interpreted according to the frayed edge-planar site conceptual model. A four-parameter, two-site (high- and low-affinity) numeric ion exchange model was effective in describing the sorption data. The high-affinity sites were ascribed to wedge zones on the micas where particle edges have partially expanded due to the removal of interlayer cations during weathering, and the low-affinity ones to planar sites on the expansible clays. The electrolyte cations competed with Cs + for both high- and low-affinity sites according to the trend K + >> Na + ≥ Ca 2+. At high salt concentration, Cs + adsorption occurred only on high-affinity sites. Na + was an effective competitor for the high-affinity sites at high salt concentrations. In select experiments, silver-thiourea (AgTU) was used as a blocking agent to further isolate and characterize the high-affinity sites, but the method was found to be problematic. Mica particles were handpicked from the sediment, contacted with Cs +(aq), and analyzed by electron microprobe to identify phases and features important to Cs + sorption. The microprobe study implied that biotite was the primary contributor of high-affinity sites because of its weathered periphery. The poly-phase sediment

  12. Sorption of Cs+ to Micaceous Subsurface Sediments from the Hanford Site, USA

    SciTech Connect

    Zachara, John M.; Smith, Steven C.; Liu, Chongxuan; McKinley, James P.; Serne, R. Jeffrey; Gassman, Paul L.

    2002-01-15

    The sorption of Cs{sup +} was investigated over a large concentration range (10{sup -9}-10{sup -2} mol/L) on subsurface sediments from a United States nuclear materials site (Hanford) where high-level nuclear wastes (HLW) have been accidentally released to the vadose zone. The sediment sorbs large amounts of radiocesium, but expedited migration has been observed when HLW (a NaNO{sub 3} brine) is the carrier. Cs{sup +} sorption was measured on homoionic sediments (Na{sup +}, K{sup +}, Ca{sup 2+}) with electrolyte concentrations ranging from 0.01 to 1.0 mol/L. In Na{sup +} electrolyte, concentrations were extended to near saturation with NaNO{sub 3(s)} (7.0 mol/L). The sediment contained nonexpansible (biotite, muscovite) and expansible (vermiculite, smectite) phyllosilicates. The sorption data were interpreted according to the frayed edge-planar site conceptual model. A four-parameter, two-site (high- and low-affinity) numeric ion exchange model was effective in describing the sorption data. The high-affinity sites were ascribed to wedge zones on the micas where particle edges have partially expanded due to the removal of interlayer cations during weathering, and the low-affinity ones to planar sites on the expansible clays. The electrolyte cations competed with Cs{sup +} for both high- and low-affinity sites according to the trend K{sup +} >> Na{sup +} {ge} Ca{sup 2+}. At high salt concentration, Cs{sup +} adsorption occurred only on high-affinity sites. Na{sup +} was an effective competitor for the high-affinity sites at high salt concentrations. In select experiments, silver-thiourea (AgTU) was used as a blocking agent to further isolate and characterize the high-affinity sites, but the method was found to be problematic. Mica particles were handpicked from the sediment, contacted with Cs{sub eq}{sup +}, and analyzed by electron microprobe to identify phases and features important to Cs{sup +} sorption. The microprobe study implied that biotite was the primary

  13. Biosphere frontiers of subsurface life in the sedimented hydrothermal system of Guaymas Basin

    PubMed Central

    Teske, Andreas; Callaghan, Amy V.; LaRowe, Douglas E.

    2014-01-01

    Temperature is one of the key constraints on the spatial extent, physiological and phylogenetic diversity, and biogeochemical function of subsurface life. A model system to explore these interrelationships should offer a suitable range of geochemical regimes, carbon substrates and temperature gradients under which microbial life can generate energy and sustain itself. In this theory and hypothesis article, we make the case for the hydrothermally heated sediments of Guaymas Basin in the Gulf of California as a suitable model system where extensive temperature and geochemical gradients create distinct niches for active microbial populations in the hydrothermally influenced sedimentary subsurface that in turn intercept and process hydrothermally generated carbon sources. We synthesize the evidence for high-temperature microbial methane cycling and sulfate reduction at Guaymas Basin – with an eye on sulfate-dependent oxidation of abundant alkanes – and demonstrate the energetic feasibility of these latter types of deep subsurface life in previously drilled Guaymas Basin locations of Deep-Sea Drilling Project 64. PMID:25132832

  14. Microbial Community Responses to Organophosphate Substrate Additions in Contaminated Subsurface Sediments

    PubMed Central

    Martinez, Robert J.; Wu, Cindy H.; Beazley, Melanie J.; Andersen, Gary L.; Conrad, Mark E.; Hazen, Terry C.; Taillefert, Martial; Sobecky, Patricia A.

    2014-01-01

    Background Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. Methodology/Principal Findings Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC) Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P) or glycerol-3-phosphate (G3P)] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P) and 20 day (G3P) amended treatments, maximum phosphate (PO43−) concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5) treatments and greatest with G3P (pH 6.8) treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%–50% and 3%–17% of total detected Archaea and Bacteria, respectively. Conclusions/Significance This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium, strategies that

  15. Active microbial community structure of deep subsurface sediments within Baltic Sea Basin

    NASA Astrophysics Data System (ADS)

    Reese, B. K.; Zinke, L.; Carvalho, G.; Lloyd, K. G.; Marshall, I.; Shumaker, A.; Amend, J.

    2014-12-01

    The Baltic Sea Basin (BSB) is a unique depositional setting that has experienced periods of glaciation and deglaciation as a result of climatic fluctuations over past tens of thousands of years. This has resulted in laminated sediments formed during periods with strong permanent salinity stratification. The high sedimentation rates make this an ideal setting to understand the microbial structure of a deep biosphere community in a relatively high carbon, and thus high-energy environment, compared to other deep subsurface sites. Samples were collected through scientific drilling during the International Ocean Discovery Program (IODP) Expedition 347 on board the Greatship Manisha, September-November 2013. We examined the active microbial community structure using the 16S rRNA gene transcript and active functional genes through metatranscriptome sequencing. Major biogeochemical shifts have been observed in response to the depositional history between the limnic, brackish, and marine phases. The active microbial community structure in the BSB is diverse and reflective of the unique changes in the geochemical profile. These data further refine our understanding of the existence life in the deep subsurface and the survival mechanisms required for this extreme environment.

  16. Quantification of Microbial Communities in Subsurface Marine Sediments of the Black Sea and off Namibia

    PubMed Central

    Schippers, Axel; Kock, Dagmar; Höft, Carmen; Köweker, Gerrit; Siegert, Michael

    2011-01-01

    Organic-rich subsurface marine sediments were taken by gravity coring up to a depth of 10 m below seafloor at six stations from the anoxic Black Sea and the Benguela upwelling system off Namibia during the research cruises Meteor 72-5 and 76-1, respectively. The quantitative microbial community composition at various sediment depths was analyzed using total cell counting, catalyzed reporter deposition – fluorescence in situ hybridization (CARD–FISH) and quantitative real-time PCR (Q-PCR). Total cell counts decreased with depths from 109 to 1010 cells/mL at the sediment surface to 107–109 cells/mL below one meter depth. Based on CARD–FISH and Q-PCR analyses overall similar proportions of Bacteria and Archaea were found. The down-core distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes (16S and 18S rRNA) as well as functional genes involved in different biogeochemical processes was quantified using Q-PCR. Crenarchaeota and the bacterial candidate division JS-1 as well as the classes Anaerolineae and Caldilineae of the phylum Chloroflexi were highly abundant. Less abundant but detectable in most of the samples were Eukarya as well as the metal and sulfate-reducing Geobacteraceae (only in the Benguela upwelling influenced sediments). The functional genes cbbL, encoding for the large subunit of RuBisCO, the genes dsrA and aprA, indicative of sulfate-reducers as well as the mcrA gene of methanogens were detected in the Benguela upwelling and Black Sea sediments. Overall, the high organic carbon content of the sediments goes along with high cell counts and high gene copy numbers, as well as an equal abundance of Bacteria and Archaea. PMID:22319518

  17. Denitrifying Bacteria Isolated from Terrestrial Subsurface Sediments Exposed to Mixed-Waste Contamination▿ †

    PubMed Central

    Green, Stefan J.; Prakash, Om; Gihring, Thomas M.; Akob, Denise M.; Jasrotia, Puja; Jardine, Philip M.; Watson, David B.; Brown, Steven D.; Palumbo, Anthony V.; Kostka, Joel E.

    2010-01-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria), and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. rRNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter are a diverse population of denitrifiers that are circumneutral to moderately acidophilic, with a high relative abundance in areas of the acidic source zone at the OR-IFRC site. Based on genome analysis, Rhodanobacter species contain two nitrite reductase genes and have not been detected in functional-gene surveys of denitrifying bacteria at the OR-IFRC site. Nitrite and nitrous oxide reductase gene sequences were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation and genomic and metagenomic data is essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifiers. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface. PMID:20305024

  18. Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site.

    PubMed

    Xu, Chen; Kaplan, Daniel I; Zhang, Saijin; Athon, Matthew; Ho, Yi-Fang; Li, Hsiu-Ping; Yeager, Chris M; Schwehr, Kathleen A; Grandbois, Russell; Wellman, Dawn; Santschi, Peter H

    2015-01-01

    During the last few decades, considerable research efforts have been extended to identify more effective remediation treatment technologies to lower the (129)I concentrations to below federal drinking water standards at the Hanford Site (Richland, USA). Few studies have taken iodate into consideration, though recently iodate, instead of iodide, was identified as the major species in the groundwater of 200-West Area within the Hanford Site. The objective of this study was thus to quantify and understand aqueous radioiodine species transformations and uptake by three sediments collected from the semi-arid, carbonate-rich environment of the Hanford subsurface. All three sediments reduced iodate (IO3(-)) to iodide (I(-)), but the loamy-sand sediment reduced more IO3(-) (100% reduced within 7 days) than the two sand-textured sediments (∼20% reduced after 28 days). No dissolved organo-iodine species were observed in any of these studies. Iodate uptake Kd values ([Isolid]/[Iaq]; 0.8-7.6 L/kg) were consistently and appreciably greater than iodide Kd values (0-5.6 L/kg). Furthermore, desorption Kd values (11.9-29.8 L/kg) for both iodate and iodide were consistently and appreciably greater than uptake Kd values (0-7.6 L/kg). Major fractions of iodine associated with the sediments were unexpectedly strongly bound, such that only 0.4-6.6 % of the total sedimentary iodine could be exchanged from the surface with KCl solution, and 0-1.2% was associated with Fe or Mn oxides (weak NH2HCl/HNO3 extractable fraction). Iodine incorporated into calcite accounted for 2.9-39.4% of the total sedimentary iodine, whereas organic carbon (OC) is likely responsible for the residual iodine (57.1-90.6%) in sediments. The OC, even at low concentrations, appeared to be controlling iodine binding to the sediments, as it was found that the greater the OC concentrations in the sediments, the greater the values of uptake Kd, desorption Kd, and the greater residual iodine concentrations (non

  19. Present and future of subsurface biosphere studies in lacustrine sediments through scientific drilling

    NASA Astrophysics Data System (ADS)

    Ariztegui, Daniel; Thomas, Camille; Vuillemin, Aurèle

    2015-09-01

    Recently, the discovery of active microbial life in deep-sea sediments has triggered a rapid development of the field known as the "deep biosphere." Geomicrobiological investigations in lacustrine basins have also shown a substantial microbial impact on lake sediments similar to that described for the marine record. Although only 30 % of the lake sites drilled by the International Continental Drilling Program (ICDP) have included microbial investigations, these lakes cover a relatively wide range of salinities (from 0.15 to 33.8 %), pH (from 6.0 to 9.8) and environmental conditions (from very arid to humid subtropical conditions). Here, we analyze results of very recent ICDP lake sites including subsurface biosphere research from southern Patagonia (Laguna Potrok Aike) to the Levantine area (Dead Sea) as well as the East Anatolian high plateau (Lake Van) and Macedonia (Lake Ohrid). These various settings allow the examination of the impact of contrasting environments on microbial activity and their subsequent role during early diagenesis. Furthermore, they permit the identification of biosignatures of former microbial activity recorded in the sediments as well as investigating the impact of microbes in biogeochemical cycles. One of the general outcomes of these preliminary investigations is data to support the hypothesis that microbes react to climatically driven environmental changes that have a direct impact on their subsurface distribution and diversity. This is clear at conspicuous levels associated with well-known climatic periods such as the Medieval Climatic Anomaly or the Little Ice Age. Although more research is needed, this relationship between prevailing microbial assemblages and different climatic settings appears to dominate the lacustrine sites studied until to date.

  20. Enumeration and Characterization of Iron(III)-Reducing Microbial Communities from Acidic Subsurface Sediments Contaminated with Uranium(VI)

    PubMed Central

    Petrie, Lainie; North, Nadia N.; Dollhopf, Sherry L.; Balkwill, David L.; Kostka, Joel E.

    2003-01-01

    Iron(III)-reducing bacteria have been demonstrated to rapidly catalyze the reduction and immobilization of uranium(VI) from contaminated subsurface sediments. Thus, these organisms may aid in the development of bioremediation strategies for uranium contamination, which is prevalent in acidic subsurface sediments at U.S. government facilities. Iron(III)-reducing enrichment cultures were initiated from pristine and contaminated (high in uranium, nitrate; low pH) subsurface sediments at pH 7 and pH 4 to 5. Enumeration of Fe(III)-reducing bacteria yielded cell counts of up to 240 cells ml−1 for the contaminated and background sediments at both pHs with a range of different carbon sources (glycerol, acetate, lactate, and glucose). In enrichments where nitrate contamination was removed from the sediment by washing, MPN counts of Fe(III)-reducing bacteria increased substantially. Sediments of lower pH typically yielded lower counts of Fe(III)-reducing bacteria in lactate- and acetate-amended enrichments, but higher counts were observed when glucose was used as an electron donor in acidic enrichments. Phylogenetic analysis of 16S rRNA gene sequences extracted from the highest positive MPN dilutions revealed that the predominant members of Fe(III)-reducing consortia from background sediments were closely related to members of the Geobacteraceae family, whereas a recently characterized Fe(III) reducer (Anaeromyxobacter sp.) and organisms not previously shown to reduce Fe(III) (Paenibacillus and Brevibacillus spp.) predominated in the Fe(III)-reducing consortia of contaminated sediments. Analysis of enrichment cultures by terminal restriction fragment length polymorphism (T-RFLP) strongly supported the cloning and sequencing results. Dominant members of the Fe(III)-reducing consortia were observed to be stable over several enrichment culture transfers by T-RFLP in conjunction with measurements of Fe(III) reduction activity and carbon substrate utilization. Enrichment

  1. Microbial physiology-based model of ethanol metabolism in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Jin, Qusheng; Roden, Eric E.

    2011-07-01

    A biogeochemical reaction model was developed based on microbial physiology to simulate ethanol metabolism and its influence on the chemistry of anoxic subsurface environments. The model accounts for potential microbial metabolisms that degrade ethanol, including those that oxidize ethanol directly or syntrophically by reducing different electron acceptors. Out of the potential metabolisms, those that are active in the environment can be inferred by fitting the model to experimental observations. This approach was applied to a batch sediment slurry experiment that examined ethanol metabolism in uranium-contaminated aquifer sediments from Area 2 at the U.S. Department of Energy Field Research Center in Oak Ridge, TN. According to the simulation results, complete ethanol oxidation by denitrification, incomplete ethanol oxidation by ferric iron reduction, ethanol fermentation to acetate and H 2, hydrogenotrophic sulfate reduction, and acetoclastic methanogenesis: all contributed significantly to the degradation of ethanol in the aquifer sediments. The assemblage of the active metabolisms provides a frame work to explore how ethanol amendment impacts the chemistry of the environment, including the occurrence and levels of uranium. The results can also be applied to explore how diverse microbial metabolisms impact the progress and efficacy of bioremediation strategies.

  2. Microbial Diversity in Coastal Subsurface Sediments: a Cultivation Approach Using Various Electron Acceptors and Substrate Gradients

    PubMed Central

    Köpke, Beate; Wilms, Reinhard; Engelen, Bert; Cypionka, Heribert; Sass, Henrik

    2005-01-01

    Microbial communities in coastal subsurface sediments are scarcely investigated and have escaped attention so far. But since they are likely to play an important role in biogeochemical cycles, knowledge of their composition and ecological adaptations is important. Microbial communities in tidal sediments were investigated along the geochemical gradients from the surface down to a depth of 5.5 m. Most-probable-number (MPN) series were prepared with a variety of different carbon substrates, each at a low concentration, in combination with different electron acceptors such as iron and manganese oxides. These achieved remarkably high cultivation efficiencies (up to 23% of the total cell counts) along the upper 200 cm. In the deeper sediment layers, MPN counts dropped significantly. Parallel to the liquid enrichment cultures in the MPN series, gradient cultures with embedded sediment subcores were prepared as an additional enrichment approach. In total, 112 pure cultures were isolated; they could be grouped into 53 different operational taxonomic units (OTU). The isolates belonged to the Proteobacteria, “Bacteroidetes,” “Fusobacteria,” Actinobacteria, and “Firmicutes.” Each cultivation approach yielded a specific set of isolates that in general were restricted to this single isolation procedure. Analysis of the enrichment cultures by PCR and denaturing gradient gel electrophoresis revealed an even higher diversity in the primary enrichments that was only partially reflected by the culture collection. The majority of the isolates grew well under anoxic conditions, by fermentation, or by anaerobic respiration with nitrate, sulfate, ferrihydrite, or manganese oxides as electron acceptors. PMID:16332756

  3. Integrating Shear-Wave Reflection and Resistivity Profiling to Improve Subsurface Characterization of Glacial Sediments

    NASA Astrophysics Data System (ADS)

    Larson, T. H.; Ismail, A. M.; Thomason, J.; Curry, B.; Stumpf, A.; Dey, W.

    2012-12-01

    In Illinois, both high resolution seismic reflection and 2-D resistivity profiling have become fairly common tools for mapping glacial sediments. Over the past several years we have been using the two methods in combination to improve the characterization of these sediments and to refine geologic and hydrogeologic models. We demonstrate our approach with several case studies where high-resolution shear (S)-wave reflection and electrical resistivity profiling surveys were acquired at the same locations in northern and central Illinois. The two geophysical methods measure the mechanical and the electrical properties of these sediments in the subsurface which together improve our understanding of the sedimentary sequences and the underlying bedrock surface. We present results from measurements made along co-located geophysical lines which vary in length from 400 m to greater than 2300 m. Typically, the S-wave reflection profiles have greater vertical resolution and provide better imaging of depositional surfaces than the corresponding resistivity profiles. On the other hand, the resistivity profiles better express the horizontal variability within individual units compared to the reflection profiles. The reflection profiles more reliably image the bedrock surface, whereas the resistivity profiles are more sensitive to variations in moisture content, mineral content and cementation within the glacial sediments. Together, the overall geometry of depositional packages can be inferred from reflection surfaces, while compositional variations within those packages can be inferred from variations primarily in the resistivity data and secondarily in the seismic data. Geophysical and geological interpretations are constrained by core data and downhole geophysical data from boreholes located on or near the geophysical profiles.

  4. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Szecsody, Jim E.; Truex, Mike J.; Qafoku, Nikolla P.; Wellman, Dawn M.; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (< 10 h) increase in aqueous carbonate (with Ca2 +, Mg2 +) and phosphate and a slow (100 s of hours) increase in silica, Al3 +, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (< 10 h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  5. Geochemical and Mineralogical Investigation of Uranium in Multi–element Contaminated, Organic–rich Subsurface Sediment

    SciTech Connect

    Qafoku, Nikolla; Gartman, Brandy N.; Kukkadapu, Ravi K.; Arey, Bruce W.; Williams, Kenneth H.; Mouser, Paula J.; Heald, Steve M.; Bargar, John R.; Janot, Noemie; Yabusaki, Steven B.; Long, Philip E.

    2014-03-02

    Alluvial sediments characterized by an abundance of refractory or lignitic organic carbon compounds and reduced Fe and S bearing mineral phases have been identified through drilling activities at the U.S. Department of Energy’s (DOE) Integrated Field Research Challenge (IFRC) site at Rifle, CO. Regions of the subsurface from which such sediments are derived are referred to as Naturally Reduced Zones (NRZ). We conducted a study with NRZ sediments with the objective to: i.) Characterize solid phase contamination of U and other co-contaminants; ii.) Document the occurrence of potential U host minerals; iii.) Determine U valence state and micron scale spatial association with co-contaminants. Macroscopic (wet chemical batch extractions and a column experiment), microscopic (SEM-EDS), and spectroscopic (Mössbauer, µ-XRF and XANES) techniques were employed. Results showed that sediments’ solid phase had significant concentrations of U, S, As, Zn, V, Cr, Cu and Se, and a remarkable assortment of potential U hosts (sorbents and/or electron donors), such as Fe oxides (hematite, magnetite, Al-substituted goethite), siderite, reduced Fe(II) bearing clays, sulfides of different types, Zn sulfide framboids and multi – element sulfides. Multi-contaminants, micron size (ca. 5 to 30 µm) areas of mainly U(IV) and some U(VI), and/or other electron scavengers or donors such as Se, As, Cr, and V were discovered in the sediments, suggesting complex micron-scale system responses to transient redox conditions, and different extent and rates of competing U redox reactions than those of single contaminant systems. Collectively, the results improve our understanding and ability to predict U and NRZ’s complex behavior and will delineate future research directions to further study both the natural attenuation and persistence of contaminant plumes and their contribution to groundwater contamination.

  6. Influence of Acidic and Alkaline Waste Solution Properties on Uranium Migration in Subsurface Sediments

    SciTech Connect

    Szecsody, James E.; Truex, Michael J.; Qafoku, Nikolla; Wellman, Dawn M.; Resch, Charles T.; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments has significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (< 10 h) increase in aqueous carbonate (with Ca2+, Mg2+) and phosphate and a slow (100s of hours) increase in silica, Al3+, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (< 10 h) increase in carbonate, followed by a slow (10s to 100s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  7. Fungal diversity from deep marine subsurface sediments (IODP 317, Canterbury Basin, New Zealand)

    NASA Astrophysics Data System (ADS)

    Redou, V.; Arzur, D.; Burgaud, G.; Barbier, G.

    2012-12-01

    Recent years have seen a growing interest regarding micro-eukaryotic communities in extreme environments as a third microbial domain after Bacteria and Archaea. However, knowledge is still scarce and the diversity of micro-eukaryotes in such environments remains hidden and their ecological role unknown. Our research program is based on the deep sedimentary layers of the Canterbury Basin in New Zealand (IODP 317) from the subsurface to the record depth of 1884 meters below seafloor. The objectives of our study are (i) to assess the genetic diversity of fungi in deep-sea sediments and (ii) identify the functional part in order to better understand the origin and the ecological role of fungal communities in this extreme ecosystem. Fingerprinting-based methods using capillary electrophoresis single-strand conformation polymorphism and denaturing high-performance liquid chromatography were used as a first step to raise our objectives. Molecular fungal diversity was assessed using amplification of ITS1 (Internal Transcribed Spacer 1) as a biomarker on 11 samples sediments from 3.76 to 1884 meters below seafloor. Fungal molecular signatures were detected throughout the sediment core. The phyla Ascomycota and Basidiomycota were revealed with DNA as well as cDNA. Most of the phylotypes are affiliated to environmental sequences and some to common fungal cultured species. The discovery of a present and metabolically active fungal component in this unique ecosystem allows some interesting first hypotheses that will be further combined to culture-based methods and deeper molecular methods (454 pyrosequencing) to highlight essential informations regarding physiology and ecological role of fungal communities in deep marine sediments.

  8. Early organic diagenesis: The significance of progressive subsurface oxidation fronts in pelagic sediments

    NASA Astrophysics Data System (ADS)

    Wilson, T. R. S.; Thomson, J.; Colley, S.; Hydes, D. J.; Higgs, N. C.; Sørensen, J.

    1985-03-01

    Porewater and solid phase geochemical data at two contrasting NE Atlantic stations are reported. Station 10552, on the Cape Verde abyssal plain, is a site of slow pelagic accumulation ( ca. 0.4 cm kyr -1). Molecular oxygen is present in the sediment column to at least 2 m, and probably much deeper, labile organic-carbon is almost totally consumed in the upper few centimetres of the sediment. By contrast, at station 10554 on the Madeira abyssal plain, the pelagic sequence has been interrupted by the occasional deposition of organic-rich turbidites. Porewater oxygen and nitrate profiles show that subsurface organic metabolism of the organic-carbon associated with the uppermost turbidite layer is a significant fraction of the overall metabolism in the sediment column. This metabolism occurs at a relatively thin reaction front which progresses deeper into the turbidite with time. This phenomenon exerts a controlling influence on the present nutrient profile and redox succession. In a less extreme form, substrate distributions of this latter type are not uncommon in Atlantic sediments. A model has been developed which is controlled by both oxygen and nitrate data. This model permits a vertical profile of metabolic activity to be derived, and also gives estimates of the reaction rate constants and solid phase mixing rates at these two contrasting stations. About 30% of the total activity at station 10554 is located within the turbidite at the deepening reaction front; this is a non-steady-state condition. In fact, it is found that the integrated metabolic activity at the two stations is not dissimilar ( ca. 1-2 × 10 -13moles cm -2 sec -1). The striking differences in redox profile are therefore primarily attributable to differences in the distribution of metabolic activity within the column.

  9. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.

    PubMed

    Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. PMID:23851265

  10. Acidobacteria Phylum Sequences in Uranium-Contaminated Subsurface Sediments Greatly Expand the Known Diversity within the Phylum▿ †

    PubMed Central

    Barns, Susan M.; Cain, Elizabeth C.; Sommerville, Leslie; Kuske, Cheryl R.

    2007-01-01

    The abundance and composition of bacteria of the phylum Acidobacteria were surveyed in subsurface sediments from uranium-contaminated sites using amplification of 16S rRNA genes followed by clone/sequence analysis. Analysis of sequences from this study and public databases produced a revised and greatly expanded phylogeny of the Acidobacteria phylum consisting of 26 subgroups. PMID:17337544

  11. Effect of replacing surface inlets with blind or gravel inlets on sediment and phosphorus subsurface drainage losses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine whether modifying open inlets by burying them in gravel capped with 30 cm of sandy clay loam soil or in ve...

  12. Extracellular Enzymatic Hydrolysis of High Molecular Weight Organic Carbon in Eastern Mediterranean Sapropelic and Non-Sapropelic Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Hoarfrost, A.; Couper, L.; Arnosti, C.

    2014-12-01

    Organic carbon availability is an important constraint on microbial activity in the subsurface. Since most sedimentary organic matter is likely high molecular weight and complex, bioavailability of organic carbon is closely tied to activities of extracellular enzymes that hydrolyze organic macromolecules into transportable sizes. In part due to methodological difficulties, few measurements of extracellular enzymatic activities have been made in marine sediments below ca. 20cm depth. We measured extracellular hydrolysis of specific polysaccharides in deep sediments from sapropel and non-sapropel sections of a single core from the Eastern Mediterranean. In order to counteract adsorption of the substrate onto sediment particles, we developed an extraction protocol utilizing competitive desorption and mild heating. This treatment improved substrate recovery from incubation subsamples 5- to 10-fold, and enabled us to detect enzymatic activity in deep subsurface sediments. The wide variation in TOC between proximal sediment layers in this core provided an excellent opportunity to investigate (i) the rate at which subsurface microbial communities can hydrolyze a diversity of organic substrates, and (ii) rates and ranges of enzymatic capabilities as a function of sediment depth, organic carbon load and microbial community composition. Our experiments were carried out in long-term incubations (3-6 weeks), in which substrates were readily hydrolyzed, but hydrolysis rates differed among substrates and among sediment sections. Activity was not correlated with depth, but was highest in sections with highest organic carbon content. Isolation of strains able to grow directly on the substrates of interest are underway, and provide a promising path forward to illuminate mechanisms driving potential hydrolytic activity in the subsurface.

  13. Change in Bacterial Community Structure during In Situ Biostimulation of Subsurface Sediment Cocontaminated with Uranium and Nitrate

    PubMed Central

    North, Nadia N.; Dollhopf, Sherry L.; Petrie, Lainie; Istok, Jonathan D.; Balkwill, David L.; Kostka, Joel E.

    2004-01-01

    Previous studies have demonstrated that metal-reducing microorganisms can effectively promote the precipitation and removal of uranium from contaminated groundwater. Microbial communities were stimulated in the acidic subsurface by pH neutralization and addition of an electron donor to wells. In single-well push-pull tests at a number of treated sites, nitrate, Fe(III), and uranium were extensively reduced and electron donors (glucose, ethanol) were consumed. Examination of sediment chemistry in cores sampled immediately adjacent to treated wells 3.5 months after treatment revealed that sediment pH increased substantially (by 1 to 2 pH units) while nitrate was largely depleted. A large diversity of 16S rRNA gene sequences were retrieved from subsurface sediments, including species from the α, β, δ, and γ subdivisions of the class Proteobacteria, as well as low- and high-G+C gram-positive species. Following in situ biostimulation of microbial communities within contaminated sediments, sequences related to previously cultured metal-reducing δ-Proteobacteria increased from 5% to nearly 40% of the clone libraries. Quantitative PCR revealed that Geobacter-type 16S rRNA gene sequences increased in biostimulated sediments by 1 to 2 orders of magnitude at two of the four sites tested. Evidence from the quantitative PCR analysis corroborated information obtained from 16S rRNA gene clone libraries, indicating that members of the δ-Proteobacteria subdivision, including Anaeromyxobacter dehalogenans-related and Geobacter-related sequences, are important metal-reducing organisms in acidic subsurface sediments. This study provides the first cultivation-independent analysis of the change in metal-reducing microbial communities in subsurface sediments during an in situ bioremediation experiment. PMID:15294831

  14. ANME-2D Archaea Catalyze Methane Oxidation in Deep Subsurface Sediments Independent of Nitrate Reduction

    NASA Astrophysics Data System (ADS)

    Hernsdorf, A. W.; Amano, Y.; Suzuki, Y.; Ise, K.; Thomas, B. C.; Banfield, J. F.

    2015-12-01

    Terrestrial sediments are an important global reservoir for methane. Microorganisms in the deep subsurface play a critical role in the methane cycle, yet much remains to be learned about their diversity and metabolisms. To provide more comprehensive insight into the microbiology of the methane cycle in the deep subsurface, we conducted a genome-resolved study of samples collected from the Horonobe Underground Research Laboratory (HURL), Japan. Groundwater samples were obtained from three boreholes from a depth range of between 140 m and 250 m in two consecutive years. Groundwater was filtered and metagenomic DNA extracted and sequenced, and the sequence data assembled. Based on the sequences of phylogenetically informative genes on the assembled fragments, we detected a high degree of overlap in community composition across a vertical transect within one borehole at the two sampling times. However, there was comparatively little similarity observed among communities across boreholes. Spatial and temporal abundance patterns were used in combination with tetranucleotide signatures of assembled genome fragments to bin the data and reconstruct over 200 unique draft genomes, of which 137 are considered to be of high quality (>90% complete). The deepest samples from one borehole were highly dominated by an archaeon identified as ANME-2D; this organism was also present at lower abundance in all other samples from that borehole. Also abundant in these microbial communities were novel members of the Gammaproteobacteria, Saccharibacteria (TM7) and Tenericute phyla. Notably, a ~2 Mbp draft genome for the ANME-2D archaeon was reconstructed. As expected, the genome encodes all of the genes predicted to be involved in the reverse methanogenesis pathway. In contrast with the previously reported ANME2-D genome, the HURL ANME-2D genome lacks the capacity to reduce nitrate. However, we identified many multiheme cytochromes with closest similarity to those of the known Fe

  15. Nontoxic chemical process for in situ permeability enhancement and accelerated decontamination of fine-grain subsurface sediments

    DOEpatents

    Kansa, E.J.; Wijesinghe, A.M.; Viani, B.E.

    1997-01-14

    The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculants and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude. 8 figs.

  16. Nontoxic chemical process for in situ permeability enhancement and accelerated decontamination of fine-grain subsurface sediments

    DOEpatents

    Kansa, Edward J.; Wijesinghe, Ananda M.; Viani, Brian E.

    1997-01-01

    The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculents and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude.

  17. Final report - Reduction of mercury in saturated subsurface sediments and its potential to mobilize mercury in its elemental form

    SciTech Connect

    Bakray, Tamar

    2013-06-13

    The goal of our project was to investigate Hg(II) reduction in the deep subsurface. We focused on microbial and abiotic pathways of reduction and explored how it affected the toxicity and mobility of Hg in this unique environment. The project’s tasks included: 1. Examining the role of mer activities in the reduction of Hg(II) in denitrifying enrichment cultures; 2. Investigating the biotic/abiotic reduction of Hg(II) under iron reducing conditions; 3. Examining Hg(II) redox transformations under anaerobic conditions in subsurface sediments from DOE sites.

  18. Phylogenetic and functional diversity of microbial communities associated with subsurface sediments of the Sonora Margin, Guaymas Basin.

    PubMed

    Vigneron, Adrien; Cruaud, Perrine; Roussel, Erwan G; Pignet, Patricia; Caprais, Jean-Claude; Callac, Nolwenn; Ciobanu, Maria-Cristina; Godfroy, Anne; Cragg, Barry A; Parkes, John R; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Toffin, Laurent

    2014-01-01

    Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments. PMID:25099369

  19. The role of nanopores on U(VI) sorption and redox behavior in U(VI)-contaminated subsurface sediments

    SciTech Connect

    Xu, Huifang; Roden, Eric E.; Kemner, Kenneth M.; Jung, Hun-Bok; Konishi, Hiromi; Boyanov, Maxim; Sun, Yubing; Mishra, Bhoopesh

    2013-10-16

    Most reactive surfaces in clay-dominated sediments are present within nanopores (pores of nm dimension). The behavior of geological fluids and minerals in nanopores is significantly different from those in normal non-nanoporous environments. The effect of nanopore surfaces on U(VI) sorption/desorption and reduction is likely to be significant in clay-rich subsurface environments. Our research results from both model nanopore system and natural sediments from both model system (synthetic nanopore alumina) and sediments from the ORNL Field Research Center prove that U(VI) sorption on nanopore surfaces can be greatly enhanced by nanopore confinement environments. The results from the project provide advanced mechanistic, quantitative information on the physiochemical controls on uranium sorption and redox behavior in subsurface sediments. The influence of nanopore surfaces on coupled uranium sorption/desorption and reduction processes is significant in virtually all subsurface environments, because most reactive surfaces are in fact nanopore surfaces. The results will enhance transfer of our laboratory-based research to a major field research initiative where reductive uranium immobilization is being investigated. Our results will also provide the basic science for developing in-situ colloidal barrier of nanoporous alumina in support of environmental remediation and long term stewardship of DOE sites.

  20. Phylogenetic and Functional Diversity of Microbial Communities Associated with Subsurface Sediments of the Sonora Margin, Guaymas Basin

    PubMed Central

    Vigneron, Adrien; Cruaud, Perrine; Roussel, Erwan G.; Pignet, Patricia; Caprais, Jean-Claude; Callac, Nolwenn; Ciobanu, Maria-Cristina; Godfroy, Anne; Cragg, Barry A.; Parkes, John R.; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Toffin, Laurent

    2014-01-01

    Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments. PMID:25099369

  1. Microbial Communities and Organic Matter Composition in Surface and Subsurface Sediments of the Helgoland Mud Area, North Sea

    PubMed Central

    Oni, Oluwatobi E.; Schmidt, Frauke; Miyatake, Tetsuro; Kasten, Sabine; Witt, Matthias; Hinrichs, Kai-Uwe; Friedrich, Michael W.

    2015-01-01

    The role of microorganisms in the cycling of sedimentary organic carbon is a crucial one. To better understand relationships between molecular composition of a potentially bioavailable fraction of organic matter and microbial populations, bacterial and archaeal communities were characterized using pyrosequencing-based 16S rRNA gene analysis in surface (top 30 cm) and subsurface/deeper sediments (30–530 cm) of the Helgoland mud area, North Sea. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) was used to characterize a potentially bioavailable organic matter fraction (hot-water extractable organic matter, WE-OM). Algal polymer-associated microbial populations such as members of the Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia were dominant in surface sediments while members of the Chloroflexi (Dehalococcoidales and candidate order GIF9) and Miscellaneous Crenarchaeota Groups (MCG), both of which are linked to degradation of more recalcitrant, aromatic compounds and detrital proteins, were dominant in subsurface sediments. Microbial populations dominant in subsurface sediments (Chloroflexi, members of MCG, and Thermoplasmata) showed strong correlations to total organic carbon (TOC) content. Changes of WE-OM with sediment depth reveal molecular transformations from oxygen-rich [high oxygen to carbon (O/C), low hydrogen to carbon (H/C) ratios] aromatic compounds and highly unsaturated compounds toward compounds with lower O/C and higher H/C ratios. The observed molecular changes were most pronounced in organic compounds containing only CHO atoms. Our data thus, highlights classes of sedimentary organic compounds that may serve as microbial energy sources in methanic marine subsurface environments. PMID:26635758

  2. Fossilized intact polar lipids of photosynthetic organisms in ancient subsurface sediments

    NASA Astrophysics Data System (ADS)

    Bauersachs, T.; Schouten, S.; Hopmans, E. C.; Sinninghe Damsté, J. S.

    2009-12-01

    In recent years, the idea of a rich microbial biosphere in the marine sea floor has been widely accepted. This so-called “deep biosphere” is estimated to contain ca. 50 % of Earth’s total prokaryotic biomass with the overall order of magnitude of microbial cells in the sea floor being the same as the biomass of all surface plant life (Whitman et al. 1998). Evidence for the existence of a deep biosphere comes, among others, from the analysis of intact polar lipids (IPLs). This approach presumes that IPLs almost instantaneously lose their polar head group after cell death and thus do not preserve on geological timescales. Consequently, IPLs in the subsurface should derive from in situ production and hence indicate the presence of living prokaryotic cells. For example, in various oceanic subsurface sediments archaeal IPLs have been found, suggesting that Archaea constitute a major fraction of the deep biosphere biomass (Lipp et al. 2008). In this study, we found IPLs of heterocystous cyanobacteria in a number of ancient and deeply buried sediments. Heterocystous cyanobacteria are strictly photoautotrophic organisms that are a common constituent of the phytoplankton community in many freshwater and brackish environments but are also encountered in the marine realm as endosymbionts of diatom species. Under nitrogen-depleted conditions, these organisms carry out nitrogen fixation in specialized cells, known as heterocysts. These cells contain a suite of heterocyst glycolipids (HGs) that have not been identified in any other organism and are thus unique biological markers for nitrogen-fixing heterocystous cyanobacteria. Using high performance liquid chromatography coupled to electrospray ionisation tandem mass spectrometry (HPLC/ESI-MS/MS), we detected HGs in Pleistocene and Pliocene Mediterranean sapropels buried up to 60 m below the seafloor. In addition, these HGs were also found in lacustrine deposits of the Oligocene Lake Enspel (35 Ma), the Eocene Lake Messel

  3. Distribution of microbial biomass and potential for anaerobic respiration in Hanford Site 300 Area subsurface sediment.

    PubMed

    Lin, Xueju; Kennedy, David; Peacock, Aaron; McKinley, James; Resch, Charles T; Fredrickson, James; Konopka, Allan

    2012-02-01

    Subsurface sediments were recovered from a 52-m-deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9 to 17.4 m), the oxic fine-grained upper Ringold formation (17.7 to 18.1 m), and the reduced Ringold formation (18.3 to 52 m). Microbial biomass (measured as phospholipid fatty acids) ranged from 7 to 974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene that encodes nitrous oxide reductase (measured by quantitative real-time PCR) had an abundance of 5 to 17 relative to that of total 16S rRNA genes below 18.3 m and <5 above 18.1 m. Most nosZ sequences were affiliated with Ochrobactrum anthropi (97 sequence similarity) or had a nearest neighbor of Achromobacter xylosoxidans (90 similarity). Passive multilevel sampling of groundwater geochemistry demonstrated a redox gradient in the 1.5-m region between the Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum spp. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling. PMID:22138990

  4. Distribution of Microbial Biomass and Potential for Anaerobic Respiration in Hanford Site 300 Area Subsurface Sediment

    PubMed Central

    Lin, Xueju; Kennedy, David; Peacock, Aaron; McKinley, James; Resch, Charles T.; Fredrickson, James

    2012-01-01

    Subsurface sediments were recovered from a 52-m-deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9 to 17.4 m), the oxic fine-grained upper Ringold formation (17.7 to 18.1 m), and the reduced Ringold formation (18.3 to 52 m). Microbial biomass (measured as phospholipid fatty acids) ranged from 7 to 974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene that encodes nitrous oxide reductase (measured by quantitative real-time PCR) had an abundance of 5 to 17 relative to that of total 16S rRNA genes below 18.3 m and <5 above 18.1 m. Most nosZ sequences were affiliated with Ochrobactrum anthropi (97 sequence similarity) or had a nearest neighbor of Achromobacter xylosoxidans (90 similarity). Passive multilevel sampling of groundwater geochemistry demonstrated a redox gradient in the 1.5-m region between the Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum spp. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling. PMID:22138990

  5. Intra-grain Pore-Scale Reactive Diffusion of Uranium and Upscaling in Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Liu, C.; Shang, J.; Kerisit, S.; Wang, Z.; Zachara, J. M.

    2010-12-01

    Uranium contamination is a major environmental concern in subsurface environments at various radionuclide materials processing and waste discharging sites. Recent studies at the US DOE Hanford site have found that uranium is primarily associated with intra-grain porous media as surface-complexed and precipitated uranyl [U(VI)] phases. Intra-grain reactive diffusion strongly affects U(VI) reactive transport in sediments at both laboratory and field scales. In this presentation, we will describe our experimental and modeling studies to characterize and upscale U(VI) reactive diffusion in the intra-grain pore regions. Spectroscopic and microscopic characterizations were performed to define U(VI) speciation/distribution and intra-grain porous medium properties (pore-size, volume, and connectivity); stirred-flow cell experiments were performed to investigate the macroscopic manifestation of the intra-grain U(VI) reactive diffusion; and pore-scale simulations in the intra-grain regions were used to provide insights into the spatiotemporal variability of U(VI) reactive diffusion. Molecular dynamics simulations were used to calculate the uranyl species diffusion coefficients and to provide insights into the pore-size restriction on species diffusion. Two alternative macroscopic kinetic models were developed to evaluate the upscaling of intra-grain reactive diffusion and to illustrate the challenges in upscaling reactive diffusion processes.

  6. Studies on arsenic transforming groundwater bacteria and their role in arsenic release from subsurface sediment.

    PubMed

    Sarkar, Angana; Kazy, Sufia K; Sar, Pinaki

    2014-01-01

    Ten different Gram-negative arsenic (As)-resistant and As-transforming bacteria isolated from As-rich groundwater of West Bengal were characterized to assess their role in As mobilization. 16S rRNA gene analysis confirmed the affiliation of these bacteria to genera Achromobacter, Brevundimonas, Rhizobium, Ochrobactrum, and Pseudoxanthomonas. Along with superior As-resistance and As-transformation abilities, the isolates showed broad metabolic capacity in terms of utilizing a variety of electron donors and acceptors (including As) under aerobic and anaerobic conditions, respectively. Arsenic transformation studies performed under various conditions indicated highly efficient As(3+) oxidation or As(5+) reduction kinetics. Genes encoding As(3+) oxidase (aioA), cytosolic As(5+) reductase (arsC), and As(3+) efflux pump (arsB and acr3) were detected within the test isolates. Sequence analyses suggested that As homeostasis genes (particularly arsC, arsB, and acr3) were acquired by most of the bacteria through horizontal gene transfer. A strong correlation between As resistance phenotype and the presence of As(3+) transporter genes was observed. Microcosm study showed that bacterial strain having cytosolic As(5+) reductase property could play important role in mobilizing As (as As(3+)) from subsurface sediment. PMID:24764001

  7. Biogeochemical dynamics in 20 m deep coastal sediments: The transition between the shallow subsurface and the marine deep biosphere

    NASA Astrophysics Data System (ADS)

    Beck, Melanie; Riedel, Thomas; Graue, Jutta; Brumsack, Hans-Jürgen; Engelen, Bert

    2010-05-01

    At present a large tidal flat area extends along the coastline of the southern North Sea. On longer geological time scales this area has, however, transformed from a terrestrial- to a marine-dominated landscape owing to changes in sea level. Biogeochemistry and microbial abundance have been intensively studied in the present tidal-flat sediments, down to about 5 m depth. However, very little is known about biogeochemical and microbial processes in deeper sediment layers, which were deposited before the establishment of today's tidal flat area. To study whether the geological history of sediment accumulation and thus the paleo-environment has an impact on pore water biogeochemistry and microbial abundance, Quaternary coastal deposits were investigated down to 20 m depth. In the tidal flat area of Spiekeroog Island (NW Germany) two geological settings were selected which are located close to each other but differ in sediment age and paleo-environmental conditions: A paleo-channel filled with mainly Holocene sediments and a sedimentary succession with the oldest sediments deposited during the Saalian glaciation ca. 130,000 years ago. The interdisciplinary analysis clearly shows that microorganisms are more abundant in the Holocene sediments. Here, almost all Archaea appear to be methanogenic as indicated by the presence of the mcrA-gene. About 12% of the Bacteria harbor the key gene for sulfate reduction. In contrast, only 1% methanogens and 0.5% sulfate-reducing bacteria were found in the older sediments. Furthermore, this study supports the concept that certain biogeochemical and microbiological features show astonishing similarities between the upper 5 meters of tidal-flat sediments and the upper hundred meters of deep-sea sediments. In the investigated 20 m-long sediment cores, the microbiological and geochemical response to sedimentary settings is transitional between the shallow subsurface of tidal-flat sediments and the marine deep biosphere.

  8. Archaea in Organic-Lean and Organic-Rich Marine Subsurface Sediments: An Environmental Gradient Reflected in Distinct Phylogenetic Lineages

    PubMed Central

    Durbin, Alan M.; Teske, Andreas

    2012-01-01

    Examining the patterns of archaeal diversity in little-explored organic-lean marine subsurface sediments presents an opportunity to study the association of phylogenetic affiliation and habitat preference in uncultured marine Archaea. Here we have compiled and re-analyzed published archaeal 16S rRNA clone library datasets across a spectrum of sediment trophic states characterized by a wide range of terminal electron-accepting processes. Our results show that organic-lean marine sediments in deep marine basins and oligotrophic open ocean locations are inhabited by distinct lineages of archaea that are not found in the more frequently studied, organic-rich continental margin sediments. We hypothesize that different combinations of electron donor and acceptor concentrations along the organic-rich/organic-lean spectrum result in distinct archaeal communities, and propose an integrated classification of habitat characteristics and archaeal community structure. PMID:22666218

  9. Biogeochemical Coupling of Fe and Tc Speciation in Subsurface Sediments: Implications to Long-Term Tc Immobilization

    SciTech Connect

    Jim K. Fredrickson; C. I. Steefel; R. K. Kukkadapu; S. M. Heald

    2006-06-01

    The project has been focused on biochemical processes in subsurface sediments involving Fe that control the valence state, solubility, and effective mobility of 99Tc. Our goal has been to understand the Tc biogeochemistry as it may occur in suboxic and biostimulated subsurface environments. Two objectives have been pursued: (1) To determine the relative reaction rates of 99Tc(VII)O2(aq) with metal reducing bacteria and biogenic Fe(II); and to characterize the identity, structure, and molecular speciation of Tc(IV) products formed through reaction with both biotic and abiotic reductants. (2) To quantify the biogeochemical factors controlling the reaction rate of O2 with Tc(IV)O2?nH2O in sediment resulting from the direct enzymatic reduction of Tc(VII) by DIRB and/or the reaction of Tc(VII) with the various types of biogenic Fe(II) produced by DIRB.

  10. Analysis of a PAH-degrading bacterial population in subsurface sediments on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Shao, Zongze; Cui, Zhisong; Dong, Chunming; Lai, Qiliang; Chen, Liang

    2010-05-01

    Little is known about the types and concentrations of polycyclic aromatic hydrocarbons (PAHs) existing in the deep-sea subsurface environment, which is believed to be cold, oligothrophic and of high static pressure. PAHs in the upper layers of the water column are unavoidably subjected to degradation while they are deposited to the sea floor and become embedded in the deep-sea sediment. In this report, a high concentration of PAHs was discovered in the sediment 2.7 m beneath the bottom surface at a water depth of 3962 m on the Mid-Atlantic Ridge (MAR). The total concentration of PAHs was 445 ng (g dry wt sediment) -1. Among the seven detected PAHs, the concentrations of phenanthrene (222 ng g -1) and fluorene (79 ng g -1) were relatively high. In addition, PAH-degrading bacteria were found within the sediments. As in a previously detected site on the MAR, in the PAH-enriched region of this site, a bacterium of the genus Cycloclasticus was found to be the predominant isolate detected by PCR-DGGE analysis. In addition, bacteria of the Halomonas, Marinobacter, Alcanivorax, Thalassospira and Maricaulis genera, were also included in the PAH-degrading community. In summary, a high concentration of PAHs was detected in the subsurface of the deep-sea sediment, and once again, the Cycloclasticus bacterium was confirmed to be a ubiquitous marine PAH degrader even in the subsurface marine environment. Considering the abundance of PAHs therein, biodegradation is thus thought to be inactive, probably because of the low temperature, limited oxygen and/or limited nutrients.

  11. Impact of paleoclimate on the distribution of microbial communities in the subsurface sediment of the Dead Sea.

    PubMed

    Thomas, C; Ionescu, D; Ariztegui, D

    2015-11-01

    A long sedimentary core has been recently retrieved from the Dead Sea Basin (DSB) within the framework of the ICDP-sponsored Dead Sea Deep Drilling Project. Contrasting climatic intervals were evident by distinctive lithological facies such as laminated aragonitic muds and evaporites. A geomicrobiological investigation was conducted in representative sediments of this core. To identify the microbial assemblages present in the sediments and their evolution with changing depositional environments through time, the diversity of the 16S rRNA gene was analyzed in gypsum, aragonitic laminae, and halite samples. The subsurface microbial community was largely dominated by the Euryarchaeota phylum (Archaea). Within the latter, Halobacteriaceae members were ubiquitous, probably favored by their 'high salt-in' osmotic adaptation which also makes them one of the rare inhabitants of the modern Dead Sea. Bacterial community members were scarce, emphasizing that the 'low salt-in' strategy is less suitable in this environment. Substantial differences in assemblages are observed between aragonitic sediments and gypsum-halite ones, independently of the depth and salinity. The aragonite sample, deposited during humid periods when the lake was stratified, consists mostly of the archaeal MSBL1 and bacterial KB1 Candidate Divisions. This consortium probably relies on compatible solutes supplied from the lake by halotolerant species present in these more favorable periods. In contrast, members of the Halobacteriaceae were the sole habitants of the gypsum-halite sediments which result from a holomictic lake. Although the biomass is low, these variations in the observed subsurface microbial populations appear to be controlled by biological conditions in the water column at the time of sedimentation, and subsequently by the presence or absence of stratification and dilution in the lake. As the latter are controlled by climatic changes, our data suggest a relationship between local

  12. Isolation and Characterization of Gram-Positive Piezophilic Bacteria from Deep Marine Subsurface Sediment

    NASA Astrophysics Data System (ADS)

    Runko, G. M.; Fang, J.; Kato, C.

    2014-12-01

    The marine deep biosphere remains as the least studied of all of Earth's habitats and is inadequately understood, but is extremely important to understand the impacts that microbes have on global biogeochemical cycles. Sediment samples were obtained during IODP Expedition 337 in the western Pacific Ocean, from 1,498 meters below the seafloor (mbsf; samples 6R3), 1,951-1,999 mbsf (19R1), and 2,406 mbsf (29R7). These samples were initially mixed with marine broth and cultivated under anaerobic conditions at pressure of 35 MPa (megapascal) and temperatures of 35° C, 45° C, and 55° C for 3 months on board the Chikyu. Single colonies were isolated via plating on marine broth. Then, six strains of bacteria were identified, 6R3-1, 6R3-15, 19R1-5, 29R7-12B, 29R7-12M, and 29R7-12S. The six strains were then examined for optimal growth temperature and pressure. These organisms are Gram-positive, spore-forming, facultative anaerobic piezophilic bacteria. Major fatty acids are anteiso-15:0, anteiso-17:0 and iso-15:0. Phylogenetic analysis of 16S rRNA gene sequences revealed that the isolates are closely related to Virgibacillus pantothenticus, Robinsoniella peoriensis, and Bacillus subtilis. Because of their abundance in the deep marine subsurface, these microorganisms likely play an important role in sustaining the deep microbial ecosystem and influencing biogeochemical cycles in the deep biosphere.

  13. Boosting subsurface life: is subseafloor sediment a natural catalyst for radiolytic hydrogen production?

    NASA Astrophysics Data System (ADS)

    Sauvage, J.; Graham, D.; Spivack, A. J.; Dunlea, A. G.; Murray, R. W.; D'Hondt, S.

    2014-12-01

    Naturally occurring production of molecular hydrogen (H2) by water radiolysis may be a fundamentally important source of electron donors (energy) for life in subsurface environments where organic matter is scarce. Previous studies with very high gamma radiation rates and wet mineral phases have reported high H2 production relative to production from water radiolysis in the absence of solid phases. Numerical calculations by other previous studies have predicted enhanced H2 production from seawater radiolysis relative to pure water radiolysis, due to the interaction of anions with hydroxyl radicals. Given these reports, the potential catalytic influences of solid and dissolved chemical phases on radiolytic H2 production need to be carefully quantified in order to fully evaluate the role of radiolytic H2 as a microbial energy source. For such quantification, we undertook gamma-irradiation experiments with pure water, deep ocean water and mixtures (slurries, φ = 0.85) of seawater with: North Pacific abyssal clay and calcareous oozes, coastal sediment, zirconium dioxide, and zeolite. We carried out our experiments at the Rhode Island Nuclear Science Center using a 37Cesium source at low dose rates (up to 0.1 Gy/hr). Our results to date include the following. First, the per-dose radiolytic H2 yield of pure water at low dose rates is directly comparable to the per-dose yield at much higher dose rates (ca. 1 kGy/hr); this result indicates that H2 production rate is linearly related to radiation dose rate across four orders of magnitude. Second, there is no statistically significant difference (90% confidence limit) between the radiolytic H2 yield from pure water and that from seawater; this result rules out influence of abundant seawater salts on H2 yield from water radiolysis. Third, H2 production from a mixture of abyssal clay and seawater is 25% higher than the yield from pure water. This enhanced yield is consistent with catalysis of radiolytic H2 production by

  14. Characterization of the intragranular water regime within subsurface sediments: Pore volume, surface area, and mass transfer limitations

    USGS Publications Warehouse

    Hay, M.B.; Stoliker, D.L.; Davis, J.A.; Zachara, J.M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ???1% of the solid volume and intragranular surface areas of ???20%-35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity. Copyright 2011 by the American Geophysical Union.

  15. Characterization of the intragranular water regime within subsurface sediments: pore volume, surface area, and mass transfer limitations

    USGS Publications Warehouse

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ~1% of the solid volume and intragranular surface areas of ~20%–35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  16. Stetson Pit, Dare County, North Carolina: An integrated chronologic, faunal, and floral record of subsurface coastal quaternary sediments

    USGS Publications Warehouse

    York, L.L.; Wehmiller, J. F.; Cronin, T. M.; Ager, T.A.

    1989-01-01

    Continuous split spoon samples from a drill hole penetrating 34 m of coastal plain sediments at Stetson Pit in Dare County, North Carolina were taken for lithologic, aminostratigraphic, faunal (ostracodes) and floral (pollen) analyses. Three distinct aminozones are recognized in the subsurface section based upon D-alloisoleucine/L-isoleucine (A/I) values in each of the molluscan species Mulinia lateralis and Mercenaria sp. Ostracode zonations in the subsurface section are based on percentages of 80 thermophilic and cryophilic species (those living today south and north of Cape Hatteras) and the percentages of brackish water species. Five assemblage zones are delineated. Six pollen assemblage zones are also delineated within the subsurface section based upon study of 48 sediment samples. The subsurface record at Stetson Pit is interpreted to represent portions of four interglacials based upon the combined faunal, floral and aminostratigraphic data. The two younger aminozones, with amino acid age estimates of 100,000??20,000 yr (-7.2 to -11.2 m MSL) and 300,000-500,000 yr (-13 to -14.2 m MSL), represent portions of middle/late Pleistocene interglacials. The lower aminozone (-17.4 to -33 m MSL) spans an interval that probably includes at least two interglacials (based upon faunal and floral records) and has an age estimated to be between 800,000 and 1,300,000 yr. Boundaries delineated by faunal, floral, and amino acid methods do not always coincide, due to sampling constraints and phase lags between the different records. One major unconformity (at -17.4 m MSL) in the Stetson Pit section is easily recognized from lithologic characteristics and may represent a hiatus of as much as 800,000 yr. Lithologic changes associated with all other zone boundaries are subtle and would probably not be considered significant in the absence of faunal, floral, or amino acid data. ?? 1989.

  17. Vertical and Horizontal Variations in the Physiological Diversity of the Aerobic Chemoheterotrophic Bacterial Microflora in Deep Southeast Coastal Plain Subsurface Sediments

    PubMed Central

    Balkwill, D. L.; Fredrickson, J. K.; Thomas, J. M.

    1989-01-01

    Aerobic chemoheterotrophic bacteria were isolated from surface soils and coastal plain subsurface (including deep aquifer) sediments (depths to 265 m) at a study site near Aiken, S.C., by plating on concentrated and dilute media. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. These isolates were quite diverse; 626 physiologically distinct types (i.e., types with a unique pattern of responses to the 21 tests) were detected among the 1,112 isolates obtained. Physiologically distinct types were isolated on concentrated and dilute media (only 11% overlap between the groups); isolates from surface soils and subsurface sediments were also quite different (only 3% overlap). The surface soil isolates more readily utilized all but 1 of 12 carbon sources offered, and a significantly larger proportion of them hydrolyzed esculin and gelatin. Only 4% of the subsurface isolates fermented glucose, even though 82% of them could use it aerobically. l-Malate and d-gluconate were utilized by at least 75% of the subsurface isolates, and seven other carbon sources were used by at least 40% of them. Subsurface isolates from different geological formations (depths) and, to a lesser extent, from the same geological formation at different boreholes differed distinctly in their group responses to certain physiological tests. Moreover, sediments from different depths and boreholes contained physiologically distinct types of bacteria. Thus, considerable bacterial diversity was observed in coastal plain subsurface sediments, even within defined geological formations. PMID:16347902

  18. Isotopic identification of the source of methane in subsurface sediments of an area surrounded by waste disposal facilities

    USGS Publications Warehouse

    Hackley, Keith C.; Liu, Chao-Li; Trainor, D.

