Science.gov

Sample records for 308-nm excimer lamp

  1. Favorable response of reticular erythematous mucinosis to ultraviolet B irradiation using a 308-nm excimer lamp.

    PubMed

    Miyoshi, Ken; Miyajima, Osamu; Yokogawa, Maki; Sano, Shigetoshi

    2010-02-01

    Abstract Reticular erythematous mucinosis (REM) is a rare chronic mucinosis. Histologically, the presence of mucin in the upper dermis is the most specific feature. A 73-year-old woman presented to our outpatient clinic with a 4-year history of netlike macular erythema with slight edema on her left arm. She was diagnosed as having REM on the basis of the clinical picture and histological findings. She was treated with ultraviolet B irradiation using the VTRAC Excimer Lamp system with favorable response. This is the first reported case that was treated with a 308-nm excimer lamp. PMID:20175851

  2. 308-nm excimer laser in endodontics

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  3. Applications of the 308-nm excimer laser in dermatology

    NASA Astrophysics Data System (ADS)

    Farkas, A.; Kemeny, L.

    2006-05-01

    Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.

  4. Application of XeCl308 nm excimer laser radiation to mutagenesis of industrial microorganisms

    NASA Astrophysics Data System (ADS)

    Alifano, P.; Lorusso, A.; Nassisi, V.; Talà, A.; Tredici, S. M.

    (UV) lamps are widely used in mutagenesis-selection protocols. Nevertheless, since the eighties, due to the development of excimer lasers, new frontiers in the study of UV applications have been opened. It has been established that the presence of an intact SOS response system is required for the mutagenic effect of UV254 nm. The exposure to UV254 nm radiation is not mutagenic for Escherichia coli mutants lacking the RecA protein, the regulator of the SOS response. We have recently demonstrated that at variance with the UV254 nm mutagenesis, the UV308 nm mutagenesis by XeCl308 nm excimer laser is RecA-independent. This suggests that the UV308 nm might be mutagenic also in microorganisms naturally lacking the SOS response. In this study, we have developed an innovative mutagenesis protocol based on a homemade XeCl308 nm excimer laser and have demonstrated its efficiency on mutagenesis of Nonomuraea American type culture collection 39727, an industrial strain producing an antibiotic, which is relatively refractory to UV254 nm radiation-induced mutagenesis.

  5. Electrical and chemical properties of XeCl*(308 nm) exciplex lamp created by a dielectric barrier discharge

    SciTech Connect

    Baadj, S.; Harrache, Z. Belasri, A.

    2013-12-15

    The aim of this work is to highlight, through numerical modeling, the chemical and the electrical characteristics of xenon chloride mixture in XeCl* (308 nm) excimer lamp created by a dielectric barrier discharge. A temporal model, based on the Xe/Cl{sub 2} mixture chemistry, the circuit and the Boltzmann equations, is constructed. The effects of operating voltage, Cl{sub 2} percentage in the Xe/Cl{sub 2} gas mixture, dielectric capacitance, as well as gas pressure on the 308-nm photon generation, under typical experimental operating conditions, have been investigated and discussed. The importance of charged and excited species, including the major electronic and ionic processes, is also demonstrated. The present calculations show clearly that the model predicts the optimal operating conditions and describes the electrical and chemical properties of the XeCl* exciplex lamp.

  6. Interaction of 308-nm excimer laser light with temporomandibular joint related structures

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim; Funk, Armin

    1994-02-01

    Arthroscopy of TMJ has become a clinically important and more and more accepted method for diagnosis and treatment of TMJ alteration. This minimal invasive method is clearly limited by the anatomical dimensions of the TMJ. A 308 nm excimer laserlight has already found clinical applications in angioplasty, ophthalmology, and dentistry. The aim of the presented study was to find out if it is possible to ablate TMJ related structures under arthroscopic conditions. It also aims to evaluate the energy-threshold for ablation and the maximal possible rate of ablation. Contrary to other laser systems it offers a unique combination of minimal tissue alteration, precise tissue ablation guidability through optical fibers, and a good transmission through water.

  7. Mechanism of injurious effect of excimer (308 nm) laser on the cell

    NASA Astrophysics Data System (ADS)

    Nevorotin, Alexey J.; Kallikorm, A. P.; Zeltzer, Gregory L.; Kull, Mart M.; Mihkelsoo, Virgo T.

    1991-06-01

    -operating infrared (Nd:YAG) and a 308 nm ultraviolet (XeCl) laser in rate liver hepatocytes. A conclusion has been made on the predominantly nonthermal injuries produced by the excimer as opposed to clearly thermal damage by the Nd:YAG. Besides, it was suggested that a kind of dynamic effect should prevail in the excimer action. In the present study we continue our line of investigation by extending a spectrum of experiments designed for better understanding the biological action of the excimer laser.

  8. Effect of 308-nm excimer laser light on peri-implantitis-associated bacteria: an in vitro investigation.

    PubMed

    Deppe, Herbert; Horch, Hans-Henning; Schrödl, Veit; Haczek, Cornelia; Miethke, Thomas

    2007-11-01

    Dental implants are becoming increasingly important in prosthodontic rehabilitation. Bacterial infections, however, can induce bone loss and jeopardize clinical success. Recent literature has demonstrated that infrared CO(2) laser light is suitable for the decontamination of exposed implant surfaces. The aim of the present study was to investigate the influence of 308-nm excimer laser irradiation on peri-implantitis-associated bacteria in vitro. In this study, a XeCl excimer laser (308 nm) was used (Summit Technology, Boston, USA). Both aerobe (Streptococcus mutans, S. sanguis, Actinomyces naeslundii) and anaerobe microorganisms (A. odontolyticus, Prevotella melaninogenica) were tested. According to previous studies, a constant energy of 0.8 J/cm(2) and a constant frequency of 20 Hz were used for all irradiations. Colony-forming units after laser irradiation were counted. Excimer laser irradiation showed significant influence on the growth of all microorganisms. As compared to S. mutans and S. sanguis, A. naeslundii demonstrated higher sensitivity to laser irradiation. Anaerobe microorganisms, in contrast, demonstrated that a total of 200 pulses were sufficient to reduce the replication of these germs for more than 99.9%. Excimer laser irradiation (lambda = 308 nm) can significantly reduce both aerobe and anaerobe microorganisms. Depending on the parameters chosen, 200 pulses are sufficient for sterilization. New studies are necessary to evaluate if this wavelength is more of value in the treatment of peri-implantitis than other wavelengths or conventional therapies.

  9. Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm

    NASA Astrophysics Data System (ADS)

    Beke, S.; Anjum, F.; Ceseracciu, L.; Romano, I.; Athanassiou, A.; Diaspro, A.; Brandi, F.

    2013-03-01

    High-resolution photocrosslinking of the biodegradable poly(propylene fumarate) (PPF) and diethyl fumarate (DEF), using pulsed laser light at 248 and 308 nm is presented. The curing depth can be modulated between a few hundreds of nm and a few μm when using 248 nm and ten to a hundred μm when using 308 nm. By adjusting the total fluence (pulse numbers×laser fluence) dose and the weight ratios of PPF, DEF, and the photoinitiator in the photocrosslinkable mixtures, the height of polymerized structures can be precisely tuned. The lateral resolution is evaluated by projecting a pattern of a grid with a specified line width and line spacing. Young’s modulus of the cured parts is measured and found to be several GPa for both wavelengths, high enough to support bone formation. Several 2D and 2.5D microstructures, as well as porous 3D scaffolds fabricated by a layer-by-layer method, are presented. The results demonstrate that excimer laser-based photocuring is suitable for the fabrication of stiff and biocompatible structures with defined patterns of micrometer resolution in all three spatial dimensions.

  10. Microhollow cathode discharge excimer lamps

    SciTech Connect

    Schoenbach, Karl H.; El-Habachi, Ahmed; Moselhy, Mohamed M.; Shi, Wenhui; Stark, Robert H.

    2000-05-01

    Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 {mu}m range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power to input electrical power), has for xenon and argon fluoride a maximum at {approx}400 Torr. The maximum efficiency is between 6% and 9% for xenon, and {approx}2% for argon fluoride. (c) 2000 American Institute of Physics.

  11. Microhollow cathode discharge excimer lamps

    NASA Astrophysics Data System (ADS)

    Schoenbach, Karl H.; El-Habachi, Ahmed; Moselhy, Mohamed M.; Shi, Wenhui; Stark, Robert H.

    2000-05-01

    Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 μm range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power to input electrical power), has for xenon and argon fluoride a maximum at ˜400 Torr. The maximum efficiency is between 6% and 9% for xenon, and ˜2% for argon fluoride.

  12. Microhollow Cathode Discharge Excimer Lamps

    NASA Astrophysics Data System (ADS)

    Schoenbach, K. H.

    1999-11-01

    character. Reducing the diameter of the cathode hole in a hollow cathode discharge geometry to values on the order of 100 μm has allowed us to extend the pressure range of stable, direct current hollow cathode gas discharges up to atmospheric pressure. The large concentration of high-energy electrons generated in the cathode fall, in combination with the high neutral gas density favors three-body processes such as excimer formation. Excimer emission in xenon discharges peaking at 172 nm, was observed with efficiencies between 6% and 9% at pressures of several hundred Torr. Typical forward voltages are 200 V at dc currents up to 8 mA. Pulsed operation allowed us to extend the current range to 80 mA with corresponding linear increase in optical power. Spatially resolved measurements showed that the source of the excimer radiation at atmospheric pressure and currents of less than 8 mA is confined to the cathode opening. The radiative emittance at 8 mA and atmospheric pressure is approximately 20 W/cm^2. With reduced pressure and increased current, respectively, the excimer source extends into the area outside the cathode hole. Besides in xenon, excimer emission in argon at a peak wavelength of 128 nm has been recorded. In addition to operating the discharge in rare gases, we have also explored its use as rare gas-halide excimer source. In a gas mixture containing 1% ArF we were able to generate stable dc discharges in flowing gas at pressures ranging from 100 Torr to atmospheric pressure. The spectra of the high-pressure ArF discharges are dominated by excimer radiation peaking at 193 nm. The excimer emission of a single ArF discharge at 700 Torr was measured as 150 mW at an efficiency of 3%. Parallel operation of these discharges by means of a resistive anode, which has recently been demonstrated for argon discharges, offers the possibility to use microhollow cathode discharge arrays as dc-excimer lamps, with estimated power densities exceeding 10 W/cm^2. abstract

  13. Microhollow Cathode Discharge Excimer Lamps

    NASA Astrophysics Data System (ADS)

    Schoenbach, Karl H.

    1999-10-01

    Reducing the diameter of the cathode hole in hollow cathode discharge geometry to values on the order of 100 μm has allowed us to extend the pressure range of stable, direct current hollow cathode discharges up to atmospheric pressure. The large concentration of high-energy electrons in the nonthermal discharge, in combination with the high neutral gas density favors three-body processes such as rare gas excimer formation. Excimer emission in argon and xenon discharges peaking at 130 nm and 172 nm, respectively, was observed with an efficiency for xenon excimer emission between 6% and 9% in a pressure range from 250 Torr and 450 Torr. Typical forward voltages are 200 V at dc currents of up to 8 mA. Pulsed operation allowed us to extend the current range in xenon discharges to 80 mA. At pressures in the hundreds of Torr range the source of the excimer radiation extends over an area of several times the cathode opening. With increasing pressure the source is reduced in size and eventually, at pressures exceeding atmospheric becomes confined to the cathode opening. For a specific pressure the radiative power increases linearly with current at constant radiant emittance. For atmospheric pressure discharges in xenon the radiative emittance is approximately 20 W/cm^2. In addition to operating the discharge in rare gases, we have also explored its use as rare gas-halide excimer source. In a gas mixture containing 1 % ArF we were able to generate stable dc discharges in flowing gas at pressures ranging from 100 Torr to atmospheric pressure. The spectra of the high-pressure ArF discharges are dominated by excimer radiation peaking at 193 nm. The excimer emission of an ArF discharge at 700 Torr was measured as 150 mW. With a discharge voltage of 500 V, and a current of 10 mA the efficiency is 3 %. Parallel operation of the micro-discharges by means of a resistive anode offers the possibility to use microhollow cathode discharge arrays as dc-excimer lamps, with estimated

  14. Intraocular microablation of choroidal tissue by a 308 nm AIDA excimer laser for RPE-transplantation in patients with age-related macular degeneration.

    PubMed

    Holz, F G; Bindewald, A; Schutt, F; Specht, H

    2003-04-01

    Age-related macular degeneration (AMD) is the leading cause of legal blindness in the western nations beyond 50 years of age. The most frequent cause for severe visual loss is the growth of neovascular membrances from the choroid into the subretinal space. This usually results in irreversible degeneration of the overlying retina. Surgical removal of the membrane is feasible, however, usually results in functional loss of apposing retinal photoreceptors since retinal pigment epithelial (RPE) cells are removed concurrently due to their tight adherence to the neovascular complex. Therefore, various attempts have been undertaken to fill the resulting RPE cell defect with either heterologous or autologous RPE cell transplants. So far cell survival, function and subsequent visual function has been disappointing. To minimize trauma and resulting dedifferentiation harvesting in the eye and transplantation in whole sheets and without temporary removal from the eyes would be desirable. This may be achieved by isolating grafts consisting of choroid, Bruch's membrance and RPE cells from the peripheral retina and transplantation of this graft under the neurosensory retina after removal of the choroidal neovascularization. However, the choroidal component of such a graft would be expected to interfere with diffusion of metabolites to and from the retina. Therefore, outcome would be expected to be better if the choroidal tissue would be removed before translocation. In preclinical experiments we used a 308 nm UV AIDA excimer laser to microablate choroidal tissue from such a graft in human donor eyes. PMID:12749285

  15. Absorption by XeCl* excimer molecules of their own emission of the B-X transition (λ = 308 nm) in a dense Ar-Xe-CCl4 medium upon pumping by fast electrons and uranium-235 fission fragments

    NASA Astrophysics Data System (ADS)

    Mis'kevich, A. I.; Dyuzhov, Yu. A.; Suvorov, A. A.

    2016-08-01

    Luminescence of dense Ar-Xe-CCl4 gas mixtures with a low CCl4 content upon pumping by fast electrons and uranium-235 fission fragments is studied by spectroscopic methods. It is found that, in a cell with a resonator tuned to the B-X transition of the XeCl* molecule (λ = 308 nm), the D-state population of the XeCl* excimer molecule (the D-X transition, λ = 235 nm) depends on the B-state population and increases by many times with increasing B-state population of the XeCl* molecule. The stimulated absorption coefficient k = 1.2 × 10-16 of B-X transition emission of the XeCl* molecule (λmax = 308 nm), which leads to population of the D-state of this molecule, and the coefficient of amplification μ = 2.5 × 10-4 cm-1 of B-X transition emission of the Xe Cl* molecule (λ = 308 nm) are measured upon pumping by uranium- 235 fission fragments with the specific energy input into the gas medium of ~60 mJ/cm3 and a specific power of energy input of about 240 W/cm3.

  16. High efficiency fluorescent excimer lamps: An alternative to mercury based UVC lamps

    SciTech Connect

    Masoud, N. M.; Murnick, D. E.

    2013-12-15

    A high efficiency xenon excimer lamp radiating at 172 nm, with an internal phosphor coating shifting to UVC has been demonstrated, showing the feasibility of a cost effective alternative to UVC mercury lamps. Fluorescent lamps so designed can be fabricated in various geometries with high efficiency. Unlike other xenon excimer lamps based on dielectric barrier discharges this new system is highly compatible with existing and proposed phosphors as it operates in an inert gas environment at modest temperature and is subject only to 172 nm primary radiation. Using a lamp coated with a UVC phosphor we have demonstrated the feasibility of germicidal and curing lamps with 40% energy conversion efficiency and high power density. These lamps are rapidly switchable, have long projected lifetimes and are compatible with dimmers.

  17. High efficiency fluorescent excimer lamps: an alternative to mercury based UVC lamps.

    PubMed

    Masoud, N M; Murnick, D E

    2013-12-01

    A high efficiency xenon excimer lamp radiating at 172 nm, with an internal phosphor coating shifting to UVC has been demonstrated, showing the feasibility of a cost effective alternative to UVC mercury lamps. Fluorescent lamps so designed can be fabricated in various geometries with high efficiency. Unlike other xenon excimer lamps based on dielectric barrier discharges this new system is highly compatible with existing and proposed phosphors as it operates in an inert gas environment at modest temperature and is subject only to 172 nm primary radiation. Using a lamp coated with a UVC phosphor we have demonstrated the feasibility of germicidal and curing lamps with 40% energy conversion efficiency and high power density. These lamps are rapidly switchable, have long projected lifetimes and are compatible with dimmers.

  18. Excimer UV lamp irradiation induced grafting on synthetic polymers

    NASA Astrophysics Data System (ADS)

    Praschak, D.; Bahners, T.; Schollmeyer, E.

    Surface modifications on polyethyleneterephthalate (PET) films following excimer UV lamp irradiation induced grafting were studied. Characteristics of the modifications depending on the conditions during the irradiation were analysed using contact-angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). Depending on the conditions during the irradiation different surface modifications were obtained, which can generally be classified regarding the hydrophilic or hydrophobic characteristics of the resulting surface. It is shown that not every substance that meets the general demands will be grafted on synthetic polymers using excimer UV radiation. Examples of agents that can simply be grafted onto polymer surfaces and those that undergo further crosslinking, building up thin films are listed. Agents used for grafting on polymers are 1,5-hexadiene, perfluoro-4-methyl-pent-2-ene, polyethyleneglycol 200, monosilane and polyethylene. The transferability of the effects achieved to substrates such as polyparaphenylene terephthalamide or polymetaphenylene isophthalamide is shown.

  19. Development and performance of a fluence rate distribution model for a cylindrical excimer lamp.

    PubMed

    Naunovic, Zorana; Pennell, Kelly G; Blatchley, Ernest R

    2008-03-01

    Ultraviolet disinfection systems employing excimer lamp technology represent a suitable choice in situations where lamp mercury content is restricted, or otherwise undesirable. The XeBr* excimer lamp emits nearly monochromatic radiation at 282 nm, and dose-response experiments with Bacillus subtilis spores have shown that it is germicidally effective. A numerical model was developed to describe the fluence rate (E') distribution emanating from a cylindrical XeBr* excimer lamp, based on liquid water or air as the surrounding medium. The E' distribution model is based on physical phenomena that are known to govern excimer lamps; the model also accounts for refraction, reflection, and absorbance effects of the quartz lamp envelope and the media surrounding the lamp. Measurements of the E' distribution by local actinometry supported the validity of the numerical model. This model can be used as a component (submodel) of a more general model to simulate the behavior of photochemical reactors that employ excimer lamps as their source of electromagnetic radiation.

  20. Selective irradiation of radicals for biomedical treatment using vacuum ultraviolet light from an excimer lamp

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Tokumitsu, Yusuke; Zen, Shungo; Yonemori, Seiya

    2014-10-01

    In plasma medicine, radicals are considered to play important roles. However, the medical effect of each radical, such as OH and O, is unknown. To examine the effect of each radical, selective production of radicals is needed. We developed selective production of radicals for biomedical treatment using a vacuum ultraviolet (VUV) light emitted from an excimer lamp. Selective irradiation of OH radicals can be achieved by irradiating the 172-nm VUV light from a Xe2 excimer lamp to a humid helium flow in a quartz tube. The water molecules are strongly photodissociated by the VUV light to produce OH radicals. A photochemical simulation for the selective OH production is developed to calculate the OH density. The calculated OH density is compared with OH density measured using laser-induced fluorescence (LIF). Selective production of other radicals than OH is also discussed.

  1. The excimer lamp induces cutaneous nerve degeneration and reduces scratching in a dry-skin mouse model.

    PubMed

    Kamo, Atsuko; Tominaga, Mitsutoshi; Kamata, Yayoi; Kaneda, Kazuyuki; Ko, Kyi C; Matsuda, Hironori; Kimura, Utako; Ogawa, Hideoki; Takamori, Kenji

    2014-12-01

    Epidermal hyperinnervation, which is thought to underlie intractable pruritus, has been observed in patients with atopic dermatitis (AD). The epidermal expression of axonal guidance molecules has been reported to regulate epidermal hyperinnervation. Previously, we showed that the excimer lamp has antihyperinnervative effects in nonpruritic dry-skin model mice, although epidermal expression of axonal guidance molecules was unchanged. Therefore, we investigated the antipruritic effects of excimer lamp irradiation and its mechanism of action. A single irradiation of AD model mice significantly inhibited itch-related behavior 1 day later, following improvement in the dermatitis score. In addition, irradiation of nerve fibers formed by cultured dorsal root ganglion neurons increased bleb formation and decreased nerve fiber expression of nicotinamide mononucleotide adenylyl transferase 2, suggesting degenerative changes in these fibers. We also analyzed whether attaching a cutoff excimer filter (COF) to the lamp, thus decreasing cytotoxic wavelengths, altered hyperinnervation and the production of cyclobutane pyrimidine dimer (CPD), a DNA damage marker, in dry-skin model mice. Irradiation with COF decreased CPD production in keratinocytes, as well as having an antihyperinnervative effect, indicating that the antipruritic effects of excimer lamp irradiation with COF are due to induction of epidermal nerve degeneration and reduced DNA damage. PMID:24940652

  2. The excimer lamp induces cutaneous nerve degeneration and reduces scratching in a dry-skin mouse model.

    PubMed

    Kamo, Atsuko; Tominaga, Mitsutoshi; Kamata, Yayoi; Kaneda, Kazuyuki; Ko, Kyi C; Matsuda, Hironori; Kimura, Utako; Ogawa, Hideoki; Takamori, Kenji

    2014-12-01

    Epidermal hyperinnervation, which is thought to underlie intractable pruritus, has been observed in patients with atopic dermatitis (AD). The epidermal expression of axonal guidance molecules has been reported to regulate epidermal hyperinnervation. Previously, we showed that the excimer lamp has antihyperinnervative effects in nonpruritic dry-skin model mice, although epidermal expression of axonal guidance molecules was unchanged. Therefore, we investigated the antipruritic effects of excimer lamp irradiation and its mechanism of action. A single irradiation of AD model mice significantly inhibited itch-related behavior 1 day later, following improvement in the dermatitis score. In addition, irradiation of nerve fibers formed by cultured dorsal root ganglion neurons increased bleb formation and decreased nerve fiber expression of nicotinamide mononucleotide adenylyl transferase 2, suggesting degenerative changes in these fibers. We also analyzed whether attaching a cutoff excimer filter (COF) to the lamp, thus decreasing cytotoxic wavelengths, altered hyperinnervation and the production of cyclobutane pyrimidine dimer (CPD), a DNA damage marker, in dry-skin model mice. Irradiation with COF decreased CPD production in keratinocytes, as well as having an antihyperinnervative effect, indicating that the antipruritic effects of excimer lamp irradiation with COF are due to induction of epidermal nerve degeneration and reduced DNA damage.

  3. Microhollow Cathode Discharge Excimer Sources

    NASA Astrophysics Data System (ADS)

    Moselhy, M.; El-Habachi, A.; Shi, W.; Stark, R. H.; Schoenbach, K. H.

    2000-10-01

    Microhollow cathode discharges (MHCDs) are direct current, high-pressure, non-equilibrium gas discharges. When operated in Ar, Xe, ArF and XeCl, these discharges were found to be intense sources of excimer radiation at 130, 172, 193, 308 nm, respectively. Internal conversion efficiencies (from input electrical power to output optical power) of 1% (Ar), 8% (Xe), 2% (ArF) and 3% (XeCl) were achieved [1,2,3]. The spatial distribution of the xenon excimer source was studied by means of an ICCD-MAX intensified CCD camera. The measurements showed that the source expands with current and becomes reduced in size with pressure. The maximum radiant emittance (radiant power per source area) was measured as 2 W/cm^2 at atmospheric pressure and a discharge current of 3 mA. The peak irradiance (radiant power per target area) for a single discharge was calculated to be 3 mW/cm^2 at a distance of 1 cm from the source. Operating multiple discharges in parallel allows us to generate flat panel excimer lamps with an irradiance approaching the value of the radiant emittance (2 W/cm^2). In order to increase the irradiance further MHCDs could be operated in series. First experiments with two discharges in series have shown that the radiant emittance increases linearly with the number of discharges [3]. Besides using systems of MHCDs as lamps, efforts to utilize “stacked discharges” as excimer laser medium are underway. This work is supported by NSF and DARPA. 1. Ahmed El-Habachi and Karl H. Schoenbach, Appl. Phys. Lett. 73, 885 (1998). 2. Wenhui Shi, Ahmed El-Habachi, and Karl H. Schoenbach, Bull. Am. Phys. Soc. 44, 25 (1999). 3. Ahmed El-Habachi et. al., “Series Operation of Direct Current Xenon Chloride Excimer Sources”, to appear in J. Appl. Phys.

  4. Electrical and kinetical aspects of homogeneous dielectric-barrier discharge in xenon for excimer lamps

    SciTech Connect

    Belasri, A.; Harrache, Z.

    2010-12-15

    A pulsed dielectric-barrier discharge in xenon has been simulated for operating conditions typical to excimer lamps, in which the discharge is considered spatially homogeneous. The computer model developed is based on the xenon plasma chemistry, the circuit, and the Boltzmann equations. First, the validity of the physical model was checked and compared to experimental and theoretical works, and then the model is applied in the case of a sinusoidal voltage at period frequencies in the range of 50 kHz-2 MHz. The results obtained with the present description are in good agreement with experimental measurements and one-dimensional fluid prediction in terms of electrical characteristics and vacuum ultraviolet (vuv) emission. The effect of operation voltage, power source frequency, dielectric capacitance, as well as gas pressure on the discharge efficiency and the 172, 150, and 147 nm photon generation, under the typical experimental operating conditions and for the case of a sinusoidal applied voltage, have been investigated and discussed. Calculations suggest that the overall conversion efficiency from electrical energy to vuv emission in the lamp is greater than 38%, and it will be very affected at high power source frequency and high gas pressure with a significant dependence on the dielectric capacitance.

  5. UV treatment of microorganisms on artificially-contaminated surfaces using excimer and microwave UV lamps.

    PubMed

    Christofi, N; Misakyan, M A; Matafonova, G G; Barkhudarov, E M; Batoev, V B; Kossyi, I A; Sharp, J

    2008-10-01

    An XeBr excilamp having a peak emission at 283 nm, and microwave UV lamps with peak emissions at 253.7 nm that also generate ozone, have been tested for ability to eradicate high populations of microbial vegetative cells and spores (of bacteria and fungi) artificially added to filter surfaces. The study examined the energy required to completely eradicate large populations on filter surfaces. It was found that both the excilamp and microwave UV lamps were effective at killing large populations on surfaces with killing efficiency dependant on the type of organism, and, whether present in its vegetative or spore forms. The main killing factor is UV radiation following short treatment times. It is considered that for longer irradiation periods that are required to facilitate complete destruction of surface microorganisms, ozone and other oxidising species produced by microwave UV lamps would act to enhance microbial destruction.

  6. Nanobumps on silicon created with polystyrene spheres and 248 or 308 nm laser pulses

    SciTech Connect

    Piparia, Reema; Rothe, Erhard W.; Baird, R. J.

    2006-11-27

    Huang et al. [Appl. Phys. Lett. 86, 161911 (2005)] formed arrays of nanobumps on a silicon substrate. They applied a 248 nm laser pulse to a surface monolayer of 1-{mu}m-diameter polystyrene spheres. The authors first replicated their experiment with 248 nm light. But when 308 nm pulses were applied instead, the nanobumps had a different shape and composition. At 248 nm, much of the laser light is absorbed in the polystyrene, which serves to quickly distort, melt, and ablate the sphere. At 308 nm, very little light is absorbed. The nanobumps from 248 nm radiation are organic polymers, while those formed with 308 nm pulses are silicon based.

  7. Study of the first pulse of Ne-Xe-HCl dielectric barrier discharge for the excimer lamp

    SciTech Connect

    Belasri, A.; Bendella, S.; Baba-Hamed, T.

    2008-05-15

    A global one-dimensional model of a dielectric barrier discharge which includes the sheath region and the positive column was developed. The model was used to study the electrical properties under operating conditions of the vacuum ultraviolet excimer lamp and to understand the basic processes of plasma kinetics. A 0.5 cm interelectrode gap distance is filled with a Ne-Xe-HCl mixture. Time variations of the charged particles and excited species in the positive column were described. Then the one-dimensional model was used in the cathode region to illustrate (i) the spatio-temporal behavior of electronic and ionic densities and the electric field, and (ii) the time variation of the voltage, the current, and secondary currents due to ion and photon ({lambda}=172 nm) impact on the cathode. It shows a good resolution inside the sheath at high pressure and it correctly predicts the waveform of the discharge behavior. The obtained results have been discussed and analyzed.

  8. Improving vacuum-UV (VUV) photolysis of organic compounds in water with a phosphor converted xenon excimer lamp emitting at 193 nm.

    PubMed

    Schulze-Hennings, U; Pötschke, L; Wietor, C; Bringmann, S; Braun, N; Hayashi, D; Linnemann, V; Pinnekamp, J

    2016-01-01

    A novel vacuum ultraviolet excimer lamp emitting light at 193 nm was used to investigate the degradation of organic micropollutants in ultrapure water and wastewater treatment plant (WWTP) effluent. Overall, light at 193 nm proved to be efficient to degrade the investigated micropollutants (diclofenac, diatrizoic acid, sulfamethoxazole). Experiments with WWTP effluent proved the ability of radiation at 193 nm to degrade micropollutants which are hardly removed with commonly used oxidation technologies like ozonation (diatrizoic acid, ethylenediaminetetraacetic acid, perfluorooctanoic acid, and perfluorooctanesulfonic acid). PMID:27533863

  9. Engineering of a highly efficient Xe₂*-excilamp (xenon excimer lamp, λmax=172 nm, η=40%) and qualitative comparison to a low-pressure mercury lamp (LP-Hg, λ=185/254 nm) for water purification.

    PubMed

    Al-Gharabli, Samer; Engeßer, Patrick; Gera, Diana; Klein, Sandra; Oppenländer, Thomas

    2016-02-01

    Excilamps are mercury-free gas-discharge sources of non-coherent VUV or UV radiation with high radiant power and a long lifetime. The most efficient excilamp that is currently available on the market is a VUV xenon excilamp system (Xe2(*)-excimer lamp, λ(max) = 172 nm) with a stated radiant efficiency η of 40% at an electrical input power P(el) of 20 W, 50 W or 100 W. In this paper, the use of this highly efficient Xe2(*)-excilamp (P(el) = 20 W) for water treatment is demonstrated using a recirculating laboratory photoreactor system with negative radiation geometry. The efficiency in the 172 nm initiated bleaching of aqueous solutions of Rhodamine B is compared to that initiated by a common low-pressure mercury (LP-Hg) lamp (185 nm, TNN 15/32). The dependence of the pseudo zero order rate constant k´ of decolorization of RhB on the flow rate and on the initial concentration of RhB was investigated. Both lamps exhibited dependences of k´ on the initial concentration of RhB, which represents a typical saturation kinetical behavior. The saturation kinetics was very prominent in the case of the Xe2(*)-excilamp. Also, the Xe2(*)-excilamp treatment exhibited a significant influence on the flow rate of the RhB aqueous solution, which was not the case during the LP-Hg lamp initiated bleaching of RhB. The results of this paper demonstrate that Xe2(*)-excilamps can be used for VUV-initiated water purification. However, to reach the maximum efficacy of the Xe2(*)-excilamp for photo-initiated water purification further engineering optimization of the photoreactor concept is necessary. PMID:26414741

  10. Engineering of a highly efficient Xe₂*-excilamp (xenon excimer lamp, λmax=172 nm, η=40%) and qualitative comparison to a low-pressure mercury lamp (LP-Hg, λ=185/254 nm) for water purification.

    PubMed

    Al-Gharabli, Samer; Engeßer, Patrick; Gera, Diana; Klein, Sandra; Oppenländer, Thomas

    2016-02-01

    Excilamps are mercury-free gas-discharge sources of non-coherent VUV or UV radiation with high radiant power and a long lifetime. The most efficient excilamp that is currently available on the market is a VUV xenon excilamp system (Xe2(*)-excimer lamp, λ(max) = 172 nm) with a stated radiant efficiency η of 40% at an electrical input power P(el) of 20 W, 50 W or 100 W. In this paper, the use of this highly efficient Xe2(*)-excilamp (P(el) = 20 W) for water treatment is demonstrated using a recirculating laboratory photoreactor system with negative radiation geometry. The efficiency in the 172 nm initiated bleaching of aqueous solutions of Rhodamine B is compared to that initiated by a common low-pressure mercury (LP-Hg) lamp (185 nm, TNN 15/32). The dependence of the pseudo zero order rate constant k´ of decolorization of RhB on the flow rate and on the initial concentration of RhB was investigated. Both lamps exhibited dependences of k´ on the initial concentration of RhB, which represents a typical saturation kinetical behavior. The saturation kinetics was very prominent in the case of the Xe2(*)-excilamp. Also, the Xe2(*)-excilamp treatment exhibited a significant influence on the flow rate of the RhB aqueous solution, which was not the case during the LP-Hg lamp initiated bleaching of RhB. The results of this paper demonstrate that Xe2(*)-excilamps can be used for VUV-initiated water purification. However, to reach the maximum efficacy of the Xe2(*)-excilamp for photo-initiated water purification further engineering optimization of the photoreactor concept is necessary.

  11. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.