    1999-01-01

    The major source of methane (CH4) in subsurface sediments on the property of a former hazardous waste treatment facility was determined using isotopic analyses measured on CH4 and associated groundwater. The site, located on an earthen pier built into a shallow wetland lake, has had a history of waste disposal practices and is surrounded by landfills and other waste management facilities. Concentrations of CH4 up to 70% were found in the headspace gases of several piezometers screened at 3 different depths (ranging from 8 to 17 m) in lacustrine and glacial till deposits. Possible sources of the CH4 included a nearby landfill, organic wastes from previous impoundments and microbial gas derived from natural organic matter in the sediments. Isotopic analyses included ??13C, ??D, 14C, and 3H on select CH4 samples and ??D and ??18O on groundwater samples. Methane from the deepest glacial till and intermediate lacustrine deposits had ??13C values from -79 to -82???, typical of natural 'drift gas' generated by microbial CO2-reduction. The CH4 from the shallow lacustrine deposits had ??13C values from -63 to -76???, interpreted as a mixture between CH4 generated by microbial fermentation and the CO2-reduction processes within the subsurface sediments. The ??D values of all the CH4 samples were quite negative ranging from -272 to -299???. Groundwater sampled from the deeper zones also showed quite negative ??D values that explained the light ??D observed for the CH4. Radiocarbon analyses of the CH4 showed decreasing 14C activity with depth, from a high of 58 pMC in the shallow sediments to 2 pMC in the deeper glacial till. The isotopic data indicated the majority of CH4 detected in the fill deposits of this site was microbial CH4 generated from naturally buried organic matter within the subsurface sediments. However, the isotopic data of CH4 from the shallow piezometers was more variable and the possibility of some mixing with oxidized landfill CH4 could not be completely

  19. A cation exchange model to describe Cs+ sorption at high ionic strength in subsurface sediments at Hanford site, USA.

    PubMed

    Liu, Chongxuan; Zachara, John M; Smith, Steve C

    2004-02-01

    A theoretical and experimental study of cation exchange in high ionic strength electrolytes was performed using pristine subsurface sediments from the U.S. Department of Energy Hanford site. These sediments are representative of the site contaminated sediments impacted by release of high level waste (HLW) solutions containing 137Cs+ in NaNO3 brine. The binary exchange behavior of Cs+-Na+, Cs+-K+, and Na+-K+ was measured over a range in electrolyte concentration. Vanselow selectivity coefficients (Kv) that were calculated from the experimental data using Pitzer model ion activity corrections for aqueous species showed monotonic increases with increasing electrolyte concentrations. The influence of electrolyte concentration was greater on the exchange of Na+-Cs+ than K+-Cs+, an observation consistent with the differences in ion hydration energy of the exchanging cations. A previously developed two-site ion exchange model [Geochimica et Cosmochimica Acta 66 (2002) 193] was modified to include solvent (water) activity changes in the exchanger phase through application of the Gibbs-Duhem equation. This water activity-corrected model well described the ionic strength effect on binary Cs+ exchange, and was extended to the ternary exchange system of Cs+-Na+-K+ on the pristine sediment. The model was also used to predict 137Cs+ distribution between sediment and aqueous phase (Kd) beneath a leaked HLW tank in Hanfordd's S-SX tank using the analytical aqueous data from the field and the binary ion exchange coefficients for the pristine sediment. The Kd predictions closely followed the trend in the field data and were improved by consideration of water activity effects that were considerable in certain regions of the vadose zone plume. PMID:14734247

  20. A cation exchange model to describe Cs + sorption at high ionic strength in subsurface sediments at Hanford site, USA

    NASA Astrophysics Data System (ADS)

    Liu, Chongxuan; Zachara, John M.; Smith, Steve C.

    2004-02-01

    A theoretical and experimental study of cation exchange in high ionic strength electrolytes was performed using pristine subsurface sediments from the U.S. Department of Energy Hanford site. These sediments are representative of the site contaminated sediments impacted by release of high level waste (HLW) solutions containing 137Cs + in NaNO 3 brine. The binary exchange behavior of Cs +-Na +, Cs +-K +, and Na +-K + was measured over a range in electrolyte concentration. Vanselow selectivity coefficients ( Kv) that were calculated from the experimental data using Pitzer model ion activity corrections for aqueous species showed monotonic increases with increasing electrolyte concentrations. The influence of electrolyte concentration was greater on the exchange of Na +-Cs + than K +-Cs +, an observation consistent with the differences in ion hydration energy of the exchanging cations. A previously developed two-site ion exchange model [Geochimica et Cosmochimica Acta 66 (2002) 193] was modified to include solvent (water) activity changes in the exchanger phase through application of the Gibbs-Duhem equation. This water activity-corrected model well described the ionic strength effect on binary Cs + exchange, and was extended to the ternary exchange system of Cs +-Na +-K + on the pristine sediment. The model was also used to predict 137Cs + distribution between sediment and aqueous phase ( Kd) beneath a leaked HLW tank in Hanfordd's S-SX tank using the analytical aqueous data from the field and the binary ion exchange coefficients for the pristine sediment. The Kd predictions closely followed the trend in the field data and were improved by consideration of water activity effects that were considerable in certain regions of the vadose zone plume.

  1. Characterization of the intragranular water regime within subsurface sediments: Pore volume, surface area, and mass transfer limitations

    SciTech Connect

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-10-29

    Although 'intragranular' pore space within grain aggregates, grain fractures, and mineral 24 surface coatings may contain a relatively small fraction of the total porosity within a porous 25 medium, it often contains a significant fraction of the reactive surface area, and can thus strongly 26 affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment 27 procedure using tritium and bromide as high-resolution diffusive tracers to characterize the 28 intragranular pore space. The method was tested using uranium-contaminated sediments from 29 the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site 30 (Washington State, USA). Sediments were contacted with tracers in artificial groundwater, 31 followed by replacement of bulk solution with tracer-free groundwater and monitoring of tracer 32 release. From these data, intragranular pore volumes were calculated and mass transfer rates 33 were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange 34 on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment 35 that was vacuum dried after reaction. The complementary ('wet' and 'dry') techniques allowed 36 for the simultaneous determination of intragranular porosity and surface area using tritium. The 37 Hanford 300A samples exhibited intragranular pore volumes of {approx}1% of the solid volume and 38 intragranular surface areas of {approx}20-30% of the total surface area. Comparison with N2 gas 39 adsorption suggests that this pore space includes both 'micropores' (< 2 nm diameter) and 40 'mesopores' (> 2 nm). Intragranular porosity estimates obtained using bromide were 41 significantly smaller, likely due to anion exclusion of Br- from pores with negatively charged 42 surfaces.

  2. PROTOZOA IN SUBSURFACE SEDIMENTS FROM SITE CONTAMI- NATED WITH AVIATION GASOLINE OR JET FUEL

    EPA Science Inventory

    Numbers of protozoa in the subsurface of aviation gasoline and jet fuel spill areas at a Coast Guard base at Traverse City, Mich., were determined. Boreholes were drilled in an uncontaminated location, in contaminated but untreated parts of the fuel plumes, and in the aviation ga...

  3. PROTOZOA IN SUBSURFACE SEDIMENTS FROM SITES CONTAMINATED WITH AVIATION GASOLINE OR JET FUEL

    EPA Science Inventory

    Numbers of protozoa in the subsurface of aviation gasoline and jet fuel spill areas at a Coast Guard base at Traverse City, Mich., were determined. oreholes were drilled in an uncontaminated location, in contaminated but untreated parts of the fuel plumes, and in the aviation gas...

  4. Morphologic evidence of subsurface sediment mobilization and mud volcanism in Candor and Coprates Chasmata, Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Okubo, Chris H.

    2016-05-01

    Populations of distinctive knobs, rings and lobate structures are observed in the Candor and Coprates Chasmata regions of Mars. To interpret the formation mechanisms of these landforms, I investigate their morphologies, facies, superposition and crosscutting relationships using data from the High Resolution Imaging Science Experiment (HiRISE) and the High Resolution Stereo Camera (HRSC). The knobs and rings have quasi-circular to elliptical shapes in map view, with basal diameters between several hundred meters and three kilometers. The knobs rise ∼10 to 350 m above the surrounding terrain, while the rings are ∼10 to 70 m tall. In three dimensions the knobs have a rounded cone shape, and some knobs exhibit a summit depression, which in some examples contains a subordinate mound. The rings have rounded to sharp crests and in some instances contain subordinate rings and mounds. The lobate structures are commonly ∼1 to 2 km wide, ∼3 to 5 km long and rise up to 50 m above the surrounding terrain. The lobate structures partially or completely encircle some knobs, rings and irregularly shaped rock masses. The knobs, rings and lobate structures exhibit massive and stratified facies, with some structures exhibiting both, such as a massive central rock mass surrounded by outwardly dipping layers. I interpret these landforms as mud volcanoes, injectites and mud flows based on superposition and cross-cutting relationships as well as similarities between the morphologies and facies of these landforms with terrestrial products of mud volcanism. I infer the source of sediment for this mud volcanism to be the Hesperian eolian deposits that occur within these chasmata. Further, I suggest that groundwater upwelling during the Hesperian to possibly the Early Amazonian facilitated the mobilization of these sediments within the subsurface and thereby contributed to the ensuing mud volcanism. Based on these results, I propose that the Candor Chaos formed through subsurface

  5. Isolation and microbial reduction of Fe(III) phyllosilicates from subsurface sediments

    SciTech Connect

    Wu, Tao; Shelobolina, Evgenya S.; Xu, Huifang; Konishi, Hiromi; Kukkadapu, Ravi K.; Roden, Eric E.

    2012-10-12

    Fe(III)-bearing phyllosilicates can be important sources of Fe(III) for dissimilatory microbial iron reduction in clay-rich anoxic soils and sediments. The goal of this research was to isolate Fe(III) phyllosilicate phases, and if possible, Fe(III) oxide phases, from a weathered shale saprolite sediment in order to permit experimentation with each phase in isolation. Physical partitioning by density gradient centrifugation did not adequately separate phyllosilicate and Fe(III) oxide phases (primarily nanoparticulate goethite). Hence we examined the ability of chemical extraction methods to remove Fe(III) oxides without significantly altering the properties of the phyllosilicates. XRD analysis showed that extraction with oxalate alone or oxalate in the presence of added Fe(II) altered the structure of Fe-bearing phyllosilicates in the saprolite. In contrast, citrate-bicarbonate-dithionite (CBD) extraction at room temperature and 80C led to minimal alteration of phyllosilicate structures. Reoxidation of CDB-extracted sediment with H2O2 restored phyllosilicate structure (i.e. d-spacing) and redox speciation to conditions similar to that in the pristine sediment. The extent of microbial (Geobacter sulfurreducens) reduction of Fe(III) phyllosilicates isolated by CDB extraction (ca. 16 %) was comparable to what took place in pristine sediments as determined by Mossbauer spectroscopy (ca. 18 % reduction). These results suggest that materials isolated by CDB extraction and H2O2 reoxidation are appropriate targets for detailed studies of natural soil/sediment Fe(III) phyllosilicate reduction.

  6. Degradation of the herbicide dichlobenil and its metabolite BAM in soils and subsurface sediments

    NASA Astrophysics Data System (ADS)

    Clausen, Liselotte; Arildskov, Niels P.; Larsen, Flemming; Aamand, Jens; Albrechtsen, Hans-Jørgen

    2007-01-01

    The worldwide used herbicide dichlobenil (2,6-dichlorobenzonitrile) has resulted in widespread presence of its metabolite 2,6-dichlorobenzamide (BAM) in surface water and groundwater. To evaluate the potential for natural attenuation of this BAM pollution in groundwater, we studied the degradation of BAM and dichlobenil in 16 samples of clayey till, unconsolidated sand and limestone, including sediments from both oxidized and reduced conditions. The degradation of dichlobenil occurred primarily in the upper few meters below surface, although dichlobenil was strongly sorbed to these sediments. However, the degradation of dichlobenil to BAM could not be correlated to either sorption, water chemistry, composition of soils or sediments. Degradation of dichlobenil to BAM was limited (< 2% degraded) in the deeper unsaturated zones, and no degradation was observed in aquifer sediments. This illustrates, that dichlobenil transported to aquifers does not contribute to the BAM-contamination in aquifers. A small, but significant degradation of BAM was observed in the upper part of the unsaturated zones in sandy sediments, but no degradation was observed in the clayey till sediment or in the deeper unsaturated zones. The insignificant degradation of BAM in aquifer systems shows that BAM pollution detected in aquifers will appear for a long time; and consequently the potential for natural attenuation of BAM in aquifer systems is limited.

  7. A simulation study of infiltration into surficial sediments at the Subsurface Disposal Area, Idaho National Engineering Laboratory

    SciTech Connect

    Martian, P.; Magnuson, S.O.

    1994-04-01

    Soil moisture monitoring data in the surficial sediments at the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory were used to calibrate two numerical infiltration models. The calibration was performed with the ultimate goal of providing a reliable estimate of hydraulic properties and infiltration amounts to be used in other modeling efforts. Two neutron probe access tubes and a tensiometer nest were monitored from 1986 to 1990 and again during 1993. The field measurements of moisture content and matrix potential inside the SDA were used as calibration data for the two locations. The two locations showed vastly different behavior, which was well captured in the models. The average root mean square error between simulated and measured moisture contents over the simulation period was 0.03 and 0.06 for the two locations. The hydraulic parameters resulting from the calibration compared favorably with laboratory and field scale estimates. The simulation results also provided the opportunity to partially explain infiltration and redistribution processes occurring at the SDA. The underlying fractured basalt appears to behave similar to a capillary barrier. This behavior inhibits moisture movement into the underlying basalts until moisture contents in the overlying silts approach saturation. As a result, a large proportion of recharge occurring at the SDA may be due to spring snowmelt, when the surficial sediments become nearly saturated. The results also indicated that a unit gradient boundary condition (free drainage due to gravity) at the bottom of the silts is not appropriate because of the very low relative hydraulic conductivity of the basalts. Finally, the amount of water moving into the SDA subsurface from spring snowmelt appears larger than cumulative snowfall, indicating that snow drifting due to local topography as well as current snow management practices may have a substantial influence on local infiltration.

  8. ANNUAL REPORT. FIXATION MECHANISMS AND DESORPTION RATES OF SORBED CS IN HIGH-LEVEL WASTE CONTAMINATED SUBSURFACE SEDIMENTS: IMPLICATIONS TO FUTURE BEHAVIOR AND IN-GROUND STABILITY

    EPA Science Inventory

    Research is investigating mineralogic and geochemical factors controlling the desorption rate of 137Cs+ from subsurface sediments on the Hanford Site contaminated with different types of high-level waste. The project will develop kinetic data and models that describe the release ...

  9. The Effect of the Subsurface Soil Water Regime on Sediment Production and Movement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion and sediment transport in agricultural watersheds are highly complicated processes involving a large array of soil properties, surface conditions, and flow regimes. The preponderance of early research on upland areas in agricultural watersheds was motivated by concern for the loss of ag...

  10. Feasibility of In Situ Redox Manipulation of Subsurface Sediments for RDX Remediation at Pantex

    SciTech Connect

    Szecsody, James E.; Fruchter, Jonathan S.; Mckinley, Mark A.; Resch, Charles T.; Gilmore, Tyler J.

    2001-12-31

    This laboratory study was conducted to assess RDX (hexahydro-1,3,5-trinitro-1,3,5 triazine) abiotic degradation by chemically reduced sediments and other geochemical aspects of the application of this technology to remediation of RDX contamination in groundwater at the U.S. DOE Pantex facility...

  11. Spatial and temporal variations of microbial properties at different scales in shallow subsurface sediments

    SciTech Connect

    Zhang, Chuanlun; Pfiffner, S.M.; Phelps, T.J.

    1997-12-31

    Microbial abundance, activity, and community-level physiological profiles (CLPP) were examined at centimeter and meter scales in the subsurface environment at a site near Oyster, VA. At the centimeter scale, variations in aerobic culturable heterotrophs (ACH) and glucose mineralization rates (GMR) were highest in the water table zone, indicating that water availability has a major effect on variations in microbial abundance and activity. At the meter scale, ACH and microaerophiles decreased significantly with depth, whereas anaerobic GMR often increased with depth; this may indicate low redox potentials at depth caused by microbial consumption of oxygen. Data of CUP indicated that the microbial community (MC) in the soybean field exhibited greater capability to utilize multiple carbon sources than MC in the corn field. This difference may reflect nutrient availability associated with different crops (soybean vs corn). By using a regression model, significant spatial and temporal variations were observed for ACH, microaerophiles, anaerobic GMR, and CLPP. Results of this study indicated that water and nutrient availability as well as land use could have a dominant effect on spatial and temporal variations in microbial properties in shallow subsurface environments. 32 refs., 3 figs., 3 tabs.

  12. Controls on subsurface methane fluxes and shallow gas formation in Baltic Sea sediment (Aarhus Bay, Denmark)

    NASA Astrophysics Data System (ADS)

    Flury, Sabine; Røy, Hans; Dale, Andrew W.; Fossing, Henrik; Tóth, Zsuzsanna; Spiess, Volkhard; Jensen, Jørn Bo; Jørgensen, Bo Barker

    2016-09-01

    Shallow gas accumulates in coastal marine sediments when the burial rate of reactive organic matter beneath the sulfate zone is sufficiently high and the methanogenic zone is sufficiently deep. We investigated the controls on methane production and free methane gas accumulation along a 400 m seismo-acoustic transect across a sharp transition from gas-free into gas-bearing sediment in Aarhus Bay (Denmark). Twelve gravity cores were taken, in which the pore water was analyzed for inorganic solutes while rates of organic carbon mineralization were measured experimentally by 35SO42- radiotracer method. The thickness of organic-rich Holocene mud increased from 5 to 10 m along the transect concomitant with a shallowing of the depth of the sulfate-methane transition from >4 m to 2.5 m. In spite of drastic differences in the distribution of methane and sulfate in the sediment along the transect, there were only small differences in total mineralization, and methanogenesis was only equivalent to about 1% of sulfate reduction. Shallow gas appeared where the mud thickness exceeded 8-9 m. Rates of methanogenesis increased along the transect as did the upward diffusive flux of methane. Interestingly, the increase in the sedimentation rate and Holocene mud thickness had only a modest direct effect on methanogenesis rates in deep sediments. This increase in methane flux, however, triggered a shallowing of the sulfate-methane transition which resulted in a large increase in methanogenesis at the top of the methanogenic zone. Thus, our results demonstrate a positive feedback mechanism that causes a strong enhancement of methanogenesis and explains the apparently abrupt appearance of gas when a threshold thickness of organic-rich mud is exceeded.

  13. Oxidative dissolution potential of biogenic and abiogenic TcO 2 in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Fredrickson, James K.; Zachara, John M.; Plymale, Andrew E.; Heald, Steve M.; McKinley, James P.; Kennedy, David W.; Liu, Chongxuan; Nachimuthu, Ponnusamy

    2009-04-01

    Technetium-99 (Tc) is an important fission product contaminant associated with sites of nuclear fuels reprocessing and geologic nuclear waste disposal. Tc is highly mobile in its most oxidized state [Tc(VII)O4-] and less mobile in the reduced form [Tc(IV)O 2· nH 2O]. Here we investigate the potential for oxidation of Tc(IV) that was heterogeneously reduced by reaction with biogenic Fe(II) in two sediments differing in mineralogy and aggregation state; unconsolidated Pliocene-age fluvial sediment from the upper Ringold (RG) Formation at the Hanford Site and a clay-rich saprolite from the Field Research Center (FRC) background site on the Oak Ridge Site. Both sediments contained Fe(III) and Mn(III/IV) as redox active phases, but FRC also contained mass-dominant Fe-phyllosilicates of different types. Shewanella putrefaciens CN32 reduced Mn(III/IV) oxides and generated Fe(II) that was reactive with Tc(VII) in heat-killed, bioreduced sediment. After bioreduction and heat-killing, biogenic Fe(II) in the FRC exceeded that in RG by a factor of two. More rapid reduction rates were observed in the RG that had lower biogenic Fe(II), and less particle aggregation. EXAFS measurements indicated that the primary reduction product was a TcO 2-like phase in both sediments. The biogenic redox product Tc(IV) oxidized rapidly and completely in RG when contacted with air. Oxidation, in contrast, was slow and incomplete in the FRC, in spite of similar molecular scale speciation of Tc compared to RG. X-ray microprobe, electron microprobe, X-ray absorption spectroscopy, and micro X-ray diffraction were applied to the whole sediment and isolated Tc-containing particles. These analyses revealed that non-oxidizable Tc(IV) in the FRC existed as complexes with octahedral Fe(III) within intra-grain domains of 50-100 μm-sized, Fe-containing micas presumptively identified as celadonite. The markedly slower oxidation rates in FRC as compared to RG were attributed to mass

  14. Oxidative dissolution potential of biogenic and abiogenic TcO{sub 2} in subsurface sediments.

    SciTech Connect

    Fredrickson, J. K.; Zachara, J. M.; Plymale, A. E.; Heald, S. M.; McKinley, J. P.; Kennedy, D. W.; Liu, C.; Nachimuthu, P.

    2009-04-01

    Technetium-99 (Tc) is an important fission product contaminant associated with sites of nuclear fuels reprocessing and geologic nuclear waste disposal. Tc is highly mobile in its most oxidized state [Tc(VII)O{sub 4}{sup -}] and less mobile in the reduced form [Tc(IV)O{sub 2} {center_dot} nH{sub 2}O]. Here we investigate the potential for oxidation of Tc(IV) that was heterogeneously reduced by reaction with biogenic Fe(II) in two sediments differing in mineralogy and aggregation state; unconsolidated Pliocene-age fluvial sediment from the upper Ringold (RG) Formation at the Hanford Site and a clay-rich saprolite from the Field Research Center (FRC) background site on the Oak Ridge Site. Both sediments contained Fe(III) and Mn(III/IV) as redox active phases, but FRC also contained mass-dominant Fe-phyllosilicates of different types. Shewanella putrefaciens CN32 reduced Mn(III/IV) oxides and generated Fe(II) that was reactive with Tc(VII) in heat-killed, bioreduced sediment. After bioreduction and heat-killing, biogenic Fe(II) in the FRC exceeded that in RG by a factor of two. More rapid reduction rates were observed in the RG that had lower biogenic Fe(II), and less particle aggregation. EXAFS measurements indicated that the primary reduction product was a TcO{sub 2}-like phase in both sediments. The biogenic redox product Tc(IV) oxidized rapidly and completely in RG when contacted with air. Oxidation, in contrast, was slow and incomplete in the FRC, in spite of similar molecular scale speciation of Tc compared to RG. X-ray microprobe, electron microprobe, X-ray absorption spectroscopy, and micro X-ray diffraction were applied to the whole sediment and isolated Tc-containing particles. These analyses revealed that non-oxidizable Tc(IV) in the FRC existed as complexes with octahedral Fe(III) within intra-grain domains of 50-100 {micro}m-sized, Fe-containing micas presumptively identified as celadonite. The markedly slower oxidation rates in FRC as compared to RG were

  15. Origin and Migration of Methane in Gas Hydrate-bearing Sediments Relevant to Their Subsurface Occurrences in The Nankai Trough

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Waseda, A.

    2003-04-01

    Although gas hydrates are known to occur in the Arctic in association with permafrost regimes and in the deep offshore at the continental margins, the geologic and geophysical issues controlling their occurrences and distributions are still remained. The Nankai Trough runs along the Japanese Island, where forearc basins and accretionary prisms developed extensively and BSRs (bottom simulating reflector) have been recognized widely. High resolution seismic surveys in 1997, 2001 and 2002 and drilling the Nankai Trough wells conducted by the METI (Ministry of Economy, Trade and Industry) have revealed the subsurface gas hydrate widely distributed at the depth interval from 200 to 270 mbsf. All the core samples containing gas hydrates were subjected to X-ray CT imagery so as to observe sedimentary textures and occurrences inside of cores without disturbances before provided to various analyses. Subsurface occurrences of natural gas hydrate can be classified into six types; 1) pore-space hydrate, 2) platy hydrate, 3) layered/massive hydrate, 4) disseminated hydrate, 5) nodule hydrate and 6) vein/dyke hydrate. The anomalies of chloride contents in pore water, core temperature depression, core observation as well as visible gas hydrates confirmed well-interconnected and highly saturated pore-space hydrates as intergranular pore filling within sand layers within the methane hydrate stability zone. Hydrate saturations are higher than 60 % throughout most hydrate-dominant sand layers and in some parts close to 100% pore saturation. Muddy sediments such as silts and clays were free of hydrate or contained low concentrations. Carbon and hydrogen isotope compositions of CH4 and hydrocarbon compositions contained in gas hydrate indicate that methane is generated by microbial reduction of CO2. Both carbon isotope compositions of CH4 and CO2 in the sediments become heavier gradually with depths shallower than 100 mbsf. In deeper depths, the origins of hydrocarbon change from

  16. Bacterial distribution and metabolic activity in subsurface sediments from a gasoline spill

    SciTech Connect

    Krauter, P.W.; Hanna, M.L.; Taylor, R.T.; Rice, D.W. Jr.

    1992-05-01

    At the Lawrence Livermore National Laboratory (LLNL) in California, a records inspection in 1979 indicated an inventory of about 17,500 gal was missing from underground fuel tanks. A leak or leaks in the southernmost tank and/or pipe lines were suspected to be the source of the loss. All four tanks were taken out of service and filled with sand in 1980. The gasoline spill cleanup effort affords an opportunity to study the collective effect of fuel hydrocarbons (HCs) on the indigenous microbial population within the heterogeneous alluvial subsurface environment. This paper presents the early results of an ongoing study to (1) characterize naturally acclimated microbial populations capable of transforming HCs and (2) understand the effects of environmental factors on these biotransformations.

  17. Assessing water quality by ratio of the number of dominant bacterium species between surface/subsurface sediments in Haihe River Basin.

    PubMed

    Ke, Xin; Wang, Chunyong; Jing, Debing; Zhang, Yun; Zhang, Haijun

    2015-09-15

    Sedimentary microorganisms can be used as a sensitive indicator of integrated aquatic environment quality assessment and indicate long-term water quality or toxicity. According to the Chinese National Standards of GB 3838-2002 and GB 18918-2002, the comprehensive water quality in Haihe River Basin has been described. Results showed that the comprehensive water quality in 6 sites, 4 sites, and 20 sites were good, bad, and medium. Furthermore, 162 dominant bacterial species were identified in surface and subsurface sediments in the 30 sampling sites. As revealed by two initial models constructed by logistic regression, the comprehensive water quality exhibited a pattern from good to bad as the ratio of the number of dominant bacterial species in surface sediments to that in subsurface sediments increased from 1 to 2.1. This finding possibly bridged a traditional gap between aquatic microbe indicators and water quality assessment or monitoring techniques. PMID:26164783

  18. Influence of calcite and dissolved calcium on uranium(VI) sorption to a hanford subsurface sediment.

    PubMed

    Dong, Wenming; Ball, William P; Liu, Chongxuan; Wang, Zheming; Stone, Alan T; Bai, Jing; Zachara, John M

    2005-10-15

    The influence of calcite and dissolved calcium on U(VI) adsorption was investigated using a calcite-containing sandy silt/clay sediment from the U. S. Department of Energy Hanford site. U(VI) adsorption to sediment, treated sediment, and sediment size fractions was studied in solutions that both had and had not been preequilibrated with calcite, at initial [U(VI)] = 10(-7)-10(-5) mol/L and final pH = 6.0-10.0. Kinetic and reversibility studies (pH 8.4) showed rapid sorption (30 min), with reasonable reversibility in the 3-day reaction time. Sorption from solutions equilibrated with calcite showed maximum U(VI) adsorption at pH 8.4 +/- 0.1. In contrast, calcium-free systems showed the greatest adsorption at pH 6.0-7.2. At pH > 8.4, U(VI) adsorption was identical from calcium-free and calcium-containing solutions. For calcite-presaturated systems, both speciation calculations and laser-induced fluorescence spectroscopic analyses indicated that aqueous U(VI) was increasingly dominated by Ca2UO2(CO3)3(0)(aq) at pH < 8.4 and thatformation of Ca2UO2(CO3)3(0)(aq) is what suppresses U(VI) adsorption. Above pH 8.4, aqueous U(VI) speciation was dominated by UO2(CO3)3(4-) in all solutions. Finally, results also showed that U(VI) adsorption was additive in regard to size fraction but not in regard to mineral mass: Carbonate minerals may have blocked U(VI) access to surfaces of higher sorption affinity. PMID:16295860

  19. Influence of Calcite and Dissolved Calcium on Uranium(VI) Sorption to a Hanford Subsurface Sediment

    SciTech Connect

    Dong, Wenming; Ball, William P.; Liu, Chongxuan; Wang, Zheming; Stone, Alan T.; Bai, Jing; Zachara, John M.

    2005-10-15

    The influence of calcite and dissolved calcium on U(VI) adsorption was investigated using a calcite-containing sandy silt/clay sediment from the U. S. Department of Energy Hanford site. U(VI) adsorption to sediment, treated sediment, and sediment size fractions was studied in solutions that both had and had not been preequilibrated with calcite, at initial [U(VI)] - 10-7-10-5 mol/L and final pH - 6.0-10.0. Kinetic and reversibility studies (pH 8.4) showed rapid sorption (30 min), with reasonable reversibility in the 3-day reaction time. Sorption from solutions equilibrated with calcite showed maximum U(VI) adsorption at pH 8.4-0.1. In contrast, calcium-free systems showed the greatest adsorption at pH 6.0-7.2. At pH > 8.4, U(VI) adsorption was identical from calcium-free and calcium-containing solutions. For calcite-presaturated systems, both speciation calculations and laser-induced fluorescence spectroscopic analyses indicated that aqueous U(VI) was increasingly dominated by Ca2UO2(CO3)3 0(aq) at pH<8.4 and that formation of Ca2UO2(CO3)3 0(aq) is what suppresses U(VI) adsorption. Above pH 8.4, aqueous U(VI) speciation was dominated by UO2(CO3)3 4- in all solutions. Finally, results also showed that U(VI) adsorption was additive in regard to size fraction but not in regard to mineral mass: Carbonate minerals may have blocked U(VI) access to surfaces of higher sorption affinity.

  20. Impact of Highly Basic Solutions on Sorption of Cs+ to Subsurface Sediments from the Hanford Site, USA

    SciTech Connect

    Ainsworth, Calvin C.; Zachara, John M.; Wagnon, Ken B.; McKinley, Susan G.; Liu, Chongxuan; Smith, Steven C.; Schaef, Herbert T.; Gassman, Paul L.

    2005-11-28

    The effect of caustic NaNO3 solutions on the sorption of 137Cs to the Hanford site micaceous subsurface sediment was investigated as a function of time, temperature (10 C or 50 C), and NaOH concentration. At 100C and 0.1 M NaOH, the slow evolution of [Al]aq was in stack contrast to the rapid increase and subsequent loss of [Al]aq observed at 50 C (regardless of base concentration). At 50 C, dissolution of phyllosilicate minerals increased with [OH], at 1 and 3 M NaOH solutions, almost complete dissolution of clay-sized phyllosilicates occurred. At 0.1 M NaOH, a zeolite (tetranatrolite) precipitated after about 7 days, while an unnamed mineral phase (Na2Al2Si3O10?2H2O) precipitated after 4 and 2 days of exposure to 1 M and 3 M NaOH solutions. At 100C there was no conclusive evidence of secondary mineral precipitation. The effect of base dissolution on Cs+ sorption by the Hanford sediment was investigated via (1) Cs+ sorption over a large concentration range (10-9 ? 10-2 mol/L) to sediment after exposure to 0.1 M NaOH for 56, 112, and 168 days, (2) Cs+ sorption to sediment in the presence of NaOH (0.1 M, 1 M, and 3 M NaOH) at Cs+ concentrations selected to probe high affinity, transition, and low affinity cation exchange sites, and (3) the application of a two-site numeric ion exchange model (Zachara et al. 2002a). No effect on Cs+ sorption to the Hanford sediment was observed during the 168 days sediment was exposed to 0.1 M NaOH, at 10 C; Cs+ sorption in the presence of base was well described by the ion exchange model when enthalpy effects were considered. In contrast, at 50 C, there was a trend toward slightly lower (log {approx} 0.25) conditional equilibrium exchange constants over the entire range of surface coverage, and a slight loss of high affinity sites (15%) after 168 days of exposure to 0.1 M base solution. However, model simulations of Cs+ sorption to the sediment in the presence of 0.1 M base for 112 days were good at the lower Cs+ surface densities

  1. HydroSphere: Fully-Integrated, Surface/Subsurface Numerical Model for Watershed Analysis of Hydrologic, Water Quality and Sedimentation Processes

    NASA Astrophysics Data System (ADS)

    Matanga, G. B.; Nelson, K. E.; Sudicky, E.; Therrien, R.; Panday, S.; McLaren, R.; Demarco, D.; Gessford, L.

    2004-12-01

    A distributed, physically based and fully-coupled surface/subsurface numerical model, HydroSphere, has recently been developed for watershed analysis of hydrologic and water quality processes. It accounts for flow and transport in lateral two-dimensional surface water, one-dimensional tile drains and three-dimensional variably-saturated subsurface water. One-, two- and three-dimensional forms of the advection-dispersion equation are used to describe solute transport in the tile drains, surface water and subsurface water, respectively. Full integration of the surface, tile-drain and subsurface water regimes is achieved by assembling and solving one system of discrete algebraic equations, such that surface flow rates and water depths, tile-drain flow rates and water depths, subsurface pressure heads, saturations and velocities, as well as water fluxes between continua, are determined simultaneously. Likewise, discrete advective-dispersive transport equations for the various continua are solved simultaneously to obtain the solute concentrations in the surface, tile-drain and subsurface systems. One of the major issues calling for capabilities of surface/subsurface water interactions, water quality and erosion/sedimentation is the optimal management of water supply for fish and agricultural irrigation. For example, the USGS has demonstrated that the massive September 2002 fish-kill in the Klamath River Basin was caused by low 2002 streamflows and the resulting high water temperatures. The streams in the Klamath River Basin are fed primarily by ground water. The 2002 streamflows were lower than the flows predicted by Bureau of Reclamation based on the snowpack data alone, neglecting subsurface water data. It is also well-known that erosion/sedimentation processes impair fish habitat by impacting spawning gravel areas and upstream migration to spawning areas. The models currently being applied in the Klamath River Basin and in all Bureau of Reclamation Regions completely

  2. Desorption kinetics of radiocesium from subsurface sediments at Hanford Site, USA

    NASA Astrophysics Data System (ADS)

    Liu, Chongxuan; Zachara, John M.; Smith, Steve C.; McKinley, James P.; Ainsworth, Calvin C.

    2003-08-01

    The desorption of 137Cs + was investigated on sediments from the United States Hanford site. Pristine sediments and ones that were contaminated by the accidental release of alkaline 137Cs +-containing high level nuclear wastes (HLW, 2 × 10 6 to 6 × 10 7 pCi 137Cs +/g) were studied. The desorption of 137Cs + was measured in Na +, K +, Rb +, and NH 4+electrolytes of variable concentration and pH, and in presence of a strong Cs +-specific sorbent (self-assembled monolayer on a mesoporous support, SAMMS). 137Cs + desorption from the HLW-contaminated Hanford sediments exhibited two distinct phases: an initial instantaneous release followed by a slow kinetic process. The extent of 137Cs + desorption increased with increasing electrolyte concentration and followed a trend of Rb + ≥ K + > Na + at circumneutral pH. This trend followed the respective selectivities of these cations for the sediment. The extent and rate of 137Cs + desorption was influenced by surface armoring, intraparticle diffusion, and the collapse of edge-interlayer sites in solutions containing K +, Rb +, or NH 4+. Scanning electron microscopic analysis revealed HLW-induced precipitation of secondary aluminosilicates on the edges and basal planes of micaceous minerals that were primary Cs + sorbents. The removal of these precipitates by acidified ammonium oxalate extraction significantly increased the long-term desorption rate and extent. X-ray microprobe analyses of Cs +-sorbed micas showed that the 137Cs + distributed not only on mica edges, but also within internal channels parallel to the basal plane, implying intraparticle diffusive migration of 137Cs +. Controlled desorption experiments using Cs +-spiked pristine sediment indicated that the 137Cs + diffusion rate was fast in Na +-electrolyte, but much slower in the presence of K + or Rb +, suggesting an effect of edge-interlayer collapse. An intraparticle diffusion model coupled with a two-site cation exchange model was used to interpret the

  3. Mineral-Association and Activity of Bacteria and Archaea in the Deep Subsurface South Pacific Gyre Sediment

    NASA Astrophysics Data System (ADS)

    Steele, J. A.; Dekas, A. E.; Harrison, B. K.; Morono, Y.; Inagaki, F.; Ziebis, W.; Orphan, V. J.

    2012-12-01

    Although the subsurface biosphere is now recognized as an important reservoir of life on our planet, until recently the microbial community beneath open-ocean oligotrophic gyres (making up the majority of the seafloor) has just begun to be studied in detail. IODP Expedition 329 and the KNOX-022RR site survey cruise have taken some of the first steps at characterizing the microbial community beneath the South Pacific Gyre, a region with low organic carbon burial rates (10-8 and 10-10 moles C cm-1 yr-1), deep oxygen penetration (sediments are oxidized to the basement), and low prokaryotic cell counts (106 cells cm-3 to <103 cells cm-3). In these sediments, the dominant fraction of organic carbon may be aggregated or adsorbed to minerals, suggesting that microbes that are able to grow on the minerals may create potential "hotspots" of activity. In this study, we performed magnetic separation on oligotrophic sediment samples and examined the bacterial and archaeal communities using 16S rRNA tag sequencing. To determine if the mineral-associated cells were autotrophic and/or utilizing nitrate, we performed long-term (20 month) incubations with 13CO2 and 15NO3- from sediment taken at depths ~2-70 mbsf beneath the oligotrophic gyre and outside of the oligotrophic gyre (IODP Exp. 329 stations U1368-U1371). Subsequently we used the DNA stain SYBR Green I, and CARD-FISH-NanoSIMS to identify cells which were actively taking up the isotopic label. We then used SEM-EDS to identify the mineral particle composition. Preliminary results found the magnetic fraction in oligotrophic sediment (KNOX-022RR station SPG-5) from 1.2-2.6 mbsf showed a greater diversity of both bacteria and archaea. OTUs from Chloroflexi groups SO85 and SAR202 were dominant in the magnetic fraction. Firmicutes, Bacteroidetes, δ-Proteobacteria, Verrucomicrobia, Deferribacteres, WS3, OP10, and OP1 OTUs were found only in the magnetic fraction. Crenarchaeal OTUs from Marine Benthic Group B and Marine Group I

  4. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    SciTech Connect

    Beyenal, Haluk; McLEan, Jeff; Majors, Paul; Fredrickson, Jim

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in the subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.

  5. An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

    SciTech Connect

    Joel E. Kostka

    2008-03-24

    This project represented a joint effort between Oak Ridge National Laboratory (ORNL), the University of Tennessee (UT), and Florida State University (FSU). ORNL served as the lead in-stitution with Dr. A.V. Palumbo responsible for project coordination, integration, and deliver-ables. In situ uranium bioremediation is focused on biostimulating indigenous microorganisms through a combination of pH neutralization and the addition of large amounts of electron donor. Successful biostimulation of U(VI) reduction has been demonstrated in the field and in the laboratory. However, little data is available on the dynamics of microbial populations capable of U(VI) reduction, and the differences in the microbial community dynamics between proposed electron donors have not been explored. In order to elucidate the potential mechanisms of U(VI) reduction for optimization of bioremediation strategies, structure-function relationships of microbial populations were investigated in microcosms of subsurface materials cocontaminated with radionuclides and nitrate from the Oak Ridge Field Research Center (ORFRC), Oak Ridge, Tennessee.

  6. Protozoa in Subsurface Sediments from Sites Contaminated with Aviation Gasoline or Jet Fuel

    PubMed Central

    Sinclair, James L.; Kampbell, Don H.; Cook, Mike L.; Wilson, John T.

    1993-01-01

    Numbers of protozoa in the subsurface of aviation gasoline and jet fuel spill areas at a Coast Guard base at Traverse City, Mich., were determined. Boreholes were drilled in an uncontaminated location, in contaminated but untreated parts of the fuel plumes, and in the aviation gasoline source area undergoing H2O2 biotreatment. Samples were taken from the unsaturated zone to depths slightly below the floating free product in the saturated zone. Protozoa were found to occur in elevated numbers in the unsaturated zone, where fuel vapors mixed with atmospheric oxygen, and below the layer of floating fuel, where uncontaminated groundwater came into contact with fuel. The same trends were noted in the biotreatment area, except that numbers of protozoa were higher. Numbers of protozoa in some contaminated areas equalled or exceeded those found in surface soil. The abundance of protozoa in the biotreatment area was high enough that it would be expected to significantly reduce the bacterial community that was degrading the fuel. Little reduction in hydraulic conductivity was observed, and no bacterial fouling of the aquifer was observed during biotreatment. PMID:16348871

  7. Impact of highly basic solutions on sorption of Cs + to subsurface sediments from the Hanford site, USA

    NASA Astrophysics Data System (ADS)

    Ainsworth, C. C.; Zachara, J. M.; Wagnon, K.; McKinley, S.; Liu, C.; Smith, S. C.; Schaef, H. T.; Gassman, P. L.

    2005-10-01

    The effect of caustic NaNO 3 solutions on the sorption of 137Cs to a Hanford site micaceous subsurface sediment was investigated as a function of base exposure time (up to 168 d), temperature (10°C or 50°C), and NaOH concentration (0.1 mol/L to 3 mol/L). At 10°C and 0.1 M NaOH, the slow evolution of [Al] aq was in stark contrast to the rapid increase and subsequent loss of [Al] aq observed at 50°C (regardless of base concentration). Exposure to 0.1 M NaOH at 10°C for up to 168 d exhibited little if any measurable effect on sediment mineralogy, Cs + sorption, or Cs + selectivity; sorption was well described with a two-site ion exchange model modified to include enthalpy effects. At 50°C, dissolution of phyllosilicate minerals increased with [OH]. A zeolite (tetranatrolite; Na 2Al 2Si 3O 10·2H 2O) precipitated in 0.1 M NaOH after about 7 days, while an unnamed mineral phase (Na 14Al 12Si 13O 51·6H 2O) precipitated after 4 and 2 days of exposure to 1 M and 3 M NaOH solutions, respectively. Short-term (16 h) Cs + sorption isotherms (10 -9-10 -2 mol/L) were measured on sediment after exposure to 0.1 M NaOH for 56, 112, and 168 days at 50°C. There was a trend toward slightly lower conditional equilibrium exchange constants (Δlog NaCsK c ˜ 0.25) over the entire range of surface coverage, and a slight loss of high affinity sites (15%) after 168 days of pretreatment with 0.1 M base solution. Cs + sorption to sediment over longer times was also measured at 50°C in the presence of NaOH (0.1 M, 1 M, and 3 M NaOH) at Cs + concentrations selected to probe a range of adsorption densities. Model simulations of Cs + sorption to the sediment in the presence of 0.1 M NaOH for 112 days slightly under-predicted sorption at the lower Cs + adsorption densities. At the higher adsorption densities, model simulations under-predicted sorption by 57%. This under-prediction was surmised to be the result of tetranatrolite precipitation, and subsequent slow Na → Cs exchange. At

  8. Distribution of microbial biomass and the potential for anaerobic respiration in Hanford Site 300 Area subsurface sediment

    SciTech Connect

    Lin, Xueju; Kennedy, David W.; Peacock, Aaron D.; McKinley, James P.; Resch, Charles T.; Fredrickson, Jim K.; Konopka, Allan

    2012-02-01

    Subsurface sediments were recovered from a 52 m deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9-17.4 m), the oxic fine-grained upper Ringold Formation (17.7-18.1 m), and the reduced Ringold Formation (18.3-52m). Microbial biomass (measured as phospholipid) ranged from 7-974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene encoding nitrous oxide reductase had an abundance of 5-17% relative to total 16S rRNA genes below 18.3 m and <5% above 18.1 m. Most nosZ sequences were affiliated with Ochrobactrum anthropi (97% sequence similarity) or had a nearest neighbor of Achromobacter xylosoxidans (90% similarity). Passive multilevel sampling of groundwater geochemistry demonstrated a redox gradient in the 1.5 m region between the Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum sp.. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling.

  9. Methanobacterium movilense sp. nov., a hydrogenotrophic, secondary-alcohol-utilizing methanogen from the anoxic sediment of a subsurface lake.

    PubMed

    Schirmack, Janosch; Mangelsdorf, Kai; Ganzert, Lars; Sand, Wolfgang; Hillebrand-Voiculescu, Alexandra; Wagner, Dirk

    2014-02-01

    A novel strain of methanogenic archaea, designated MC-20(T), was isolated from the anoxic sediment of a subsurface lake in Movile Cave, Mangalia, Romania. Cells were non-motile, Gram-stain-negative rods 3.5-4.0 µm in length and 0.6-0.7 µm in width, and occurred either singly or in short chains. Strain MC-20(T) was able to utilize H2/CO2, formate, 2-propanol and 2-butanol as substrate, but not acetate, methanol, ethanol, dimethyl sulfide, monomethylamine, dimethylamine or trimethylamine. Neither trypticase peptone nor yeast extract was required for growth. The major membrane lipids of strain MC-20(T) were archaeol phosphatidylethanolamine and diglycosyl archaeol, while archaeol phosphatidylinositol and glycosyl archaeol were present only in minor amounts. Optimal growth was observed at 33 °C, pH 7.4 and 0.08 M NaCl. Based on phylogenetic analysis of 16S rRNA gene sequences, strain MC-20(T) was closely affiliated with Methanobacterium oryzae FPi(T) (similarity 97.1%) and Methanobacterium lacus 17A1(T) (97.0%). The G+C content of the genomic DNA was 33.0 mol%. Based on phenotypic and genotypic differences, strain MC-20(T) was assigned to a novel species of the genus Methanobacterium for which the name Methanobacterium movilense sp. nov. is proposed. The type strain is MC-20(T) ( = DSM 26032(T) = JCM 18470(T)). PMID:24108325

  10. Immobilization of U(VI) from oxic groundwater by Hanford 300 Area sediments and effects of Columbia River water.

    PubMed

    Ahmed, Bulbul; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I; Kemner, Kenneth M; Fredrickson, Jim K; Beyenal, Haluk

    2012-09-01

    Regions within the U.S. Department of Energy Hanford 300 Area (300 A) site experience periodic hydrologic influences from the nearby Columbia River as a result of changing river stage, which causes changes in groundwater elevation, flow direction and water chemistry. An important question is the extent to which the mixing of Columbia River water and groundwater impacts the speciation and mobility of uranium (U). In this study, we designed experiments to mimic interactions among U, oxic groundwater or Columbia River water, and 300 A sediments in the subsurface environment of Hanford 300 A. The goals were to investigate mechanisms of: 1) U immobilization in 300 A sediments under bulk oxic conditions and 2) U remobilization from U-immobilized 300 A sediments exposed to oxic Columbia River water. Initially, 300 A sediments in column reactors were fed with U(VI)-containing oxic 1) synthetic groundwater (SGW), 2) organic-amended SGW (OA-SGW), and 3) de-ionized (DI) water to investigate U immobilization processes. After that, the sediments were exposed to oxic Columbia River water for U remobilization studies. The results reveal that U was immobilized by 300 A sediments predominantly through reduction (80-85%) when the column reactor was fed with oxic OA-SGW. However, U was immobilized by 300 A sediments through adsorption (100%) when the column reactors were fed with oxic SGW or DI water. The reduced U in the 300 A sediments fed with OA-SGW was relatively resistant to remobilization by oxic Columbia River water. Oxic Columbia River water resulted in U remobilization (∼7%) through desorption, and most of the U that remained in the 300 A sediments fed with OA-SGW (∼93%) was in the form of uraninite nanoparticles. These results reveal that: 1) the reductive immobilization of U through OA-SGW stimulation of indigenous 300 A sediment microorganisms may be viable in the relatively oxic Hanford 300 A subsurface environments and 2) with the intrusion of Columbia River water

  11. Immobilization of U(VI) from Oxic Groundwater by Hanford 300 Area Sediments and Effects of Columbia River Water

    SciTech Connect

    Ahmed, B.; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I.; Kemner, Kenneth M.; Fredrickson, Jim K.; Beyenal, Haluk

    2012-09-23

    Regions within the U.S. Department of Energy Hanford 300 Area (300 A) site experience periodic hydrologic influences from the nearby Columbia River as a result of changing river stage, which causes changes in groundwater elevation, flow direction and water chemistry. An important question is the extent to which the mixing of Columbia River water and groundwater impacts the speciation and mobility of uranium (U). In this study, we designed experiments to mimic interactions among U, oxic groundwater or Columbia River water, and 300 A sediments in the subsurface environment of Hanford 300 A. The goals were to investigate mechanisms of: 1) U immobilization in 300 A sediments under bulk oxic conditions and 2) U remobilization from U-immobilized 300 A sediments exposed to oxic Columbia River water. Initially, 300 A sediments in column reactors were fed with U(VI)-containing oxic 1) synthetic groundwater (SGW), 2) organic-amended SGW (OA-SGW), and 3) de-ionized (DI) water to investigate U immobilization processes. After that, the sediments were exposed to oxic Columbia River water for U remobilization studies. The results reveal that U was immobilized by 300 A sediments predominantly through reduction (80-85%) when the column reactor was fed with oxic OA-SGW. However, U was immobilized by 300 A sediments through adsorption (100%) when the column reactors were fed with oxic SGW or DI water. The reduced U in the 300 A sediments fed with OA-SGW was relatively resistant to remobilization by oxic Columbia River water. Oxic Columbia River water resulted in U remobilization (~7%) through desorption, and most of the U that remained in the 300 A sediments fed with OA-SGW (~93%) was in the form of uraninite nanoparticles. These results reveal that: 1) the reductive immobilization of U through OA-SGW stimulation of indigenous 300 A sediment microorganisms may be viable in the relatively oxic Hanford 300 A subsurface environments and 2) with the intrusion of Columbia River water

  12. The effects of temperature and motility on the advective transport of a deep subsurface bacteria through saturated sediment

    SciTech Connect

    McCaulou, D.R.

    1993-10-01

    Replicate column experiments were done to quantify the effects of temperature and bacterial motility on advective transport through repacked, but otherwise unaltered, natural aquifer sediment. The bacteria used in this study, A0500, was a flagellated, spore-forming rod isolated from the deep subsurface at DOE`s Savannah River Laboratory. Motility was controlled by turning on flagellar metabolism at 18{degrees}C but off at 40{degrees}C. Microspheres were used to independently quantify the effects of temperature on the sticking efficiency ({alpha}), estimated using a steady-state filtration model. The observed greater microsphere removal at the higher temperature agreed with the physical-chemical model, but bacteria removal at 18{degrees}C was only half that at 4{degrees}C. The sticking efficiency for non-motile A0500 (4{degrees}C) was over three times that of the motile A0500 (18{degrees}C), 0.073 versus 0.022 respectively. Analysis of complete breakthrough curves using a non-steady, kinetically limited, transport model to estimate the time scales of attachment and detachment suggested that motile A 0500 bacteria traveled twice as far as non-motile A 0500 bacteria before becoming attached. Once attached, non-motile colloids detached on the time scale of 9 to 17 days. The time scale for detachment of motile A0500 bacteria was shorter, 4 to 5 days. Results indicate that bacterial attachment was reversible and detachment was enhanced by bacterial motifity. The kinetic energy of bacterial motility changed the attachment-detachment kinetics in favor of the detached state. The chemical factors responsible for the enhanced transport are not known. However, motility may have caused weakly held bacteria to detach from the secondary minimum, and possibly from the primary minimum, as described by DLVO theory.

  13. The new CutSprof sampling tool and method for micromorphological and microfacies analyses of subsurface salt marsh sediments, Algarve, Portugal

    NASA Astrophysics Data System (ADS)

    Araújo-Gomes, João; Ramos-Pereira, Ana

    2015-02-01

    A new tool and method for collecting undisturbed subsurface samples in estuarine environments by means of trenching, timbering and sectioning is presented. Smoothing of sidewalls is achieved by a so-called cutting sediment profiler (CutSprof), while water draining into the trench is cleared by pumping. From smoothed sidewall sections, undisturbed thin sediment slices can then be collected for micromorphological and microfacies analyses. Results demonstrating the successful application of this procedure are presented for salt marshes of the Bensafrim River estuary (Lagos, Algarve, Portugal). In addition to palaeo-reconstructions in salt marsh settings, the CutSprof would be highly suitable in various other research domains as well as for environmental management purposes, particularly where sampling below the groundwater table is desirable to explore, for example, animal-sediment relationships in tidal-flat and mangrove ecosystems as well as the dynamics of coastal wetlands today threatened by ever-increasing anthropogenic influence.

  14. Biogeochemical dynamics of amino acids in deep-subsurface marine sediments: Constraints from compound-specific nitrogen isotopic composition and enantiomer ratio

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Y. T.; Chikaraishi, Y.; Takano, Y.; Ogawa, N. O.; Suga, H.; Yokoyama, Y.; Ohkouchi, N.

    2013-12-01

    Vast microbial populations exist in deep-subsurface marine sediments. Although amino acids in sediment pore waters are key compounds in metabolic activities of sedimentary microbes and in remineralization of carbon and nitrogen, to date little is known about their biogeochemical dynamics (e.g., sources and transformation processes) in deep-subsurface sediments. As a new approach to constrain the sources of dissolved amino acids in sediment pore waters, we analyzed compound-specific nitrogen isotopic composition (d15N) and enantiomer ratio (%D) of total hydrolysable amino acids (THAA) in sediment solid phase and dissolved hydrolysable amino acids (DHAA) in sediment pore waters from the same sediment samples. Enantiomer ratio can be an indicator of source organisms of amino acids, because specific D-amino acids (such as alanine, aspartic acid, glutamic acid, and serine) are commonly found in the cell wall complex of bacteria. Compound-specific d15N can be an indicator of microbial metabolism of amino acids, because biosynthesis and degradation of amino acids cause nitrogen isotopic fractionation. Samples were collected from deep-subsurface sediments (up to 172.9 m below seafloor) at the Sagami Trough (Northwestern Pacific) during D/V Chikyu cruise CK09-03. In the sediments deeper than 9 mbsf, %D values of DHAA were 25.9×2.8% in alanine, 24.8×2.1% in aspartic acid, 11.3×2.8% in serine, and 16.3×2.7% in glutamic acid, and %D changes from THAA were +15.3×2.1% in alanine, -0.4×2.4% in aspartic acid, -8.1×6.2% in serine, and 4.6×3.3% in glutamic acid. Compound-specific d15N analysis showed that d15N values of alanine are higher in DHAA than THAA and that d15N values of glycine and glutamic acid are similar between the two fractions (d15N of DHAA - d15N of THAA = +5.8×2.3 permill, +1.9×0.6 permill, -0.3×1.1 permill, respectively). The differences of d15N and %D signatures between DHAA and THAA suggest that the depolymerization of THAA is not the sole source of

  15. The Use of a Geomorphometric Classification to Estimate Subsurface Heterogeneity in the Unconsolidated Sediments of Mountain Watersheds

    NASA Astrophysics Data System (ADS)

    Cairns, D.; Byrne, J. M.; Jiskoot, H.; McKenzie, J. M.; Johnson, D. L.

    2013-12-01

    Groundwater controls many aspects of water quantity and quality in mountain watersheds. Groundwater recharge and flow originating in mountain watersheds are often difficult to quantify due to challenges in the characterization of the local geology, as subsurface data are sparse and difficult to collect. Remote sensing data are more readily available and are beneficial for the characterization of watershed hydrodynamics. We present an automated geomorphometric model to identify the approximate spatial distribution of geomorphic features, and to segment each of these features based on relative hydrostratigraphic differences. A digital elevation model (DEM) dataset and predefined indices are used as inputs in a mountain watershed. The model uses periglacial, glacial, fluvial, slope evolution and lacustrine processes to identify regions that are subsequently delineated using morphometric principles. A 10 m cell size DEM from the headwaters of the St. Mary River watershed in Glacier National Park, Montana, was considered sufficient for this research. Morphometric parameters extracted from the DEM that were found to be useful for the calibration of the model were elevation, slope, flow direction, flow accumulation, and surface roughness. Algorithms were developed to utilize these parameters and delineate the distributions of bedrock outcrops, periglacial landscapes, alluvial channels, fans and outwash plains, glacial depositional features, talus slopes, and other mass wasted material. Theoretical differences in sedimentation and hydrofacies associated with each of the geomorphic features were used to segment the watershed into units reflecting similar hydrogeologic properties such as hydraulic conductivity and thickness. The results of the model were verified by comparing the distribution of geomorphic features with published geomorphic maps. Although agreement in semantics between datasets caused difficulties, a consensus yielded a comparison Dice Coefficient of 0

  16. Vernal Crater, SW Arabia Terra: MSL Candidate with Extensively Layered Sediments, Possible Lake Deposits, and a Long History of Subsurface Ice

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2007-01-01

    Vernal Crater is a Mars Science Laboratory (MSL) landing site candidate providing relatively easy access to extensively layered sediments as well as potential lake deposits. Sediments of Vernal Crater are 400-1200 m below those being investigated by Opportunity in Meridiani Planum, and as such would allow study of significantly older geologic units, if Vernal Crater were selected for MSL. The location of Vernal Crater in SW Arabia Terra provides exceptional scientific interest, as rampart craters and gamma-ray spectrometer (GRS) data from the region suggest a long history of ice/fluids in the subsurface. The potential value of this MSL candidate is further enhanced by reports of atmospheric methane over Arabia, as any insight into the source of that methane would significantly increase our understanding of Mars. Finally, should MSL survive beyond its prime mission, the gentle slope within Vernal Crater would provide a route out of the crater for study of the once ice/fluid-rich plains.

  17. Porosity and Organic Carbon Controls on Naturally Reduced Zone (NRZ) Formation Creating Microbial ';Hotspots' for Fe, S, and U Cycling in Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Jones, M. E.; Janot, N.; Bargar, J.; Fendorf, S. E.

    2013-12-01

    Previous studies have illustrated the importance of Naturally Reduced Zones (NRZs) within saturated sediments for the cycling of metals and redox sensitive contaminants. NRZs can provide a source of reducing equivalents such as reduced organic compounds or hydrogen to stimulate subsurface microbial communities. These NRZ's are typically characterized by low permeability and elevated concentrations of organic carbon and trace metals. However, both the formation of NRZs and their importance to the overall aquifer carbon remineralization is not fully understood. Within NRZs the hydrolysis of particulate organic carbon (POC) and subsequent fermentation of dissolved organic carbon (DOC) to form low molecular weight dissolved organic carbon (LMW-DOC) provides electron donors necessary for the respiration of Fe, S, and in the case of the Rifle aquifer, U. Rates of POC hydrolysis and subsequent fermentation have been poorly constrained and rates in excess and deficit to the rates of subsurface anaerobic respiratory processes have been suggested. In this study, we simulate the development of NRZ sediments in diffusion-limited aggregates to investigate the physical and chemical conditions required for NRZ formation. Effects of sediment porosity and POC loading on Fe, S, and U cycling on molecular and nanoscale are investigated with synchrotron-based Near Edge X-ray Absorption Fine Structure Spectroscopy (NEXAFS). Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Fourier Transform Infrared spectroscopy (FTIR) are used to characterize the transformations in POC and DOC. Sediment aggregates are inoculated with the natural microbial biota from the Rifle aquifer and population dynamics are monitored by 16S RNA analysis. Overall, establishment of low permeability NRZs within the aquifer stimulate microbial respiration beyond the diffusion-limited zones and can limit the transport of U through a contaminated aquifer. However, the long-term stability of

  18. In situ redox manipulation of subsurface sediments from Fort Lewis, Washington: Iron reduction and TCE dechlorination mechanisms

    SciTech Connect

    JE Szecsody; JS Fruchter; DS Sklarew; JC Evans

    2000-03-21

    Pacific Northwest National Laboratory (PNNL) conducted a bench-scale study to determine how effective chemically treated Ft. Lewis sediments can degrade trichloroethylene (TCE). The objectives of this experimental study were to quantify: (1) sediment reduction and oxidation reactions, (2) TCE degradation reactions, and (3) other significant geochemical changes that occurred. Sediment reduction and oxidation were investigated to determine the mass of reducible iron in the Ft. Lewis sediments and the rate of this reduction and subsequent oxidation at different temperatures. The temperature dependence was needed to be able to predict field-scale reduction in the relatively cold ({approximately}11 C) Ft. Lewis aquifer. Results of these experiments were used in conjunction with other geochemical and hydraulic characterization to design the field-scale injection experiment and predict barrier longevity. For example, the sediment reduction rate controls the amount of time required for the dithionite solution to fully react with sediments. Sediment oxidation experiments were additionally conducted to determine the oxidation rate and provide a separate measure of the mass of reduced iron. Laboratory experiments that were used to meet these objectives included: (1) sediment reduction in batch (static) systems, (2) sediment reduction in 1-D columns, and (3) sediment oxidation in 1-D columns. Multiple reaction modeling was conducted to quantify the reactant masses and reaction rates.

  19. In Situ Redox Manipulation of Subsurface Sediments from Fort Lewis, Washington: Iron Reduction and TCE Dechlorination Mechanisms

    SciTech Connect

    Szecsody, James E.; Fruchter, Jonathan S.; Sklarew, Deborah S.; Evans, John C.

    2000-03-17

    The feasibility of chemically treating sediments from the Ft. Lewis, Washington, Logistics Center to develop a permeable barrier for dechlorination of TCE was investigated in a series of laboratory experiments.

  20. Subsurface Seismic Record of Sediment Failures in the Neogene of Deepwater West Africa: Causal Mechanisms and Characteristics

    NASA Astrophysics Data System (ADS)

    Oluboyo, A. P.; Zhunussov, D.; Huuse, M.; Gawthorpe, R.

    2010-12-01

    Catastrophic sediment failures in deepwater margins are initiated by a wide range of triggering mechanisms including but not limited to; sea-level fluctuations, earthquakes, rapid sediment overburdening, progressive slope failures and gas hydrate destabilization. Three-dimensional seismic interpretation of a 1,400 km2 3D volume from the Neogene stratigraphic record of the Lower Congo Basin (LCB) demonstrates the existence of two major types of sediment failures within an elongate salt bound mini-basin (c. 15 km by 60 km). These slope instabilities are distinguished on the basis of their size, origin, geometries and deformational structures.Within the Middle Miocene, a regionally extensive, frontally emergent mass transport deposit occurs, and is a part of a much larger, regionally prevalent sediment failure deposit within the LCB. This deposit covers an area of ~ 750 km2 with an average thickness of ~ 60 m and a volume of 45 km3, with its lateral extent delimited by the salt diapirs which bound the mini-basin. Seismically, it exhibits chaotic, discontinuous, low amplitude semi-transparent facies with an erosive basal scour surface and an irregular upper bounding surface.The second type of sediment failure is a Pliocene aged, detached MTC with a short run out distance c. 10km. The slump is areally constrained to the flank of the western bounding salt-cored fold, with a preserved scarp along the fold crest. This deposit is frontally confined, with an average thickness of ~250 m and covers an area ~ 100 km2 (4 km by 26 km). It is defined by a high amplitude reflection at the base, with a series of syndepositional thrusts detaching off this surface at the terminal end of the deposit. Compressional structures are also seismically resolvable in strata adjacent to the distal end of the MTC. The presence of pressure ridges along the top bounding surface, coupled with the differential compaction of the slump deposits and mounded topography relative to local bathymetry

  1. Recruitment and expression of toluene/trichloroethylene biodegradation genes in bacteria native to deep-subsurface sediments.

    PubMed Central

    Romine, M F; Brockman, F J

    1996-01-01

    Four plasmids, each encoding a combination of either an Escherichia coli or Pseudomonas putida promoter and either toluene dioxygenase or toluene monooxygenase, were electroporated into five bacterial strains isolated from sediments found at depths of 91 to 295 m. Four of these engineered bacterial strains demonstrated both toluene and trichloroethylene degradation activities. PMID:8779603

  2. Recruitment and expression of toluene/trichloroethylene biodegradation genes in bacteria native to deep-subsurface sediments

    SciTech Connect

    Romine, M.F.; Brockman, F.J.

    1996-07-01

    Four plasmids, each encoding a combination of either an Escherichia coli or Pseudomonas putida promoter and either toluene dioxygenase or toluene monooxygenase, were electroporated into five bacterial strains isolated from sediments found at depths of 91 to 295 m. Four of these engineered bacterial strains demonstrated both toluene and trichloroethylene degradation activities. 26 refs., 2 tabs.

  3. The effect of biogenic Fe(II) on the stability and sorption of Co(II)EDTA{sup 2{minus}} to goethite and a subsurface sediment

    SciTech Connect

    Zachara, J.M.; Smith, S.C.; Fredrickson, J.K.

    2000-04-01

    Laboratory experiments were conducted with suspensions of goethite ({alpha}-FeOOH) and a subsurface sediment to assess the influence of bacterial iron reduction on the fate of Co(II)EDTA{sup 2{minus}}, a representative metal-ligand complex of intermediate stability (log K{sub Co(II)EDTA} = 17.97). The goethite was synthetic (ca. 55 m{sup 2}/g) and the sediment was a Pleistocene age, Fe(III) oxide-containing material from the Atlantic coastal plain (Milford). Shewanella alga strain BrY, a dissimulatory iron reducing bacterium (DIRB), was used to promote Fe(III) oxide reduction. Sorption isotherms and pH adsorption edges were measured for Co{sup 2+}, Fe{sup 2+}, Co(II)EDTA{sup 2{minus}}, and Fe(II)EDTA{sup 2{minus}} on the two sorbents in 0.001 mol/L Ca(ClO{sub 4}){sub 2} to aid in experiment interpretation. It is concluded that cationic radionuclides such as {sup 60}Co or {sup 239/240}Pu, which may be mobilized from disposed wastes by complexation with EDTA{sup 4{minus}}, may become immobilized in groundwater zones where dissimilatory bacterial iron reduction is operative.

  4. Isotopic composition of dissolved inorganic carbon in subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: implications for methane and carbonate origin

    NASA Astrophysics Data System (ADS)

    Krylov, Alexey A.; Khlystov, Oleg M.; Hachikubo, Akihiro; Minami, Hirotsugu; Nunokawa, Yutaka; Shoji, Hitoshi; Zemskaya, Tamara I.; Naudts, Lieven; Pogodaeva, Tatyana V.; Kida, Masato; Kalmychkov, Gennady V.; Poort, Jeffrey

    2010-06-01

    We report on the isotopic composition of dissolved inorganic carbon (DIC) in pore-water samples recovered by gravity coring from near-bottom sediments at gas hydrate-bearing mud volcanoes/gas flares (Malenky, Peschanka, Peschanka 2, Goloustnoe, and Irkutsk) in the Southern Basin of Lake Baikal. The δ13C values of DIC become heavier with increasing subbottom depth, and vary between -9.5 and +21.4‰ PDB. Enrichment of DIC in 13C indicates active methane generation in anaerobic environments near the lake bottom. These data confirm our previous assumption that crystallization of carbonates (siderites) in subsurface sediments is a result of methane generation. Types of methanogenesis (microbial methyl-type fermentation versus CO2-reduction) were revealed by determining the offset of δ13C between dissolved CH4 and CO2, and also by using δ13C and δD values of dissolved methane present in the pore waters. Results show that both mechanisms are most likely responsible for methane generation at the investigated locations.

  5. Influence of intraparticle diffusion on the desorption of radiocesium from the subsurface sediments at Hanford site, USA

    NASA Astrophysics Data System (ADS)

    Liu, C.; Zachara, J.; Smith, S.; McKinley, J.

    2002-12-01

    The desorption of 137Cs was investigated on sediments from the United States Hanford site. Pristine sediments and ones that were contaminated by the accidental release of alkaline 137Cs-containing high level nuclear wastes (HLW) were studied. The desorption of 137Cs was measured in Na+, K+, Rb+, and NH4+ electrolytes of variable concentration and pH, and in presence of a strong Cs-specific sorbent (self-assembled monolayer on a mesoporous support, SAMMS). 137Cs desorption from the HLW-contaminated Hanford sediments exhibited two distinct phases: an initial instantaneous release followed by a slow kinetic process. The first phase was driven by the equilibrium ion exchange of Cs located on the mica edges and its release extent followed the respective selectivities of the sediment for exchanging cations. The kinetic process was controlled by the intraparticle diffusion. X-ray microprobe analyses of Cs-sorbed micas showed that the 137Cs distributed not only on mica edges, but also within internal channels parallel to the basal plane. The diffusion rate was influenced by surface armoring and edge-channel collapse in solutions containing K+, Rb+, or NH4+. Scanning electron microscopic analysis revealed HLW-induced precipitation of secondary alumino-silicates on the edges of micaceous minerals. The removal of these precipitates by acidified ammonium oxalate extraction significantly increased the desorption rate and extent. Controlled desorption experiments using Cs-spiked pristine sediment indicated that the 137Cs diffusion rate was fast in Na-electrolyte, but much slower in the presence of K or Rb, suggesting an effect of edge-channel collapse. Model simulation using an intraparticle diffusion coupled with a cation exchange suggested that about 40 percent of total sorbed 137Cs in the contaminated Hanford sediment was exchangeable, including equilibrium and diffusive desorbable pools. This ratio increased to 60-80 percent after the removal of secondary precipitates. The

  6. H2-CO2-Dependent Anaerobic O-Demethylation Activity in Subsurface Sediments and by an Isolated Bacterium

    PubMed Central

    Liu, Shi; Suflita, Joseph M.

    1993-01-01

    The ability of microorganisms in sediments from the Atlantic Coastal Plain to biodegrade methoxylated aromatic compounds was examined. O-demethylation activity was detected in deep (121- and 406-m) sediments, as well as in the surface soil. A syringate-demethylating consortium, containing at least three types of bacteria, was enriched from a deep-sediment sample in a medium containing syringate as the sole organic carbon source and with a N2-CO2 atmosphere. An isolate which demethylated syringate was obtained from the enrichment on an agar medium incubated under a H2-CO2 but not a N2-CO2 or N2 atmosphere. O demethylation of syringate of this isolate was dependent on the presence of both H2 and CO2 in the gas phase. The metabolism of syringate occurred in a sequential manner: methylgallate accumulated transiently before it was converted to gallate. Mass balance analysis suggests that the stoichiometry of the reaction in this isolate proceeds in accordance with the following generalized equation: C7H3O3(OCH3)n- + nHCO3- + nH2 → C7H3O3(OH)n- + nCH3COO- + nH2O. Images PMID:16348928

  7. Biogeochemical Coupling of Fe and Tc Speciation in Subsurface Sediments: Implications to Long-Term Tc Immobilization

    SciTech Connect

    Zachara, John M.; Kukkadapu, Ravi K.; Heald, Steve M.; McKinley, James P.; Dohnalkova, Alice C.; Fredrickson, James K.; Byong-Hun Jeon

    2006-04-05

    The overall project has been investigating the reactivity of pertechnetate [Tc(VII)] with Fe(II) forms in model mineral and mineral-microbe systems, and with sediments from the Oak Ridge FRC and the Hanford site. Past project results with Hanford and Oak Ridge sediments have been published in Fredrickson et al., (2004) and Kukkadapu et al., (2006). This poster summarizes a series of model system experiments that investigates whether microbes or biogenic Fe(II) were more important in the reduction of Tc(VII) in an anoxic suspension of ferrihydrite, Shewanella oneidensis MR-1, Tc(VII), and electron donor. Ferrihydrite is used to represent a bioavailable Fe(III) oxide present in small amounts in Oak Ridge and Hanford sediments. In order to address this overall goal, Tc(VII) reduction rates and redox products were studied in less complex systems where individual abiotic and biotic reactions were isolated for rigorous characterization. The specific objectives of the individual experiments in the series were as follows: (1) Identify the rates and products of the reaction of Tc(VII) with aqueous Fe(II) at circumneutral pH values (homogeneous reduction). (2) Identify the rates and products of the reaction of Tc(VII) with surface complexed Fe(II) on goethite and hematite in the circumneutral pH range (heterogeneous reduction). (3) Identify the rates and products of the reaction of Tc(VII) with MR-1 under anoxic conditions individually with hydrogen and lactate as electron donors (biologic reduction). (4) Use insights from the above experiments to determine which of the three above, potentially parallel reactions determine the final speciation of Tc in a mixture of ferrihydrite, respiring MR-1, and Tc(VII).

  8. DOE ER63951-3 Final Report: An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

    SciTech Connect

    Susan Pfiffner

    2010-06-28

    The objective of this research was to examine the importance of microbial community structure in influencing uranium reduction rates in subsurface sediments. If the redox state alone is the key to metal reduction, then any organisms that can utilize the oxygen and nitrate in the subsurface can change the geochemical conditions so metal reduction becomes an energetically favored reaction. Thus, community structure would not be critical in determining rates or extent of metal reduction unless community structure influenced the rate of change in redox. Alternatively, some microbes may directly catalyze metal reduction (e.g., specifically reduce U). In this case the composition of the community may be more important and specific types of electron donors may promote the production of communities that are more adept at U reduction. Our results helped determine if the type of electron donor or the preexisting community is important in the bioremediation of metal-contaminated environments subjected to biostimulation. In a series of experiments at the DOE FRC site in Oak Ridge we have consistently shown that all substrates promoted nitrate reduction, while glucose, ethanol, and acetate always promoted U reduction. Methanol only occasionally promoted extensive U reduction which is possibly due to community heterogeneity. There appeared to be limitations imposed on the community related to some substrates (e.g. methanol and pyruvate). Membrane lipid analyses (phospholipids and respiratory quinones) indicated different communities depending on electron donor used. Terminal restriction fragment length polymorphism and clone libraries indicated distinct differences among communities even in treatments that promoted U reduction. Thus, there was enough metabolic diversity to accommodate many different electron donors resulting in the U bioimmobilization.

  9. Influence of Microscopic Diffusive Process on Uranyl Precipitation and Dissolution in Subsurface Sediments at Hanford Site, USA

    SciTech Connect

    Liu, Chongxuan; Zachara, John M.; McKinley, James P.; Wang, Zheming; Majors, Paul D.

    2004-03-29

    Uranium in DOE Hanford sediments was found to be distributed as uranyl silicate precipitates almost exclusively within interiors of sediment grains. The precipitates were minute, generally 1-3 {micro}m across in either radiating or parallel arrays in intraparticle microfractures of a few microns width and variable connectivity to particle surfaces. Grain-scale porosity, tortuosity and diffusivity of tracer (H2O) and U(VI) were measured and imaged using various spectroscopic techniques. Simulations using a microscopic reactive diffusion model suggested that diffusion-limited mass transport generated a favorable thermodynamic condition within the grain microfractures for precipitation and concentration of uranium from waste plumes. The rate and extent of uranyl precipitate dissolution were studied in various electrolytes with variable pH under ambient CO2 pressure. Uranium speciation and distribution before and after dissolution were monitored by spectroscopic and imaging techniques . Experimental, spectroscopic and modeling results collectively indicated that dissolution of uranyl precipitates was controlled by diffusion-limited dissolution kinetics.

  10. Deep subsurface microbial processes

    USGS Publications Warehouse

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  11. Tianweitania sediminis gen. nov., sp. nov., a member of the family Phyllobacteriaceae, isolated from subsurface sediment core.

    PubMed

    Han, Lu; Mo, Yongxin; Feng, Qingqing; Zhang, Rengang; Zhao, Xingmin; Lv, Jie; Xie, Bing

    2016-02-01

    A bacterial strain, designated Z8T, was isolated from the terrestrial sediment of the Mohe Basin in north-east China. Phylogenetic analyses of 16S rRNA genes showed that this strain belonged to the family Phyllobacteriaceae, and was most closely related to Phyllobacterium bourgognense, with a sequence similarity of 96.9 %. The major cellular fatty acids were summed feature 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B) and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The major respiratory quinone was ubiquinone-10. The three major polar lipids of strain Z8T consisted of glycolipids, phosphatidylethanolamine and phosphatidylmethylethanolamine. The DNA G+C content was 59.6 mol%. The chemotaxonomic characteristics of strain Z8T differed in some respects from those of members of the family Phyllobacteriaceae. Based on phylogenetic, phenotypic and chemotaxonomic data, strain Z8T is considered to represent a novel species of a novel genus within the family Phyllobacteriaceae, for which the name Tianweitania sediminis gen. nov., sp. nov. is proposed. The type strain is Z8T ( = CGMCC 1.12944T = JCM 30358T). PMID:26597787

  12. Keep your Sox on: Community genomics-directed isolation and microscopic characterization of the dominant subsurface sulfur-oxidizing bacterium in a sediment aquifer

    NASA Astrophysics Data System (ADS)

    Mullin, S. W.; Wrighton, K. C.; Luef, B.; Wilkins, M. J.; Handley, K. M.; Williams, K. H.; Banfield, J. F.

    2012-12-01

    Community genomics and proteomics (proteogenomics) can be used to predict the metabolic potential of complex microbial communities and provide insight into microbial activity and nutrient cycling in situ. Inferences regarding the physiology of specific organisms then can guide isolation efforts, which, if successful, can yield strains that can be metabolically and structurally characterized to further test metagenomic predictions. Here we used proteogenomic data from an acetate-stimulated, sulfidic sediment column deployed in a groundwater well in Rifle, CO to direct laboratory amendment experiments to isolate a bacterial strain potentially involved in sulfur oxidation for physiological and microscopic characterization (Handley et al, submitted 2012). Field strains of Sulfurovum (genome r9c2) were predicted to be capable of CO2 fixation via the reverse TCA cycle and sulfur oxidation (Sox and SQR) coupled to either nitrate reduction (Nap, Nir, Nos) in anaerobic environments or oxygen reduction in microaerobic (cbb3 and bd oxidases) environments; however, key genes for sulfur oxidation (soxXAB) were not identified. Sulfidic groundwater and sediment from the Rifle site were used to inoculate cultures that contained various sulfur species, with and without nitrate and oxygen. We isolated a bacterium, Sulfurovum sp. OBA, whose 16S rRNA gene shares 99.8 % identity to the gene of the dominant genomically characterized strain (genome r9c2) in the Rifle sediment column. The 16S rRNA gene of the isolate most closely matches (95 % sequence identity) the gene of Sulfurovum sp. NBC37-1, a genome-sequenced deep-sea sulfur oxidizer. Strain OBA grew via polysulfide, colloidal sulfur, and tetrathionate oxidation coupled to nitrate reduction under autotrophic and mixotrophic conditions. Strain OBA also grew heterotrophically, oxidizing glucose, fructose, mannose, and maltose with nitrate as an electron acceptor. Over the range of oxygen concentrations tested, strain OBA was not

  13. Short-Read Assembly of Full-Length 16S Amplicons Reveals Bacterial Diversity in Subsurface Sediments

    PubMed Central

    Miller, Christopher S.; Handley, Kim M.; Wrighton, Kelly C.; Frischkorn, Kyle R.; Thomas, Brian C.; Banfield, Jillian F.

    2013-01-01

    In microbial ecology, a fundamental question relates to how community diversity and composition change in response to perturbation. Most studies have had limited ability to deeply sample community structure (e.g. Sanger-sequenced 16S rRNA libraries), or have had limited taxonomic resolution (e.g. studies based on 16S rRNA hypervariable region sequencing). Here, we combine the higher taxonomic resolution of near-full-length 16S rRNA gene amplicons with the economics and sensitivity of short-read sequencing to assay the abundance and identity of organisms that represent as little as 0.01% of sediment bacterial communities. We used a new version of EMIRGE optimized for large data size to reconstruct near-full-length 16S rRNA genes from amplicons sheared and sequenced with Illumina technology. The approach allowed us to differentiate the community composition among samples acquired before perturbation, after acetate amendment shifted the predominant metabolism to iron reduction, and once sulfate reduction began. Results were highly reproducible across technical replicates, and identified specific taxa that responded to the perturbation. All samples contain very high alpha diversity and abundant organisms from phyla without cultivated representatives. Surprisingly, at the time points measured, there was no strong loss of evenness, despite the selective pressure of acetate amendment and change in the terminal electron accepting process. However, community membership was altered significantly. The method allows for sensitive, accurate profiling of the “long tail” of low abundance organisms that exist in many microbial communities, and can resolve population dynamics in response to environmental change. PMID:23405248

  14. Genetic Diversity among Arthrobacter Species Collected across a Heterogeneous Series of Terrestrial Deep-Subsurface Sediments as Determined on the Basis of 16S rRNA and recA Gene Sequences

    PubMed Central

    van Waasbergen, Lorraine G.; Balkwill, David L.; Crocker, Fiona H.; Bjornstad, Bruce N.; Miller, Robert V.

    2000-01-01

    This study was undertaken in an effort to understand how the population structure of bacteria within terrestrial deep-subsurface environments correlates with the physical and chemical structure of their environment. Phylogenetic analysis was performed on strains of Arthrobacter that were collected from various depths, which included a number of different sedimentary units from the Yakima Barricade borehole at the U.S. Department of Energy's Hanford site, Washington, in August 1992. At the same time that bacteria were isolated, detailed information on the physical, chemical, and microbiological characteristics of the sediments was collected. Phylogenetic trees were prepared from the 39 deep-subsurface Arthrobacter isolates (as well as 17 related type strains) based on 16S rRNA and recA gene sequences. Analyses based on each gene independently were in general agreement. These analyses showed that, for all but one of the strata (sedimentary layers characterized by their own unifying lithologic composition), the deep-subsurface isolates from the same stratum are largely monophyletic. Notably, the layers for which this is true were composed of impermeable sediments. This suggests that the populations within each of these strata have remained isolated under constant, uniform conditions, which have selected for a particular dominant genotype in each stratum. Conversely, the few strains isolated from a gravel-rich layer appeared along several lineages. This suggests that the higher-permeability gravel decreases the degree of isolation of this population (through greater groundwater flow), creating fluctuations in environmental conditions or allowing migration, such that a dominant population has not been established. No correlation was seen between the relationship of the strains and any particular chemical or physical characteristics of the sediments. Thus, this work suggests that within sedimentary deep-subsurface environments, permeability of the deposits plays a major

  15. Characteristics of the surface-subsurface flow generation and sediment yield to the rainfall regime and land-cover by long-term in-situ observation in the red soil region, Southern China

    NASA Astrophysics Data System (ADS)

    Liu, Yao-Jun; Yang, Jie; Hu, Jian-Min; Tang, Chong-Jun; Zheng, Hai-Jin

    2016-08-01

    Land cover and rainfall regime are two important factors that affect soil erosion. In this paper, three land cover types - grass cover, litter cover and bare land - were employed to analyze surface runoff, subsurface flow and sediment loss processes in relation to the rainfall regimes in the red soil region of China. Five rainfall regimes were classified according to 393 rainfall events via a k-means clustering method based on the rainfall depth, duration and maximum 30-min intensity. The highest surface runoff coefficient and erosion amount were found on bare land in all five rainfall regimes, and the lowest were found on grass cover. The litter cover generated the highest subsurface flow rate, followed by the grass cover; the lowest was on bare land. For grass cover and litter cover plots, rainfall events of rainfall regime IV which had the longest duration, greatest depth and lowest intensity had the highest surface runoff coefficient, soil erosion amount and subsurface flow rate. For bare land, storm rainfall events of rainfall regime V had the highest intensity, lowest depth and duration, had the highest surface runoff coefficient and soil erosion amount, but the lowest subsurface flow rate. The highest subsurface flow rate of bare land happened in rainfall regime IV. Surface cover was urgently needed to reduce soil erosion. When the lands under dense surface cover, more attention should be paid to rainfall events that of long duration, high depth but low in intensity which commonly occurred in spring. The interactions of surface-subsurface flow and its effects on soil erosion and nutrient loss were worth considering in the red soil region.

  16. REDUCTIVE IMMOBILIZATION OF U(VI) IN FE(III) OXIDE-REDUCING SUBSURFACE SEDIMENTS: ANALYSIS OF COUPLED MICROBIAL-GEOCHEMICAL PROCESSES IN EXPERIMENTAL REACTIVE TRANSPORT SYSTEMS

    EPA Science Inventory

    Although the fundamental microbiological and geochemical processes underlying the potential use of dissimilatory metal-reducing bacteria (DMRB) to create subsurface redox barriers for immobilization of uranium and other redox-sensitive metal/radionuclide contaminants are well-und...

  17. MORPHOLOGICAL AND CULTURAL COMPARISON OF MICROORGANISMS IN SURFACE SOIL AND SUBSURFACE SEDIMENTS AT A PRISTINE STUDY SITE IN OKLAHOMA (JOURNAL VERSION)

    EPA Science Inventory

    Surface-soil and subsurface microfloras at the site of a shallow aquifer in Oklahoma were examined and compared with respect to (1) total and viable cell numbers, (2) colony and cell types that grew on various plating media, (3) cell morphologies seen in flotation films stripped ...

  18. Subsurface sounders

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airborne or spaceborne electromagnetic systems used to detect subsurface features are discussed. Data are given as a function of resistivity of ground material, magnetic permeability of free space, and angular frequency. It was noted that resistivities vary with the water content and temperature.

  19. Subsurface Mapping

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Target areas for sinking base holes, underground pipelines, etc., can be identified with the assistance of NASA Ames developed technology, by Airborne Pipeline Services, Inc. Subsurface features are computer processed; the system can cover 250 miles a day and was first developed by Applied Science, Inc.

  20. Microbial activities in deep subsurface environments

    SciTech Connect

    Phelps, T.J.; Raione, E.G.; White, D.C. |; Fliermans, C.B.

    1988-12-31

    Activities of microorganisms residing in terrestrial deep subsurface sediments were examined in forty-six sediment samples from three aseptically sampled boreholes. Radiolabeled time course experiments assessing in situ microbial activities were initiated within 30 minutes of core recovery. [{sup 14}C-1-] Acetate incorporation into lipids. [methyl-{sup 3}H-]thymidine incorporation into DNA, [{sup 14}C-2-]acetate and [{sup 14}C-U-]glucose mineralization in addition to microbial enrichment and enumeration studies were examined in surface and subsurface sediments. Surface soils contained the greatest biomass and activities followed by the shallow aquifer zones. Water saturated subsurface sediments exhibited three to four orders of magnitude greater activity and culturable microorganisms than the dense clay zones. Regardless of depth, sediments which contained more than 20% clays exhibited the lowest activities and culturable microorganisms.

  1. Reductive immobilization of U(VI) in Fe(III) oxide-reducing subsurface sediments: Analysis of coupled microbial-geochemical processes in experimental reactive transport systems

    SciTech Connect

    Roden, Eric E.; Urrutia, Matilde M.; Barnett, Mark O.; Lange, Clifford r.

    2002-12-06

    Although the fundamental microbiological and geochemical processes underlying the potential use of dissimilatory metal-reducing bacteria (DMRB) to create subsurface redox barriers for immobilization of uranium and other redox-sensitive metal/radionuclide contaminants are well-understood (Lovley et al., 1991; Gorby and Lovley, 1992; Lovley and Phillips, 1992; Lovley, 1995; Fredrickson et al., 2000; Wielinga et al., 2000; Wielinga et al., 2001), several fundamental scientific questions need to be addressed in order to understand and predict how such treatment procedures would function under in situ conditions in the subsurface. These questions revolve around the dynamic interactions between hydrologic flux and the coupled microbial-geochemical processes which are likely to occur within a redox barrier treatment zone.

  2. Environmental factors affecting distribution and abundance of bacteria, fungi and protozoa in subsurface sediments of the Upper Atlantic Coastal Plain, USA

    SciTech Connect

    Levine, S.N.; Ghiorse, W.C.

    1990-12-31

    Exploratory statistical analyses of microbiological, hydrological and geochemical data for samples from four boreholes drilled into Upper Atlantic Coastal Plain sediments near the Savannah River Site, SC, showed highly significant correlations between bacterial abundance (AODC and CFU) and hydraulic conductivity (K). Sediment texture variables (% sand (S), % silt, % clay (C), and S/C) were strongly interrelated with K and, therefore, also correlated with bacterial abundance. AODC did not correlate with the concentrations of dissolved inorganic nitrogen (DIN) or dissolved organic carbon (DOC) in pore water. CFU also did not correlate with DIN, but a negative relationship was found between the CFU and DOC for sandy sediments, suggesting that microbial activity may control pore water DOC concentration. In some, but not all boreholes, AODC and CFU correlated negatively with pore water concentrations of metals and positively with pH. Protozoan abundance correlated strongly with AODC and CFU in the two boreholes closest to the recharge areas for their major aquifers. It also correlated with sediment texture variables, but not with K. Fungal abundance did not correlate with the abundance of other microbial types when data from individual boreholes were considered; however it did correlate with both bacterial and protozoan abundance when data from all four boreholes were combined. There was no relationship between fungal abundance and either K or sediment texture.

  3. Environmental factors affecting distribution and abundance of bacteria, fungi and protozoa in subsurface sediments of the Upper Atlantic Coastal Plain, USA

    SciTech Connect

    Levine, S.N.; Ghiorse, W.C.

    1990-01-01

    Exploratory statistical analyses of microbiological, hydrological and geochemical data for samples from four boreholes drilled into Upper Atlantic Coastal Plain sediments near the Savannah River Site, SC, showed highly significant correlations between bacterial abundance (AODC and CFU) and hydraulic conductivity (K). Sediment texture variables (% sand (S), % silt, % clay (C), and S/C) were strongly interrelated with K and, therefore, also correlated with bacterial abundance. AODC did not correlate with the concentrations of dissolved inorganic nitrogen (DIN) or dissolved organic carbon (DOC) in pore water. CFU also did not correlate with DIN, but a negative relationship was found between the CFU and DOC for sandy sediments, suggesting that microbial activity may control pore water DOC concentration. In some, but not all boreholes, AODC and CFU correlated negatively with pore water concentrations of metals and positively with pH. Protozoan abundance correlated strongly with AODC and CFU in the two boreholes closest to the recharge areas for their major aquifers. It also correlated with sediment texture variables, but not with K. Fungal abundance did not correlate with the abundance of other microbial types when data from individual boreholes were considered; however it did correlate with both bacterial and protozoan abundance when data from all four boreholes were combined. There was no relationship between fungal abundance and either K or sediment texture.

  4. Mineralogic Residence and Desorption Rates of Sorbed 90Sr in Contaminated Subsurface Sediments: Implications to Future Behavior and In-Ground Stability

    SciTech Connect

    PIs: John M. Zachara; Jim P. McKinley; S. M. Heald; Chongxuan Liu; Peter C. Lichtner

    2006-06-01

    The project is investigating the adsorption/desorption process of 90Sr in coarse-textured pristine and contaminated Hanford sediment with the goal to define a generalized reaction-based model for use in reactive transport calculations. While it is known that sorbed 90Sr exists in an ion exchangeable state, the mass action relationships that control the solid-liquid distribution and the mineral phases responsible for adsorption have not been defined. Many coarse-textured Hanford sediment display significant sorptivity for 90Sr, but contain few if any fines that may harbor phyllosilicates with permanent negative charge and associated cation exchange capacity. Moreover, it is not known whether the adsorption-desorption process exhibits time dependence within context of transport, and if so, the causes for kinetic behavior.

  5. Rudimentary Cleaning Compared to Level 300A

    NASA Technical Reports Server (NTRS)

    Arpin, Christina Y. Pina; Stoltzfus, Joel

    2012-01-01

    A study was done to characterize the cleanliness level achievable when using a rudimentary cleaning process, and results were compared to JPR 5322.1G Level 300A. While it is not ideal to clean in a shop environment, some situations (e.g., field combat operations) require oxygen system hardware to be maintained and cleaned to prevent a fire hazard, even though it cannot be sent back to a precision cleaning facility. This study measured the effectiveness of basic shop cleaning. Initially, three items representing parts of an oxygen system were contaminated: a metal plate, valve body, and metal oxygen bottle. The contaminants chosen were those most likely to be introduced to the system during normal use: oil, lubricant, metal shavings/powder, sand, fingerprints, tape, lip balm, and hand lotion. The cleaning process used hot water, soap, various brushes, gaseous nitrogen, water nozzle, plastic trays, scouring pads, and a controlled shop environment. Test subjects were classified into three groups: technical professionals having an appreciation for oxygen hazards; professional precision cleaners; and a group with no previous professional knowledge of oxygen or precision cleaning. Three test subjects were in each group, and each was provided with standard cleaning equipment, a cleaning procedure, and one of each of the three test items to clean. The results indicated that the achievable cleanliness level was independent of the technical knowledge or proficiency of the personnel cleaning the items. Results also showed that achieving a Level 300 particle count was more difficult than achieving a Level A nonvolatile residue amount.

  6. 21 CFR 520.300a - Cambendazole suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Cambendazole suspension. 520.300a Section 520.300a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.300a Cambendazole suspension. (a) Specifications. Each fluid...

  7. 21 CFR 520.300a - Cambendazole suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Cambendazole suspension. 520.300a Section 520.300a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.300a Cambendazole suspension. (a) Specifications. Each fluid...

  8. Tangible Exploration of Subsurface Data

    NASA Astrophysics Data System (ADS)

    Petrasova, A.; Harmon, B.; Mitasova, H.; White, J.

    2014-12-01

    Since traditional subsurface visualizations using 2D maps, profiles or charts can be difficult to interpret and often do not convey information in an engaging form, scientists are interested in developing alternative visualization techniques which would help them communicate the subsurface volume data with students and general public. We would like to present new technique for interactive visualization of subsurface using Tangible geospatial modeling and visualization system (Tangeoms). It couples a physical, three-dimensional model with geospatial modeling and analysis through a cycle of scanning and projection. Previous applications of Tangeoms were exploring the impact of terrain modifications on surface-based geophysical processes, such as overland water flow, sediment transport, and also on viewsheds, cast shadows or solar energy potential. However, Tangeoms can serve as a tool for exploring subsurface as well. By creating a physical sand model of a study area, removing the sand from different parts of the model and projecting the computed cross-sections, we can look under the ground as if we were at an excavation site, and see the actual data represented as a 3D raster in that particular part of the model. Depending on data availability, we can also incorporate temporal dimension. Our method is an intuitive and natural way of exploring subsurface data and for users, it represents an alternative to more abstract 3D computer visualization tools, by offering direct, tangible interface.

  9. Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium.

    PubMed

    Nguyen, Hung Duc; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I; Kemner, Kenneth M; Fredrickson, Jim K; Beyenal, Haluk

    2012-01-01

    The presence and importance of microenvironments in the subsurface at contaminated sites were suggested by previous geochemical studies. However, no direct quantitative characterization of the geochemical microenvironments had been reported. We quantitatively characterized microscale geochemical gradients (dissolved oxygen (DO), H(2), pH, and redox potential) in Hanford 300A subsurface sediment biofilms. Our results revealed significant differences in geochemical parameters across the sediment biofilm/water interface in the presence and absence of U(VI) under oxic and anoxic conditions. While the pH was relatively constant within the sediment biofilm, the redox potential and the DO and H(2) concentrations were heterogeneous at the microscale (<500-1000 μm). We found microenvironments with high DO levels (DO hotspots) when the sediment biofilm was exposed to U(VI). On the other hand, we found hotspots (high concentrations) of H(2) under anoxic conditions both in the presence and in the absence of U(VI). The presence of anoxic microenvironments inside the sediment biofilms suggests that U(VI) reduction proceeds under bulk oxic conditions. To test this, we operated our biofilm reactor under air-saturated conditions in the presence of U(VI) and characterized U speciation in the sediment biofilm. U L(III)-edge X-ray absorption spectroscopy (XANES and EXAFS) showed that 80-85% of the U was in the U(IV) valence state. PMID:22078229

  10. Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium

    SciTech Connect

    Nguyen, Hung D.; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I.; Kemner, Kenneth M.; Fredrickson, Jim K.; Beyenal, Haluk

    2012-01-01

    The presence and importance of microenvironments in the subsurface at contaminated sites were suggested by previous geochemical studies. However, no direct quantitative characterization of the geochemical microenvironments had been reported. We quantitatively characterized microscale geochemical gradients (dissolved oxygen (DO), H(2), pH, and redox potential) in Hanford 300A subsurface sediment biofilms. Our results revealed significant differences in geochemical parameters across the sediment biofilm/water interface in the presence and absence of U(VI) under oxic and anoxic conditions. While the pH was relatively constant within the sediment biofilm, the redox potential and the DO and H(2) concentrations were heterogeneous at the microscale (<500-1000 μm). We found microenvironments with high DO levels (DO hotspots) when the sediment biofilm was exposed to U(VI). On the other hand, we found hotspots (high concentrations) of H(2) under anoxic conditions both in the presence and in the absence of U(VI). The presence of anoxic microenvironments inside the sediment biofilms suggests that U(VI) reduction proceeds under bulk oxic conditions. To test this, we operated our biofilm reactor under air-saturated conditions in the presence of U(VI) and characterized U speciation in the sediment biofilm. U L(III)-edge X-ray absorption spectroscopy (XANES and EXAFS) showed that 80-85% of the U was in the U(IV) valence state.

  11. Isolation, Characterization, and U(VI)-Reducing Potential of a Facultatively Anaerobic, Acid-Resistant Bacterium from Low-pH, Nitrate- and U(VI)-Contaminated Subsurface Sediment and Description of Salmonella subterranea sp. nov.

    PubMed Central

    Shelobolina, Evgenya S.; Sullivan, Sara A.; O'Neill, Kathleen R.; Nevin, Kelly P.; Lovley, Derek R.

    2004-01-01

    A facultatively anaerobic, acid-resistant bacterium, designated strain FRCl, was isolated from a low-pH, nitrate- and U(VI)-contaminated subsurface sediment at site FW-024 at the Natural and Accelerated Bioremediation Research Field Research Center in Oak Ridge, Tenn. Strain FRCl was enriched at pH 4.5 in minimal medium with nitrate as the electron acceptor, hydrogen as the electron donor, and acetate as the carbon source. Clones with 16S ribosomal DNA (rDNA) sequences identical to the sequence of strain FRCl were also detected in a U(VI)-reducing enrichment culture derived from the same sediment. Cells of strain FRCl were gram-negative motile regular rods 2.0 to 3.4 μm long and 0.7 to 0.9 μm in diameter. Strain FRCl was positive for indole production, by the methyl red test, and for ornithine decarboxylase; it was negative by the Voges-Proskauer test (for acetylmethylcarbinol production), for urea hydrolysis, for arginine dihydrolase, for lysine decarboxylase, for phenylalanine deaminase, for H2S production, and for gelatin hydrolysis. Strain FRCl was capable of using O2, NO3−, S2O32−, fumarate, and malate as terminal electron acceptors and of reducing U(VI) in the cell suspension. Analysis of the 16S rDNA sequence of the isolate indicated that this strain was 96.4% similar to Salmonella bongori and 96.3% similar to Enterobacter cloacae. Physiological and phylogenetic analyses suggested that strain FRCl belongs to the genus Salmonella and represents a new species, Salmonella subterranea sp. nov. PMID:15128557

  12. Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant Bacterium from Low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranea sp. nov.

    PubMed

    Shelobolina, Evgenya S; Sullivan, Sara A; O'Neill, Kathleen R; Nevin, Kelly P; Lovley, Derek R

    2004-05-01

    A facultatively anaerobic, acid-resistant bacterium, designated strain FRCl, was isolated from a low-pH, nitrate- and U(VI)-contaminated subsurface sediment at site FW-024 at the Natural and Accelerated Bioremediation Research Field Research Center in Oak Ridge, Tenn. Strain FRCl was enriched at pH 4.5 in minimal medium with nitrate as the electron acceptor, hydrogen as the electron donor, and acetate as the carbon source. Clones with 16S ribosomal DNA (rDNA) sequences identical to the sequence of strain FRCl were also detected in a U(VI)-reducing enrichment culture derived from the same sediment. Cells of strain FRCl were gram-negative motile regular rods 2.0 to 3.4 micro m long and 0.7 to 0.9 microm in diameter. Strain FRCl was positive for indole production, by the methyl red test, and for ornithine decarboxylase; it was negative by the Voges-Proskauer test (for acetylmethylcarbinol production), for urea hydrolysis, for arginine dihydrolase, for lysine decarboxylase, for phenylalanine deaminase, for H(2)S production, and for gelatin hydrolysis. Strain FRCl was capable of using O(2), NO(3)(-), S(2)O(3)(2-), fumarate, and malate as terminal electron acceptors and of reducing U(VI) in the cell suspension. Analysis of the 16S rDNA sequence of the isolate indicated that this strain was 96.4% similar to Salmonella bongori and 96.3% similar to Enterobacter cloacae. Physiological and phylogenetic analyses suggested that strain FRCl belongs to the genus Salmonella and represents a new species, Salmonella subterranea sp. nov. PMID:15128557

  13. Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments

    SciTech Connect

    Holmes, Dawn; O'Neil, Regina; Vrionis, Helen A.; N'guessan, Lucie A.; Ortiz-Bernad, Irene; Larrahondo, Maria J.; Adams, Lorrie A.; Ward, Joy A.; Nicoll, Julie S.; Nevin, Kelly P.; Chavan, Milind A.; Johnson, Jessica P.; Long, Philip E.; Lovely, Derek R.

    2007-12-01

    There are distinct differences in the physiology of Geobacter species available in pure culture. Therefore, to understand the ecology of Geobacter species in subsurface environments, it is important to know which species predominate. Clone libraries were assembled with 16S rRNA genes and transcripts amplified from three subsurface environments in which Geobacter species are known to be important members of the microbial community: (1) a uranium-contaminated aquifer located in Rifle, CO, USA undergoing in situ bioremediation; (2) an acetate-impacted aquifer that serves as an analog for the long-term acetate amendments proposed for in situ uranium bioremediation and (3) a petroleum-contaminated aquifer in which Geobacter species play a role in the oxidation of aromatic hydrocarbons coupled with the reduction of Fe(III). The majority of Geobacteraceae 16S rRNA sequences found in these environments clustered in a phylogenetically coherent subsurface clade, which also contains a number of Geobacter species isolated from subsurface environments. Concatamers constructed with 43 Geobacter genes amplified from these sites also clustered within this subsurface clade. 16S rRNA transcript and gene sequences in the sediments and groundwater at the Rifle site were highly similar, suggesting that sampling groundwater via monitoring wells can recover the most active Geobacter species. These results suggest that further study of Geobacter species in the subsurface clade is necessary to accurately model the behavior of Geobacter species during subsurface bioremediation of metal and organic contaminants

  14. Complete Genome Sequence of Anaeromyxobacter sp. Fw109-5, an Anaerobic, Metal-Reducing Bacterium Isolated from a Contaminated Subsurface Environment.

    PubMed

    Hwang, C; Copeland, A; Lucas, S; Lapidus, A; Barry, K; Glavina Del Rio, T; Dalin, E; Tice, H; Pitluck, S; Sims, D; Brettin, T; Bruce, D C; Detter, J C; Han, C S; Schmutz, J; Larimer, F W; Land, M L; Hauser, L J; Kyrpides, N; Lykidis, A; Richardson, P; Belieav, A; Sanford, R A; Löeffler, F E; Fields, M W

    2015-01-01

    We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium's genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation. PMID:25614562

  15. Complete genome sequence of Anaeromyxobacter sp. Fw109-5, an Anaerobic, Metal-Reducing Bacterium Isolated from a Contaminated Subsurface Environment

    DOE PAGESBeta

    Hwang, C.; Copeland, A.; Lucas, Susan; Lapidus, Alla; Barry, Kerrie W.; Glavina del Rio, T.; Dalin, Eileen; Tice, Hope; Pitluck, S.; Sims, David R.; et al

    2015-01-22

    We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium’s genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation.

  16. LeCroy MQT300A - charge to time converter

    SciTech Connect

    Yamrone, B.; Roberts, K.; Kelly, J.

    1997-12-31

    The MQT300A was developed to offer high resolution (12 bit) and wide dynamic range (18 bit) with reasonable cost, high density and fast conversion time (< 10 {mu}s). The reduced conversion time has allowed its first users the option to choose whether or not to develop a fast clear strategy as part of their trigger system. It can also be used for chamber-mounted applications allowing compact digital data cabling to the remote TDC. The MQT300A is a custom development produced in collaboration with the BELLE collaboration at KEK and the CLEO group at Cornell. In this collaboration Cornell and KEK were partners with LeCroy in both the specification and evaluation of the first prototypes. LeCroy has been responsible for the remainder of the project. The MQT300A is available in LeCroy modules and also as a separate monolithic. The MQT300A was designed to take advantage of the latest generation of multi-hit TDCs, for example the LeCroy 1877S FASTBUS ADC. The 1877S was specifically optimized to improve conversion time and to intelligently minimize the data record size for the MQT300A application. A prototype part was designed and fabricated using a custom bipolar process. Though fully functional it did not meet several important performance specifications. A reiteration with significant redesign of two sections resulted in a part that meets all specifications. The unique encoding algorithm used to provide auto-ranging has had a U.S. patent allowed. The part is now commercially available in production volumes.

  17. Molecular analysis of deep subsurface bacteria

    SciTech Connect

    Jimenez Baez, L.E.

    1989-09-01

    Deep sediments samples from site C10a, in Appleton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina were studied to determine their microbial community composition, DNA homology and mol %G+C. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. Total DNA hybridization and mol %G+C analysis of deep sediment bacterial isolates suggested that each formation is comprised of different microbial communities. Depositional environment was more important than site and geological formation on the DNA relatedness between deep subsurface bacteria, since more 70% of bacteria with 20% or more of DNA homology came from the same depositional environments. Based on phenotypic and genotypic tests Pseudomonas spp. and Acinetobacter spp.-like bacteria were identified in 85 million years old sediments. This suggests that these microbial communities might have been adapted during a long period of time to the environmental conditions of the deep subsurface.

  18. Subsurface Microbiology and Biogeochemistry

    SciTech Connect

    Fredrickson, Jim K.; Fletcher, Madilyn

    2001-05-01

    Jim contributed a chapter to this book, in addition to co-editing it with Madilyn Fletcher. Fredrickson, J. K., and M. Fletcher. (eds.) 2001 Subsurface Microbiology and Biogeochemistry. Wiley-Liss, Inc., New York.

  19. Ceramic subsurface marker prototypes

    SciTech Connect

    Lukens, C.E.

    1985-05-02

    The client submitted 5 sets of porcelain and stoneware subsurface (radioactive site) marker prototypes (31 markers each set). The following were determined: compressive strength, thermal shock resistance, thermal crazing resistance, alkali resistance, color retention, and chemical resistance.

  20. Molecular analysis of deep subsurface bacteria

    SciTech Connect

    Jimenez, L.E.

    1989-11-01

    Deep sediments samples from site C10a, in Appelton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina, were studied to determine their microbial community composition, DNA homology and mol %G+C. Additional studies were done in adjacent groundwater wells at the 3 SRS sites. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Sediment age ranged from 37 to 85 million years old. Bacterial densities by acridine orange direct counts (AODC) and viable counts on 1% PTYG media were significantly higher at deep sediments than in groundwater wells. Metabolic tests of bacterial isolates showed no significant difference between both habitats. However, sediment isolates showed higher percentages in the carbon assimilation tests than groundwater isolates. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. The mol %G+C of deep subsurface bacteria ranged from 20 to 77%, with more than 60% and 12% of the isolates tested showing values similar to the {ital Pseudomonas} spp. and {ital Acinetobacter} spp., respectively. 200 refs., 18 figs., 24 tabs.

  1. Subsurface Contamination Control

    SciTech Connect

    Y. Yuan

    2001-12-12

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a

  2. 17 CFR 301.300a - Form 300-A, for summary of buy-ins or sell-outs of all open contractual commitments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Form 300-A, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Form 300-A, for summary of buy... Form 300-A, for summary of buy-ins or sell-outs of all open contractual commitments. This form shall...

  3. 17 CFR 301.300a - Form 300-A, for summary of buy-ins or sell-outs of all open contractual commitments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Form 300-A, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Form 300-A, for summary of buy... Form 300-A, for summary of buy-ins or sell-outs of all open contractual commitments. This form shall...

  4. 17 CFR 301.300a - Form 300-A, for summary of buy-ins or sell-outs of all open contractual commitments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Form 300-A, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Form 300-A, for summary of buy... Form 300-A, for summary of buy-ins or sell-outs of all open contractual commitments. This form shall...

  5. 17 CFR 301.300a - Form 300-A, for summary of buy-ins or sell-outs of all open contractual commitments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Form 300-A, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Form 300-A, for summary of buy... Form 300-A, for summary of buy-ins or sell-outs of all open contractual commitments. This form shall...

  6. 17 CFR 301.300a - Form 300-A, for summary of buy-ins or sell-outs of all open contractual commitments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Form 300-A, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Form 300-A, for summary of buy... Form 300-A, for summary of buy-ins or sell-outs of all open contractual commitments. This form shall...

  7. Molecular analysis of deep-subsurface bacteria

    SciTech Connect

    Jimenez, L. )

    1990-07-01

    Bacterial isolates from deep-sediment samples from three sites at the Savannah River site, near Aiken, S.C., were studied to determine their microbial community composition and DNA structure by using total DNA hybridization and moles percent G+C. Standard phenotypic identification underestimated the bacterial diversity at the three sites, since isolates with the same phenotype had different DNA structures in terms of moles percent G+C and DNA homology. The G+C content of deep-subsurface bacteria ranged from 20 to 77 mol%. More than 60% of the isolates tested had G+C values similar to those of Pseudomonas spp., and 12% had values similar to those of Acinetobacter spp. No isolates from deeper formations showed the same DNA composition as isolates from upper formations. Total-DNA hybridization and DNA base composition analysis provided a better resolution than phenotypic tests for the understanding of the diversity and structure of deep-subsurface bacterial communities. On the basis of the moles percent G+C values, deep-subsurface isolates tested seemed to belong to the families Pseudomonadaceae and Neisseriaceae, which might reflect a long period of adaptation to the environmental conditions of the deep subsurface.

  8. Best Practice -- Subsurface Investigations

    SciTech Connect

    Clark Scott

    2010-03-01

    These best practices for Subsurface Survey processes were developed at the Idaho National Laboratory (INL) and later shared and formalized by a sub-committee, under the Electrical Safety Committee of EFCOG. The developed best practice is best characterized as a Tier II (enhanced) survey process for subsurface investigations. A result of this process has been an increase in the safety and lowering of overall cost, when utility hits and their related costs are factored in. The process involves improving the methodology and thoroughness of the survey and reporting processes; or improvement in tool use rather than in the tools themselves. It is hoped that the process described here can be implemented at other sites seeking to improve their Subsurface Investigation results with little upheaval to their existing system.

  9. The Serpentinite Subsurface Microbiome

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Nelson, B. Y.; Brazelton, W. J.

    2011-12-01

    Microbial habitats hosted in ultramafic rocks constitute substantial, globally-distributed portions of the subsurface biosphere, occurring both on the continents and beneath the seafloor. The aqueous alteration of ultramafics, in a process known as serpentinization, creates energy rich, high pH conditions, with low concentrations of inorganic carbon which place fundamental constraints upon microbial metabolism and physiology. Despite their importance, very few studies have attempted to directly access and quantify microbial activities and distributions in the serpentinite subsurface microbiome. We have initiated microbiological studies of subsurface seeps and rocks at three separate continental sites of serpentinization in Newfoundland, Italy, and California and compared these results to previous analyses of the Lost City field, near the Mid-Atlantic Ridge. In all cases, microbial cell densities in seep fluids are extremely low, ranging from approximately 100,000 to less than 1,000 cells per milliliter. Culture-independent analyses of 16S rRNA genes revealed low-diversity microbial communities related to Gram-positive Firmicutes and hydrogen-oxidizing bacteria. Interestingly, unlike Lost City, there has been little evidence for significant archaeal populations in the continental subsurface to date. Culturing studies at the sites yielded numerous alkaliphilic isolates on nutrient-rich agar and putative iron-reducing bacteria in anaerobic incubations, many of which are related to known alkaliphilic and subsurface isolates. Finally, metagenomic data reinforce the culturing results, indicating the presence of genes associated with organotrophy, hydrogen oxidation, and iron reduction in seep fluid samples. Our data provide insight into the lifestyles of serpentinite subsurface microbial populations and targets for future quantitative exploration using both biochemical and geochemical approaches.

  10. Subsurface connection methods for subsurface heaters

    DOEpatents

    Vinegar, Harold J.; Bass, Ronald Marshall; Kim, Dong Sub; Mason, Stanley Leroy; Stegemeier, George Leo; Keltner, Thomas Joseph; Carl, Jr., Frederick Gordon

    2010-12-28

    A system for heating a subsurface formation is described. The system includes a first elongated heater in a first opening in the formation. The first elongated heater includes an exposed metal section in a portion of the first opening. The portion is below a layer of the formation to be heated. The exposed metal section is exposed to the formation. A second elongated heater is in a second opening in the formation. The second opening connects to the first opening at or near the portion of the first opening below the layer to be heated. At least a portion of an exposed metal section of the second elongated heater is electrically coupled to at least a portion of the exposed metal section of the first elongated heater in the portion of the first opening below the layer to be heated.

  11. Identification of phosphatidylserine as a ligand for the CD300a immunoreceptor

    SciTech Connect

    Nakahashi-Oda, Chigusa; Tahara-Hanaoka, Satoko; Honda, Shin-ichiro; Japan Science and Technology Agency, CREST, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 ; Shibuya, Kazuko; Shibuya, Akira; Japan Science and Technology Agency, CREST, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer CD300a is a new phosphatidylserine receptor expressed on myeloid cells. Black-Right-Pointing-Pointer Phosphatidylserine delivers a signal for recruitment of SHP-1 by CD300a in mast cells. Black-Right-Pointing-Pointer The CD300a/phosphatidylserine interaction is blocked by MFG-E8 or anti-CD300a antibody. -- Abstract: CD300a is a member of CD300 family molecules consisting of seven genes on human chromosome 17 and nine genes in mouse chromosome 11. CD300a has a long cytoplasmic region containing the consensus immunoreceptor tyrosine-based inhibitory motif (ITIM) sequence. Upon crosslinking with antibodies against CD300a, CD300a mediates an inhibitory signal in myeloid cells. However, the ligand for CD300a has not been identified and the physiological role of CD300a remained unclear. Here, we demonstrate that the chimeric fusion protein of CD300a extracellular domain with the Fc portion of human IgG specifically bound phosphatidylserine (PS), which is exposed on the outer leaflet of the plasma membrane of apoptotic cells. PS binding to CD300a induced SHP-1 recruitment by CD300a in mast cells in response to LPS. These results indicated that CD300a is a new PS receptor.

  12. Mars penetrator: Subsurface science mission

    NASA Technical Reports Server (NTRS)

    Lumpkin, C. K.

    1974-01-01

    A penetrator system to emplace subsurface science on the planet Mars is described. The need for subsurface science is discussed, and the technologies for achieving successful atmospheric entry, Mars penetration, and data retrieval are presented.

  13. Design of 300A constant current electronic load

    NASA Astrophysics Data System (ADS)

    Cai, Ying

    2016-01-01

    Energy efficient and stable power supply is the core of most electronic products. DC electronic load is essential equipment to calibrate the DC regulated power supply. with the development of power industry towards to diversification and complication, the electronic load equipment for testing power supply is put forward higher requirements. Quality of electronic load equipment is mainly reflected in three aspects, measurement accuracy, completeness of measuring project and richness of load characteristic. In the paper, the high power and constant current DC electronic load is designed. Two pieces of D/A converter are used to constitute the 20 D/A conversion unit, to realize the minimum resolution of 0.045 mV. Four magnetic rings of high permeability and magnetic properties consistency, and the corresponding processing unit circuit compose the current sampling unit, which solve a key problem and difficulty of high precision and large current test. The three groups of 600 W power modules in parallel to realize the function of 1800 W power constant current. The electronic load has the 0 ~ 300A constant current characteristic, uncertainty of measurement is 1×10-4, and the maximum load voltage is 5V. After testing, every specifications have reached the design requirements. The load is mainly used for the metrology of DC regulated power supply.

  14. Subsurface contaminants focus area

    SciTech Connect

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  15. HARBOR ISLAND REMEDIAL INVESTIGATION, MARINE SEDIMENT

    EPA Science Inventory

    The data set contains marine sediment data from a remedial investigation of Harbor Island, a National Priority List (NPL) Superfund site in Washington State. Both surface and subsurface marine sediments were collected. A station data set contain sampling station location and desc...