    1976-01-01

    A theoretical and experimental investigation into the possibility of achieving CW discharge pumped excimer laser oscillation is reported. Detailed theoretical modeling of capillary discharge pumping of the XeF and KXe and K2 excimer systems was carried out which predicted the required discharge parameters for reaching laser threshold on these systems. Capillary discharge pumping of the XeF excimer system was investigated experimentally. The experiments revealed a lower excimer level population density than predicted theoretically by about an order of magnitude. The experiments also revealed a fluorine consumption problem in the discharge in agreement with theory.

  12. Series operation of direct current xenon chloride excimer sources

    NASA Astrophysics Data System (ADS)

    El-Habachi, Ahmed; Shi, Wenhui; Moselhy, Mohamed; Stark, Robert H.; Schoenbach, Karl H.

    2000-09-01

    Stable, direct current microhollow cathode discharges in mixtures of hydrochloric acid, hydrogen, xenon, and neon have been generated in a pressure range of 200-1150 Torr. The cathode hole diameter was 250 μm. Sustaining voltages range from 180 to 250 V at current levels of up to 5 mA. The discharges are strong sources of xenon chloride excimer emission at a wavelength of 308 nm. Internal efficiencies of approximately 3% have been reached at a pressure of 1050 Torr. The spectral radiant power at this pressure was measured as 5 mW/nm at 308 nm for a 3 mA discharge. By using a sandwich electrode configuration, consisting of five perforated, alternate layers of metal and dielectric, a tandem discharge—two discharges in series—could be generated. For an anode-cathode-anode configuration the excimer irradiance, recorded on the axis of the discharge, was twice as large as that of a single discharge. The extension of this basic tandem electrode structure to a multiple electrode configuration allows the generation of high irradiance excimer sources. Placing such a structure with a string of microhollow cathode discharge into an optical resonator promises to lead to a direct current microexcimer laser.

  13. Excimer laser: a module of the alopecia areata common protocol.

    PubMed

    McMichael, Amy J

    2013-12-01

    Alopecia areata (AA) is an autoimmune condition characterized by T cell-mediated attack of the hair follicle. The inciting antigenic stimulus is unknown. A dense perbulbar lymphocytic infiltrate and reproducible immunologic abnormalities are hallmark features of the condition. The cellular infiltrate primarily consists of activated T lymphocytes and antigen-presenting Langerhans cells. The xenon chloride excimer laser emits its total energy at the wavelength of 308 nm and therefore is regarded as a "super-narrowband" UVB light source. Excimer laser treatment is highly effective in psoriasis, another T cell-mediated disorder that shares many immunologic features with AA. The excimer laser is superior in inducing T cell apoptosis in vitro compared with narrowband UVB, with paralleled improved clinical efficacy. The excimer laser has been used successfully in patients with AA. In this context, evaluation of the potential benefit of 308-nm excimer laser therapy in the treatment of AA is clinically warranted. Herein, the use of a common treatment protocol with a specifically designed module to study the outcome of excimer laser treatment on moderate-to-severe scalp AA in adults is described.

  14. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.

    1977-01-01

    The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.

  15. Percutaneous angioscopy after excimer laser angioplasty

    NASA Astrophysics Data System (ADS)

    Nakamura, Fumitaka; Kvasnicka, Jan; Geschwind, Herbert J.; Uchida, Yasumi

    1992-08-01

    Angioscopy has proved to provide more detailed information on lesion morphology before and after interventional procedures than angiography. Therefore, to evaluate the effects of laser angioplasty, angioscopy was performed in five patients with peripheral or coronary vascular disease who underwent excimer laser angioplasty. The excimer laser was operated at 308 nm, 135 nsec, 25 Hz, and 40 - 60 mJ/mm2 and was coupled into multifiber wire-guided catheters of 1.4 to 2.0 mm diameter for coronary lesions and 2.2 mm for peripheral lesions. There were three coronary (one left anterior descending, one circumflex, one right coronary artery) and two peripheral (one common iliac artery, one superficial femoral artery) lesions. Angioscopy was successfully performed before and after laser ablation without any complications in all five lesions. The characteristics of angioscopic findings after excimer laser angioplasty consisted of flaps, fractures of plaques, and abundant tissue remnants. There was no apparent thermal injury. Recanalized channels were small and irregular. These results indicate that (1) angioscopy is effective and safe for evaluation of lesion morphology after laser angioplasty, (2) laser ablation does not result in thermal injury, and (3) irregular channels after recanalization and abundant tissue remnants may explain the suboptimal results after laser angioplasty.

  16. Gas-phase photodissociation of CH{sub 3}COCN at 308 nm by time-resolved Fourier-transform infrared emission spectroscopy

    SciTech Connect

    Yeh, Yu-Ying; Chao, Meng-Hsuan; Tsai, Po-Yu; Chang, Yuan-Bin; Tsai, Ming-Tsang; Lin, King-Chuen

    2012-01-28

    By using time-resolved Fourier-transform infrared emission spectroscopy, the fragments of HCN(v= 1, 2) and CO(v= 1-3) are detected in one-photon dissociation of acetyl cyanide (CH{sub 3}COCN) at 308 nm. The S{sub 1}(A'), {sup 1}(n{sub O}, {pi}*{sub CO}) state at 308 nm has a radiative lifetime of 0.46 {+-} 0.01 {mu}s, long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of Ar collision-induced internal conversion is estimated to be (1-7) x 10{sup -12} cm{sup 3} molecule{sup -1} s{sup -1}. The measurements of O{sub 2} dependence exclude the production possibility of these fragments via intersystem crossing. The high-resolution spectra of HCN and CO are analyzed to determine the ro-vibrational energy deposition of 81 {+-} 7 and 32 {+-} 3 kJ/mol, respectively. With the aid of ab initio calculations, a two-body dissociation on the energetic ground state is favored leading to HCN + CH{sub 2}CO, in which the CH{sub 2}CO moiety may further undergo secondary dissociation to release CO. The production of CO{sub 2} in the reaction with O{sub 2} confirms existence of CH{sub 2} and a secondary reaction product of CO. The HNC fragment is identified but cannot be assigned, as restricted to a poor signal-to-noise ratio. Because of insufficient excitation energy at 308 nm, the CN and CH{sub 3} fragments that dominate the dissociation products at 193 nm are not detected.

  17. Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp

    SciTech Connect

    Avtaeva, S. V.; Sosnin, E. A.; Saghi, B.; Panarin, V. A.; Rahmani, B.

    2013-09-15

    The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl{sub 2} mixtures at pressures of 240–250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl{sub 2} concentrations in the range of 0.01–1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl{sub 2} concentrations in the range of 0.1–5%. It is found that the radiation intensities of the emission bands of Xe*{sub 2}(172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in the mixture is in the range of 0.01–0.1%. In this case, in the mixture, the radiation intensity of the Xe*{sub 2} molecule rapidly decreases with increasing Cl{sub 2} concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4–0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl{sub 2} mixtures is studied numerically. It is shown that an increase in the Cl{sub 2} concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl{sub 2} molecules and ionization of Xe atoms and Cl{sub 2} molecules

  18. Excimer emission from cathode boundary layer discharges

    NASA Astrophysics Data System (ADS)

    Moselhy, Mohamed; Schoenbach, Karl H.

    2004-02-01

    The excimer emission from direct current glow discharges between a planar cathode and a ring-shaped anode of 0.75 and 1.5 mm diameter, respectively, separated by a gap of 250 μm, was studied in xenon and argon in a pressure range from 75 to 760 Torr. The thickness of the "cathode boundary layer" plasma, in the 100 μm range, and a discharge sustaining voltage of approximately 200 V, indicates that the discharge is restricted to the cathode fall and the negative glow. The radiant excimer emittance at 172 nm increases with pressure and reaches a value of 4 W/cm2 for atmospheric pressure operation in xenon. The maximum internal efficiency, however, decreases with pressure having highest values of 5% for 75 Torr operation. When the discharge current is reduced below a critical value, the discharge in xenon changes from an abnormal glow into a mode showing self-organization of the plasma. Also, the excimer spectrum changes from one with about equal contributions from the first and second continuum to one that is dominated by the second continuum emission. The xenon excimer emission intensity peaks at this discharge mode transition. In the case of argon, self-organization of the plasma was not seen, but the emission of the excimer radiation (128 nm) again shows a maximum at the transition from abnormal to normal glow. As was observed with xenon, the radiant emittance of argon increases with pressure, and the efficiency decreases. The maximum radiant emittance is 1.6 W/cm2 for argon at 600 Torr. The maximum internal efficiency is 2.5% at 200 Torr. The positive slope of the current-voltage characteristics at maximum excimer emission in both cases indicates the possibility of generating intense, large area, flat excimer lamps.

  19. Excimer Laser Angioplasty: Initial Clinical Results With A Percutaneous Transluminal Procedure In Total Peripheral Artery Occlusion

    NASA Astrophysics Data System (ADS)

    Wollenek, Gregor; Laufer, Guenter; Hohla, Kristian L.; Grabenwoeger, Florian; Klepetko, Walter

    1989-04-01

    Laser energy has the potential to recanalize obstructive atherosclerotic vessels as an alternative or an adjunct to either bypass surgery or balloon angioplasty. But conventional lasers cause thermal side effects which may lead to extensive damage to neighboring layers. In contrast, excimer laser irradiation in the far ultraviolet range has proved to minimize or avoid these injuries to vessel walls. To evaluate the clinical feasibility of excimer laser angioplasty (ELA), we have performed basic investigations including histologic examination by light microscopy, scanning and electron microscopy, and temperature measurements, and later on in vivo animal trials. Using 308 nm irradiation (XeCl) we have treated the first patient ever to undergo ELA, and the procedure was successful: after recanalization of a total occlusion of a superficial femoral artery, dilatation resulted in sufficient blood supply to the periphery.

  20. Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds.

    PubMed

    Beke, S; Anjum, F; Tsushima, H; Ceseracciu, L; Chieregatti, E; Diaspro, A; Athanassiou, A; Brandi, F

    2012-11-01

    We demonstrate high-resolution photocross-linking of biodegradable poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) using UV excimer laser photocuring at 308 nm. The curing depth can be tuned in a micrometre range by adjusting the total energy dose (total fluence). Young's moduli of the scaffolds are found to be a few gigapascal, high enough to support bone formation. The results presented here demonstrate that the proposed technique is an excellent tool for the fabrication of stiff and biocompatible structures on a micrometre scale with defined patterns of high resolution in all three spatial dimensions. Using UV laser photocuring at 308 nm will significantly improve the speed of rapid prototyping of biocompatible and biodegradable polymer scaffolds and enables its production in a few seconds, providing high lateral and horizontal resolution. This short timescale is indeed a tremendous asset that will enable a more efficient translation of technology to clinical applications. Preliminary cell tests proved that PPF : DEF scaffolds produced by excimer laser photocuring are biocompatible and, therefore, are promising candidates to be applied in tissue engineering and regenerative medicine.

  1. Formation of amorphous Ti alloy layers by excimer laser mixing of Ti on AISI 304 stainless-steel surfaces

    NASA Astrophysics Data System (ADS)

    Jervis, T. R.; Nastasi, M.; Zocco, T. G.; Martin, J. A.

    1988-07-01

    We used excimer laser radiation at 308 nm to mix thin layers of Ti into AISI 304 stainless steel. Different numbers of shots at a fluence about twice the threshold for melting varied the amount of mixing. When mixing is sufficiently complete, an amorphous surface layer is formed with Ti substituting for Fe on a one-to-one basis in the alloy. The laser mixing process, unlike Ti ion implantation, does not result in high incorporation of C in the processed layer, although some C from surface and interface contamination is incorporated into the surface layer.

  2. NaCd excimer emission bands

    NASA Astrophysics Data System (ADS)

    Pichler, G.; Veža, D.; Fijan, D.

    1988-06-01

    The analysis of the visible spectrum of a high pressure sodium lamp filled with sodium, cadium and xenon revealed the existence of NaCd excimer spectral features. These are four red satellite bands at 691, 697, 709 and 726.5 nm and diffuse bands peaking at 479.1 and 484.3 nm. Both spectral phenomena are related to those found earlier for the NaHg system. An interpretation of the red satellite bands origin is given in terms of a qualitative model for the four lowest potential curves of the NaCd excimer. In this model the essential feature is the avoided crossing between B 2∑ 1/2 and A 2∏ 1/2 electronic states, which causes a complex structure of the satellite bands in the very far red wing of the sodium D lines broadened by cadmium.

  3. Effects induced by XeCl laser radiation and germicidal lamp radiation on E. coli strains survival and mutability

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Alifano, P.; Lorusso, A.; Monaco, C.; Nassisi, V.; Talà, A.; Tredici, M.

    2006-04-01

    In this work the mutagenic effect on Escherichia coli strains induced by UV radiation emitted by a XeCl laser (λ = 308 nm) has been analysed as a function of the exposure dose and compared with the effect induced by 254 nm radiation emitted by a conventional germicidal lamp. E. coli strains, wild-type (recA+) and mutant (recA1, defective in DNA damage repair systems), plated on LB agar, supplemented with rifampicin when requested, were irradiated by means of a germicidal lamp in the dose range 0 - 9 mJ/cm2. Similar strains were exposed to 308 nm pulsed laser radiation (τ = 20 ns FWHM; max. pulse energy: 100 mJ) in the dose range 0-1.0 x 10 4 mJ/cm2. The discrepancy between the results obtained with the lamp and the laser on the mutation frequency, suggested that the biological response to the two radiation sources involves distinct mechanisms. This hypothesis was supported by the evidence that exposure to near-UV 308 nm induced mutagenesis in the recA-defective strain at an extent considerably higher than in the recA-proficient strain.

  4. Application of optical tweezers and excimer laser to study protoplast fusion

    NASA Astrophysics Data System (ADS)

    Kantawang, Titirat; Samipak, Sompid; Limtrakul, Jumras; Chattham, Nattaporn

    2015-07-01

    Protoplast fusion is a physical phenomenon that two protoplasts come in contact and fuse together. Doing so, it is possible to combine specific genes from one protoplast to another during fusion such as drought resistance and disease resistance. There are a few possible methods to induce protoplast fusion, for example, electrofusion and chemical fusion. In this study, chemical fusion was performed with laser applied as an external force to enhance rate of fusion and observed under a microscope. Optical tweezers (1064 nm with 100X objective N.A. 1.3) and excimer laser (308 nm LMU-40X-UVB objective) were set with a Nikon Ti-U inverted microscope. Samples were prepared by soaking in hypertonic solution in order to induce cell plasmolysis. Elodea Canadensis and Allium cepa plasmolysed leaves were cut and observed under microscope. Concentration of solution was varied to induce difference turgor pressures on protoplasts pushing at cell wall. Free protoplasts in solution were trapped by optical tweezers to study the effect of Polyethylene glycol (PEG) solution. PEG was diluted by Ca+ solution during the process to induced protoplast cell contact and fusion. Possibility of protoplast fusion by excimer laser was investigated and found possible. Here we report a novel tool for plant cell fusion using excimer laser. Plant growth after cell fusion is currently conducted.

  5. Colouring fabrics with excimer lasers to simulate encoded images: the case of the Shroud of Turin

    NASA Astrophysics Data System (ADS)

    Di Lazzaro, P.; Baldacchini, G.; Fanti, G.; Murra, D.; Santoni, A.

    2008-10-01

    The faint body image embedded into the Turin Shroud has not yet explained by traditional science. We present experimental results of excimer laser irradiation (wavelengths 308 nm and 193 nm) of a raw linen fabric and of a linen cloth, seeking for a possible mechanism of image formation. The permanent coloration of both linens is a threshold effect on the laser beam intensity and it can be achieved only in a surprisingly narrow range of irradiation parameters: the shorter the wavelength, the narrower the range. We also obtained the first direct evidence of latent images impressed on linen that appear in a relatively long period (one year) after a laser irradiation that at first did not generate a clear image. The results are compared to the characteristics of the Turin Shroud, commenting the possibility that a burst of directional ultraviolet radiation may have played a role in the formation of the Shroud image.

  6. Coloring linens with excimer lasers to simulate the body image of the Turin Shroud

    NASA Astrophysics Data System (ADS)

    Baldacchini, Giuseppe; di Lazzaro, Paolo; Murra, Daniele; Fanti, Giulio

    2008-03-01

    The body image of the Turin Shroud has not yet been explained by traditional science; so a great interest in a possible mechanism of image formation still exists. We present preliminary results of excimer laser irradiation (wavelength of 308 nm) of a raw linen fabric and of a linen cloth. The permanent coloration of both linens is a threshold effect of the laser beam intensity, and it can be achieved only in a narrow range of irradiation parameters, which are strongly dependent on the pulse width and time sequence of laser shots. We also obtained the first direct evidence of latent images impressed on linen that appear in a relatively long period (one year) after laser irradiation that at first did not generate a clear image. The results are compared with the characteristics of the Turin Shroud, reflecting the possibility that a burst of directional ultraviolet radiation may have played a role in the formation of the Shroud image.

  7. Measurements of barium photocathode quantum yields at four excimer laser wavelengths

    SciTech Connect

    Van Loy, M.D.; Young, A.T.; Leung, K.N.

    1992-06-01

    The electron quantum yields from barium cathodes excited by excimer laser radiation at 193, 248, 308, and 351 nm have been determined. Experiments with different cathode surface preparation techniques reveal that deposition of barium film a few microns thick on a clean copper surface under moderate vacuum conditions achieves relatively high quantum efficiencies. Quantum yields measured from surfaces prepared in this manner are 2.3 x 10{sup -3} at 193 nm, 7.6 x 10{sup - 4} at 248 nm, 6.1 x 10{sup -4} at 308 nm, and 4.0 x 10{sup -4} at 351 nm. Other preparation techniques, such as laser cleaning of a solid barium surface, produced quantum yields that were at least an order of magnitude lower than these values.

  8. Excimer laser system Profile-500

    NASA Astrophysics Data System (ADS)

    Atejev, V. V.; Bukreyev, V. S.; Vartapetov, Serge K.; Semenov, A. D.; Sugrobov, V. A.; Turin, V. S.; Fedorov, Sergei N.

    1999-07-01

    The description of ophthalmological excimer laser system 'PROFILE-500' for photorefractive and physiotherapeutic keratectomy is presented. Excimer Laser Systems 'PROFILE- 500' are optical system that use ArF excimer lasers to perform photorefractive keratectomy or LASIK; surgical procedures used to correct myopia, hyperopia and astigmatism.

  9. Excimer emission from high pressure microhollow cathode discharges in xenon

    SciTech Connect

    El-Habachi, A.; Schoenbach, K.H.

    1998-12-31

    By reducing the diameter of the cathode opening in hollow cathode discharge geometry to values on the order of 100 micrometers the authors were able to operate the discharged in argon and xenon in a direct current mode at atmospheric pressure. The micro-discharges have been shown to emit excimer radiation peaking at wavelengths of 130 nm and 170 nm, respectively. They have in this study particularly concentrated on the xenon VUV radiation. The emission from a 100 micrometers microhollow cathode discharge in xenon at pressures between 40 and 760 Torr was measured over the spectral range from 130 nm to 400 nm. At 40 Torr, the 147 nm Xenon resonance line dominates the emission spectra. There are some indications of the first continuum which extends from the resonance line towards longer wavelength. The second excimer continuum peaking at 170 nm appears at higher pressures. At pressures greater than 300 Torr, it dominates the emission spectra up to the longest recorded wavelength of 400 nm. In order to determine the absolute values of the excimer radiation the emission was compared to that of calibrated UV sources: a Hg lamp and a Deuterium lamp. The results gave them a value of the efficiency defined as the ratio of the optical power of the excimer emitter to the input electrical power, of 5.3% and 6.3%, respectively. A single discharge, which was in this experiment run with a current of 3 mA at a forward voltage of 200 to 250 V, emits therefore {approximately}40 mW of VUV radiation concentrated in the spectral range from 150 to 190 nm. The possibility to operate the discharges in parallel opens the possibility to fabricate scalable flat panel excimer lamps.

  10. Early and late healing responses of normal canine artery to excimer laser irradiation.

    PubMed

    Prevosti, L G; Leon, M B; Smith, P D; Dodd, J T; Bonner, R F; Robinowitz, M; Clark, R E; Virmani, R

    1988-07-01

    Acute in vitro histologic studies have shown that the pulsed xenon chloride excimer laser causes precise microablation without the surrounding thermal tissue injury associated with frequently used continuous-wave lasers such as the argon, carbon dioxide, and neodymium:yttrium aluminum garnet lasers. However, the in vivo healing response of artery wall to excimer laser injury is not known. Accordingly, a xenon chloride excimer laser (308 nm, 40 nsec pulse width, 39 mJ/mm2/pulse) was transmitted via a 600 micron fused silica fiber to create 420 craters of varying depths (30 to 270 micron) in 21 normal canine femoral and carotid arteries. At 2 hours, 2 days, 10 days, and 42 days after excimer laser ablation, the artery segments were perfusion fixed in situ and analyzed by light, scanning, and transmission electron microscopy. At 2 hours, craters were covered by a carpet of platelets and entrapped red blood cells. Fibrin and exposed collagen fibers were seen at the crater base. There was a sharp demarcation of the crater-artery wall interface without lateral laser tissue injury. At 2 days, adherent platelets persisted with thrombus covering the base of the craters. Early healing responses were present, consisting of polymorphonucleated leukocytes and new endothelial cells, which extended over the crater rims. At 10 days, no thrombi were seen, and healing continued with almost complete reendothelialization. Macrophages, fibroblasts, fibrin, and entrapped red blood cells were present below the reendothelialized surface. At 42 days, healing was complete with obliteration of the craters by fibrointimal ingrowth. The surface was completely covered by a smooth monolayer of axially aligned endothelial cells. There were no aneurysms or surface hyperplastic responses. These favorable healing responses in normal canine arteries suggest that pulsed lasers with high tissue absorption coefficients, such as the xenon chloride excimer laser, may be suitable energy sources for

  11. Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis: setup and first results on cigarette smoke and human breath.

    PubMed

    Mühlberger, F; Streibel, T; Wieser, J; Ulrich, A; Zimmermann, R

    2005-11-15

    Single-photon ionization (SPI) using vacuum ultraviolet (VUV) light produced by an electron beam pumped rare gas excimer source has been coupled to a compact and mobile time-of-flight mass spectrometer (TOFMS). The novel device enables real-time on-line monitoring of organic trace substances in complex gaseous matrixes down to the ppb range. The pulsed VUV radiation of the light source is employed for SPI in the ion source of the TOFMS. Ion extraction is also carried out in a pulsed mode with a short time delay with respect to ionization. The experimental setup of the interface VUV light source/time-of-flight mass spectrometer is described, and the novel SPI-TOFMS system is characterized by means of standard calibration gases. Limits of detection down to 50 ppb for aliphatic and aromatic hydrocarbons were achieved. First on-line applications comprised real-time measurements of aromatic and aliphatic trace compounds in mainstream cigarette smoke, which represents a highly dynamic fluctuating gaseous matrix. Time resolution was sufficient to monitor the smoking process on a puff-by-puff resolved basis. Furthermore, human breath analysis has been carried out to detect differences in the breath of a smoker and a nonsmoker, respectively. Several well-known biomarkers for smoke could be identified in the smoker's breath. The possibility for even shorter measurement times while maintaining the achieved sensitivity makes this new device a promising tool for on-line analysis of organic trace compounds in process gases or biological systems.

  12. Endoscopic excimer laser surgery

    NASA Astrophysics Data System (ADS)

    Salimbeni, Renzo; Pini, Roberto; Vannini, Matteo; Benaim, George; Mattioli, Stefano

    1994-02-01

    Long pulse excimer laser radiation can be efficiently coupled and transmitted through optical fibers allowing the achievement of both photoablative and photomechanical effects. In this work the investigation has been focussed on the urologic surgery field to demonstrate the effectiveness of an excimer laser system for very different therapeutic tasks: recanalization of urethral stenosis and lithotripsy. The choice of the suitable radiation dosimetry and the technical solutions employed provide to the surgeon a multipurpose laser system with a wide range of utility in comparison with other laser systems.

  13. Excimer laser lead extraction catheter with increased laser parameters

    NASA Astrophysics Data System (ADS)

    Coe, M. Sean; Taylor, Kevin D.; Lippincott, Rebecca A.; Sorokoumov, Oleg; Papaioannou, Thanassis

    2001-05-01

    A fiber optic catheter connected to a pulsed excimer laser (308 nm) is currently used to extract chronically implanted pacemaker and defibrillator leads at Fluence of 60 mJ/mm2 and repetition rate of 40 Hz. The object of this study was to determine the effect of higher repetition rates (80 Hz) in the catheter's cutting performance. The penetration rate (micrometers /sec), and the associated mechanical and thermal effects were measured in soft (porcine myocardium) and hard tissue (bovine tendon) at 60 mJ/mm2-80 Hz, and were compared to the corresponding values at commercially available laser parameters (60 mJ/mm2-40 Hz). Ablation rates were measured with perforation experiments and the extent of thermal and mechanical damage was measured under polarized light microscopy. For hard (soft) tissue, the laser catheter demonstrated penetration speed of 106 +/- 32 (302 +/- 101) micrometers /sec at 40 Hz and 343 +/- 120 (830 +/- 364) micrometers /sec at 80 Hz. Maximum extent of thermal effects at 40 Hz and 80 Hz was 114 +/- 35 micrometers (72 +/- 18) and 233 +/- 63 micrometers (71 +/- 16) respectively. Maximum extent of mechanical effects at 40 Hz and 80 Hz was 188 +/- 63 micrometers (590 +/- 237) and 386 +/- 100 micrometers (767 +/- 160) respectively. In vitro testing of the laser catheter with 80 Hz laser parameters has demonstrated increased penetration speed in both soft and hard fibrous tissue, while maintaining associated thermal and mechanical effects within limited ranges.

  14. Excimer Lasers In Medicine

    NASA Astrophysics Data System (ADS)

    Tittel, Frank K.; Saidi, Iyad S.; Pettit, George H.; Wisoff, P. J.; Sauerbrey, Roland A.

    1989-06-01

    Excimer lasers emit light energy, short optical pulses at ultraviolet wavelengths, that results in a unique laser tissue interaction. This has led to an increasing number of studies into medical applications of these lasers in fields such as ophthalmology, urology, cardiology and neurology.

  15. Effects of XeCl excimer lasers and fluoride application on artificial caries-like lesions

    NASA Astrophysics Data System (ADS)

    Wilder-Smith, Petra B. B.; Phan, T.; Liaw, Lih-Huei L.; Berns, Michael W.

    1994-09-01

    In this study the affects of a pulsed excimer laser emitting at 308 nm (XeCl) on enamel susceptibility to artificial caries-like lesions were investigated. Additional effects of fluoride (F) application were also studied and SEC examinations performed. Sixty-four extracted human molar teeth were coated with acid resistant varnish leaving four windows, then sectioned, leaving one window on each tooth quarter. The windows were treated in one of the following ways: untreated (control), or lased, or exposed to 4 min. APF (1.23% F) before lasing, or exposed to 4 min. APF (1.23% F) after lasing. After lasing, microhardness profiles were obtained and SEM was performed. Caries resistance was generally increased at moderate fluences. F application combined with lasing enhanced caries resistance at some parameters. SEM showed effects ranging from minimal to localized effects to extended glazing. Pulsed excimer laser irradiation, especially combined with topical F application can inhibit development of artificial caries-like lesions.

  16. An excimer-based FAIMS detector for detection of ultra-low concentration of explosives

    NASA Astrophysics Data System (ADS)

    Chistyakov, Alexander A.; Kotkovskii, Gennadii E.; Sychev, Alexey V.; Perederiy, Anatoly N.; Budovich, V. L.; Budovich, D. V.

    2014-05-01

    A new method of explosives detection based on the field asymmetric ion mobility spectrometry (FAIMS) and ionization by an excimer emitter has been developed jointly with a portable detector. The excimer emitter differs from usual UVionizing lamps by mechanism of emitting, energy and spectral characteristics. The developed and applied Ar2-excimer emitter has the working volume of 1 cm3, consuming power 0.6 W, the energy of photons of about 10 eV (λ=126 nm), the FWHM radiation spectrum of 10 nm and emits more than 1016 photon per second that is two orders of magnitude higher than UV-lamp of the same working volume emits. This also exceeds by an order of magnitude the quantity of photons per second for 10-Hz solid state YAG:Nd3+ - laser of 1mJ pulse energy at λ=266 nm that is also used to ionize the analyte. The Ar2-excimer ionizes explosives by direct ionization mechanism and through ionization of organic impurities. The developed Ar2-excimer-based ion source does not require cooling due to low level discharge current of emitter and is able to work with no repair more than 10000 hrs. The developed excimer-based explosives detector can analyze both vapors and traces of explosives. The FAIMS spectra of the basic types of explosives like trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), dinitrotoluene (DNT), cyclotetramethylenetetranitramine (HMX), nitroglycerine (NG), pentaerythritol tetranitrate (PETN) under Ar2-excimer ionization are presented. The detection limit determined for TNT vapors equals 1x10-14 g/cm3, for TNT traces- 100 pg.

  17. Flickering lamps

    NASA Astrophysics Data System (ADS)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2015-05-01

    Many processes in electromagnetism vary with time. Some of them are well known, in particular those related to line frequencies of 50 Hz or 60 Hz such as fluctuating light output of discharge and incandescent lamps. The flickers of discharge and incandescent lamps have quite different physical principles involved, which are investigated experimentally using high-speed cameras and theoretically using simplified models. The topic is related to other phenomena such as the transient behaviour of phosphor layers covering the screen of oscilloscopes and the time-varying Lorentz force acting on the filament of light bulbs. All studies are well suited for teaching selected aspects of electromagnetism and light at undergraduate level at university.

  18. Lava Lamp

    ERIC Educational Resources Information Center

    Leif, Todd R.

    2008-01-01

    This past semester I brought a Lava Lite[R] Lamp into my classroom. Why bring such a thing into class? Many of today's students are part of the "retro" movement. They buy clothes from the '60s, they wear their hair like people did in the '60s, and they look for the ideals and themes related to living in the 1960s. Physics education reform is also…

  19. Production excimer laser equipment overview

    NASA Astrophysics Data System (ADS)

    Sercel, Jeffrey P.

    1993-04-01

    Excimer lasers were commercialized in the late 1970's. The laser community thought that by the early 1980's these UV lasers would enjoy a fruitful industrial market position. CO2 and solid state lasers required almost two decades to be fully accepted as industrial machine while the excimer laser was expected to be a fast learner benefiting from the learning curve of its big brothers. In retrospect, early excimer lasers had a bad reputation for being complicated, expensive and frequently out of commission. By the late 1980's a few excimer laser manufacturers had engineered the problems to acceptable levels for successful pilot lines and small scale manufacturing to begin. At this time, the real industrial learning curves began as engineers worked to refine many subsystems and support technologies. Today, excimer lasers are being used as true industrial lasers. They have a bright future with numerous and diverse market opportunities. This paper is an overview of the technologies proven to be successful in adapting modern excimer lasers to successful full production situations.

  20. Direct current planar excimer source

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Takano, N.; Schoenbach, K. H.; Guru, D.; McLaren, J.; Heberlein, J.; May, R.; Cooper, J. R.

    2007-07-01

    Excimer emission at 172 nm was observed from xenon discharges generated between a perforated anode, with opening dimensions in the sub-millimetre range, and a planar cathode. A thin dielectric layer 100-250 µm in thickness, with the same size opening as the anode, is aligned with the anode opening and used to separate the electrodes. Devices with this structure are referred to as cathode boundary layer (CBL) discharge or micro-hollow cathode discharge devices, depending on the surface structure of the cathode. The emission intensity and efficiency of these devices are pressure- and current-dependent. Typical power densities and internal efficiencies (ratio of excimer radiant power to electrical input power) are 0.5-1.5 W cm-2 and 3-5%, respectively. In the current range between normal and abnormal mode operation, the CBL discharge shows regularly arranged filaments (self-organization). Optimum emission of the excimer radiation is observed at the transition from the normal glow mode to self-organization. The resistive current-voltage characteristic in the self-organization region allows the operation of multiple CBL devices in parallel without individual ballast, but with an excimer emission slightly off the maximum value. The measured decrease of the excimer emission to about 10% of its initial value after approximately 250 h of continuous operation seems to be caused by the increasing contamination of xenon, through minor leaks in the discharge chamber and/or the outgassing of chamber components. Refilling the chamber with fresh gas after such an extended operation resulted in full recovery of the discharge with respect to excimer emission. The results suggest the possibility of generating extended lifetime, intense, large area, planar excimer sources using CBL discharges in sealed discharge chambers including getters.

  1. Aperture lamp

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.

    2003-01-01

    A discharge lamp includes means for containing a light emitting fill, the fill being capable of absorbing light at one wavelength and re-emitting the light at a different wavelength, the light emitted from the fill having a first spectral power distribution in the absence of reflection of light back into the fill; means for exciting the fill to cause the fill to emit light; and means for reflecting some of the light emitted by the fill back into the fill while allowing some light to exit, the exiting light having a second spectral power distribution with proportionately more light in the visible region as compared to the first spectral power distribution, wherein the light re-emitted by the fill is shifted in wavelength with respect to the absorbed light and the magnitude of the shift is in relation to an effective optical path length. Another discharge lamp includes an envelope; a fill which emits light when excited disposed in the envelope; a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light; and a reflective ceramic structure disposed around the envelope and defining an light emitting opening, wherein the structure comprises a sintered body built up directly on the envelope and made from a combination of alumina and silica.

  2. Emission of excimer radiation from direct current, high-pressure hollow cathode discharges

    SciTech Connect

    El-Habachi, A.; Schoenbach, K.H.