  16. Applications of subsurface microscopy.

    PubMed

    Tetard, Laurene; Passian, Ali; Farahi, Rubye H; Voy, Brynn H; Thundat, Thomas

    2012-01-01

    Exploring the interior of a cell is of tremendous importance in order to assess the effects of nanomaterials on biological systems. Outside of a controlled laboratory environment, nanomaterials will most likely not be conveniently labeled or tagged so that their translocation within a biological system cannot be easily identified and quantified. Ideally, the characterization of nanomaterials within a cell requires a nondestructive, label-free, and subsurface approach. Subsurface nanoscale imaging represents a real challenge for instrumentation. Indeed the tools available for high resolution characterization, including optical, electron or scanning probe microscopies, mainly provide topography images or require taggants that fluoresce. Although the intercellular environment holds a great deal of information, subsurface visualization remains a poorly explored area. Recently, it was discovered that by mechanically perturbing a sample, it was possible to observe its response in time with nanoscale resolution by probing the surface with a micro-resonator such as a microcantilever probe. Microcantilevers are used as the force-sensing probes in atomic force microscopy (AFM), where the nanometer-scale probe tip on the microcantilever interacts with the sample in a highly controlled manner to produce high-resolution raster-scanned information of the sample surface. Taking advantage of the existing capabilities of AFM, we present a novel technique, mode synthesizing atomic force microscopy (MSAFM), which has the ability to probe subsurface structures such as non-labeled nanoparticles embedded in a cell. In MSAFM mechanical actuators (PZTs) excite the probe and the sample at different frequencies as depicted in the first figure of this chapter. The nonlinear nature of the tip-sample interaction, at the point of contact of the probe and the surface of the sample, in the contact mode AFM configuration permits the mixing of the elastic waves. The new dynamic system comprises new

  17. Connecting Surface Planting with Subsurface Erosion Due to Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Reardon, M.; Curran, J. C.

    2014-12-01

    Bank erosion and failure is a major contributor of fine sediment to streams and rivers, and can be driven by subsurface flow. In restoration projects, vegetation is often planted on banks to reduce erosion and stabilize the banks. However, the relationship between subsurface flow, erosion and vegetation remains somewhat speculative. A comparative study quantified the effect of surface planting on subsurface erosion and soil strength. Six 32-gallon containers were layered with a sandy loam overlying a highly conductive sand layer and a confining clay. Three treatments were applied in pairs: switchgrass (Panicum virgatum L.), sod (turf-type tall fescue and Kentucky bluegrass mix), and no vegetation. After a vegetation establishment period, the 2, 10, and 100 year rainfalls were simulated. Samples collected from ports in the containers were analyzed for subsurface drainage volume and suspended sediment concentration. After all rainfall simulations, a sediment core was taken from each container to measure shear strength and root density. Results indicate the relative benefits of vegetative planting to reduce subsurface erosion during storms and enhance soil strength. Switchgrass reduced the total amount of sediment removed from containers during all three storms when compared to the sod and during the 10 and 100 year storms when compared to the bare ground. Results from the volume analysis were more variable. Switchgrass retained the greatest volume of water from the 100 year storm event, but also released the largest fraction of water in the 2 and 10 year storms. Both sod and switchgrass planting considerably increased the time required for the soil samples to fail despite reducing the shear stress at failure. Where switchgrass grew long, woody roots, the sod developed a dense mat of interconnected thin roots. We suspect the different root patterns between sod and switchgrass to be a dominant factor in the response of the different containers.

  18. Microbial Community Composition in the Marine Sediments of Jeju Island: Next-Generation Sequencing Surveys.

    PubMed

    Choi, Heebok; Koh, Hyeon-Woo; Kim, Hongik; Chae, Jong-Chan; Park, Soo-Je

    2016-05-28

    Marine sediments are a microbial biosphere with an unknown physiology, and the sediments harbor numerous distinct phylogenetic lineages of Bacteria and Archaea that are at present uncultured. In this study, the structure of the archaeal and bacterial communities was investigated in the surface and subsurface sediments of Jeju Island using a next-generation sequencing method. The microbial communities in the surface sediments were distinct from those in the subsurface sediments; the relative abundance of sequences for Thaumarchaeota, Actinobacteria, Bacteroides, Alphaproteobacteria, and Gammaproteobacteria were higher in the surface than subsurface sediments, whereas the sequences for Euryarchaeota, Acidobacteria, Firmicutes, and Deltaproteobacteria were relatively more abundant in the subsurface than surface sediments. This study presents detailed characterization of the spatial distribution of benthic microbial communities of Jeju Island and provides fundamental information on the potential interactions mediated by microorganisms with the different biogeochemical cycles in coastal sediments. PMID:26869600

  19. Comparison and assessment of four sediment particle-size analysis methodologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sediment particle-size analysis is a fundamental component of a wide variety of environmental disciplines such as sediment transport dynamics, subsurface and groundwater flow, lacustrine depositional history, and nutrient transport. There are several readily available methods for measuring particle ...

  20. Metalliferous Biosignatures for Deep Subsurface Microbial Activity.

    PubMed

    Parnell, John; Brolly, Connor; Spinks, Sam; Bowden, Stephen

    2016-03-01

    The interaction of microbes and metals is widely assumed to have occurred in surface or very shallow subsurface environments. However new evidence suggests that much microbial activity occurs in the deep subsurface. Fluvial, lacustrine and aeolian 'red beds' contain widespread centimetre-scale reduction spheroids in which a pale reduced spheroid in otherwise red rocks contains a metalliferous core. Most of the reduction of Fe (III) in sediments is caused by Fe (III) reducing bacteria. They have the potential to reduce a range of metals and metalloids, including V, Cu, Mo, U and Se, by substituting them for Fe (III) as electron acceptors, which are all elements common in reduction spheroids. The spheroidal morphology indicates that they were formed at depth, after compaction, which is consistent with a microbial formation. Given that the consequences of Fe (III) reduction have a visual expression, they are potential biosignatures during exploration of the terrestrial and extraterrestrial geological record. There is debate about the energy available from Fe (III) reduction on Mars, but the abundance of iron in Martian soils makes it one of the most valuable prospects for life there. Entrapment of the microbes themselves as fossils is possible, but a more realistic target during the exploration of Mars would be the colour contrasts reflecting selective reduction or oxidation. This can be achieved by analysing quartz grains across a reduction spheroid using Raman spectroscopy, which demonstrates its suitability for life detection in subsurface environments. Microbial action is the most suitable explanation for the formation of reduction spheroids and may act as metalliferous biosignatures for deep subsurface microbial activity. PMID:26376912

  1. Metalliferous Biosignatures for Deep Subsurface Microbial Activity

    NASA Astrophysics Data System (ADS)

    Parnell, John; Brolly, Connor; Spinks, Sam; Bowden, Stephen

    2016-03-01

    The interaction of microbes and metals is widely assumed to have occurred in surface or very shallow subsurface environments. However new evidence suggests that much microbial activity occurs in the deep subsurface. Fluvial, lacustrine and aeolian `red beds' contain widespread centimetre-scale reduction spheroids in which a pale reduced spheroid in otherwise red rocks contains a metalliferous core. Most of the reduction of Fe (III) in sediments is caused by Fe (III) reducing bacteria. They have the potential to reduce a range of metals and metalloids, including V, Cu, Mo, U and Se, by substituting them for Fe (III) as electron acceptors, which are all elements common in reduction spheroids. The spheroidal morphology indicates that they were formed at depth, after compaction, which is consistent with a microbial formation. Given that the consequences of Fe (III) reduction have a visual expression, they are potential biosignatures during exploration of the terrestrial and extraterrestrial geological record. There is debate about the energy available from Fe (III) reduction on Mars, but the abundance of iron in Martian soils makes it one of the most valuable prospects for life there. Entrapment of the microbes themselves as fossils is possible, but a more realistic target during the exploration of Mars would be the colour contrasts reflecting selective reduction or oxidation. This can be achieved by analysing quartz grains across a reduction spheroid using Raman spectroscopy, which demonstrates its suitability for life detection in subsurface environments. Microbial action is the most suitable explanation for the formation of reduction spheroids and may act as metalliferous biosignatures for deep subsurface microbial activity.

  2. Subsurface Tectonics and Pingos of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Skirvin, S.; Casavant, R.; Burr, D.

    2008-12-01

    We describe preliminary results of a two-phase study that investigated links between subsurface structural and stratigraphic controls, and distribution of hydrostatic pingos on the central coastal plain of Arctic Alaska. Our 2300 km2 study area is underlain by a complete petroleum system that supports gas, oil and water production from 3 of the largest oil fields in North America. In addition, gas hydrate deposits exist in this area within and just below the permafrost interval at depths of 600 to 1800 feet below sea level. Phase 1 of the study compared locations of subsurface faults and pingos for evidence of linkages between faulting and pingo genesis and distribution. Several hundred discrete fault features were digitized from published data and georeferenced in a GIS database. Fault types were determined by geometry and sense of slip derived from well log and seismic maps. More than 200 pingos and surface sediment type associated with their locations were digitized from regional surficial geology maps within an area that included wire line and seismic data coverage. Beneath the pingos lies an assemblage of high-angle normal and transtensional faults that trend NNE and NW; subsidiary trends are EW and NNW. Quaternary fault reactivation is evidenced by faults that displaced strata at depths exceeding 3000 meters below sea level and intersect near-surface units. Unpublished seismic images and cross-section analysis support this interpretation. Kinematics and distribution of reactivated faults are linked to polyphase deformational history of the region that includes Mesozoic rift events, succeeded by crustal shortening and uplift of the Brooks Range to the south, and differential subsidence and segmentation of a related foreland basin margin beneath the study area. Upward fluid migration, a normal process in basin formation and fault reactivation, may play yet unrecognized roles in the genesis (e.g. fluid charging) of pingos and groundwater hydrology. Preliminary

  3. Imaging subsurface geology and volatile organic compound plumes

    SciTech Connect

    Qualheim, B.J.; Daley, P.F.; Johnson, V.; McPherrin, R.V.; Laguna, G.

    1992-03-01

    Lawrence Livermore National Laboratory (LLNL) (Fig. 1) is in the final stages of the Superfund decisionmaking process for site remediation and restoration. In the process of characterizing the subsurface of the LLNL site, we have developed unique methods of collecting, storing, retrieving, and imaging geologic and chemical data from more than 350 drill holes. The lateral and vertical continuity of subsurface paleostream channels were mapped for the entire LLNL site using geologic descriptions from core samples, cuttings, and interpretations from geophysical logs. A computer-aided design and drafting program, SLICE, written at LLNL, was used to create two-dimensional maps of subsurface sediments, and state-of-the-art software produced three-dimensional images of the volatile organic compound (VOC) plumes using data from water and core fluid analyses.

  4. Containment of subsurface contaminants

    DOEpatents

    Corey, John C.

    1994-01-01

    A barrier for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates.

  5. Nonintrusive subsurface surveying capability

    SciTech Connect

    Tunnell, T.W.; Cave, S.P.

    1994-06-01

    This presentation describes the capabilities of a ground-pentrating radar (GPR) system developed by EG&G Energy Measurements (EM), a prime contractor to the Department of Energy (DOE). The focus of the presentation will be on the subsurface survey of DOE site TA-21 in Los Alamos, New Mexico. EG&G EM developed the system for the Department of Defense. The system is owned by the Department of the Army and currently resides at KO in Albuquerque. EM is pursuing efforts to transfer this technology to environmental applications such as waste-site characterization with DOE encouragement. The Army has already granted permission to use the system for the waste-site characterization activities.

  6. Containment of subsurface contaminants

    DOEpatents

    Corey, J.C.

    1994-09-06

    A barrier is disclosed for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates. 5 figs.

  7. SUBSURFACE FACILITY WORKER DOES ASSESSMENT

    SciTech Connect

    V. Arakali; E. Faillace; A. Linden

    2004-02-27

    The purpose of this design calculation is to estimate radiation doses received by personnel working in the subsurface facility of the repository performing emplacement, maintenance, and retrieval operations under normal conditions. The results of this calculation will be used to support the design of the subsurface facilities and provide occupational dose estimates for the License Application.

  8. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    SciTech Connect

    Sobecky, Patricia A.

    2015-04-06

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  9. Microbial communities in the deep subsurface

    NASA Astrophysics Data System (ADS)

    Krumholz, Lee R.

    The diversity of microbial populations and microbial communities within the earth's subsurface is summarized in this review. Scientists are currently exploring the subsurface and addressing questions of microbial diversity, the interactions among microorganisms, and mechanisms for maintenance of subsurface microbial communities. Heterotrophic anaerobic microbial communities exist in relatively permeable sandstone or sandy sediments, located adjacent to organic-rich deposits. These microorganisms appear to be maintained by the consumption of organic compounds derived from adjacent deposits. Sources of organic material serving as electron donors include lignite-rich Eocene sediments beneath the Texas coastal plain, organic-rich Cretaceous shales from the southwestern US, as well as Cretaceous clays containing organic materials and fermentative bacteria from the Atlantic Coastal Plain. Additionally, highly diverse microbial communities occur in regions where a source of organic matter is not apparent but where igneous rock is present. Examples include the basalt-rich subsurface of the Columbia River valley and the granitic subsurface regions of Sweden and Canada. These subsurface microbial communities appear to be maintained by the action of lithotrophic bacteria growing on H2 that is chemically generated within the subsurface. Other deep-dwelling microbial communities exist within the deep sediments of oceans. These systems often rely on anaerobic metabolism and sulfate reduction. Microbial colonization extends to the depths below which high temperatures limit the ability of microbes to survive. Energy sources for the organisms living in the oceanic subsurface may originate as oceanic sedimentary deposits. In this review, each of these microbial communities is discussed in detail with specific reference to their energy sources, their observed growth patterns, and their diverse composition. This information is critical to develop further understanding of subsurface

  10. Subsurface Ventilation System Description Document

    SciTech Connect

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  11. Subsurface Ventilation System Description Document

    SciTech Connect

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  12. From surface to subsurface and back again: the contribution of subsurface particle motion to surface armoring

    NASA Astrophysics Data System (ADS)

    Ferdowsi, B.; Jerolmack, D. J.; Ortiz, C. P.; Houssais, M.

    2015-12-01

    Armoring is the development of a coarse surface layer of sediments on a river bed, which overlies a smaller and typically more heterogeneous substrate. All existing models for this phenomenon are predicated on the idea that armoring develops due to size-selective transport and kinetic sieving at the surface of the granular bed. Here examine the development of armoring in the absence of size-selective surface transport, and demonstrate that subsurface particle movement can create an armored surface layer. We first conduct experiments in a laminar and annular flume, over a range of Shields stresses, with bimodal and refractive index-matched spherical sediments; this allows us to image the internal motion of the granular bed that is sheared from above by a viscous oil. Fluid-driven particle motion of the surface layer results in granular shear, that drives motion deep into the bed. This subsurface motion causes an upward migration of coarser particles, at a rate that is proportional to the granular shear rate. Comparison of experimental results to an existing continuum-granular flow model suggest that armoring in our bed-load exeriments is entirely consistent with shear-induced segregation in dry avalanches - but is slower. There is no size-selective transport at the surface in the experiments, as the annular flume is mass conserving and all particles move as bed load; this was confirmed by observation. To probe the granular physics of armor development further, we perform numerical simulations using a discrete element model (DEM) of granular flow, with and without damping. Simulations reproduce salient features of the experiments, and indicate that armoring is robust but that the rate of segregation is related to the degree of viscous damping. We posit that subsurface granular flow is an important and perhaps dominant contributor to surface armoring in rivers. More generally, this work shows how information is transferred from the surface to the subsurface and back

  13. Subsurface Facility System Description Document

    SciTech Connect

    Eric Loros

    2001-07-31

    The Subsurface Facility System encompasses the location, arrangement, size, and spacing of the underground openings. This subsurface system includes accesses, alcoves, and drifts. This system provides access to the underground, provides for the emplacement of waste packages, provides openings to allow safe and secure work conditions, and interfaces with the natural barrier. This system includes what is now the Exploratory Studies Facility. The Subsurface Facility System physical location and general arrangement help support the long-term waste isolation objectives of the repository. The Subsurface Facility System locates the repository openings away from main traces of major faults, away from exposure to erosion, above the probable maximum flood elevation, and above the water table. The general arrangement, size, and spacing of the emplacement drifts support disposal of the entire inventory of waste packages based on the emplacement strategy. The Subsurface Facility System provides access ramps to safely facilitate development and emplacement operations. The Subsurface Facility System supports the development and emplacement operations by providing subsurface space for such systems as ventilation, utilities, safety, monitoring, and transportation.

  14. 46 CFR 308.518 - Standard optional endorsement No. 1, Form MA-300-A.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Standard optional endorsement No. 1, Form MA-300-A. 308.518 Section 308.518 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY... Standard optional endorsement No. 1, Form MA-300-A. Standard Optional Endorsement No. 1, which may...

  15. 46 CFR 308.518 - Standard optional endorsement No. 1, Form MA-300-A.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Standard optional endorsement No. 1, Form MA-300-A. 308.518 Section 308.518 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY... Standard optional endorsement No. 1, Form MA-300-A. Standard Optional Endorsement No. 1, which may...

  16. 46 CFR 308.518 - Standard optional endorsement No. 1, Form MA-300-A.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Standard optional endorsement No. 1, Form MA-300-A. 308.518 Section 308.518 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY... Standard optional endorsement No. 1, Form MA-300-A. Standard Optional Endorsement No. 1, which may...

  17. 46 CFR 308.518 - Standard optional endorsement No. 1, Form MA-300-A.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Standard optional endorsement No. 1, Form MA-300-A. 308.518 Section 308.518 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY... Standard optional endorsement No. 1, Form MA-300-A. Standard Optional Endorsement No. 1, which may...

  18. Detection of microbial Life in the Subsurface

    NASA Astrophysics Data System (ADS)

    Stan-Lotter, H.; Fendrihan, S.; Dornmayr-Pfaffenhuemer, M.; Legat, A.; Gruber, C.; Weidler, G.; Gerbl, F.

    2007-08-01

    In recent years microbial communities were detected, which dwell in rocks, soil and caves deep below the surface of the Earth. This has led to a new view of the diversity of the terrestrial biosphere and of the physico-chemical boundaries for life. Two types of subterranean environments are Permo-Triassic salt sediments and thermal radioactive springs from igneous rocks in the Alps. Viable extremely halophilic archaea were isolated from ancient salt sediments which are estimated to be about 250 million years old (1). Chemotaxonomic and molecular characterization showed that they represent novel species, e. g. Halococcus salifodinae, Hcc. dombrowskiiand Halobacterium noricense. Simulation experiments with artificial halite suggested that these microorganisms probably survived while embedded in fluid inclusions. In the thermal springs, evidence for numerous novel microorganisms was found by 16S rDNA sequencing and probing for some metabolic genes; in addition, scanning electron microscopy of biofilms on the rock surfaces revealed great diversity of morphotypes (2). These communities appear to be active and growing, although their energy and carbon sources are entirely unknown. The characterization of subsurface inhabitants is of astrobiological relevance since extraterrestrial halite has been detected (3) and since microbial life on Mars, if existent, may have retreated into the subsurface. As a long-term goal, a thorough census of terrestrial microorganisms should be taken and their survival potential be determined in view of future missions for the search for extraterrestrial life, including planning precautions against possible forward contamination by space probes. (1) Fendrihan, S., Legat, A., Gruber, C., Pfaffenhuemer, M., Weidler, G., Gerbl, F., Stan-Lotter, H. (2006) Extremely halophilic archaea and the issue of long term microbial survival. Reviews in Environmental Science and Bio/technology 5, 1569-1605. (2) Weidler, G.W., Dornmayr-Pfaffenhuemer, M., Gerbl

  19. Adverse possession of subsurface minerals

    SciTech Connect

    Bowles, P.N.

    1983-01-01

    Concepts applicable to adverse possession of subsurface minerals are generally the same as those that apply to adverse possession of all real estate. However, special requirements must be satisfied in order to perfect title to subsurface minerals by adverse possession, particularly when there has been a severance of the true title between surface and subsurface minerals. In those jurisdictions where senior and junior grants came from the state or commonwealth covering the same or some of the same land and in those areas where descriptions of land were vague or not carefully drawn, adverse possession serves to solidify land and mineral ownership. There may be some public, social, and economic justification in rewarding, with good title, those who take possession and use real estate for its intended use, including the extraction of subsurface minerals. 96 refernces.

  20. Subsurface Geotechnical Parameters Report

    SciTech Connect

    D. Rigby; M. Mrugala; G. Shideler; T. Davidsavor; J. Leem; D. Buesch; Y. Sun; D. Potyondy; M. Christianson

    2003-12-17

    The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce

  1. Pore geometry, avalanching, and subsurface flow: A sand infiltration model

    NASA Astrophysics Data System (ADS)

    Leonardson, R.; Hunt, J. R.; Dietrich, W. E.

    2009-12-01

    The deposition of sand into gravel riverbeds has been well-documented, along with its negative impacts on developing salmon eggs and riverbank extraction for water supplies. Dam releases may be used on regulated rivers to flush the bed of fine sediment, but it is not generally known how deep the sand deposit extends or how much sand is there. One-dimensional (plane-bed) experiments consistently show that the depth of infiltration is a function of the sand and gravel grain size distributions and that the saturation sand fraction is near 8-10%. However, precise empirical relationships developed in individual studies do poorly at predicting the results of other experiments. Furthermore, no infiltration model includes the effect of flow conditions in the water column, although flow conditions clearly impact the deposit characteristics. We propose a mechanistic model for the infiltration of fine sediment and compare its predictions to the results of two recent infiltration experiments. This model is based on geometric arguments about pore and particle shape and five mechanisms: particle settling, particle capture, subsurface avalanching, average subsurface flow, and subsurface pressure fluctuations. The model successfully predicts for both experiments the fraction of sand deposited and the shape of that deposit as a function of depth.

  2. Microbial communities in the deep subsurface

    NASA Astrophysics Data System (ADS)

    Krumholz, Lee R.

    The diversity of microbial populations and microbial communities within the earth's subsurface is summarized in this review. Scientists are currently exploring the subsurface and addressing questions of microbial diversity, the interactions among microorganisms, and mechanisms for maintenance of subsurface microbial communities. Heterotrophic anaerobic microbial communities exist in relatively permeable sandstone or sandy sediments, located adjacent to organic-rich deposits. These microorganisms appear to be maintained by the consumption of organic compounds derived from adjacent deposits. Sources of organic material serving as electron donors include lignite-rich Eocene sediments beneath the Texas coastal plain, organic-rich Cretaceous shales from the southwestern US, as well as Cretaceous clays containing organic materials and fermentative bacteria from the Atlantic Coastal Plain. Additionally, highly diverse microbial communities occur in regions where a source of organic matter is not apparent but where igneous rock is present. Examples include the basalt-rich subsurface of the Columbia River valley and the granitic subsurface regions of Sweden and Canada. These subsurface microbial communities appear to be maintained by the action of lithotrophic bacteria growing on H2 that is chemically generated within the subsurface. Other deep-dwelling microbial communities exist within the deep sediments of oceans. These systems often rely on anaerobic metabolism and sulfate reduction. Microbial colonization extends to the depths below which high temperatures limit the ability of microbes to survive. Energy sources for the organisms living in the oceanic subsurface may originate as oceanic sedimentary deposits. In this review, each of these microbial communities is discussed in detail with specific reference to their energy sources, their observed growth patterns, and their diverse composition. This information is critical to develop further understanding of subsurface

  3. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea.

    PubMed

    Baker, Brett J; Saw, Jimmy H; Lind, Anders E; Lazar, Cassandre Sara; Hinrichs, Kai-Uwe; Teske, Andreas P; Ettema, Thijs J G

    2016-01-01

    The subsurface biosphere is largely unexplored and contains a broad diversity of uncultured microbes(1). Despite being one of the few prokaryotic lineages that is cosmopolitan in both the terrestrial and marine subsurface(2-4), the physiological and ecological roles of SAGMEG (South-African Gold Mine Miscellaneous Euryarchaeal Group) Archaea are unknown. Here, we report the metabolic capabilities of this enigmatic group as inferred from genomic reconstructions. Four high-quality (63-90% complete) genomes were obtained from White Oak River estuary and Yellowstone National Park hot spring sediment metagenomes. Phylogenomic analyses place SAGMEG Archaea as a deeply rooting sister clade of the Thermococci, leading us to propose the name Hadesarchaea for this new Archaeal class. With an estimated genome size of around 1.5 Mbp, the genomes of Hadesarchaea are distinctly streamlined, yet metabolically versatile. They share several physiological mechanisms with strict anaerobic Euryarchaeota. Several metabolic characteristics make them successful in the subsurface, including genes involved in CO and H2 oxidation (or H2 production), with potential coupling to nitrite reduction to ammonia (DNRA). This first glimpse into the metabolic capabilities of these cosmopolitan Archaea suggests they are mediating key geochemical processes and are specialized for survival in the subsurface biosphere. PMID:27572167

  4. Endoscopic subsurface imaging in tissues

    SciTech Connect

    Demos, S G; Staggs, M; Radousky, H B

    2001-02-12

    The objective of this work is to develop endoscopic subsurface optical imaging technology that will be able to image different tissue components located underneath the surface of the tissue at an imaging depth of up to 1 centimeter. This effort is based on the utilization of existing technology and components developed for medical endoscopes with the incorporation of the appropriate modifications to implement the spectral and polarization difference imaging technique. This subsurface imaging technique employs polarization and spectral light discrimination in combination with image processing to remove a large portion of the image information from the outer layers of the tissue which leads to enhancement of the contrast and image quality of subsurface tissue structures.

  5. Subsurface microbial habitats on Mars

    NASA Technical Reports Server (NTRS)

    Boston, P. J.; Mckay, C. P.

    1991-01-01

    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.

  6. The Phosphatidylserine and Phosphatidylethanolamine Receptor CD300a Binds Dengue Virus and Enhances Infection

    PubMed Central

    Carnec, Xavier; Meertens, Laurent; Dejarnac, Ophélie; Perera-Lecoin, Manuel; Hafirassou, Mohamed Lamine; Kitaura, Jiro; Ramdasi, Rasika; Schwartz, Olivier

    2015-01-01

    ABSTRACT Dengue virus (DENV) is the etiological agent of the major human arboviral disease. We previously demonstrated that the TIM and TAM families of phosphatidylserine (PtdSer) receptors involved in the phagocytosis of apoptotic cells mediate DENV entry into target cells. We show here that human CD300a, a recently identified phospholipid receptor, also binds directly DENV particles and enhances viral entry. CD300a facilitates infection of the four DENV serotypes, as well as of other mosquito-borne viruses such as West Nile virus and Chikungunya virus. CD300a acts as an attachment factor that enhances DENV internalization through clathrin-mediated endocytosis. CD300a recognizes predominantly phosphatidylethanolamine (PtdEth) and to a lesser extent PtdSer associated with viral particles. Mutation of residues in the IgV domain critical for phospholipid binding abrogate CD300a-mediated enhancement of DENV infection. Finally, we show that CD300a is expressed at the surface of primary macrophages and anti-CD300a polyclonal antibodies partially inhibited DENV infection of these cells. Overall, these data indicate that CD300a is a novel DENV binding receptor that recognizes PtdEth and PtdSer present on virions and enhance infection. IMPORTANCE Dengue disease, caused by dengue virus (DENV), has emerged as the most important mosquito-borne viral disease of humans and is a major global health concern. The molecular bases of DENV-host cell interactions during virus entry are poorly understood, hampering the discovery of new targets for antiviral intervention. We recently discovered that the TIM and TAM proteins, two receptor families involved in the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, interact with DENV particles-associated PtdSer through a mechanism that mimics the recognition of apoptotic cells and mediate DENV infection. In this study, we show that CD300a, a novel identified phospholipid receptor, mediates DENV infection. CD300a

  7. Towed Subsurface Optical Communications Buoy

    NASA Technical Reports Server (NTRS)

    Stirbl, Robert C.; Farr, William H.

    2013-01-01

    The innovation allows critical, high-bandwidth submarine communications at speed and depth. This reported innovation is a subsurface optical communications buoy, with active neutral buoyancy and streamlined flow surface veins for depth control. This novel subsurface positioning for the towed communications buoy enables substantial reduction in water-absorption and increased optical transmission by eliminating the intervening water absorption and dispersion, as well as by reducing or eliminating the beam spread and the pulse spreading that is associated with submarine-launched optical beams.

  8. Subsurface Carbon Cycling Below the Root Zone

    NASA Astrophysics Data System (ADS)

    Wan, J.; Dong, W.; Kim, Y.; Tokunaga, T. K.; Bill, M.; Conrad, M. E.; Williams, K. H.; Long, P. E.; Hubbard, S. S.

    2014-12-01

    Carbon in the subsurface below the root zone is an important yet poorly understood link in the terrestrial C cycle, interfacing between overlying soil and downstream aquatic systems. Thus, the nature and behavior of C in the vadose zone and groundwater, particularly the dynamics of mobile dissolved and suspended aqueous species, need to be understood for predicting C cycling and responses to climate change. This study is designed to understand the C balance (influxes, effluxes, and sequestration) and mechanisms controlling subsurface organic and inorganic C transport and transformation. Our initial investigations are being conducted at the Rifle Site floodplain along the Colorado River, in Colorado (USA). Within this floodplain, sediment samples were collected and sampling/monitoring instruments were installed down to 7 m depth at three sites. Pore water and gas samplers at 0.5 m depth intervals within the ~3.5 m deep vadose zone, and multilevel aquifer samplers have yielded depth- and time-resolved profiles of dissolved and suspended organic and inorganic C, and CO2 for over 1.5 years. Analyses conducted to determine seasonally and vertically resolved geochemical profiles show that dissolved organic matter (DOM) characteristics vary among three distinct hydrobiogeochemical zones; the vadose zone, capillary fringe, and saturated zone. The concentrations of dissolved organic matter (DOM) are many times higher in the vadose zone and the capillary fringe than in groundwater, and vary seasonally. The DOM speciation, aqueous geochemistry, solid phase analyses, and d13C isotope data show the importance of both biotic and abiotic C transformations during transport through the vertical gradients of moisture and temperature. In addition to DOM, suspended organic C and bacteria have been collected from samplers within the capillary fringe. Based on the field-based findings, long-term laboratory column experiments are being conducted under simulated field moisture

  9. Targeting sediment management strategies using sediment quantification and fingerprinting methods

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; hUallacháin, Daire Ó.

    2016-04-01

    Cost-effective sediment management is required to reduce excessive delivery of fine sediment due to intensive land uses such as agriculture, resulting in the degradation of aquatic ecosystems. Prioritising measures to mitigate dominant sediment sources is, however, challenging, as sediment loss risk is spatially and temporally variable between and within catchments. Fluctuations in sediment supply from potential sources result from variations in land uses resulting in increased erodibility where ground cover is low (e.g., cultivated, poached and compacted soils), and physical catchment characteristics controlling hydrological connectivity and transport pathways (surface and/or sub-surface). Sediment fingerprinting is an evidence-based management tool to identify sources of in-stream sediments at the catchment scale. Potential sediment sources are related to a river sediment sample, comprising a mixture of source sediments, using natural physico-chemical characteristics (or 'tracers'), and contributions are statistically un-mixed. Suspended sediment data were collected over two years at the outlet of three intensive agricultural catchments (approximately 10 km2) in Ireland. Dominant catchment characteristics were grassland on poorly-drained soils, arable on well-drained soils and arable on moderately-drained soils. High-resolution (10-min) calibrated turbidity-based suspended sediment and discharge data were combined to quantify yield. In-stream sediment samples (for fingerprinting analysis) were collected at six to twelve week intervals, using time-integrated sediment samplers. Potential sources, including stream channel banks, ditches, arable and grassland field topsoils, damaged road verges and tracks were sampled, oven-dried (<40oC) and sieved (125 microns). Soil and sediment samples were analysed for mineral magnetics, geochemistry and radionuclide tracers, particle size distribution and soil organic carbon. Tracer data were corrected to account for particle

  10. Aquatic Sediments.

    ERIC Educational Resources Information Center

    Sanville, W. D.; And Others

    1978-01-01

    Presents a literature review of aquatic sediments and its effect upon water quality, covering publications of 1976-77. This review includes: (1) sediment water interchange; (2) chemical and physical characterization; and (3) heavy water in sediments. A list of 129 references is also presented. (HM)

  11. Microbial production and oxidation of methane in deep subsurface

    NASA Astrophysics Data System (ADS)

    Kotelnikova, Svetlana

    2002-10-01

    The goal of this review is to summarize present studies on microbial production and oxidation of methane in the deep subterranean environments. Methane is a long-living gas causing the "greenhouse" effect in the planet's atmosphere. Earlier, the deep "organic carbon poor" subsurface was not considered as a source of "biogenic" methane. Evidence of active methanogenesis and presence of viable methanogens including autotrophic organisms were obtained for some subsurface environments including water-flooded oil-fields, deep sandy aquifers, deep sea hydrothermal vents, the deep sediments and granitic groundwater at depths of 10 to 2000 m below sea level. As a rule, the deep subterranean microbial populations dwell at more or less oligotrophic conditions. Molecular hydrogen has been found in a variety of subsurface environments, where its concentrations were significantly higher than in the tested surface aquatic environments. Chemolithoautotrophic microorganisms from deep aquifers that could grow on hydrogen and carbon dioxide can act as primary producers of organic carbon, initiating heterotrophic food chains in the deep subterranean environments independent of photosynthesis. "Biogenic" methane has been found all over the world. On the basis of documented occurrences, gases in reservoirs and older sediments are similar and have the isotopic character of methane derived from CO 2 reduction. Groundwater representing the methanogenic end member are characterized by a relative depletion of dissolved organic carbon (DOC) in combination with an enrichment in 13C in inorganic carbon, which is consistent with the preferential reduction of 12CO 2 by autotrophic methanogens or acetogens. The isotopic composition of methane formed via CO 2 reduction is controlled by the δ13C of the original CO 2 substrate. Literature data shows that CH 4 as heavy as -40‰ or -50‰ can be produced by the microbial reduction of isotopically heavy CO 2. Produced methane may be oxidized

  12. In situ analysis of subsurface materials

    NASA Astrophysics Data System (ADS)

    Coradini, A.; de Sanctis, M. C.; Piccioni, G.; Amici, S.; Bianchi, R.; Capaccioni, F.; Capria, M. T.; di Lellis, A. M.; Espinasse, S.; Federico, C.

    2003-04-01

    From radio and radar observations, providing information on the upper 0.1 to 10 m of the Martian crust, we know that subsurface properties seem to be slightly different from those at the surface, suggesting subsurface layering in many places. This idea has been strongly strengthened by the recent observation in sedimentary areas of the Martian surface, made by MGS and Odyssey Spacecrafts. Moreover indications on the presence of shallow water has been also suggested. Unfortunately many doubts exist on the nature, timing and duration of alteration and sedimentation processes on Mars. This study will permit to infer the history of erosion, transport and deposition of loose material. This material can reach a thickness ranging from a few centimeters to meters. Up to present, the Viking and Pathfinder investigations have studied only the upper layers of the soil. The Martian soil analyzed by the two Viking landers showed a surprising similarity, despite the great distance between the two landing sites: it will be extremely important to verify if this similarity is also present in different areas and, particularly, in the subsurface layers. The study of the Mars subsurface can give us an indication of how deeply the weathering has modified the Martian surface. The ASI driller will be able to penetrate different kinds of materials, both loose and hard. The drill will be able to cut both hard rock and loose soil as well as mixtures of them. Thanks to the ASI drill it will be possible to investigate at least the first half-meter of this complex structure. We describe here a miniaturized imaging spectrometer that can be included in the drill tip in order to infer the mineralogical characteristics of subsurface layers. The data are acquired through a flat optical window on the drill wall: through this window the inner surface of the hole is illuminated by means of different lamps. The image is acquired by an array of optical fibers simulating a slit. An optical system

  13. ASSESSMENT OF THE SUBSURFACE FATE OF MONOETHANOLAMINE

    SciTech Connect

    James A. Sorensen; John R. Gallagher; Lori G. Kays

    2000-05-01

    Burial of amine reclaimer unit sludges and system filters has resulted in contamination of soil at the CanOxy Okotoks decommissioned sour gas-processing plant with amines, amine byproducts, and salts. A three-phase research program was devised to investigate the natural attenuation process that controls the subsurface transport and fate of these contaminants and to apply the results toward the development of a strategy for the remediation of this type of contamination in soils. Phase I experimental activities examined interactions between monoethanolamine (MEA) and sediment, the biodegradability of MEA in soils at various concentrations and temperatures, and the biodegradability of MEA sludge contamination in a soil slurry bioreactor. The transport and fate of MEA in the subsurface was found to be highly dependant on the nature of the release, particularly MEA concentration and conditions of the subsurface environment, i.e., pH, temperature, and oxygen availability. Pure compound biodegradation experiments in soil demonstrated rapid biodegradation of MEA under aerobic conditions and moderate temperatures (>6 C). Phase II landfarming activities confirmed that these contaminants are readily biodegradable in soil under ideal laboratory conditions, yet considerable toxicity was observed in the remaining material. Examination of water extracts from the treated soil suggested that the toxicity is water-soluble. Phase II activities led to the conclusion that landfarming is not the most desirable bioremediation technique; however, an engineered biopile with a leachate collection system could remove the remaining toxic fraction from the soil. Phase III was initiated to conduct field-based experimental activities to examine the optimized remediation technology. A pilot-scale engineered biopile was constructed at a decommissioned gas-sweetening facility in Okotoks, Alberta, Canada. On the basis of a review of the analytical and performance data generated from soil and

  14. ROLE OF BIOTURBATION IN SEDIMENT RESUSPENSION AND ITS INTERACTION WITH PHYSICAL SHEARING

    EPA Science Inventory

    Marine benthic fauna play an important role in governing sediment-water relationships, including resuspension of particle-borne contaminants. onstant burrowing and subsurface deposit-feeding tend to eject sediment into overlying water, break up the cohesive structure of sediment-...

  15. Deep Subsurface Life from North Pond: Enrichment, Isolation, Characterization and Genomes of Heterotrophic Bacteria

    PubMed Central

    Russell, Joseph A.; León-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F.

    2016-01-01

    Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. The cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface. PMID:27242705

  16. Deep Subsurface Life from North Pond: Enrichment, Isolation, Characterization and Genomes of Heterotrophic Bacteria.

    PubMed

    Russell, Joseph A; León-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F

    2016-01-01

    Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. The cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface. PMID:27242705

  17. Tillage impact on herbicide loss by surface runoff and lateral subsurface flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is worldwide interest in conservation tillage practices because they can reduce surface runoff, and agrichemical and sediment losses from farm fields. Since these practices typically increase infiltration, their use may increase subsurface transport of water-soluble contaminants. Thus, to asse...

  18. Tillage impact on herbicide loss by surface runoff and lateral subsurface flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is worldwide interest in conservation tillage practices because they can reduce surface runoff, agrichemical, and sediment loss from farm fields. Since these practices typically increase infiltration, their use may increase subsurface transport of water-soluble contaminants. Thus, to assess lo...

  19. Environmental parameters controlling microbial activities in terrestrial subsurface environments

    SciTech Connect

    Kieft, T.L.

    1990-01-01

    This project was begun in July 1988 as part of Phase I of the Deep Microbiology Subprogram. At this time, the Subprogram was preparing for sampling near the Savannah River Site (SRS) from what was being termed the Investigator's Hole.'' This was the fourth hole drilled for sampling in the coastal plain sediments at a site near the SRS. Since there was a possibility of sampling from the saline Triassic basin in the deeper regions in this fourth hole, there was particular interest in quantifying halotolerant microorganisms from these samples and in determining the responses of subsurface microbes to a range of soft concentrations. Further interest in the soft tolerances of microbes from these coastal sediments arose from the fact that all of these sediments were deposited under marine conditions. It was also anticipated that samples would be available from the shallow unsaturated (vadose) zone at this site, so there was interest in quantifying microbial responses to matric water potential as well as solute water potential. The initial objectives of this research project were to: characterize microbial communities in a saline aquifer; determine the potential for microbial metabolism of selected organic compounds in a saline aquifers; characterize microbial communities in unsaturated subsurface materials (vadose zones); and determine the potential for microbial metabolism of selected organic compounds in unsaturated subsurface materials (vadose zones). Samples were collected from the borehole during a period extending from August to October 1988. A total of nine samples were express shipped to New Mexico Tech for analyses. These were all saturated zone samples from six different geological formations. Water contents and water potentials were measured at the time of sample arrival.

  20. SUBSURFACE VISUAL ALARM SYSTEM ANALYSIS

    SciTech Connect

    D.W. Markman

    2001-08-06

    The ''Subsurface Fire Hazard Analysis'' (CRWMS M&O 1998, page 61), and the document, ''Title III Evaluation Report for the Surface and Subsurface Communication System'', (CRWMS M&O 1999a, pages 21 and 23), both indicate the installed communication system is adequate to support Exploratory Studies Facility (ESF) activities with the exception of the mine phone system for emergency notification purposes. They recommend the installation of a visual alarm system to supplement the page/party phone system The purpose of this analysis is to identify data communication highway design approaches, and provide justification for the selected or recommended alternatives for the data communication of the subsurface visual alarm system. This analysis is being prepared to document a basis for the design selection of the data communication method. This analysis will briefly describe existing data or voice communication or monitoring systems within the ESF, and look at how these may be revised or adapted to support the needed data highway of the subsurface visual alarm. system. The existing PLC communication system installed in subsurface is providing data communication for alcove No.5 ventilation fans, south portal ventilation fans, bulkhead doors and generator monitoring system. It is given that the data communication of the subsurface visual alarm system will be a digital based system. It is also given that it is most feasible to take advantage of existing systems and equipment and not consider an entirely new data communication system design and installation. The scope and primary objectives of this analysis are to: (1) Briefly review and describe existing available data communication highways or systems within the ESF. (2) Examine technical characteristics of an existing system to disqualify a design alternative is paramount in minimizing the number of and depth of a system review. (3) Apply general engineering design practices or criteria such as relative cost, and degree of

  1. Integration of Hydrologic, Sediment Yield, Sediment Delivery, Hydrodynamic and Sediment Transport Models in Large Great Lakes Watersheds

    NASA Astrophysics Data System (ADS)

    Brunton, A.; Nairn, R.; Selegean, J.

    2004-12-01

    Computational tools to evaluate surface and subsurface water flow and sediment transport are commonly used by environmental and engineering practitioners. However, different parts of the hydrologic system (e.g. hillslope overland flow, groundwater, river channel flow) are often treated separately and at disparate spatial and temporal scales. Overland flow models typically have no explicit channel representation and vice-versa, making integrated assessments of water and sediment delivery from catchment to channel difficult. This is problematic when appraising the influence of land use change (urbanization, modification of riparian buffer strips, changes in tillage and forestry practices etc.) on catchment sediment movement and river flood hydrographs. A 'budgetary' approach was taken to defining the sources and sinks of water and sediment within large catchments in the Great Lakes area under a variety of land uses. These budgets were derived from existing datasets including digital elevation models, river flow and sediment load records, and dam sedimentation surveys. Numerical models of watershed hydrology and sediment delivery, 2-D river flow and sediment transport were constructed to develop a general understanding of the hydrologic and geomorphic behavior of these systems, and to predict the effects of changing land use and riparian buffer zone modification. Models were calibrated against river flow and sediment transport records, reservoir sedimentation surveys and harbor dredging records. The challenges and benefits of combining these diverse approaches and their implementation in best management practices are discussed.

  2. The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments

    SciTech Connect

    Aklujkar, Muktak; Young, Nelson D; Holmes, Dawn; Chavan, Milind; Risso, Carla; Kiss, Hajnalka; Han, Cliff; Land, Miriam L; Lovley, Derek

    2010-01-01

    Background. Geobacter species in a phylogenetic cluster known as subsurface clade 1 are often the predominant microorganisms in subsurface environments in which Fe(III) reduction is the primary electron-accepting process. Geobacter bemidjiensis, a member of this clade, was isolated from hydrocarbon-contaminated subsurface sediments in Bemidji, Minnesota, and is closely related to Geobacter species found to be abundant at other subsurface sites. This study examines whether there are significant differences in the metabolism and physiology of G. bemidjiensis compared to non-subsurface Geobacter species. Results. Annotation of the genome sequence of G. bemidjiensis indicates several differences in metabolism compared to previously sequenced non-subsurface Geobacteraceae, which will be useful for in silico metabolic modeling of subsurface bioremediation processes involving Geobacter species. Pathways can now be predicted for the use of various carbon sources such as propionate by G. bemidjiensis. Additional metabolic capabilities such as carbon dioxide fixation and growth on glucose were predicted from the genome annotation. The presence of different dicarboxylic acid transporters and two oxaloacetate decarboxylases in G. bemidjiensis may explain its ability to grow by disproportionation of fumarate. Although benzoate is the only aromatic compound that G. bemidjiensis is known or predicted to utilize as an electron donor and carbon source, the genome suggests that this species may be able to detoxify other aromatic pollutants without degrading them. Furthermore, G. bemidjiensis is auxotrophic for 4-aminobenzoate, which makes it the first Geobacter species identified as having a vitamin requirement. Several features of the genome indicated that G. bemidjiensis has enhanced abilities to respire, detoxify and avoid oxygen. Conclusion. Overall, the genome sequence of G. bemidjiensis offers surprising insights into the metabolism and physiology of Geobacteraceae in

  3. Active Marine Subsurface Bacterial Population Composition in Low Organic Carbon Environments from IODP Expedition 320

    NASA Astrophysics Data System (ADS)

    Shepard, A.; Reese, B. K.; Mills, H. J.; IODP Expedition 320 Shipboard Science Party

    2011-12-01

    The marine subsurface environment contains abundant and active microorganisms. These microbial populations are considered integral players in the marine subsurface biogeochemical system with significance in global geochemical cycles and reservoirs. However, variations in microbial community structure, activity and function associated with the wide-ranging sedimentary and geochemical environments found globally have not been fully resolved. Integrated Ocean Drilling Program Expedition 320 recovered sediments from site U1332. Two sampling depths were selected for analysis that spanned differing lithological units in the sediment core. Sediments were composed of mostly clay with zeolite minerals at 8 meters below sea floor (mbsf). At 27 mbsf, sediments were composed of alternating clayey radiolarian ooze and nannofossil ooze. The concentration of SO42- had little variability throughout the core and the concentration of Fe2+ remained close to, or below, detection limits (0.4 μM). Total organic carbon content ranged from a low of 0.03 wt% to a high of 0.07 wt% between 6 and 30 mbsf providing an opportunity to evaluate marine subsurface microbial communities under extreme electron donor limiting conditions. The metabolically active fraction of the bacterial population was isolated by the extraction and amplification of 16S ribosomal RNA. Pyrosequencing of 16S rRNA transcripts and subsequent bioinformatic analyses provided a robust data set (15,931 total classified sequences) to characterize the community at a high resolution. As observed in other subsurface environments, the overall diversity of active bacterial populations decreased with depth. The population shifted from a diverse but evenly distributed community at approximately 8 mbsf to a Firmicutes dominated population at 27 mbsf (80% of sequences). A total of 95% of the sequences at 27 mbsf were grouped into three genera: Lactobacillus (phylum Firmicutes) at 80% of the total sequences, Marinobacter (phylum

  4. Sources of suspended sediment in the Lower Roanoke River, NC

    NASA Astrophysics Data System (ADS)

    Jalowska, A. M.; McKee, B. A.; Rodriguez, A. B.; Laceby, J. P.

    2015-12-01

    The Lower Roanoke River, NC, extends 220 km from the fall line to the bayhead delta front in the Albemarle Sound. The Lower Roanoke is almost completely disconnected from the upper reaches by a series of dams, with the furthest downstream dam located at the fall line. The dams effectively restrict the suspended sediment delivery from headwaters, making soils and sediments from the Lower Roanoke River basin, the sole source of suspended sediment. In flow-regulated rivers, bank erosion, especially mass wasting, is the major contributor to the suspended matter. Additional sources of the suspended sediment considered in this study are river channel, surface soils, floodplain surface sediments, and erosion of the delta front and prodelta. Here, we examine spatial and temporal variations in those sources. This study combined the use of flow and grain size data with a sediment fingerprinting method, to examine the contribution of surface and subsurface sediments to the observed suspended sediment load along the Lower Roanoke River. The fingerprinting method utilized radionuclide tracers 210Pb (natural atmospheric fallout), and 137Cs (produced by thermonuclear bomb testing). The contributions of surface and subsurface sources to the suspended sediment were calculated with 95% confidence intervals using a Monte-Carlo numerical mixing model. Our results show that with decreasing river slope and changing hydrography along the river, the contribution of surface sediments increases and becomes a main source of sediments in the Roanoke bayhead delta. At the river mouth, the surface sediment contribution decreases and is replaced by sediments eroded from the delta front and prodelta. The area of high surface sediment contribution is within the middle and upper parts of the delta, which are considered net depositional. Our study demonstrates that floodplains, often regarded to be a sediment sink, are also a sediment source, and they should be factored into sediment, carbon and

  5. Optimal design of a subsurface redox barrier

    SciTech Connect

    Chilakapati, A.

    1999-06-01

    Harmful contaminants such as chromium (Cr{sup +6}), and TCE can be removed from groundwater by reactions with reduced subsurface sediments. Establishing an in situ Fe(II) barrier through the reduction of soil-bound Fe(III) to Fe(II) by injecting a sodium dithionite (Na{sub 2}S{sub 2}O{sub 4}) solution is studied. Critical to this problem is the possible formation and expansion of a zone around the injection, where all the soil-bound Fe(III) is reduced to Fe(II). Different reaction models apply inside and outside of this zone so that a determination of this moving boundary is a fundamental part of the solution. The complete analytic solution to this problem was used to develop optimal process parameters, such as injection rate and operational time, that maximize the radius of the Fe(III)-reduced zone when a given mass of sodium dithionite is injected at a well. When a large reduction [>63% of initially present Fe(III)] is desired, the results indicate that it is better to use a low flow rate to form a Fe(III)-free zone around the injection. The opposite is true for smaller reductions (<63%), so that a faster injection rate that avoids the formation of the Fe(III)-free zone yields a larger reduction zone.

  6. RADIOIODINE GEOCHEMISTRY IN THE SRS SUBSURFACE ENVIRONMENT

    SciTech Connect

    Kaplan, D.; Emerson, H.; Powell, B.; Roberts, K.; Zhang, S.; Xu, C.; Schwer, K.; Li, H.; Ho, Y.; Denham, M.; Yeager, C.; Santschi, P.

    2013-05-16

    Iodine-129 is one of the key risk drivers for several Savannah River Site (SRS) performance assessments (PA), including that for the Low-Level Waste Disposal Facility in E-Area. In an effort to reduce the uncertainty associated with the conceptual model and the input values used in PA, several studies have recently been conducted dealing with radioiodine geochemistry at the SRS. The objective of this report was to review these recent studies and evaluate their implications on SRS PA calculations. For the first time, these studies measured iodine speciation in SRS groundwater and provided technical justification for assuming the presence of more strongly sorbing species (iodate and organo-iodine), and measured greater iodine sediment sorption when experiments included these newly identified species; specifically they measured greater sorption coefficients (K{sub d} values: the concentration ratio of iodine on the solid phase divided by the concentration in the aqueous phase). Based on these recent studies, new best estimates were proposed for future PA calculations. The new K{sub d} values are greater than previous recommended values. These proposed K{sub d} values reflect a better understanding of iodine geochemistry in the SRS subsurface environment, which permits reducing the associated conservatism included in the original estimates to account for uncertainty. Among the key contributing discoveries supporting the contention that the K{sub d} values should be increased are that: 1) not only iodide (I{sup -}), but also the more strongly sorbing iodate (IO{sub 3}{sup -}) species exists in SRS groundwater (average total iodine = 15% iodide, 42% iodate, and 43% organoiodine), 2) when iodine was added as iodate, the measured K{sub d} values were 2 to 6 times greater than when the iodine was added as iodide, and perhaps most importantly, 3) higher desorption (10 to 20 mL/g) than (ad)sorption (all previous studies) K{sub d} values were measured. The implications of this

  7. Contaminant Transport Through Subsurface Material from the DOE Hanford Reservation

    SciTech Connect

    Pace, M.N.; Mayes, M.A.; Jardine, P.M.; Fendorf, S.E.; Nehlhorn, T.L.; Yin, X.P.; Ladd, J.; Teerlink, J.; Zachara, J.M.

    2003-03-26

    Accelerated migration of contaminants in the vadose zone has been observed beneath tank farms at the U.S. Department of Energy's Hanford Reservation. This paper focuses on the geochemical processes controlling the fate and transport of contaminants in the sediments beneath the Hanford tank farms. Laboratory scale batch sorption experiments and saturated transport experiments were conducted using reactive tracers U(VI), Sr, Cs, Co and Cr(VI) to investigate geochemical processes controlling the rates and mechanisms of sorption to Hanford subsurface material. Results indicate that the rate of sorption is influenced by changes in solution chemistry such as ionic strength, pH and presence of competing cations. Sediment characteristics such as mineralogy, iron content and cation/anion exchange capacity coupled with the dynamics of flow impact the number of sites available for sorption. Investigative approaches using a combination of batch and transport experiments will contribute to the conceptual and Hanford vadose zone.

  8. Deep subsurface life from North Pond: Enrichment, isolation, characterization and genomes of heterotrophic bacteria

    DOE PAGESBeta

    Russell, Joseph A.; Leon-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F.

    2016-05-10

    Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic watercolumn west of the Mid-Atlantic Ridge at 22° N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sedimentmore » column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. Furthermore, the cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.« less

  9. 3-D modeling of water balance and soil erosion in a clayey subsurface drained agricultural field in boreal climate

    NASA Astrophysics Data System (ADS)

    Turunen, M.; Warsta, L.; Koivusalo, H. J.; Paasonen-Kivekäs, M.; Nurminen, J.; Myllys, M.; Alakukku, L.; Äijö, H.; Puustinen, M.

    2012-12-01

    Fluxes of nutrients and other substances from cultivated fields cause eutrophication and deterioration of water quality in aquatic ecosystems worldwide. In order to develop effective strategies to control the environmental impacts of crop cultivation, it is crucial to identify the main transport pathways and the effects of different water management methods on the loads. Reduction of sediment loads is essential since sediment particles typically carry nutrients (especially sorbed phosphorus) and other potentially harmful substances, e.g. pesticides, from the fields to the adjacent surface waters. The novel part of this study was the investigation of suspended sediment transport in soil macropores to the subsurface drains and to the deep groundwater. We applied a 3-D distributed dual-permeability model (FLUSH) using a dataset collected from a subsurface drained, clayey agricultural field (15 ha) to holistically assess water balance, soil erosion and sediment transport from the field to an adjacent stream. The data set included five years of hydrological and water quality measurements from four intensively monitored field sections with different soil properties, topography, drainage systems (drain spacing and drain depth), drain installation methods (trenchless and trench drainage) and drain envelope materials (gravel and fiber). The 3-D model allowed us to quantify how soil erosion and sediment transport differed between the field sections within the field area. The simulations were conducted during snow- and frost-free periods. The simulation results include closure of water balance of the cultivated field, distribution of soil erosion and sediment transport within the field area and the effects of different subsurface drainage systems on sediment loads. The 3-D dual-permeability subsurface flow model was able to reproduce the measured drainflows and sediment fluxes in the clayey field and according to the simulations over 90% of drainflow waters were conveyed to

  10. Method of installing subsurface barrier

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2007-10-09

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  11. Laboratory and field evidence for long-term starvation survival of microorganisms in subsurface terrestrial environments

    NASA Astrophysics Data System (ADS)

    Kieft, Thomas L.; Murphy, Ellyn M.; Amy, P. S.; Haldeman, D. L.; Ringelberg, David B.; White, David C.

    1997-07-01

    Biogeochemical modeling of groundwater flow and nutrient flux in subsurface environments indicates that inhabitant microorganisms experience severe nutrient limitation. Using laboratory and field methods, we have been testing starvation survival in subsurface microorganisms. In microcosm experiments, we have shown that strains of two commonly isolated subsurface genera, Arthrobacter and Pseudomonas, are able to maintain viability in low-nutrient, natural subsurface sediments for over one year. These non- spore-forming bacteria undergo rapid initial miniaturization followed by a stabilization of cell size. Membrane lipid phospholipid fatty acid (PLFA) profiles of the Pseudomonas are consistent with adaptation to nutrient stress; Arthrobacter apparently responds to nutrient deprivation without altering membrane PLFAs. To test survivability of microorganisms over a geologic time scale, we characterized microbial communities in a sequence of unsaturated sediments ranging in age from modern to > 780,000 years. Sediments were relatively uniform silts in eastern Washington State. Porewater ages at depth (measured by the chloride mass- balance approach) were as old as 3,600 years. Microbial abundance, biomass, and activities (measured by direct counts, culture counts, total PLFAs, and radiorespirometry) declined with sediment age. The pattern is consistent with laboratory microcosm studies of microbial survival: rapid short-term change followed by long-term survival of a proportion of cells. Even the oldest sediments evinced a small but viable microbial community. Microbial survival appeared to be a function of sediment age. Porewater age appeared to influence the makeup of surviving communities, as indicated by PLFA profiles. Sites with different porewater recharge rates and patterns of Pleistocene flooding had different communities. These and other studies provide evidence that microorganisms can survive nutrient limitation for geologic time periods.