    1998-01-01

    A novel, nonequilibrium, high-pressure, direct current discharge, the microhollow cathode discharge, has been found to be an intense source of xenon and argon excimer radiation peaking at wavelengths of 170 and 130 nm, respectively. In argon discharges with a 100 {mu}m diam hollow cathode, the intensity of the excimer radiation increased by a factor of 5 over the pressure range from 100 to 800 mbar. In xenon discharges, the intensity at 170 nm increased by two orders of magnitude when the pressure was raised from 250 mbar to 1 bar. Sustaining voltages were 200 V for argon and 400 V for xenon discharges, at current levels on the order of mA. The resistive current{endash}voltage characteristics of the microdischarges indicate the possibility to form arrays for direct current, flat panel excimer lamps. {copyright} {ital 1998 American Institute of Physics.}

  3. Communication: Photodissociation of CH{sub 3}CHO at 308 nm: Observation of H-roaming, CH{sub 3}-roaming, and transition state pathways together along the ground state surface

    SciTech Connect

    Li, Hou-Kuan; Tsai, Po-Yu; Hung, Kai-Chan; Kasai, Toshio; Lin, King-Chuen

    2015-01-28

    Following photodissociation of acetaldehyde (CH{sub 3}CHO) at 308 nm, the CO(v = 1–4) fragment is acquired using time-resolved Fourier-transform infrared emission spectroscopy. The CO(v = 1) rotational distribution shows a bimodal feature; the low- and high-J components result from H-roaming around CH{sub 3}CO core and CH{sub 3}-roaming around CHO radical, respectively, in consistency with a recent assignment by Kable and co-workers (Lee et al., Chem. Sci. 5, 4633 (2014)). The H-roaming pathway disappears at the CO(v ≥ 2) states, because of insufficient available energy following bond-breaking of H + CH{sub 3}CO. By analyzing the CH{sub 4} emission spectrum, we obtained a bimodal vibrational distribution; the low-energy component is ascribed to the transition state (TS) pathway, consistent with prediction by quasiclassical trajectory calculations, while the high-energy component results from H- and CH{sub 3}-roamings. A branching fraction of H-roaming/CH{sub 3}-roaming/TS contribution is evaluated to be (8% ± 3%)/(68% ± 10%)/(25% ± 5%), in which the TS pathway was observed for the first time. The three pathways proceed concomitantly along the electronic ground state surface.

  4. Lava Lamp

    NASA Astrophysics Data System (ADS)

    Leif, Todd R.

    2008-04-01

    This past semester I brought a Lava Lite® Lamp into my classroom. Why bring such a thing into class? Many of today's students are part of the "retro" movement. They buy clothes from the '60s, they wear their hair like people did in the '60s, and they look for the ideals and themes related to living in the 1960s. Physics education reform is also examining ideas from the "retro" world of science. This was the post-Sputnik era, a time when science was done by actually doing it and not necessarily by lecturing about it. Cliff Swartz, former TPT editor, once mentioned during a presentation at a Texas AAPT meeting, "The world of physics teaching is cyclic, like a swinging pendulum. We as physics teachers jump from `new ideas' back to our old ones, each generation testing what works best for them."

  5. LED lamp

    SciTech Connect

    Galvez, Miguel; Grossman, Kenneth; Betts, David

    2013-11-12

    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  6. The Development Of Industrial Excimer Lasers

    NASA Astrophysics Data System (ADS)

    Levatter, Jeffrey I.

    1986-11-01

    The first discharge pumped excimer lasers introduced in the 1970's were derivatives of N2 and C02 TEA lasers. They had spatially non-uniform outputs, relatively small output energies, low average powers, short operating lifetimes, and poor reliability. Today, more than a decade later, excimer lasers are just now maturing to the point where they are starting to enter the industrial workplace. This paper will review the transition from CO2/N2 to excimer technology, the engineering hurdles excimer lasers must overcome to make them viable industrial tools, and the current state of the "industrial excimer laser".

  7. Irradiation planning for automated treatment of psoriasis with a high-power excimer laser

    NASA Astrophysics Data System (ADS)

    Klämpfl, Florian; Schmidt, Michael; Hagenah, Hinnerk; Görtler, Andreas; Wolfsgruber, Frank; Lampalzer, Ralf; Kaudewitz, Peter

    2006-02-01

    American and European statistics have shown that 1-2 per cent of the human population is affected by the skin disease psoriasis. Recent research reports promising treatment results when irradiating skin areas affected by psoriasis with high powered excimer lasers with a wavelength of 308 nm. In order to apply the necessary high energy dose without hurting healthy parts of the skin new approaches regarding the system technology must be considered. The aim of the current research project is the development of a sensor-based, automated laser treatment system for psoriasis. In this paper we present the algorithms used to cope with the diffculties of irradiating irregularly shaped areas on curved surfaces with a predefined energy level using a pulsed laser. Patients prefer the treatment to take as little time as possible. This also helps to reduce costs. Thus the distribution of laser pulses on the surface to achieve the given energy level on every point of the surface has to be calculated within a limited time frame. The remainder of the paper will describe in detail an efficient method to plan and optimize the laser pulse distribution. Towards the end, some first results will be presented.

  8. Progress of excimer laser technologies

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Hakaru

    2000-10-01

    More than 1,000 units of KrF excimer laser steppers were already installed in semiconductor mass-production lines which require design rule of less than 0.15 m. Higher NA lens compatibility, productivity and CoO become critical issues of KrF excimer laser stepper. Advanced 2kHz KrF excimer laser G20K/G21K offers the solutions for these three issues. Next generation excimer laser ArF has already finished the stage of principle demonstration and has moved to a next level of practical demonstration and has moved to next level of practical inspection, such as stability, productivity, and economic efficiency. Gigaphoton 4kHz ArF, G40A, solved all of these issues. Furthermore sub 0.10m design rule region F2 laser has been examined at several organizations. In March, 2000, Komatsu successfully developed 2kHzF2 laser for catadioptric projection optics by the fund of NEDO. Gigaphoton is ready to fabricate G20F, 2kHz F2 laser, based upon the result of NEDO research. ASET started new F2 laser lithography development program at Hiratsuka Research Center with collaboration of Nikon, Canon, Gigaphoton, Komatsu, and Ushio from April 2000, ending March 2002.

  9. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, R.P.

    1992-09-15

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput. 3 figs.

  10. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, Roger P.

    1992-01-01

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.

  11. Precision performance lamp technology

    NASA Astrophysics Data System (ADS)

    Bell, Dean A.; Kiesa, James E.; Dean, Raymond A.

    1997-09-01

    A principal function of a lamp is to produce light output with designated spectra, intensity, and/or geometric radiation patterns. The function of a precision performance lamp is to go beyond these parameters and into the precision repeatability of performance. All lamps are not equal. There are a variety of incandescent lamps, from the vacuum incandescent indictor lamp to the precision lamp of a blood analyzer. In the past the definition of a precision lamp was described in terms of wattage, light center length (LCL), filament position, and/or spot alignment. This paper presents a new view of precision lamps through the discussion of a new segment of lamp design, which we term precision performance lamps. The definition of precision performance lamps will include (must include) the factors of a precision lamp. But what makes a precision lamp a precision performance lamp is the manner in which the design factors of amperage, mscp (mean spherical candlepower), efficacy (lumens/watt), life, not considered individually but rather considered collectively. There is a statistical bias in a precision performance lamp for each of these factors; taken individually and as a whole. When properly considered the results can be dramatic to the system design engineer, system production manage and the system end-user. It can be shown that for the lamp user, the use of precision performance lamps can translate to: (1) ease of system design, (2) simplification of electronics, (3) superior signal to noise ratios, (4) higher manufacturing yields, (5) lower system costs, (6) better product performance. The factors mentioned above are described along with their interdependent relationships. It is statistically shown how the benefits listed above are achievable. Examples are provided to illustrate how proper attention to precision performance lamp characteristics actually aid in system product design and manufacturing to build and market more, market acceptable product products in the

  12. Wood's lamp illumination (image)

    MedlinePlus

    A Wood's lamp emits ultraviolet light and can be a diagnostic aid in determining if someone has a fungal ... is an infection on the area where the Wood's lamp is illuminating, the area will fluoresce. Normally ...

  13. Wood's Lamp Examination

    MedlinePlus

    ... dermatologists to assist in the diagnosis of various pigment and infectious disorders. The examination is performed in ... lamp. If a fungal or bacterial infection or pigment disorder is present, Wood's lamp examination can strengthen ...

  14. Pixel diamond detectors for excimer laser beam diagnostics

    NASA Astrophysics Data System (ADS)

    Girolami, M.; Allegrini, P.; Conte, G.; Salvatori, S.

    2011-05-01

    Laser beam profiling technology in the UV spectrum of light is evolving with the increase of excimer lasers and lamps applications, that span from lithography for VLSI circuits to eye surgery. The development of a beam-profiler, able to capture the excimer laser single pulse and process the acquired pixel current signals in the time period between each pulse, is mandatory for such applications. 1D and 2D array detectors have been realized on polycrystalline CVD diamond specimens. The fast diamond photoresponse, in the ns time regime, suggests the suitability of such devices for fine tuning feedback of high-power pulsed-laser cavities, whereas solar-blindness guarantees high performance in UV beam diagnostics, also under high intensity background illumination. Offering unique properties in terms of thermal conductivity and visible-light transparency, diamond represents one of the most suitable candidate for the detection of high-power UV laser emission. The relatively high resistivity of diamond in the dark has allowed the fabrication of photoconductive vertical pixel-detectors. A semitransparent light-receiving back-side contact has been used for detector biasing. Each pixel signal has been conditioned by a multi-channel read-out electronics made up of a high-sensitive integrator and a Σ-Δ A/D converter. The 500 μs conversion time has allowed a data acquisition rate up to 2 kSPS (Sample Per Second).

  15. Evaluation of an opacity lensometer for determining corneal clarity following excimer laser photoablation

    SciTech Connect

    Andrade, H.A.; McDonald, M.B.; Liu, J.C.; Abdelmegeed, M.; Varnell, R.; Sunderland, G. )

    1990-09-01

    The appearance of haze in the central cornea following photoablation with a 193 nm excimer laser is an important factor in the postoperative course of this procedure. Data from 37 human eyes treated with photorefractive keratectomy, 4 eyes treated with phototherapeutic keratectomy, and 5 untreated eyes were used to evaluate the ability of a commercially available opacity lensometer to provide an objective measure of corneal clarity. We found that the opacity lensometer was able to detect light scattered from the cornea but was not sufficiently sensitive to distinguish reliably among excimer-treated eyes with degrees of corneal haze evaluated as clear, trace, or 1+ by slit-lamp microscope examination. In untreated, clear corneas, the values obtained with the opacity lensometer in eyes measured with and without a clear contact lens were within one unit of each other for any given eye, but values from eye to eye varied over a range of six units. In a test simulating different amounts of corneal haze using contact lenses evenly coated with nail polish enamel, the log-transformed opacity lensometer values varied directly with percent light scattering as determined by spectrophotometry. These results suggest that the opacity lensometer measurements are reliable and reproducible, but that in the human cornea something is being measured by the opacity lensometer that is not taken into account in clinical slit-lamp microscope evaluation. Overall, it appears that, in its present form, this instrument is not useful to measure corneal clarity after excimer laser photoablation.

  16. Spectroscopic analysis of electronically excited species in XeCl excimer laser-induced plasmas from the ablated high-temperature superconductor YBa/sub 2/Cu/sub 3/O/sub 7/

    SciTech Connect

    Auciello, O.; Athavale, S.; Hankins, O.E.; Sito, M.; Schreiner, A.F.; Biunno, N.

    1988-07-04

    Optical spectroscopic analyses have been performed to study luminescence from plasmas produced by ablation of YBa/sub 2/Cu/sub 3/O/sub 7/ single-phase high T/sub c/ bulk superconductors exposed to XeCl excimer laser (308 nm) pulses. Only excited atomic neutral and single ionized species (CuCu/sup +/, BaBa/sup +/, YY/sup +/) were observed within the experimental resolution of an optical multichannel analyzer detection system, when irradiating the targets in vacuum (approx.10/sup -5/--10/sup -4/ Torr). Conspicuously absent in the spectra (300--800 nm range) are molecular emission bands that would appear if large excited molecules or fragments were present. Implications of the present results are discussed which relate to an early hypothesis about the laser ablation mechanism and their influence on high T/sub c/ film characteristics.

  17. Halogen lamp experiment, HALEX

    NASA Technical Reports Server (NTRS)

    Schmitt, G.; Stapelmann, J.

    1986-01-01

    The main purpose of the Halogen Lamp Experiment (HALEX) was to investigate the operation of a halogen lamp during an extended period in a microgravity environment and to prove its behavior in space. The Mirror Heating Facilities for Crystal Growth and Material Science Experiments in space relies on one or two halogen lamps as a furnace to melt the specimens. The HALEX aim is to verify: full power operation of a halogen lamp for a period of about 60 hours; achievement of about 10% of its terrestrial life span; and operation of the halogen lamp under conditions similar to furnace operation.

  18. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical... lamps; school bus warning lamps; amber warning lamps or flashing warning lamps on tow trucks...

  19. Excimer laser in arthroscopic surgery

    NASA Astrophysics Data System (ADS)

    Koort, Hans J.

    1991-05-01

    The development of efficient high-power lasersystems for use in surgery, especially in arthroscopic fields, leads to a new push for all endoscopic techniques. Both techniques, laser and endoscope, complete each other in an ideal way and allow applications which could not be reached with conventional techniques. One of the newer laser types is the excimer laser, which will be a good choice for surface treatment because of its very considerate interaction with tissue. One example is the ablation or smoothing of articular cartilage and meniscal shaving in orthopaedics. On the other hand, the power of this laser system is high enough to cut tissue, for instance in the lateral release, and offers therefore an alternative to the mechanical and electrical instruments. All lasers can only work fine with effective delivery systems. Sometimes there is only a single fiber, which becomes very stiff at diameters of more than 800 micrometers . This fiber often allows only the tangential treatment of tissue, most of the laser power is lost in the background. New fiber systems with many, sometimes hundreds of very thin single fibers, could offer a solution. Special handpieces and fibersystems offer distinct advantages in small joint arthroscopy, especially those for use with excimer lasers will be discussed.

  20. A repetitively pulsed xenon chloride excimer laser with all ferrite magnetic cores (AFMC) based all solid state exciter

    NASA Astrophysics Data System (ADS)

    Benerji, N. S.; Varshnay, N. K.; Ghodke, D. V.; Singh, A.

    2016-10-01

    Performance of repetitively pulsed xenon chloride excimer laser (λ~308 nm) with solid state pulser consisting of magnetic pulse compression circuit (MPC) using all ferrite magnetic cores (AFMC) is reported. Laser system suitable for 100 Hz operation with inbuilt pre-ionizer, compact gas circulation and cooling has been developed and presented. In this configuration, high voltage pulses of ~8 μs duration are compressed to ~100 ns by magnetic pulse compression circuit with overall compression factor of ~80. Pulse energy of ~18 J stored in the primary capacitor is transferred to the laser head with an efficiency of ~85% compared to ~70% that is normally achieved in such configurations using annealed met-glass core. This is a significant improvement of about 21%. Maximum output laser pulse energy of ~100 mJ was achieved at repetition rate of 100 Hz with a typical pulse to pulse energy stability of ±5% and laser pulse energy of 150 mJ was generated at low rep-rate of ~40 Hz. This exciter uses a low current and low voltage solid state switch (SCR) that replaces high voltage and high current switch i. e, thyratron completely. The use of solid state exciter in turn reduces electromagnetic interference (EMI) effects particularly in excimer lasers where high EMI is present due to high di/dt. The laser is focused on a thin copper sheet for generation of micro-hole and the SEM image of the generated micro hole shows the energy stability of the laser at high repetition rate operation. Nearly homogeneous, regular and well developed xenon chloride (XeCl) laser beam spot was achieved using the laser.

  1. Discharge lamp technologies

    NASA Technical Reports Server (NTRS)

    Dakin, James

    1994-01-01

    This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude with a discussion of technological advances.

  2. Semiconductor processing with excimer lasers

    SciTech Connect

    Young, R.T.; Narayan, J.; Christie, W.H.; van der Leeden, G.A.; Rothe, D.E.; Cheng, L.J.

    1983-01-01

    The advantages of pulsed excimer lasers for semiconductor processing are reviewed. Extensive comparisons of the quality of annealing of ion-implanted Si obtained with XeCl and ruby lasers have been made. The results indicate that irrespective of the large differences in the optical properties of Si at uv and visible wavelengths, the efficiency of usage of the incident energy for annealing is comparable for the two lasers. However, because of the excellent optical beam quality, the XeCl laser can provide superior control of the surface melting and the resulting junction depth. Furthermore, the concentrations of electrically active point defects in the XeCl laser annealed region are 2 to 3 orders of magnitude lower than that obtained from ruby or Nd:YAG lasers. All these results seem to suggest that XeCl lasers should be suitable for fabricating not only solar cells but also the more advanced device structures required for VLSI or VHSIC applications.

  3. Jacketed lamp bulb envelope

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Gitsevich, Aleksandr; Bass, Gary K.; Dolan, James T.; Kipling, Kent; Kirkpatrick, Douglas A.; Leng, Yongzhang; Levin, Izrail; Roy, Robert J.; Shanks, Bruce; Smith, Malcolm; Trimble, William C.; Tsai, Peter

    2001-01-01

    A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.

  4. Turning on LAMP

    ScienceCinema

    Bostedt, Christoph

    2016-07-12

    Christoph Bostedt, a senior staff scientist at SLAC's Linac Coherent Light Source X-ray laser, provides a sneak peek of a powerful new instrument, called LAMP, that is now available for experiments that probe the atomic and molecular realm. LAMP replaces and updates the first instrument at LCLS, dubbed CAMP, which will be installed at an X-ray laser in Germany.

  5. Turning on LAMP

    SciTech Connect

    Bostedt, Christoph

    2014-06-30

    Christoph Bostedt, a senior staff scientist at SLAC's Linac Coherent Light Source X-ray laser, provides a sneak peek of a powerful new instrument, called LAMP, that is now available for experiments that probe the atomic and molecular realm. LAMP replaces and updates the first instrument at LCLS, dubbed CAMP, which will be installed at an X-ray laser in Germany.

  6. Excimer emission from microhollow cathode argon discharges

    NASA Astrophysics Data System (ADS)

    Moselhy, Mohamed; Petzenhauser, Isfried; Frank, Klaus; Schoenbach, Karl H.

    2003-12-01

    Microhollow cathode discharges (MHCDs) operated in rare gases are sources of intense excimer emission. Of particular interest is argon, because of its relatively low cost and the short wavelength (128 nm) of its excimer emission. The measured internal efficiency, obtained in static argon at atmospheric pressure, was found to be on the order of 1%. Flowing argon through a direct current (DC) MHCD at atmospheric pressure caused the argon excimer internal efficiency to increase to 6%, indicating that the low efficiency in static argon is mainly due to impurities. Applying 10 ns pulses to the DC plasma resulted in an increase in excimer power from 30 mW DC to 180 mW peak power, at an efficiency of 5-6%. The increase in excimer power correlates with an increase in the electron density. For DC operation, electron densities of 1015 cm-3 were measured in atmospheric pressure argon micro-plasmas, which increased to values beyond 1016 cm-3 for nanosecond pulsed operation. This increase in electron density and excimer power is due to pulsed electron heating, an effect that has allowed us to raise the mean electron energy from 1 eV, for DC operation, to 2.25 eV in the pulsed mode.

  7. Excimer Emission from Argon Microhollow Cathode Discharges

    NASA Astrophysics Data System (ADS)

    Moselhy, Mohamed; Schoenbach, Karl H.

    2002-10-01

    Excimer emission from direct current microhollow cathode discharges had been studied for rare gases and mixtures of rare gases and halides as working gases [1]. In static xenon, the dc efficiency was measured as 6%-9%. In static argon, however, the efficiency is only on the order of 1%. This relatively low value was found to be due to excimer quenching processes caused by impurities. By flowing the argon, rather than operating under static conditions we could increase the efficiency to 6%. Applying a 10 ns pulse of 600 V to the DC discharge in argon resulted in an increased intensity by a factor of six. The decay time for argon excimer emission was found to be 500 ns, indicating that quenching processes even with purging of the discharge chamber are still more effective by a factor of six in depopulating the excimer level than excimer radiation. The major quenching effect is based on resonant energy transfer from the argon excimer to atomic oxygen [2]. The addition of small amounts of oxygen allowed us therefore to convert the argon excimer emission centered at 128 nm into narrowband emission at 130.4 nm (oxygen triplet) with an optical power of up to 13 mW.This material was supported by NSF (CTS-0078618).[1] Karl H. Schoenbach, Ahmed El-Habachi, Mohamed M. Moselhy, Wenhui Shi, and Robert H. Stark, Physics of Plasmas 7, 2186 (2000). [2] M. Moselhy, R.H. Stark, K.H. Schoenbach, and U. Kogelschatz, Appl. Phys. Lett. 78, 880 (2001).

  8. Rapid flash lamp

    DOEpatents

    Gavenonis, Thomas L.; Hewitt, William H.

    1989-01-01

    A method and apparatus for providing low peak time and pulse width actinic energy from a lamp by varying the input energy of a capacitive ignition circuit having relatively high voltage to the lamp. The lamp comprises a pair of electrodes disposed within a light transparent envelope in which a combustible and an oxidizing gas reaction combination is located. The combustible is preferably shredded zirconium which is in contact with and provides an electrical discharge path between the electrodes. The gas is preferably pressurized oxygen.

  9. Physics of Incandescent Lamp Burnout

    ERIC Educational Resources Information Center

    Gluck, Paul; King, John

    2008-01-01

    Incandescent lamps with tungsten filaments have been in use for about a century while being gradually replaced by fluorescent lamps; in another generation both will quite probably be largely replaced by light-emitting diodes. Incandescent lamps (simply called "lamps" in what follows) burn out after a lifetime that depends mostly on the temperature…

  10. Hollow-Core Fiber Lamp

    NASA Technical Reports Server (NTRS)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  11. Excimer Emission from Cathode Boundary Layer Discharges

    NASA Astrophysics Data System (ADS)

    Moselhy, M. M.; Ansari, J.; Schoenbach, K. H.

    2003-10-01

    The excimer emission from direct current glow discharges between a planar cathode and a ring shaped anode of 0.75 mm diameter, separated by only 250 μm, was studied in high-pressure xenon and argon. The thickness of the "cathode boundary layer" (CBL) plasma, approximately 150 μm, with a discharge sustaining voltage of approximately 200 V, indicates that the discharge is restricted to the cathode fall and the negative glow. For currents on the order of 1 mA, the discharge in xenon changes from an abnormal glow into a mode showing selforganization of the plasma. At this transition, maximum excimer emission (at 172 nm) with internal efficiencies of 3 to 5% is observed. The maximum radiant emittance is 4 W/cm^2 for atmospheric pressure operation. In the case of argon, selforganization of the plasma was not seen, however the emission of the excimer radiation (128 nm) again shows a maximum, in this case at the transition from abnormal to normal glow, with efficiencies of 2%. The maximum radiant emittance is 1.6 W/cm^2 for argon at 600 Torr. The positive slope of the current-voltage characteristics at maximum excimer emission indicates the possibility to generate large area flat excimer sources. Work supported by NSF (CTS-0078618 and INT-0001438).

  12. Microhollow cathode discharge excimer light sources

    SciTech Connect

    El-Habachi, A.; Moselhy, M.; El-Dakroury, A.; Schoenbach, K.H.

    1999-07-01

    Microhollow Cathode discharges are non-equilibrium, high pressure, direct current discharges. By reducing the diameter of the cathode opening in a hollow cathode discharge geometry to values in the sub millimeter range the authors were able to operate discharges in argon and xenon in a direct current mode up to atmospheric pressure. They have shown that these discharges are intense source of xenon and argon excimer radiation peaking at wavelengths of 172 nm and 130 nm, respectively. Spatially resolved measurements of the excimer source in xenon have been performed. The source was found to be cylindrical along the axis of the electrodes. Its radius increases with current and decreases with pressure. Stacking the discharges, operating them in series, holds the promise for the generation of a laser medium with sufficient length to provide the required threshold gain for a dc excimer laser. Experimental studies of the gain of the plasma column in microhollow cathode discharges are underway. Excimer efficiencies, defined as the ratio of optical to electrical power, of 6% to 9% have been achieved. Further increase of the efficiency seems to be possible; according to the modeling results, efficiencies of 30% to 40% may be obtainable. The effect of various parameters such as electrode geometry, gas flow and pulsed versus cw operation on the excimer efficiency is being studied with the goal to optimize the discharge.

  13. Magnetic fluorescent lamp

    DOEpatents

    Berman, S.M.; Richardson R.W.

    1983-12-29

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  14. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... specifications in FMVSS No. 108 (49 CFR 571.108), SAE J581, and SAE J583, respectively. ... lamps and front fog lamps. 393.24 Section 393.24 Transportation Other Regulations Relating to... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front...

  15. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... specifications in FMVSS No. 108 (49 CFR 571.108), SAE J581, and SAE J583, respectively. ... lamps and front fog lamps. 393.24 Section 393.24 Transportation Other Regulations Relating to... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front...

  16. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... specifications in FMVSS No. 108 (49 CFR 571.108), SAE J581, and SAE J583, respectively. ... lamps and front fog lamps. 393.24 Section 393.24 Transportation Other Regulations Relating to... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front...

  17. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... specifications in FMVSS No. 108 (49 CFR 571.108), SAE J581, and SAE J583, respectively. ... lamps and front fog lamps. 393.24 Section 393.24 Transportation Other Regulations Relating to... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front...

  18. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... specifications in FMVSS No. 108 (49 CFR 571.108), SAE J581, and SAE J583, respectively. ... lamps and front fog lamps. 393.24 Section 393.24 Transportation Other Regulations Relating to... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front...

  19. Effect of excimer laser on microbiological organisms

    SciTech Connect

    Keates, R.H.; Drago, P.C.; Rothchild, E.J.

    1988-10-01

    The effect of radiation emitted from an excimer laser filled with argon fluoride gas at 193 nm on Serratia marcescens, Pseudomonas aeruginosa, Staphylococcus aureus, streptococcus faecalis, Hemophilus influenzae, Candida albicans, and Aspergillus niger (collectively labeled the microorganisms) was examined. Colonies were subjected to a variable number of radiation pulses from the excimer laser applied after a 36-hour period of incubation at 37 degrees C, at which time the colonies were fully grown and showed no viability. The lack of viability was confirmed with a subculture from each area that received radiation; all subcultures were negative. The characteristics of the radiation paralleled those used by Serdavic, Darrell, Krueger, et al in 1985. This radiation treatment is believed to be within a therapeutic range, which suggests that the excimer laser, pending further investigation, may be useful in the treatment of corneal infections.

  20. Luminescence characteristics of Xe{sub 2}Cl excimer molecules under pumping the dense Xe-CCl{sub 4} gas mixtures with a pulsed electron beam

    SciTech Connect

    Mis'kevich, A I; Jinbo, Guo

    2013-05-31

    Temporal and spectral characteristics of the luminescence of dense Xe-CCl{sub 4} gas mixtures of different composition, excited by a 5-ns pulsed electron beam, were measured. The energy of the electrons amounted to 150 keV and the electron beam current pulse amplitude was 5 A. The gas mixtures were used containing Xe (38-700 Torr) and CCl{sub 4} (0.03-0.3 Torr). The studies were performed within the wavelength range 200-1200 nm using a MAYA-2000Pro diffraction grating spectrometer and a RIGOL DS 5022 ME fast digital oscilloscope. The luminescence lifetimes of the excimer molecules XeCl* (band with {lambda}{sub max} = 308 nm) and Xe{sub 2}Cl* (band with {lambda}{sub max} = 486 nm) were measured, as well as the constants of quenching by the components of the gas mixture for Xe{sub 2}Cl* molecules. A model of plasma-chemical processes for dense Xe-CCl{sub 4} gas mixtures with a very low content of the CCl{sub 4} donor is proposed. It is shown that in such 'poor' mixtures Xe{sub 2}Cl* molecules are mainly produced as a result of recombination of the Xe{sub 2}{sup +} and Cl{sup -} ions. (active media)

  1. Fluorescent discharge lamp

    NASA Technical Reports Server (NTRS)

    Mukai, E.; Otsuka, H.; Nomi, K.; Honmo, I.

    1982-01-01

    A rapidly illuminating fluorescent lamp 1,200 mm long and 32.5 mm in diameter with an interior conducting strip which is compatible with conventional fixtures and ballasts is described. The fluorescent lamp is composed of a linear glass tube, electrodes sealed at both ends, mercury and raregas sealed in the glass tube, a fluorescent substance clad on the inner walls of the glass tube, and a clad conducting strip extending the entire length of the glass tube in the axial direction on the inner surface of the tube.

  2. False "highlighting" with Wood's lamp.

    PubMed

    Silverberg, Jonathan I; Silverberg, Nanette B

    2014-01-01

    Wood's lamp evaluation is used to diagnose pigmentary disorders. For example, vitiligo typically demonstrates lesional enhancement under Wood's lamp evaluation. Numerous false positive enhancing lesions can be noted in the skin. We describe a 5-year-old Hispanic boy who had painted his face with highlighter, producing enhancing lesions under Wood's lamp. Physicians who use Wood's lamp should be aware that the appearance of markers and highlighter can mimic that of true clinical illnesses.

  3. The fundus slit lamp.

    PubMed

    Gellrich, Marcus-Matthias

    2015-01-01

    Fundus biomicroscopy with the slit lamp as it is practiced widely nowadays was not established until the 1980-es with the introduction of the Volk lenses +90 and +60D. Thereafter little progress has been made in retinal imaging with the slit lamp. It is the aim of this paper to fully exploit the potential of a video slit lamp for fundus documentation by using easily accessible additions. Suitable still images are easily retrieved from videorecordings of slit lamp examinations. The effects of changements in the slit lamp itself (slit beam and apertures) and its examination equipment (converging lenses from +40 to +90D) on quality and spectrum of fundus images are demonstrated. Imaging software is applied for reconstruction of larger fundus areas in a mosaic pattern (Hugin®) and to perform the flicker test in order to visualize changes in the same fundus area at different points of time (Power Point®). The three lenses +90/+60/+40D are a good choice for imaging the whole spectrum of retinal diseases. Displacement of the oblique slit light can be used to assess changes in the surface profile of the inner retina which occurs e.g. in macular holes or pigment epithelial detachment. The mosaic function in its easiest form (one strip macula adapted to one strip with the optic disc) provides an overview of the posterior pole comparable to a fundus camera's image. A reconstruction of larger fundus areas is feasible for imaging in vitreoretinal surgery or occlusive vessel disease. The flicker test is a fine tool for monitoring progressive glaucoma by changes in the optic disc, and it is also a valuable diagnostic tool in macular disease. Nearly all retinal diseases can be imaged with the slit lamp - irrespective whether they affect the posterior pole, mainly the optic nerve or the macula, the whole retina or only its periphery. Even a basic fundus controlled perimetry is possible. Therefore fundus videography with the slit lamp is a worthwhile approach especially for the

  4. Dimming of metal halide lamps

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.

  5. Excimer laser as a manufacturing tool

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Terence R.; Lizotte, Todd E.

    1994-02-01

    In general, laser material processing is carried out using CO2 and YAG systems. This work typically covers welding, cladding and cutting to produce such unlikely products as juice cans and razor blades. Excimer lasers are fast becoming the next most popular processing machine. They are especially suited for the removal of thermally sensitive materials with minimal heat damage and production of micron sized features. Beginning with what can be achieved in various materials this paper will step through the main requirements in developing a fully operational excimer laser process. This should reflect an efficient beam delivery design, high quality aperture masks and specialized part handling equipment. This paper will also address aspects of motion control, vibration isolation and specialized vision systems.

  6. Pulsed microhollow cathode discharge excimer sources

    NASA Astrophysics Data System (ADS)

    Moselhy, Mohamed; Shi, Wenhui; Strak, Robert H.; Schoenbach, Karl H.

    2001-10-01

    Microhollow cathode discharges (MHCDs) are non-equilibrium, high-pressure gas discharges between perforated electrodes separated by a dielectric layer. Typical dimensions for the electrode foil thickness and hole diameter are 100 μm. Direct current experiments in xenon, argon, neon, helium, argon fluoride, and xenon chloride [1,2] have been performed. The excimer efficiency varies between 1 % and 9 %. Pulsed operation allowed us to increase the current from 8 mA (dc) to approximately 80 mA (pulsed with a pulse width of 700 μs), limited by the onset of instabilities. The total excimer power was found to increase linearly with current, however, the radiant emittance and efficiency stayed constant. Reducing the pulse duration into the nanosecond range allowed us to increase the current into the ampere range. The maximum measured excimer power was 2.75 W per microdischarge. The maximum radiant emittance was 15 W/cm^2 and the efficiency reached values of 20 %. This effect is assumed to be due to non-equilibrium electron heating in the high-pressure plasma [3]. This work was supported by the National Science Foundation under grant # CTS0078618. 1. Karl H. Schoenbach, Ahmed El-Habachi, Mohamed M. Moselhy, Wenhui Shi, and Robert H. Stark, Physics of Plasmas 7, 2186 (2000). 2. P. Kurunczi, J. Lopez, H. Shah, and K. Becker, Int. J. Mass Spectrom. 205, 277 (2001). 3. Robert H. Stark and Karl H. Schoenbach, J. Appl. Phys. 89, 3568 (2001).

  7. Concentration, temperature, and density in a hydrogen-air flame by excimer-induced Raman scattering

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.; Bowling, John M.; Pitz, Robert W.