  12. Laboratory and Field Evidence for Long-Term Starvation Survival of Microorganisms in Subsurface Terrestrial Environments

    SciTech Connect

    Kieft, T.L.; Murphy, E.M.; Amy, P.S.; Haldeman, D.L.; Ringelberg, D. B. |

    1997-12-31

    BIOGEOCHEMICAL MODELING OF GROUNDWATER FLOW AND NUTRIENT FLUX IN SUBSURFACE ENVIRONMENTS INDICATES THAT INHABITANT MICROORGANISMS EXPERIENCE SEVERE NUTRIENT LIMITATION. USING LABORATORY AND FIELD METHODS, WE HAVE BEEN TESTING STARVATION SURVIVAL IN SUBSURFACE MICROORGANISMS. IN MICROCOSM EXPERIMENTS, WE HAVE SHOWN THAT STRAINS OF TWO COMMONLY ISOLATED SUBSURFACE GENERA, ARTHROBACTER AND PSEUDOMONAS, ARE ABLE TO MAINTAIN VIABILITY IN LOW-NUTRIENT, NATURAL SUBSURFACE SEDIMENTS FOR OVER ONE YEAR. THESE NON-SPORE-FORMING BACTERIA UNDERGO RAPID INITIAL MINIATURIZATION FOLLOWED BY A STABILIZATION OF CELL SIZE. MEMBRANE LIPID PHOSPHOLIPID FATTY ACID (PLFA) PROFILES OF THE PSEUDOMONAS ARE CONSISTENT WITH ADAPTATION TO NUTRIENT STRESS; ARTHROBACTER APPARENTLY RESPONDS TO NUTRIENT DEPRIVATION WITHOUT ALTERING MEMBRANE PLFA. TO TEST SURVIVABILITY OF MICROORGANISMS OVER A GEOLOGIC TIME SCALE, WE CHARACTERIZED MICROBIAL COMMUNITIES IN A SEQUENCE OF UNSATURATED SEDIMENTS RANGING IN AGE FROM MODEM TO {gt}780,000 years. Sediments were relatively uniform silts in Eastern Washington State. Porewater ages at depth (measured by the chloride mass-balance approach) were as old as 3,600 years. Microbial abundance, biomass, and activities (measured by direct counts, culture counts, total PLFAs, and radiorespirometry) declined with sediment age. The pattern is consistent with laboratory microcosm studies of Microbial survival: rapid short-term change followed by long-term survival of a proportion of cells. Even the oldest sediments evinced a small but viable Microbial community. Microbial survival appeared to be a function of sediment age. Porewater age appeared to influence the markup of surviving communities, as indicated by PLFA profiles. Sites with different Porewater recharge rates and patterns of Pleistocene flooding had different communities.

  13. Geophysical characterization of subsurface barriers

    SciTech Connect

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier.

  14. INL Subsurface Wireless Sensor Platform

    SciTech Connect

    Dennis C. Kunerth; John M. Svoboda; James T. Johnson

    2005-10-01

    The Idaho National Laboratory is developing a versatile micro-power sensor interface platform for periodic subsurface sensing of environmental variables important to waste disposal sites such as volumetric moisture, water potential, and temperature. The key characteristics of the platform architecture are that the platform is passive until externally energized --no internal power source is required -- and that it communicates with a "reader" via short-range telemetry - no wires penetrate the subsurface. Other significant attributes include the potential for a long service life and a compact size that makes it well suited for retrofitting existing landfill structures. Functionally, the sensor package is "read" by a short-range induction coil that activates and powers the sensor platform as well as detects the sensor output via a radio frequency signal generated by the onboard programmable interface controller microchip. As a result, the platform has a functional subsurface communication range of approximately 10 to 12 ft. and can only accept sensors that require low power to operate.

  15. Geomorphic factors related to the persistence of subsurface oil from the Exxon Valdez oil spill

    USGS Publications Warehouse

    Nixon, Zachary; Michel, Jacqueline; Hayes, Miles O.; Irvine, Gail V.; Short, Jeffrey

    2013-01-01

    Oil from the 1989 Exxon Valdez oil spill has persisted along shorelines of Prince William Sound, Alaska, for more than two decades as both surface and subsurface oil residues. To better understand the distribution of persistent subsurface oil and assess the potential need for further restoration, a thorough and quantitative understanding of the geomorphic factors controlling the presence or absence of subsurface oil is required. Data on oiling and geomorphic features were collected at 198 sites in Prince William Sound to identify and quantify the relationships among these geomorphic factors and the presence and absence of persistent subsurface oil. Geomorphic factors associated with the presence of subsurface oil were initial oil exposure, substrate permeability, topographic slope, low exposure to waves, armoring on gravel beaches, tombolos, natural breakwaters, and rubble accumulations. Geomorphic factors associated with the absence of subsurface oil were impermeable bedrock; platforms with thin sediment veneer; fine-grained, well-sorted gravel beaches with no armor; and low-permeability, raised bay-bottom beaches. Relationships were found between the geomorphic and physical site characteristics and the likelihood of encountering persistent subsurface oiling at those sites. There is quantitative evidence of more complex interactions between the overall wave energy incident at a site and the presence of fine-scale geomorphic features that may have provided smaller, local wave energy sheltering of oil. Similarly, these data provide evidence for interactions between the shoreline slope and the presence of angular rubble, with decreased likelihood for encountering subsurface oil at steeply sloped sites except at high-angle sheltered rubble shoreline locations. These results reinforce the idea that the interactions of beach permeability, stability, and site-specific wave exposure are key drivers for subsurface oil persistence in exposed and intermittently exposed mixed

  16. Empirical sediment transport function predicting seepage erosion undercutting for cohesive bank failure prediction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seepage erosion is an important factor in hillslope instability and failure. However, predicting erosion by subsurface flow or seepage and incorporating its effects into stability models remains a challenge. Limitations exist with all existing seepage erosion sediment transport functions, including ...

  17. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  18. Subsurface damage from oblique impacts into low-impedance layers

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Schultz, P. H.

    2012-07-01

    Layered planetary surfaces occur ubiquitously in the solar system, where sedimentary sequences or icy layers overlay crystalline bedrock. Previous experimental studies investigated how the presence of weak layer overlying a strong basement affects crater morphology, subsurface damage and soft-sediment compression. Numerical studies generally focus on the final morphology as a function of thicknesses and burial depths of weak layers. In field studies of impact craters, the shock state of minerals is a key metric. Here, we evaluate the effect of a surficial low-impedance layer on peak pressure magnitudes and consequent damage extent in the competent substrate. Laboratory experiments coupled with 3D CTH models of oblique (30° from horizontal) hypervelocity impacts at laboratory and planetary scales show that surface layers with a thickness on the order of the projectile diameter shield the underlying surface and absorb/scatter ˜70% of the impact energy. Numerical simulations reveal that surficial layers reduce peak pressure magnitudes within the subsurface by ˜60-70%, while damage in the substrate is due to shear failure. Sedimentary layers are more efficient shields than icy layers, but both reduce the extent of subsurface damage and the resulting shock levels recorded by minerals. These results indicate that a thin surficial low impedance layer mitigates the expression of shocked minerals in the substrate even when a structural response is still observed.

  19. Deep Sequencing of Subseafloor Eukaryotic rRNA Reveals Active Fungi across Marine Subsurface Provinces

    PubMed Central

    Orsi, William; Biddle, Jennifer F.; Edgcomb, Virginia

    2013-01-01

    The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC), nitrate, sulfide, and dissolved inorganic carbon (DIC). These correlations are supported by terminal restriction length polymorphism (TRFLP) analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface. PMID:23418556

  20. Ma_Miss for ExoMars mission: miniaturized imaging spectrometer for subsurface studies

    NASA Astrophysics Data System (ADS)

    De Sanctis, M. C.; Altieri, F.; Ammannito, E.; De Angelis, S.; Di Iorio, T.; Manzari, P.; Mugnuolo, R.; Soldani-Benzi, M.; Battistelli, E.; Coppo, P.; Novi, S.; Meini, M.

    2014-04-01

    The study of the Martian subsurface will provide important constraints on the nature, timing and duration of alteration and sedimentation processes on Mars, as well as on the complex interactions between the surface and the atmosphere. A Drilling system, coupled with an in situ analysis package, is installed on the ExoMars Rover to perform in situ investigations up to 2m in the Mars soil. Ma_Miss (Mars Multispectral Imager for Subsurface Studies) is a spectrometer devoted to observe the lateral wall of the borehole generated by the Drilling system [1,2]. The instrument is fully integrated with the Drill and shares its structure and electronics.

  1. Modelling soil erosion in a clayey, subsurface-drained agricultural field with a three-dimensional FLUSH model

    NASA Astrophysics Data System (ADS)

    Warsta, Lassi; Taskinen, Antti; Koivusalo, Harri; Paasonen-Kivekäs, Maija; Karvonen, Tuomo

    2013-08-01

    Soil erosion is an important environmental issue in agricultural areas of northern Europe where clayey soils are prevalent. Clayey soils are routinely subsurface drained to accelerate drainage which creates an additional discharge route for suspended sediment. Previously, assessment of the sediment load from clayey fields has been difficult, because process-based models were only able to simulate sediment loads via surface runoff. A new distributed, process-based erosion model was developed and incorporated into the FLUSH modelling system to fulfil this void. The model facilitates simulation of spatially distributed soil erosion on the field surface and sediment loads via surface runoff and subsurface drainflow. Soil erosion on the field surface is simulated with the two-dimensional sediment continuity equation coupled with hydraulic and rain drop splash erosion, sediment settling, and transport capacity processes. Subsurface sediment transport in macropores is described with the three-dimensional advection-dispersion equation. The model was applied to a clayey, subdrained field section (∼3.6 ha) in southern Finland. The results demonstrated the capability of the model to simulate soil erosion and sediment transport in terms of the match between the measured (2669 kg ha-1) and modelled (2196 kg ha-1) sediment loads via surface runoff and the measured (2937 kg ha-1) and modelled (2245 kg ha-1) loads via drainflow during the validation period of 7 months. The model sensitivity analysis pointed out the importance of the flow model parameters in simulation of soil erosion through their control on the division of total runoff into surface runoff and drainflow components. The key parameters in the erosion model were those that affected hydraulic and splash erosion rates. The model application in the experimental field suggested that both hydraulic and splash erosion were the factors behind the sediment losses during the growing season and early autumn, whereas high

  2. Characterization of multilayer reflectors and position sensitive detectors in the 45--300 A region

    SciTech Connect

    Yamashita, K.; Takahashi, S. ); Kitamoto, S.; Takahama, S.; Tamura, K. ); Hatsukade, I. ); Sakurai, M. ); Watanabe, M. ); Yamaguchi, A. ); Nagata, H.; Ohtani, M. )

    1992-01-01

    Multilayer reflectors and position sensitive detectors have been developed in constructing imaging optical systems in the 45--300 A region. Molybdenum-silicon (2{ital d}=140 A, {ital N}=20) and nickel--carbon (2{ital d}=100 A, {ital N}=20) multilayers were deposited on a spherical mirror (25 cm in diameter) for the normal incidence and on a segment of paraboloidal mirror (20 cm{times}10 cm) for 30{degree} grazing incidence. Their optical characteristics were evaluated by using characteristic x rays and monochromatized synchrotron radiation in the 45--300 A region. A position sensitive detector is made of a tandem microchannel plate (MCP) with a CsI photocathode and resistive plate, which is placed at the focal plane of each mirror. The detection efficiency and position resolution were measured by using characteristic x rays of C{ital K}{alpha} and monochromatized synchrotron radiation in the 45--200 A region.

  3. The layered subsurface - periglacial slope deposits as crucial elements for soil formation and variability

    NASA Astrophysics Data System (ADS)

    Völkel, Jörg; Huber, Juliane

    2014-05-01

    Still most concepts of soil formation, weathering production rates and weathering front ideas are dealing with a monolayered near-surface underground and subsoil. At best a line is given on so-called moved regolith. In fact the subsurface is often characterized by stratified and multilayered slope deposits with thicknesses exceeding 1 m. These stratified slope sediments play a significant role in the nature of the physical and chemical properties as well as on soil forming processes. Examples are given for sediment sourced chemical elements and common clay minerals, and the significance of slope sediments as both barriers and pathways for interflow that moves through the stratified sediments. The stratified subsurface is often datable by numeric age techniques (OSL) showing up how sediment features contradict weathering effects and meaning e.g. for soil genesis. In the mid latitudes, geomorphic and sedimentologic evidence supports a periglacial origin, involving solifluction, for the origin of these slope deposits. The study areas are situated within the Colorado Front Range, U.S. and the Bavarian Forest, Germany. The projects are currently financed and supported by the German Science Foundation DFG. Literature: Völkel, J., Huber, J. & Leopold, M. (2011): Significance of slope sediments layering on physical characteristics and interflow within the Critical Zone… - Applied Geochemistry 26: 143-145.

  4. Subsurface North Atlantic warming as a trigger of rapid cooling events: evidence from the early Pleistocene (MIS 31-19)

    NASA Astrophysics Data System (ADS)

    Hernández-Almeida, I.; Sierro, F.-J.; Cacho, I.; Flores, J.-A.

    2015-04-01

    Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt ice-rafted detritus (IRD) events during cold periods of the early Pleistocene. We used paired Mg / Ca and δ18O measurements of Neogloboquadrina pachyderma (sinistral - sin.), deep-dwelling planktonic foraminifera, to estimate the subsurface temperatures and seawater δ18O from a sediment core from Gardar Drift, in the subpolar North Atlantic. Carbon isotopes of benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg / Ca-based temperatures and seawater δ18O suggest increased subsurface temperatures and salinities during ice-rafting, likely due to northward subsurface transport of subtropical waters during periods of weaker Atlantic Meridional Overturning Circulation (AMOC). Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of IRD. Subsurface accumulation of warm waters would have resulted in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. The release of heat stored at the subsurface to the atmosphere would have helped to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during Marine Isotope Stage (MIS) 3.

  5. The evolution of cave systems from the surface to subsurface

    SciTech Connect

    Loucks, R.G. ); Handford, C.R. )

    1996-01-01

    Many carbonate reservoirs are the result of cave-forming processes. The origin and recognition of fractures, breccias, and sediment fills associated with paleocaves were determined through the study of modern and paleocaves systems. Cave formation and destruction are the products of near-surface processes. Near-surface processes include solutional excavation, clastic and chemical sedimentation, and collapse of cave walls and ceilings. Cave sediment is derived from inside and/or outside the system. Depositional mechanisms include suspension, tractional, mass-flow and rock-fall. Collapse of ceilings and walls from chaotic breakdown breccias. These piles can be tens of meters thick and contain large voids and variable amounts of matrix. Cave-roof crackle breccia forms from stress-and tension-related fractures in cave-roof strata. As the cave-bearing strata subside into the subsurface, mechanical compaction increases and restructures the existing breccias and remaining cavities. Fracture porosity increases and breccia and vug porosity decreases. Large cavities collapse forming burial chaotic breakdown breccias. Differentially compacted strata over the collapsed chamber fracture and form burial cave-roof crackle breccias. Continued burial leads to more extensive mechanical compaction causing previously formed clasts to fracture and pack closer together. The resulting product is a rebrecciated chaotic breakdown breccia composed predominantly of small clasts. Rebrecciated blocks are often overprinted by crackling. Subsurface paleocave systems commonly have a complex history with several episodes of fracturing and brecciation. The resulting collapsed-paleocave reservoir targets are not single collapsed passages of tens of feet across, but are homogenized collapsed-cave systems hundreds to several thousand feet across.

  6. The evolution of cave systems from the surface to subsurface

    SciTech Connect

    Loucks, R.G.; Handford, C.R.

    1996-12-31

    Many carbonate reservoirs are the result of cave-forming processes. The origin and recognition of fractures, breccias, and sediment fills associated with paleocaves were determined through the study of modern and paleocaves systems. Cave formation and destruction are the products of near-surface processes. Near-surface processes include solutional excavation, clastic and chemical sedimentation, and collapse of cave walls and ceilings. Cave sediment is derived from inside and/or outside the system. Depositional mechanisms include suspension, tractional, mass-flow and rock-fall. Collapse of ceilings and walls from chaotic breakdown breccias. These piles can be tens of meters thick and contain large voids and variable amounts of matrix. Cave-roof crackle breccia forms from stress-and tension-related fractures in cave-roof strata. As the cave-bearing strata subside into the subsurface, mechanical compaction increases and restructures the existing breccias and remaining cavities. Fracture porosity increases and breccia and vug porosity decreases. Large cavities collapse forming burial chaotic breakdown breccias. Differentially compacted strata over the collapsed chamber fracture and form burial cave-roof crackle breccias. Continued burial leads to more extensive mechanical compaction causing previously formed clasts to fracture and pack closer together. The resulting product is a rebrecciated chaotic breakdown breccia composed predominantly of small clasts. Rebrecciated blocks are often overprinted by crackling. Subsurface paleocave systems commonly have a complex history with several episodes of fracturing and brecciation. The resulting collapsed-paleocave reservoir targets are not single collapsed passages of tens of feet across, but are homogenized collapsed-cave systems hundreds to several thousand feet across.

  7. Phylogenetic relationships among subsurface microorganisms

    SciTech Connect

    Nierzwicki-Bauer, S.A.

    1991-01-01

    This project involves the development of group specific 16S ribosomal RNA-targeted oligonucleotide hybridization probes for the rapid detection of specific types of subsurface organisms (e.g., groups of microbes that share certain physiological traits). Major accomplishments for the period of 6/91 to 12/1/91 are described. Nine new probes have been synthesized on the basis of published 16S rRNA sequence data from the Ribosomal Database Project. We have initiated rapid screening of many of the subsurface microbial isolates obtained from the P24 borehole at the Savannah River Site. To date, we have screened approximately 50% of the isolates from P24. We have optimized our {und in situ} hybridization technique, and have developed a cell blot hybridization technique to screen 96 samples on a single blot. This is much faster than reading 96 individual slides. Preliminary experiments have been carried out which indicate specific nutrients can be used to amplify rRNA only in those organisms capable of metabolizing those nutrients. 1 tab., 2 figs.

  8. Introduction: energy and the subsurface.

    PubMed

    Christov, Ivan C; Viswanathan, Hari S

    2016-10-13

    This theme issue covers topics at the forefront of scientific research on energy and the subsurface, ranging from carbon dioxide (CO2) sequestration to the recovery of unconventional shale oil and gas resources through hydraulic fracturing. As such, the goal of this theme issue is to have an impact on the scientific community, broadly, by providing a self-contained collection of articles contributing to and reviewing the state-of-the-art of the field. This collection of articles could be used, for example, to set the next generation of research directions, while also being useful as a self-study guide for those interested in entering the field. Review articles are included on the topics of hydraulic fracturing as a multiscale problem, numerical modelling of hydraulic fracture propagation, the role of computational sciences in the upstream oil and gas industry and chemohydrodynamic patterns in porous media. Complementing the reviews is a set of original research papers covering growth models for branched hydraulic crack systems, fluid-driven crack propagation in elastic matrices, elastic and inelastic deformation of fluid-saturated rock, reaction front propagation in fracture matrices, the effects of rock mineralogy and pore structure on stress-dependent permeability of shales, topographic viscous fingering and plume dynamics in porous media convection.This article is part of the themed issue 'Energy and the subsurface'. PMID:27597784

  9. Calculation notes that support accident scenario and consequence development for the subsurface leak remaining subsurface accident

    SciTech Connect

    Ryan, G.W., Westinghouse Hanford

    1996-07-12

    This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report: Subsurface Leak Remaining Subsurface. The calculations needed to quantify the risk associated with this accident scenario are included within.

  10. Calculation notes that support accident scenario and consequence development for the subsurface leak remaining subsurface accident

    SciTech Connect

    Ryan, G.W., Westinghouse Hanford

    1996-09-19

    This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report: Subsurface Leak Remaining Subsurface. The calculations needed to quantify the risk associated with this accident scenario are included within.

  11. Preliminary Investigation of Linkages Between Arctic Pingos and Subsurface Stratigraphy

    NASA Astrophysics Data System (ADS)

    Casavant, R.; Skirvin, S.; Patel, C.; Burr, D.

    2008-12-01

    This NASA-SETI supported study investigates the distribution of pingos (elliptically-shaped ice-rich topographic mounds) across 2300 square kilometers of the central coastal plain of Arctic Alaska in relation to the shallow geological framework that exists immediately beneath them. Pingos in the central North Slope of Alaska are classified as being of the closed or hydrostatic type. Their genesis is often assigned to freezing and cryogenic uplift of near-surface saturated thaw lake sediments that are exposed as lakes are drained and/or become choked with sediments. Although thaw lakes appear rather ubiquitous across the study area, pingos do not. Pingo distributions can be categorized as either clusters of elements or as relatively dispersed. Spatial statistical analysis reveals that pingo distribution is non-random and clustered. The analysis also took into account that pingo distribution is a function of preferential preservation between modern rivers channels that cross the study area. Pingo distributions and frequency were tested in relation to the location and type of stratigraphic and sedimentological features that characterized the shallow subsurface across the study area. Subsurface interpretation was derived mostly from oil well wireline logs. Gamma ray logs for more than 160 wells were used to define, correlate and assess the connectivity and conductivity of shallow and near-surface stratigraphic units between wells. Assessed also were major facies changes and the type and locations of subsurface structures such as major basement-to-surface faults and folds. The surface and near-surface truncation and subcropping of tilted, alternating units of permeable coarse-grained and confining fine- grained units were also mapped in relation to pingo locations. Preliminary and intriguing findings will be presented which contribute to the hypothesis that pingo genesis, location, and variations in morphology could be, in part, linked to a well-documented and active

  12. A field evaluation of subsurface and surface runoff. II. Runoff processes

    USGS Publications Warehouse

    Pilgrim, D.H.; Huff, D.D.; Steele, T.D.

    1978-01-01

    Combined use of radioisotope tracer, flow rate, specific conductance and suspended-sediment measurements on a large field plot near Stanford, California, has provided more detailed information on surface and subsurface storm runoff processes than would be possible from any single approach used in isolation. Although the plot was surficially uniform, the runoff processes were shown to be grossly nonuniform, both spatially over the plot, and laterally and vertically within the soil. The three types of processes that have been suggested as sources of storm runoff (Horton-type surface runoff, saturated overland flow, and rapid subsurface throughflow) all occurred on the plot. The nonuniformity of the processes supports the partial- and variable-source area concepts. Subsurface storm runoff occurred in a saturated layer above the subsoil horizon, and short travel times resulted from flow through macropores rather than the soil matrix. Consideration of these observations would be necessary for physically realistic modeling of the storm runoff process. ?? 1978.

  13. Distribution and partitioning of heavy metals in estuarine sediment cores and implications for the use of sediment quality standards

    NASA Astrophysics Data System (ADS)

    Spencer, K. L.; MacLeod, C. L.

    Total metal concentrations in surface sediments and historically contaminated sediments were determined in sediment cores collected from three estuaries (Thames, Medway and Blackwater) in south-east England. The partitioning behaviour of metals in these sediments was also determined using a sequential extraction scheme. These data were then compared with sediment quality values (SQVs) to determine the potential ecotoxicological risk to sediment dwelling organisms. When total metal concentrations in surface sediments are examined, no risk to biota in any of the estuaries is indicated. However, when historically contaminated sediments at depth are also considered, risks to biota are apparent and are greatest for the Thames, followed by the Medway and then the Blackwater. This suggests that regulatory authorities should examine vertical metal profiles, particularly in estuaries that are experiencing low sediment accumulation rates where historically contaminated sediments are in the shallow sub-surface zone and where erosion or dredging activities may take place. When metal partitioning characteristics are also considered, the risk to biota is comparable for the Medway and the Blackwater with the potentially bioavailable fraction presenting no ecotoxicological risk. Conversely, over 70% of metals are labile in the Thames Estuary sediments and toxic effects are probable. This suggests that the application of SQVs using total sediment metal concentrations may over- or under-estimate the risk to biota in geochemically dissimilar estuarine sediments.

  14. ATG16L1 T300A Polymorphism is Correlated with Gastric Cancer Susceptibility.

    PubMed

    Burada, Florin; Ciurea, Marius Eugen; Nicoli, Raluca; Streata, Ioana; Vilcea, Ionica Dan; Rogoveanu, Ion; Ioana, Mihai

    2016-04-01

    Gastric cancer is a major leading cause of cancer-related death in both sexes in Europe. The role of autophagy process in carcinogenesis remains unclear and there is increasing evidence that Helicobacter pylori is a key player in modulating autophagy in gastric carcinogenesis. The aim of this study was to assess the potential association of ATG16L1 T300A polymorphism with susceptibility of gastric cancer, and further to analyze the expression profile of ATG16L1 gene in paired tumoral and peritumoral gastric tissue. A total of 108 patients diagnosed with gastric cancer and 242 healthy controls were enrolled. ATG16L1 T300A polymorphism was detected using TaqMan genotyping assay containing primers and specific probes for A and G allele, respectively. ATG16L1 mRNA level was evaluated in 34 paired tumoral and peritumoral tissues using qRT-PCR. We found a significant association for both carriers of AG (OR 0.52, 95 % CI: 0.30-0.91, p = 0.02) and GG genotype (OR 0.53, 95 % CI: 0.28-0.98, p = 0.043), these were at a lower risk for gastric cancer when compared with the wild-type AA genotype. The strongest association was observed in a dominant model, the carriers of G allele were protected against gastric cancer (OR 0.52, 95 % CI: 0.13-0.88, p = 0.013). In a stratified analyse, the association was limited to non-cardia type and intestinal type. ATG16L1 gene expression was detected in both tumor and peritumoral tissues, with the mRNA-ATG16L1 levels significantly higher in tumor sample. Our results suggest that ATG16L1 T300A polymorphism may be associated with gastric carcinogenesis. PMID:26547861

  15. Plutonium contamination issues in Hanford soils and sediments: Discharges from the Z-Plant (PFP) complex

    NASA Astrophysics Data System (ADS)

    Felmy, Andrew R.; Cantrell, Kirk J.; Conradson, Steven D.

    Beginning in 1945, weapons production activities at the Hanford Nuclear Reservation resulted in the discharge of large quantities of Pu and other transuranic elements to the subsurface. The vast majority of the transuranics was disposed in the Hanford central plateau (200 areas) predominately associated with activities at the Z-Plant (Plutonium Finishing Plant) complex. In the past Pu and Am migrated deep into the subsurface at certain locations, although Pu and other transuranics are not currently being detected in significant concentration in any associated groundwaters. Evaluation of the chemical form of the transuranics in the subsurface along with determining the mechanism(s) of the past subsurface migration is important in establishing strategies for long-term site management practices. Unfortunately, the chemical form of the transuranics in the deep subsurface sediments and the past mechanism of vertical migration remain largely unknown. However, initial studies performed as part of this research indicate that the chemical form of Pu can vary from disposal site to disposal site depending upon the waste type and the chemical form can also differ between surface sediments and deep subsurface sediments at the same site. This paper present a summary of the different waste types and locations where transuranics were disposed, the factors that could have lead to subsurface migration via different transport vectors, the information currently available on the chemical form of Pu in the subsurface, and a summary of current research needs.

  16. Continuous discharge Penning source with emission lines between 50 A and 300 A. [for astronomy

    NASA Technical Reports Server (NTRS)

    Finley, D. S.; Bowyer, S.; Paresce, F.; Malina, R. F.

    1979-01-01

    The present paper deals with a modified Penning discharge lamp developed specially to cover the soft X-ray and extreme UV spectral regions. The source produces a total of nearly 40 intense lines in the 50 to 300 A range. The lamp is quiet, continuous, and stable over most of the cathode lifetime (which is sufficient for long calibration runs). When the cathodes become exhausted, the refurbishment procedure is so simple that the source can be back on line in an hour or less

  17. Subsurface Flow and Contaminant Transport

    2000-09-19

    FACT is a transient three-dimensional, finite element code for simulating isothermal groundwater flow, moisture movement, and solute transport in variably and/or fully saturated subsurface porous media. Both single and dual-domain transport formulations are available. Transport mechanisms considered include advection, hydrodynamic dispersion, linear adsorption, mobile/immobile mass transfer and first-order degradation. A wide range of acquifier conditions and remediation systems commonly encountered in the field can be simulated. Notable boundary condition (BC) options include, a combined rechargemore » and drain BC for simulating recirculation wells, and a head dependent well BC that computes flow based on specified drawdown. The code is designed to handle highly heterogenous, multi-layer, acquifer systems in a numerically efficient manner. Subsurface structure is represented with vertically distorted rectangular brick elements in a Cartesian system. The groundwater flow equation is approximated using the Bubnov-Galerkin finite element method in conjunction with an efficient symmetric Preconditioned Conjugate Gradient (PCG) ICCG matrix solver. The solute transport equation is approximated using an upstream weighted residual finite element method designed to alleviate numerical oscillation. An efficient asymmetric PCG (ORTHOMIN) matrix solver is employed for transport. For both the flow and transport equations, element matrices are computed from either influence coefficient formulas for speed, or two point Gauss-Legendre quadrature for accuracy. Non-linear flow problems can be solved using either Newton-Ralphson linearization or Picard iteration, with under-relaxation formulas to further enhance convergence. Dynamic memory allocation is implemented using Fortran 90 constructs. FACT coding is clean and modular.« less

  18. Desulfotomaculum spp. and related gram-positive sulfate-reducing bacteria in deep subsurface environments

    PubMed Central

    Aüllo, Thomas; Ranchou-Peyruse, Anthony; Ollivier, Bernard; Magot, Michel

    2013-01-01

    Gram-positive spore-forming sulfate reducers and particularly members of the genus Desulfotomaculum are commonly found in the subsurface biosphere by culture based and molecular approaches. Due to their metabolic versatility and their ability to persist as endospores. Desulfotomaculum spp. are well-adapted for colonizing environments through a slow sedimentation process. Because of their ability to grow autotrophically (H2/CO2) and produce sulfide or acetate, these microorganisms may play key roles in deep lithoautotrophic microbial communities. Available data about Desulfotomaculum spp. and related species from studies carried out from deep freshwater lakes, marine sediments, oligotrophic and organic rich deep geological settings are discussed in this review. PMID:24348471

  19. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    SciTech Connect

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

    1992-12-31

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

  20. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    SciTech Connect

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

    1992-01-01

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site's microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog [reg sign] evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog[reg sign] activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

  1. Subsurface geology of Kansai International Airport: sequence related to global glacial - interglacial cycles and island tectonics

    NASA Astrophysics Data System (ADS)

    Takemura, K.; Kitada, N.; Furudoi, T.; Nakaseko, K.

    2007-12-01

    Tectonic sedimentary basins aligned in the central part of Japan during Quaternary . Thick sediments deposited in these basins provide useful records of climatic changes and tectonics throughout Quaternary. The Osaka sedimentary basin including Osaka Bay and area of Kansai International Airport is one of them. The Quaternary Osaka sedimentary basin has developed at an eastern contractional bend of a major transcurrent fault system named the Median Tectonic Line, which divides the southwest Japan arc. The thickness of Pliocene - Pleistocene sediments reaches to ca 3500m at the deepest part. These sequences are called the Osaka Group and are distributed in the Osaka Bay and exposed in the surrounding mountain areas. The Osaka Group is characterized by alternating sequences of marine and nonmarine strata. The subsurface sediments of Kansai International Airport (KIA) is composed mainly of Pliocene - Pleistocene sediments, which is characterized by alternating sequences of marine and nonmarine strata related to glacial - interglacial cycles. . The stratigraphy at KIA was established by micropaleontological, tephrochronological and magnetostratigraphical method. The sedimentary sequence at KIX is divided into two main units (Kukojima and Sennanoki Formations in ascending order) with the uncomformity within two units. Although thick marine clay units are mainly of the subsurface sequence, characteristics of coarser sediment units have an important role of moving of water during construction of the reclaimed land.

  2. Amino acid synthesis in Europa's subsurface environment

    NASA Astrophysics Data System (ADS)

    Abbas, Sam H.; Schulze-Makuch, Dirk

    2008-10-01

    It has been suggested that Europa's subsurface environment may provide a haven for prebiotic evolution and the development of exotic biotic systems. The detection of hydrogen peroxide, sulfuric acid, water, hydrates and related species on the surface, coupled with observed mobility of icebergs, suggests the presence of a substantial subsurface liquid reservoir that actively exchanges materials with the surface environment. The atmospheric, surface and subsurface environments are described with their known chemistry. Three synthetic schemes using hydrogen peroxide, sulfuric acid and hydrocyanic acid leading to the production of larger biologically important molecules such as amino acids are described. Metabolic pathways based on properties of the subsurface ocean environment are detailed. Tidal heating, osmotic gradients, chemical cycling, as well as hydrothermal vents, provide energy and materials that may support a course of prebiotic evolution leading to the development or sustenance of simple biotic systems. Putative organisms may employ metabolic pathways based on chemical oxidation reduction cycles occurring in the putative subsurface ocean environment.

  3. On using rational enzyme redesign to improve enzyme-mediated microbial dehalogenation of recalcitrant substances in deep-subsurface environments

    SciTech Connect

    Ornstein, R.L.

    1993-06-01

    Heavily halogenated hydrocarbons are one of the most prevalent classes of man-made recalcitrant environmental contaminants and often make their way into subsurface environments. Biodegradation of heavily chlorinated compounds in the deep subsurface often occurs at extremely slow rates because native enzymes of indigenous microbes are unable to efficiently metabolize such synthetic substances. Cost-effective engineering solutions do not exist for dealing with disperse and recalcitrant pollutants in the deep subsurface (i.e., ground water, soils, and sediments). Timely biodegradation of heavily chlorinated compounds in the deep subsurface may be best accomplished by rational redesign of appropriate enzymes that enhance the ability of indigenous microbes to metabolize these substances. The isozyme family cytochromes P450 are catalytically very robust and are found in all aerobic life forms and may be active in may anaerobes as well. The author is attempting to demonstrate proof-of-principle rational enzyme redesign of cytochromes P450 to enhance biodehalogenation.

  4. Remediation of contaminated subsurface materials by a metal-reducing bacterium

    SciTech Connect

    Gorby, Y.A.; Amonette, J.E.; Fruchter, J.S.

    1994-11-01

    A biotic approach for remediating subsurface sediments and groundwater contaminated with carbon tetrachloride (CT) and chromium was evaluated. Cells of the Fe(iii)-reducing bacterium strain BrY were added to sealed, anoxic flasks containing Hanford groundwater, natural subsurface sediments, and either carbon tetrachloride, CT, or oxidized chromium, Cr(VI). With lactate as the electron donor, BrY transformed CT to chloroform (CF), which accumulated to about 1 0 % of the initial concentration of CT. The remainder of the CT was transformed to unidentified, nonvolatile compounds. Transformation of CT by BrY was an indirect process Cells reduced solid phase Fe(ill) to chemically reactive FE(II) that chemically transformed the chlorinated contaminant. Cr(VI), in contrast, was reduced by a direct enzymatic reaction in the presence or absence of Fe(III)-bearing sediments. These results demonstrate that Fe(ill)-reducing bacteria provide potential for transforming CT and for reducing CR(VI) to less toxic Cr(III). Technologies for stimulating indigenous populations of metal-reducing bacteria or for introducing specific metal-reducing bacteria to the subsurface are being investigated.

  5. Progression of methanogenic degradation of crude oil in the subsurface

    USGS Publications Warehouse

    Bekins, B.A.; Hostettler, F.D.; Herkelrath, W.N.; Delin, G.N.; Warren, E.; Essaid, H.I.

    2005-01-01

    Our results show that subsurface crude-oil degradation rates at a long-term research site were strongly influenced by small-scale variations in hydrologic conditions. The site is a shallow glacial outwash aquifer located near Bemidji in northern Minnesota that became contaminated when oil spilled from a broken pipeline in August 1979. In the study area, separate-phase oil forms a subsurface oil body extending from land surface to about 1 m (3.3 ft) below the 6-8-m (20-26 ft)-deep water table. Oil saturation in the sediments ranges from 10-20% in the vadose zone to 30-70% near the water table. At depths below 2 m (6.6 ft), degradation of the separate-phase crude oil occurs under methanogenic conditions. The sequence of methanogenic alkane degradation depletes the longer chain n-alkanes before the shorter chain n-alkanes, which is opposite to the better known aerobic sequence. The rates of degradation vary significantly with location in the subsurface. Oil-coated soils within 1.5 m (5 ft) of land surface have experienced little degradation where soil water saturation is less than 20%. Oil located 2-8 m (6.6-26 ft) below land surface in areas of higher recharge has been substantially degraded. The best explanation for the association between recharge and enhanced degradation seems to be increased downward transport of microbial growth nutrients to the oil body. This is supported by observations of greater microbial numbers at higher elevations in the oil body and significant decreases with depth in nutrient concentrations, especially phosphorus. Our results suggest that environmental effects may cause widely diverging degradation rates in the same spill, calling into question dating methods based on degradation state. Copyright ?? 2005. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  6. Subsurface imaging across the 2001 Spokane, Washington earthquake swarm

    NASA Astrophysics Data System (ADS)

    Finn, S.; Stephenson, W. J.; Wicks, C. W.; Pratt, T. L.; Odum, J. K.; Angster, S. J.

    2012-12-01

    We acquired 4 km of minivibe reflection seismic data in Spokane, Washington, to image subsurface deformation associated with the 2001 swarm of shallow (<2 km) earthquakes. These data were collected by USGS as part of ongoing earthquake hazards investigations in the area. In 2001 unexplained earthquake ground shaking as well as audible "booms" were reported over a span of six months (June to November) in the Emerson-Garfield and West Central neighborhoods of Spokane.; the area has since been seismically quiescent. Seismograph recordings of the earthquake swarm suggest shallow depths of hypocenters, yet the local subsurface geology is not well known. Although the source region of this swarm is poorly constrained within Spokane due to sparse seismic station coverage in the area at that time, recent InSAR data analysis has revealed a zone of surface deformation that may be related to the earthquake swarm. This surface deformation consists of an elliptical area about 3 km across that had as much as 15 mm of uplift during 2001. Preliminary processing of the two new seismic profiles provides the first subsurface images of the upper 500 m within the Spokane area across the inferred source region. One seismic profile through downtown Spokane shows a three-layer structure of Holocene valley fill and Quaternary Lake Missoula flood deposits underlain by Tertiary Columbia River basalts. We observe a Columbia River basalt bedrock high of 100 m located between seismic profiles and verified by geologic and aeromagnetic maps. The seismic data also image a paleochannel showing the migration of the Spokane River through time. An inflection within the Quaternary basin sediment reflections suggests uplift from faulting that is consistent with the sense of deformation observed in the InSAR data.

  7. Microbial community transitions across the deep sediment-basement interface

    NASA Astrophysics Data System (ADS)

    Labonté, J.; Lever, M. A.; Orcutt, B.

    2015-12-01

    Previous studies of microbial abundance and geochemistry in deep marine sediments indicate a stimulation of microbial activity near the sediment-basement interface; yet, the extent to which microbial communities in bottom sediments and underlying crustal habitats interact is unclear. We conducted tag pyrosequencing on DNA extracted from a spectrum of deep sediment-basement samples to try to identify patterns in microbial community shifts across sediment-basement interfaces, focusing on samples from the subsurface of the Juan de Fuca Ridge flank (IODP Expedition 327). Our results demonstrate that sediment and the basaltic crust harbor microbial communities that are phylogenetically connected, but the eveness is characteristic of the environment. We will discuss the microbial community transitions that occur horizontally along fluid flow pathways and vertically across the sediment basement interface, as well as the possible implications regarding the controls of microbial community composition along deep sediment-basement interfaces in hydrothermal systems. We will also highlight efforts to overcome sample contamination in crustal subsurface samples.

  8. Exploring Microbial Life in Oxic Sediments Underlying Oligotrophic Ocean Gyres

    NASA Astrophysics Data System (ADS)

    Ziebis, W.; Orcutt, B.; Wankel, S. D.; D'Hondt, S.; Szubin, R.; Kim, J. N.; Zengler, K.

    2015-12-01

    Oxygen, carbon and nutrient availability are defining parameters for microbial life. In contrast to organic-rich sediments of the continental margins, where high respiration rates lead to a depletion of O2 within a thin layer at the sediment surface, it was discovered that O2 penetrates several tens of meters into organic-poor sediments underlying oligotrophic ocean gyres. In addition, nitrate, another important oxidant, which usually disappears rapidly with depth in anoxic sediments, tends to accumulate above seawater concentrations in the oxic subsurface, reflecting the importance of nitrogen cycling processes, including both nitrification and denitrification. Two IODP drilling expeditions were vital for exploring the nature of the deep subsurface beneath oligotrophic ocean gyres, expedition 329 to the South Pacific Gyre (SPG) and expedition 336 to North Pond, located on the western flank of the Mid-Atlantic ridge beneath the North Atlantic Gyre. Within the ultra-oligotrophic SPG O2 penetrates the entire sediment column from the sediment-water interface to the underlying basement to depths of > 75 m. At North Pond, a topographic depression filled with sediment and surrounded by steep basaltic outcrops, O2 penetrates deeply into the sediment (~ 30 m) until it eventually becomes depleted. O2 also diffuses upward into the sediment from seawater circulating within the young crust underlying the sediment, resulting in a deep oxic layer several meters above the basalt. Despite low organic carbon contents microbial cells persist throughout the entire sediment column within the SPG (> 75 m) and at North Pond, albeit at low abundances. We explored the nature of the subsurface microbial communities by extracting intact cells from large volumes of sediment obtained from drill cores of the two expeditions. By using CARD-FiSH, amplicon (16s rRNA) and metagenome sequencing we shed light on the phylogenetic and functional diversity of the elusive communities residing in the

  9. Geomicrobial Processes and Biodiversity in the Deep Terrestrial Subsurface

    SciTech Connect

    Fredrickson, Jim K.; Balkwill, David L.

    2005-09-01

    The concept of a deep microbial biosphere has advanced over the past several decades from a hypothesis viewed with considerable skepticism to being widely accepted. Phylogenetically diverse prokaryotes have been cultured from or detected via characterization of directly-extracted nucleic acids from a wide range of deep terrestrial environments. Recent advances have linked the metabolic potential of these microorganisms, determined directly or inferred from phylogeny, to biogeochemical reactions determined via geochemical measurements and modeling. Buried organic matter or kerogen is an important source of energy for sustaining anaerobic heterotrophic microbial communities in deep sediments and sedimentary rock although rates of respiration are among the slowest rates measured on the planet. In contrast, Subsurface Lithoautotrophic Microbial Ecosystems based on H2 as the primary energy source appear to dominate in many crystalline rock environments. These photosynthesis-independent ecosystems remain an enigma due to the difficulty in accessing and characterizing appropriate samples. Deep mines and dedicated rock laboratories, however, may offer unprecedented opportunities for investigating subsurface microbial communities and their interactions with the geosphere.

  10. Microbial Metagenomics Reveals Climate-Relevant Subsurface Biogeochemical Processes.

    PubMed

    Long, Philip E; Williams, Kenneth H; Hubbard, Susan S; Banfield, Jillian F

    2016-08-01

    Microorganisms play key roles in terrestrial system processes, including the turnover of natural organic carbon, such as leaf litter and woody debris that accumulate in soils and subsurface sediments. What has emerged from a series of recent DNA sequencing-based studies is recognition of the enormous variety of little known and previously unknown microorganisms that mediate recycling of these vast stores of buried carbon in subsoil compartments of the terrestrial system. More importantly, the genome resolution achieved in these studies has enabled association of specific members of these microbial communities with carbon compound transformations and other linked biogeochemical processes-such as the nitrogen cycle-that can impact the quality of groundwater, surface water, and atmospheric trace gas concentrations. The emerging view also emphasizes the importance of organism interactions through exchange of metabolic byproducts (e.g., within the carbon, nitrogen, and sulfur cycles) and via symbioses since many novel organisms exhibit restricted metabolic capabilities and an associated extremely small cell size. New, genome-resolved information reshapes our view of subsurface microbial communities and provides critical new inputs for advanced reactive transport models. These inputs are needed for accurate prediction of feedbacks in watershed biogeochemical functioning and their influence on the climate via the fluxes of greenhouse gases, CO2, CH4, and N2O. PMID:27156744

  11. In-Well Sediment Incubators to Evaluate Microbial Community Stability and Dynamics following Bioimmobilization of Uranium

    SciTech Connect

    Baldwin, Brett R.; Peacock, Aaron D.; Gan, M.; Resch, Charles T.; Arntzen, Evan V.; Smithgall, A. N.; Pfiffner, S.; Freifeld, Barry M.; White, D. C.; Long, Philip E.

    2009-09-23

    An in-situ incubation device (ISI) was developed in order to investigate the stability and dynamics of sediment associated microbial communities to prevailing subsurface oxidizing or reducing conditions. Here we describe the use of these devices at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site. During the 7 month deployment oxidized Rifle aquifer background sediments (RABS) were deployed in previously biostimulated wells under iron reducing conditions, cell densities of known iron reducing bacteria including Geobacteraceae increased significantly showing the microbial community response to local subsurface conditions. PLFA profiles of RABS following in situ deployment were strikingly similar to those of adjacent sediment cores suggesting ISI results could be extrapolated to the native material of the test plots. Results for ISI deployed reduced sediments showed only slight changes in community composition and pointed toward the ability of the ISIs to monitor microbial community stability and response to subsurface conditions.

  12. SORPTION OF NONIONIC SURFACTANT OLIGOMERS TO SEDIMENT AND PCE DNAPL: EFFECTS ON PCE DISTRIBUTION BETWEEN WATER AND SEDIMENT. (R826650)

    EPA Science Inventory

    Introduction of surfactant mixtures to the subsurface for the purpose of
    surfactant-enhanced aquifer remediation requires consideration of the effects of
    surfactant sorption to sediment and nonaqueous phase liquids. These effects
    include alteration of the solubiliz...

  13. Subsurface Explosions in Granular Media

    NASA Astrophysics Data System (ADS)

    Lai, Shuyue; Houim, Ryan; Oran, Elaine

    2015-11-01

    Numerical simulations of coupled gas-granular flows are used to study properties of shock formation and propagation in media, such as sand or regolith on the moon, asteroids, or comets. The simulations were performed with a multidimensional fully compressible model, GRAF, which solves two sets of coupled Navier-Stokes equations, one for the gas and one for the granular medium. The specific case discussed here is for a subsurface explosion in a granular medium initiated by an equivalent of 200g of TNT in depths ranging from 0.1m to 3m. The background conditions of 100K, 10 Pa and loose initial particle volume fraction of 25% are consistent with an event on a comet. The initial blast creates a cavity as a granular shock expands outwards. Since the gas-phase shock propagates faster than the granular shock in loose, granular material, some gas and particles are ejected before the granular shock arrives. When the granular shock reaches the surface, a cap-like structure forms. This cap breaks and may fall back on the surface and in this process, relatively dense particle clusters form. At lower temperatures, the explosion timescales are increased and entrained particles are more densely packed.

  14. Watershed-Scale Fungal Community Characterization along a pH Gradient in a Subsurface Environment Cocontaminated with Uranium and Nitrate

    PubMed Central

    Jasrotia, Puja; Green, Stefan J.; Canion, Andy; Overholt, Will A.; Prakash, Om; Wafula, Denis; Hubbard, Daniela; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions. PMID:24389927

  15. Watershed scale fungal community characterization along a pH gradient in a subsurface environment co-contaminated with uranium and nitrate

    SciTech Connect

    Jasrotia, Puja; Green, Stefan; Canion, Andy; Overholt, Will; Prakash, Om; Wafula, Dennis; Hubbard, Daniela; Watson, David B; Schadt, Christopher Warren; Brooks, Scott C; Kostka,

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment co-contaminated with uranium and nitrate at the watershed scale, and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution and diversity of fungi in subsurface groundwater samples were determined using quantitative and semi-quantitative molecular techniques, including quantitative PCR of eukaryotic SSU rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH < 4.5) conditions. Fungal isolates recovered from subsurface sediments were shown to reduce nitrate to nitrous oxide, including cultures of the genus Coniochaeta that were detected in abundance in pyrosequence libraries of site groundwater samples. Denitrifying fungal isolates recovered from the site were classified, and found to be distributed broadly within the phylum Ascomycota, and within a single genus within the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.

  16. Deglacial Subsurface Temperature Change in the Tropical North Atlantic Linked to Atlantic Meridional Overturning Circulation Variability

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.; Chang, P.; Otto-Bliesner, B. L.

    2010-12-01

    Coupled ocean-atmosphere modeling experiments indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly coupled to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes (Zhang, 2007; Chang et al., 2008; and Chiang et al., 2008). While a slowdown of AMOC in these experiments results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming due to rapid reorganizations of ocean circulation patterns (Wan et al., 2009). In addition, observational records of detrended 20th century ocean temperature and salinity variability show a strong anticorrelation between surface cooling and subsurface warming in the TNA over the past several decades, suggesting changing vertical temperature gradients in this region may be a distinct fingerprint of AMOC variability (Zhang 2007). In order to test the hypothesis that subsurface temperature change in the TNA is coupled to AMOC variability across abrupt climate events over the last deglacial, we reconstructed high-resolution Mg/Ca-temperature and δ18O records from both surface (G. ruber) and sub-thermocline dwelling (G. truncatulinoides, 350-500 m depth and G. crassaformis, 450-580 m) planktonic foraminifera in the southern Caribbean Sea sediment core VM12-107 (11.33oN, 66.63oW; 1079 m; 18 cm/kyr sedimentation rate). Sea surface temperatures indicate a gradual warming in the TNA starting at ~19 kyr BP with small cold reversals of ~1.5oC during Heinrich Event 1 (H1) and the Younger Dryas (YD). In contrast, last glacial maximum subsurface temperatures were as much as 2.5oC warmer than Late Holocene values and H1 and the YD are marked by the warmest subsurface temperatures characterized by abrupt temperature increases as large as 4-5oC. Furthermore, a comparison of our subsurface temperature record with the Bermuda Rise 231Pa/230Th proxy record of AMOC variability (McManus et al., 2004) indicates a strong

  17. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    SciTech Connect

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin; Martin Keller; Joseph W. Stucki

    2011-06-15

    The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where the subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which are new

  18. Quantifying the dominant sources of sediment in a drained lowland agricultural catchment: The application of a thorium-based particle size correction in sediment fingerprinting

    NASA Astrophysics Data System (ADS)

    Foucher, Anthony; Laceby, Patrick J.; Salvador-Blanes, Sébastien; Evrard, Olivier; Le Gall, Marion; Lefèvre, Irène; Cerdan, Olivier; Rajkumar, Vignesh; Desmet, Marc

    2015-12-01

    Soil erosion is one of the main factors influencing land degradation and water quality at the global scale. Identifying the main sediment sources is therefore essential for the implementation of appropriate soil erosion mitigation measures. Accordingly, caesium-137 (137Cs) concentrations were used to determine the relative contribution of surface and subsurface erosion sources in a lowland drained catchment in France. As 137Cs concentrations are often dependent on particle size, specific surface area (SSA) and novel thorium (Th) based particle size corrections were applied. Surface and subsurface samples were collected to characterize the radionuclide properties of potential sources. Sediment samples were collected during one hydrological year and a sediment core was sampled to represent sediment accumulated over a longer temporal period. Additionally, sediment from tile drains was sampled to determine the radionuclide properties of sediment exported from the drainage network. A distribution modelling approach was used to quantify the relative sediment contributions from surface and subsurface sources. The results highlight a substantial enrichment in fine particles and associated 137Cs concentrations between the sources and the sediment. The application of both correction factors reduced this difference, with the Th correction providing a more accurate comparison of source and sediment samples than the SSA correction. Modelling results clearly indicate the dominance of surface sources during the flood events and in the sediment core. Sediment exported from the drainage network was modelled to originate predominantly from surface sources. This study demonstrates the potential of Th to correct for 137Cs particle size enrichment. More importantly, this research indicates that drainage networks may significantly increase the connectivity of surface sources to stream networks. Managing sediment transferred through drainage networks may reduce the deleterious effects of

  19. Biogeochemical Cycle of Methanol in Anoxic Deep-Sea Sediments

    PubMed Central

    Yanagawa, Katsunori; Tani, Atsushi; Yamamoto, Naoya; Hachikubo, Akihiro; Kano, Akihiro; Matsumoto, Ryo; Suzuki, Yohey

    2016-01-01

    The biological flux and lifetime of methanol in anoxic marine sediments are largely unknown. We herein reported, for the first time, quantitative methanol removal rates in subsurface sediments. Anaerobic incubation experiments with radiotracers showed high rates of microbial methanol consumption. Notably, methanol oxidation to CO2 surpassed methanol assimilation and methanogenesis from CO2/H2 and methanol. Nevertheless, a significant decrease in methanol was not observed after the incubation, and this was attributed to the microbial production of methanol in parallel with its consumption. These results suggest that microbial reactions play an important role in the sources and sinks of methanol in subseafloor sediments. PMID:27301420

  20. DOE UST interim subsurface barrier technologies workshop

    SciTech Connect

    1992-09-01

    This document contains information which was presented at a workshop regarding interim subsurface barrier technologies that could be used for underground storage tanks, particularly the tank 241-C-106 at the Hanford Reservation.

  1. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    SciTech Connect

    D.C. Randle

    2000-01-07

    The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I&C) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I&C and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I&C systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I&C systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored, controlled, and

  2. Transcriptional Profiling of Human Monocytes Identifies the Inhibitory Receptor CD300a as Regulator of Transendothelial Migration

    PubMed Central

    Bottino, Cristina; Gerke, Volker

    2013-01-01

    Local inflammatory responses are characterized by the recruitment of circulating leukocytes from the blood to sites of inflammation, a process requiring the directed migration of leukocytes across the vessel wall and hence a penetration of the endothelial lining. To identify underlying signalling events and novel factors involved in these processes we screened for genes differentially expressed in human monocytes following their adhesion to and passage through an endothelial monolayer. Functional annotation clustering of the genes identified revealed an overrepresentation of those associated with inflammation/immune response, in particular early monocyte to macrophage differentiation. Among the gene products so far not implicated in monocyte transendothelial migration was the inhibitory immune receptor CD300a. CD300a mRNA and protein levels were upregulated following transmigration and engagement of the receptor by anti-CD300a antibodies markedly reduced monocyte transendothelial migration. In contrast, siRNA mediated downregulation of CD300a in human monocytes increased their rate of migration. CD300a colocalized and cosedimented with actin filaments and, when activated, caused F-actin cytoskeleton alterations. Thus, monocyte transendothelial migration is accompanied by an elevation of CD300a which serves an inhibitory function possibly required for termination of the actual transmigration. PMID:24058511

  3. Phylogenetic relationships among subsurface microorganisms

    SciTech Connect

    Nierzwicki-Bauer, S.A.

    1991-01-01

    This report summarizes the progress made from 6/90--3/91 toward completion of our project, Phylogenetic Relationships among subsurface microorganisms. 16S rRNA was sequenced, and based on the sequence the SMCC isolates were assigned to preliminary groups. Microorganisms were obtained at various depths at the Savannah River Site, including the Surface (0 m), Congaree (91 m), and Middendorf (244 m, 259 m, 265 m). Sequence data from four isolates from the Congaree formation indicate these microorganisms can be divided into Pseudomonas spp. or Acinetobacter spp. Three 16S rRNA probes were synthesized based on sequence data. The synthesized probes were tested through in situ hybridization. Optimal conditions for in situ hybridization were determined. Because stability of RNA-DNA hybrids is dependent on hybridization stringency, related organisms can be differentiated using a single probe under different strigencies. The results of these hybridizations agree with results obtained by Balkwill and Reeves using restriction fragment length polymorphism analysis. The RNA content of a cell reflects its metabolic state. Cells which are starved for four days are not detectable with the homologous 16S rRNA probe. However, within 15 minutes of refeeding, detectable rRNA appeared. This suggests that organisms which are undetectable in environmental samples due to starvation may be detectable after addition of nutrients. Stepwise addition of specific nutrients could indicate which nutrients are rate limiting for growth. Preliminary experiments with soil samples from the Hanford Site indicate indigenous microorganisms can be detected by oligionucleotide probes. Further, using multiple probes based on universal sequences increases the number of organisms detected. Double label experiments, using a rhodamine-labelled oligionucleotide probe with free coumarin succinimidyl ester will allow simultaneous detection of total bacteria and specific 16S rRNA containing bacteria. 4 tabs. (MHB)

  4. Floating insulated conductors for heating subsurface formations

    SciTech Connect

    Burns, David; Goodwin, Charles R.

    2014-07-29

    A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

  5. Microbial life in the deep terrestrial subsurface

    SciTech Connect

    Fliermans, C.B.; Balkwill, D.L.; Beeman, R.E.

    1988-12-31

    The distribution and function of microorganisms is a vital issue in microbial ecology. The US Department of Energy`s Program, ``Microbiology of the Deep Subsurface,`` concentrates on establishing fundamental scientific information about organisms at depth, and the use of these organisms for remediation of contaminants in deep vadose zone and groundwater environments. This investigation effectively extends the Biosphere hundreds of meters into the Geosphere and has implications to a variety of subsurface activities.

  6. Energy Requirements of Hydrogen-utilizing Microbes: A Boundary Condition for Subsurface Life

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.

    2003-01-01

    Microbial ecosystems based on the energy supplied by water-rock chemistry carry particular significance in the context of geo- and astrobiology. With no direct dependence on solar energy, lithotrophic microbes could conceivably penetrate a planetary crust to a depth limited only by temperature or pressure constraints (several kilometers or more). The deep lithospheric habitat is thereby potentially much greater in volume than its surface counterpart, and in addition offers a stable refuge against inhospitable surface conditions related to climatic or atmospheric evolution (e.g., Mars) or even high-energy impacts (e.g., early in Earth's history). The possibilities for a deep microbial biosphere are, however, greatly constrained by life s need to obtain energy at a certain minimum rate (the maintenance energy requirement) and of a certain minimum magnitude (the energy quantum requirement). The mere existence of these requirements implies that a significant fraction of the chemical free energy available in the subsurface environment cannot be exploited by life. Similar limits may also apply to the usefulness of light energy at very low intensities or long wavelengths. Quantification of these minimum energy requirements in terrestrial microbial ecosystems will help to establish a criterion of energetic habitability that can significantly constrain the prospects for life in Earth's subsurface, or on other bodies in the solar system. Our early work has focused on quantifying the biological energy quantum requirement for methanogenic archaea, as representatives of a plausible subsurface metabolism, in anoxic sediments (where energy availability is among the most limiting factors in microbial population growth). In both field and laboratory experiments utilizing these sediments, methanogens retain a remarkably consistent free energy intake, in the face of fluctuating environmental conditions that affect energy availability. The energy yields apparently required by

  7. Surface-subsurface salinity distribution and exchange in a closed-basin prairie wetland

    NASA Astrophysics Data System (ADS)

    Heagle, Dru; Hayashi, Masaki; Kamp, Garth van der

    2013-01-01

    SummaryThe northern prairie region of North America has numerous closed-basin wetlands. Salinity (i.e. sulphate concentration) of these wetland ponds has a profound effect on their ecological function. Despite the apparent lack of surface and subsurface outflow from the closed basins, and strong evaporative enrichment due to the dry climate, many of the closed-basin wetlands maintain moderate salinity (1-10 g L-1 as total dissolved solids) instead of evolving into hyper-saline wetlands. The objective of this study is to characterize the surface and groundwater conditions of a typical saline wetland in Saskatchewan, Canada, quantify the surface and subsurface distribution of sulphate, and understand the processes controlling the wetland salinity. The analysis of sediment core samples and the electrical resistivity imaging of the wetland basin indicated a large mass (ca. 107 kg) of subsurface sulphate, most of which is in the form of gypsum. In comparison, the sulphate dissolved in pond water was only 0.13 × 106 kg at its maximum, indicating that only a small fraction of sulphate is in the pond water column at any given time. The analysis of a 19-year mass balance of the wetland pond showed that complex water-sediment exchange processes transfer sulphate from surface water to the underlying sediments during the drying phase of wetland, and transfer part of it back to surface water during the wetting phase. We hypothesize that this wet-dry cycle, repeated many times since the deglaciation of the region has allowed the subsurface sulphate to accumulate and maintained the moderate salinity of the wetland.