    1988-01-01

    Single-pulse, vibrational Raman scattering (VRS) is an attractive laser diagnostic for the study of supersonic hydrogen-air combustion. The VRS technique gives a complete thermodynamic description of the gas mixture at a point in the reacting flow. Single-pulse, vibrational Raman scattering can simultaneously provide independent measurements of density, temperature, and concentration of each major species (H2, H2O, O2 and N2) in a hydrogen/air turbulent combustor. Also the pressure can be calculated using the ideal gas law. However, single-pulse VRS systems in current use for measurement of turbulent combustion have a number of shortcomings when applied to supersonic flows: (1) slow repetition rate (1 to 5 Hz), (2) poor spatial resolution (0.5x0.3x0.3 cu mm), and (3) marginal time resolution. Most of these shortcomings are due to the use of visible wavelength flash-lamp pumped dye lasers. The advent of UV excimer laser allows the possibility of dramatic improvements in the single-pulse, vibrational Raman scattering. The excimer based VRS probe will greatly improve repetition rate (100 to 500 Hz), spatial resolution (0.1x0.1x0.1 cu mm) and time resolution (30ns). These improvements result from the lower divergence of the UV excimer, higher repetition rate, and the increased Raman cross-sections (15 to 20 times higher) at ultra-violet (UV) wavelengths. With this increased capability, single-pulse vibrational Raman scattering promises to be an ideal non-intrusive probe for the study of hypersonic propulsion flows.

  8. Generation of intense excimer radiation from high-pressure hollow cathode discharges

    SciTech Connect

    El-Habachi, A.; Schoenbach, K.H.

    1998-08-01

    By reducing the diameter of the cathode opening in a hollow cathode discharge geometry to values on the order of 100 {mu}m, we were able to operate these discharges in noble gases in a direct current mode up to atmospheric pressure. High-pressure discharges in xenon were found to be strong sources of excimer radiation. Highest intensities at a wavelength of 172 nm were obtained at a pressure of 400 Torr. At this pressure, the vacuum ultraviolet (VUV) radiant power of a single discharge operating at a forward voltage of 220 V and currents exceeding 2 mA reaches values between 6{percent} and 9{percent} of the input electrical power. The possibility to form arrays of these discharges allows the generation of flat panel VUV lamps with radiant emittances exceeding 50 W/cm{sup 2}. {copyright} {ital 1998 American Institute of Physics.}

  9. Radiation resistance of quartz glass for VUV discharge lamps

    NASA Astrophysics Data System (ADS)

    Schreiber, A.; Kühn, B.; Arnold, E.; Schilling, F.-J.; Witzke, H.-D.

    2005-09-01

    Electrically-fused quartz glass, flame-fused quartz glass and plasma-fused quartz glass as well as synthetic fused silica samples were irradiated stepwise with a high energy Xe barrier discharge excimer lamp at 172 nm. VUV spectra were measured before and after every irradiation step. The results show that the VUV transmittance and the resistance against high energy radiation strongly depend on the quartz glass type, as well as on the thermal pretreatment of the quartz glass samples. In electrically-fused and plasma-fused quartz glass the VUV transmission decreases by the formation of oxygen deficiency and E' centres with absorption bands at 163 nm and 215 nm. Best irradiation resistance is found in synthetic fused silica and in thermally treated flame-fused quartz glass. Photoluminescence spectra measured under excitation with a KrF excimer laser before and after irradiation indicate fundamental differences in the SiO2 network structure of the different quartz glass types. Whereas a poor radiation resistance correlates with a blue photoluminescence band at 390 nm, the photoluminescence of flame-fused quartz glass changes from blue to green by a thermal treatment which is correlated with a significant improvement of radiation resistance. A simplified model is presented referring to hydride and oxygen deficiency centres as precursors to colour centre formation in different types of quartz glass.

  10. Physics of Incandescent Lamp Burnout

    NASA Astrophysics Data System (ADS)

    Gluck, Paul; King, John

    2008-01-01

    Incandescent lamps with tungsten filaments have been in use for about a century while being gradually replaced by fluorescent lamps; in another generation both will quite probably be largely replaced by light-emitting diodes. Incandescent lamps (simply called lamps in what follows) burn out after a lifetime that depends mostly on the temperature of the filament and hence the applied voltage. A full-term project (about 100 hours) on lamp burnout was carried out by two students in 1965 and has been briefly described. Many aspects of the physics of lamps have been dealt with in articles that have appeared in this journal, in the American Journal of Physics, and in Physics Education.2,3

  11. Corneal haze induced by excimer laser photoablation in rabbits is reduced by preserved human amniotic membrane graft

    NASA Astrophysics Data System (ADS)

    Wang, Ming X.; Gray, Trevor; Prabhasawat, Pinnita; Ma, Xiong; Culbertson, William; Forster, Richard; Hanna, Khalil; Tseng, Scheffer C. G.

    1998-06-01

    We conducted a study to determine if preserved human amniotic membrane can reduce corneal haze induced by excimer laser photoablation. Excimer photoablation was performed bilaterally on 40 New Zealand white rabbits with a 6 mm ablation zone and 120 micrometer depth (PTK) using the VISX Star. One eye was randomly covered with a preserved human amniotic membrane and secured using four interrupted 10 - 0 nylon sutures; the other eye served as control. The amniotic membranes were removed at one week, and the corneal haze was graded with a slit-lamp biomicroscopy by three masked corneal specialists (WC, KH and RF) biweekly for the ensuing 12 weeks. Histology and in situ TUNEL staining (for fragmented DNA as an index for apoptosis) was performed at days 1, 3 and 7 and at 12 weeks. One week after excimer photoablation, the amniotic membrane-covered corneas showed more anterior stromal edema, which resolved at the second week. A consistent grading of organized reticular corneal haze was noted among the three masked observers. Such corneal haze peaked at the seventh week in both groups. The amniotic membrane-covered group showed statistically significant less corneal haze (0.50 plus or minus 0.15) than the control groups (1.25 plus or minus 0.35) (p less than 0.001). The amniotic membrane-covered corneas had less inflammatory response at days 1 and 3, showing nearly nil DNA fragmentation on keratocytes on the ablated anterior stromal and less stromal fibroblast activation. There is less altered epithelial cell morphology and less epithelial hyperplasia at 1 week in these amniotic membrane-treated eyes. We concluded from this study that amniotic membrane matrix is effective in reducing corneal haze induced by excimer photoablation in rabbits and may have clinical applications.

  12. Human excimer laser corneal surgery: preliminary report.

    PubMed Central

    L'Esperance, F A; Taylor, D M; Del Pero, R A; Roberts, A; Gigstad, J; Stokes, M T; Warner, J W; Telfair, W B; Martin, C A; Yoder, P R

    1988-01-01

    The first human trial utilizing the argon fluoride excimer laser at 193 nm to produce a superficial keratectomy in ten human eyes has been described with the histopathological evaluation of four eyes and the longer gross appearance of six eyes at intervals extending to 10 months post-excimer laser treatment. The process of laser superficial keratectomy has proved to be one of the promising areas of surgical intervention for reconstructive or refractive keratoplasty in the future. Intensive investigations need to be undertaken on the corneal wound healing process following laser ablation as well as the nature, and long-term stability of the corneal excisions or induced refractive corrections. It is essential that the optimal laser parameters be established for the various refractive corrections and other corneal surgical techniques, and that pathophysiologic and histopathologic changes that have been induced by the excimer laser-corneal tissue interaction in animals and humans be critically and extensively analyzed. Images FIGURE 1 FIGURE 19 A FIGURE 19 B FIGURE 20 A FIGURE 20 B FIGURE 21 A FIGURE 21 B FIGURE 22 A FIGURE 22 B FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 FIGURE 27 FIGURE 28 FIGURE 29 A FIGURE 29 B FIGURE 29 C FIGURE 29 D FIGURE 30 A FIGURE 30 B FIGURE 31 A FIGURE 31 B FIGURE 32 FIGURE 33 FIGURE 34 FIGURE 35 FIGURE 36 FIGURE 37 A FIGURE 37 B FIGURE 37 C FIGURE 38 A FIGURE 38 B FIGURE 39 A FIGURE 39 B FIGURE 39 C FIGURE 40 A FIGURE 40 B PMID:2979049

  13. Compact fluorescent lamps, LED lamps and harmonic distortion

    NASA Astrophysics Data System (ADS)

    Franco, A. M. R.; Debatin, R. M.; Cotia, F. C. G.; Silva, M. V. M.; Ribeiro, R. S.; Zampilis, R. R. N.

    2015-01-01

    The aim of this paper is to evaluate the harmonic distortion in the current waveform of Compact Fluorescent Lamps (CFL) and Lamps Lighting Emitting Diode (LED). For this, we analysed the power factor, voltage waveform, current waveform, total harmonic distortion (THD) and active power consumed.

  14. High brightness microwave lamp

    DOEpatents

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  15. Inductive tuners for microwave driven discharge lamps

    DOEpatents

    Simpson, James E.

    1999-01-01

    An RF powered electrodeless lamp utilizing an inductive tuner in the waveguide which couples the RF power to the lamp cavity, for reducing reflected RF power and causing the lamp to operate efficiently.

  16. Inductive tuners for microwave driven discharge lamps

    SciTech Connect

    Simpson, J.E.

    1999-11-02

    An RF powered electrodeless lamp utilizing an inductive tuner in the waveguide which couples the RF power to the lamp cavity, for reducing reflected RF power and causing the lamp to operate efficiently.

  17. Laser desorption lamp ionization source for ion trap mass spectrometry.

    PubMed

    Wu, Qinghao; Zare, Richard N

    2015-01-01

    A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three-dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds. PMID:25601688

  18. Excimer laser annealing for low-voltage power MOSFET

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Mazzamuto, Fulvio; Huet, Karim

    2016-08-01

    Excimer laser annealing of lumped beam was performed to form the P-base junction for high-performance low-voltage-power MOSFET. An equivalent shallow-junction structure for the P-base junction with a uniform impurity distribution is realized by adopting excimer laser annealing (ELA). The impurity distribution in the P-base junction can be controlled precisely by the irradiated pulse energy density and the number of shots of excimer laser. High impurity activation for the shallow junction has been confirmed in the melted phase. The application of the laser annealing technology in the fabrication process of a practical low-voltage trench gate MOSFET was also examined.

  19. Evaluation of GOES encoder lamps

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Helmold, N.

    1983-01-01

    Aging characteristics and life expectancies of flight quality, tungsten filament, encoder lamps are similar to those of 'commercial' grade gas filled lamps of similar construction, filament material and filament temperature. The aging and final failure by filament burnout are caused by single crystal growth over large portions of the filament with the concomitant development of facets and notches resulting in reduction of cross section and mechanical weakening of the filament. The life expectancy of presently produced lamps is about one year at their nominal operating voltage of five volts dc. At 4.5 volts, it is about two years. These life times are considerably shorter, and the degradation rates of lamp current and light flux are considerably higher, than were observed in the laboratory and in orbit on lamps of the same type manufactured more than a decade ago. It is speculated that the filaments of these earlier lamps contained a crystallization retarding dopant, possibly thorium oxide. To obtain the desired life expectancy of or = to four years in present lamps, operating voltages of or = to four volts dc would be required.

  20. Transparent ceramic lamp envelope materials

    NASA Astrophysics Data System (ADS)

    Wei, G. C.

    2005-09-01

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  1. Custom blending of lamp phosphors

    NASA Technical Reports Server (NTRS)

    Klemm, R. E.

    1978-01-01

    Spectral output of fluorescent lamps can be precisely adjusted by using computer-assisted analysis for custom blending lamp phosphors. With technique, spectrum of main bank of lamps is measured and stored in computer memory along with emission characteristics of commonly available phosphors. Computer then calculates ratio of green and blue intensities for each phosphor according to manufacturer's specifications and plots them as coordinates on graph. Same ratios are calculated for measured spectrum. Once proper mix is determined, it is applied as coating to fluorescent tubing.

  2. Ignition by excimer laser photolysis of ozone

    SciTech Connect

    Lucas, D.; Dunn-Rankin, D.; Hom, K.; Brown, N.J.

    1987-08-01

    The authors have ignited mixtures of hydrogen, oxygen, and ozone in closed cells with 248 nm radiation from a KrF excimer laser. Ozone, the only significant absorber in this system, absorbs a single photon and produces oxygen atoms which initiate combustion. A discretized, time-dependent Beer's law model is used to demonstrate that the radical concentration immediately after photolysis is a function of laser power, ozone concentration, focal length, and separation between the lens and reactions cell. Spark schlieren photographs are used to visualize the ignition events and identify the ignition sites. The effects of equivalence ratio, pressure, and the initial gas temperature on the minimum ozone concentration needed to produce ignition are presented, and only the initial temperature has a significant effect.

  3. Eurolaser. High power excimer laser: Optical crystals

    NASA Astrophysics Data System (ADS)

    Gaenswein, Bernhard

    1987-09-01

    The crystals used in excimer lasers because of their excellent optical properties in the ultra violet spectrum are described. The crystals are fluorides of the alkaline earth metals magnesium, calcium and barium and the alkaline fluorides of lithium and sodium. It is possible to grow optical monocrystals of these compounds up to weights of 15 kg with a diameter of 180 mm. Some problems develop in growing crystals larger than this. To do so greater plants and improved automatic temperature monitoring and regulation are required. Special tools are needed for handling such large and heavy monocrystals. Understanding of the interaction between laser radiation and crystal must be improved upon in order to meet all the requirements to be placed on optical components in the future.

  4. Multi-lamp laser pumping cavity

    SciTech Connect

    Kuppenheimer, J.D. Jr.

    1987-07-21

    An optically pumped laser comprises: A. a cylindrical laser rod having a longitudinal central rod axis; B. cylindrical lamps for optically pumping the laser rod. The lamps have longitudinal central lamp axes parallel to the rod axis. The lamps being so located with respect to each other and to the laser rod as to define in cross section a base line associated with each lamp and extending between the rod axis and the lamp axis of the associated lamp. The base lines being equal in length and equiangularly spaced; and C. a reflector wall consisting essentially of first and second wall sections associated with each lamp, the cross sections of the first and second wall sections associated with a given lamp essentially following first and second curves extending from a lamp cusp associated with the given lamp to second and first rod cusps, respectively, associated with the given lamp. The first and second curves consist of the loci of points to which the sums of the distances, exterior to the laser rod and the given lamp, from first and second rod starting points, respectively, associated with the given lamp and from first and second lamp starting points, respectively, on the given lamp equal a fixed quantity.

  5. [Glycosaminoglycans in subepithelial opacity after excimer laser keratectomy].

    PubMed

    Nakayasu, K; Gotoh, T; Ishikawa, T; Kanai, A

    1996-05-01

    We evaluated histochemically the characteristics of glycosaminoglycans and proteoglycans in the corneal subepithelial opacity after excimer laser keratectomy on rabbit corneas. We also performed the same evaluations on the cornea after mechanical keratectomy. Twenty days after the operations, the area immediately subjacent to the epithelium showed strong staining with toluidine blue, alcian blue, and colloidal iron. However, after treatment with chondroitinase ABC or chondroitinase AC, alcian blue staining in this area decreased dramatically. Antilarge proteoglycan antibody also reacted strongly in this area. Histochemical and immunohistochemical examination of the cornea where mechanical keratectomy was done showed basically similar findings with the cornea of excimer laser keratectomy. These results suggest that large-molecula proteoglycans with chondroitine sulfate side chains become localized in the subepithelial area after two different kinds of keratectomies. We presume from histochemical and immunohistochemical observations that the subepithelial opacity observed after excimer laser keratectomy is not a special reaction to excimer laser but simply a corneal scar formed after stromal resection.

  6. Permanent excimer superstructures by supramolecular networking of metal quantum clusters

    NASA Astrophysics Data System (ADS)

    Santiago-Gonzalez, Beatriz; Monguzzi, Angelo; Azpiroz, Jon Mikel; Prato, Mirko; Erratico, Silvia; Campione, Marcello; Lorenzi, Roberto; Pedrini, Jacopo; Santambrogio, Carlo; Torrente, Yvan; De Angelis, Filippo; Meinardi, Francesco; Brovelli, Sergio

    2016-08-01

    Excimers are evanescent quasi-particles that typically form during collisional intermolecular interactions and exist exclusively for their excited-state lifetime. We exploited the distinctive structure of metal quantum clusters to fabricate permanent excimer-like colloidal superstructures made of ground-state noninteracting gold cores, held together by a network of hydrogen bonds between their capping ligands. This previously unknown aggregation state of matter, studied through spectroscopic experiments and ab initio calculations, conveys the photophysics of excimers into stable nanoparticles, which overcome the intrinsic limitation of excimers in single-particle applications—that is, their nearly zero formation probability in ultra-diluted solutions. In vitro experiments demonstrate the suitability of the superstructures as nonresonant intracellular probes and further reveal their ability to scavenge reactive oxygen species, which enhances their potential as anticytotoxic agents for biomedical applications.

  7. LAMP Observes the LCROSS Plume

    NASA Video Gallery

    This video shows LAMP’s view of the LCROSS plume. The first half of the animation shows the LAMP viewport scanning across the horizon, passing through the plume, and moving on. The second half of...

  8. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Requirements for lamps other than head lamps. 393.25 Section 393.25 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... Wiring § 393.25 Requirements for lamps other than head lamps. (a) Mounting. All lamps shall be...

  9. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Requirements for lamps other than head lamps. 393.25 Section 393.25 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... Wiring § 393.25 Requirements for lamps other than head lamps. (a) Mounting. All lamps shall be...

  10. 10 CFR 429.27 - General service fluorescent lamps, general service incandescent lamps, and incandescent reflector...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false General service fluorescent lamps, general service... EQUIPMENT Certification § 429.27 General service fluorescent lamps, general service incandescent lamps, and... § 429.11 are applicable to general service fluorescent lamps, general service incandescent lamps...

  11. 10 CFR 429.27 - General service fluorescent lamps, general service incandescent lamps, and incandescent reflector...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false General service fluorescent lamps, general service... EQUIPMENT Certification § 429.27 General service fluorescent lamps, general service incandescent lamps, and... § 429.11 are applicable to general service fluorescent lamps, general service incandescent lamps...

  12. 10 CFR 429.27 - General service fluorescent lamps, general service incandescent lamps, and incandescent reflector...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false General service fluorescent lamps, general service... EQUIPMENT Certification § 429.27 General service fluorescent lamps, general service incandescent lamps, and... § 429.11 are applicable to general service fluorescent lamps, general service incandescent lamps...

  13. Pyrene Excimer Signaling Molecular Beacons for Probing Nucleic Acids

    PubMed Central

    Conlon, Patrick; Yang, Chaoyong James; Wu, Yanrong; Chen, Yan; Martinez, Karen; Kim, Youngmi; Stevens, Nathan; Marti, Angel A.; Jockusch, Steffen

    2008-01-01

    Molecular beacon DNA probes, containing one to four pyrene monomers on the 5′ end and the quencher DABCYL on the 3′ end, were engineered and employed for real-time probing of DNA sequences. In the absence of a target sequence, the multiple-pyrene labeled molecular beacons (MBs) assumed a stem-closed conformation resulting in quenching of the pyrene excimer fluorescence. In the presence of target, the beacons switched to a stem-open conformation which separated the pyrene label from the quencher molecule and generated an excimer emission signal proportional to the target concentration. Steady-state fluorescence assays resulted in a sub-nanomolar limit of detection in buffer, while time-resolved signaling enabled low-nanomolar target detection in cell growth media. It was found that the excimer emission intensity could be scaled by increasing the number of pyrene monomers conjugated to the 5′ terminal. Each additional pyrene monomer resulted in substantial increases in the excimer emission intensities, quantum yields, and excited-state lifetimes of the hybridized MBs. The long fluorescence lifetime (~40 ns), large Stokes shift (130 nm), and tunable intensity of the excimer make this multiple-pyrene moiety a useful alternative to traditional fluorophore labeling in nucleic acid probes. In addition, this excimer complex serves as an efficient FRET donor for red-emitting fluorophores, such as TMR, for further extending the Stokes shift of the fluorescent complex. PMID:18078339

  14. ArF Excimer Emission from Microhollow Cathode Discharges

    NASA Astrophysics Data System (ADS)

    Shi, Wenhui; El-Habachi, Ahmed; Schoenbach, Karl H.

    1999-10-01

    Microhollow cathode discharges (MHCD) in Ar and Xe have been shown to emit excimer radiation at 128 nm and 172 nm, respectively, with an efficiency (in case of Xe) of approximately 8range towards longer wavelengths we have studied MHCD in argon fluoride mixtures (1to generate stable dc discharges in flowing gas at pressures ranging from 100 Torr to atmospheric pressure. The discharge voltage was approximately 500 V, the discharge current in these experiments was 10 mA. Whereas the spectrum at 300 Torr was dominated by atomic lines, at 700 Torr only excimer radiation peaking at 193 nm is observed in the spectral range from 120 nm to 300 nm. Absolute measurements of ArF excimer emission provided a value of approximately 3efficiency, or a total optical power of the excimer radiation of 150 mW. The peak power at 193 nm is 17 mW/nm. This is higher by a factor of 2 to 3, compared to xenon excimer emitters, due to the small FWHM of the 193nm ArF line (4 nm) compared to that of the Xe excimer line (24 nm). [1] Karl H. Schenbach, Ahmed El-Habachi, Wenhui Shi, and Marco Ciocca, Plasma Source Science and Technology 6, 468 (1997). [2] Ahmed El-Habachi and Karl H. Schoenbach, Appl.Phys.Lett. 73, 885 (1998). This work was funded by the DOE, Advanced Energy Division, and by the National Science Foundation.

  15. Photoassociation and photoinduced charge transfer in bridged diaryl compounds. 6. Intramolecular triplet excimers of dicarbazolylalkanes and their comparison to an intermolecular triplet excimer of carbazole

    SciTech Connect

    Cai, J.; Lim, E.C. )

    1994-03-10

    A time-resolved emission study of intramolecular triplet excimer formation has been carried out for dicarbazolylmethane (DCM) and dicarbazolylpropane (DCP) in fluid solution at room temperature. The triplet excimer formation was deduced from the comparison of the phosphorescence with the corresponding emission from the intermolecular triplet excimer of carbazole. It has been found that whereas the triplet excimer formation in DCP is evident in both polar and nonpolar solvents, the excimer formation in DCM is observed only in polar solvents at longer delay times. The result indicates that the conformation favored by the triplet excimer is more readily attainable in DCP than in DCM. The enhancement of the triplet excimer formation by polar solvent, which is also observed for carbazole, suggests that the triplet excimers are stabilized (at least in part) by charge resonance interactions. Comparison of the temporal characteristics of the normal delayed fluorescence of DCP with those of the corresponding excimer phosphorescence suggests that the delayed fluorescence at long delay times is produced by bimolecular annihilation of the intramolecular triplet excimers. This in turn implies that the excited singlet-state species produced by bimolecular annihilation of the triplet excimers is unstable and rearranges into monomeric (i.e., non-interacting) conformation prior to its decay by emission of radiation. 16 refs., 7 figs.

  16. The Excimer Laser: Its Impact on Science and Industry

    NASA Astrophysics Data System (ADS)

    Basting, Dirk

    2010-03-01

    After the laser was demonstrated in 1960, 15 years were required to develop a practical method for extending laser emission into the UV: the Excimer laser. This historical review will describe the challenges with the new medium and provide an insight into the technological achievements. In the transition from Science to Industry it will be shown how start-ups successfully commercialized laboratory prototypes. The pioneers in this rapidly expanding field will be identified and the influence of government-funded research as well as the role of venture capital will be discussed. In scientific applications, the fields of photochemistry and material research were particularly stimulated by the advent of a reliable UV light source. Numerous industrial applications and worldwide research in novel applications were fueled In the early and mid 80's by progress in excimer laser performance and technology. The discovery of ablative photocomposition of polymer materials by Srinivasan at IBM opened the door to a multitude of important excimer applications. Micromachining with extreme precision with an excimer laser enabled the success of the inkjet printer business. Biological materials such as the human cornea can also be ``machined'' at 193nm, as proposed in 1983 by Trokel and Srinivasan. This provided the foundation of a new medical technology and an industry relying on the excimer laser to perform refractive surgery to correct vision Today, by far the largest use of the excimer laser is in photolithography to manufacture semiconductor chips, an application discovered by Jain at IBM in the early 80's. Moore's law of shrinking the size of the structure to multiply the number of transistors on a chip could not have held true for so long without the deep UV excimer laser as a light source. The presentation will conclude with comments on the most recent applications and latest market trends.

  17. The excimer laser: science fiction fantasy or practical tool?

    PubMed

    Biamino, Giancarlo

    2004-12-01

    Nearly 20 years ago, in vitro experiments left no doubt about the fact that laser light can ablate atherosclerotic plaque. The initial enthusiastic results with the technology, particularly in coronary arteries, were followed by reports showing unacceptably high restenosis and complication rates. These poor results were due to the premature application of an underdeveloped technology, a lack of understanding of laser/tissue interaction, and the use of incorrect lasing techniques. Consequently, and without discrimination, all lasers were banned from the catheterization laboratories for nearly a decade. Technological enhancements of the excimer laser, combined with refined catheter lasing techniques, resulted in greater debulking of atherosclerotic material in long superficial femoral artery occlusions. These results triggered the application of the excimer laser technique as an atherectomy tool in more complex lesions below the knee. The multicenter Laser Atherectomy for Critical Ischemia study clearly demonstrated that the excimer laser technology resulted in limb salvage rates >90% in patients with critical limb ischemia (CLI). Furthermore, new clinical results indicate that the excimer laser is very effective in dissolving thrombotic obstructions, redirecting this technology to the coronary field. The results of the excimer laser in CLI validate the role of the cool laser in treating complex peripheral vascular disease. The results suggest a larger indication for this technology and support a more aggressive use of these interventional techniques in the treatment of this large patient cohort. However, all lasers are not equally effective in debulking atherosclerotic material. Only the athermic process associated with the excimer laser produces a safe and effective endovascular ablation of obstructive atherosclerotic and/or thrombotic material. The appropriate and safe utilization of the equipment and lasing techniques, combined with correct indications and

  18. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  19. Ignition by excimer laser photolysis of ozone

    SciTech Connect

    Lucas, D.; Dunn-Rankin, D.; Hom, K.; Brown, N.J.

    1986-10-01

    We have ignited mixtures of hydrogen, oxygen, and ozone in closed cells with 248 nm radiation from a KrF excimer laser. Ozone, the only significant absorber in this system, absorbs a single photon and produces oxygen atoms which initiate combustion. A discretized, time-dependent Beer's law model is used to demonstrate that the radical concentration immediately after photolysis is a function of laser power, ozone concentration, focal length, and separation between the lens and reaction cell. Spark schileren photographs are used to visualize the ignition events and identify the ignition sites. The effects of equivalence ratio, pressure, and the initial gas temperature on the minimum ozone concentration needed to produce ignition are presented, and only the initial temperature has a significant effect. Modelling studies of the ignition process aid in the interpretation of the experimental results, and show that the ignition we observe is not due solely to thermal effects, but is strongly dependent on the number and type of radicals present initially after photolysis. Ignition using other hydocarbons as fuels was also demonstrated. 30 refs., 9 figs. 2 tabs.

  20. Ignition by excimer laser photolysis of ozone

    SciTech Connect

    Lucas, D.; Dunn-Rankin, D.; Hom, K.; Brown, N.J.

    1986-01-01

    The authors have ignited mixtures of hydrogen, oxygen, and ozone in closed cells with 248 nm radiation from a KrF excimer laser. Ozone, the only significant absorber in this system, absorbs a single photon and produces oxygen atoms which initiate combustion. A discretized, time-dependent Beer's law model is used to demonstrate that the radical concentration immediately after photolysis is a function of laser power, ozone concentration, focal length, and separation between the lens and reaction cell. Spark schlieren photographs are used to visualize the ignition events and identify the ignition sites. The effects of equivalence ratio, pressure, and the initial gas temperature on the minimum ozone concentration needed to produce ignition are presented, and only the initial temperature has a significant effect. Modelling studies of the igniton process aid in the interpretation of the experimental results, and show that the ignition is not due solely to thermal effects, but is strongly dependent on the number and type of radicals present initially after photolysis. Ignition using other hydrocarbons as fuels was also demonstrated.

  1. Excimer laser surface modification: Process and properties

    SciTech Connect

    Jervis, T.R.; Nastasi, M.; Hirvonen, J.P.

    1992-12-01

    Surface modification can improve materials for structural, tribological, and corrosion applications. Excimer laser light has been shown to provide a rapid means of modifying surfaces through heat treating, surface zone refining, and mixing. Laser pulses at modest power levels can easily melt the surfaces of many materials. Mixing within the molten layer or with the gas ambient may occur, if thermodynamically allowed, followed by rapid solidification. The high temperatures allow the system to overcome kinetic barriers found in some ion mixing experiments. Alternatively, surface zone refinement may result from repeated melting-solidification cycles. Ultraviolet laser light couples energy efficiently to the surface of metallic and ceramic materials. The nature of the modification that follows depends on the properties of the surface and substrate materials. Alloying from both gas and predeposited layer sources has been observed in metals, semiconductors, and ceramics as has surface enrichment of Cr by zone refinement of stainless steel. Rapid solidification after melting often results in the formation of nonequilibrium phases, including amorphous materials. Improved surface properties, including tribology and corrosion resistance, are observed in these materials.

  2. Excimer laser deposition of hydroxyapatite thin films.

    PubMed

    Singh, R K; Qian, F; Nagabushnam, V; Damodaran, R; Moudgil, B M

    1994-06-01

    We have demonstrated a new and simple in situ method to fabricate adherent and dense hydroxyapatite (HA) coatings at relatively low deposition temperatures (500-600 degrees C). Under optimum processing conditions, the HA coatings possess a nominal Ca:P ratio of 1.65 and exhibit a fully crystalline single-phase structure. This deposition technique is based on the application of a pulsed excimer laser (wavelength lambda = 248 nm, pulse duration tau = 25 x 10(-9) s) to ablate a dense stoichiometric HA target. The HA target was prepared by standard ceramic coprecipitation techniques followed by cold pressing and further sintering at 1200 degrees C in air. High substrate temperatures (> or = 600 degrees C) during film deposition led to phosphorus deficient coatings because of re-evaporation of phosphorus during the deposition process. The stabilization of various calcium and phosphorus phases in the film was controlled by a number of process parameters such as substrate temperature, chamber pressure and presence of water vapour in the chamber. This is particularly advantageous for production of HA coatings, since it is known that HA decomposes at high temperatures due to the uncertainty in the starting material stoichiometry. Rutherford backscattering spectrometry, energy dispersive X-ray analysis, transmission electron microscopy, scanning electron microscopy and X-ray diffraction techniques were employed to determine the structure-processing relationships. Qualitative scratch measurements were conducted to determine the adhesion strength of the films.

  3. Neutron detection by scintillation of noble-gas excimers

    NASA Astrophysics Data System (ADS)

    McComb, Jacob Collin

    Neutron detection is a technique essential to homeland security, nuclear reactor instrumentation, neutron diffraction science, oil-well logging, particle physics and radiation safety. The current shortage of helium-3, the neutron absorber used in most gas-filled proportional counters, has created a strong incentive to develop alternate methods of neutron detection. Excimer-based neutron detection (END) provides an alternative with many attractive properties. Like proportional counters, END relies on the conversion of a neutron into energetic charged particles, through an exothermic capture reaction with a neutron absorbing nucleus (10B, 6Li, 3He). As charged particles from these reactions lose energy in a surrounding gas, they cause electron excitation and ionization. Whereas most gas-filled detectors collect ionized charge to form a signal, END depends on the formation of diatomic noble-gas excimers (Ar*2, Kr*2,Xe* 2) . Upon decaying, excimers emit far-ultraviolet (FUV) photons, which may be collected by a photomultiplier tube or other photon detector. This phenomenon provides a means of neutron detection with a number of advantages over traditional methods. This thesis investigates excimer scintillation yield from the heavy noble gases following the boron-neutron capture reaction in 10B thin-film targets. Additionally, the thesis examines noble-gas excimer lifetimes with relationship to gas type and gas pressure. Experimental data were collected both at the National Institute of Standards and Technology (NIST) Center for Neutron Research, and on a newly developed neutron beamline at the Maryland University Training Reactor. The components of the experiment were calibrated at NIST and the University of Maryland, using FUV synchrotron radiation, neutron imaging, and foil activation techniques, among others. Computer modeling was employed to simulate charged-particle transport and excimer photon emission within the experimental apparatus. The observed excimer

  4. Pyrene excimer signaling molecular beacons for probing nucleic acids.

    PubMed

    Conlon, Patrick; Yang, Chaoyong James; Wu, Yanrong; Chen, Yan; Martinez, Karen; Kim, Youngmi; Stevens, Nathan; Marti, Angel A; Jockusch, Steffen; Turro, Nicholas J; Tan, Weihong

    2008-01-01

    Molecular beacon DNA probes, containing 1-4 pyrene monomers on the 5' end and the quencher DABCYL on the 3' end, were engineered and employed for real-time probing of DNA sequences. In the absence of a target sequence, the multiple-pyrene labeled molecular beacons (MBs) assumed a stem-closed conformation resulting in quenching of the pyrene excimer fluorescence. In the presence of target, the beacons switched to a stem-open conformation, which separated the pyrene label from the quencher molecule and generated an excimer emission signal proportional to the target concentration. Steady-state fluorescence assays resulted in a subnanomolar limit of detection in buffer, whereas time-resolved signaling enabled low-nanomolar target detection in cell-growth media. It was found that the excimer emission intensity could be scaled by increasing the number of pyrene monomers conjugated to the 5' terminal. Each additional pyrene monomer resulted in substantial increases in the excimer emission intensities, quantum yields, and excited-state lifetimes of the hybridized MBs. The long fluorescence lifetime ( approximately 40 ns), large Stokes shift (130 nm), and tunable intensity of the excimer make this multiple-pyrene moiety a useful alternative to traditional fluorophore labeling in nucleic acid probes.

  5. Once upon a time: a hearty glance over the 30-year history of excimer lasers

    NASA Astrophysics Data System (ADS)

    Makarov, Maxime K.

    2005-03-01

    The genesis of excimer lasers is reviewed. Contrary to previous retrospectives, the present analysis is restricted only to physics and technics of discharge pumped Rare-Gas Halides (RGH) excimer lasers. Some side factors like politics or human personality, interfering the development of excimer technology, are also discussed.

  6. LAMP: Peering Into the Lunar Dark

    NASA Video Gallery

    The Lyman-Alpha Mapping Project (LAMP) is an instrument on NASA’s Lunar Reconnaissance Orbiter mission to map and study the moon. LAMP is a spectrograph that images the ultraviolet region of the...

  7. Microlens fabrication using an excimer laser and the diaphragm method.

    PubMed

    Chen, Tao; Wang, Tong; Wang, Zhen; Zuo, Tiechuan; Wu, Jian; Liu, Shibing

    2009-06-01

    A new microlens fabrication method using an excimer laser is described in this paper. This method is based on the light vignetting effect. An excimer laser beam was propagated through two groups of fly's-eye lens arrays and separated by the groups, after which divergent beams were formed. When the beams were sectioned by a mask and passed through a circular diaphragm, a vignetting effect was produced relative to an excimer laser mask projection image lens. Then the irradiating intensity at the processing plane varied from the beam center to its margin. This intensity difference in the transverse distribution would result in microlens curvature forming. This diaphragm method has the extinct advantage of short production time, few steps and easy setup construction.

  8. Overview on the high power excimer laser technology

    NASA Astrophysics Data System (ADS)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  9. Excimer laser processing of backside-illuminated CCDS

    NASA Technical Reports Server (NTRS)

    Russell, S. D.

    1993-01-01

    An excimer laser is used to activate previously implanted dopants on the backside of a backside-illuminated CCD. The controlled ion implantation of the backside and subsequent thin layer heating and recrystallization by the short wavelength pulsed excimer laser simultaneously activates the dopant and anneals out implant damage. This improves the dark current response, repairs defective pixels and improves spectral response. This process heats a very thin layer of the material to high temperatures on a nanosecond time scale while the bulk of the delicate CCD substrate remains at low temperature. Excimer laser processing backside-illuminated CCD's enables salvage and utilization of otherwise nonfunctional components by bringing their dark current response to within an acceptable range. This process is particularly useful for solid state imaging detectors used in commercial, scientific and government applications requiring a wide spectral response and low light level detection.

  10. New 223-nm excimer laser surgical system for photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Bagaev, Sergei N.; Razhev, Alexander M.; Zhupikov, Andrey A.

    1999-02-01

    The using of KrCl (223 nm) excimer laser in ophthalmic devices for Photorefractive Keratectomy (PRK) and phototherapeutic Keratectomy (PTK) is offered. The structure and functions of a new surgical UV ophthalmic laser systems Medilex using ArF (193 nm) or KrCl (223 nm) excimer laser for corneal surgery are presented. The systems Medilex with the new optical delivery system is used for photoablative reprofiling of the cornea to correct refraction errors (myopia, hyperopia and astigmatism) and to treat a corneal pathologies. The use of the 223 nanometer laser is proposed to have advantages over the 193 nanometer laser. The results of application of the ophthalmic excimer laser systems Medilex for treatment of myopia are presented.

  11. Xenon excimer emission from pulsed microhollow cathode discharges

    NASA Astrophysics Data System (ADS)

    Moselhy, M.; Shi, W.; Stark, R. H.; Schoenbach, K. H.

    2001-08-01

    By applying electrical pulses of 20 ns duration to xenon microplasmas, generated by direct current microhollow cathode discharges, we were able to increase the xenon excimer emission by more than an order of magnitude over direct current discharge excimer emission. For pulsed voltages in excess of 500 V, the optical power at 172 nm was found to increase exponentially with voltage. Largest values obtained were 2.75 W of vacuum-ultraviolet optical power emitted from a single microhollow cathode discharge in 400 Torr xenon with a 750 V pulse applied to a discharge. Highest radiative emittance was 15.2 W/cm2. The efficiency for excimer emission was found to increase linearly with pulsed voltages above 500 V reaching values of 20% at 750 V.

  12. Thermal analysis of a linear infrared lamp

    SciTech Connect

    Nakos, J.T.

    1982-01-01

    A theoretical and experimental analysis of an infrared lamp is presented based on radiant heat transfer theory. The analysis is performed on a specific type of linear lamp which has a coiled tungsten filament surrounded by a fused quartz envelope. The purpose of the study was to model the lamp thermally, not electrically, to arrive at a better understanding of the operation of the lamp.

  13. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: J586—Stop Lamps for Use on Motor Vehicles Less Than 2032 mm in Overall Width, March 2000; J2261 Stop... these documents.) (f) Stop lamp operation. The stop lamps on each vehicle shall be activated upon application of the service brakes. The stop lamps are not required to be activated when the emergency...

  14. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all...

  15. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all...

  16. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all...

  17. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all...

  18. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all...

  19. Development and clinical application of excimer laser corneal shaping

    NASA Astrophysics Data System (ADS)

    Homolka, Peter; Biowski, R.; Husinsky, Wolfgang; Blaas, C.; Simader, Ch.; Baumgartner, I. Gosch; Kaminski, Stefan; Grabner, G.

    1998-06-01

    Excimer Laser Corneal Shaping using an 193 nm Excimer Laser (ArF) provides a possibility for the fabrication of corneal transplants of various forms for various clinical applications such as (epi-)keratoplasty. Another area of application envisioned is the production of 'living contact lenses' for epikeratophakia. A device for lathing and perforating corneal donor tissue with a scanning laser beam is presented. A new ablation algorithm (Optimized Scanning Laser Ablation) was recently developed and increased the quality of lenticules and donor buttons considerably.

  20. Evaluating fluorescent lamp options under EPACT

    SciTech Connect

    Palko, E.

    1994-02-01

    The National Energy Policy Act (EPACT) sweeps the full spectrum of energy use in all forms, prescribing minimum efficiency standards for energy-consuming products. Notable among the products covered under EPACT are general-purpose fluorescent lamps commonly used to illuminate manufacturing, storage, laboratory, and office areas of industrial plants. Some specialty fluorescent lamp categories are exempt from the provisions of EPACT. Included in this specialty group are plant-growth, reflectorized or aperture, colored, reprographic, cold-temperature, and impact-resistant lamps. EPACT decrees moratorium dates on the manufacture of many types of lamps in common use in plants today. Lamps proscribed by EPACT, and their effective manufacturing cutoff dates, are given in the accompanying section, Fluorescent Lamps Outlawed Under EPACT. Noncomplying lamps, however, are permitted to remain in service, and can continue to be sold until stock is depleted. This paper explains the provisions of the Act.

  1. Spontaneous and induced emission of XeCl* excimer molecules under pumping of Xe – CCl{sub 4} and Ar – Xe – CCl{sub 4} gas mixtures with a low CCl{sub 4} content by fast electrons and uranium fission fragments

    SciTech Connect

    Mis'kevich, A I; Guo, J; Dyuzhov, Yu A

    2013-11-30

    The spontaneous and induced emission of XeCl* excimer molecules upon excitation of Xe – CCl{sub 4} and Ar – Xe – CCl{sub 4} gas mixtures with a low CCl{sub 4} content by high-energy charged particles [a pulsed high-energy electron beam and products of neutron nuclear reaction {sup 235}U(n, f)] has been experimentally studied. The electron energy was 150 keV, and the pump current pulse duration and amplitude were 5 ns and 5 A, respectively. The energy of fission fragments did not exceed 100 MeV, the duration of the neutron pump pulse was 200 μs, and the specific power contribution to the gas was about 300 W cm{sup -3}. Electron beam pumping in a cell 4 cm long with a cavity having an output mirror transmittance of 2.7% gives rise to lasing on the B → X transition in the XeCl* molecule (λ = 308 nm) with a gain α = 0.0085 cm{sup -1} and fluorescence efficiency η ≈ 10%. Pumping by fission fragments in a 250-cm-long cell with a cavity formed by a highly reflecting mirror and a quartz window implements amplified spontaneous emission (ASE) with an output power of 40 – 50 kW sr{sup -1} and a base ASE pulse duration of ∼200 ms. .

  2. Novel technique for high-quality microstructuring with excimer lasers

    NASA Astrophysics Data System (ADS)

    Roth, Stephan; Geiger, Manfred

    2000-06-01

    Laser micromachining has become increasingly established in many microsystem applications during the past years. These new fields occasion higher demands on the quality of micromachiend devices combined with high resolution and working velocity. Due to the disadvantages of conventional excimer laser processing, a novel technique is required to meet these demands. The main problems of conventional excimer laser machining are the redeposition of ablated material on the irradiated work piece and the formation of a strong melting phase especially for metals. These difficulties greatly reduce the applicability of excimer laser material processing for manufacturing microsystems technology components. By applying a thin water film to the substrate surface, the redeposition of ablated material can be completely avoided, which results in a better quality of the microstructures. Usage of a water film, however, has proved to lead to a marked reduction of the ablation rate for the examined materials - ceramics and stainless steel. Therefore, one of the objectives of future research will be to raise the ablation rate in order to render excimer laser processing more interesting economically. Adding alcoholic additives, among others, has improved the wetting of the liquid films on the surface. The effect of the modified chemical composition of the liquid on ablation rate and structure quality for various materials is presented here.

  3. Analysis of glycosaminoglycans in rabbit cornea after excimer laser keratectomy

    PubMed Central

    Kato, T.; Nakayasu, K.; Ikegami, K.; Obara, T.; Kanayama, T.; Kanai, A.

    1999-01-01

    BACKGROUND/AIMS—The biochemical basis for the development of subepithelial opacity of the cornea after excimer laser keratectomy has yet to be fully defined. The aim of this study was to evaluate the alterations of glycosaminoglycans (GAGs) after excimer laser keratectomy.
METHODS—Rabbit corneas were harvested on days 5, 10, 20, and 30 after excimer laser photoablation. The amount of main disaccharide units was determined by high performance liquid chromatography (HPLC). In addition, immunohistochemical studies were performed on corneal sections 20 days after the ablation.
RESULTS—The concentrations of ΔDi-0S at 5 and 10 days were significantly lower than before the ablation. ΔDi-6S showed a significant increase 5 days after the ablation but ΔDi-4S did not show any significant change. There was a significant increase in ΔDi-HA at 20 and 30 days after ablation. In immunohistochemistry, the positive staining for ΔDi-6S and hyaluronic acid was observed in the subepithelial region. These immunohistochemical results were well correlated with the HPLC findings.
CONCLUSIONS—The increase in chondroitin-6 sulphate and hyaluronic acid may be related to corneal subepithelial opacity after excimer laser keratectomy.

 PMID:10216064

  4. Advances in 193 nm excimer lasers for mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  5. A survey of advanced excimer optical imaging and lithography

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Suwa, Kyoichi

    1998-11-01

    The first item discussed in this paper is to estimate the future trend regarding minimum geometry and the optical parameters, such as NA and wavelength. Simulations based on aerial images are performed for the estimation. The resolution limit is defined as a minimum feature size which retains practical depth of focus (DOF). Pattern geometry is classified into two categories, which are dense lines and isolated lines. Available wavelengths are assumed to be KrF excimer laser (λ=248 nm), ArF excimer laser (λ=193 nm) and F2 excimer laser (λ=157 nm). Based upon the simulation results, the resolution limit is estimated for each geometry and each wavelength. The second item is to survey ArF optics. At present, the ArF excimer laser is regarded as one of the most promising candidates as a next-generation light source. Discussions are ranging over some critical issues. The lifetime of ArF optics supposedly limited by the radiation compaction of silica glass is estimated in comparison with KrF optics. Availability of calcium fluoride (CaF2) is also discussed. As a designing issue, a comparative study is made about the optical configuration, dioptric or catadioptric. In the end, our resist-based performance is shown.

  6. Observation and stimulation of biological processes using excimer lasers

    NASA Astrophysics Data System (ADS)

    Greulich, Karl-Otto; Wolfrum, Juergen M.

    1990-06-01

    Examples are given for the application o f high power excimer lasers in spectroscopy and processing of biological material. An excimer-laser pumped dye laser serves as light source for a pulsed UV Raman spectrometer which allows resonant Raman studies on nucleic acids. Experiments on the pH induced double helix formation of poly adenylic acid are described. By combining the excimer laser with a distributed feedback dye laser and a streak camera, a picosecond UV fluorescence spectrometer is built up .Tyrosine fluorescence lifetimes of selected tryptophan free peptides with up to 9 amino acids can be explained in a surprisingly simple way: only the directly neighbouring amino acid on the C-terminal side and only a few amino acids on the N-terminal side have an influence on the fluorecscence lifetime of these peptides. Besides spectroscopic applications, the excimer laser serves as light source for processing of biological material. For medical applications , high power UV Laser light has to be transmitted through light guides. A tapered light guide transmitting more than GW/cm2 is described. Microprocessing of biological material with accuracies of a few hundred nanometers can be performed when an excimer pumped dye laser is coupled into a microscope .The resulting UV laser microbeam can be used to introduce foreign genetic material into plant cells, tissues and subcellular organelles such as mitochondria and chioroplasts. Selected pairs of different cells can be fused in the UV laser microbeam under total microscopic control. Finally, one can microdissect human chromosomes and isolate DNA probes for the analysis of human disease.

  7. Temperature measurement on and inside lamps

    SciTech Connect

    Wallin, B.

    1994-12-31

    The use of thermography within the lamp manufacturing industry can improve the quality of many types of lamps ranging from normal incandescent lamps to highly specialized lamps for sports arenas, airports or small lamps for cars. There is a strong demand for more light for the same energy input. Specialized lamps for all possible purposes are developed. But it also forces the lamp manufacturers to utilize the available materials to their extremes. The exact control of the temperatures inside or on the lamp shell has therefore become increasingly necessary as temperatures in lamps can be rather extreme. In plasma lamps for example, the plasma can have a temperature of 6,000 C, the bulk around 700 C and the electrodes inside the bulb can have temperatures in excess of 2,000 C. Thermographic methods have shown their applicability for a large number of measurement cases. Some of these methods and measurement cases are described. As these applications put very special demands on the measurement equipment, these demands are explained in more detail.

  8. Slit lamp photography: The basics.

    PubMed

    Painter, Rosalyn

    2015-06-01

    This introductory paper is designed to explain the basics of slit lamp photography with the use of illustrations and sample images. The two primary methods of illumination are described with reference to positioning and magnification, as well as the use of background illumination. Filters and dye usage are described along with a brief explanation of associated imaging techniques. Further explanation of techniques will be looked at in subsequent articles, this paper aims to give an over view rather than an in-depth discussion of techniques.

  9. Lamp bulb with integral reflector

    DOEpatents

    Levin, Izrail; Shanks, Bruce; Sumner, Thomas L.

    2001-01-01

    An improved electrodeless discharge lamp bulb includes an integral ceramic reflector as a portion of the bulb envelope. The bulb envelope further includes two pieces, a reflector portion or segment is cast quartz ceramic and a light transmissive portion is a clear fused silica. In one embodiment, the cast quartz ceramic segment includes heat sink fins or stubs providing an increased outside surface area to dissipate internal heat. In another embodiment, the quartz ceramic segment includes an outside surface fused to eliminate gas permeation by polishing.

  10. Formation of pyrene excimers in mesoporous ormosil thin films for visual detection of nitro-explosives.

    PubMed

    Beyazkilic, Pinar; Yildirim, Adem; Bayindir, Mehmet

    2014-04-01

    We report the preparation of mesoporous thin films with bright pyrene excimer emission and their application in visual and rapid detection of nitroaromatic explosive vapors. The fluorescent films were produced by physically encapsulating pyrene molecules in the organically modified silica (ormosil) networks which were prepared via a facile template-free sol-gel method. Formation and stability of pyrene excimer emission were investigated in both porous and nonporous ormosil thin films. Excimer emission was significantly brighter and excimer formation ability was more stable in porous films compared to nonporous films. Rapid and selective quenching was observed in the excimer emission against vapors of nitroaromatic molecules; trinitrotoluene (TNT), dinitrotoluene (DNT), and nitrobenzene (NB). Fluorescence quenching of the films can be easily observed under UV light, enabling the naked-eye detection of nitro-explosives. Furthermore, excimer emission signal can be recovered after quenching and the films can be reused at least five times.

  11. 10 CFR 429.40 - Candelabra base incandescent lamps and intermediate base incandescent lamps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Candelabra base incandescent lamps and intermediate base....40 Candelabra base incandescent lamps and intermediate base incandescent lamps. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to candelabra...

  12. 10 CFR 429.40 - Candelabra base incandescent lamps and intermediate base incandescent lamps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Candelabra base incandescent lamps and intermediate base....40 Candelabra base incandescent lamps and intermediate base incandescent lamps. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to candelabra...

  13. 10 CFR 429.40 - Candelabra base incandescent lamps and intermediate base incandescent lamps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Candelabra base incandescent lamps and intermediate base....40 Candelabra base incandescent lamps and intermediate base incandescent lamps. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to candelabra...

  14. Generation of strongly coupled plasmas by high power excimer laser

    NASA Astrophysics Data System (ADS)

    Zhu, Yongxiang; Liu, Jingru; Zhang, Yongsheng; Hu, Yun; Zhang, Jiyan; Zheng, Zhijian; Ye, Xisheng

    2013-05-01

    (ultraviolet). To generate strongly coupled plasmas (SCP) by high power excimer laser, an Au-CH-Al-CH target is used to make the Al sample reach the state of SCP, in which the Au layer transforms laser energy to X-ray that heating the sample by volume and the CH layers provides necessary constraints. With aid of the MULTI-1D code, we calculate the state of the Al sample and its relationship with peak intensity, width and wavelength of laser pulses. The calculated results suggest that an excimer laser with peak intensity of the magnitude of 1013W/cm2 and pulse width being 5ns - 10ns is suitable to generate SCP with the temperature being tens of eV and the density of electron being of the order of 1022/cm-3. Lasers with shorter wavelength, such as KrF laser, are preferable.

  15. Automated control of industrial-scale excimer lasers

    NASA Astrophysics Data System (ADS)

    Boardman, Allan D.; Hodgson, Elizabeth M.; Richardson, M. B.; Spence, A. J.; Wilson, A. C.

    1994-08-01

    This paper describes the design, development, and construction of an automated control system for high average power excimer lasers working in an industrial environment. The control system is based on a distributed network of transputers, each dealing with its own area of responsibility. This modular approach was chosen to provide maximum flexibility, allowing the control system to be optimized for particular lasers or special requirements. The development of monitoring and actuating equipment suitable for the unusual demands of an excimer laser is also an essential part of the overall project. Some of the monitoring equipment used is standard, while some has been designed and built at Salford. In particular, a 100 MHz bandwidth optical fiber current sensor has been developed to measure the discharge current. Communications between the sensors and the transputer network are almost entirely optical, with special circuits designed at Salford to convert standard sensor outputs into optical signals. Several different systems are used, according to the response time required.

  16. Excimer laser interaction with dentin of the human tooth

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Gilliam, Ruth L.; Baker, George R.

    1989-01-01

    The use an excimer laser produced many unusual conical structures within the dentin of the inner part of the human tooth. By varying the frequency of the laser one can disperse the energy and cause more bleeding in laser surgery, but not destroy the cells associated with the incision. Therefore, the healing process will virtually be without scarring. Whereas, using the infrared laser the blood loss would be less, but the healing process would tend to be longer because cells are being destroyed due to the cauterization effect of the laser. The question is, are these structures produced as an interaction with the laser or are they an intrinsic part of the structure. The effects of the laser interaction upon dentin was studied, and in using electron microscopy the interaction of the excimer laser upon the tooth dentin and other various biological tissue is more clearly understood.

  17. Triggering Excimer Lasers by Photoionization from Corona Discharges

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  18. Nebulae at keratoconus--the result after excimer laser removal.

    PubMed

    Fagerholm, P; Fitzsimmons, T; Ohman, L; Orndahl, M

    1993-12-01

    Ten patients underwent excimer laser ablation due to nebula formation at keratoconus. The nebulae interfered significantly with contact lens fit or wearing time. The mean follow-up time in these patients was 16.5 months. Following surgery all patients could be successfully fitted with a contact lens and thereby obtain good visual acuity. Furthermore, contact lens wearing time was 8 hours or more in all cases. In 2 patients the nebulae recurred but were successfully retreated. PMID:8154261

  19. Pulsed excimer laser processing for cost-effective solar cells

    NASA Technical Reports Server (NTRS)

    Wong, David C.

    1985-01-01

    The application of excimer laser in the fabrication of photovoltaic devices was investigated extensively. Processes included junction formation, laser assisted chemical vapor deposition metallization, and laser assisted chemical vapor deposition surface passivation. Results demonstrated that implementation of junction formation by laser annealing in production is feasible because of excellent control in junction depth and quality. Both metallization and surface passivation, however, were found impractical to be considered for manufacturing at this stage.

  20. Automatic alignment of double optical paths in excimer laser amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

    2013-05-01

    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  1. Excimer laser ophthalmic surgery: evaluation of a new technology.

    PubMed Central

    Infeld, D. A.; O'Shea, J. G.

    1998-01-01

    The aim of this article is to provide information and an overview of the potential risks and benefits of excimer laser surgery, a new and promising technique in ophthalmic surgery. Although this review concentrates on the use of the laser for refractive purposes, novel therapeutic techniques are also discussed. It is hoped that this will enable general practitioners, optometrists and physicians to provide appropriate advice and counselling for patients. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10211324

  2. Discharge lamp with reflective jacket

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Kipling, Kent

    2001-01-01

    A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

  3. Excimer emission from pulsed microhollow cathode discharges in xenon

    SciTech Connect

    Lee, B.-J.; Nam, S. H.; Rahaman, H.; Iberler, M.; Jacoby, J.; Frank, K.

    2013-12-15

    Direct current (dc) microhollow cathode discharge (MHCD) is an intense source for excimer radiation in vacuum ultraviolet at a wavelength of 172 nm in a high pressure xenon (Xe) gas. The concentration of precursors for the excimer formation, i.e., excited and ionized gas atoms, increases significantly by applying high voltage pulse onto the dc MHCD over the pulse duration range from 20 to 100 ns. The intensity of the excimer emission for the voltage pulse of 20 ns duration exceeds that of the emission intensity obtained from the same MHCD operated only in the dc mode, by one order of magnitude. In addition, the emission intensity increases by one order of magnitude over the pulse duration range from 20 to 100 ns. It can be assumed that the emission intensity of the MHCD source increases as long as the duration of the high voltage pulse is shorter than the electron relaxation time. For the high voltage pulse of 100 ns duration, the emission intensity has been found to be further enhanced by a factor of three when the gas pressure is increased from 200 to 800 mbar.

  4. Excimer emission from pulsed microhollow cathode discharges in xenon

    NASA Astrophysics Data System (ADS)

    Lee, B.-J.; Rahaman, H.; Nam, S. H.; Iberler, M.; Jacoby, J.; Frank, K.

    2013-12-01

    Direct current (dc) microhollow cathode discharge (MHCD) is an intense source for excimer radiation in vacuum ultraviolet at a wavelength of 172 nm in a high pressure xenon (Xe) gas. The concentration of precursors for the excimer formation, i.e., excited and ionized gas atoms, increases significantly by applying high voltage pulse onto the dc MHCD over the pulse duration range from 20 to 100 ns. The intensity of the excimer emission for the voltage pulse of 20 ns duration exceeds that of the emission intensity obtained from the same MHCD operated only in the dc mode, by one order of magnitude. In addition, the emission intensity increases by one order of magnitude over the pulse duration range from 20 to 100 ns. It can be assumed that the emission intensity of the MHCD source increases as long as the duration of the high voltage pulse is shorter than the electron relaxation time. For the high voltage pulse of 100 ns duration, the emission intensity has been found to be further enhanced by a factor of three when the gas pressure is increased from 200 to 800 mbar.

  5. Laser excited fluorescence in the cesium-xenon excimer and the cesium dimer

    NASA Technical Reports Server (NTRS)

    Exton, R. J.; Snow, W. L.; Hillard, M. E.

    1978-01-01

    Argon ion laser lines are used to excite fluorescence in a mixture of cesium and xenon. Excimer band fluorescence is observed at higher pressures (about 1 atm) while at lower pressures (several torr) a diffuse fluorescence due to the cesium dimer is observed whose character changes with exciting wavelength. The excimer fluorescence is shown to be directly related to the location of the exciting wavelength within previously measured Cs/Xe line shapes. This fact suggests that the excimer systems may be efficiently pumped through these line shapes. Qualitative energy-level schemes are proposed to explain the observations in both the excimer and dimer systems.

  6. Loop-Mediated Isothermal Amplification (LAMP) Signature Identification Software

    2009-03-17

    This is an extendable open-source Loop-mediated isothermal AMPlification (LAMP) signature design program called LAVA (LAMP Assay Versatile Analysis). LAVA was created in response to limitations of existing LAMP signature programs.

  7. 49 CFR 393.23 - Power supply for lamps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.23 Power supply for lamps. All required lamps must be powered by the electrical system of the motor vehicle with...

  8. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification....

  9. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification....

  10. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification....

  11. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification....

  12. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification....

  13. Today`s fluorescent lamp choice

    SciTech Connect

    Foszcz, J.L.

    1997-10-01

    The choice of fluorescent lamps to replace the old standbys presents an opportunity to improve the quality of lighting, make a significant reduction in electrical bills, and contribute to improvement of the environment. The paper discusses the new electronic ballasts available today, the Green Light program to encourage US corporations to install energy efficient lighting in their facilities, and disposal of fluorescent lamps.

  14. Primer of School Lighting Lamps and Maintenance.

    ERIC Educational Resources Information Center

    Allphin, Willard

    The basic principles of the most commonly used lamp types and the circuitry which makes them operate are discussed. The two objectives of this book are to serve as a--(1) guide to economical lighting, and (2) a permanent reference source for troubleshooting. Areas dealt with include--(1) lighting fundamentals, (2) incandescent lamps, (3)…

  15. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp....

  16. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp....

  17. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp....

  18. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp....

  19. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp....

  20. Optimized design of LED plant lamp

    NASA Astrophysics Data System (ADS)

    Chen, Jian-sheng; Cai, Ruhai; Zhao, Yunyun; Zhao, Fuli; Yang, Bowen

    2014-12-01

    In order to fabricate the optimized LED plant lamp we demonstrated an optical spectral exploration. According to the mechanism of higher plant photosynthesis process and the spectral analysis we demonstrate an optical design of the LED plant lamp. Furthermore we built two kins of prototypes of the LED plant lamps which are suitable for the photosynthesis of higher green vegetables. Based on the simulation of the lamp box of the different alignment of the plants we carried out the growing experiment of green vegetable and obtain the optimized light illumination as well as the spectral profile. The results show that only blue and red light are efficient for the green leave vegetables. Our work is undoubtedly helpful for the LED plant lamping design and manufacture.

  1. Portable lamp with dynamically controlled lighting distribution

    SciTech Connect

    Siminovitch, Michael J.; Page, Erik R.

    2001-01-01

    A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) arranged vertically with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum insures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. The lighting system may be designed for the home, hospitality, office or other environments.

  2. Optimization of white polychromatic semiconductor lamps

    NASA Astrophysics Data System (ADS)

    Žukauskas, A.; Vaicekauskas, R.; Ivanauskas, F.; Gaska, R.; Shur, M. S.

    2002-01-01

    A stochastic method of optimization of a white-light source that relies on additive color mixing of the emissions from colored light-emitting diodes (LEDs) was developed. The method allows for finding the optimal wavelengths of LEDs in order to obtain the best possible trade off between luminous efficacy and the general color rendering index (CRI) of the white source for an arbitrary number of primary LEDs. Optimal solid-state lamps composed of two, three, four, and five different LEDs were analyzed. We show that a dichromatic LED lamp can only provide high efficacy with a general CRI close to zero, whereas trichromatic and quadrichromatic lamps are able to cover the entire range of reasonable general CRI values. The optimization of quintichromatic LED lamps and lamps with a higher number of primary color LEDs yields a negligible benefit in improving CRI but provides for quasicontinuous spectra that might be required for special lighting needs.

  3. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    NASA Astrophysics Data System (ADS)

    de Vos, Marc; Torah, Russel; Tudor, John

    2016-04-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps.

  4. Tungsten wire for incandescent lamps

    SciTech Connect

    Walter, J.L.; Briant, C.L. )

    1990-09-01

    Tungsten wire for incandescent lamp filaments must operate at high temperatures and for long times. To meet these requirements, the grain morphology of the wire must be controlled to reduce the propensity for grain boundary sliding. The morphology is a function of the distribution of very small pockets of potassium in the wire and the mechanical processing from ingot to wire. The behavior of the filament is directly related to the grain morphology. This paper describes the mechanism by which the potassium is incorporated into and distributed in the ingot. The elongation and spheroidization of the bubbles during hot rolling and swaging is also examined and related to the grain morphology of wire. Some indications of the relationship between grain morphology and filament behavior are also given.

  5. Intensified phototherapy using daylight fluorescent lamps.

    PubMed

    De Carvalho, M; De Carvalho, D; Trzmielina, S; Lopes, J M; Hansen, T W

    1999-07-01

    Jaundice is a common reason for therapeutic intervention in newborn infants and phototherapy is effective treatment if enough light energy is delivered to a skin surface area of sufficient size. Narrow spectrum blue light is superior to white light, but in developing countries fluorescent blue lamps often have to be imported and are much more expensive than white lamps. We developed a phototherapy unit in which seven daylight fluorescent tubes are placed immediately under the floor of a transparent plexiglass crib. The efficacy of this unit, delivering approximately 19 microW/cm2/nm, was compared with that of two conventional phototherapy units using overhead lamps placed 35 cm above the infants. One unit used daylight fluorescent tubes and delivered approximately 4 microW/cm2/nm, the other unit used special blue fluorescent tubes and delivered approximately 22 microW/cm2/nm. Fifty-one infants were included in the analyses, all of them breastfed on demand. Serum bilirubin levels were determined spectrophotometrically at 0, 12 and 24 h. The decrement in serum bilirubin concentrations was significantly greater in infants undergoing phototherapy with the new device or with special blue lamps compared to conventional overhead daylight lamps (p < 0.001 both at 12 and at 24 h). We conclude that highly efficient phototherapy may be delivered with daylight fluorescent lamps placed in very close proximity to the patient. Thus, lack of access to expensive imported special blue lamps does not preclude delivery of effective phototherapy in developing countries.

  6. Compact fluorescent lamp applications in luxury hotels

    SciTech Connect

    Gilleskie, R.J.

    1996-01-01

    Over the past several years, consumers, lighting designers, and energy conservationists have paid increasing attention to the special characteristics of compact fluorescent lamps (CFLs). CFLs can typically be used to replace incandescent lamps of three to four times their own wattage, and their color rendering indices (CRIs)-80 to 85-make them virtually indistinguishable from incandescents. The typical 10,0000-hour life of a CFL often makes savings in labor its most desirable feature when compared to a shorter-lived incandescent lamp.

  7. Lamp system for uniform semiconductor wafer heating

    SciTech Connect

    Zapata, Luis E.; Hackel, Lloyd

    2001-01-01

    A lamp system with a very soft high-intensity output is provided over a large area by water cooling a long-arc lamp inside a diffuse reflector of polytetrafluorethylene (PTFE) and titanium dioxide (TiO.sub.2) white pigment. The water is kept clean and pure by a one micron particulate filter and an activated charcoal/ultraviolet irradiation system that circulates and de-ionizes and biologically sterilizes the coolant water at all times, even when the long-arc lamp is off.