  8. Revisiting subsurface chlorophyll and phytoplankton distributions

    NASA Astrophysics Data System (ADS)

    Hense, I.; Beckmann, A.

    2008-09-01

    Vertical profiles of chlorophyll concentration and phytoplankton biomass at ALOHA (HOT) are analyzed for the time period 1988 to 2004. Two different methods are applied: in the standard approach the data are averaged over depth horizons and in the alternative approach the profiles are shifted to the depth of the deepest subsurface maximum before averaging. The results show that the latter is the only meaningful way to look at vertical distribution patterns of both chlorophyll and phytoplankton in the oligotrophic ocean. In particular, a pronounced subsurface maximum of phytoplankton biomass appears only if this depth-adjustment method is used. Otherwise the vertical displacement of the subsurface biomass due to changes in the subsurface light field masks the actual signal: the thickness of the subsurface maximum is overestimated and the maximum is reduced. The results of this study have far-reaching consequences for the interpretation of the large number of profiles of chlorophyll and phytoplankton in the oligotrophic ocean. The absence of a subsurface biomass maximum might not be necessarily a result of photoacclimation but of inadequate analyses combined with coarse vertical resolution.

  9. Determining the Hydraulic Conductivity of the Subsurface in Wetland Environments

    NASA Astrophysics Data System (ADS)

    Berry, L. E.; Mutiti, S.; Hazzard, S.

    2011-12-01

    Slug tests are a popular method for determining hydraulic conductivity (K) of subsurface material and have the potential to be very accurate because of minimal disturbance to the subsurface. A variety of methods and piezometer construction are widely used for slug tests. Most wetland environments are composed of low K material such as silt or clay, which can make determination of hydrogeologic properties challenging. This study is part of a broader ongoing project to understand the functions of wetlands in Milledgeville, Georgia, a city in the Oconee River Basin (ORB), which straddles the Piedmont and the Coastal Plain. The ORB sits on saprolite and gneiss bedrock, and consequently, its wetlands exhibit a high concentration of clay materials. One site, the Oconee River Greenway, lies along the riverbanks of the Oconee. The second site, Andalusia Farm, is a historical site formerly belonging to writer, Flannery O'Connor. The objective of this study was to determine the best method and/or piezometer type for determining K values for low permeability wetland material. We also investigated the potential of using heat and pressure monitoring to determine horizontal and vertical extent of slug tests. The Greenway wetland has significant seasonal interflow through a relatively more permeable sandy layer. Borehole logs and electrical resistivity profiling were used to study the subsurface stratigraphy. Slug test results from different types of piezometers (borehole, drive point, partially screened and fully screened) were compared. Pressure transducers and HOBO thermisters were used to collect water depth, pressure and temperature data. These results were also compared to results from sediment analyses, in-situ permeameters and heat monitoring. Drive point and borehole piezometers with equal diameters produced comparable K estimates at each site. However, fully screened piezometers of either installation type produced higher K values than partially screened piezometers

  10. Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment

    PubMed Central

    Castelle, Cindy J.; Hug, Laura A.; Wrighton, Kelly C.; Thomas, Brian C.; Williams, Kenneth H.; Wu, Dongying; Tringe, Susannah G.; Singer, Steven W.; Eisen, Jonathan A.; Banfield, Jillian F.

    2013-01-01

    Microorganisms in the subsurface represent a substantial but poorly understood component of the Earth’s biosphere. Subsurface environments are complex and difficult to characterize; thus, their microbiota have remained as a ‘dark matter’ of the carbon and other biogeochemical cycles. Here we deeply sequence two sediment-hosted microbial communities from an aquifer adjacent to the Colorado River, CO, USA. No single organism represents more than ~1% of either community. Remarkably, many bacteria and archaea in these communities are novel at the phylum level or belong to phyla lacking a sequenced representative. The dominant organism in deeper sediment, RBG-1, is a member of a new phylum. On the basis of its reconstructed complete genome, RBG-1 is metabolically versatile. Its wide respiration-based repertoire may enable it to respond to the fluctuating redox environment close to the water table. We document extraordinary microbial novelty and the importance of previously unknown lineages in sediment biogeochemical transformations. PMID:23979677

  11. Heterotrophic potential of Atribacteria from deep marine Antarctic sediment

    NASA Astrophysics Data System (ADS)

    Carr, S. A.; Orcutt, B.; Mandernack, K. W.; Spear, J. R.

    2015-12-01

    Bacteria belonging to the newly classified candidate phylum "Atribacteria" (formerly referred to as "OP9" and "JS1") are common in anoxic methane-rich sediments. However, the metabolic functions and biogeochemical role of these microorganisms in the subsurface remains unrealized due to the lack of pure culture representatives. This study observed a steady increase of Atribacteria-related sequences with increasing sediment depth throughout the methane-rich zone of the Adélie Basin, Antarctica (according to a 16S rRNA gene survey). To explore the functional potential of Atribacteria in this basin, samples from various depths (14, 25 and 97 meters below seafloor), were subjected to metagenomic sequencing. Additionally, individual cells were separated from frozen, unpreserved sediment for whole genome amplification. The successful isolation and sequencing of a single-amplified Atribacteria genome from these unpreserved sediments demonstrates a future use of single cell techniques with previously collected and frozen sediments. Our resulting single-cell amplified genome, combined with metagenomic interpretations, provides our first insights to the functional potential of Atribacteria in deep subsurface settings. As observed for non-marine Atribacteria, genomic analyses suggest a heterotrophic metabolism, with Atribacteria potentially producing fermentation products such as acetate, ethanol and CO2. These products may in turn support methanogens within the sediment microbial community and explain the frequent occurrence of Atribacteria in anoxic methane-rich sediments.

  12. Sediment fingerprinting to determine the source of suspended sediment in a southern Piedmont stream.

    PubMed

    Mukundan, R; Radcliffe, D E; Ritchie, J C; Risse, L M; McKinley, R A

    2010-01-01

    Thousands of stream miles in the southern Piedmont region are impaired because of high levels of suspended sediment. It is unclear if the source is upland erosion from agricultural sources or bank erosion of historic sediment deposited in the flood plains between 1830 and 1930 when cotton farming was extensive. The objective of this study was to determine the source of high stream suspended sediment concentrations in a typical southern Piedmont watershed using sediment fingerprinting techniques. Twenty-one potential tracers were tested for their ability to discriminate between sources, conservative behavior, and lack of redundancy. Tracer concentrations were determined in potential sediment sources (forests, pastures, row crop fields, stream banks, and unpaved roads and construction sites), and suspended sediment samples collected from the stream and analyzed using mixing models. Results indicated that 137Cs and 15N were the best tracers to discriminate potential sediment sources in this watershed. The delta15N values showed distinct signatures in all the potential suspended sediment sources, and delta15N was a unique tracer to differentiate stream bank soil from upland subsurface soils, such as soil from construction sites, unpaved roads, ditches, and field gullies. Mixing models showed that about 60% of the stream suspended sediment originated from eroding stream banks, 23 to 30% from upland subsoil sources (e.g., construction sites and unpaved roads), and about 10 to 15% from pastures. The results may be applicable to other watersheds in the Piedmont depending on the extent of urbanization occurring in these watersheds. Better understanding of the sources of fine sediment has practical implications on the type of sediment control measures to be adopted. Investment of resources in improving water quality should consider the factors causing stream bank erosion and erosion from unpaved roads and construction sites to water quality impairment. PMID:20830921

  13. Sediment chemoautotrophy in the coastal ocean

    NASA Astrophysics Data System (ADS)

    Vasquez-Cardenas, Diana; Meysman, Filip J. R.; van Breugel, Peter; Boschker, Henricus T. S.

    2016-04-01

    sulfur oxidation. Sediments with an O2-H2S interface exhibited highest chemoautotrophy activity in the top centimeter via canonical sulfur oxidation, whereas in the presence of electrogenic sulfur oxidation a uniform distribution of chemoautotrophy throughout the top centimeters of the sediment was evidenced. Lowest dark carbon fixation was found in permeable advective-driven sediments with deep oxygen penetration resulting in higher subsurface than surface activity. Hence, the depth-distribution of chemoautotrophy in coastal sediments varies due to several biogeochemical characteristics such as grain size, organic carbon content, presence of filamentous sulfur oxidizing bacteria, and macrofaunal activity.

  14. The metal oxide fraction of pelagic sediment in the equatorial North Pacific Ocean: A source of metals in ferromanganese nodules

    USGS Publications Warehouse

    Piper, D.Z.

    1988-01-01

    Pelagic sediment recovered at DOMES Site A in the equatorial North Pacific (151??W, 9?? 15???N) consists of a surface homogeneous layer, approximately 10 cm thick, overlying a strongly mottled layer that is lighter in color. The radiolarian composition of both units is Quaternary. In areas where this sediment was only a few centimeters thick, the underlying sediment was early Tertiary. Clay mineralogy and major oxide composition of the two Quaternary sediments are uniform. Their similarity to continental shale suggests that the sediment has a terrigenous source. Clay mineralogy and major oxide composition of the Tertiary sediment also are uniform, although they differ markedly from the Quarternary sediment. In contrast to the major oxides, concentrations of Mn, Co, Cu, and Ni soluble in hydroxylamine hydrochlorideacetic acid are strongly different in the surface and subsurface Quaternary sediment. Mn and Ni exhibit pronounced depletions in the subsurface sediment, Ni slightly more than Mn. Cu is also depleted in the subsurface sediment, but less than Mn. It is also depleted in the subsurface Tertiary sediment, whereas the Mn concentration remains high. Concentration of Co relative to Mn increases into the subsurface Quaternary sediment to a constant Co:Mn ratio of 3 ?? 10-2. The trivalent REE (the REE exclusive of Ce) and Fe exhibit little down-core variation. Distribution of elements in these sediments is closely related to their concentration in associated surface ferromanganese nodules. The nodules are of two distinct types: those from the area where the Quaternary sediment is relatively thick have ??-MnO2 as the dominant manganese mineral. The ratios of Ni:Mn, Cu:Mn, and Fe:Mn in these nodules approximate the corresponding ratios of the soluble fraction of surface sediment. Todorokite is the dominant mineral of nodules recovered from areas where the Quaternary sediment is thin. Relatively high Cu/Mn, Ni/Mn, and low Fe/Mn ratios of these nodules mirror

  15. Subsurface structure around Omi basin using borehole database

    NASA Astrophysics Data System (ADS)

    Kitada, N.; Ito, H.; Takemura, K.; Mitamura, M.

    2015-12-01

    Kansai Geo-informatics Network (KG-NET) is organized as a new system of management of GI-base in 2005. This organization collects the geotechnical and geological information of borehole data more than 60,000 data. GI-base is the database system of the KG-NET and platform to use these borehole data. Kansai Geo-informatics Research Committee (KG-R) is tried to explain the geotechnical properties and geological environment using borehole database in Kansai area. In 2014, KG-R established the 'Shin-Kansai Jiban Omi plain', and explain the subsurface geology and characteristics of geotechnical properties. In this study we introduce this result and consider the sedimental environment and characteristics in this area. Omi Basin is located in the central part of Shiga Prefecture which includes the largest lake in Japan called Lake Biwa. About 15,000 borehole data are corrected to consider the subsurface properties. The outline of topographical and geological characteristics of the basin is divided into west side and east side. The west side area is typical reverse fault called Biwako-Seigan fault zone along the lakefront. From Biwako-Seigan fault, the Omi basin is tilting down from east to west. Otherwise, the east areas distribute lowland and hilly area comparatively. The sedimentary facies are also complicate and difficult to be generally evaluated. So the discussion has been focused about mainly the eastern and western part of Lake Biwa. The widely dispersed volcanic ash named Aira-Tn (AT) deposited before 26,000-29,000 years ago (Machida and Arai, 2003), is sometimes interbedded the humic layers in the low level ground area. However, because most of the sediments are comprised by thick sand and gravels whose deposit age could not be investigated, it is difficult to widely identify the boundary of strata. Three types of basement rocks are distributed mainly (granite, sediment rock, rhyolite), and characteristics of deposit are difference of each backland basement rock

  16. Using Geochemical Indicators to Distinguish High Biogeochemical Activity in Sediments

    NASA Astrophysics Data System (ADS)

    Kenwell, A. M.; Navarre-Sitchler, A.; Prugue, R.; Spear, J. R.; Williams, K. H.; Maxwell, R. M.

    2014-12-01

    A better understanding of how microbial communities interact with their surroundings in physically and chemically heterogeneous subsurface environments will lead to improved quantification of biogeochemical reactions and associated nutrient cycling. This study develops a methodology to predict elevated rates of biogeochemical activity (microbial "hotspots") in subsurface environments by correlating microbial community structure with the spatial distribution of geochemical indicators in subsurface sediments. Statistical hierarchical cluster analyses (HCA) of X-ray fluorescence (XRF), simulated precipitation leachate, bioavailable Fe and Mn, total organic carbon (TOC), microbial community structure, grain size, bulk density and moisture content data were used to identify regions of the subsurface characterized by biogeochemical hotspots and sample characteristics indicative of these hotspots within fluvially-derived aquifer sediments. The methodology has been applied to (a) alluvial materials collected at a former uranium mill site near Rifle, Colorado and (b) relatively undisturbed floodplain deposits (soils and sediments) collected along the East River near Crested Butte, Colorado. At Rifle, 33 sediment samples were taken from 8 sediment cores and at the East River 33 soil/sediment samples were collected across and perpendicular to 3 active meanders. The East River watershed exhibits characteristic fluvial progression and serves as a representative example of many headwater catchments with the upper Colorado River basin. Initial clustering revealed that operationally defined hotspots were characterized by high organic carbon, bioavailable iron and dark colors but not necessarily low hydraulic conductivity. Applying the method to identify hotspots in both contaminated and natural floodplain deposits and their associated alluvial aquifers demonstrates the broad applicability of a geochemical indicator based approach.

  17. Tillage impact on herbicide loss by surface runoff and lateral subsurface flow.

    PubMed

    Potter, Thomas L; Bosch, David D; Strickland, Timothy C

    2015-10-15

    There is worldwide interest in conservation tillage practices because they can reduce surface runoff, and agrichemical and sediment losses from farm fields. Since these practices typically increase infiltration, their use may increase subsurface transport of water-soluble contaminants. Thus, to assess long-term environmental benefits of conservation tillage data may be needed that quantify both surface and subsurface contaminant fluxes. This study focused on the herbicide fluometuron (N,N-dimethyl-N'-[3-(trifluoromethyl)phenyl]-urea) and its soil degradate DMF (N-methyl-N'-[3-(trifluoromethyl) phenyl]-urea). Both compounds are classed as "leachable". They were measured for 10 years in surface runoff and lateral subsurface flow from paired fields located on a hill slope in the Atlantic Coastal Plain region of the southeastern USA. One group of fields was conventionally tilled incorporating all crop residues into soil prior to planting. The second was strip tilled, a common conservation tillage practice. Seven fluometuron applications were made to cotton (Gossypium hirsutum) produced in rotation with peanut (Arachis hypogea). Combined fluometuron and DMF surface and subsurface losses from the conventionally tilled fields were equivalent to 1.2% and 0.13% of fluometuron applied and 0.31% and 0.32% from the strip tilled fields. Annual surface runoff losses were significantly greater from the conventionally tilled fields while the strip tilled fields had significantly greater annual subsurface losses. Results demonstrated that shifting from conventional to conservation tillage management of farm fields in this landscape will reduce surface runoff losses of herbicides like fluometuron but subsurface losses will likely increase. The same trends can be expected in landscapes with similar soil and hydrologic properties. This should be considered when planning implementation of programs that promote conservation tillage use. PMID:26057540

  18. Efficiency measurements of reflection gratings in the 100-300-A band

    NASA Technical Reports Server (NTRS)

    Meekins, John F.; Kowalski, Michael P.; Cruddace, Raymond G.

    1989-01-01

    Zero-order and first-order efficiencies of plane diffraction grazings over the 100-300-A band have been measured using the NRL beamline facility at the National Synchrotron Light Source. Measurements were taken at grating angles of 5, 10, and 15 deg, and the incident radiation was polarized primarily in the transverse magnetic mode. Four (three laminar, one blazed) of the gratings were ion etched in high quality quartz blanks, overcoated with 200 A of gold. A fifth (blazed) grating was ruled in gold. The line densities are 1000, 2000, and 3600 grooves/mm for those with laminar profiles. Both blazed gratings have a blaze angle of 8 deg and line densities of 3600 grooves/mm. Measured first-order efficiencies up to 15 percent were obtained for the laminar gratings and up to 8 percent was obtained for the ion-etched blazed grating. Much lower efficiencies (not greater than 2 percent) were measured for the ruled grating. A computer program was written to calculate grating efficiencies using a full electromagnetic model. Measured efficiencies of the ion-etched gratings agree well with predicted values, but the measured first-order efficiency of the ruled grating is much lower than predicted.

  19. Examining Deep Subsurface Sulfate Reducing Bacterial Diversity to Test Spatial and Temporal Biogeography

    NASA Astrophysics Data System (ADS)

    Mills, H. J.; Reese, B. K.

    2013-12-01

    In this study, we take advantage of the isolation and scale of the deep marine subsurface to examine microbial biogeography. Unlike other environments, deep marine subsurface provides a unique opportunity to study biogeography across four dimensions. These samples are not only isolated by linear space on a global scale, but they are also temporally isolated by, in some cases, tens of millions of years. Through the support of multiple Integrated Ocean Drilling Program expeditions, we characterized the metabolically active fraction of the subsurface microbial community by targeting and sequencing 16S rRNA gene transcripts (RNA-based analysis). By characterizing the metabolically active fraction, we described lineages that were currently under selective environmental pressure and not relic lineages that may have become dormant or dead at some point in the past. This study was narrowed from the total diversity obtained to provide a detailed examination of the distribution and diversity of sulfate reducing bacteria (SRB); a functional group highly important to and ubiquitous in marine systems. The biogeochemical importance of this functional group, compounded with defined clades makes it a valuable and feasible target for a global biogeography study. SRB lineages from the deep subsurface were compared to contemporary lineages collected from multiple shallow sediment sites that had been extracted and sequenced using the same techniques. The SRB sequences acquired from our databases were clustered using 97% sequence similarity and analyzed using a suite of diversity and statistical tools. The geochemical conditions of the sediments sampled were considered when analyzing the resulting dendrograms and datasets. As hypothesized, lineages from the deep subsurface phylogenetically grouped together. However, similarities were detected to lineages from the shallow modern sediments, suggesting novel lineages may have evolved at a slow rate due to predicted lengthened life cycles

  20. Radiotracer Imaging of Sediment Columns

    NASA Astrophysics Data System (ADS)

    Moses, W. W.; O'Neil, J. P.; Boutchko, R.; Nico, P. S.; Druhan, J. L.; Vandehey, N. T.

    2010-12-01

    Nuclear medical PET and SPECT cameras routinely image radioactivity concentration of gamma ray emitting isotopes (PET - 511 keV; SPECT - 75-300 keV). We have used nuclear medical imaging technology to study contaminant transport in sediment columns. Specifically, we use Tc-99m (T1/2 = 6 h, Eγ = 140 keV) and a SPECT camera to image the bacteria mediated reduction of pertechnetate, [Tc(VII)O4]- + Fe(II) → Tc(IV)O2 + Fe(III). A 45 mL bolus of Tc-99m (32 mCi) labeled sodium pertechnetate was infused into a column (35cm x 10cm Ø) containing uranium-contaminated subsurface sediment from the Rifle, CO site. A flow rate of 1.25 ml/min of artificial groundwater was maintained in the column. Using a GE Millennium VG camera, we imaged the column for 12 hours, acquiring 44 frames. As the microbes in the sediment were inactive, we expected most of the iron to be Fe(III). The images were consistent with this hypothesis, and the Tc-99m pertechnetate acted like a conservative tracer. Virtually no binding of the Tc-99m was observed, and while the bolus of activity propagated fairly uniformly through the column, some inhomogeneity attributed to sediment packing was observed. We expect that after augmentation by acetate, the bacteria will metabolically reduce Fe(III) to Fe(II), leading to significant Tc-99m binding. Imaging sediment columns using nuclear medicine techniques has many attractive features. Trace quantities of the radiolabeled compounds are used (micro- to nano- molar) and the half-lives of many of these tracers are short (<1 day). This allows multiple measurements to be made on the same column and thus the sediment biology to be monitored non-invasively over time (i.e. after an augmentation has been introduced) and minimizes long-lived radioactive waste. Different parameters can be measured, depending on the tracer type and delivery. A constant infusion of a conservative tracer, such as the positron emitter Br-76 (T1/2= 16.2 hr), measures the exclusion fraction (as

  1. Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson estuary sediments

    SciTech Connect

    Olsen, C.R.; Simpson, H.J.; Peng, T.; Bopp, R.F.; Trier, R.M.

    1981-11-20

    Measured anthropogenic radionuclide profiles in sediment cores from the Hudson River estuary were compared with profiles computed by using known input histories of radionuclides to the estuary and mixing coefficients which decreased exponentially with depth in the sediment. Observed /sup 134/Cs sediment depth profiles were used in the mixing rate computation because reactor releases were the only significant source for this nuclide, whereas the inputs of /sup 137/Cs and /sup 239.240/Pu to the estuary were complicated by runoff or erosion in upstream areas, in addition to direct fallout from precipitation. Our estimates for the rates of surface sediment mixing in the low salinity reach of the estuary range from 0.25 to 1 cm/sup 2//yr, or less. In some areas of the harbor adjacent to New York City, were fine-particle accumulation rates are generally >3 cm/yr, and often as high as 10 to 20 cm/yr, sediment mixing rates as high as 10 cm/sup 2//yr would have little effect on radionuclide peak distributions. Consequently, anthropogenic radionuclide maximum activities in subsurface sediments of the Hudson appear to be useful as time-stratigraphic reference levels, which can be correlated with periods of maximum radionuclide inputs for estimating rates and patterns of sediment accumulation.

  2. Subsurface Nitrogen-Cycling Microbial Communities at Uranium Contaminated Sites in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Cardarelli, E.; Bargar, J.; Williams, K. H.; Dam, W. L.; Francis, C.

    2015-12-01

    Throughout the Colorado River Basin (CRB), uranium (U) persists as a relic contaminant of former ore processing activities. Elevated solid-phase U levels exist in fine-grained, naturally-reduced zone (NRZ) sediments intermittently found within the subsurface floodplain alluvium of the following Department of Energy-Legacy Management sites: Rifle, CO; Naturita, CO; and Grand Junction, CO. Coupled with groundwater fluctuations that alter the subsurface redox conditions, previous evidence from Rifle, CO suggests this resupply of U may be controlled by microbially-produced nitrite and nitrate. Nitrification, the two-step process of archaeal and bacterial ammonia-oxidation followed by bacterial nitrite oxidation, generates nitrate under oxic conditions. Our hypothesis is that when elevated groundwater levels recede and the subsurface system becomes anoxic, the nitrate diffuses into the reduced interiors of the NRZ and stimulates denitrification, the stepwise anaerobic reduction of nitrate/nitrite to dinitrogen gas. Denitrification may then be coupled to the oxidation of sediment-bound U(IV) forming mobile U(VI), allowing it to resupply U into local groundwater supplies. A key step in substantiating this hypothesis is to demonstrate the presence of nitrogen-cycling organisms in U-contaminated, NRZ sediments from the upper CRB. Here we investigate how the diversity and abundances of nitrifying and denitrifying microbial populations change throughout the NRZs of the subsurface by using functional gene markers for ammonia-oxidation (amoA, encoding the α-subunit of ammonia monooxygenase) and denitrification (nirK, nirS, encoding nitrite reductase). Microbial diversity has been assessed via clone libraries, while abundances have been determined through quantitative polymerase chain reaction (qPCR), elucidating how relative numbers of nitrifiers (amoA) and denitrifiers (nirK, nirS) vary with depth, vary with location, and relate to uranium release within NRZs in sediment

  3. CSMOS GROUNDWATER MODELING SOFTWARE (CENTER FOR SUBSURFACE MODELING SUPPORT, SUBSURFACE PROTECTION AND REMEDIATION DIVISION, NRMRL)

    EPA Science Inventory

    The Center for Subsurface Modeling Support (CSMoS), which is part of NRMRL's Subsurface Protection and Remediation Division, distributes various public domain groundwater and vadose zone models. A short decription of each model is available. You can obtain both models and manuals...

  4. Effect of subsurface electrical heating and steam injection on the indigenous microbial community

    SciTech Connect

    Krauter, P.; MacQueen, D.; Horn, J.; Bishop, D.

    1995-11-01

    Since the potential for contaminant bioremediation in steam treated subsurface environments has not been explored, the thermal remedial treatment of a gasoline spill at Lawrence Livermore National Laboratory`s (LLNL) Livermore site provided an opportunity to study microbial community changes in the subsurface environment. Many terrestrial microorganisms die or become metabolically inactive if heated for a sufficient time at temperatures of 62-100{degrees}C thus thermal remediation techniques are expected to significantly alter the microbial community structure. We studied changes in community structure and population abundance as well as the characteristics of indigenous heat-tolerant microorganisms before and after steam treatment. Using fatty acid profiles from culturable microorganisms obtained from sediment cores before and after thermal treatment, a 90-98% decline in total microorganism populations in hot subsurface sediments (up to 94{degrees}C) was found. Surviving heat-tolerant microorganisms were found to possess elevated concentrations of saturated fatty acids in their lipid membranes. We also observed that some heat-tolerant microorganisms were capable of degrading gasoline compounds.

  5. Subsurface structure of the geothermal well site in Ilan, Taiwan by using the seismic exploration method

    NASA Astrophysics Data System (ADS)

    Yen, Ting-Ching; Shih, Ruey-Chuyan; Wang, Chien-Ying

    2015-04-01

    Geothermal energy could be a feasible way to reconcile the energy needs of a growing population and economic development. Several studies have shown that the Ilan area is a significantly potential area for developing the geothermal energy in Taiwan. However, since the Ilan Plain is covered by the thick Quaternary sediments, the previous studies of the subsurface structure in this area are mostly at a large-scale. The purpose of this study is to find an appropriate drilling site for the geothermal well in Ilan by using the seismic exploration method. We cooperated with the seismic survey team from National Central University again, used the two vibrators (EnviroVibe) along with a 432-channel seismograph to conduct more seismic surveys in the Ilan area. Since we have collected more 2-D seismic sections in the different directions to sketch the structures underneath, we are now able to describe the geometry of the subsurface structures in three dimensions. The seismic profiles showed that the sediments are thickened to the east, and the bedding planes are dominantly dipping to the northeast and slightly tilted. As we have known the Ilan area is located in a tectonic divergent area, the major fault system passing through this area may result in a derivative structure, and provide the channels for inflow of the hot water to produce geothermal power. Currently, we have construct a 3D model of the subsurface structure, and is waiting for the evidence from core boring to examine the accuracy of the interpretation.

  6. Finding Signals for Quiescence from the Dark Matter in Marine Subsurface Metagenomics

    NASA Astrophysics Data System (ADS)

    Biddle, J.; Marsh, A.; Rambo, I. M.; Pasqualone, A.; Christman, G.

    2014-12-01

    Microorganisms are expected to occupy deep marine sediments and underlying basalts, suriving on limited energy and potentially dividing on a thousand year time scale. For a microorganism to do this, and be only slightly active, is a difficult process to maintain, as many cells are programmed to be constantly active or face death. In order to maintain low levels of activity, cells may need additional control on which genes are activated in their genomes. In the surface world, particularly in eukaryotes, gene activity is controlled by factors including methylation of genes to silence activity. Methylation is now recognized as being present in many bacterial and archaeal genomes, and we hypothesized that this may be a prevalent lifestyle in subsurface organisms. We saw initial signals of methylation activity in a deep subsurface metatranscriptome and have shown which genes are methylated in a shallower sediment core. Methylation does appear to be a widespread phenomenon in microbial genomes of the subsurface, and additional tests will be needed to prove it's overall control on the potential for microbial activity.

  7. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    SciTech Connect

    C.J. Fernado

    1998-09-17

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that

  8. Subsurface Shielding Source Term Specification Calculation

    SciTech Connect

    S.Su

    2001-04-12

    The purpose of this calculation is to establish appropriate and defensible waste-package radiation source terms for use in repository subsurface shielding design. This calculation supports the shielding design for the waste emplacement and retrieval system, and subsurface facility system. The objective is to identify the limiting waste package and specify its associated source terms including source strengths and energy spectra. Consistent with the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M&O 2001, p. 15), the scope of work includes the following: (1) Review source terms generated by the Waste Package Department (WPD) for various waste forms and waste package types, and compile them for shielding-specific applications. (2) Determine acceptable waste package specific source terms for use in subsurface shielding design, using a reasonable and defensible methodology that is not unduly conservative. This calculation is associated with the engineering and design activity for the waste emplacement and retrieval system, and subsurface facility system. The technical work plan for this calculation is provided in CRWMS M&O 2001. Development and performance of this calculation conforms to the procedure, AP-3.12Q, Calculations.

  9. Wave-Based Subsurface Guide Star

    SciTech Connect

    Lehman, S K

    2011-07-26

    Astronomical or optical guide stars are either natural or artificial point sources located above the Earth's atmosphere. When imaged from ground-based telescopes, they are distorted by atmospheric effects. Knowing the guide star is a point source, the atmospheric distortions may be estimated and, deconvolved or mitigated in subsequent imagery. Extending the guide star concept to wave-based measurement systems to include acoustic, seismo-acoustic, ultrasonic, and radar, a strong artificial scatterer (either acoustic or electromagnetic) may be buried or inserted, or a pre-existing or natural sub-surface point scatterer may be identified, imaged, and used as a guide star to determine properties of the sub-surface volume. That is, a data collection is performed on the guide star and the sub-surface environment reconstructed or imaged using an optimizer assuming the guide star is a point scatterer. The optimization parameters are the transceiver height and bulk sub-surface background refractive index. Once identified, the refractive index may be used in subsequent reconstructions of sub-surface measurements. The wave-base guide star description presented in this document is for a multimonostatic ground penetrating radar (GPR) but is applicable to acoustic, seismo-acoustic, and ultrasonic measurement systems operating in multimonostatic, multistatic, multibistatic, etc., modes.

  10. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures

    PubMed Central

    Schmidt, Matthew W.; Chang, Ping; Hertzberg, Jennifer E.; Them, Theodore R.; Ji, Link; Otto-Bliesner, Bette L.

    2012-01-01

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition. PMID:22908256

  11. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures.

    PubMed

    Schmidt, Matthew W; Chang, Ping; Hertzberg, Jennifer E; Them, Theodore R; Ji, Link; J, Link; Otto-Bliesner, Bette L

    2012-09-01

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition. PMID:22908256

  12. Bioturbating shrimp alter the structure and diversity of bacterial communities in coastal marine sediments.

    PubMed

    Laverock, Bonnie; Smith, Cindy J; Tait, Karen; Osborn, A Mark; Widdicombe, Steve; Gilbert, Jack A

    2010-12-01

    Bioturbation is a key process in coastal sediments, influencing microbially driven cycling of nutrients as well as the physical characteristics of the sediment. However, little is known about the distribution, diversity and function of the microbial communities that inhabit the burrows of infaunal macroorganisms. In this study, terminal-restriction fragment length polymorphism analysis was used to investigate variation in the structure of bacterial communities in sediment bioturbated by the burrowing shrimp Upogebia deltaura or Callianassa subterranea. Analyses of 229 sediment samples revealed significant differences between bacterial communities inhabiting shrimp burrows and those inhabiting ambient surface and subsurface sediments. Bacterial communities in burrows from both shrimp species were more similar to those in surface-ambient than subsurface-ambient sediment (R=0.258, P<0.001). The presence of shrimp was also associated with changes in bacterial community structure in surrounding surface sediment, when compared with sediments uninhabited by shrimp. Bacterial community structure varied with burrow depth, and also between individual burrows, suggesting that the shrimp's burrow construction, irrigation and maintenance behaviour affect the distribution of bacteria within shrimp burrows. Subsequent sequence analysis of bacterial 16S rRNA genes from surface sediments revealed differences in the relative abundance of bacterial taxa between shrimp-inhabited and uninhabited sediments; shrimp-inhabited sediment contained a higher proportion of proteobacterial sequences, including in particular a twofold increase in Gammaproteobacteria. Chao1 and ACE diversity estimates showed that taxon richness within surface bacterial communities in shrimp-inhabited sediment was at least threefold higher than that in uninhabited sediment. This study shows that bioturbation can result in significant structural and compositional changes in sediment bacterial communities, increasing

  13. Trends in sediment metal concentrations in the River Avoca, South-east Ireland.

    PubMed

    Gaynor, Anne; Gray, N F

    2004-12-01

    Variation in sediment metal concentrations in the River Avoca, which is severely polluted by acid mine drainage (AMD) discharged from the abandoned sulphur and copper mines in Avoca, is reported. A survey of surface and subsurface sediments was repeated after seven years during exceptionally low flow conditions in 2001. The present study found that the reference (up-stream) site used in the original 1994 study was itself impacted by AMD, showing sediment metal enrichment by AMD to be greater than originally thought. The new reference site contained elevated Pb (570 microg g(-1)) in the subsurface sediment due to abandoned Pb-Zn mines 25 km further upstream. Concentrations of Cu (43 microg g(-1)), Zn (349 microg g(-1)) and Fe (4.0%) were normal for uncontaminated rivers. All the downstream sites showed sediment metal enrichment arising from the AMD (Cu and Zn p < 0.001; Fe p < 0.01). Subsurface concentrations of metals immediately below the mixing zone were Cu 904 microg g-1 (sd 335), Zn 723 microg g-1 (sd 93), Fe 6.3% (sd 1.5) and Pb 463 microg g(-1) (sd 279). Monthly variation in metal concentrations at sites was not significantly different (p > 0.05). Although surface sediment metal concentrations were more variable, they followed similar trends to subsurface sediment. There were no significant differences in the subsurface sediment concentrations for either Cu or Zn over the period 1994 and 2001 immediately below the mines, although at the lowest site Zn had decreased by 35% over the period (p < 0.01). However there was a significant (p < 0.01) decrease over the period in the Fe concentration at all the impacted sites. This corresponds to a reduction in Fe concentration in the AMD and indicates that some remediation has occurred in the river since 1994. PMID:15719164

  14. Tidal response of Europa's subsurface ocean

    NASA Astrophysics Data System (ADS)

    Karatekin, Özgür; Comblen, Richard; Toubeau, Jonathan; Deleersnijder, Eric; van Hoolst, Tim; Dehant, Veronique

    2010-05-01

    Observations of Cassini and Galileo spacecrafts suggest the presence of subsurface global water oceans under the icy shells of several satellites of Jupiter and Saturn. Previous studies have shown that in the presence of subsurface oceans, time-variable tides cause large periodic surface displacements and that tidal dissipation in the icy shell becomes a major energy source that can affect long-term orbital evolution. However, in most studies so far, the dynamics of these satellite oceans have been neglected. In the present study, we investigate the tidal response of the subsurface ocean of Europa to a time-varying potential. Two-dimensional nonlinear shallow water equations are solved on a sphere by means of a finite element code. The resulting ocean tidal flow velocities and surface displacements will be presented.

  15. Subsurface Contaminants Focus Area annual report 1997

    SciTech Connect

    1997-12-31

    In support of its vision for technological excellence, the Subsurface Contaminants Focus Area (SCFA) has identified three strategic goals. The three goals of the SCFA are: Contain and/or stabilize contamination sources that pose an imminent threat to surface and ground waters; Delineate DNAPL contamination in the subsurface and remediate DNAPL-contaminated soils and ground water; and Remove a full range of metal and radionuclide contamination in soils and ground water. To meet the challenges of remediating subsurface contaminants in soils and ground water, SCFA funded more than 40 technologies in fiscal year 1997. These technologies are grouped according to the following product lines: Dense Nonaqueous-Phase Liquids; Metals and Radionuclides; Source Term Containment; and Source Term Remediation. This report briefly describes the SCFA 1997 technologies and showcases a few key technologies in each product line.

  16. Autonomous microexplosives subsurface tracing system final report.

    SciTech Connect

    Engler, Bruce Phillip; Nogan, John; Melof, Brian Matthew; Uhl, James Eugene; Dulleck, George R., Jr.; Ingram, Brian V.; Grubelich, Mark Charles; Rivas, Raul R.; Cooper, Paul W.; Warpinski, Norman Raymond; Kravitz, Stanley H.

    2004-04-01

    The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping of subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.

  17. Complete Subsurface Elemental Composition Measurements With PING

    NASA Technical Reports Server (NTRS)

    Parsons, A. M.

    2012-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument will measure the complete bulk elemental composition of the subsurface of Mars as well as any other solid planetary body. PING can thus be a highly effective tool for both detailed local geochemistry science investigations and precision measurements of Mars subsurface reSOurces in preparation for future human exploration. As such, PING is thus fully capable of meeting a majority of both ncar and far term elements in Challenge #1 presented for this conference. Measuring the ncar subsurface composition of Mars will enable many of the MEPAG science goals and will be key to filling an important Strategic Knowledge Gap with regard to In situ Resources Utilization (ISRU) needs for human exploration. [1, 2] PING will thus fill an important niche in the Mars Exploration Program.

  18. Urban heat island in the subsurface

    NASA Astrophysics Data System (ADS)

    Ferguson, Grant; Woodbury, Allan D.

    2007-12-01

    The urban heat island effect has received significant attention in recent years due to the possible effect on long-term meteorological records. Recent studies of this phenomenon have suggested that this may not be important to estimates of regional climate change once data are properly corrected. However, surface air temperatures within urban environments have significant variation, making correction difficult. In the current study, we examine subsurface temperatures in an urban environment and the surrounding rural area to help characterize the nature of this variability. The results of our study indicate that subsurface temperatures are linked to land-use and supports previous work indicating that the urban heat island effect has significant and complex spatial variability. In most situations, the relationship between subsurface and surface processes cannot be easily determined, indicating that previous studies that relying on such a linkage may require further examination.

  19. Improving the biodegradative capacity of subsurface bacteria

    SciTech Connect

    Romine, M.F.; Brockman, F.J.

    1993-04-01

    The continual release of large volumes of synthetic materials into the environment by agricultural and industrial sources over the last few decades has resulted in pollution of the subsurface environment. Cleanup has been difficult because of the relative inaccessibility of the contaminants caused by their wide dispersal in the deep subsurface, often at low concentrations and in large volumes. As a possible solution for these problems, interest in the introduction of biodegradative bacteria for in situ remediation of these sites has increased greatly in recent years (Timmis et al. 1988). Selection of biodegradative microbes to apply in such cleanup is limited to those strains that can survive among the native bacterial and predator community members at the particular pH, temperature, and moisture status of the site (Alexander, 1984). The use of microorganisms isolated from subsurface environments would be advantageous because the organisms are already adapted to the subsurface conditions. The options are further narrowed to strains that are able to degrade the contaminant rapidly, even in the presence of highly recalcitrant anthropogenic waste mixtures, and in conditions that do not require addition of further toxic compounds for the expression of the biodegradative capacity (Sayler et al. 1990). These obstacles can be overcome by placing the genes of well-characterized biodegradative enzymes under the control of promoters that can be regulated by inexpensive and nontoxic external factors and then moving the new genetic constructs into diverse groups of subsurface microbes. ne objective of this research is to test this hypothesis by comparing expression of two different toluene biodegradative enzymatic pathways from two different regulatable promoters in a variety of subsurface isolates.

  20. MSTS - Multiphase Subsurface Transport Simulator theory manual

    SciTech Connect

    White, M.D.; Nichols, W.E.

    1993-05-01

    The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the {open_quotes}User`s Guide and Reference{close_quotes} companion document.

  1. Induction heaters used to heat subsurface formations

    DOEpatents

    Nguyen, Scott Vinh; Bass, Ronald M.

    2012-04-24

    A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.

  2. Subsurface Microbes Expanding the Tree of Life

    SciTech Connect

    Banfield, Jillian

    2015-05-11

    Jillian Banfield, Ph.D., UC Berkeley Professor and Berkeley Lab Earth Sciences Division staff scientist and long-time user of the DOE Joint Genome Institute’s resources shares her perspective on how the DOE JGI helps advance her research addressing knowledge gaps related to the roles of subsurface microbial communities in biogeochemical cycling. The video was filmed near the town of Rifle, Colorado at the primary field site for Phase I of the Subsurface Systems Scientific Focus Area 2.0 sponsored by the DOE Office of Biological and Environmental Research.

  3. Heating systems for heating subsurface formations

    DOEpatents

    Nguyen, Scott Vinh; Vinegar, Harold J.

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  4. Apparatus for passive removal of subsurface contaminants

    DOEpatents

    Pemberton, B.E.; May, C.P.; Rossabi, J.

    1997-06-24

    An apparatus is provided which passively removes contaminated gases from a subsurface. The apparatus includes a riser pipe extending into a subsurface which has an exterior end in fluid communication with a valve. When well pressure is greater than atmospheric pressure, the valve opens to release contaminants into the atmosphere, and when well pressure is less than atmospheric pressure, the valve closes to prevent flow of air into the well. The valve assembly of the invention comprises a lightweight ball which is lifted from its valve seat with a slight pressure drop between the well and the atmosphere. 7 figs.

  5. Apparatus for passive removal of subsurface contaminants

    DOEpatents

    Pemberton, Bradley E.; May, Christopher P.; Rossabi, Joseph

    1997-01-01

    An apparatus is provided which passively removes contaminated gases from a subsurface. The apparatus includes a riser pipe extending into a subsurface which has an exterior end in fluid communication with a valve. When well pressure is greater than atmospheric pressure, the valve opens to release contaminants into the atmosphere, and when well pressure is less than atmospheric pressure, the valve closes to prevent flow of air into the well. The valve assembly of the invention comprises a lightweight ball which is lifted from its valve seat with a slight pressure drop between the well and the atmosphere.

  6. Radar Soundings of the Subsurface of Mars

    NASA Technical Reports Server (NTRS)

    Picardi, Giovanni; Plaut, Jeffrey J.; Biccari, Daniela; Bombaci, Ornella; Calabrese, Diego; Cartacci, Marco; Cicchetti, Andrea; Clifford, Stephen M.; Edenhofer, Peter; Farrell, William M.; Federico, Costanzo; Frigeri, Alessandro; Gurnett, Donald A.; Hagfors, Tor; Heggy, Essam; Herique, Alain; Huff, Richard L.; Ivanov, Anton B.; Johnson, William T. K.; Jordan, Rolando L.; Kirchner, Donald L.; Kofman, Wlodek; Leuschen, Carlton J.; Nielsen, Erling; Orosei, Roberto

    2005-01-01

    The martian subsurface has been probed to kilometer depths by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument aboard the Mars Express orbiter. Signals penetrate the polar layered deposits, probably imaging the base of the deposits. Data from the northern lowlands of Chryse Planitia have revealed a shallowly buried quasi-circular structure about 250 kilometers in diameter that is interpreted to be an impact basin. In addition, a planar reflector associated with the basin structure may indicate the presence of a low-loss deposit that is more than 1 kilometer thick.

  7. Quantification of potassium permanganate consumption and PCE oxidation in subsurface materials

    NASA Astrophysics Data System (ADS)

    Hønning, J.; Broholm, M. M.; Bjerg, P. L.

    2007-03-01

    A series of laboratory scale batch slurry experiments were conducted in order to establish a data set for oxidant demand by sandy and clayey subsurface materials as well as to identify the reaction kinetic rates of permanganate (MnO 4-) consumption and PCE oxidation as a function of the MnO 4- concentration. The laboratory experiments were carried out with 31 sandy and clayey subsurface sediments from 12 Danish sites. The results show that the consumption of MnO 4- by reaction with the sediment, termed the natural oxidant demand (NOD), is the primary reaction with regards to quantification of MnO 4- consumption. Dissolved PCE in concentrations up to 100 mg/l in the sediments investigated is not a significant factor in the total MnO 4- consumption. Consumption of MnO 4- increases with an increasing initial MnO 4- concentration. The sediment type is also important as NOD is (generally) higher in clayey than in sandy sediments for a given MnO 4- concentration. For the different sediment types the typical NOD values are 0.5-2 g MnO 4-/kg dry weight (dw) for glacial meltwater sand, 1-8 g MnO 4-/kg dw for sandy till and 5-20 g MnO 4-/kg dw for clayey till. The long term consumption of MnO 4- and oxidation of PCE can not be described with a single rate constant, as the total MnO 4- reduction is comprised of several different reactions with individual rates. During the initial hours of reaction, first order kinetics can be applied, where the short term first order rate constants for consumption of MnO 4- and oxidation of PCE are 0.05-0.5 h - 1 and 0.5-4.5 h - 1 , respectively. The sediment does not act as an instantaneous sink for MnO 4-. The consumption of MnO 4- by reaction with the reactive species in the sediment is the result of several parallel reactions, during which the reaction between the contaminant and MnO 4- also takes place. Hence, application of low MnO 4- concentrations can cause partly oxidation of PCE, as the oxidant demand of the sediment does not need

  8. Impact of agricultural activities on anaerobic processes in stream sediments

    NASA Astrophysics Data System (ADS)

    Schade, J. D.; Ludwig, S.; Nelson, L. C.; Porterfield, J.; Sather, K. L.; Songpitak, M.; Spawn, S.; Weigel, B.

    2013-12-01

    Streams draining agriculture watersheds are subject to significant anthropogenic impacts, including sedimentation from soil erosion and high nitrate input from heavy fertilizer application. Sedimentation degrades habitat and can reduce hydrologic exchange between surface and subsurface waters. Disconnecting surface and subsurface flow reduces oxygen input to hyporheic water, increasing the extent of anoxic zones in stream sediments and creating hotspots for anaerobic processes like denitrification and methanogenesis that can be important sources of nitrous oxide and methane, both powerful greenhouse gases. Increased nitrate input may influence greenhouse gas fluxes from stream sediments by stimulating rates of denitrification and potentially reducing rates of methanogenesis, either through direct inhibition or by increasing competition for organic substrates from denitrifying bacteria. We hypothesized that accumulation of fine sediments in stream channels would result in high rates of methanogenesis in stream sediments, and that increased nitrate input from agricultural runoff would stimulate denitrification and reduce rates of methane production. Our work focused on streams in northern and central Minnesota, in particular on Rice Creek, a small stream draining an agricultural watershed. We used a variety of approaches to test our hypotheses, including surveys of methane concentrations in surface waters of streams ranging in sediment type and nitrate concentration, bottle incubations of sediment from several sites in Rice Creek, and the use of functional gene probes and RNA analyses to determine if genes for these processes are present and being expressed in stream sediments. We found higher methane concentrations in surface water from streams with large deposits of fine sediments, but significantly less methane in these streams when nitrate concentrations were high. We also found high potential for both methanogenesis and denitrification in sediment incubations

  9. Rain and channel flow supplements to subsurface water beneath hyper-arid ephemeral stream channels

    NASA Astrophysics Data System (ADS)

    Kampf, Stephanie K.; Faulconer, Joshua; Shaw, Jeremy R.; Sutfin, Nicholas A.; Cooper, David J.

    2016-05-01

    In hyper-arid regions, ephemeral stream channels are important sources of subsurface recharge and water supply for riparian vegetation, but few studies have documented the subsurface water content dynamics of these systems. This study examines ephemeral channels in the hyper-arid western Sonoran Desert, USA to determine how frequently water recharges the alluvial fill and identify variables that affect the depth and persistence of recharge. Precipitation, stream stage, and subsurface water content measurements were collected over a three-year study at six channels with varying contributing areas and thicknesses of alluvial fill. All channels contain coarse alluvium composed primarily of sands and gravels, and some locations also have localized layers of fine sediment at 2-3 m depth. Rain alone contributed 300-400 mm of water input to these channels over three years, but water content responses were only detected for 36% of the rain events at 10 cm depth, indicating that much of the rain water was either quickly evaporated or taken up by plants. Pulses of water from rain events were detected only in the top meter of alluvium. The sites each experienced ⩽5 brief flow events, which caused transient saturation that usually lasted only a few hours longer than flow. These events were the only apparent source of water to depths >1 m, and water from flow events quickly percolated past the deepest measurement depths (0.5-3 m). Sustained saturation in the shallow subsurface only developed where there was a near-surface layer of finer consolidated sediments that impeded deep percolation.

  10. Tropical North Atlantic Subsurface Temperature Change Linked to Atlantic Meridional Overturning Circulation Variability During the Last Deglacial

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.; Chang, P.

    2009-12-01

    Water hosing experiments using coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability can have a major impact on abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes (Zhang, 2007; Chang et al., 2008; Chiang et al., 2008). While a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming due to rapid reorganizations of ocean circulation patterns (Wan et al., 2009). In addition, observed records of detrended 20th century ocean temperature and salinity variability show a strong anticorrelation between surface cooling and subsurface warming in the TNA over the past several decades, suggesting changing vertical temperature gradients in this region may be a distinct fingerprint of AMOC variability (Zhang 2007). In order to test the hypothesis that surface and subsurface temperature change in the TNA are sensitive indicators of AMOC variability over the last deglacial, we reconstructed Mg/Ca-temperature and δ18O records from surface (G. ruber) and deeper thermocline dwelling (G. truncatulinoides, 200 - 500 m depth habitat) planktonic foraminifera from southern Caribbean Sea core VM12-107 (11.33oN, 66.63oW; 1079 m; 15 cm/kyr sedimentation rate). As a result, we present the first deglacial subsurface Mg/Ca-temperature record for this region. Results show that glacial sea surface temperatures (SST) were 4oC cooler than those in the late Holocene. SSTs during the deglacial show little or no SST rise (1oC) during Heinrich Event 1 (H1), and a 2oC SST decrease during the Younger Dryas (YD). In contrast, last glacial maximum subsurface temperatures were 2oC warmer than Late Holocene values of 12 - 13oC and periods of reduced AMOC are marked by abrupt subsurface warming events. Subsurface temperatures increased by almost 3oC during H1 and the YD, warming to as much as 16.5oC. Furthermore, a comparison of

  11. Coupled surface-subsurface hydrologic measurements reveal infiltration, recharge, and discharge dynamics across the swash zone of a sandy beach

    NASA Astrophysics Data System (ADS)

    Heiss, James W.; Puleo, Jack A.; Ullman, William J.; Michael, Holly A.

    2015-11-01

    Swash-groundwater interactions affect the biogeochemistry of beach aquifers and the transport of solutes and sediment across the beachface. Improved understanding of the complex, coupled dynamics of surface and subsurface flow processes in the swash zone is required to better estimate chemical fluxes to the sea and predict the morphological evolution of beaches. Simultaneous high-frequency measurements of saturation, water table elevation, and the cross-shore locations of runup and the boundary between the saturated and unsaturated beachface (surface saturation boundary) were collected on a sandy beach to link groundwater flow dynamics with swash zone forcing. Saturation and lysimeter measurements showed the dynamic response of subsurface saturation to swash events and permitted estimation of infiltration rates. Surface and subsurface observations revealed a decoupling of the surface saturation boundary and the intersection between the water table and the beachface. Surface measurements alone were insufficient to delineate the infiltration and discharge zones, which moved independently of the surface saturation boundary. Results show for the first time the motion and areal extent of infiltration and recharge zones, and constrain the maximum size of the subaerial discharge zone over swash and tidal time scales. The width of the infiltration zone was controlled by swash processes, and subaerial discharge was controlled primarily by tidal processes. These dynamics reveal the tightly coupled nature of surface and subsurface processes over multiple time scales, with implications for sediment transport and fluid and solute fluxes through the hydrologically and biogeochemically active intertidal zone of sandy beaches.

  12. The T300A Crohn's disease risk polymorphism impairs function of the WD40 domain of ATG16L1

    PubMed Central

    Boada-Romero, Emilio; Serramito-Gómez, Inmaculada; Sacristán, María P.; Boone, David L.; Xavier, Ramnik J.; Pimentel-Muiños, Felipe X.

    2016-01-01

    A coding polymorphism of human ATG16L1 (rs2241880; T300A) increases the risk of Crohn's disease and it has been shown to enhance susceptibility of ATG16L1 to caspase cleavage. Here we show that T300A also alters the ability of the C-terminal WD40-repeat domain of ATG16L1 to interact with an amino acid motif that recognizes this region. Such alteration impairs the unconventional autophagic activity of TMEM59, a transmembrane protein that contains the WD40 domain-binding motif, and disrupts its normal intracellular trafficking and its ability to engage ATG16L1 in response to bacterial infection. TMEM59-induced autophagy is blunted in cells expressing the fragments generated by caspase processing of the ATG16L1-T300A risk allele, whereas canonical autophagy remains unaffected. These results suggest that the T300A polymorphism alters the function of motif-containing molecules that engage ATG16L1 through the WD40 domain, either by influencing this interaction under non-stressful conditions or by inhibiting their downstream autophagic signalling after caspase-mediated cleavage. PMID:27273576

  13. 7 CFR 330.300a - Administrative instructions exempting soil from parts of Canada from certain restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Administrative instructions exempting soil from parts... FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Soil, Stone, And Quarry Products § 330.300a Administrative instructions exempting soil from...

  14. 7 CFR 330.300a - Administrative instructions exempting soil from parts of Canada from certain restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Administrative instructions exempting soil from parts... FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Soil, Stone, And Quarry Products § 330.300a Administrative instructions exempting soil from...

  15. 7 CFR 330.300a - Administrative instructions exempting soil from parts of Canada from certain restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Administrative instructions exempting soil from parts... FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Soil, Stone, And Quarry Products § 330.300a Administrative instructions exempting soil from...

  16. 7 CFR 330.300a - Administrative instructions exempting soil from parts of Canada from certain restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Administrative instructions exempting soil from parts... FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Soil, Stone, And Quarry Products § 330.300a Administrative instructions exempting soil from...

  17. 7 CFR 330.300a - Administrative instructions exempting soil from parts of Canada from certain restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Administrative instructions exempting soil from parts... FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Soil, Stone, And Quarry Products § 330.300a Administrative instructions exempting soil from...

  18. 29 CFR 1960.67 - Federal agency certification of the injury and illness annual summary (OSHA 300-A or equivalent).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 300-A or equivalent). As required by 29 CFR 1904.32, a company executive must certify that he or she... the private sector position titles contained in 29 CFR part 1904 do not fit the Federal agency... 29 Labor 9 2012-07-01 2012-07-01 false Federal agency certification of the injury and...

  19. 29 CFR 1960.67 - Federal agency certification of the injury and illness annual summary (OSHA 300-A or equivalent).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 300-A or equivalent). As required by 29 CFR 1904.32, a company executive must certify that he or she... the private sector position titles contained in 29 CFR part 1904 do not fit the Federal agency... 29 Labor 9 2010-07-01 2010-07-01 false Federal agency certification of the injury and...

  20. 29 CFR 1960.67 - Federal agency certification of the injury and illness annual summary (OSHA 300-A or equivalent).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 300-A or equivalent). As required by 29 CFR 1904.32, a company executive must certify that he or she... the private sector position titles contained in 29 CFR part 1904 do not fit the Federal agency... 29 Labor 9 2013-07-01 2013-07-01 false Federal agency certification of the injury and...

  1. 29 CFR 1960.67 - Federal agency certification of the injury and illness annual summary (OSHA 300-A or equivalent).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 300-A or equivalent). As required by 29 CFR 1904.32, a company executive must certify that he or she... the private sector position titles contained in 29 CFR part 1904 do not fit the Federal agency... 29 Labor 9 2011-07-01 2011-07-01 false Federal agency certification of the injury and...

  2. 29 CFR 1960.67 - Federal agency certification of the injury and illness annual summary (OSHA 300-A or equivalent).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 300-A or equivalent). As required by 29 CFR 1904.32, a company executive must certify that he or she... the private sector position titles contained in 29 CFR part 1904 do not fit the Federal agency... 29 Labor 9 2014-07-01 2014-07-01 false Federal agency certification of the injury and...

  3. The T300A Crohn's disease risk polymorphism impairs function of the WD40 domain of ATG16L1.

    PubMed

    Boada-Romero, Emilio; Serramito-Gómez, Inmaculada; Sacristán, María P; Boone, David L; Xavier, Ramnik J; Pimentel-Muiños, Felipe X

    2016-01-01

    A coding polymorphism of human ATG16L1 (rs2241880; T300A) increases the risk of Crohn's disease and it has been shown to enhance susceptibility of ATG16L1 to caspase cleavage. Here we show that T300A also alters the ability of the C-terminal WD40-repeat domain of ATG16L1 to interact with an amino acid motif that recognizes this region. Such alteration impairs the unconventional autophagic activity of TMEM59, a transmembrane protein that contains the WD40 domain-binding motif, and disrupts its normal intracellular trafficking and its ability to engage ATG16L1 in response to bacterial infection. TMEM59-induced autophagy is blunted in cells expressing the fragments generated by caspase processing of the ATG16L1-T300A risk allele, whereas canonical autophagy remains unaffected. These results suggest that the T300A polymorphism alters the function of motif-containing molecules that engage ATG16L1 through the WD40 domain, either by influencing this interaction under non-stressful conditions or by inhibiting their downstream autophagic signalling after caspase-mediated cleavage. PMID:27273576

  4. Linear absorption coefficient of beryllium in the 50-300-A wavelength range. [bandpass filter materials for ultraviolet astronomy instrumentation

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Lewis, M.; Petre, R.

    1983-01-01

    Transmittances of thin-film filters fabricated for an extreme-UV astronomy sounding-rocket experiment yield values for the linear absorption coefficient of beryllium in the 50-300-A wavelength range, in which previous measurements are sparse. The inferred values are consistent with the lowest data previously published and may have important consequences for extreme-UV astronomers.