  8. Theoretical investigation of perylene dimers and excimers and their signatures in X-ray diffraction.

    PubMed

    Velardez, Gustavo Fabián; Lemke, Henrik T; Breiby, Dag W; Nielsen, Martin M; Møller, Klaus Braagaard; Henriksen, Niels E

    2008-09-01

    The structures of the ground and excimer states of perylene pairs are calculated [using density functional theory (DFT) and time-dependent DFT techniques] in a free as well as a crystal environment, and their spectroscopic properties are studied for the most stable configurations. The vertical transition energies for the absorption and emission bands are obtained, and they are in good agreement with experimental data. In these calculations, up to six excited states are considered. With the calculated structures of the ground and excimer states, the scattering factors are analyzed as a function of the concentration of excimers in a crystal. The intensity of the 110, 005, and 0 10 0 reflections are found to be fairly sensitive to the presence of excimers in the crystal. The finite (nanosecond) lifetime of the excimer may make it possible to observe this state using time-resolved X-ray diffraction techniques. PMID:18690671

  9. Excimer laser superficial keratectomy for proud nebulae in keratoconus.

    PubMed Central

    Moodaley, L; Liu, C; Woodward, E G; O'Brart, D; Muir, M K; Buckley, R

    1994-01-01

    Contact lens intolerance in keratoconus may be due to the formation of a proud nebula at or near the apex of the cone. Excimer laser superficial keratectomy was performed as an outpatients with proud nebulae as treatment patients with proud nebulae as treatment for their contact lens intolerance. The mean period of contact lens wear before the development of intolerance was 13.4 years (range 2 to 27 years). Following the development of intolerance, three patients abandoned contact lens wear in the affected eye while the remainder experienced a reduction in comfortable wearing time (mean = 3.75 hours; range: 0-14 hours). All patients had good potential Snellen visual acuity with a contact lens of 6/9 (nine eyes) and 6/12 (one eye). The proud nebulae were directly ablated with a 193 nm ArF excimer laser using a 1 mm diameter beam. Between 100-150 pulses were sufficient to ablate the raised area. Patients experienced no pain during the procedure and reported minimal discomfort postoperatively. In all cases flattening of the proud nebulae was achieved. Seven patients were able to resume regular contact lens wear (mean wearing time = 10.17 hours; range 8 to 16 hours). In three patients, resumption of contact lens wear was unsuccessful because of cone steepness. All patients achieved postoperative Snellen visual acuity of 6/12 or better with a contact lens. Four patients experienced a loss of one line in Snellen acuity. The mean follow up period was 8.3 months (range 2 to 17 months). Excimer laser superficial keratectomy is a useful technique for the treatment of contact lens intolerance caused by proud nebulae in patients with keratoconus. Penetrating keratoplasty is thus avoided. Images PMID:8060928

  10. Excimer laser superficial keratectomy for proud nebulae in keratoconus.

    PubMed

    Moodaley, L; Liu, C; Woodward, E G; O'Brart, D; Muir, M K; Buckley, R

    1994-06-01

    Contact lens intolerance in keratoconus may be due to the formation of a proud nebula at or near the apex of the cone. Excimer laser superficial keratectomy was performed as an outpatients with proud nebulae as treatment patients with proud nebulae as treatment for their contact lens intolerance. The mean period of contact lens wear before the development of intolerance was 13.4 years (range 2 to 27 years). Following the development of intolerance, three patients abandoned contact lens wear in the affected eye while the remainder experienced a reduction in comfortable wearing time (mean = 3.75 hours; range: 0-14 hours). All patients had good potential Snellen visual acuity with a contact lens of 6/9 (nine eyes) and 6/12 (one eye). The proud nebulae were directly ablated with a 193 nm ArF excimer laser using a 1 mm diameter beam. Between 100-150 pulses were sufficient to ablate the raised area. Patients experienced no pain during the procedure and reported minimal discomfort postoperatively. In all cases flattening of the proud nebulae was achieved. Seven patients were able to resume regular contact lens wear (mean wearing time = 10.17 hours; range 8 to 16 hours). In three patients, resumption of contact lens wear was unsuccessful because of cone steepness. All patients achieved postoperative Snellen visual acuity of 6/12 or better with a contact lens. Four patients experienced a loss of one line in Snellen acuity. The mean follow up period was 8.3 months (range 2 to 17 months). Excimer laser superficial keratectomy is a useful technique for the treatment of contact lens intolerance caused by proud nebulae in patients with keratoconus. Penetrating keratoplasty is thus avoided. PMID:8060928

  11. Excimer laser system for atmospheric remote sensing of ozone

    NASA Technical Reports Server (NTRS)

    Tan, K. O.; Ogura, G. T.; Mckee, T. J.; Mcgee, T.

    1987-01-01

    A high-power narrow-linewidth XeCl excimer laser system developed for use by NASA in the remote sensing of atmospheric ozone is described. The laser system is designed for incorporation in a DIAL lidar utilizing stimulated Raman generation for the reference wavelength and sophisticated data averaging techniques. The laser output has a linewidth of 0.002 nm and a beam divergence of 0.15 mrad (FWHM). The laser was operated over a six-hour period with a constant average power of 18 W and a wavelength stable to within + or - 0.0006 nm.

  12. Research of the quenched dye lasers pumped by excimer lasers

    SciTech Connect

    Xue Shaolin; Lou Qihong

    1996-12-31

    In this paper, the quenched dye lasers pumped by XeCl and KrF excimer lasers were investigated theoretically and experimentally. Dye laser pulses with duration of 0.8 ns for XeCl laser pumping and 2 ns for KrF laser pumping were obtained. The dye Rhodamine 6G dissolved in methyl was used as the active medium in the quenched dye laser. When the pump laser was KrF and the active medium was Coumarin 498 the quenched dye laser emitted pulse with duration of about 2 ns. The characteristics of the quenched dye laser was also investigated in detail.

  13. Evaluation Of An Organosilicon Photoresist For Excimer Laser Lithography

    NASA Astrophysics Data System (ADS)

    McFarland, Janet C.; Orvek, Kevin J.; Ditmer, Gary A.

    1988-01-01

    An organosilicon resist was investigated for use in deep UV laser lithography. The resist was based on 0-trimethylsilyl poly(vinylphenol) resin. It was found to exhibit transparency at 248nm comparable to the transparency of g-line light in conventional novolak resists, making single-layer resist processing possible. The results of single-layer and bi-layer patterning on an excimer laser contact printer are presented. The bi-layer processing uses oxygen reactive ion etching (RIE) for transfer of a top layer pattern into a thick underlying novolak layer.

  14. Surface Structuring of CFRP by using Modern Excimer Laser Sources

    NASA Astrophysics Data System (ADS)

    Fischer, F.; Kreling, S.; Dilger, K.

    High demands for lightweight construction can be attained by the use of carbon fiber-reinforced plastics (CFRP) including one major challenge: the joining technology. Adhesive bonding may allow an increased utilization of the lightweight potential of CFRP. But this technology requires a surface pre-treatment because of residues of release agents. This paper describes surface pre-treatment of CFRP specimens by using modern excimer laser and the mechanical tests that compare the achieved strength to manually abraded ones. The laser process is suitable for achieving cohesive failure within the adhesive and bond strengths in the magnitude of the abraded specimen.

  15. Excimer Emission from Pulsed Tandem Microhollow Cathode Discharges in Xenon

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Joon; Rahaman, Hasibur; Nam, Sang Hoon; Iberler, Marcus; Teske, Christian; Jacoby, Joachim; Frank, Klaus

    2012-05-01

    This paper describes an extension of a basic single microhollow cathode discharge (MHCD) to a tandem MHCD, i.e., two discharges in series from an anode-cathode-anode configuration. When a high-voltage pulse is superimposed with a direct current (DC) tandem MHCD, an intense excimer emission along the discharge axis in a high pressure xenon gas is generated which is two orders of magnitude higher than that of the DC tandem MHCD. In addition, the emission intensity increases to almost twice by increasing cathode thickness from 250 to 1000 µm. The emission is further enhanced by increasing the gas pressure from 400 to 800 mbar.

  16. CALiPER Retail Lamps Study 3

    SciTech Connect

    Royer, Michael P.; Beeson, Tracy A.

    2014-02-01

    The CALiPER program first began investigating LED lamps sold at retail stores in 2010, purchasing 33 products from eight retailers and covering six product categories. The findings revealed a fragmented marketplace, with large disparities in performance of different products, accuracy of manufacturer claims, and offerings from different retail outlets. Although there were some good products, looking back many would not be considered viable competitors to other available options, with too little lumen output, not high enough efficacy, or poor color quality. CALiPER took another look in late 2011purchasing 38 products of five different types from nine retailers and the improvement was marked. Performance was up; retailer claims were more accurate; and the price per lumen and price per unit efficacy were down, although the price per product had not changed much. Nonetheless, there was still plenty of room for improvement, with the performance of LED lamps not yet reaching that of well-established classes of conventional lamps (e.g., 75 W incandescent A19 lamps). Since the second retail lamp study was published in early 2012, there has been substantial progress in all aspects of LED lamps available from retailers. To document this progress, CALiPER again purchased a sample of lamps from retail stores 46 products in total, focusing on A19, PAR30, and MR16 lamps but instead of a random sample, sought to select products to answer specific hypotheses about performance. These hypotheses focused on expanding ranges of LED equivalency, the accuracy of lifetime claims, efficacy and price trends, as well as changes to product designs. Among other results, key findings include: There are now very good LED options to compete with 60 W, 75 W, and 100 W incandescent A19 lamps, and 75 W halogen PAR30 lamps. MR16 lamps have shown less progress, but there are now acceptable alternatives to 35 W, 12 V halogen MR16 lamps and 50 W, 120 V halogen MR16 lamps for some applications. Other

  17. An alternative lamp for fluorescence microscopy

    PubMed Central

    Brighton, W. D.; Grulich, R.

    1972-01-01

    There has been marked development in reagents, filters and microscope equipment for fluorescence microscopy and particularly for immunofluorescence studies. The use of a different and more efficient lamp for excitation of fluorochromes is now reported. PMID:4550854

  18. Low energy lamps and eye lens autofluorescence.

    PubMed

    Walsh, Glyn; Pearce, E Ian

    2010-10-01

    Tungsten filament lamps are rapidly being displaced from the market-place by compact fluorescent lamps. Although the colour temperature and total luminous output of a fluorescent lamp may be similar to that of an incandescent lamp, the output spectrum is very different. The peaks of the mercury vapour spectrum at 365.4nm (UV) and at 435.8nm (blue) are close to the peak fluorescence excitation wavelengths in the human lens, and it has been shown that such fluorescence can lower sensitivity to low contrast objects. This effect could also explain the reported preference for brown, red and yellow tinted lenses often reported by elderly patients, as these coincidentally block the ultraviolet and blue exciting wavelengths.

  19. LED lamp power management system and method

    DOEpatents

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  20. Spectral comparisons of sunlight and different lamps

    NASA Technical Reports Server (NTRS)

    Deitzer, Gerald

    1994-01-01

    The tables in this report were compiled to characterize the spectra of available lamp types and provide comparison to the spectra of sunlight. Table 1 reports the spectral distributions for various lamp sources and compares them to those measured for sunlight. Table 2 provides the amount of energy in Wm(exp -2) relative to the number of photons of PAR (photosynthetically active radiation) (400-700 nm) for each light source.

  1. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  2. Spectrocolorimetric control of ancient documents postablation with excimer lasers.

    PubMed

    Soares, O D; Miranda, R M; Costa, J L

    1999-10-20

    The application of excimer lasers in ablation, cleaning, and restoration for the recovery of paper and parchment manuscripts is a recently implemented technique. A report of the use of excimer lasers in a cleaning process by which mud was removed from Islamic papers and parchments is presented. It was found that, because of the close proximity of the binding energies of paper to paper and of paper to mud, it was difficult to maintain control of the ablation process. However, the substrate was not affected. Spectrocolorimetry was used as a technique to detect the effects of ablation on cleaned areas of the manuscripts in terms of change in color appearance and severity of aging postablation. The analysis was performed by comparison of treated and untreated areas. Mathematical modeling was developed to define a representative original color and a color-distribution parameter. Improvements in the measuring method were made to yield the required precision for evaluating differences in color produced by laser ablation and to follow the color evolution after ablation. Results show that the effects of restoration, aging, and the environmental conditions can be individually identified under certain conditions. The method has applications in other domains. PMID:18324157

  3. Spectrocolorimetric Control of Ancient Documents Postablation with Excimer Lasers

    NASA Astrophysics Data System (ADS)

    Soares, Olivério D. D.; Miranda, Rosa M.; Costa, José L. C.

    1999-10-01

    The application of excimer lasers in ablation, cleaning, and restoration for the recovery of paper and parchment manuscripts is a recently implemented technique. A report of the use of excimer lasers in a cleaning process by which mud was removed from Islamic papers and parchments is presented. It was found that, because of the close proximity of the binding energies of paper to paper and of paper to mud, it was difficult to maintain control of the ablation process. However, the substrate was not affected. Spectrocolorimetry was used as a technique to detect the effects of ablation on cleaned areas of the manuscripts in terms of change in color appearance and severity of aging postablation. The analysis was performed by comparison of treated and untreated areas. Mathematical modeling was developed to define a representative original color and a color-distribution parameter. Improvements in the measuring method were made to yield the required precision for evaluating differences in color produced by laser ablation and to follow the color evolution after ablation. Results show that the effects of restoration, aging, and the environmental conditions can be individually identified under certain conditions. The method has applications in other domains.

  4. Spectrocolorimetric control of ancient documents postablation with excimer lasers.

    PubMed

    Soares, O D; Miranda, R M; Costa, J L

    1999-10-20

    The application of excimer lasers in ablation, cleaning, and restoration for the recovery of paper and parchment manuscripts is a recently implemented technique. A report of the use of excimer lasers in a cleaning process by which mud was removed from Islamic papers and parchments is presented. It was found that, because of the close proximity of the binding energies of paper to paper and of paper to mud, it was difficult to maintain control of the ablation process. However, the substrate was not affected. Spectrocolorimetry was used as a technique to detect the effects of ablation on cleaned areas of the manuscripts in terms of change in color appearance and severity of aging postablation. The analysis was performed by comparison of treated and untreated areas. Mathematical modeling was developed to define a representative original color and a color-distribution parameter. Improvements in the measuring method were made to yield the required precision for evaluating differences in color produced by laser ablation and to follow the color evolution after ablation. Results show that the effects of restoration, aging, and the environmental conditions can be individually identified under certain conditions. The method has applications in other domains.

  5. Three years of clinical experiences on excimer laser angioplasty

    NASA Astrophysics Data System (ADS)

    Viligiardi, Riccardo; Galiberti, Sandra; Pini, Roberto; Salimbeni, Renzo

    1992-03-01

    We report here the experience of our multidisciplinary group that has been working since 1986 on excimer laser angioplasty. After having selected the excimer laser between the available sources because of the negligible lesions left on the residual tissue, we had the purpose to develop a suitable laser and catheter system. Neglecting here all the preliminary studies, we outline only a typical phenomenon related to the energy delivery and useful for the comprehension of the recanalization process. The energy emitted by every single fiber determines, under a certain threshold, independent recanalized channels in the plaque with residual flaps. At a higher energy level the overposition of the lobes, due to the intrinsic divergence, up to the recanalization in a single large channel. In our opinion this condition is crucial in the design of the catheters to obtain an optical instead of a mechanical recanalization. The biological experimentation conducted during the preliminary tests on human hearts obtained from transplants or cadavers, convinced us that the correct goal to pursue was unique laser angioplasty without the need for further balloon dilation.

  6. Solid sampling with 193-nm excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph

    2007-02-01

    Reproducible and sensitive elemental analysis of solid samples is a crucial task in areas of geology (e.g. microanalysis of fluid inclusions), material sciences, industrial quality control as well as in environmental, forensic and biological studies. To date the most versatile detection method is mass-spectroscopic multi-element analysis. In order to obtain reproducible results, this requires transferring the solid sample into the gas-phase while preserving the sample's stoichiometric composition. Laser ablation in combination with Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) is a proven powerful technique to meet the requirements for reliable solid sample analysis. The sample is laser ablated in an air-tight cell and the aerosol is carried by an inert gas to a micro-wave induced plasma where its constituents are atomized and ionized prior to mass analysis. The 193 nm excimer laser ablation, in particular, provides athermal sample ablation with very precise lateral ablation and controlled depth profiling. The high photon energy and beam homogeneity of the 193 nm excimer laser system avoids elemental fractionation and permits clean ablation of even transmissive solid materials such as carbonates, fluorites and pure quartz.

  7. Excimer laser modification of thin AlN films

    NASA Astrophysics Data System (ADS)

    Georgiev, D. G.; Rosenberger, L. W.; Danylyuk, Y. V.; Baird, R. J.; Newaz, G.; Shreve, G.; Auner, G.

    2005-08-01

    The potential of excimer laser micro-processing for surface modification of aluminum nitride (AlN) thin films was studied. Thin films of AlN were deposited by plasma-source molecular beam epitaxy (PSMBE) on silicon and sapphire substrates. These films were then exposed to different fluence levels of KrF ( λ = 248 nm) excimer laser radiation in an ambient air environment, and the changes in the film surface were studied by X-ray photoelectron spectroscopy, atomic force microscopy and optical spectrophotometry. The results show that there is a narrow range of laser fluences, just above 1.0 J/cm 2, within which mostly photochemical transformations of the film surface take place. These transformations consist of both oxidation and decomposition to metallic Al of the original film within a very thin sub-surface layer with thickness of several tens of nanometers. No changes were observed at fluences below 1.0 J/cm 2. Above a fluence of 1.0 J/cm 2, severe photomechanical damage consisting of film cracking and detachment was found to accompany the photochemical and photothermal changes in the film.

  8. Excimer laser ablation for spatially controlled protein patterns

    NASA Astrophysics Data System (ADS)

    Thissen, Helmut; Hayes, Jason P.; Kingshott, Peter; Johnson, Graham; Harvey, Erol C.; Griesser, Hans J.

    2001-11-01

    Two-dimensional control over the location of proteins on surfaces is desired for a number of applications including diagnostic tests and tissue engineered medical devices. Many of these applications require patterns of specific proteins that allow subsequent two-dimensionally controlled cell attachment. The ideal technique would allow the deposition of specific protein patterns in areas where cell attachment is required, with complete prevention of unspecific protein adsorption in areas where cells are not supposed to attach. In our study, collagen I was used as an example for an extracellular matrix protein known to support the attachment of bovine corneal epithelial cells. An allylamine plasma polymer was deposited on a silicon wafer substrate, followed by grafting of poly(ethylene oxide). Two-dimensional control over the surface chemistry was achieved using a 248 nm excimer laser. Results obtained by XPS and AFM show that the combination of extremely low-fouling surfaces with excimer laser ablation can be used effectively for the production of spatially controlled protein patterns with a resolution of less than 1 micrometers . Furthermore, it was shown that bovine corneal epithelial cell attachment followed exactly the created protein patterns. The presented method is an effective tool for a number of in vitro and in vivo applications.

  9. Excimer laser annealing to fabricate low cost solar cells

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The objective is to show whether or not pulsed excimer laser annealing (PELA) of ion-implanted junctions is a cost effective replacement for diffused junctions in fabricating crystalline silicon solar cells. The preliminary economic analysis completed shows that the use of PELA to fabricate both the front junction and back surface field (BSF) would cost approximately 35 cents per peak watt (Wp), compared to a cost of 15 cents/Wp for diffusion, aluminum BSF and an extra cleaning step in the baseline process. The cost advantage of the PELA process depends on improving the average cell efficiency from 14% to 16%, which would lower the overall cost of the module by about 15 cents/Wp. An optimized PELA process compatible with commercial production is to be developed, and increased cell efficiency with sufficient product for adequate statistical analysis demonstrated. An excimer laser annealing station was set-up and made operational. The first experiment used 248 nm radiation to anneal phosphorus implants in polished and texture-etched silicon.

  10. Development of over 300-watts average power excimer laser

    NASA Astrophysics Data System (ADS)

    Hirata, Kazuhiro; Kawamura, Joichi; Katou, Hiroyuki; Sajiki, Kazuaki; Okada, Makoto

    2004-05-01

    The high power excimer laser was developed. We have supplied the 240 watts (800 mJ, 300 Hz) average power excimer laser for industrial use, mainly for TFT LCD annealing. We are going to add the 300 watts (1 J, 300 Hz) average power laser for our line-up. This 300 watts new laser is based on the 240 watts laser, but improved some points. The electrodes size is longer and the electrical power circuit is reinforcement. Laser gas recipe is changed to be good for new system. In our test, we could oscillate over 300 watts average power operation. 310 watts servo operation is able to oscillate over 40 million pulses with less than 1.0 per cent for σ output stability. 330 watts servo operation is able to oscillate over 30 million pulses with almost less than 1.0 per cent for σ output stability. Experimental and theoretical studies of various parameters influencing the laser performance will be continued with further investigations and future improvements. We have confidence that it will be possible for this laser to produce higher power with long gas life.

  11. Pulsed Operation of Microhollow Cathode Discharge Excimer Sources

    NASA Astrophysics Data System (ADS)

    Moselhy, M.; El-Habachi, A.; Schoenbach, K. H.

    1999-10-01

    Spatially resolved measurements on DC microhollow cathode discharges showed that the average radiant emittance of the xenon excimer source increases superlinearly with pressure [1]. At a current of 3 mA and a pressure of 750 Torr, the radiant emittance is approximately 20 W/cm2. For DC operation the current was limited to 8 mA to avoid thermal damage. Pulsed operation at 700 microseconds pulse width allowed us to extend the current range to 80 mA before the discharge became unstable. Pulsing the discharge allowed us also to explore its temporal development and the current dependence of the radiative power at high currents. The results showed that the time to reach a steady-state is about 200 microseconds, independent of pressure and current, in the parameter range of up to 1 atm and 80 mA, respectively. For operation at 80 mA, and 200 V, at 250 Torr the electrical power is 16 W; the optical power, assuming the same efficiency as for DC operation (8linear dependence of the intensity on current allows to generate excimer point sources which can easily be controlled electrically over a wide optical power range. This work is supported by the U.S. Department of Energy (DoE), Advanced Energy Division, and the National Science Foundation (NSF). [1] A. El-Habachi, M. Moselhy and K. H. Schoenbach, this conference.

  12. Investigation of Pyrene Excimer formation in various manufacturing processes and ionic structures

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Nieh, Mu-Ping

    2013-03-01

    Electrospun pyrene (Py)/polystyrene/tetrabutylammonium hexafluorophosphate (TBAPF6) thin films can provide high-sensitivity and high-selectivity detection of nitro-aromatic explosives through fluorescence quenching of the Py excimers. However, we have found that the formation of Py excimers in Py/PS/TBAPF6 thin films depends greatly on the manufacturing processes. Our results indicate that high solvent vapor pressure promotes the Py excimer fluorescence, while high temperature (around or greater than Tg of the PS) has an opposite effect in absence of solvent - reducing the Py excimer fluorescence. Moreover, we have found that salts structure such as cation chain length, anion strength can significantly affect the formation of Py excimer both in solution and solid state, presumably due to self-aggregation of the salts and electrostatic interactions between ions and pyrene excimer. 13C-NMR and steady-state fluorescence result indicate that the salt induces peak shift to the downfield in the spectra and quenches the Py excimer intensity drastically. Ph.D. Candidate, Institute of Material Science, Polymer program

  13. Max Tech and Beyond: Fluorescent Lamps

    SciTech Connect

    Scholand, Michael

    2012-04-01

    Fluorescent lamps are the most widely used artificial light source today, responsible for approximately 70% of the lumens delivered to our living spaces globally. The technology was originally commercialized in the 1930's, and manufacturers have been steadily improving the efficacy of these lamps over the years through modifications to the phosphors, cathodes, fill-gas, operating frequency, tube diameter and other design attributes. The most efficient commercially available fluorescent lamp is the 25 Watt T5 lamp. This lamp operates at 114-116 lumens per watt while also providing good color rendering and more than 20,000 hours of operating life. Industry experts interviewed indicated that while this lamp is the most efficient in the market today, there is still a further 10 to 14% of potential improvements that may be introduced to the market over the next 2 to 5 years. These improvements include further developments in phosphors, fill-gas, cathode coatings and ultraviolet (UV) reflective glass coatings. The commercialization of these technology improvements will combine to bring about efficacy improvements that will push the technology up to a maximum 125 to 130 lumens per watt. One critical issue raised by researchers that may present a barrier to the realization of these improvements is the fact that technology investment in fluorescent lamps is being reduced in order to prioritize research into light emitting diodes (LEDs) and ceramic metal halide high intensity discharge (HID) lamps. Thus, it is uncertain whether these potential efficacy improvements will be developed, patented and commercialized. The emphasis for premium efficacy will continue to focus on T5 lamps, which are expected to continue to be marketed along with the T8 lamp. Industry experts highlighted the fact that an advantage of the T5 lamp is the fact that it is 40% smaller and yet provides an equivalent lumen output to that of a T8 or T12 lamp. Due to its smaller form factor, the T5 lamp

  14. Design features of excimer lasers for safe operation in industry and medicine

    NASA Astrophysics Data System (ADS)

    Alvi, Z. M.

    The built-in safety aspects of high-energy excimer lasers designed for use in the aerospace industry are discussed as well as those of low-energy excimer lasers applied in surgery and medicine. High-energy lasers require isolated enclosed facilities such as a properly shielded remote room having a variety of interlocks. Moreover, excimers require the use of dangerous gas mixtures, a preionization subsystem, and a Raman cell for frequency down-shifting. The use of a shielded cone or a collimator would reduce the ionizing radiation exposure within the nominal hazard zone region surrounding the laser head.

  15. Development of the excimer probe responsible for DNA target bearing the silylated pyrenes at base moiety.

    PubMed

    Moriguchi, Tomohisa; Ichimura, Mayumi; Kato, Mitsuhisa; Suzuki, Kenya; Takahashi, Yuki; Shinozuka, Kazuo

    2014-09-15

    For the development of the excimer probe responsible for DNA target, the deoxyuridine phosphoramidite derivative bearing the silylated pyrene attached at the C-5 position was prepared and incorporated into oligonucleotides. The modified oligonucleotides showed the excimer emission in the absence of the target DNA, on the other hands, the excimer emission was quenched in the presence of the target DNA. For the utilization of the fluorescence behavior, the novel molecular beacon probe containing the silylated pyrene-modified nucleoside at the stem region was designed and the fluorescence property of the probe found to show the responsibility for DNA target.

  16. Argon excimer emission from high-pressure microdischarges in metal capillaries

    NASA Astrophysics Data System (ADS)

    Sankaran, R. Mohan; Giapis, Konstantinos P.; Moselhy, Mohamed; Schoenbach, Karl H.

    2003-12-01

    We report on argon excimer emission from high-pressure microdischarges formed inside metal capillaries with or without gas flow. Excimer emission intensity from a single tube increases linearly with gas pressure between 400 and 1000 Torr. Higher discharge current also results in initial intensity gains until gas heating causes saturation or intensity drop. Argon flow through the discharge intensifies emission perhaps by gas cooling. Emission intensity was found to be additive in prealigned dual microdischarges, suggesting that an array of microdischarges could produce a high-intensity excimer source.

  17. LED solution for E14 candle lamp

    NASA Astrophysics Data System (ADS)

    Li, Yun; Liu, Ye; Boonekamp, Erik P.; Shi, Lei; Mei, Yi; Jiang, Tan; Guo, Qing; Wu, Huarong

    2009-08-01

    On a short to medium term, energy efficient retrofit LED products can offer an attractive solution for traditional lamps replacement in existing fixtures. To comply with user expectations, LED retrofit lamps should not only have the same mechanical interface to fit (socket and shape), but also have the similar light effect as the lamps they replace. The decorative lighting segment shows the best conditions to meet these requirements on short term. In 2008, Philips Lighting Shanghai started with the development of an LED candle lamp for the replacement of a 15W Candle shape (B35 E14) incandescent bulb, which is used in e.g. chandeliers. In this decorative application the main objective is not to generate as much light as possible, but the application requires the lamp to have a comparable look and, primarily, the same light effect as the incandescent candle lamp. This effect can be described as sparkling light, and it has to be directed sufficiently downwards (i.e., in the direction of the base of the lamp). These requirements leave very limited room for optics, electronics, mechanics and thermal design to play with in the small outline of this lamp. The main voltage AC LED concept is chosen to save the space for driver electronics. However the size of the AC LED is relatively big, which makes the optical design challenging. Several optical solutions to achieve the required light effect, to improve the optical efficiency, and to simplify the system are discussed. A novel prismatic lens has been developed which is capable of transforming the Lambertian light emission from typical high power LEDs into a butter-fly intensity distribution with the desired sparkling light effect. Thanks to this lens no reflecting chamber is needed, which improves the optical efficiency up to 70%, while maintaining the compact feature of the original optics. Together with advanced driver solution and thermal solution, the resulting LED candle lamp operates at 230V, consumes 1.8W, and

  18. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  19. Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps

    SciTech Connect

    Royer, Michael P.; Poplawski, Michael E.; Brown, Charles C.

    2014-12-01

    To date, all three reports in the retail lamps series have focused on basic performance parameters, such as lumen output, efficacy, and color quality. This report goes a step further, examining the photoelectric characteristics (i.e., dimming and flicker) of a subset of lamps from CALiPER Retails Lamps Study 3. Specifically, this report focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers. The results demonstrate notable variation across the various lamps, but little variation between the four dimmers. Overall, the LED lamps: ~tended to have higher relative light output compared to the incandescent and halogen benchmark at the same dimmer output signal (RMS voltage). The lamps’ dimming curves (i.e., the relationship between control signal and relative light output) ranged from linear to very similar to the square-law curve typical of an incandescent lamp. ~generally exhibited symmetrical behavior—the same dimming curve—when measured proceeding from maximum to minimum or minimum to maximum control signal. ~mostly dimmed below 10% of full light output, with some exceptions for specific lamp and dimmer combinations ~exhibited a range of flicker characteristics, with many comparing favorably to the level typical of a magnetically-ballasted fluorescent lamp through at least a majority of the dimming range. ~ always exceeded the relative (normalized) efficacy over the dimming range of the benchmark lamps, which rapidly decline in efficacy when they are dimmed. This report generally does not attempt to rank the performance of one product compared to another, but instead focuses on the collective performance of the group versus conventional incandescent or halogen lamps, the performance of which is likely to be the baseline for a majority of consumers. Undoubtedly, some LED lamps perform better—or more similar to conventional lamps—than others. Some perform desirably for one

  20. Phosphorus diffusion in germanium following implantation and excimer laser annealing

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Li, Cheng; Huang, Shihao; Lu, Weifang; Yan, Guangming; Zhang, Maotian; Wu, Huanda; Lin, Guangyang; Wei, Jiangbin; Huang, Wei; Lai, Hongkai; Chen, Songyan

    2014-05-01

    We focus our study on phosphorus diffusion in ion-implanted germanium after excimer laser annealing (ELA). An analytical model of laser annealing process is developed to predict the temperature profile and the melted depth in Ge. Based on the heat calculation of ELA, a phosphorus diffusion model has been proposed to predict the dopant profiles in Ge after ELA and fit SIMS profiles perfectly. A comparison between the current-voltage characteristics of Ge n+/p junctions formed by ELA at 250 mJ/cm2 and rapid thermal annealing at 650 °C for 15 s has been made, suggesting that ELA is promising for high performance Ge n+/p junctions.

  1. Corneal topography in the study of astigmatic excimer laser ablation

    NASA Astrophysics Data System (ADS)

    McDonnell, Peter J.

    1992-08-01

    Corneal astigmatism, both naturally occurring and iatrogenically induced, is a commonly encountered problem. Examination of corneal topography with instruments that digitize reflected ring images and calculate corneal geometry suggests that corneal astigmatism often deviates from spherocylindrical optics; the observed topography may be highly asymmetrical about the center of the pupil. Currently used incisional procedures are limited in terms of predictability of surgical outcome. The 193 nm excimer laser can be used to alter anterior corneal curvature and flatten the cornea to correct myopia. For correction of astigmatism, a slit-opening in the laser delivery system can be used to selectively flatten the steep meridian. Early results using this procedure for correction of iatrogenically induced high corneal astigmatism are promising. A nationwide multicenter clinical trial is now underway in the United States to evaluate this technique for the correction of naturally occurring astigmatism and compound myopic astigmatism.

  2. Qualification of diode foil materials for excimer lasers

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Shurter, R. P.; Rose, E. A.

    The Aurora facility at Los Alamos National Laboratory uses KrF excimer lasers to produce 248 nm light for inertial confinement fusion applications. Diodes in each amplifier produce relativistic electron beams to pump a Kr-F-Ar gas mixture. A foil is necessary to separate the vacuum diode from the laser gas. High tensile strength, high electron transmission, low ultraviolet reflectivity, and chemical compatibility with fluorine have been identified as requisite foil properties. Several different materials were acquired and tested for use as diode foils. Transmission and fluorine compatibility tests were performed using the Electron Gun Test Facility (EGTF) at Los Alamos. Off-line tests of tensile strength and reflectivity were performed. Titanium foil, which is commonly used as a diode foil, was found to generate solid and gaseous fluoride compounds, some of which are highly reactive in contact with water vapor.

  3. Optical radiation emissions from compact fluorescent lamps.

    PubMed

    Khazova, M; O'Hagan, J B

    2008-01-01

    There is a drive to energy efficiency to mitigate climate change. To meet this challenge, the UK Government has proposed phasing out incandescent lamps by the end of 2011 and replacing them with energy efficient fluorescent lighting, including compact fluorescent lamps (CFLs) with integrated ballasts. This paper presents a summary of an assessment conducted by the Health Protection Agency in March 2008 to evaluate the optical radiation emissions of CFLs currently available in the UK consumer market. The study concluded that the UV emissions from a significant percentage of the tested CFLs with single envelopes may result in foreseeable overexposure of the skin when these lamps are used in desk or task lighting applications. The optical output of all tested CFLs, in addition to high-frequency modulation, had a 100-Hz envelope with modulation in excess of 15%. This degree of modulation may be linked to a number of adverse effects.

  4. Enhancing the absorption of aluminum alloys by irradiation with an excimer laser

    NASA Astrophysics Data System (ADS)

    Scott, Graeme; Williams, Stewart W.; Morgan, P. C.; Dempster, M.

    1994-09-01

    Aluminum alloys typically have as received reflectivities of 85 - 95% at 10.6 micrometers making many laser processes difficult or impossible. These values have been reduced to as low as 1 - 2% by optimizing the processing parameters of an excimer laser used to modify the surface structure of 8090 and 2024 Al alloys and pure Al prior to their exposure to a CO2 laser. The most significant excimer processing parameters were found to be the scan pattern of the excimer beam, the number of pulses per scan pattern step (dwell time) and the laser fluence. Optimizing these parameters allows the production of a rough oxide rich surface and reflectivities at 10.6 micrometers routinely below 10%. Preliminary results are presented from the practical implementation of the technique to a dual wavelength (CO2/excimer) cutting system. Increases in cutting speeds of between 2 - 4 times are demonstrated with 8090 Al-Li alloy using dual wavelength laser processing.