  5. Subsurface geological modeling of Corrientes province (NE Argentina) and its relationships with the Guaraní Aquifer system function

    NASA Astrophysics Data System (ADS)

    Mira, Andrés; Veroslavsky, Gerardo; Rossello, Eduardo; Vives, Luis; Rodríguez, Leticia

    2015-10-01

    From the integration results of geological and geophysical data, a subsurface geological model of the Corrientes province (Argentina) that allows visualizing its deep geological structure and how it affected the Guaraní Aquifer System (GAS) is presented. 44 boreholes, 21 geophysical surveys and 1366 depth data from a Bouguer gravity anomaly model have been used. The model was built from five layers easily distinguishable in the regional subsurface: basement, pre-GAS sediments (Paleozoic), GAS sediments (Triassic-Lower Cretaceous), basalts (Serra Geral Group, Lower Cretaceous) and post basaltic sediments. The resulting geometry shows a basement with a structural high, the Dorsal Asunción-Rio Grande, where the GAS and the basaltic layer are thinner and the Mesozoic sediments rise near the surface. It is an area prone to local recharge and regional discharge of the GAS and it is in line with the latest piezometry and groundwater chemical analysis. Furthermore, two important depocenters have been identified, Corrientes and Curuzú structural high blocks, with at least 3500 m of sedimentary and volcano-sedimentary deposits that suggest the existence of significant pre-carboniferous sediment units associated to ancient extensional structures of the early Paleozoic. The proposed model allows defining a lithostratigraphic column of Corrientes and gives new criteria to redraw the southwest limit of the GAS.

  6. Fate of Magnesium Chloride Brine Applied to Suppress Dust from Unpaved Roads at the INEEL Subsurface Disposal Area

    SciTech Connect

    Larry Hull; Carolyn Bishop

    2004-02-01

    Between 1984 and 1993, MgCl2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl– might enhance corrosion of buried metals in the waste, we investigated the distribution and fate of Cl– in the vadose zone using pore water samples collected from suction lysimeters and soluble salt concentrations extracted from sediment samples. The Cl/Br mass ratio and the total dissolved Cl– concentration of pore water show that brine contamination occurs primarily within 13 m of treated roads, but can extend as much as 30 m laterally in near-surface sedimentary deposits. Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests formation of perched water and horizontal transport during periods of high recharge. In a few locations, brine migrated to depths of 67 m within 3 to 5 yr. Elevated Cl– concentrations were found to depths of 2 m in roadbed material. In drainage ditches along roads, where runoff accumulates and recharge of surface water is high, Cl– was flushed from the sediments in 3 to 4 yr. In areas of lower recharge, Cl– remained in the sediments after 5 yr. Vertical brine movement is directly related to surface recharge through sediments. The distribution of Cl– in pore water and sediments is consistent with estimates of vadose zone residence times and spatial distribution of surface water recharge from other investigations at the subsurface

  7. Is Europa's Subsurface Water Ocean Warm?

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Ekholm, A. G.; Showman, A. P.; Lorenz, R. D.

    2002-01-01

    Europa's subsurface water ocean may be warm: that is, at the temperature of water's maximum density. This provides a natural explanation of chaos melt-through events and leads to a correct estimate of the age of its surface. Additional information is contained in the original extended abstract.

  8. Subsurface manure application to reduce ammonia emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation into soil is generally recommended to reduce ammonia volatilization and nutrient runoff following land application of manures. A range of subsurface applicators are available for manure incorporation with minimal soil disturbance in reduced tillage systems, but none have been widely a...

  9. Characterization of imidacloprid availability in subsurface soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Degradation and sorption/desorption are the most important processes affecting the leaching of pesticides through soil because they control the amount of pesticide available for transport. Once pesticides move past the surface soil layers, variations in subsurface soil physical, chemical, and biolog...

  10. Biomarker Preservation Potential of Subsurface Ecosystems

    NASA Astrophysics Data System (ADS)

    Onstott, T. C.; Harris, R. L.; Sherwood Lollar, B.; Pedersen, K. A.; Colwell, F. S.; Pfiffner, S. M.; Phelps, T. J.; Kieft, T. L.; Bakermans, C.

    2016-05-01

    If surface life emerged on Mars it may have succumbed to a Gaian bottleneck, whereas subsurface life would have continued to grow and evolve sheltered in rocks with sub-freezing saline pore water and their remains preserved in excavated rock.

  11. Subsurface Sensors to Manage Cattle Feedlot Waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface sensing tools were used to aid collection of biosolids from feedlot surfaces to be utilized by crops, for control and utilization of nutrient laden liquid runoff, and to enhance feedlot surface management to reduce nutrient losses and gaseous emissions. The work described here was all co...

  12. Subsurface processes affecting cold season streamflow generation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amount and timing of snowmelt-generated streamflow greatly affects the management of water resources in the western USA and Canada. Subsurface processes that deliver water to streams during snowmelt are somewhat different from those that occur during rainfall. In this study we document some of ...

  13. SEQUESTRATION OF SUBSURFACE ELEMENTAL MERCURY (HG0)

    EPA Science Inventory

    Elemental mercury (Hg0) is a metal with a number of atypical properties, which has resulted in its use in myriad anthropogenic processes. However, these same properties have also led to severe local subsurface contamination at many places where it has been used. As...

  14. Lateral gene transfer in the subsurface

    SciTech Connect

    Barkay, Tamar; Sobecky, Patricia

    2007-08-27

    Lateral gene transfer (LGT) is an important adaptive mechanism among prokaryotic organisms. This mechanism is particularly important for the response of microorganisms to changing environmental conditions because it facilitates the transfer of a large number of genes and their rapid expression. Together the transferred genes promote rapid genetic and metabolic changes that may enhance survival to newly established and sometimes hostile environmental conditions. The goal of our project was to examine if and how LGT enhances microbial adaptation to toxic heavy metals in subsurface environments that had been contaminated by mixed wastes due to activities associated with the production of nuclear energy and weapons. This task has been accomplished by dividing the project to several sub-tasks. Thus, we: (1) Determined the level of resistance of subsurface bacterial isolates to several toxic metals, all identified as pollutants of concern in subsurface environments; (2) Designed, tested, and applied, a molecular approach that determined whether metal resistance genes had evolved by LGT among subsurface bacteria; and (3) Developed a DNA hybridization array for the identification of broad host range plasmids and of metal resistance plasmids. The results are briefly summarized below with references to published papers and manuscripts in preparation where details about our research can be found. Additional information may be found in copies of our published manuscripts and conference proceedings, and our yearly reports that were submitted through the RIMS system.

  15. OVERVIEW -- SUBSURFACE PROTECTION AND REMEDIATION DIVISION

    EPA Science Inventory

    NRMRL's Subsurface Protection and Remediation Division located in Ada, Oklahoma, conducts EPA-investigator led laboratory and field research to provide the scientific basis to support the development of strategies and technologies to protect and restore ground and surface water q...

  16. BIODEGRADATION OF ATRAZINE IN SUBSURFACE ENVIRONMENTS

    EPA Science Inventory

    The pesticide atrazine is frequently detected in ground water, including ground water used as drinking water. Little information is available on the fate of atrazine in the subsurface, including its biodegradability. The objectives of this study were to evaluate the biodegradabil...

  17. Irrigation strategies using subsurface drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drip irrigation (SDI) is practiced on approximately 60,000 ha in the Texas High Plains region of the USA. Adoption of SDI continues to increase in the region. This has been attributed to record drought in Texas and the US Southwest in recent years, declining irrigation well yields, and ev...

  18. Methods for forming long subsurface heaters

    DOEpatents

    Kim, Dong Sub

    2013-09-17

    A method for forming a longitudinal subsurface heater includes longitudinally welding an electrically conductive sheath of an insulated conductor heater along at least one longitudinal strip of metal. The longitudinal strip is formed into a tubular around the insulated conductor heater with the insulated conductor heater welded along the inside surface of the tubular.

  19. Microcystin elimination during sediment contact.

    PubMed

    Grützmacher, Gesche; Wessel, Gabriele; Klitzke, Sondra; Chorus, Ingrid

    2010-01-15

    Microcystins (MCYSTs) are a group of structurally similar toxic peptides produced by cyanobacteria ("blue-green algae") which occur frequently in surface waters worldwide. Reliable elimination is necessary when using these waters as drinking water sources. Bank filtration and artificial groundwater recharge utilize adsorption and degradation processes in the subsurface, commonly through sand and gravel aquifers, for the elimination of a wide range of substances during drinking water (pre-) treatment. To obtain parameters for estimating whether MCYST breakthrough is likely in field settings, we tested MCYST elimination in laboratory experiments (batch experiments, column experiments) under a range of conditions. Adsorption coefficients (k(d)-values) obtained from batch studies ranged from 0.2 mL/g for filter sand to 11.6 mL/g for fine grained aquifer materials with 2% fine grains (<63 microm) and 0.8% organic matter. First order degradation rates in column studies reached 1.87 d(-1) under aerobic conditions and showed high variations under anoxic conditions (<0.01-1.35 d(-1)). These results show that, next to sediment texture, redox conditions play an important role for MCYST elimination during sediment passage. Biodegradation was identified as the dominating process for MCYST elimination in sandy aquifer material. PMID:20000604

  20. Environmental parameters controlling microbial activities in terrestrial subsurface environments. Technical completion report

    SciTech Connect

    Kieft, T.L.

    1990-12-31

    This project was begun in July 1988 as part of Phase I of the Deep Microbiology Subprogram. At this time, the Subprogram was preparing for sampling near the Savannah River Site (SRS) from what was being termed the ``Investigator`s Hole.`` This was the fourth hole drilled for sampling in the coastal plain sediments at a site near the SRS. Since there was a possibility of sampling from the saline Triassic basin in the deeper regions in this fourth hole, there was particular interest in quantifying halotolerant microorganisms from these samples and in determining the responses of subsurface microbes to a range of soft concentrations. Further interest in the soft tolerances of microbes from these coastal sediments arose from the fact that all of these sediments were deposited under marine conditions. It was also anticipated that samples would be available from the shallow unsaturated (vadose) zone at this site, so there was interest in quantifying microbial responses to matric water potential as well as solute water potential. The initial objectives of this research project were to: characterize microbial communities in a saline aquifer; determine the potential for microbial metabolism of selected organic compounds in a saline aquifers; characterize microbial communities in unsaturated subsurface materials (vadose zones); and determine the potential for microbial metabolism of selected organic compounds in unsaturated subsurface materials (vadose zones). Samples were collected from the borehole during a period extending from August to October 1988. A total of nine samples were express shipped to New Mexico Tech for analyses. These were all saturated zone samples from six different geological formations. Water contents and water potentials were measured at the time of sample arrival.

  1. Adsorption Behavior of Black Carbon for Radioactive Iodine Species in Subsurface Environments

    NASA Astrophysics Data System (ADS)

    Choung, S.; Kim, M.; Um, W.

    2012-12-01

    Releases of radioactive iodines (125/129/131I) into subsurface environments occur during nuclear power plant operations, nuclear weapons tests, and nuclear accidents such as Chernobyl and Fukushima. Environmental concern is mostly for 129I due to high toxicity and long-half life, t1/2=1,600,000 years. The fate and transport of radioactive iodines depend on the speciation in the environments. Sorption of iodate (IO3-) is strongly affected by natural organic matter (NOM) in soil/sediments, while iodide (I-) sorption is less. Although there are numerous forms and compositions of NOM in soil/sediments, previous studies were mostly focused on general organic matter such as humic and fulvic acids. The objective of this study is addressed to evaluate the impact of black carbon as different NOM forms in subsurface environments. Laboratory-produced wood char was used as a representative of black carbon for sorption batch experiments. Commercial humic acid was added to experiments for comparison of iodine sorption behavior to black carbon material. Stable iodine isotope, 127I, was used as a surrogate of radioactive iodine. The 13C-NMR analyses indicated that the wood char consisted of dominantly aromatic chemical structures, while the humic acid exhibited relatively more aliphatic structures than aromaticity. The char and humic acid significantly increased iodide and iodate sorption, respectively. However, iodate sorption on char and iodide sorption on humic acid were negligible in this study. These observations implied different sorption mechanisms between black carbon and humic acid due to different pore structures and chemical compositions. Both of sorption isotherms are dependent on aqueous concentrations, following Freundlich isotherm with n~0.7. The sorption behavior and mechanism of iodine is significantly influenced by the NOM types in soils and sediments, which can enhance iodine retardation in the subsurface environment.

  2. Uranium(IV) Complexation by Natural Organic Matter Controls Speciation in the Subsurface

    NASA Astrophysics Data System (ADS)

    Bone, S.; Dynes, J.; Fendorf, S. E.; Jones, M. E.; Bargar, J.

    2014-12-01

    Uranium contaminates groundwater at many sites throughout the United States. At the aquifer in Rifle, CO, U(IV) has been found to accumulate in natural organic matter (NOM)-rich sediments comprising buried alluvial material. We expect that NOM, which is composed of detrital plant material and microbial biomass and necromass, profoundly influences the speciation of U(IV). Specifically, we hypothesize that NOM forms stable complexes with U(IV) (i.e., "noncrystalline" U(IV)), particularly through organic phosphorus moieties associated with bacteria and exopolymeric substances (EPS). Complexation with NOM can help to explain why noncrystalline U(IV) is more abundant in the subsurface than the mineral uraninite (UO2). The abundance and relative reactivity of non-crystalline U(IV) suggests that it drives U fate and transport in the subsurface. W are examining the reduction of U(VI) and subsequent complexation of U(IV) in model NOM systems comprising homogenized, partially degraded plant material, which is analogous to the detrital plant material abundant in Rifle sediments, and its associated microbial consortia. We employ a suite of spectroscopic (X-ray absorption spectroscopies) and microscopic (scanning transmission X-ray microscopy, scanning electron microscopy, and nano-scale secondary ion mass spectrometry) tools that allow us to identify the number and types of coordinating ligands and the distribution of U with respect to NOM components, including bacterial cells, plant matter and entrained minerals. In preliminary experiments we found that 50 - 100 % of U(VI) was reduced to U(IV) within several days. Furthermore, NOM was observed to sorb both U(VI), as a carbonyl complex, and U(IV), possibly as a phosphoryl complex. Further microscopic analyses are designed to elucidate whether U(IV)-P complexes are associated with bacteria or EPS. Our research suggests a new, more complicated model for U(IV) speciation in subsurface sediments, in which complexation by NOM, as

  3. Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface

    SciTech Connect

    Wu, Weimin; Carley, Jack M; Green, Stefan; Luo, Jian; Kelly, Shelly D; Van Nostrand, Joy; Lowe, Kenneth Alan; Mehlhorn, Tonia L; Carroll, Sue L; Boonchayanant, Dr. Benjaporn; Loeffler, Frank E; Jardine, Philip M; Criddle, Craig

    2010-06-01

    The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then deceased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption-adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H{sub 2}S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 {mu}M.

  4. Alternative filter media for phosphorous removal in a horizontal subsurface flow constructed wetland.

    PubMed

    Vohla, Christina; Põldvere, Elar; Noorvee, Alar; Kuusemets, Valdo; Mander, Ulo

    2005-01-01

    During the study period from 1997 to 2002 the purification efficiency of phosphorus in the horizontal subsurface flow (HSSF) constructed wetland (CW) in Kodijärve, has been quite high (63-95%). However, slowly increasing trend in outlet P concentrations and decreasing annual P removal rate are obviously the indicators that show possible saturation processes in filter media. To search for potential filter media with high phosphorus sorption capacity, sorption characteristics and particle size distribution of several local sands, gravels, glauconite-sandstone, LWA, and calcareous waste products from oil-shale industry were investigated. The average P sorption capacity for best materials (crashed ash block, oil, shale fly ash and the sediment from oil shale ash plateau) was higher than 96% and estimated design capacity was around 4-5 g P kg(-1). According to results, sediment from oil shale ash plateau was considered as perspective filter media for P retention. In Summer 2002 experimental sedimentation filter, filled with the sediment from oil shale ash plateau, was installed in the outlet from the Kodijärve HSSF CW. According to preliminary results the average P removal in the sedimentation filter was 52%. PMID:15921280

  5. Spatial and Vertical Variability in Bacterial Community Structure in the Sediment of the South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, P.; Xie, W.; Chen, S.; Zhang, C. L.

    2014-12-01

    The ocean subsurface contains one of the largest pools of reactive carbon and nitrogen on earth, and thus serves as the largest realm for microbial life. However, the microbial communities that drive deep-subsurface geochemical processes are vastly unexplored. In this study, the bacterial community structure in the subsurface of the South China Sea were examined using sediment cores collected from shelf (water depth 667 m) to slope (water depth 3840 m). High-throughput sequencing of the bacterial 16S rRNA genes from the sediment samples resulted in a total of 270,000 sequences with each sample averaging about 10,000 sequences. In all sediment cores, the 16S rRNA gene copies of bacteria were highest in the surface sediment and decreased with the core depth. The bacterial community was dominated by Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes. In most of the sediment cores, Proteobacteria dominated surface sediment samples and decreased with depth. The community structure showed no significant difference among the stations at different water depths, which indicates that bacterial distribution in the sediment is not influenced by the water column above. However, stations along the transect from Pearl River canyon to the deep basin were grouped together by cluster analysis, which indicates that bacterial community structure at these stations may bear the same consequence of sedimentary processes of the deep South China Sea.

  6. Detection of subsurface eddies from satellite observations

    NASA Astrophysics Data System (ADS)

    Assassi, Charefeddine; Morel, Yves; Chaigneau, Alexis; Pegliasco, Cori; Vandermeirsch, Frederic; Rosemary, Morrow; Colas, François; Fleury, Sara; Cambra, Rémi

    2014-05-01

    This study aims to develop an index that allows distinguishing between surface and subsurface intensified eddies from surface data only, in particular using the sea surface height and the sea surface temperature available from satellite observations. To do this, we propose the use of a simple index based on the ratio of the sea surface temperature anomaly (SSTa) and the sea level anomaly (SLA). This index is first derived using an academic approach, based on idealized assumptions of geostrophic balance and Gaussian-shaped vortices. This index depends on the vertical extent (or decreasing rate) of the eddy and because of its sensitivity to the exact shape of the vortex, we were not able to evaluate these depths from the surface fields and our results remain qualitative. Then, in order to examine the pertinence and validity of the proposed index, SSTa and SLA were computed using outputs of a realistic regional circulation model in the Peru-Chile upwelling system where both surface and subsurface eddies coexist. Over a seven year simulation, the statistics shows that 71% of eddies are correctly identified as surface or subsurface intensified. Multi-core eddies are also largely present and represent an average of 37% of all vortices. These multi-core eddies contribute to a large number of the wrong identification (15%). Finally, the index was successfully applied on in-situ data to detect a previously observed subsurface-intensified Swoddy (slope water eddy) in the Bay of Biscay. This study suggests that the index can be successfully used to determine the exact nature of mesoscale eddies (surface or subsurface- intensified) from satellite observations only.

  7. Subsurface barrier verification technologies, informal report

    SciTech Connect

    Heiser, J.H.

    1994-06-01

    One of the more promising remediation options available to the DOE waste management community is subsurface barriers. Some of the uses of subsurface barriers include surrounding and/or containing buried waste, as secondary confinement of underground storage tanks, to direct or contain subsurface contaminant plumes and to restrict remediation methods, such as vacuum extraction, to a limited area. To be most effective the barriers should be continuous and depending on use, have few or no breaches. A breach may be formed through numerous pathways including: discontinuous grout application, from joints between panels and from cracking due to grout curing or wet-dry cycling. The ability to verify barrier integrity is valuable to the DOE, EPA, and commercial sector and will be required to gain full public acceptance of subsurface barriers as either primary or secondary confinement at waste sites. It is recognized that no suitable method exists for the verification of an emplaced barrier`s integrity. The large size and deep placement of subsurface barriers makes detection of leaks challenging. This becomes magnified if the permissible leakage from the site is low. Detection of small cracks (fractions of an inch) at depths of 100 feet or more has not been possible using existing surface geophysical techniques. Compounding the problem of locating flaws in a barrier is the fact that no placement technology can guarantee the completeness or integrity of the emplaced barrier. This report summarizes several commonly used or promising technologies that have been or may be applied to in-situ barrier continuity verification.

  8. Quantifying nonisothermal subsurface soil water evaporation

    NASA Astrophysics Data System (ADS)

    Deol, Pukhraj; Heitman, Josh; Amoozegar, Aziz; Ren, Tusheng; Horton, Robert

    2012-11-01

    Accurate quantification of energy and mass transfer during soil water evaporation is critical for improving understanding of the hydrologic cycle and for many environmental, agricultural, and engineering applications. Drying of soil under radiation boundary conditions results in formation of a dry surface layer (DSL), which is accompanied by a shift in the position of the latent heat sink from the surface to the subsurface. Detailed investigation of evaporative dynamics within this active near-surface zone has mostly been limited to modeling, with few measurements available to test models. Soil column studies were conducted to quantify nonisothermal subsurface evaporation profiles using a sensible heat balance (SHB) approach. Eleven-needle heat pulse probes were used to measure soil temperature and thermal property distributions at the millimeter scale in the near-surface soil. Depth-integrated SHB evaporation rates were compared with mass balance evaporation estimates under controlled laboratory conditions. The results show that the SHB method effectively measured total subsurface evaporation rates with only 0.01-0.03 mm h-1difference from mass balance estimates. The SHB approach also quantified millimeter-scale nonisothermal subsurface evaporation profiles over a drying event, which has not been previously possible. Thickness of the DSL was also examined using measured soil thermal conductivity distributions near the drying surface. Estimates of the DSL thickness were consistent with observed evaporation profile distributions from SHB. Estimated thickness of the DSL was further used to compute diffusive vapor flux. The diffusive vapor flux also closely matched both mass balance evaporation rates and subsurface evaporation rates estimated from SHB.

  9. MANIPULATING SUBSURFACE COLLOIDS TO ENHANCE CLEANUPS OF DOE WASTE SITES

    EPA Science Inventory

    Colloidal phases, such as submicrometer iron oxyhydroxides, aluminosilicate clays, and humic macromolecules, are important subsurface sorbents for the low-solubility chemicals in DOE wastes. Recent research we have performed as part of DOE's Subsurface Science Program has demonst...

  10. Dissimilatory Iron Reduction by Microorganisms Under Hot Deep Subsurface Conditions

    NASA Astrophysics Data System (ADS)

    Ruper, S.; Sharma, A.; Scott, J. H.

    2010-04-01

    In subsurface environments the availability of terminal electron acceptors will be the major biogeochemical constraint, before temperature or pressure begin plays a role. Data is presented to show the impact of deep hot subsurface conditions on dissimilatory iron reduction.

  11. Trajectories of Microbial Community Function in Response to Accelerated Remediation of Subsurface Metal Contaminants

    SciTech Connect

    Firestone, Mary

    2015-01-14

    Objectives of proposed research were to; Determine if the trajectories of microbial community composition and function following organic carbon amendment can be related to, and predicted by, key environmental determinants; Assess the relative importance of the characteristics of the indigenous microbial community, sediment, groundwater, and concentration of organic carbon amendment as the major determinants of microbial community functional response and bioremediation capacity; and Provide a fundamental understanding of the microbial community ecology underlying subsurface metal remediation requisite to successful application of accelerated remediation and long-term stewardship of DOE-IFC sites.

  12. Microbial mineral colonization across a subsurface redox transition zone

    PubMed Central

    Converse, Brandon J.; McKinley, James P.; Resch, Charles T.; Roden, Eric E.

    2015-01-01

    This study employed 16S rRNA gene amplicon pyrosequencing to examine the hypothesis that chemolithotrophic Fe(II)-oxidizing bacteria (FeOB) would preferentially colonize the Fe(II)-bearing mineral biotite compared to quartz sand when the minerals were incubated in situ within a subsurface redox transition zone (RTZ) at the Hanford 300 Area site in Richland, WA, USA. The work was motivated by the recently documented presence of neutral-pH chemolithotrophic FeOB capable of oxidizing structural Fe(II) in primary silicate and secondary phyllosilicate minerals in 300 Area sediments and groundwater (Benzine et al., 2013). Sterilized portions of sand+biotite or sand alone were incubated in situ for 5 months within a multilevel sampling (MLS) apparatus that spanned a ca. 2-m interval across the RTZ in two separate groundwater wells. Parallel MLS measurements of aqueous geochemical species were performed prior to deployment of the minerals. Contrary to expectations, the 16S rRNA gene libraries showed no significant difference in microbial communities that colonized the sand+biotite vs. sand-only deployments. Both mineral-associated and groundwater communities were dominated by heterotrophic taxa, with organisms from the Pseudomonadaceae accounting for up to 70% of all reads from the colonized minerals. These results are consistent with previous results indicating the capacity for heterotrophic metabolism (including anaerobic metabolism below the RTZ) as well as the predominance of heterotrophic taxa within 300 Area sediments and groundwater. Although heterotrophic organisms clearly dominated the colonized minerals, several putative lithotrophic (NH4+, H2, Fe(II), and HS- oxidizing) taxa were detected in significant abundance above and within the RTZ. Such organisms may play a role in the coupling of anaerobic microbial metabolism to oxidative pathways with attendant impacts on elemental cycling and redox-sensitive contaminant behavior in the vicinity of the RTZ. PMID

  13. Microbial mineral colonization across a subsurface redox transition zone

    SciTech Connect

    Converse, Brandon J.; McKinley, James P.; Resch, Charles T.; Roden, Eric E.

    2015-08-28

    Here our study employed 16S rRNA gene amplicon pyrosequencing to examine the hypothesis that chemolithotrophic Fe(II)-oxidizing bacteria (FeOB) would preferentially colonize the Fe(II)-bearing mineral biotite compared to quartz sand when the minerals were incubated in situ within a subsurface redox transition zone (RTZ) at the Hanford 300 Area site in Richland, WA, USA. The work was motivated by the recently documented presence of neutral-pH chemolithotrophic FeOB capable of oxidizing structural Fe(II) in primary silicate and secondary phyllosilicate minerals in 300 Area sediments and groundwater (Benzine et al., 2013). Sterilized portions of sand+biotite or sand alone were incubated in situ for 5 months within a multilevel sampling (MLS) apparatus that spanned a ca. 2-m interval across the RTZ in two separate groundwater wells. Parallel MLS measurements of aqueous geochemical species were performed prior to deployment of the minerals. Contrary to expectations, the 16S rRNA gene libraries showed no significant difference in microbial communities that colonized the sand+biotite vs. sand-only deployments. Both mineral-associated and groundwater communities were dominated by heterotrophic taxa, with organisms from the Pseudomonadaceae accounting for up to 70% of all reads from the colonized minerals. These results are consistent with previous results indicating the capacity for heterotrophic metabolism (including anaerobic metabolism below the RTZ) as well as the predominance of heterotrophic taxa within 300 Area sediments and groundwater. Although heterotrophic organisms clearly dominated the colonized minerals, several putative lithotrophic (NH4+, H2, Fe(II), and HS- oxidizing) taxa were detected in significant abundance above and within the RTZ. Such organisms may play a role in the coupling of anaerobic microbial metabolism to oxidative pathways with attendant impacts on elemental cycling and redox-sensitive contaminant

  14. A subsurface model of the beaver meadow complex

    NASA Astrophysics Data System (ADS)

    Nash, C.; Grant, G.; Flinchum, B. A.; Lancaster, J.; Holbrook, W. S.; Davis, L. G.; Lewis, S.

    2015-12-01

    Wet meadows are a vital component of arid and semi-arid environments. These valley spanning, seasonally inundated wetlands provide critical habitat and refugia for wildlife, and may potentially mediate catchment-scale hydrology in otherwise "water challenged" landscapes. In the last 150 years, these meadows have begun incising rapidly, causing the wetlands to drain and much of the ecological benefit to be lost. The mechanisms driving this incision are poorly understood, with proposed means ranging from cattle grazing to climate change, to the removal of beaver. There is considerable interest in identifying cost-effective strategies to restore the hydrologic and ecological conditions of these meadows at a meaningful scale, but effective process based restoration first requires a thorough understanding of the constructional history of these ubiquitous features. There is emerging evidence to suggest that the North American beaver may have had a considerable role in shaping this landscape through the building of dams. This "beaver meadow complex hypothesis" posits that as beaver dams filled with fine-grained sediments, they became large wet meadows on which new dams, and new complexes, were formed, thereby aggrading valley bottoms. A pioneering study done in Yellowstone indicated that 32-50% of the alluvial sediment was deposited in ponded environments. The observed aggradation rates were highly heterogeneous, suggesting spatial variability in the depositional process - all consistent with the beaver meadow complex hypothesis (Polvi and Wohl, 2012). To expand on this initial work, we have probed deeper into these meadow complexes using a combination of geophysical techniques, coring methods and numerical modeling to create a 3-dimensional representation of the subsurface environments. This imaging has given us a unique view into the patterns and processes responsible for the landforms, and may shed further light on the role of beaver in shaping these landscapes.

  15. Microbial mineral colonization across a subsurface redox transition zone

    DOE PAGESBeta

    Converse, Brandon J.; McKinley, James P.; Resch, Charles T.; Roden, Eric E.

    2015-08-28

    Here our study employed 16S rRNA gene amplicon pyrosequencing to examine the hypothesis that chemolithotrophic Fe(II)-oxidizing bacteria (FeOB) would preferentially colonize the Fe(II)-bearing mineral biotite compared to quartz sand when the minerals were incubated in situ within a subsurface redox transition zone (RTZ) at the Hanford 300 Area site in Richland, WA, USA. The work was motivated by the recently documented presence of neutral-pH chemolithotrophic FeOB capable of oxidizing structural Fe(II) in primary silicate and secondary phyllosilicate minerals in 300 Area sediments and groundwater (Benzine et al., 2013). Sterilized portions of sand+biotite or sand alone were incubated in situ formore » 5 months within a multilevel sampling (MLS) apparatus that spanned a ca. 2-m interval across the RTZ in two separate groundwater wells. Parallel MLS measurements of aqueous geochemical species were performed prior to deployment of the minerals. Contrary to expectations, the 16S rRNA gene libraries showed no significant difference in microbial communities that colonized the sand+biotite vs. sand-only deployments. Both mineral-associated and groundwater communities were dominated by heterotrophic taxa, with organisms from the Pseudomonadaceae accounting for up to 70% of all reads from the colonized minerals. These results are consistent with previous results indicating the capacity for heterotrophic metabolism (including anaerobic metabolism below the RTZ) as well as the predominance of heterotrophic taxa within 300 Area sediments and groundwater. Although heterotrophic organisms clearly dominated the colonized minerals, several putative lithotrophic (NH4+, H2, Fe(II), and HS- oxidizing) taxa were detected in significant abundance above and within the RTZ. Such organisms may play a role in the coupling of anaerobic microbial metabolism to oxidative pathways with attendant impacts on elemental cycling and redox-sensitive contaminant behavior in the vicinity of the RTZ.« less

  16. In situ time-series measurements of subseafloor sediment properties

    USGS Publications Warehouse

    Wheatcroft, R.A.; Stevens, A.W.; Johnson, R.V.

    2007-01-01

    The capabilities and diversity of subsurface sediment sensors lags significantly from what is available for the water column, thereby limiting progress in understanding time-dependent seabed exchange and high-frequency acoustics. To help redress this imbalance, a new instrument, the autonomous sediment profiler (ASP), is described herein. ASP consists of a four-electrode, Wenner-type resistivity probe and a thermistor that log data at 0.1-cm vertical intervals over a 58-cm vertical profile. To avoid resampling the same spot on the seafloor, the probes are moved horizontally within a 20 times 100-cm-2 area in one of three preselected patterns. Memory and power capacities permit sampling at hourly intervals for up to 3-mo duration. The system was tested in a laboratory tank and shown to be able to resolve high-frequency sediment consolidation, as well as changes in sediment roughness. In a field test off the southern coast of France, the system collected resistivity and temperature data at hourly intervals for 16 d. Coupled with environmental data collected on waves, currents, and suspended sediment, the ASP is shown to be useful for understanding temporal evolution of subsurface sediment porosity, although no large depositional or erosional events occurred during the deployment. Following a rapid decrease in bottom-water temperature, the evolution of the subsurface temperature field was consistent with the 1-D thermal diffusion equation coupled with advection in the upper 3-4 cm. Collectively, the laboratory and field tests yielded promising results on time-dependent seabed change.

  17. Analysis of riverbed temperatures to determine the geometry of subsurface water flow around in-stream geomorphological structures

    NASA Astrophysics Data System (ADS)

    Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian

    2016-08-01

    The analytical evaluation of diurnal temperature variation in riverbed sediments provides detailed information on exchange fluxes between rivers and groundwater. The underlying assumption of the stationary, one-dimensional vertical flow field is frequently violated in natural systems where subsurface water flow often has a significant horizontal component. In this paper, we present a new methodology for identifying the geometry of the subsurface flow field using vertical temperature profiles. The statistical analyses are based on model optimisation and selection and are used to evaluate the shape of vertical amplitude ratio profiles. The method was applied to multiple profiles measured around in-stream geomorphological structures in a losing reach of a gravel bed river. The predominant subsurface flow field was systematically categorised in purely vertical and horizontal (hyporheic, parafluvial) components. The results highlight that river groundwater exchange flux at the head, crest and tail of geomorphological structures significantly deviated from the one-dimensional vertical flow, due to a significant horizontal component. The geometry of the subsurface water flow depended on the position around the geomorphological structures and on the river level. The methodology presented in this paper features great potential for characterising the spatial patterns and temporal dynamics of complex subsurface flow geometries by using measured temperature time series in vertical profiles.

  18. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site

    SciTech Connect

    Green, Stefan; Prakash, Om; Jasrotia, Puja; Overholt, Will; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M.; Watson, David B; Schadt, Christopher Warren; Brooks, Scott C; Kostka, Joel

    2011-01-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of ribosomal RNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure, and denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as concentration of nitrogen species, oxygen and sampling season did not appear to strongly influence the distribution of Rhodanobacter. Results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

  19. Quantifying sediment sources in a lowland agricultural catchment pond using (137)Cs activities and radiogenic (87)Sr/(86)Sr ratios.

    PubMed

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J Patrick; Salvador-Blanes, Sébastien; Thil, François; Dapoigny, Arnaud; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2016-10-01

    Soil erosion often supplies high sediment loads to rivers, degrading water quality and contributing to the siltation of reservoirs and lowland river channels. These impacts are exacerbated in agricultural catchments where modifications in land management and agricultural practices were shown to accelerate sediment supply. In this study, sediment sources were identified with a novel tracing approach combining cesium ((137)Cs) and strontium isotopes ((87)Sr/(86)Sr) in the Louroux pond, at the outlet of a lowland cultivated catchment (24km(2), Loire River basin, France) representative of drained agricultural areas of Northwestern Europe. Surface soil (n=36) and subsurface channel bank (n=17) samples were collected to characterize potential sources. Deposited sediment (n=41) was sampled across the entire surface of the pond to examine spatial variation in sediment deposits. In addition, a 1.10m sediment core was sampled in the middle of the pond to reconstruct source variations throughout time. (137)Cs was used to discriminate between surface and subsurface sources, whereas (87)Sr/(86)Sr ratios discriminated between lithological sources. A distribution modeling approach quantified the relative contribution of these sources to the sampled sediment. Results indicate that surface sources contributed to the majority of pond (μ 82%, σ 1%) and core (μ 88%, σ 2%) sediment with elevated subsurface contributions modeled near specific sites close to the banks of the Louroux pond. Contributions of the lithological sources were well mixed in surface sediment across the pond (i.e., carbonate sediment contribution, μ 48%, σ 1% and non-carbonate sediment contribution, μ 52%, σ 3%) although there were significant variations of these source contributions modeled for the sediment core between 1955 and 2013. These fluctuations reflect both the progressive implementation of land consolidation schemes in the catchment and the eutrophication of the pond. This original sediment

  20. Study of the Martian Subsurface with a Fiber Optics Spectrometer: the Ma_Miss Experiment

    NASA Astrophysics Data System (ADS)

    Coradini, A.; de Sanctis, M. C.; Ammannito, E.; Boccaccini, A.; Battistelli, E.; Capanni, A.

    2009-04-01

    In this presentation is described the investigation that we intend to do with a small imaging spectrometer that will be inserted in the drill of the Exomars- Pasteur rover. This spectrometer is named Ma_miss (Mars Multispectral Imager for Subsurface Studies ). The Ma_Miss experiment is located in the drill ,that will be able to make a hole in the Mars soil and rock up to 2 m. Ma_Miss includes the optical head of the spectrometer, a lamp to illuminate the borehole walls, and the optical fiber that brings the signal to the spectrometer. The multispectral images are acquired by means of a sapphire window placed on the lateral wall of the drill tool, as close as possible to the drill head. The images are gathered by means of an optical fibre system and analyzed using the spectrometer. The Ma_Miss gathered light containing the scientific information is transferred to the array detector and electronics of the instrument by means of an optical rotary joint implemented in the roto-translation group of the drill, as shown in the next pictures In the figure is schematically represented the Ma_Miss- Dibs architecture. This experiment will be extremely valuable since it will allow, for the first time, to have an idea of the mineralogical composition of the Martian subsurface and to study freshly cut rocks. The study of surface and subsurface mineralogy of Martian soil and rocks is the key for understanding the chemico-physical processes that led to the formation and evolution of the Red Planet. The history of the water and other volatiles, as well as the signatures of weathering processes are important to understand present and past environmental conditions associated with the possibility of life. Surface samples are highly influenced by exogenous processes (weathering, erosion, sedimentation, impact) that alter their original properties. So, the analyses of uncontaminated samples by means of instrumented drills and in situ analytic stations are the key for unambiguous

  1. The Mars Underground Mole (MUM): A Subsurface Penetration Device with Infrared Reflectance and Raman Spectroscopic Sensing Capability

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Richter, L.; Smith, W. H.; Lemke, L. G.; Hammer, P.; Dalton, J. B.; Glass, B.; Zent, A.

    2003-01-01

    Searching for evidence of life on Mars will probably require access to the subsurface. The Martian surface is bathed in ultraviolet radiation which decomposes organic compounds, destroying possible evidence for life. Also, experiments performed by the Viking Landers imply the presence of several strongly oxidizing compounds at the Martian surface that may also play a role in destroying organic compounds near the surface. While liquid water is unstable on the Martian surface, and ice is unstable at the surface at low latitudes, recent results from the Mars Odyssey Gamma Ray Spectrometer experiment indicate that water ice is widely distributed near the surface under a thin cover of dry soil. Organic compounds created by an ancient Martian biosphere might be preserved in such ice-rich layers. Furthermore, accessing the subsurface provides a way to identify unique stratigraphy such as small-scale layering associated with lacustrine sediments. Subsurface access might also provide new insights into the Mars climate record that may be preserved in the Polar Layered Deposits. Recognizing the importance of accessing the subsurface of Mars to the future scientific exploration of the planet, the Mars Surveyor 2007 Science Definition Team called for drilling beneath the surface soils. Subsurface measurements are also cited as high priority in by MEPAG. Recognizing the importance of accessing the Martian subsurface to search for life, the European Space Agency has incorporated a small automated burrowing device called a subsurface penetrometer or Mole onto the Beagle 2 lander planned for 2003 launch. This device, called the Planetary Underground Tool (PLUTO), is a pointed slender cylinder 2 cm wide and 28 cm long equipped with a small sampling device at the pointed end that collects samples and brings them to the surface for analysis. Drawing on the PLUTO design, we are developing a larger Mole carrying sensors for identifying mineralogy, organic compounds, and water.

  2. Tool samples subsurface soil free of surface contaminants

    NASA Technical Reports Server (NTRS)

    Kemmerer, W. W.; Wooley, B. C.

    1967-01-01

    Sampling device obtains pure subsurface soil that is free of any foreign substance that may exist on the surface. It is introduced through a contaminated surface area in a closed condition, opened, and a subsurface sample collected, sealed while in the subsurface position, and then withdrawn.

  3. Nitrate bioreduction in redox-variable low permeability sediments

    SciTech Connect

    Yan, Sen; Liu, Yuanyuan; Liu, Chongxuan; Shi, Liang; Shang, Jianying; Shan, Huimei; Zachara, John M.; Fredrickson, Jim K.; Kennedy, David W.; Resch, Charles T.; Thompson, Christopher J.; Fansler, Sarah J.

    2015-09-09

    Denitrification is a microbial process that reduces nitrate and nitrite to nitrous oxide (N2O) or dinitrogen (N2) with a strong implication to global nitrogen cycling and climate change. This paper reports the effect of sediment redox conditions on the rate and end product of denitrification. The sediments were collected from a redox transition zone consisting of oxic and reduced layers at US Department of Energy’s Hanford Site where N2O was locally accumulated in groundwater. The results revealed that denitrification rate and end product varied significantly with initial sediment redox state. The denitrification rate was relatively faster, limited by organic carbon content and bioavailability in the oxic sediment. In contrast, the rate was much slower in the reduced sediment, limited by biomass and microbial function. A significant amount of N2O was accumulated in the reduced sediment; while in the oxic sediment, N2O was further reduced to N2. RT-PCR analysis revealed that nosZ, the gene that codes for N2O reductase, was below detection in the reduced sediment. The results implied that redox transition zones can be important sinks or sources of N2O depending on local biogeochemical and microbial conditions, and are important systems for understanding and modeling denitrification in subsurface environments.

  4. Desiccation-crack-induced salinization in deep clay sediment

    NASA Astrophysics Data System (ADS)

    Baram, S.; Ronen, Z.; Kurtzman, D.; Külls, C.; Dahan, O.

    2013-04-01

    A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water content and on the chemical and isotopic composition of the sediment and pore water in it. The isotopic composition of water stable isotopes (δ18O and δ2H) in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ~ 3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl-) concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a desiccation-crack-induced salinization (DCIS) conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  5. Desiccation-crack-induced salinization in deep clay sediment

    NASA Astrophysics Data System (ADS)

    Baram, S.; Ronen, Z.; Kurtzman, D.; Küells, C.; Dahan, O.

    2012-11-01

    A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water-content and on the chemical and isotopic composition of the sediment and pore-water in it. The isotopic composition of water stable isotopes (δ18O and δ2H) in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ∼3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl-) concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a Desiccation-Crack-Induced Salinization (DCIS) conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  6. A high-performance workflow system for subsurface simulation

    SciTech Connect

    Freedman, Vicky L.; Chen, Xingyuan; Finsterle, Stefan A.; Freshley, Mark D.; Gorton, Ian; Gosink, Luke J.; Keating, Elizabeth; Lansing, Carina; Moeglein, William AM; Murray, Christopher J.; Pau, George Shu Heng; Porter, Ellen A.; Purohit, Sumit; Rockhold, Mark L.; Schuchardt, Karen L.; Sivaramakrishnan, Chandrika; Vesselinov, Velimir V.; Waichler, Scott R.

    2014-02-14

    Subsurface modeling applications typically neglect uncertainty in the conceptual models, past or future scenarios, and attribute most or all uncertainty to errors in model parameters. In this contribution, uncertainty in technetium-99 transport in a heterogeneous, deep vadose zone is explored with respect to the conceptual model using a next generation user environment called Akuna. Akuna provides a range of tools to manage environmental modeling projects, from managing simulation data to visualizing results from high-performance computational simulators. Core toolsets accessible through the user interface include model setup, grid generation, parameter estimation, and uncertainty quantification. The BC Cribs site at Hanford in southeastern Washington State is used to demonstrate Akuna capabilities. At the BC Cribs site, conceptualization of the system is highly uncertain because only sparse information is available for the geologic conceptual model, the physical and chemical properties of the sediments, and the history of waste disposal operations. Using the Akuna toolset to perform an analysis of conservative solute transport, significant prediction uncertainty in simulated concentrations is demonstrated by conceptual model variation. This demonstrates that conceptual model uncertainty is an important consideration in sparse data environments such as BC Cribs. It is also demonstrated that Akuna and the underlying toolset provides an integrated modeling environment that streamlines model setup, parameter optimization, and uncertainty analyses for high-performance computing applications.

  7. Characterising phosphorus loss in surface and subsurface hydrological pathways

    PubMed

    Heathwaite; Dils

    2000-05-01

    The magnitude and composition of the phosphorus (P) load transported in surface and subsurface hydrological pathways from a grassland catchment depends on the discharge capacity of the flow route and the frequency with which the pathway operates. Surface runoff is an important pathway for P loss, but this pathway is spatially limited and temporarily confined to high magnitude, high intensity rainfall events. High P concentrations (mean: 1.1 mg TP l(-1)) were recorded, with most P transported in the dissolved fraction. Preferential flow pathways, particularly soil macropores and field drains, are important contributors to the overall P load; most P is transported in the particulate fraction and associated with organic or colloidal P forms. High P concentrations (mean: 1.2 mg TP l(-1)) were recorded in macropore flow in the upper 0-15 cm of a grassland soil, and generally declined with increasing soil depth. On average, P concentrations in drainflow were over six times greater in stormflow compared to baseflow. Stormflow P losses in drainflow were predominantly in the particulate fraction; significant correlation (P < 0.01) was recorded with suspended sediment concentrations in drainflow. Phosphorus concentrations in groundwater were low (< 0.2 mg TP l(-1) at 150 cm), although this pathway may contribute to stream flow for the majority of the year. PMID:10847182

  8. Quantification of subsurface pore pressure through IODP drilling

    NASA Astrophysics Data System (ADS)

    Saffer, D. M.; Flemings, P. B.

    2010-12-01

    It is critical to understand the magnitude and distribution of subsurface pore fluid pressure: it controls effective stress and thus mechanical strength, slope stability, and sediment compaction. Elevated pore pressures also drive fluid flows that serve as agents of mass, solute, and heat fluxes. The Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) have provided important avenues to quantify pore pressure in a range of geologic and tectonic settings. These approaches include 1) analysis of continuous downhole logs and shipboard physical properties data to infer compaction state and in situ pressure and stress, 2) laboratory consolidation testing of core samples collected by drilling, 3) direct downhole measurements using pore pressure probes, 3) pore pressure and stress measurements using downhole tools that can be deployed in wide diameter pipe recently acquired for riser drilling, and 4) long-term monitoring of formation pore pressure in sealed boreholes within hydraulically isolated intervals. Here, we summarize key advances in quantification of subsurface pore pressure rooted in scientific drilling, highlighting with examples from subduction zones, the Gulf of Mexico, and the New Jersey continental shelf. At the Nankai, Costa Rican, and Barbados subduction zones, consolidation testing of cores samples, combined with analysis of physical properties data, indicates that even within a few km landward of the trench, pore pressures in and below plate boundary décollement zones reach a significant fraction of the lithostatic load (λ*=0.25-0.91). These results document a viable and quantifiable mechanism to explain the mechanical weakness of subduction décollements, and are corroborated by a small number of direct measurements in sealed boreholes and by inferences from seismic reflection data. Recent downhole measurements conducted during riser drilling using the modular formation dynamics tester wireline tool (MDT) in a forearc basin ~50

  9. Are sea otters being exposed to subsurface intertidal oil residues from the Exxon Valdez oil spill?

    PubMed

    Boehm, P D; Page, D S; Neff, J M; Brown, J S

    2011-03-01

    Twenty years after the Exxon Valdez oil spill, scattered patches of subsurface oil residues (SSOR) can still be found in intertidal sediments at a small number of shoreline locations in Prince William Sound, Alaska. Some scientists hypothesize that sea otters continue to be exposed to SSOR by direct contact when otters dig pits in search of clams. This hypothesis is examined through site-specific examinations where SSOR and otter-dug pits co-occur. Surveys documented the exact sediment characteristics and locations on the shore at the only three subdivisions where both SSOR and otter pits were found after 2000. Shoreline characteristics and tidal heights where SSOR have persisted are not suitable habitat for sea otters to dig pits during foraging. There is clear separation between areas containing SSOR and otter foraging pits. The evidence allows us to reject the hypothesis that sea otters encounter and are being exposed by direct contact to SSOR. PMID:21185036

  10. Polar lipids of archaebacteria in sediments and petroleums

    SciTech Connect

    Chappe, B.; Albrecht, P.; Michaelis, W.

    1982-07-02

    Glycerol tetraethers with head-to-head isoprenoid 40-carbon chains that are typical or archaebacteria, in particular of methanogens, were idenified in the polar lipids of sediments and petroleums. These structures are at least partially preserved in the subsurface beyond the stage of petroleum formation. Their identification provides further evidence that a significant part of geological organic matter derives from the lipids of membranes of microorganisms. 3 figures.

  11. Spreadsheet log analysis in subsurface geology

    USGS Publications Warehouse

    Doveton, J.H.

    2000-01-01

    Most of the direct knowledge of the geology of the subsurface is gained from the examination of core and drill-cuttings recovered from boreholes drilled by the petroleum and water industries. Wireline logs run in these same boreholes generally have been restricted to tasks of lithostratigraphic correlation and thee location of hydrocarbon pay zones. However, the range of petrophysical measurements has expanded markedly in recent years, so that log traces now can be transformed to estimates of rock composition. Increasingly, logs are available in a digital format that can be read easily by a desktop computer and processed by simple spreadsheet software methods. Taken together, these developments offer accessible tools for new insights into subsurface geology that complement the traditional, but limited, sources of core and cutting observations.

  12. Lunar subsurface exploration with coherent radar.

    NASA Technical Reports Server (NTRS)

    Brown, W. E., Jr.

    1972-01-01

    The Apollo Lunar Sounder Experiment that is scheduled to orbit the moon on Apollo 17 consists of a three frequency coherent radar system and an optical recorder. The coherent radar can be used to measure both phase and amplitude characteristics of the radar echo. Measurement methods that are related to the phase and amplitude will be used to determine the surface profile, locate subsurface features and ascertain near surface electrical properties of the lunar surface. The key to the coherent radar measurement is a highly stable oscillator that preserves an accurate phase reference (2 or 3 electrical degrees) over a long period of time. This reference provides a means for reducing surface clutter so that subsurface features are more easily detected and also provides a means of measuring range to the surface to within a fraction of a wavelength.

  13. Multicomponent elastic imaging of subsurface sources

    NASA Astrophysics Data System (ADS)

    Artman, B.; Goertz, A.

    2009-12-01

    Active seismic processing is concerned with two-way travel times, down and up, through the subsurface. In contrast, passive seismic methods are predicated on 3+ travel paths in the case of interferometry, and one-way travel path wave fields in the case of source location. Secondary sources and diffractions maintain the same kinematics as primary sources and can also be imaged in the context of source location. We present the chain of time-reverse modeling, image space wave-field decomposition, and various imaging conditions as a migration-like algorithm to locate subsurface sources in passive data and diffractors in active data. The presented imaging conditions respond differently to source mechanism radiation patterns which interpreted in combination provide more information than simply location. Passive data examples are developed with surface acquisition geometry.

  14. Application of multifocusing method for subsurface imaging

    NASA Astrophysics Data System (ADS)

    Landa, Evgeny; Gurevich, Boris; Keydar, Shemer; Trachtman, Pinchas

    1999-12-01

    The multifocusing method consists of stacking seismic data with arbitrary source-receiver distribution according to a new paraxial moveout correction. This multifocusing moveout correction is based on a local spherical approximation of the reflection wave fronts in the vicinity of an observation surface. The multifocusing method does not require any knowledge of the subsurface model and can produce an accurate zero offset section, even in cases of a complex geological structure and/or low signal-to-noise ratio. The moveout correction parameters are the emergence angle and the wavefront curvatures for the normal wave and normal-incidence-point wave. The estimated sets of these parameters can be looked upon as new wavefield attributes containing important information regarding the subsurface model. Application of the multifocusing algorithm to synthetic and real data examples demonstrates its advantages in comparison with conventional CMP processing.

  15. Legacy Sediments in U.S. River Environments: Atrazine and Aggradation to Zinc and Zoobenthos

    NASA Astrophysics Data System (ADS)

    Wohl, E.

    2014-12-01

    Legacy sediments are those that are altered by human activities. Alterations include (i) human-caused aggradation (and subsequent erosion), such as sediment accumulating upstream from relict or contemporary dams, (ii) human-caused lack of continuing deposition that results in changing moisture and nutrient levels within existing sediments, such as on floodplains that no longer receive lateral or vertical accretion deposits because of levees, bank stabilization, and other channel engineering, and (iii) human-generated contaminants such as PCBs and pesticides that adsorb to fine sediment. Existing estimates of human alterations of river systems suggest that legacy sediments are ubiquitous. Only an estimated 2% of river miles in the United States are not affected by flow regulation that alters sediment transport, for example, and less than half of major river basins around the world are minimally altered by flow regulation. Combined with extensive but poorly documented reduction in floodplain sedimentation, as well as sediment contamination by diverse synthetic compounds, excess nutrients, and heavy metals, these national and global estimates suggest that legacy sediments now likely constitute a very abundant type of fluvial sediment. Because legacy sediments can alter river form and function for decades to centuries after the cessation of the human activity that created the legacy sediments, river management and restoration must be informed by accurate knowledge of the distribution and characteristics of legacy sediments. Geomorphologists can contribute understanding of sediment dynamics, including: the magnitude, frequency, and duration of flows that mobilize sediments with adsorbed contaminants; sites where erosion and deposition are most likely to occur under specified flow and sediment supply; residence time of sediments; and the influence of surface and subsurface water fluxes on sediment stability and geochemistry.

  16. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site

    SciTech Connect

    Lin, Xueju; Kennedy, David W.; Fredrickson, Jim K.; Bjornstad, Bruce N.; Konopka, Allan

    2012-02-01

    The microbial diversity in subsurface sediments at the Hanford Site's 300 Area in southeastern Washington State was investigated by analyzing 21 samples recovered from depths that ranged from 9 to 52 m. Approximately 8000 non-chimeric Bacterial and Archaeal 16S rRNA gene sequences were analyzed across geological strata that contain a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (Operational Taxonomic Units, defined at the 97% identity level). Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (based upon Chao1 estimator) was highest (>700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic transition zone, richness was about 325 and declined to less than 50 in the deeper reduced zones. The Bacterial community in the oxic Hanford and Ringold Formations contained members of 9 major well-recognized phyla as well 30 as unusually high proportions of 3 candidate divisions (GAL15, NC10, and SPAM). The deeper Ringold strata were characterized by low OTU richness and a very high preponderance (ca. 90%) of Proteobacteria. The study has greatly expanded the intralineage phylogenetic diversity within some major divisions. These subsurface sediments have been shown to contain a large number of phylogenetically novel microbes, with substantial heterogeneities between sediment samples from the same geological formation.

  17. Mars subsurface investigation by MARSIS and SHARAD

    NASA Astrophysics Data System (ADS)

    Picardi, Giovanni; Loukas, Alessandro; Masdea, Arturo; Mastrogiuseppe, Marco; Restano, Marco; Seu, Roberto

    2010-05-01

    This paper is addressed to MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding in Mars Express ESA mission) data inversion. The data inversion gives an estimation of the materials composing the different detected interfaces, including the impurity (inclusion) of the first layer, if any, and its percentage, by the evaluation of the values of the permittivity that would generate the observed radio echoes. The methodology utilized for the data inversion is applied in different areas of the Mars South Pole and the results are reported for each area. The scattering behavior of the surface and subsurface (flat or rough), according with the geometrical structure, is estimated by the shape of the radar echoes and is utilized for the correction of their power; in such a way the contributions due to the surface and subsurface shape are estimated and the corrected echoes contain only the surface and subsurface material features. In this paper, in order to define the main topics of the data inversion, are only considered areas where flat surfaces are present and clutter echoes are negligible; the clutter cancellation can be applied according with the well known techniques. The scattering (volume scattering) due to the inclusion in the host material has been considered. Several frames, from SHARAD (SHAllow RADar in Mars Reconnaissance Orbiter US mission), in the same Mars area, have been analyzed and they confirmed the layer attenuation obtained by MARSIS data. Within the MARSIS papers this one presents a quantitative and scientific parametric data inversion, based on a physical approach and gives numerical results on the dielectric constant of the detected interface.

  18. Radionuclide Sensors for Subsurface Water Monitoring

    SciTech Connect

    Timothy DeVol

    2006-06-30

    Contamination of the subsurface by radionuclides is a persistent and vexing problem for the Department of Energy. These radionuclides must be measured in field studies and monitoed in the long term when they cannot be removed. However, no radionuclide sensors existed for groundwater monitoring prior to this team's research under the EMSP program Detection of a and b decays from radionuclides in water is difficult due to their short ranges in condensed media.

  19. Subsurface materials management and containment system

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2006-10-17

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  20. Subsurface materials management and containment system

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kosteinik, Kevin M.; Sloan, Paul A.

    2004-07-06

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  1. CLASSIFICATION OF THE MGR SUBSURFACE EXCAVATION SYSTEM

    SciTech Connect

    R. Garrett

    1999-08-31

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) subsurface excavation system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

  2. Drill Embedded Nanosensors For Planetary Subsurface Exploration

    NASA Technical Reports Server (NTRS)

    Li, Jing

    2014-01-01

    We have developed a carbon nanotube (CNT) sensor for water vapor detection under Martian Conditions and the miniaturized electronics can be embedded in the drill bit for collecting sensor data and transmit it to a computer wirelessly.This capability will enable the real time measurement of ice during drilling. With this real time and in-situ measurement, subsurface ice detection can be easy, fast, precise and low cost.

  3. Surface Signature of Subsurface-Intensified Vortices

    NASA Astrophysics Data System (ADS)

    Ciani, D.; Carton, X. J.; Chapron, B.; Bashmachnikov, I.

    2014-12-01

    The ocean at mesoscale (20-200 km) and submesoscale (0.5-20km) is highly populated by vortices. These recirculating structures are more energetic than the mean flow, they trap water masses from their origin areas and advect them across the ocean, with consequent impact on the 3D distribution of heat and tracers. Mesoscale and submesoscale structures characterize the ocean dynamics both at the sea surface and at intrathermocline depths (0-1500m), and are presently investigated by means of model outputs, in-situ and satellite (surface) data, the latest being the only way to get high resolution and synoptic observations at planetary scale (e.g., thermal-band observations, future altimetric observations given by the SWOT satellite mission). The scientific question arising from this context is related to the role of the ocean surface for inferring informations on mesoscale and submesoscale vortices at depth. This study has also been motivated by the recent detection of subsurface eddies east of the Arabian Peninsula (PHYSINDIEN experiment - 2011).Using analytical models in the frame of the QG theory, we could describe the theoretical altimetric signature of non-drifting and of drifting subsurface eddies. Numerical experiments, using both coupled QG-SQG and primitive equations models, allowed us to investigate the surface expression of intrathermocline eddies interacting with baroclinic currents or evolving under planetary beta-effect. The eddy characteristics (radius, depth, thickness, velocity) were varied, to represent various oceanic examples (Meddies, Swoddies, Reddies, Peddies, Leddies). Idealized simulations with the ROMS model, confirming theoretical estimates, showed that drifting subsurface-intensified vortices can induce dipolar sea level anomalies, up to 3 cm. This result, compatibly with future SWOT measurement accuracies (about 2 cm), is a first step towards systematic and synoptic detection of subsurface vortices.