  5. Characterization of FEL Lamps as Secondary Standard of Luminous Intensity

    NASA Astrophysics Data System (ADS)

    Junior, Antonio F. G. Ferreira; Machado, Ilomar E. C.

    2008-04-01

    This work presents a study comparing the drift during seasoning of four of 1000W FEL-type lamp regarding the use of theses lamps as secondary luminous intensity standard. Three of these lamps are manufactured by Philips and the other lamp is manufactured by ORIEL. The lamps seasoning takes normally 30 hours and during the seasoning period relative drift of the lamp luminous intensity, lamp current and voltage are measured at each 5 minutes. The correlated color temperature of the lamps is measured at the end of lamp seasoning period. The luminous intensity is measured using a 4 1/2 digits photometer with thermal stabilized detector head, the lamp voltage is measured using a 6 1/2 digits voltmeter and the current is measured and controlled by a calibrated current power source shunt. The lamp sockets are adapted to a cinematic positioning device which is placed on an adjustable mounting device. A cross target is used as reference for alignment with a He-Ne Laser. In the 1st group of three lamps from Philips the minimum relative drift in luminous intensity per hour at the end of seasoning period was 0,0075 percent and the maximum relative drift was 0,02 percent. Voltage relative drift of the lamps were very similar in shape on the last few hours of the seasoning period, but different for one lamp at the beginning. The lamp current remained practically constant at 8 A which was the current adjusted in the current power source. One lamp had the luminous intensity calibrated by the National Institute of Metrology from Argentina and is used as a transfer standard for the other lamps.

  6. LAMP proteins are required for fusion of lysosomes with phagosomes.

    PubMed

    Huynh, Kassidy K; Eskelinen, Eeva-Liisa; Scott, Cameron C; Malevanets, Anatoly; Saftig, Paul; Grinstein, Sergio

    2007-01-24

    Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) are delivered to phagosomes during the maturation process. We used cells from LAMP-deficient mice to analyze the role of these proteins in phagosome maturation. Macrophages from LAMP-1- or LAMP-2-deficient mice displayed normal fusion of lysosomes with phagosomes. Because ablation of both the lamp-1 and lamp-2 genes yields an embryonic-lethal phenotype, we were unable to study macrophages from double knockouts. Instead, we reconstituted phagocytosis in murine embryonic fibroblasts (MEFs) by transfection of FcgammaIIA receptors. Phagosomes formed by FcgammaIIA-transfected MEFs obtained from LAMP-1- or LAMP-2- deficient mice acquired lysosomal markers. Remarkably, although FcgammaIIA-transfected MEFs from double-deficient mice ingested particles normally, phagosomal maturation was arrested. LAMP-1 and LAMP-2 double-deficient phagosomes acquired Rab5 and accumulated phosphatidylinositol 3-phosphate, but failed to recruit Rab7 and did not fuse with lysosomes. We attribute the deficiency to impaired organellar motility along microtubules. Time-lapse cinematography revealed that late endosomes/lysosomes as well as phagosomes lacking LAMP-1 and LAMP-2 had reduced ability to move toward the microtubule-organizing center, likely precluding their interaction with each other. PMID:17245426

  7. Efficiency and efficacy of incandescent lamps

    NASA Astrophysics Data System (ADS)

    Agrawal, D. C.; Leff, Harvey S.; Menon, V. J.

    1996-05-01

    Planck's radiation formula is used to estimate the dimensionless efficiency of incandescent lamps as a function of filament temperature, with typical values of 2%-13%. Similarly, using the known spectral luminous efficiency of the eye, the efficacy of incandescent light bulbs is estimated as a function of temperature, showing values of 8-24 L W-1 for bulbs of 10-1000 W. The efficiency and efficacy results compare favorably with published data and enable estimation of the filament temperature for any lamp of known efficacy.

  8. Ocular complications of malfunctioning mercury vapor lamps.

    PubMed

    Thun, M J; Altman, R; Ellingson, O; Mills, L F; Talansky, M L

    1982-11-01

    We report an outbreak of keratoconjunctivitis and skin erythema caused by ultraviolet radiation from a damaged high-intensity mercury vapor lamp. Twenty-six persons became ill after using a basketball court; symptoms included conjunctivitis (100%), skin erythema (54%), and punctate keratitis (19%). This outbreak is one of 37 similar episodes involving at least 629 persons reported to the Food and Drug Administration since 1969. Physicians should be aware that damaged high-intensity mercury vapor lamps are a continuing public health problem with substantial morbidity. Measures to prevent such occurrences are suggested. PMID:7181332

  9. Integrity Monitoring of Mercury Discharge Lamps

    NASA Technical Reports Server (NTRS)

    Tjoelker, Robert L.

    2010-01-01

    Mercury discharge lamps are critical in many trapped ion frequency standard applications. An integrity monitoring system can be implemented using end-of-life signatures observed in operational mercury discharge lamps, making it possible to forecast imminent failure and to take action to mitigate the consequences (such as switching to a redundant system). Mercury lamps are used as a source of 194-nm ultraviolet radiation for optical pumping and state selection of mercury trapped ion frequency standards. Lamps are typically fabricated using 202Hg distilled into high-purity quartz, or other 194-nm transmitting material (e.g., sapphire). A buffer gas is also placed into the bulb, typically a noble gas such as argon, neon, or krypton. The bulbs are driven by strong RF fields oscillating at .200 MHz. The lamp output may age over time by two internal mechanisms: (1) the darkening of the bulb that attenuates light transmission and (2) the loss of mercury due to migration or chemical interactions with the bulb surface. During fabrication, excess mercury is placed into a bulb, so that the loss rate is compensated with new mercury emanating from a cool tip or adjacent reservoir. The light output is nearly constant or varies slightly at a constant rate for many months/years until the mercury source is depleted. At this point, the vapor pressure abruptly falls and the total light output and atomic clock SNR (signal-to-noise ratio) decrease. After several days to weeks, the light levels decrease to a point where the atomic clock SNR is no longer sufficient to stay in lock, or the lamp self-extinguishes. This signature has been observed in four separate end-of-life lamp failures while operating in the Deep Space Network (DSN). A simple integrator circuit can observe and document steady-state lamp behavior. When the light levels drop over a predetermined time interval by a specified amount (e.g., 20 percent), an alarm is set. For critical operational applications, such as the DSN

  10. Orienting Arc Lamps for Longest Life

    NASA Technical Reports Server (NTRS)

    Kiss, J.

    1985-01-01

    Temperature distribution strongly affects performance. Tests on floodlights for Space Shuttle payload bay show useful life of metal halide dc arc lamp prolonged by mounting "anode down" and wiring for maximum heat conduction away from electrodes. Anode-down configuration, anode and cathode temperatures stabilize at 333 degrees and 313 degrees C, respectively, after 1 hour of operation. Temperatures both below limit for quartz-to-metal seals, and lamps able to withstand a 2,000-hour life test with satisfactory light output at end.

  11. Ocular complications of malfunctioning mercury vapor lamps.

    PubMed

    Thun, M J; Altman, R; Ellingson, O; Mills, L F; Talansky, M L

    1982-11-01

    We report an outbreak of keratoconjunctivitis and skin erythema caused by ultraviolet radiation from a damaged high-intensity mercury vapor lamp. Twenty-six persons became ill after using a basketball court; symptoms included conjunctivitis (100%), skin erythema (54%), and punctate keratitis (19%). This outbreak is one of 37 similar episodes involving at least 629 persons reported to the Food and Drug Administration since 1969. Physicians should be aware that damaged high-intensity mercury vapor lamps are a continuing public health problem with substantial morbidity. Measures to prevent such occurrences are suggested.

  12. Enhancement of adhesion on polyether etherketone (PEEK) by excimer laser treatments

    SciTech Connect

    Sadras, B.; Laurens, P.; Decobert, F.; Arefi, F.; Amouroux, J.

    1996-12-31

    Due to its important chemical stability, polyether-etherketone (PEEK) thermoplastic presents poor adhesive bonding properties. The possibilities of enhancing the PEEK adhesive properties by excimer laser pretreatments are investigated. Surface modifications are characterized, depending on the experimental working conditions, using SEM, profilometry, XPS, wettability and mechanical tests. Lap shear strength values show that excimer laser irradiation improve PEEK adhesion bonding properties for all treatment conditions (energy, atmosphere).

  13. Monitoring excimer formation of perylene dye molecules within PMMA-based nanofiber via FLIM method

    NASA Astrophysics Data System (ADS)

    Inci, Mehmet Naci; Acikgoz, Sabriye; Demir, Mustafa Muamer

    2016-04-01

    Confocal fluorescence lifetime imaging microscopy method is used to obtain individual fluorescence intensity and lifetime values of aromatic Perylene dye molecules encapsulated into PMMA based nanofibers. Fluorescence spectrum of aromatic hydrocarbon dye molecules, like perylene, depends on the concentration of dye molecules and these dye molecules display an excimeric emission band besides monomeric emission bands. Due to the dimension of a nanofiber is comparable to the monomer emission wavelength, the presence of nanofibers does not become effective on the decay rates of a single perylene molecule and its lifetime remains unchanged. When the concentration of perylene increases, molecular motion of the perylene molecule is restricted within nanofibers so that excimer emission arises from the partially overlapped conformation. As compared to free excimer emission of perylene, time-resolved experiments show that the fluorescence lifetime of excimer emission of perylene, which is encapsulated into NFs, gets shortened dramatically. Such a decrease in the lifetime is measured to be almost 50 percent, which indicates that the excimer emission of perylene molecules is more sensitive to change in the surrounding environment due to its longer wavelength. Fluorescence lifetime measurements are typically used to confirm the presence of excimers and to construct an excimer formation map of these dye molecules.

  14. Studies in fiber guided excimer laser surgery for cutting and drilling bone and meniscus.

    PubMed

    Dressel, M; Jahn, R; Neu, W; Jungbluth, K H

    1991-01-01

    Our experiments on transmitting high-power excimer laser pulses through optical fibers and our investigations on excimer laser ablation of hard tissue show the feasibility of using the excimer laser as an additional instrument in general and accident surgery involving minimal invasive surgery. By combining XeCl-excimer lasers and tapered fused silica fibers we obtained output fluences up to 32 J/cm2 and ablation rates of 3 microns/pulse of hard tissue. This enables us to cut bone and cartilage in a period of time which is suitable for clinical operations. Various experiments were carried out on cadavers in order to optimize the parameters of the excimer laser and fibers: e.g., wavelength, pulse duration, energy, repetition rate, fiber core diameter. The surfaces of the cut tissue are comparable to cuts with conventional instruments. No carbonisation was observed. The temperature increase is below 40 degrees C in the tissue surrounding the laser spot. The healing rate of an excimer laser cut is not slower than mechanical treatments; the quality is comparable.

  15. Prevention of distal embolization and no-reflow in patients with acute myocardial infarction and total occlusion in the infarct-related vessel: a subgroup analysis of the cohort of acute revascularization in myocardial infarction with excimer laser-CARMEL multicenter study.

    PubMed

    Dahm, Johannes B; Ebersole, Douglas; Das, Tony; Madyhoon, Hooman; Vora, Kishor; Baker, John; Hilton, David; Topaz, On

    2005-01-01

    To overcome the adverse complications of percutaneous coronary interventions in thrombus laden lesions (i.e., distal embolization, platelet activation, no-reflow phenomenon), mechanical removal of the thrombus or distal embolization protection devices are frequently required. Pulsed-wave ultraviolet excimer laser light at 308 nm can vaporize thrombus, suppress platelet aggregation, and, unlike other thrombectomy devices, ablate the underlying plaque. The following multicenter registry was instituted to evaluate the safety and efficacy of laser ablation in patients presenting with acute myocardial infarction (AMI) complicated by persistent thrombotic occlusions. Patients with AMI and complete thrombotic occlusion of the infarct-related vessel were included in eight participating centers. Patients with further compromising conditions (i.e., cardiogenic shock, thrombolysis failures) were also included. Primary endpoint was procedural respective laser success; secondary combined endpoints were TIMI flow and % stenosis by quantitative coronary analysis and visual assessment at 1-month follow-up. Eighty-four percent of all patients enrolled (n = 56) had a very large thrombus burden (TIMI thrombus scale > or = 3), and 49% were compromised by complex clinical presentation, i.e., cardiogenic shock (21%), degenerated saphenous vein grafts (26%), or thrombolysis failures (5%). Laser success was achieved in 89%, angiographic success in 93%, and the overall procedural success rate was 86%. The angiographic prelaser total occlusion was reduced angiographically to 58% +/- 25% after laser treatment and to 4% +/- 13% final residual stenosis after adjunctive balloon angioplasty and/or stent placement. TIMI flow increased significantly from grade 0 to 2.7 +/- 0.5 following laser ablation (P < 0.001) and 3.0 +/- 0.2 upon completion of the angioplasty procedure (P > 0.001 vs. baseline). Distal embolizations occurred in 4%, no-reflow was observed in 2%, and perforations in 0.6% of cases

  16. Detail view of lamp in law library; Jennewein modeled symbols ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of lamp in law library; Jennewein modeled symbols of the four seasons on the lamp's aluminum supports - United States Department of Justice, Constitution Avenue between Ninth & Tenth Streets, Northwest, Washington, District of Columbia, DC

  17. 2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP AND CHIMNEY COMPANY IN BACKGROUND. - Bridgeport Lamp Chimney Company, Simpson Creek Bridge, Spanning Simpson Creek, State Route 58 vicinity, Bridgeport, Harrison County, WV

  18. Lamp automatically switches to new filament on burnout

    NASA Technical Reports Server (NTRS)

    Ingle, W. B.

    1966-01-01

    Lamp with primary and secondary filaments has a means for automatic switching to the secondary filament at primary filament burnout. Lamp failures and resultant expenses during oscillograph printing are appreciably reduced.

  19. Circular, explosion-proof lamp provides uniform illumination

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Circular explosion-proof fluorescent lamp is fitted around a TV camera lens to provide shadowless illumination with a low radiant heat flux. The lamp is mounted in a transparent acrylic housing sealed with clear silicone rubber.

  20. 75 FR 22213 - Energy Conservation Program: Test Procedures for General Service Fluorescent Lamps, Incandescent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... procedures for general service fluorescent lamps, incandescent reflector lamps, and general service... final rule in the Federal Register titled, ``Test Procedures for General Service Fluorescent Lamps... titled, ``Fluorescent and Incandescent Lamp Test Procedures'' (hereafter the ``May 1997 final rule'')....

  1. Acute And Long-Term Bioeffects And Lamp Safety

    NASA Astrophysics Data System (ADS)

    Andersen, F. Alan

    1980-10-01

    Knowledge of both acute and chronic biological effects is currently used to evaluate lamp safety. In some cases, a quantitative basis for avoiding exposures greater than a certain value can be stated. In other cases, however, only a qualitative estimate of the hazard is available. In a discussion that uses mercury vapor lamps, tanning booths, and sodium vapor lamps as examples, the interplay between the two types of data leading to an evaluation of lamp safety is described.

  2. CW arc-lamp-pumped alexandrite lasers

    SciTech Connect

    Samelson, H.; Walling, J.C.; Wernikowski, T.; Harter, D.J.

    1988-06-01

    The performance characteristics of arc-lamp- (Xe and Hg) pumped, CW alexandrite lasers are described in detail. The modes of operation considered are free running, tuned, and repetitively Q-switched. The experimental arrangement and apparatus are also outlined. The experimental results are discussed in terms of a steady-state model, and the areas of agreement and difficulty are pointed out.

  3. Lyman Alpha Mapping Project (LAMP) Brightness Maps

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt D.; Gladstone, G.; Stern, S.; Egan, A. F.; Miles, P. F.; Parker, J. W.; Greathouse, T. K.; Davis, M. W.; Slater, D. C.; Kaufmann, D. E.; Versteeg, M. H.; Feldman, P. D.; Hurley, D. M.; Pryor, W. R.; Hendrix, A. R.

    2010-10-01

    The Lyman Alpha Mapping Project (LAMP) is an ultraviolet (UV) spectrograph on the Lunar Reconnaissance Orbiter (LRO) that is designed to map the lunar albedo at far-UV wavelengths. LAMP primarily measures interplanetary Hydrogen Lyman-alpha sky-glow and far-UV starlight reflected from the night-side lunar surface, including permanently shadowed regions (PSRs) near the poles. Dayside observations are also obtained. Brightness maps sorted by wavelength (including the Lyman-alpha wavelength of 121.6 nm) are reported for the polar regions, with a few regions of interest reported in more detail. LAMP's spectral range of 58 nm to 196 nm includes a water ice spectral feature near 160 nm, which provides a diagnostic tool for detecting water on the lunar surface that is complementary to recent discoveries using infrared and radio frequency techniques. Progress towards producing far-UV albedo maps and searching for water ice signatures will be reported. We'll discuss how LAMP data may address questions regarding how water is formed on the moon, transported through the lunar atmosphere, and deposited in the PSRs.

  4. Blackbody Radiation from an Incandescent Lamp

    ERIC Educational Resources Information Center

    Ribeiro, C. I.

    2014-01-01

    In this article we propose an activity aimed at introductory students to help them understand the Stefan-Boltzmann and Wien's displacement laws. It only requires simple materials that are available at any school: an incandescent lamp, a variable dc energy supply, and a computer to run an interactive simulation of the blackbody spectrum.…

  5. 49 CFR 234.221 - Lamp voltage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Lamp voltage. 234.221 Section 234.221 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY AND STATE ACTION PLANS...

  6. 49 CFR 234.221 - Lamp voltage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lamp voltage. 234.221 Section 234.221 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY AND STATE ACTION PLANS...

  7. Heat Lamps Solder Solar Array Quickly

    NASA Technical Reports Server (NTRS)

    Coyle, P. J.; Crouthamel, M. S.

    1982-01-01

    Interconnection tabs in a nine-solar-cell array have been soldered simultaneously with radiant heat. Cells and tabs are held in position for soldering by sandwiching them between compliant silicone-rubber vacuum platen and transparent polyimide sealing membrane. Heat lamps warm cells, producing smooth, flat solder joints of high quality.

  8. Breakdown characteristics of xenon HID Lamps

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  9. A prototype high power portable lamp

    NASA Technical Reports Server (NTRS)

    Sammis, J. C.

    1969-01-01

    Portable lighting system serves the combined work and photographic needs of manned spacecraft efforts. This system enables the lamps to be momentarily brightened while the camera shutter is opened. The brightness is adequate for black and white or color photography and yet the increased heat load is nil.

  10. Flight vehicle thermal testing with infrared lamps

    NASA Technical Reports Server (NTRS)

    Fields, Roger A.

    1992-01-01

    The verification and certification of new structural material concepts for advanced high speed flight vehicles relies greatly on thermal testing with infrared quartz lamps. The basic quartz heater system characteristics and design considerations are presented. Specific applications are illustrated with tests that were conducted for the X-15, the Space Shuttle, and YF-12 flight programs.

  11. 40 CFR 273.5 - Applicability-lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Applicability-lamps. 273.5 Section 273.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.5 Applicability—lamps. (a) Lamps covered under...

  12. 49 CFR 230.56 - Water glass lamps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Water glass lamps. 230.56 Section 230.56... Water Glasses and Gauge Cocks § 230.56 Water glass lamps. All water glasses must be supplied with a suitable lamp properly located to enable the engine crew to easily see the water in the glass....

  13. 49 CFR 230.56 - Water glass lamps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Water glass lamps. 230.56 Section 230.56... Water Glasses and Gauge Cocks § 230.56 Water glass lamps. All water glasses must be supplied with a suitable lamp properly located to enable the engine crew to easily see the water in the glass....

  14. 49 CFR 230.56 - Water glass lamps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Water glass lamps. 230.56 Section 230.56... Water Glasses and Gauge Cocks § 230.56 Water glass lamps. All water glasses must be supplied with a suitable lamp properly located to enable the engine crew to easily see the water in the glass....

  15. 49 CFR 230.56 - Water glass lamps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Water glass lamps. 230.56 Section 230.56... Water Glasses and Gauge Cocks § 230.56 Water glass lamps. All water glasses must be supplied with a suitable lamp properly located to enable the engine crew to easily see the water in the glass....

  16. 49 CFR 230.56 - Water glass lamps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Water glass lamps. 230.56 Section 230.56... Water Glasses and Gauge Cocks § 230.56 Water glass lamps. All water glasses must be supplied with a suitable lamp properly located to enable the engine crew to easily see the water in the glass....

  17. 30 CFR 75.522-1 - Incandescent and fluorescent lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Incandescent and fluorescent lamps. 75.522-1...-1 Incandescent and fluorescent lamps. (a) Except for areas of a coal mine inby the last open... or fluorescent lamps may be used inside underground structures (except magazines used for the...

  18. 10 CFR 429.26 - Fluorescent lamp ballasts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Fluorescent lamp ballasts. 429.26 Section 429.26 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.26 Fluorescent lamp ballasts. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to fluorescent lamp...

  19. 10 CFR 429.26 - Fluorescent lamp ballasts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Fluorescent lamp ballasts. 429.26 Section 429.26 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.26 Fluorescent lamp ballasts. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to fluorescent lamp...

  20. 30 CFR 75.522-1 - Incandescent and fluorescent lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Incandescent and fluorescent lamps. 75.522-1...-1 Incandescent and fluorescent lamps. (a) Except for areas of a coal mine inby the last open... or fluorescent lamps may be used inside underground structures (except magazines used for the...

  1. 30 CFR 75.522-1 - Incandescent and fluorescent lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Incandescent and fluorescent lamps. 75.522-1...-1 Incandescent and fluorescent lamps. (a) Except for areas of a coal mine inby the last open... or fluorescent lamps may be used inside underground structures (except magazines used for the...

  2. 10 CFR 429.26 - Fluorescent lamp ballasts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Fluorescent lamp ballasts. 429.26 Section 429.26 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.26 Fluorescent lamp ballasts. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to fluorescent lamp...

  3. 30 CFR 75.522-1 - Incandescent and fluorescent lamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Incandescent and fluorescent lamps. 75.522-1...-1 Incandescent and fluorescent lamps. (a) Except for areas of a coal mine inby the last open... or fluorescent lamps may be used inside underground structures (except magazines used for the...

  4. 30 CFR 75.522-1 - Incandescent and fluorescent lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Incandescent and fluorescent lamps. 75.522-1...-1 Incandescent and fluorescent lamps. (a) Except for areas of a coal mine inby the last open... or fluorescent lamps may be used inside underground structures (except magazines used for the...

  5. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. Persons underground shall use only permissible electric lamps approved by the Secretary for...

  6. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. Persons underground shall use only permissible electric lamps approved by the Secretary for...

  7. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. Persons underground shall use only permissible electric lamps approved by the Secretary for...

  8. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. Persons underground shall use only permissible electric lamps approved by the Secretary for...

  9. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. Persons underground shall use only permissible electric lamps approved by the Secretary for...

  10. 146. DETAIL VIEW, LOOKING STRAIGHT ON, OF CAST IRON LAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    146. DETAIL VIEW, LOOKING STRAIGHT ON, OF CAST IRON LAMP STANDARD. THIS AND OTHER LAMP STANDARDS WERE REMOVED FROM THE LAMP COLUMNS ON THE PARAPET WALLS DURING WORLD WAR II AND STORED INSIDE THE DAM (January 1991) - Coolidge Dam, Gila River, Peridot, Gila County, AZ

  11. CALiPER Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps

    SciTech Connect

    none,

    2014-12-31

    This CALiPER report examines the characteristics of a subset of lamps from CALiPER Retail Lamps Study 3 in more detail. Specifically, it focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers.

  12. Controlling the vapor pressure of a mercury lamp

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

  13. Controlling the vapor pressure of a mercury lamp

    DOEpatents

    Grossman, M.W.; George, W.A.

    1988-05-24

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.

  14. [Remote Slit Lamp Microscope Consultation System Based on Web].

    PubMed

    Chen, Junfa; Zhuo, Yong; Liu, Zuguo; Chen, Yanping

    2015-11-01

    To realize the remote operation of the slit lamp microscope for department of ophthalmology consultation, and visual display the real-time status of remote slit lamp microscope, a remote slit lamp microscope consultation system based on B/S structure is designed and implemented. Through framing the slit lamp microscope on the website system, the realtime acquisition and transmission of remote control and image data is realized. The three dimensional model of the slit lamp microscope is established and rendered on the web by using WebGL technology. The practical application results can well show the real-time interactive of the remote consultation system. PMID:27066677

  15. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok Srivatava

    2007-03-31

    This is the Final Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet (UV) emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. Our work started by investigating through modeling calculations the requirement for the particle size of the NCP. Our work to develop suitable nanocrystalline phosphors started with the known oxide quantum splitting and UV emitting phosphors. We demonstrated several synthesis techniques for the production of high quality nanocrystalline materials that crystallizes in the desired phase and with the desired particle size. In collaboration with our subcontractor we demonstrated the feasibility for the manufacture of NC phosphors. We also demonstrated novel techniques of coating the NCP on the surface of micron sized phosphors. Our chief achievement pertains to the successful testing of the coated hybrid phosphor systems in linear fluorescent lamps. In linear fluorescent lamp tests, we have demonstrated up to 7% increase in the efficacy of hybrid phosphors over the conventional (uncoated) phosphors. We have also demonstrated the improvement in the lumen maintenance of the coated phosphors. A hybrid phosphor system based on the commercial red emitting phosphor, Y{sub 2}O{sub 3}:Eu{sup 3+} did not show the anticipated improvement in lamp efficacy. We explored the reasons for this observation

  16. Lamp reliability studies for improved satellite rubidium frequency standard

    NASA Technical Reports Server (NTRS)

    Frueholz, R. P.; Wun-Fogle, M.; Eckert, H. U.; Volk, C. H.; Jones, P. F.

    1982-01-01

    In response to the premature failure of Rb lamps used in Rb atomic clocks onboard NAVSTAR GPS satellites experimental and theoretical investigations into their failure mechanism were initiated. The primary goal of these studies is the development of an accelerated life test for future GPS lamps. The primary failure mechanism was identified as consumption of the lamp's Rb charge via direct interaction between Rb and the lamp's glass surface. The most effective parameters to accelerate the interaction between the Rb and the glass are felt to be RF excitation power and lamp temperature. Differential scanning calorimetry is used to monitor the consumption of Rb within a lamp as a function of operation time. This technique yielded base line Rb consumption data for GPS lamps operating under normal conditions.

  17. Initial experience with excimer laser angioplasty for coronary ostial stenoses.

    PubMed Central

    Lawson, C S; Cooper, I C; Webb-Peploe, M M

    1993-01-01

    The excimer laser has several potential advantages over conventional balloon angioplasty in the management of stenoses of the native coronary arteries and of the ostia of saphenous vein grafts. Its use in nine patients, eight of whom were classed as high risk, is described. Four lesions involved the ostia of saphenous vein grafts, three of protected left main stems, and two of native right coronary arteries. Stand alone laser was used in seven cases and laser with additional balloon angioplasty was used in two vein graft stenoses. Acute laser success was achieved in all cases, with a mean reduction of stenosis from 82% to 34% after laser alone and to 28% when balloon angioplasty was used as well. One patient died during laser angioplasty to a non-ostial lesion (procedural success rate 89%) and a second died ten weeks after the procedure. In one patient recurrent angina developed (clinical recurrence rate 25%) and restenosis was confirmed on angiography. Follow up angiography was also performed on the other six surviving patients, all of whom were symptom free and none of whom showed evidence of significant restenosis (restenosis rate 14%). With a mean follow up of 19.7 months the overall success rate was 67%. Images PMID:8461226

  18. Excimer laser crystallization of amorphous silicon on metallic substrate

    NASA Astrophysics Data System (ADS)

    Delachat, F.; Antoni, F.; Slaoui, A.; Cayron, C.; Ducros, C.; Lerat, J.-F.; Emeraud, T.; Negru, R.; Huet, K.; Reydet, P.-L.

    2013-06-01

    An attempt has been made to achieve the crystallization of silicon thin film on metallic foils by long pulse duration excimer laser processing. Amorphous silicon thin films (100 nm) were deposited by radiofrequency magnetron sputtering on a commercial metallic alloy (N42-FeNi made of 41 % of Ni) coated by a tantalum nitride (TaN) layer. The TaN coating acts as a barrier layer, preventing the diffusion of metallic impurities in the silicon thin film during the laser annealing. An energy density threshold of 0.3 J cm-2, necessary for surface melting and crystallization of the amorphous silicon, was predicted by a numerical simulation of laser-induced phase transitions and witnessed by Raman analysis. Beyond this fluence, the melt depth increases with the intensification of energy density. A complete crystallization of the layer is achieved for an energy density of 0.9 J cm-2. Scanning electron microscopy unveils the nanostructuring of the silicon after laser irradiation, while cross-sectional transmission electron microscopy reveals the crystallites' columnar growth.

  19. Excimer laser surgery for myopia and myopic astigmatism.

    PubMed

    Hadden, O B; Morris, A T; Ring, C P

    1995-08-01

    Photorefractive keratectomy using the Summit Excimer Laser has been carried out on 1333 eyes with myopia or myopic astigmatism which have been followed up for six months or longer. Of those, 607 have been followed up for one year. Of the eyes with myopia or myopic astigmatism of up to 3 dioptres spherical equivalent, at one year 85.6% had unaided vision of 6/6, 97.2% 6/9 or better, and 99.4% 6/12 or better. Of the eyes between -3.25 and -6.00 dioptres spherical equivalent at one year 72.1% achieved 6/6 vision unaided, 88.8% 6/9 or better, and 94.2% 6/12 or better. Of the eyes between -6.25 and -10.00 dioptres, at one year 49.6% achieved 6/6 vision unaided, 76.1% 6/9 or better and 88.0% 6/12 or better. To achieve these figures, 28% of the patients had astigmatic keratotomy, either two or three weeks before photorefractive keratectomy, or at the same time as photorefractive keratectomy. Photorefractive keratectomy is as predictable as radial keratotomy in eyes of under 6 dioptres myopia, but is more predictable than radial keratotomy in higher myopia. Photorefractive keratectomy has the advantages of leaving an eye which is structurally sound, and without diurnal variation of focusing. PMID:8534441

  20. Excimer radiation from pulsed micro hollow cathode discharges

    NASA Astrophysics Data System (ADS)

    Petzenhauser, Isfried; Ernst, Uwe; Frank, Klaus

    2001-10-01

    Since several years d.c. microhollow cathode discharges (MHCDs) are under investigation as efficient sources of VUV excimer radiation [1]. Up to now overall efficiency and the radiation power of the MHCDs are too low to compete e.g. with silent discharges. Substantial improvement in these parameters would make by its simple geometry MCHDs attractive for a wide range of applications. Experiments and simulations show that the efficiency of MCHDs is substantially reduced by high gas temperatures beyond 1500 K. Measurements in pure nitrogen showed that the gas temperature can be reduced about 40The actual experiments are with Xe and Ar bands in the VUV and the results of radiation output under d.c. and pulsed operation for different pulse duration and repetition rates are presented. [1] A. El-Habachi, K.H. Schoenbach, Appl. Phys. Lett. 73(7), pp. 885-887 (1998) [2] U. Ernst, "Emissionsspektroskopische Charakterisierung von Hochdruck-Mikrohohlkathodenentladungen", Ph. D thesis, Univ. of Erlangen-Nuremberg, 2001 This work was supported by DFG under the contact FR 1273-1

  1. Blunt atrial transseptal puncture using excimer laser in swine

    PubMed Central

    Elagha, Abdalla A.; Kim, Ann H.; Kocaturk, Ozgur; Lederman, Robert J.

    2009-01-01

    Objectives We describe a new approach that may enhance safety of atrial transseptal puncture, using a commercially available laser catheter that is capable of perforation only when energized. We test this approach in swine. Background Despite wide application, conventional needle transseptal puncture continues to risk inadvertent non-target perforation and its consequences. Methods We used a commercial excimer laser catheter (0.9mm Clirpath, Spectranetics). Perforation force was compared in vitro with a conventional Brockenbrough needle. Eight swine underwent laser transseptal puncture under X-ray fluoroscopy steered using a variety of delivery catheters. Results The 0.9mm laser catheter traversed in vitro targets with reduced force compared with a Brockenbrough needle. In vitro, the laser catheter created holes that were 25–30% larger than the Brockenbrough needle. Laser puncture of the atrial septum was successful and accurate in all animals, evidenced by oximetry, pressure, angiography, and necropsy. The laser catheter was steered effectively using a modified Mullins introducer sheath and using two different deflectable guiding catheters. The mean procedure time was 15 ± 6 minutes, with an average 3.0 ± 0.8 seconds of laser activation. There were no adverse sequelae after prolonged observation. Necropsy revealed discrete 0.9mm holes in all septae. Conclusion Laser puncture of the interatrial septum is feasible and safe in swine, using a blunt laser catheter that perforates tissues in a controlled fashion. PMID:17896413

  2. Lamp-life predictive model for avionics backlights

    NASA Astrophysics Data System (ADS)

    Webster, Richard P.; Nelson, Leonard Y.