  4. Magnetic Polarity Streams and Subsurface Flows

    NASA Astrophysics Data System (ADS)

    Howe, R.; Baker, D.; Harra, L.; van Driel-Gesztelyi, L.; Komm, R.; Hill, F.; González Hernández, I.

    2013-12-01

    An important feature of the solar cycle is the transport of unbalanced magnetic flux from active regions towards the poles, which eventually results in polarity reversal. This transport takes the form of distinct “polarity streams” that are visible in the magnetic butterfly diagram. We compare the poleward migration rate estimated from such streams to that derived from the subsurface meridional flows measured in helioseismic data from the GONG network since 2001, and find that the results are in reasonable agreement.

  5. Charge changing cross-sections for 300 A MeV Fe{sup 26+} ion beam in Al target

    SciTech Connect

    Gupta, Renu; Kumar, Ashavani

    2013-06-03

    In the present study, total and partial charge changing cross-sections of 300 A MeV Fe{sup 26+} ion beam in Al target were measured. The CR39 nuclear track detectors were used to identify the incident charged particles and their fragments using an automated image analyzer system installed with Leica QWin Plus software. The measured value of the total charge changing cross-section is {sigma}{sub tot}= (1663 {+-} 236) mb.

  6. Mineralogical Signatures in Electrically Coupled Marine Sediments

    NASA Astrophysics Data System (ADS)

    Bauermeister, A.; Gorby, Y. A.; Schramm, J.

    2014-12-01

    'Electric cable bacteria' are organisms of the family Desulfobulbaceaethat exhibit a novel method of electron transport. Cells form conductive filaments that function like electric wires, transferring electrons over distances of more than 1 cm from deep sulfidic sediments to oxygen or other electron acceptors near the soil/water interface. The rate of electron transfer across redox boundaries far exceeds that of diffusion limited processes and generates pH gradients that can significantly influence geochemical reactions, leading to the formation of distinct mineralogical profiles unlikely to be created by abiotic means. Electrically coupled sediments are characterized by carbonate and iron sulfide dissolution reactions occurring at depth and formation of carbonate and metal oxide crusts at the surface, exhibiting a reverse pattern compared to conventional sediment geochemistry. Our research seeks to address the following questions: How prevalent are electric cable bacteria in diverse environments? How do biogeochemical conditions such as ion concentration influence mineral formation? Do biogenic minerals participate in charge transfer? What is the importance of electric charge transfer in the subsurface or other low energy habitats? Can mineral banding patterns caused by cable bacteria activity be preserved in the geologic record? With this research we hope to further elucidate the impact of biologically-induced electric fields on the mineralogy of sediments.

  7. Subsurface barrier integrity verification using perfluorocarbon tracers

    SciTech Connect

    Sullivan, T.M.; Heiser, J.; Milian, L.; Senum, G.

    1996-12-01

    Subsurface barriers are an extremely promising remediation option to many waste management problems. Gas phase tracers include perfluorocarbon tracers (PFT`s) and chlorofluorocarbon tracers (CFC`s). Both have been applied for leak detection in subsurface systems. The focus of this report is to describe the barrier verification tests conducted using PFT`s and analysis of the data from the tests. PFT verification tests have been performed on a simulated waste pit at the Hanford Geotechnical facility and on an actual waste pit at Brookhaven National Laboratory (BNL). The objective of these tests were to demonstrate the proof-of-concept that PFT technology can be used to determine if small breaches form in the barrier and for estimating the effectiveness of the barrier in preventing migration of the gas tracer to the monitoring wells. The subsurface barrier systems created at Hanford and BNL are described. The experimental results and the analysis of the data follow. Based on the findings of this study, conclusions are offered and suggestions for future work are presented.

  8. Resonant seismic emission of subsurface objects

    SciTech Connect

    Korneev, Valeri A.

    2009-04-15

    Numerical modeling results and field data indicate that some contrasting subsurface objects (such as tunnels, caves, pipes, filled pits, and fluid-filled fractures) are capable of generating durable resonant oscillations after trapping seismic energy. These oscillations consist of surface types of circumferential waves that repeatedly propagate around the object. The resonant emission of such trapped energy occurs primarily in the form of shear body waves that can be detected by remotely placed receivers. Resonant emission reveals itself in the form of sharp resonant peaks for the late parts of the records, when all strong direct and primary reflected waves are gone. These peaks were observed in field data for a buried barrel filled with water, in 2D finite-difference modeling results, and in the exact canonical solution for a fluid-filled sphere. A computed animation for the diffraction of a plane wave upon a low-velocity elastic sphere confirms the generation of resonances by durable surface waves. Resonant emission has characteristic quasi-hyperbolic traveltime patterns on shot gathers. The inversion of these patterns can be performed in the frequency domain after muting the strong direct and primary scattered waves. Subsurface objects can be detected and imaged at a single resonance frequency without an accurate knowledge of source trigger time. The imaging of subsurface objects requires information about the shear velocity distribution in an embedding medium, which can be done interactively during inversion.

  9. New technologies for subsurface barrier wall construction

    SciTech Connect

    Mutch, R.D. Jr.; Ash, R.E. IV; Caputi, J.R.

    1996-12-31

    New technologies for subsurface barrier wall construction are entering the marketplace at an unprecedented pace. Much of this innovation centers around construction of geomembrane barrier walls but also includes advancements in self-hardening slurries and in permeation grouts, involving such diverse materials as colloidal silica gel and montan wax emulsions. These advancements come at a time when subsurface barrier walls are cautiously emerging out of the technological closet. During much of the 1980s, barrier walls of any type were regarded in some quarters as crude and antiquated. It was correspondingly predicted that remediation would be dominated by emerging treatment technologies such as bioremediation, air sparging, and surfactant flushing. Notwithstanding the considerable successes of these emerging technologies, particularly bioremediation, the fact remains that a significant percentage of Superfund, RCRA-corrective action and other waste disposal sites present hydrogeologic, chemical, and waste matrix complexities that far exceed the capabilities of current treatment-based remedial technologies. Consequently, containment-based technologies such as subsurface barrier walls and caps are being recognized once again as irreplaceable components of practical remediation programs at many complex sites.

  10. Satellite-derived subsurface urban heat island.

    PubMed

    Zhan, Wenfeng; Ju, Weimin; Hai, Shuoping; Ferguson, Grant; Quan, Jinling; Tang, Chaosheng; Guo, Zhen; Kong, Fanhua

    2014-10-21

    The subsurface urban heat island (SubUHI) is one part of the overall UHI specifying the relative warmth of urban ground temperatures against the rural background. To combat the challenge on measuring extensive underground temperatures with in situ instruments, we utilized satellite-based moderate-resolution imaging spectroradiometer data to reconstruct the subsurface thermal field over the Beijing metropolis through a three-time-scale model. The results show the SubUHI's high spatial heterogeneity. Within the depths shallower than 0.5 m, the SubUHI dominates along the depth profiles and analyses imply the moments for the SubUHI intensity reaching first and second extremes during a diurnal temperature cycle are delayed about 3.25 and 1.97 h per 0.1 m, respectively. At depths shallower than 0.05 m in particular, there is a subsurface urban cool island (UCI) in spring daytime, mainly owing to the surface UCI that occurs in this period. At depths between 0.5 and 10 m, the time for the SubUHI intensity getting to its extremes during an annual temperature cycle is lagged 26.2 days per meter. Within these depths, the SubUHI prevails without exception, with an average intensity of 4.3 K, varying from 3.2 to 5.3 K. PMID:25222374

  11. Electromagnetic detection of subsurface voids. Final report

    SciTech Connect

    Wilt, M.J.; Becker, A.

    1985-11-01

    This report presents the results of a time domain electromagnetic survey over a subsurface cavity near drillhole U2ck at the Nevada test site. The purpose of the survey was to test the sensitivity of the time domain method using maximum and minimum coupled coiled configurations for the detection of subsurface cavity. The survey was made with the Geonics EM-37 system deployed so that horizontal and vertical magnetic field sensors are positioned at the center of the transmitter loop. Measurements were made at 25 and 50 m intervals on N-S and E-W trending profiles over the drillhole. The purpose of the study was to map the subsurface cavity associated with drillhole U2ck. Initial results indicate significant horizontal field anomalies near ground zero. Some of the horizontal field profiles closely resemble scale model profiles for buried fractures presented by Becker and Dallal (1985). Because of the difference in the time scale, however, we cannot use those results to obtain quantitative information about the cavity.

  12. Activation of Peroxymonosulfate by Subsurface Minerals

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Teel, Amy L.; Watts, Richard J.

    2016-08-01

    In situ chemical oxidation (ISCO) has become a widely used technology for the remediation of soil and groundwater. Although peroxymonosulfate is not a common oxidant source for ISCO, its chemical structure is similar to the ISCO reagents hydrogen peroxide and persulfate, suggesting that peroxymonosulfate may have the beneficial properties of each of these oxidants. Peroxymonosulfate activation in the presence of subsurface minerals was examined as a basis for ISCO, and possible reactive species (hydroxyl radical, sulfate radical, and reductants + nucleophiles) generated in the mineral-activated peroxymonosulfate systems were investigated. Rates of peroxymonosulfate decomposition and generation rates of reactive species were studied in the presence of three iron oxides, one manganese oxide, and three soil fractions. The iron oxide hematite-activated peroxymonosulfate system most effectively degraded the hydroxyl radical probe nitrobenzene. Reductants + nucleophiles were not generated in mineral-activated peroxymonosulfate systems. Use of the probe compound anisole in conjunction with scavengers demonstrated that both sulfate radical and hydroxyl radical are generated in mineral-activated peroxymonosulfate systems. In order to confirm the activation of peroxymonosulfate by subsurface minerals, one natural soil and associated two soil fractions were evaluated as peroxymonosulfate catalysts. The natural soil did not effectively promote the generation of oxidants; however, the soil organic matter was found to promote the generation of reductants + nucleophiles. The results of this research show that peroxymonosulfate has potential as an oxidant source for ISCO applications, and would be most effective in treating halogenated contaminants when soil organic matter is present in the subsurface.

  13. Subsurface urban heat islands in German cities.

    PubMed

    Menberg, Kathrin; Bayer, Peter; Zosseder, Kai; Rumohr, Sven; Blum, Philipp

    2013-01-01

    Little is known about the intensity and extension of subsurface urban heat islands (UHI), and the individual role of the driving factors has not been revealed either. In this study, we compare groundwater temperatures in shallow aquifers beneath six German cities of different size (Berlin, Munich, Cologne, Frankfurt, Karlsruhe and Darmstadt). It is revealed that hotspots of up to +20K often exist, which stem from very local heat sources, such as insufficiently insulated power plants, landfills or open geothermal systems. When visualizing the regional conditions in isotherm maps, mostly a concentric picture is found with the highest temperatures in the city centers. This reflects the long-term accumulation of thermal energy over several centuries and the interplay of various factors, particularly in heat loss from basements, elevated ground surface temperatures (GST) and subsurface infrastructure. As a primary indicator to quantify and compare large-scale UHI intensity the 10-90%-quantile range UHII(10-90) of the temperature distribution is introduced. The latter reveals, in comparison to annual atmospheric UHI intensities, an even more pronounced heating of the shallow subsurface. PMID:23178772

  14. Subsurface heat flow in an urban environment

    NASA Astrophysics Data System (ADS)

    Ferguson, Grant; Woodbury, Allan D.

    2004-02-01

    The subsurface temperature field beneath Winnipeg, Canada, is significantly different from that of the surrounding rural areas. Downward heat flow to depths as great as 130 m has been noted in some areas beneath the city and groundwater temperatures in a regional aquifer have risen by as much as 5°C in some areas. Numerical simulation of heat transport supports the conjecture that these temperature changes can be largely attributed to heat loss from buildings and the temperature at any given point is sensitive to the distance from and the age of any buildings. The effect is most noticable when buildings are closely spaced, which is typical of urban areas. Temperature measurements in areas more than a few hundred meters away from any heated structure were only a few tenths of a degree Celsius greater than those observed outside the city, suggesting that other reasons for increases in subsurface temperature, such as changes in surface cover or climate change, may be responsible for some of the some of the observed increase in temperatures. These sources of additional heat to the subsurface make it difficult to resolve information on past climates from temperatures measured in boreholes and monitoring wells. In some areas, the temperature increases may also have an impact on geothermal energy resources. This impact might be in the form of an increase in heat pump efficiency or in the case of the Winnipeg area, a decrease in the efficiency of direct use of groundwater for cooling.

  15. Monitoring subsurface barrier integrity using perfluorocarbon tracers

    SciTech Connect

    Sullivan, T.M.; Heiser, J.; Gard, A.; Senum, G.

    1998-06-01

    Subsurface barriers are an extremely promising remediation option to many waste-management problems. It is recognized that monitoring of the barrier is necessary to provide confidence in the ability of the barrier to contain the pollutants. However, the large size and deep placement of subsurface barriers make detection of leaks a challenging task. Therefore, typical geophysical methods are not suitable for the monitoring of an emplaced barrier`s integrity. Perfluorocarbon tracers (PFTs) have been tested as a means of barrier verification at the Hanford geotechnical test facility, where a soil/cement barrier was emplaced around a buried drum. PFTs were injected beneath the drum for three days in the center of the barrier 3 m below grade. The concentration of PFTs in seven external and two internal monitoring wells has been measured as a function of time over a 17-day period. The data have been analyzed through numerical modeling to determine barrier integrity and PFT diffusion rates through the barrier. This paper discusses the experimental design, test results, data analysis, and modeling of PFT transport in the subsurface system.

  16. Chemical inversion in the subsurface hydrosphere

    SciTech Connect

    Yezhov, Yu.A.

    1980-09-01

    A quite common nature of chemical inversion in subsurface hydrosphere is shown in examples of several oil- and gas-bearing regions of the USSR. In particular, when the data of sampling from deep wells of the Volgo-Urals, Mangyshlak, and Western Turkmenian regions were compared, it became obvious that the composite chemical profile of subsurface hydrosphere consists of a vertical alternation of three zones: of increasing (I-II-IIIa genetic types of subsurface waters), maximum (IIIb), and decreasing water mineralization (III'a-II'-I'). The depth of occurrence of the lower inversion branch of zonality depends on the geotectonic activity at depth. It is closer to the Earth's surface in regions of Alpine tectogenesis, whereas in regions of ancient folding it lies at great depths which have not yet been reached by most deep wells. The formation of the inversion zone in the Earth's crust is connected with penetration from below ascending demineralized fluids of sodium bicarbonate type (I'). The latter is due to the presence at great depths of large quantities of free carbonic acid which is involved in hydrolytic processes of decomposition of sodium-containing minerals and produces sodium-type waters.

  17. Modeling of Carbon Tetrachloride Flow and Transport in the Subsurface of the 200 West Disposal Sites: Large-Scale Model Configuration and Prediction of Future Carbon Tetrachloride Distribution Beneath the 216-Z-9 Disposal Site

    SciTech Connect

    Oostrom, Mart; Thorne, Paul D.; Zhang, Z. F.; Last, George V.; Truex, Michael J.

    2008-12-17

    Three-dimensional simulations considered migration of dense, nonaqueous phase liquid (DNAPL) consisting of CT and co disposed organics in the subsurface as a function of the properties and distribution of subsurface sediments and of the properties and disposal history of the waste. Simulations of CT migration were conducted using the Water-Oil-Air mode of Subsurface Transport Over Multiple Phases (STOMP) simulator. A large-scale model was configured to model CT and waste water discharge from the major CT and waste-water disposal sites.

  18. Mineral Dissolution and Secondary Precipitation on Quartz Sand in Simulated Hanford Tank Solutions Affecting Subsurface Porosity

    SciTech Connect

    Wang, Guohui; Um, Wooyong

    2012-11-23

    Highly alkaline nuclear waste solutions have been released from underground nuclear waste storage tanks and pipelines into the vadose zone at the U.S. Department of Energy’s Hanford Site in Washington, causing mineral dissolution and re-precipitation upon contact with subsurface sediments. High pH caustic NaNO3 solutions with and without dissolved Al were reacted with quartz sand through flow-through columns stepwise at 45, 51, and 89°C to simulate possible reactions between leaked nuclear waste solution and primary subsurface mineral. Upon reaction, Si was released from the dissolution of quartz sand, and nitrate-cancrinite [Na8Si6Al6O24(NO3)2] precipitated on the quartz surface as a secondary mineral phase. Both steady-state dissolution and precipitation kinetics were quantified, and quartz dissolution apparent activation energy was determined. Mineral alteration through dissolution and precipitation processes results in pore volume and structure changes in the subsurface porous media. In this study, the column porosity increased up to 40.3% in the pure dissolution column when no dissolved Al was present in the leachate, whereas up to a 26.5% porosity decrease was found in columns where both dissolution and precipitation were observed because of the presence of Al in the input solution. The porosity change was also confirmed by calculation using the dissolution and precipitation rates and mineral volume changes.

  19. Tertiary subsurface solution in the Mississippian Leadville Limestone geothermal aquifer of Colorado

    SciTech Connect

    Bridges, L.W.D.; McCarthy, K.

    1990-04-01

    Subsurface solution by geothermal waters during the Tertiary rather than karst formation during the Paleozoic may account for the solution features found at the top of the Mississippian Leadville Limestone. Evidence at Guernsey, Wyoming suggests overlying sediments were lithified long before solution features formed. At Treasure Mountain, Colorado, a 108 ft (33 m) interval above the fill material is also Mississippian, which may indicate nearly continuous Mississippian deposition in the axis of the Mississippian seaway. It is unlikely that a karst surface could have developed in this restricted time period. The chert breccias of Guernsey and Treasure Mountain show no evidence of abrasion. This chert appears to have been precipitated from silica dissolved by geothermal waters in Tertiary time and later fractured by slumping. Earlier workers found much debris from overlying formations in Leadville solution features, but most dismissed the possibility of late-state subsurface dissolution contemporaneous with ore deposition. The authors postulate that subsurface solution took place in Tertiary time during the heating phase associated with orogeny, mineralization, and igneous activity. Dissolution was localized by pressure differences and fluid flow near major faults associated with mineralization. The largest solution areas are associated with deep-seated faults such as the Rio Grande Rift. Moderate to intense local solution is associated with mineralization. Small-scale, local solution and alteration may be associated with topographically controlled hot spring systems.

  20. Flat meridional temperature gradient in the early Eocene in the subsurface rather than surface ocean

    NASA Astrophysics Data System (ADS)

    Ho, Sze Ling; Laepple, Thomas

    2016-08-01

    The early Eocene (49-55 million years ago) is a time interval characterized by elevated surface temperatures and atmospheric CO2 (refs ,), and a flatter-than-present latitudinal surface temperature gradient. The multi-proxy-derived flat temperature gradient has been a challenge to reproduce in model simulations, especially the subtropical warmth at the high-latitude surface oceans, inferred from the archaeal lipid-based palaeothermometry, . Here we revisit the interpretation by analysing a global collection of multi-proxy temperature estimates from sediment cores spanning millennia to millions of years. Comparing the variability between proxy types, we demonstrate that the present interpretation overestimates the magnitude of past climate changes on all timescales. We attribute this to an inappropriate calibration, which reflects subsurface ocean but is calibrated to the sea surface, where the latitudinal temperature gradient is steeper. Recalibrating the proxy to the temperatures of subsurface ocean, where the signal is probably formed, yields colder -temperatures and latitudinal gradient consistent with standard climate model simulations of the Eocene climate, invalidating the apparent, extremely warm polar sea surface temperatures. We conclude that there is a need to reinterpret -inferred marine temperature records in the literature, especially for reconstructions of past warm climates that rely heavily on this proxy as reflecting subsurface ocean.

  1. A survey of methane isotope abundance (14C, 13C, 2H) from five nearshore marine basins that reveals unusual radiocarbon levels in subsurface waters

    NASA Astrophysics Data System (ADS)

    Kessler, J. D.; Reeburgh, W. S.; Valentine, D. L.; Kinnaman, F. S.; Peltzer, E. T.; Brewer, P. G.; Southon, J.; Tyler, S. C.

    2008-12-01

    Methane (CH4) in the subsurface ocean is often supersaturated compared to equilibrium with the modern atmosphere. In order to investigate sources of CH4 to the subsurface ocean, isotope surveys (14C-CH4,δ13C-CH4, δ2H-CH4) were conducted at five locations: Skan Bay (SB), Santa Barbara Basin (SBB), Santa Monica Basin (SMB), Cariaco Basin (CB), and the Guaymas Basin (GB). Depth distributions of CH4 concentration and isotopic abundance were determined for both the sediment and water column at the SB, SBB, SMB, and CB sites; CH4 emitted from seeps on the continental shelf adjacent to the SBB as well as seeps and decomposing clathrate hydrates in the GB was also collected, purified, and analyzed. Methane isotope distributions in the sediments were consistent with known methanogenic and methanotrophic activity; seep- and clathrate-hydrate-derived CH4 was found to be depleted in radiocarbon. However, surprising results were obtained in the water column at all sites investigated. In SB the radiocarbon content of the subsurface CH4 concentration maximum was on average 41% less than its suspected sediment CH4 source, suggesting CH4 seepage in the bay. In the SBB, SMB, and CB, the 14C-CH4 contents in the subsurface ocean were 1.2 to 3.6 times greater than modern carbon quantities suggesting a source of 14C from atmospheric nuclear weapons testing, nuclear power plant effluents, or cosmogenic isotope production.

  2. Reactive transport benchmarks for subsurface environmental simulation

    SciTech Connect

    Steefel, Carl I.; Yabusaki, Steven B.; Mayer, K. U.

    2015-06-01

    Over the last 20 years, we have seen firsthand the evolution of multicomponent reactive transport modeling and the expanding range and increasing complexity of subsurface applications it is being used to address. There is a growing reliance on reactive transport modeling (RTM) to address some of the most compelling issues facing our planet: climate change, nuclear waste management, contaminant remediation, and pollution prevention. While these issues are motivating the development of new and improved capabilities for subsurface environmental modeling using RTM (e.g., biogeochemistry from cell-scale physiology to continental-scale terrestrial ecosystems, nonisothermal multiphase conditions, coupled geomechanics), there remain longstanding challenges in characterizing the natural variability of hydrological, biological, and geochemical properties in subsurface environments and limited success in transferring models between sites and across scales. An equally important trend over the last 20 years is the evolution of modeling from a service sought out after data has been collected to a multifaceted research approach that provides (1) an organizing principle for characterization and monitoring activities; (2) a systematic framework for identifying knowledge gaps, developing and integrating new knowledge; and (3) a mechanistic understanding that represents the collective wisdom of the participating scientists and engineers. There are now large multidisciplinary projects where the research approach is model-driven, and the principal product is a holistic predictive simulation capability that can be used as a test bed for alternative conceptualizations of processes, properties, and conditions. Much of the future growth and expanded role for RTM will depend on its continued ability to exploit technological advancements in the earth and environmental sciences. Advances in measurement technology, particularly in molecular biology (genomics), isotope fractionation, and high

  3. Quantification of microbial activity in subsurface environments using a hydrogenase enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R. R.; Nickel, J.; Kallmeyer, J.

    2012-04-01

    The subsurface biosphere is the largest microbial ecosystem on Earth. Despite its large size and extensive industrial exploitation, very little is known about the role of microbial activity in the subsurface. Subsurface microbial activity plays a fundamental role in geochemical cycles of carbon and other biologically important elements. How the indigenous microbial communities are supplied with energy is one of the most fundamental questions in subsurface research. It is still an enigma how these communities can survive with such recalcitrant carbon over geological time scales. Despite its usually very low concentration, hydrogen is an important element in subsurface environments. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways; they either obtain protons from the radiolysis of water and/or cleavage of hydrogen generated by the alteration of basaltic crust, or they dispose of protons by formation of water. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy-generating metabolic processes to electron acceptors such as carbon dioxide or sulfate. H2ase activity can therefore be used as a measure for total microbial activity as it targets a key metabolic compound rather than a specific turnover process. Using a highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey and in marine subsurface sediments of the Barents Sea. Additionally, sulfate reduction rates (SRRs) were measured to compare the results of the H2ase enzyme assay with the quantitatively most important electron acceptor process. H2ase activity was found at all sites, measured values and distribution of activity varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from

  4. Physiologically anaerobic microorganisms of the deep subsurface. Final performance report, June 1, 1990--August 31, 1993

    SciTech Connect

    Stevens, S.E. Jr.; Chung, K.T.

    1993-10-01

    Anaerobic bacteria were isolated from deep subsurface sediment samples taken at study sites in Idaho (INEL) and Washington (HR) by culturing on dilute and concentrated medium. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. Although the number of isolates was small (18 INEL, 27 HR) some general patterns could be determined. Most strains could utilize all the carbon sources, however the glycerol and melizitose utilization was positive for 50% or less of the HR isolates. Catalase activity (27.78% at INEL, 74.07% at HR) and tryptophan metabolism (11.12% at INEL, 40.74% at HR) were significantly different between the two study sites. MPN and viable counts indicate that sediments near the water table yield the greatest numbers of anaerobes. Deeper sediments also appear to be more selective with the greatest number of viable counts on low-nutrient mediums. Likewise, only strictly obligate anaerobes were found in the deepest sediment samples. Selective media indicated the presence of methanogens, acetogens, and sulfate reducers at only the HR site.

  5. Submarine cementation of subsurface Pliocene carbonates from the interior of Great Bahama Bank

    SciTech Connect

    Beach, D.K.

    1993-11-01

    Thick intervals of early Pliocene subtidal carbonate sediments in the subsurface of northwestern Great Bahama Bank were lithified by submarine cement. This cementation, subsequently altered by meteoric diagenesis, occurred over a broad expanse of the platform interior. It shows that submarine cements can lithify thick packstone and grainstone intervals in the interior of large shallow-water carbonate shelves and platforms given open circulation, moderate to slow sedimentation rates, and minimal accumulation of fine sediments. A submarine origin for these cements is inferred from direct and circumstantial evidence, including: (1) regional depositional and diagenetic setting; (2) fabric and habit similar to modern submarine cements; (3) alteration of cements from mineralogically unstable precursors indicated by (a) abundant inclusions, (b) relict precursor fabric, and commonly (c) yellowish coloration, (d) undulose crystal extinction, and (e) selective leaching of specific generations of cement or cement types; (4) sutured mid-pore crystal contacts; (5) precipitation coeval with accumulation of internal marine sediment; (6) association with organisms requiring a firm substrate for attachment. These considerations may help other workers recognize submarine cements in ancient carbonate rocks.

  6. Physical and chemical controls on habitats for life in the deep subsurface beneath continents and ice

    PubMed Central

    Parnell, John; McMahon, Sean

    2016-01-01

    The distribution of life in the continental subsurface is likely controlled by a range of physical and chemical factors. The fundamental requirements are for space to live, carbon for biomass and energy for metabolic activity. These are inter-related, such that adequate permeability is required to maintain a supply of nutrients, and facies interfaces invite colonization by juxtaposing porous habitats with nutrient-rich mudrocks. Viable communities extend to several kilometres depth, diminishing downwards with decreasing porosity. Carbon is contributed by recycling of organic matter originally fixed by photosynthesis, and chemoautotrophy using crustal carbon dioxide and methane. In the shallow crust, the recycled component predominates, as processed kerogen or hydrocarbons, but abiotic carbon sources may be significant in deeper, metamorphosed crust. Hydrogen to fuel chemosynthesis is available from radiolysis, mechanical deformation and mineral alteration. Activity in the subcontinental deep biosphere can be traced through the geological record back to the Precambrian. Before the colonization of the Earth's surface by land plants, a geologically recent event, subsurface life probably dominated the planet's biomass. In regions of thick ice sheets the base of the ice sheet, where liquid water is stable and a sediment layer is created by glacial erosion, can be regarded as a deep biosphere habitat. This environment may be rich in dissolved organic carbon and nutrients accumulated from dissolving ice, and from weathering of the bedrock and the sediment layer. PMID:26667907

  7. Lower Silurian-Upper Ordovician subsurface glacial outwash deposits, northern Saudi Arabia

    SciTech Connect

    Dobson, P.B. )

    1991-08-01

    Recently acquired seismic data reinterpreted well information in northwest Saudi Arabia extends outcropping Lower Silurian to Upper Ordovician Zarqa/Sarah glacial and periglacial deposits into the subsurface. These deposits range from northeast-trending outwash-filled channels deeply incised into the underlying Ordovician Qasim and the Cambrian-Ordovician Saq Formation in the east. A southwest source for these sediments is implied by this new data. This supports previously interpreted source directions mapped from outcrop. It also correlates with the position of the Arabian plate relative to known Gonwanaland ice caps during the Early Silurian-Late Ordovician. The recognition of glacial outwash sediments in the subsurface provides new insight into the continuity and environments of deposition of the Qasim Formation members in northwest Saudi Arabia. The hydrocarbon-prone Lower Silurian Qusaiba Member of the Qalibah Formation overlies the Zarqa/Sarah Formations. The Qusaiba represents a rapid transgression of the Paleo-Tethys Sea during the final melting of the Gondwanaland ice caps. The seal-source characteristics of the Qusaiba Member, combined with the good porosity and permeability of the underlying outwash deposits, suggest a prospective hydrocarbon exploration play. Gas is produced from this reservoir in the Risha field of eastern Jordan.

  8. Physical and chemical controls on habitats for life in the deep subsurface beneath continents and ice.

    PubMed

    Parnell, John; McMahon, Sean

    2016-01-28

    The distribution of life in the continental subsurface is likely controlled by a range of physical and chemical factors. The fundamental requirements are for space to live, carbon for biomass and energy for metabolic activity. These are inter-related, such that adequate permeability is required to maintain a supply of nutrients, and facies interfaces invite colonization by juxtaposing porous habitats with nutrient-rich mudrocks. Viable communities extend to several kilometres depth, diminishing downwards with decreasing porosity. Carbon is contributed by recycling of organic matter originally fixed by photosynthesis, and chemoautotrophy using crustal carbon dioxide and methane. In the shallow crust, the recycled component predominates, as processed kerogen or hydrocarbons, but abiotic carbon sources may be significant in deeper, metamorphosed crust. Hydrogen to fuel chemosynthesis is available from radiolysis, mechanical deformation and mineral alteration. Activity in the subcontinental deep biosphere can be traced through the geological record back to the Precambrian. Before the colonization of the Earth's surface by land plants, a geologically recent event, subsurface life probably dominated the planet's biomass. In regions of thick ice sheets the base of the ice sheet, where liquid water is stable and a sediment layer is created by glacial erosion, can be regarded as a deep biosphere habitat. This environment may be rich in dissolved organic carbon and nutrients accumulated from dissolving ice, and from weathering of the bedrock and the sediment layer. PMID:26667907

  9. Geophysical Monitoring of Coupled Microbial and Geochemical Processes During Stimulated Subsurface Bioremediation

    SciTech Connect

    Williams, Kenneth H.; Kemna, Andreas; Wilkins, Michael J.; Druhan, Jennifer L.; Arntzen, Evan V.; N'Guessan, A. Lucie; Long, Philip E.; Hubbard, Susan S.; Banfield, Jillian F.

    2009-08-05

    Understanding how microorganisms alter their physical and chemical environment during bioremediation is hindered by our inability to resolve subsurface microbial activity with high spatial resolution. Here we demonstrate the use of a minimally invasive geophysical technique to monitor stimulated microbial activity during acetate amendment in an aquifer near Rifle, Colorado. During electrical induced polarization (IP) measurements, spatiotemporal variations in the phase response between imposed electric current and the resultant electric field correlated with changes in groundwater geochemistry accompanying stimulated iron and sulfate reduction and sulfide mineral precipitation. The magnitude of the phase response varied with measurement frequency (0.125 and 1 Hz) andwasdependent upon the dominant metabolic process. The spectral effect was corroborated using a biostimulated column experiment containing Rifle sediments and groundwater. Fluids and sediments recovered from regions exhibiting an anomalous phase response were enriched in Fe(II), dissolved sulfide, and cell-associated FeS nanoparticles. The accumulation of mineral precipitates and electroactive ions altered the ability of pore fluids to conduct electrical charge, accounting for the anomalous IP response and revealing the usefulness of multifrequency IP measurements for monitoring mineralogical and geochemical changes accompanying stimulated subsurface bioremediation.

  10. Deglacial Subsurface Temperature Change in the Tropical North Atlantic Linked to Atlantic Meridional Overturning Circulation Variability

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.; Hertzberg, J. E.; Them, T. R.; Parker, A. O.; Chang, P.

    2011-12-01

    Coupled ocean-atmosphere modeling experiments conducted under both the present and Last Glacial Maximum (LGM) conditions indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly coupled to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes (Zhang, 2007; Chang et al., 2008; Chiang et al., 2008; Otto-Bliesner and Brady, 2009). While a slowdown of AMOC in these experiments results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming due to rapid reorganizations of ocean circulation patterns (Wan et al., 2009). To test the hypothesis that subsurface temperature change in the TNA is coupled to AMOC variability across abrupt climate events over the last deglacial, we reconstruct Mg/Ca-temperature and δ18O records from both surface (Globigerinoides ruber, upper mixed layer) and sub-thermocline dwelling (Globorotalia truncatulinoides, 350-500 m depth) planktonic foraminifera, as well as from the benthic species Cibicidoides pachyderma in the southern Caribbean Sea sediment core VM12-107 (11.33 °N, 66.63 °W; 1079 m; 18 cm/kyr sedimentation rate). Reconstructed sea surface temperatures (SSTs) indicate a gradual warming in the TNA starting at ~19 kyr BP with small cold reversals of ~1.5 °C during Heinrich Event 1 (H1) and the Younger Dryas (YD). In contrast, LGM subsurface temperatures were as much as 2.5 °C warmer than Late Holocene values and H1 and the YD are marked by the warmest subsurface temperatures characterized by abrupt temperature increases as large as 4-5 °C. In addition, benthic Mg/Ca ratios during the YD and H1 increase by 50% relative to Holocene intervals, suggesting significant warming extending to 1079 m water depth across these events. Comparison of our subsurface temperature records with the Bermuda Rise 231Pa/230Th proxy record of AMOC variability (McManus et al., 2004) indicates a strong correlation between

  11. Temperature and pressure adaptation of a sulfate reducer from the deep subsurface.

    PubMed

    Fichtel, Katja; Logemann, Jörn; Fichtel, Jörg; Rullkötter, Jürgen; Cypionka, Heribert; Engelen, Bert

    2015-01-01

    Microbial life in deep marine subsurface faces increasing temperatures and hydrostatic pressure with depth. In this study, we have examined growth characteristics and temperature-related adaptation of the Desulfovibrio indonesiensis strain P23 to the in situ pressure of 30 MPa. The strain originates from the deep subsurface of the eastern flank of the Juan de Fuca Ridge (IODP Site U1301). The organism was isolated at 20°C and atmospheric pressure from ~61°C-warm sediments approximately 5 m above the sediment-basement interface. In comparison to standard laboratory conditions (20°C and 0.1 MPa), faster growth was recorded when incubated at in situ pressure and high temperature (45°C), while cell filamentation was induced by further compression. The maximum growth temperature shifted from 48°C at atmospheric pressure to 50°C under high-pressure conditions. Complementary cellular lipid analyses revealed a two-step response of membrane viscosity to increasing temperature with an exchange of unsaturated by saturated fatty acids and subsequent change from branched to unbranched alkyl moieties. While temperature had a stronger effect on the degree of fatty acid saturation and restructuring of main phospholipids, pressure mainly affected branching and length of side chains. The simultaneous decrease of temperature and pressure to ambient laboratory conditions allowed the cultivation of our moderately thermophilic strain. This may in turn be one key to a successful isolation of microorganisms from the deep subsurface adapted to high temperature and pressure. PMID:26500624

  12. Creation of a subsurface permeable treatment barrier using in situ redox manipulation

    SciTech Connect

    Fruchter, J.S.; Vermeul, V.R.; Szecsody, J.E.

    1996-12-31

    Subsurface contaminants at Department of Energy (DOE) sites occur in both the vadose and groundwater saturated zones. Many of the groundwater plumes are already dispersed over large areas (square miles) and are located hundreds of feet below the ground. This type of dispersed, inaccessible contamination, which is more difficult than other types of contamination to treat using excavation or pump-and-treat methods, may only be treated successfully by the in situ manipulation of natural processes to change the mobility or form of the contaminants. An unconfined aquifer is usually an oxidizing environment, therefore, most of the contaminants that are mobile in the aquifer are those that are mobile under oxidizing conditions. If the redox potential of the aquifer is made reducing, then a variety of contaminants can be treated. The goal of In-Situ Redox Manipulation (ISRM) is to create a permeable treatment zone in the subsurface for remediation of redox sensitive contaminants in the groundwater. The permeable treatment zone is created by reducing the ferric iron to ferrous iron within the clay minerals of the aquifer sediments. This reduction can be accomplished with chemical reducing agents, such as sodium dithionite, or through the stimulation of naturally-occurring iron-reducing bacteria with nutrients (e.g. lactate). After the aquifer sediments are reduced, any reagent or reaction products introduced into the subsurface are removed. Redox sensitive contaminants that can be treated by this technology include chromate, uranium, technetium and some chlorinated solvents (e.g., carbon tetrachloride and trichloroethylene). Chromate is immobilized by reduction to highly insoluble chromium hydroxide or iron chromium hydroxide solid solution. This case is particularly favorable since chromium is not easily reoxidized under ambient environmental conditions. Uranium and technetium will also be reduced to less soluble forms, and chlorinated solvents will be destroyed.

  13. Evaluation of the contamination of platinum in estuarine and coastal sediments (Tagus Estuary and Prodelta, Portugal).

    PubMed

    Cobelo-García, Antonio; Neira, Patricia; Mil-Homens, Mario; Caetano, Miguel

    2011-03-01

    Platinum contamination in estuarine and coastal sediments has been evaluated in three cores collected from the Tagus Estuary and Prodelta shelf sediments. Elevated concentrations, up to 25-fold enrichment compared to background values, were found in the upper layers of the estuarine sediments. The degree of Pt enrichment in the estuarine sediments varied depending on the proximity to vehicular traffic sources, with a maximum concentration of 9.5 ng g(-1). A considerable decrease of Pt concentrations with depth indicated the absence of significant contamination before the introduction of catalytic converters in automobiles. Platinum distribution in the Tagus Prodelta shelf sediment core showed no surface enrichment; instead a sub-surface maximum at the base of the mixed layer suggested the possibility of post-depositional mobility, thereby blurring the traffic-borne contamination signature in coastal sediments. PMID:21256526

  14. Contaminated Sediment Core Profiling

    EPA Science Inventory

    Evaluating the environmental risk of sites containing contaminated sediments often poses major challenges due in part to the absence of detailed information available for a given location. Sediment core profiling is often utilized during preliminary environmental investigations ...

  15. Sediment Toxicity Identification Evaluation

    EPA Science Inventory

    Approach combining chemical manipulations and aquatic toxicity testing, generally with whole organisms, to systematically characterize, identify and confirm toxic substances causing toxicity in whole sediments and sediment interstitial waters. The approach is divided into thre...

  16. Erosion of Noncohesive Sediment by Groundwater Seepage: Lysimeter Experiments and Stability Modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seepage erosion may be a significant mechanism of streambank erosion and failure in numerous geographical locations. Previous research has investigated erosion by lateral subsurface flow and developed a sediment transport model similar to an excess shear stress equation. As a continuation of this ea...

  17. Erosion of Noncohesive Sediment by Groundwater Seepage: Lysimeter Experiments and Modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seepage erosion may be a significant mechanism of streambank erosion and failure in numerous geographical locations. Previous research has investigated erosion by lateral subsurface flow and developed a sediment transport model similar to an excess shear stress equation. As a continuation of this e...

  18. A seepage erosion sediment transport function and geometric headcut relationships for predicting seepage erosion undercutting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seepage erosion is an important factor in hillslope instability and failure. However, predicting erosion by subsurface flow or seepage and incorporating its effects into stability models remain a challenge. Limitations exist with all existing seepage erosion sediment transport functions, including n...

  19. Effect of alternative surface inlet designs on sediment and phosphorus drainage losses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine whether modifying open inlets by burying them in gravel capped with 30 cm of sandy clay loam soil or in ve...

  20. Vertical distribution of benthic infauna in continental slope sediments off Cape Lookout, North Carolina

    NASA Astrophysics Data System (ADS)

    Blake, James A.

    The vertical distribution of 30 species of benthic infauna from continental slope (583-3000 m) sediments off Cape Lookout, North Carolina was closely correlated with feeding types. Carnivores, omnivores, filter feeders, and surface deposit feeders were mostly concentrated in the upper 0-2 cm of the cores. The depth distribution of subsurface deposit feeders was more variable, even among related taxa.

  1. Denitrifying bacteria from the terrestrial subsurface exposed to mixed waste contamination

    SciTech Connect

    Green, Stefan; Prakash, Om; Gihring, Thomas; Akob, Denise M.; Jasrotia, Puja; Jardine, Philip M; Watson, David B; Brown, Steven D; Palumbo, Anthony Vito; Kostka, Joel

    2010-01-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available with which to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy s Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria) and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were confirmed as complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. Ribosomal RNA gene analyses reveal that bacteria from the genus Rhodanobacter comprise a diverse population of circumneutral to moderately acidophilic denitrifiers at the ORIFRC site, with a high relative abundance in areas of the acidic source zone. Rhodanobacter species do not contain a periplasmic nitrite reductase and have not been previously detected in functional gene surveys of denitrifying bacteria at the OR-IFRC site. Sequences of nitrite and nitrous oxide reductase genes were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation, genomic and metagenomic data are essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifying microorganisms. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.

  2. Sea surface and subsurface circulation dynamics off equatorial Peru during the last ~17 kyr

    NASA Astrophysics Data System (ADS)

    Nürnberg, Dirk; Böschen, Tebke; Doering, Kristin; Mollier-Vogel, Elfi; Raddatz, Jacek; Schneider, Ralph

    2015-07-01

    The complex deglacial to Holocene oceanographic development in the Gulf of Guayaquil (Eastern Equatorial Pacific) is reconstructed for sea surface and subsurface ocean levels from (isotope) geochemical proxies based on marine sediment cores. At sea surface, southern sourced Cold Coastal Water and tropical Equatorial Surface Water/Tropical Surface Water are intimately related. In particular since ~10 ka, independent sea surface temperature proxies capturing different seasons emphasize the growing seasonal contrast in the Gulf of Guayaquil, which is in contrast to ocean areas further offshore. Cold Coastal Water became rapidly present in the Gulf of Guayaquil during the austral winter season in line with the strengthening of the Southeast Trades, while coastal upwelling off Peru gradually intensified and expanded northward in response to a seasonally changing atmospheric circulation pattern affecting the core locations intensively since 4 ka BP. Equatorial Surface Water, instead, was displaced and Tropical Surface Water moved northward together with the Equatorial Front. At subsurface, the presence of Equatorial Under Current-sourced Equatorial Subsurface Water was continuously growing, prominently since ~10-8 ka B.P. During Heinrich Stadial 1 and large parts of the Bølling/Allerød, and similarly during short Holocene time intervals at ~5.1-4 ka B.P. and ~1.5-0.5 ka B.P., the admixture of Equatorial Subsurface Water was reduced in response to both short-term weakening of Equatorial Under Current strength from the northwest and emplacement by tropical Equatorial Surface Water, considerably warming the uppermost ocean layers.

  3. Development of in-aquifer heat testing for high resolution subsurface thermal-storage capability characterisation

    NASA Astrophysics Data System (ADS)

    Seibertz, Klodwig Suibert Oskar; Chirila, Marian Andrei; Bumberger, Jan; Dietrich, Peter; Vienken, Thomas

    2016-03-01

    The ongoing transition from fossil fuels to alternative energy source provision has resulted in increased geothermal uses as well as storage of the shallow subsurface. Existing approaches for exploration of shallow subsurface geothermal energy storage often lack the ability to provide information concerning the spatial variability of thermal storage parameters. However, parameter distributions have to be known to ensure that sustainable geothermal use of the shallow subsurface can take place - especially when it is subject to intensive usage. In this paper, we test a temperature decay time approach to obtain in situ, direct, qualitative, spatial high-resolution information about the distribution of thermal storage capabilities of the shallow subsurface. To achieve this, temperature data from a high-resolution Fibre-Optic-Distributed-Temperature-Sensing device, as well as data from conventional Pt100-temperature-sensors were collected during a heat injection test. The latter test was used to measure the decay time of temperature signal dissipation of the subsurface. Signal generation was provided by in-aquifer heating with a temperature self-regulating electric heating cable. Heating was carried out for 4.5 days. After this, a cooling period of 1.5 weeks was observed. Temperature dissipation data was also compared to Direct-Push-derived high-resolution (hydro-)geological data. The results show that besides hydraulic properties also the bedding and compaction state of the sediment have an impact on the thermal storage capability of the saturated subsurface. The temperature decay time approach is therefore a reliable method for obtaining information regarding the qualitative heat storage capability of heterogeneous aquifers for the use with closed loop system geothermal storage systems. Furthermore, this approach is advantageous over other commonly used methods, e.g. soil-sampling and laboratory analysis, as even small changes in (hydro-)geological properties lead to

  4. Activation of Peroxymonosulfate by Subsurface Minerals.

    PubMed

    Yu, Miao; Teel, Amy L; Watts, Richard J

    2016-08-01

    In situ chemical oxidation (ISCO) has become a widely used technology for the remediation of soil and groundwater. Although peroxymonosulfate is not a common oxidant source for ISCO, its chemical structure is similar to the ISCO reagents hydrogen peroxide and persulfate, suggesting that peroxymonosulfate may have the beneficial properties of each of these oxidants. Peroxymonosulfate activation in the presence of subsurface minerals was examined as a basis for ISCO, and possible reactive species (hydroxyl radical, sulfate radical, and reductants+nucleophiles) generated in the mineral-activated peroxymonosulfate systems were investigated. Rates of peroxymonosulfate decomposition and generation rates of reactive species were studied in the presence of three iron oxides, one manganese oxide, and three soil fractions. The iron oxide hematite-activated peroxymonosulfate system most effectively degraded the hydroxyl radical probe nitrobenzene. Reductants+nucleophiles were not generated in mineral-activated peroxymonosulfate systems. Use of the probe compound anisole in conjunction with scavengers demonstrated that both sulfate radical and hydroxyl radical are generated in mineral-activated peroxymonosulfate systems. In order to confirm the activation of peroxymonosulfate by subsurface minerals, one natural soil and associated two soil fractions were evaluated as peroxymonosulfate catalysts. The natural soil did not effectively promote the generation of oxidants; however, the soil organic matter was found to promote the generation of reductants + nucleophiles. The results of this research show that peroxymonosulfate has potential as an oxidant source for ISCO applications, and would be most effective in treating halogenated contaminants when soil organic matter is present in the subsurface. PMID:27209171

  5. Shallow Subsurface Structures of Volcanic Fissures

    NASA Astrophysics Data System (ADS)

    Parcheta, C. E.; Nash, J.; Mitchell, K. L.; Parness, A.

    2015-12-01

    Volcanic fissure vents are a difficult geologic feature to quantify. They are often too thin to document in detail with seismology or remote geophysical methods. Additionally, lava flows, lava drain back, or collapsed rampart blocks typically conceal a fissure's surface expression. For exposed fissures, quantifying the surface (let along sub0surface) geometric expression can become an overwhelming and time-consuming task given the non-uniform distribution of wall irregularities, drain back textures, and the larger scale sinuosity of the whole fissure system. We developed (and previously presented) VolcanoBot to acquire robust characteristic data of fissure geometries by going inside accessible fissures after an eruption ends and the fissure cools off to <50 C. Data from VolcanoBot documents the fissure conduit geometry with a near-IR structured light sensor, and reproduces the 3d structures to cm-scale accuracy. Here we present a comparison of shallow subsurface structures (<30 m depth) within the Mauna Ulu fissure system and their counterpart features at the vent-to-ground-surface interface. While we have not mapped enough length of the fissure to document sinuosity at depth, we see a self-similar pattern of irregularities on the fissure walls throughout the entire shallow subsurface, implying a fracture mechanical origin similar to faults. These irregularities are, on average, 1 m across and protrude 30 cm into the drained fissure. This is significantly larger than the 10% wall roughness addressed in the engineering literature on fluid dynamics, and implies that magma fluid dynamics during fissure eruptions are probably not as passive nor as simple as previously thought. In some locations, it is possible to match piercing points across the fissure walls, where the dike broke the wall rock in order to propagate upwards, yet in other locations there are erosional cavities, again, implying complex fluid dynamics in the shallow sub-surface during fissure eruptions.

  6. Subsurface ice as a microbial habitat

    NASA Astrophysics Data System (ADS)

    Mader, Heidy M.; Pettitt, Michala E.; Wadham, Jemma L.; Wolff, Eric W.; Parkes, R. John

    2006-03-01

    We determine the physicochemical habitat for microorganisms in subsurface terrestrial ice by quantitatively constraining the partitioning of bacteria and fluorescent beads (1 10 μm) between the solid ice crystals and the water-filled veins and boundaries around individual ice crystals. We demonstrate experimentally that the partitioning of spherical particles within subsurface ice depends strongly on size but is largely independent of source particle concentration. Although bacteria are shown consistently to partition to the veins, larger particles, which would include eukaryotic cells, become trapped in the crystals with little potential for continued metabolism. We also calculate the expected concentrations of soluble impurities in the veins for typical bulk concentrations found in natural ice. These calculations and scanning electron microscope observations demonstrate a concentrated chemical environment (3.5 M total ions at -10 °C) in the veins, where bacteria were found to reside, with a mixture of impurities that could sustain metabolism. Our calculations show that typical bacterial cells in glacial ice would fit within the narrow veins, which are a few micrometers across. These calculations are confirmed by microscopic images of spherical, 1.9-μm-diameter, fluorescent beads and stained bacteria in subsurface veins. Typical bacterial concentrations in clean ice (102 103 cells/mL) would result in concentrations of 106 108 cells/mL of vein fluid, but occupy only a small fraction of the total available vein volume (<0.2%). Hence, bacterial populations are not limited by vein volume, with the bulk of the vein being unoccupied and available to supply energy sources and nutrients.

  7. Noble gas fractionation during subsurface gas migration

    NASA Astrophysics Data System (ADS)

    Sathaye, Kiran J.; Larson, Toti E.; Hesse, Marc A.

    2016-09-01

    Environmental monitoring of shale gas production and geological carbon dioxide (CO2) storage requires identification of subsurface gas sources. Noble gases provide a powerful tool to distinguish different sources if the modifications of the gas composition during transport can be accounted for. Despite the recognition of compositional changes due to gas migration in the subsurface, the interpretation of geochemical data relies largely on zero-dimensional mixing and fractionation models. Here we present two-phase flow column experiments that demonstrate these changes. Water containing a dissolved noble gas is displaced by gas comprised of CO2 and argon. We observe a characteristic pattern of initial co-enrichment of noble gases from both phases in banks at the gas front, followed by a depletion of the dissolved noble gas. The enrichment of the co-injected noble gas is due to the dissolution of the more soluble major gas component, while the enrichment of the dissolved noble gas is due to stripping from the groundwater. These processes amount to chromatographic separations that occur during two-phase flow and can be predicted by the theory of gas injection. This theory provides a mechanistic basis for noble gas fractionation during gas migration and improves our ability to identify subsurface gas sources after post-genetic modification. Finally, we show that compositional changes due to two-phase flow can qualitatively explain the spatial compositional trends observed within the Bravo Dome natural CO2 reservoir and some regional compositional trends observed in drinking water wells overlying the Marcellus and Barnett shale regions. In both cases, only the migration of a gas with constant source composition is required, rather than multi-stage mixing and fractionation models previously proposed.

  8. Tree Distributions, Subsurface Characteristics and Nitrogen Cycling

    NASA Astrophysics Data System (ADS)

    Brunner, L.; Wallace, M. C.; Brush, G.

    2014-12-01

    This study examines the connection between vegetation and geologic, soil and hydrologic subsurface characteristics of a natural deciduous forest in Oregon Ridge Park, located in the Piedmont physiographic province in Maryland, USA. A preliminary study showed the relationship between nitrogen cycling and four different species occurring on a coarse grained schist and a fine grained schist. Mineralization values for Liriodendon tulipifera were positive on the coarser grained substrate and negative on the fine grained substrate. Nitrification values were positive on both substrates. Mineralization and nitrification values were both positive for Quercus prinus on both the coarse and fine substrates. Mineralization values for Acer rubrum were negative on the coarse substrate and positive on the finer substrate, while mineralization for Quercus rubra was negative on the coarse substrate and positive on the fine schist. Nitrification was positive for Q. rubra on the coarse schist and both positive and negative on the fine schist. Resistivity analyses were performed in collaboration with the Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) along two perpendicular transects at the study site. This analysis provides indirect information on subsurface conductivity, with low resistivity being interpreted as subsurface water or clay. One transect crossed a valley with a first-order stream in the center, while the second transect was taken along the break and slope of the hillslope. All trees were identified and diameter at breast height (DBH) measured in sixty-three randomly located plots along both transects. A principle components analysis of all tree data showed four associations of species. The plots were labelled as to association. The position of the associations along the transects show a relationship between wet, dry and mesic associations with differences in transect resistivity.

  9. Single cell genomics of subsurface microorganisms

    NASA Astrophysics Data System (ADS)

    Stepanauskas, R.; Onstott, T. C.; Lau, C.; Kieft, T. L.; Woyke, T.; Rinke, C.; Sczyrba, A.; van Heerden, E.

    2012-12-01

    Recent studies have revealed unexpected abundance and diversity of microorganisms in terrestrial and marine subsurface, providing new perspectives over their biogeochemical significance, evolution, and the limits of life. The now commonly used research tools, such as metagenomics and PCR-based gene surveys enabled cultivation-unbiased analysis of genes encoded by natural microbial communities. However, these methods seldom provide direct evidence for how the discovered genes are organized inside genomes and from which organisms do they come from. Here we evaluated the feasibility of an alternative, single cell genomics approach, in the analysis of subsurface microbial community composition, metabolic potential and microevolution at the Sanford Underground Research Facility (SURF), South Dakota, and the Witwaterstrand Basin, South Africa. We successfully recovered genomic DNA from individual microbial cells from multiple locations, including ultra-deep (down to 3,500 m) and low-biomass (down to 10^3 cells mL^-1) fracture water. The obtained single amplified genomes (SAGs) from SURF contained multiple representatives of the candidate divisions OP3, OP11, OD1 and uncharacterized archaea. By sequencing eight of these SAGs, we obtained the first genome content information for these phylum-level lineages that do not contain a single cultured representative. The Witwaterstrand samples were collected from deep fractures, biogeochemical dating of which suggests isolation from tens of thousands to tens of millions of years. Thus, these fractures may be viewed as "underground Galapagos", a natural, long-term experiment of microbial evolution within well-defined temporal and spatial boundaries. We are analyzing multiple SAGs from these environments, which will provide detailed information about adaptations to life in deep subsurface, mutation rates, selective pressures and gene flux within and across microbial populations.

  10. Iron monosulfide accumulation and pyrite formation in eutrophic estuarine sediments

    NASA Astrophysics Data System (ADS)

    Kraal, Peter; Burton, Edward D.; Bush, Richard T.

    2013-12-01

    This study investigates iron (Fe) and sulfur (S) cycling in sediments from the eutrophic Peel-Harvey Estuary in Western Australia, which is subject to localized accumulation of strongly reducing, organic- and sulfide-rich sediments. Sedimentary iron was mostly present in highly reactive form (on average 73% of total Fe) and showed extensive sulfidization even in surface sediments, despite being overlain by a well-mixed oxygenated water column. This indicates that, under eutrophic marine conditions, Fe sulfidization may be driven by reductive processes in the sediment without requiring oxygen depletion in the overlying waters. Strong enrichments in iron monosulfide (FeS > 300 μmol g-1) were observed in fine-grained sediment intervals up to 45 cm depth. This metastable Fe sulfide is commonly restricted to thin subsurface sediment intervals, below which pyrite (FeS2) dominates. Our findings suggest inhibition of the dissolution-precipitation processes that replace FeS with FeS2 in sediments. Rates of pyrite formation based on the FeS2 profiles were much lower than those predicted by applying commonly used kinetic equations for pyrite formation. Dissolved H2S was present at millimolar levels throughout the investigated sediment profiles. This may indicate that (i) pyrite formation via reaction between dissolved Fe (including Fe clusters) and H2S was limited by low availability of dissolved Fe or (ii) reaction kinetics of pyrite formation via the H2S pathway may be relatively slow in natural reducing sediments. We propose that rapid burial of the FeS under anoxic conditions in these organic-rich reducing sediments minimizes the potential for pyrite formation, possibly by preventing dissolution of FeS or by limiting the availability of oxidized sulfur species that are required for pyrite formation via the polysulfide pathway.

  11. Subsurface plankton layers in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Churnside, James H.; Marchbanks, Richard D.

    2015-06-01

    The first synoptic measurements of subsurface plankton layers were made in the western Arctic Ocean in July 2014 using airborne lidar. Layers were detected in open water and in pack ice where up to 90% of the surface was covered by ice. Layers under the ice were less prevalent, weaker, and shallower than those in open water. Layers were more prevalent in the Chukchi Sea than in the Beaufort Sea. Three quarters of the layers observed were thinner than 5 m. The presence of these layers, which are not adequately captured in satellite data, will influence primary productivity, secondary productivity, fisheries recruitment, and carbon export to the benthos.

  12. Initiative Addresses Subsurface Energy and Environment Problems

    NASA Astrophysics Data System (ADS)

    Bodvarsson, Gudmundur S.; Majer, Ernest L.; Wang, Joseph S. Y.; Colwell, Frederick; Redden, George

    2006-01-01

    Members of the geoscience community are cooperating in conceptualizing fundamental, crosscutting research to address major obstacles to solving energy and environmental problems related to the subsurface, through the SECUREarth initiative, which began in 2004. Addressing problems, such as reliable nuclear waste storage and safe carbon dioxide (CO2) sequestration, are critical to maintaining an economical and safe energy supply and clean environment. A recent workshop in Golden, Colo., helped to further the development of the SECUREarth (Scientific Energy/Environmental Crosscutting Underground Research for Urgent Solutions to Secure the Earth's Future) initiative by identifying the key scientific challenges in the geosciences, as well as to target possible approaches for overcoming roadblocks.

  13. Surface modification by subsurface pressure induced diffusion

    SciTech Connect