    1998-09-01

    Active Matrix Liquid Crystal Displays (AMLCDs) used in avionics applications require high luminance, high efficacy, and long-life backlights. Currently, fluorescent lamps are the favored light sources for these high performance avionics backlights. Their spectral characteristics and high electrical efficiency are well suited to illuminating AMLCDs used in avionics applications. Fluorescent lamps, however, suffer gradual reduction in luminance output caused by various degradation mechanisms. Korry Electronics Co. recently developed a mathematical model for predicting fluorescent lamp life. The model's basis is the well characterized exponential decay of the phosphor output. The primary luminance degradation mechanism of a fluorescent lamp is related to the arc discharge. Consequently, phosphor depreciation is proportional to the discharge arc power divided by the phosphor surface area. This 'wall loading' is a parameter in the computer model developed to extrapolate long-term luminance performance. Our model predicts a rapidly increasing decay rate of the lamp output as the input power is increased to sustain constant luminance. Eventually, a run-away condition occurs -- lamp arc power must be increased by unrealistically large factors (greater than 5x) to maintain the required luminance output. This condition represents the end of the useful lamp life. The lamp life model requires the definition of several key parameters in order to accurately predict the useful lamp life of an avionics backlight. These important factors include the construction of the lamp, lamp arc power, a decay constant based on the phosphor loading, and the operational profile. Based on the above-mentioned factors, our model approximates the useful lamp life of an avionics backlight using fluorescent lamp technology. Comparisons between calculated and experimental lamp depreciation are presented.

  3. LED lamp color control system and method

    DOEpatents

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A.M.

    2013-02-05

    An LED lamp color control system and method including an LED lamp having an LED controller 58; and a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 determines whether the LED source 80 is in a feedback controllable range, stores measured optical flux for the LED source 80 when the LED source 80 is in the feedback controllable range, and bypasses storing the measured optical flux when the LED source 80 is not in the feedback controllable range.

  4. Transient absorption probe of intermolecular triplet excimer of naphthalene in fluid solutions: Identification of the species based on comparison to the intramolecular triplet excimers of covalently-linked dimers

    SciTech Connect

    Wang, X.; Kofron, W.G.; Kong, S.; Rajesh, C.S.; Modarelli, D.A.; Lim, E.C.

    2000-02-24

    The authors report here the observation of the laser-induced transient absorption spectrum of intermolecular triplet excimers of naphthalene in fluid solution. This assignment is confirmed by comparison to the transient absorption spectra of the intramolecular triplet excimers of covalently linked dimers of naphthalene and quinoxaline.

  5. KrF excimer laser precision machining of hard and brittle ceramic biomaterials.

    PubMed

    Huang, Yao-Xiong; Lu, Jian-Yi; Huang, Jin-Xia

    2014-06-01

    KrF excimer laser precision machining of porous hard-brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse J cm(-2)) and 0.048 µm/(pulse  J cm(-2)), while their threshold fluences are individually 0.72 and 1.5 J cm(-2). The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard-brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining.

  6. Phasor Representation of Monomer-Excimer Kinetics: General Results and Application to Pyrene.

    PubMed

    Martelo, Liliana; Fedorov, Alexander; Berberan-Santos, Mário N

    2015-12-01

    Phasor plots of the fluorescence intensity decay (plots of the Fourier sine transform versus the Fourier cosine transform, for one or several angular frequencies) are being increasingly used in studies of homogeneous and heterogeneous systems. In this work, the phasor approach is applied to monomer-excimer kinetics. The results obtained allow a clear visualization of the information contained in the decays. The monomer phasor falls inside the universal circle, whereas the excimer phasor lies outside it, but within the double-exponential outer boundary curve. The monomer and excimer phasors, along with those corresponding to the two exponential components of the decays, fall on a common straight line and obey the generalized lever rule. The clockwise trajectories described by both phasors upon monomer concentration increase are identified. The phasor approach allows discussing in a single graphic not only the effect of concentration but also that of rate constants, including the evolution from irreversible kinetics to fast excited-state equilibrium upon a temperature increase. The obtained results are applied to the fluorescence decays of pyrene monomer and excimer in methylcyclohexane at room temperature. A straightforward method of monomer-excimer lifetime data analysis based on linear plots is also introduced.

  7. KrF excimer laser precision machining of hard and brittle ceramic biomaterials.

    PubMed

    Huang, Yao-Xiong; Lu, Jian-Yi; Huang, Jin-Xia

    2014-06-01

    KrF excimer laser precision machining of porous hard-brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse J cm(-2)) and 0.048 µm/(pulse  J cm(-2)), while their threshold fluences are individually 0.72 and 1.5 J cm(-2). The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard-brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining. PMID:24784833

  8. Polycation-induced benzoperylene probe excimer formation and the ratiometric detection of heparin and heparinase.

    PubMed

    Yang, Meiding; Chen, Jian; Zhou, Huipeng; Li, Wenying; Wang, Yan; Li, Juanmin; Zhang, Cuiyun; Zhou, Chuibei; Yu, Cong

    2016-01-15

    A benzoperylene probe excimer emission in an aqueous buffer solution is observed for the first time, and a novel ratiometric fluorescence method based on the probe excimer emission for the sensitive detection of heparin and heparinase is demonstrated. A negatively charged benzoperylene derivative, 6-(benzo[ghi]perylene-1,2-dicarboxylic imide-yl)hexanoic acid (BPDI), was employed. A polycation, poly(diallyldimethylammonium) chloride (poly-DDA), could induce aggregation of BPDI through noncovalent interactions. A decrease of BPDI monomer emission and a simultaneous increase of BPDI excimer emission were observed. Upon the addition of heparin, the strong binding between heparin and poly-DDA caused release of BPDI monomer molecules, and an excimer-monomer emission signal transition was detected. However, after the enzymatic hydrolysis of heparin by heparinase, heparin was hydrolyzed into small fragments, which weakened the competitive binding of heparin to poly-DDA. Poly-DDA induced aggregation of BPDI, and a monomer-excimer emission signal transition was detected. Our assay is simple, rapid, inexpensive, sensitive and selective, which could facilitate the heparin and heparinase related biochemical and biomedical research.

  9. Polycation-induced benzoperylene probe excimer formation and the ratiometric detection of heparin and heparinase.

    PubMed

    Yang, Meiding; Chen, Jian; Zhou, Huipeng; Li, Wenying; Wang, Yan; Li, Juanmin; Zhang, Cuiyun; Zhou, Chuibei; Yu, Cong

    2016-01-15

    A benzoperylene probe excimer emission in an aqueous buffer solution is observed for the first time, and a novel ratiometric fluorescence method based on the probe excimer emission for the sensitive detection of heparin and heparinase is demonstrated. A negatively charged benzoperylene derivative, 6-(benzo[ghi]perylene-1,2-dicarboxylic imide-yl)hexanoic acid (BPDI), was employed. A polycation, poly(diallyldimethylammonium) chloride (poly-DDA), could induce aggregation of BPDI through noncovalent interactions. A decrease of BPDI monomer emission and a simultaneous increase of BPDI excimer emission were observed. Upon the addition of heparin, the strong binding between heparin and poly-DDA caused release of BPDI monomer molecules, and an excimer-monomer emission signal transition was detected. However, after the enzymatic hydrolysis of heparin by heparinase, heparin was hydrolyzed into small fragments, which weakened the competitive binding of heparin to poly-DDA. Poly-DDA induced aggregation of BPDI, and a monomer-excimer emission signal transition was detected. Our assay is simple, rapid, inexpensive, sensitive and selective, which could facilitate the heparin and heparinase related biochemical and biomedical research. PMID:26344903

  10. Lamp method and apparatus using multiple reflections

    DOEpatents

    MacLennan, D.A.; Turner, B.; Kipling, K.

    1999-05-11

    A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible is disclosed. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture. 20 figs.

  11. Lamp method and apparatus using multiple reflections

    DOEpatents

    MacLennan, Donald A.; Turner, Brian; Kipling, Kent

    1999-01-01

    A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture.

  12. CALiPER Retail Lamps Study 3

    SciTech Connect

    none,

    2014-02-01

    This is a special CALiPER report on LED lamps available through the retail marketplace and targeted toward general consumers. It follows similar reports published in 2011 and 2012 (products purchased in 2010 and 2011), and is intended as a continuation that identifies long-term trends. For this report, products were selected to investigate specific hypotheses, rather than represent a sample of the increasingly large retail LED market.

  13. Fluorescent ballast and lamp disposal issues

    SciTech Connect

    Leishman, D.L.

    1996-05-01

    All around the world, governments, utility companies, and private businesses are attempting to reduce the amount of energy consumed. In the United States alone, new economic strategies and programs are being created to facilitate this process. For instance, the recent enactment of the National Energy Policy Act, the Environmental Protection Agency`s (EPA) Green Lights Program, and a surge of utility involvement in Demand Side Management (DSM) Commercial/Industrial Direct Install and Rebate Programs. Many of these programs target Commercial/Industrial lighting system retrofits as one of the most cost effective avenues for reducing the consumption of energy. Due to this trend, hundreds of millions of lighting ballasts and lamps are being pulled out of existing buildings and discarded. The benefits of these programs result in enormous reductions in fossil fuels (and subsequent carbon dioxide, sulfur dioxide, and nitrogen oxide emissions) required to generate the displaced electricity. Throughout the United States, however, there is an increasing concern for the environmental impacts surrounding the accelerated disposal of both lighting ballasts and lamps. Regulations initially established were for a {open_quotes}one by one,{close_quotes} retirement (failure) process rather than promoted obsolescence and forced retirement of lamp groups or entire systems (truckloads of old technologies). Recognizing this trend and the potential negative environmental effects federal state, and local regulators are in the process of reevaluating the impacts and are being asked to promulgate policies to specifically address this situation. While it is anticipated that regulations pertaining to PCB ballasts will become better focused, the regulations regarding fluorescent lamps are, really, yet to be finalized. As interested and involved parties continue to become more aware of all the impacts, we can expect clearer direction.

  14. High output lamp with high brightness

    DOEpatents

    Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.

    2002-01-01

    An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.

  15. Fluorescent ballast and lamp disposal issues

    SciTech Connect

    Leishman, D.L.

    1996-12-01

    All around the world, governments, utility companies, and private businesses are attempting to reduce the amount of energy consumed. In the US alone, new economic strategies and programs are being created to facilitate this process. For instance, the recent enactment of the National Energy Policy Act, the Environmental Protection Agency`s (EPA) Green Lights Program, and a surge of utility involvement in Demand Side Management (DSM) Commercial/Industrial Direct Install and Rebate Programs. Many of these problems target commercial/industrial lighting system retrofits as one of the most cost effective avenues for reducing the consumption of energy. Due to this trend, hundreds of millions of lighting ballasts and lamps are being discarded. The benefits of these programs result in enormous reductions in fossil fuels (and subsequent carbon dioxide, sulfur dioxide, and nitrogen oxide emissions) required to generate the displaced electricity. Throughout the US, however, there is an increasing concern for the environmental impacts surrounding the accelerated disposal of both lighting ballasts and lamps. Regulations initially established were for a one by one, retirement (failure) process rather than promoted obsolescence and forced retirement of lamp groups or entire systems (truckloads of old technologies). Recognizing this trend and the potential negative environmental effects, federal, state, and local regulators are reevaluating the impacts and are being asked to promulgate policies to specifically address this situation.

  16. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok M. Srivastava

    2005-09-30

    This is the Yearly Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. Our chief achievement, during the current contract period, pertains to the successful synthesis and characterization of coated phosphors. We demonstrated several synthesis techniques for the coating of micron sized commercial phosphors with quantum-splitting and UV emitting nanophosphors. We have also continued our fundamental investigations into the physical processes that determine the quantum efficiency of the nanophosphors and this has further helped codify a set of rules for the host lattice that support efficient quantum splitting and UV emission at room temperature. In this report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.

  17. A quencher-free molecular beacon design based on pyrene excimer fluorescence using pyrene-labeled UNA (unlocked nucleic acid).

    PubMed

    Karlsen, Kasper K; Okholm, Anders; Kjems, Jørgen; Wengel, Jesper

    2013-10-15

    A quencher-free molecular beacon capable of generating pyrene excimer fluorescence has been constructed using strategically positioned pyrene-UNA monomers. Hybridization of a fully complementary RNA target was accompanied by a pyrene excimer emission increase of more than 900%, and detection of RNA in living cells was demonstrated.

  18. Excimer laser annealing: A gold process for CZ silicon junction formation

    NASA Technical Reports Server (NTRS)

    Wong, David C.; Bottenberg, William R.; Byron, Stanley; Alexander, Paul

    1987-01-01

    A cold process using an excimer laser for junction formation in silicon has been evaluated as a way to avoid problems associated with thermal diffusion. Conventional thermal diffusion can cause bulk precipitation of SiOx and SiC or fail to completely activate the dopant, leaving a degenerate layer at the surface. Experiments were conducted to determine the feasibility of fabricating high quality p-n junctions using a pulsed excimer laser for junction formation at remelt temperature with ion-implanted surfaces. Solar-cell efficiency exceeding 16 percent was obtained using Czochralski single-crystal silicon without benefit of back surface field or surface passivation. Characterization shows that the formation of uniform, shallow junctions (approximately 0.25 micron) by excimer laser scanning preserves the minority carrier lifetime that leads to high current collection. However, the process is sensitive to initial surface conditions and handling parameters that drive the cost up.

  19. [Analyses of biogenic related compounds based on intramolecular excimer-forming fluorescence derivatization].

    PubMed

    Yoshida, Hideyuki

    2003-08-01

    A highly selective and sensitive method based on a novel concept is introduced for the assay of biological substances. This method is based on an intramolecular excimer-forming fluorescence derivatization with a pyrene reagent, followed by reverse-phase HPLC. Polyamines, polyphenols, and dicarboxylic acids, which have two or more reactive functional groups in a molecule, were converted to the corresponding polypyrene-labeled derivatives by reaction with the appropriate pyrene reagent. The derivatives exhibited intramolecular excimer fluorescence (440-520 nm), which can clearly be discriminated from the monomer (normal) fluorescence (360-420 nm) emitted by pyrene reagents and monopyrene-labeled derivatives of monofunctional compounds. With excimer fluorescence detection, highly selective and sensitive determination of polyamines, polyphenols, and dicarboxylic acids can be achieved. Furthermore, the methods were successfully applied to the determination of various biological and environmental substances in real samples, which require only a small amount of sample and simple pretreatment.

  20. Calorimetric Observation of Single He_2^* Excimers in a 100-mK He Bath

    NASA Astrophysics Data System (ADS)

    Carter, F. W.; Hertel, S. A.; Rooks, M. J.; McClintock, P. V. E.; McKinsey, D. N.; Prober, D. E.

    2016-10-01

    We report the first calorimetric detection of individual He_2^* excimers within a bath of superfluid ^4He. The detector used in this work is a single superconducting titanium transition edge sensor (TES) with an energy resolution of {˜ }1 eV, immersed directly in the helium bath. He_2^* excimers are produced in the surrounding bath using an external gamma-ray source. These excimers exist either as short-lived singlet or long-lived triplet states. We demonstrate detection (and discrimination) of both states: In the singlet case the calorimeter records the absorption of a prompt {≈ }15 eV photon, and in the triplet case the calorimeter records a direct interaction of the molecule with the TES surface, which deposits a distinct fraction of the {≈ }15 eV, released upon decay, into the surface. We also briefly discuss the detector fabrication and characterization.

  1. Excimer-monomer switch: a reaction-based approach for selective detection of fluoride.

    PubMed

    Song, Qiao; Bamesberger, Angela; Yang, Lingyun; Houtwed, Haley; Cao, Haishi

    2014-07-21

    A N-aryl-1,8-naphthalimide based sensor (ES-1) bearing a trimethylsilyl ether has been synthesized by a two-step reaction for quantitative detection of fluoride (F(-)). ES-1 exhibited monomer/excimer emissions at 410 and 524 nm respectively in CH2Cl2. In the presence of F(-), the desilylation of trimethylsilyl ether caused decay of the excimer emission as well as enhancement of the monomer emission to give a ratiometric signal. The fluoride-triggered desilylation showed a high reaction rate and high affinity to F(-) over nine other interfering anions. ES-1 provided a novel fluorescence assay based on excimer-monomer switch of N-aryl-1,8-naphthalimide to quantitatively measure F(-) with a detection limit of 0.133 ppm.

  2. Max Tech and Beyond: High-Intensity Discharge Lamps

    SciTech Connect

    Scholand, Michael

    2012-04-01

    High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. With the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable operating conditions, and

  3. KrF-excimer laser pretreatment and metallization of polymers

    NASA Astrophysics Data System (ADS)

    Weichenhain, R.; Wesner, D. A.; Pfleging, W.; Horn, H.; Kreutz, E. W.

    1997-02-01

    Metal film adhesion to polymers can be improved by pretreatment with UV-laser radiation before metal deposition. Chemical changes associated with irradiation are investigated for polyimide (PI) and polybutylene terephthalate (PBT) surfaces. Irradiated surfaces are coated with aluminum films ≤10 nm in thickness, enabling the effects of irradiation on the metal/polymer interface to be studied. Irradiation is done in air with KrF-excimer laser radiation (λ=248 nm) at fluences per pulse ≤600 mJ/cm2. The threshold fluence εt for material removal is determined by profilometry measurements of etched features, and the chemical properties of the polymer and the metal/polymer interface are studied with X-ray photoelectron spectroscopy (XPS). Aluminum films are thermally evaporated in situ in the XPS spectrometer. Irradiation of PI at fluences near εt (41 mJ/cm2) results in loss of oxygen and opening of the imide ring, resulting in doubly bonded nitrogen species. After evaporation of aluminum the carbonyl (CO) C1s XPS signal is reduced in intensity, and both Al0 and Al3+ are found, the latter being located at the interface. In comparison to unirradiated areas, irradiated areas have more aluminum in total and a higher proportion of interfacial Al3+ species, indicating an increase in the concentration of metal binding sites. Although for PBT the O to C ratio also decreases with irradiation at fluences near εt (38 mJ/cm2), changes in the amounts of Al0 or Al3+ for irradiated areas in comparison to unirradiated areas are much smaller than for PI and consist mainly of a slight enhancement of Al0 for films deposited on irradiated surfaces.

  4. Advanced excimer laser technologies enable green semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  5. Excimer laser debridement of necrotic erosions of skin without collateral damage

    NASA Astrophysics Data System (ADS)

    Wynne, James J.; Felsenstein, Jerome M.; Trzcinski, Robert; Zupanski-Nielsen, Donna; Connors, Daniel P.

    2011-07-01

    Pulsed ArF excimer laser radiation at 6.4 eV, at fluence exceeding the ablation threshold, will debride burn eschar and other dry necrotic erosions of the skin. Debridement will cease when sufficiently moist viable tissue is exposed, due to absorption by aqueous chloride ions (Cl-) through the non-thermal process of electron photodetachment, thereby inhibiting collateral damage to the viable tissue. ArF excimer laser radiation debrides/ablates ~1 micron of tissue with each pulse. While this provides great precision in controlling the depth of debridement, the process is relatively time-consuming. In contrast, XeCl excimer laser radiation debrides ~8 microns of tissue with each pulse. However the 4.0 eV photon energy of the XeCl excimer laser is insufficient to photodetach an electron from a Cl- ion, so blood or saline will not inhibit debridement. Consequently, a practical laser debridement system should incorporate both lasers, used in sequence. First, the XeCl excimer laser would be used for accelerated debridement. When the necrotic tissue is thinned to a predetermined thickness, the ArF excimer laser would be used for very precise and well-controlled debridement, removing ultra-thin layers of material with each pulse. Clearly, the use of the ArF laser is very desirable when debriding very close to the interface between necrotic tissue and viable tissue, where the overall speed of debridement need not be so rapid and collateral damage to viable tissue is undesirable. Such tissue will be sterile and ready for further treatment, such as a wound dressing and/or a skin graft.

  6. Characterization and recovery of mercury from spent fluorescent lamps.

    PubMed

    Jang, Min; Hong, Seung Mo; Park, Jae K

    2005-01-01

    Fluorescent lamps rely on mercury as the source of ultraviolet radiation for the production of visible light. Partitioning of mercury among vapor phase, loose phosphor powders produced during breaking and washing steps, glass matrices, phosphor powders attached on the glass and aluminum end caps was examined from simulated laboratory lamp recycling tests for different types of spent and new fluorescent lamps. Mercury concentrations in lamp glasses taken from commercial lamp recyclers were also analyzed for comparison with the simulated results of spent and new lamps of different types. The mercury content of the glass from spent lamps was highly variable depending on the lamp type and manufacturer; the median values of the mercury concentration in glasses for spent 26- (T8) and 38-mm (T12) diameter fluorescent lamps were approximately 30 and 45 microg/g, respectively. The average mercury concentration of samples taken from recycler A was 29.6 microg/g, which was about 64% of median value measured from the spent T12 lamps. Over 94% of total mercury in lamps remained either as a component of phosphor powders attached inside the lamp or in glass matrices. New T12 lamps had a higher partitioning percentage of elemental mercury in the vapor phase (0.17%) than spent T12 lamps (0.04%), while spent lamps had higher partitioning percentages of mercury resided on end-caps and phosphor powders detached from the breaking and washing steps. The TCLP values of simulated all lamp-glasses and samples obtained from recyclers were higher than the limit of LDR standard (0.025 mg/L). After investigating acid treatment and high temperature treatment as mercury reclamation techniques, it was found that heating provided the most effective mercury capture. Although the initial mercury concentrations of individual sample were different, the mercury concentrations after 1 h exposure at 100 degrees C were below 4 mug/g for all samples (i.e., <1% remaining). Therefore, it is recommended that

  7. Excimer lasers. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations of selected patents concerning the design and development of excimer laser devices, apparatus, and systems for use in industrial and medical applications. Citations discuss ablation and lithography technology, compact excimer lasers, laser gas purification and recycling, microwave and discharge excited lasers, and rare gas halides. Applications are considered, including metallization and patterning, manufacturing of ophthalmic lenses, profiling of optical surfaces, treatment of engine parts, prosthetic surgery, and corneal ablation. (Contains a minimum of 106 citations and includes a subject term index and title list.)

  8. Overview of recent advances in excimer laser technology at Los Alamos

    SciTech Connect

    Bigio, I.J.; Sze, R.C.; Taylor, A.J.; Gibson, R.B.

    1988-01-01

    From among the areas of excimer laser development at Los Alamos two are selected for further discussion: ultra-high brightness excimer laser systems and discharge-pumped XeF(C..-->..A) lasers operating in the blue-green portion of the spectrum. Two different high brightness systems are described. One is based on small-aperture KrF amplifiers, while the other is based on a large-aperture XeCl amplifier. The XeF(C..-->..A) laser is tunable from 435 to 525 nm, and may one day become a viable alternative to pulsed dye lasers for many applications. 14 refs., 4 figs.

  9. Micro-mirror formed using excimer laser processing in a polymer waveguide

    NASA Astrophysics Data System (ADS)

    Shioda, Tsuyoshi

    2005-04-01

    A micro-mirror formed using excimer laser processing for a fluorinated polyimide waveguide film was demonstrated. The tilted excimer laser irradiation to the waveguide core formed a micro-mirror with an angle of 45 +/- 1-degree. The micro-mirror had convex profile and exhibited a lens effect as a concave mirror. The micro-mirror, as formed, exhibited a low reflection loss of approximately 0.6dB at a wavelength of 850nm. This technique applied to flexible optical and electrical circuit board.

  10. Optics designs for an innovative LED lamp family system

    NASA Astrophysics Data System (ADS)

    Weiss, Herbert; Muschaweck, Julius; Hadrath, Stefan; Kudaev, Sergey

    2011-10-01

    On the general lighting market of LED lamps for professional applications there are still mainly products for single purpose solutions existing. There is a lack of standardised lamp systems like they are common for conventional lighting technologies. Therefore, an LED lamp family system was studied using high power LED with the objective to entirely substitute standard conventional lamp families in general lighting applications in the professional market segment. This comprises the realization of sets of lamp types with compact and linear shapes as well as with light distribution characteristics ranging from diffuse to extreme collimation and exceptionally high candle power. Innovative secondary optics concepts are discussed which allow both, the design of lamps with non-bulky shape and to obtain sufficient colour mixing when using multicolour LED combinations in order to achieve a very high colour rendering quality.

  11. Heat transfer assembly for a fluorescent lamp and fixture

    DOEpatents

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  12. Heat transfer assembly for a fluorescent lamp and fixture

    DOEpatents

    Siminovitch, Michael J.; Rubenstein, Francis M.; Whitman, Richard E.

    1992-01-01

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

  13. The National Energy Policy Act and lamp replacement options

    SciTech Connect

    Ryerson, C.

    1995-06-01

    The National Policy Act of 1992 involves the creation of energy efficiency standards for a wide range of products including fluorescent and incandescent lamps. Minimum efficacy (lumens per watt) and color rendering index (CRI) standards are mandated for the popular fluorescent lamps: four-foot medium bi-pin, two-foot U-bent, eight-foot slimline and eight-foot high output. Minimum efficacies are mandated for specific incandescent R and PAR reflector lamps. These standards will affect selected colors and designs of fluorescent lamps, the most significant being the standard lamps in the cool white and warm white colors. The incandescent reflector lamps will include the R-30, R-40, PAR-38 lamps above 40 watts, excluding the halogen types. These efficiency and color rendering standards will require end-users and specifiers to select replacement fluorescent lamps from a range of performance characteristics (lumen output, efficacy, CRI and price). The choice of replacement for the R and PAR incandescent lamps will include the halogen designs and compact fluorescent designs. In this paper, replacement options will be analyzed and discussed and the effect of these options on the performance of the lighting system will be explored in detail.

  14. Fluorescent lamp unit with magnetic field generating means

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope.

  15. Fluorescent lamp unit with magnetic field generating means

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-08-08

    A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope. 4 figs.

  16. 49 CFR 393.17 - Lamps and reflectors-combinations in driveaway-towaway operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... two tail lamps, one at each side, and two stop lamps, one at each side. (b) Except as provided in... near the rear of the vehicle. (2) On the rear, there must be at least two tail lamps, two stop lamps... under § 392.30, it must have on the rear— (i) Two stop lamps, one on each side of the...

  17. 49 CFR 393.17 - Lamps and reflectors-combinations in driveaway-towaway operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... two tail lamps, one at each side, and two stop lamps, one at each side. (b) Except as provided in... near the rear of the vehicle. (2) On the rear, there must be at least two tail lamps, two stop lamps... under § 392.30, it must have on the rear— (i) Two stop lamps, one on each side of the...

  18. Allvar Gullstrand and the slit lamp 1911.

    PubMed

    Timoney, P J; Breathnach, C S

    2013-06-01

    The Swedish ophthalmologist and self-taught mathematician Allvar Gullstrand (1862-1930) invented the slit lamp to illuminate the anterior of the eye. With its rectangular beam of very bright light, he studied the structure of the cornea and the function of the lens. His dioptric investigations showed that, as well as the extracapsular mechanism described by Helmholtz, changes in the substance of the lens, that he termed intracapsular, also contribute to accommodation. However, his invention has been appropriated by clinical ophthalmologists and is now routinely used in examination of the eye. PMID:23264115

  19. Hazards from High Intensity Lamps and Arcs

    NASA Technical Reports Server (NTRS)

    Sliney, D. H.

    1970-01-01

    The principal occupational health problem generally associated with high intensity arc lamps results from exposure of the eye and skin to ultraviolet radiation. Occasionally, the chorioretinal burns are of concern. The eye is generally more susceptible than the skin to injury from high intensity optical radiation sources whether ultraviolet, visible or infrared. Recent developments in technology have shown that some high intensity optical radiation sources which have output parameters greatly different from those encountered in the natural environment present a serious chorioretinal burn hazard.

  20. RF driven sulfur lamp having driving electrodes arranged to cool the lamp

    DOEpatents

    Gabor, G.; Orr, T.R.; Greene, C.M.; Crawford, D.G.; Berman, S.M.

    1998-10-20

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance. 17 figs.

  1. RF driven sulfur lamp having driving electrodes arranged to cool the lamp

    DOEpatents

    Gabor, George; Orr, Thomas Robert; Greene, Charles Maurice; Crawford, Douglas Gordon; Berman, Samuel Maurice

    1998-01-01

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance.

  2. Compact microwave lamp having a tuning block and a dielectric located in a lamp cavity

    DOEpatents

    Simpson, James E.

    2000-01-01

    A microwave lamp having a compact structure utilizing a coupling slot which has a dielectric member extending therethrough and a tuning block adjoining the coupling slot. A non-conventional waveguide is used which has about the width of a WR-284 waveguide and about the length of a WR-340 waveguide.

  3. Excimer v. Nd:YAG: comparative analysis of initial ultrastructural alterations produced by two distinct lasers

    NASA Astrophysics Data System (ADS)

    Nevorotin, Alexey J.

    1990-09-01

    Fine structural alteratious produced iediate1y after irradiation with either XeC1 excimer or Nd:Y.AG laser have been studied in rat liver samples processed histochemically for glucose-6-phosphatase (GP) activity, a marker enzyme for the endoplasmic reticulum (ER) of hepatocytes. General vesiculation of ER along with moderate inactivation of GP was apparent following excimer lazing which contrasted with better structural but poorer enzymatic preservation of ER in the hepatocytes irradiated with Nd:YAG laser. c'i the basis of this and our recent study. (A. Nevorotin, M. Kul 1 . 1989. Arch. Pathol . v. 51, N 7, pp. 63'TO ) a conclus ion is drawn on a potential surgical advantage of excimer laser over its Nd:YAG counterpart due presumably to lesser extent of cellular and macromolecular damage implicative in the process of healing of laser-inflicted lesions. A mechanism of ER vesiculation is considered in the iignt of probable dynamic impact transferred to the ER membranes by excimer irradiation by analogy with other nign energy mechanical forces (e.g. nign gravitation or ultrasonication) known to interfere with membrane structural organization.

  4. Corneal aldehyde dehydrogenase and glutathione S-transferase activity after excimer laser keratectomy in guinea pigs

    PubMed Central

    Bilgihan, K.; Bilgihan, A.; Turkozkan, N.

    1998-01-01

    BACKGROUND—The free radical balance of the eye may be changed by excimer laser keratectomy. Previous studies have demonstrated that excimer laser keratectomy increases the corneal temperature, decreases the superoxide dismutase activity of the aqueous, and induces lipid peroxidation in the superficial corneal stroma. Aldehyde dehydrogenase (ALDH) and glutathione S-transferase (GST) are known to play an important role in corneal metabolism, particularly in detoxification of aldehydes, which are generated from free radical reactions.
METHODS—In three groups of guinea pigs mechanical corneal de-epithelialisation was performed in group I, superficial corneal photoablation in group II, and deep corneal photoablation in group III, and the corneal ALDH and GST activities measured after 48 hours.
RESULTS—The mean ALDH and GST activities of group I and II showed no differences compared with the controls (p>0.05). The corneal ALDH activities were found to be significantly decreased (p<0.05) and GST activities increased (p<0.05) in group III.
CONCLUSION—These results suggest that excimer laser treatment of high myopia may change the ALDH and GST activities, metabolism, and free radical balance of the cornea.

 Keywords: excimer laser keratectomy; aldehyde dehydrogenase; glutathione S-transferase PMID:9602629

  5. Excimer lasers in cardiovascular surgery: Ablation products and photoacoustic spectrum of the arterial wall

    NASA Astrophysics Data System (ADS)

    Singleton, D. L.; Paraskevopoulos, G.; Jolly, G. S.; Irwin, R. S.; McKenney, D. J.; Nip, W. S.; Farrell, E. M.; Higginson, L. A. J.

    1986-03-01

    Photoacoustic spectra of normal artery wall and of atherosclerotic plaque are reported. Threshold fluences for ablative formation of gaseous products for each excimer laser line were calculated from the photoacoustic spectrum and the measured threshold for the KrF laser.

  6. [Near infrared light irradiator using halogen lamp].

    PubMed

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  7. [Near infrared light irradiator using halogen lamp].

    PubMed

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer. PMID:22860296

  8. Lamp for generating high power ultraviolet radiation

    DOEpatents

    Morgan, Gary L.; Potter, James M.

    2001-01-01

    The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

  9. 78 FR 14357 - Certain Compact Fluorescent Reflector Lamps, Products Containing Same and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... COMMISSION Certain Compact Fluorescent Reflector Lamps, Products Containing Same and Components Thereof... importation of certain compact fluorescent reflector lamps, products containing same and components thereof by... importation of certain compact fluorescent reflector lamps, products containing same and components thereof...

  10. A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser.

    PubMed Central

    Marshall, J; Trokel, S; Rothery, S; Krueger, R R

    1986-01-01

    This paper reviews the potential role of excimer lasers in corneal surgery. The morphology of incisions induced by two wavelengths of excimer laser radiation, 193 nm and 248 nm, are compared with the morphology of incisions produced by diamond and steel knives. Analysis suggests that ablation induced by excimer laser results from highly localised photochemical reactions and that 193 nm is the optimal wavelength for surgery. The only significant complication of laser surgery is loss of endothelial cells when incisions are within 40 micron of Descemet's membrane. Images PMID:3013283

  11. The mechanism of the surface morphology transformation for the carbon nanotube thin film irradiated via excimer laser

    SciTech Connect

    Chien, Yun-Shan; Lee, I-Che; Yang, Po-Yu; Wang, Chao-Lung; Tsai, Wan-Lin; Wang, Kuang-Yu; Chou, Chia-Hsin; Cheng, Huang-Chung

    2013-05-06

    In this paper, the surface morphology transformation of the sprayed carbon nanotube (CNT) thin film irradiated with the excimer laser has been systematically investigated. Under the excimer-laser irradiation, two phenomena, including the annealing and ablation effects, were found to be dependent on the incident laser energy and overlapping ratios. Moreover, the extremely high protrusions would be produced in the interface between the annealing and ablation regions. The mechanism of the CNT thin film under the excimer laser irradiation was, therefore, proposed to derive the surface morphology modifications and the further reinforced crystallinity with proper laser energy densities and overlapping ratios.

  12. Excimer laser debulking for percutaneous coronary intervention in left main coronary artery disease.

    PubMed

    Topaz, On; Polkampally, Pritam R; Mohanty, Pramod K; Rizk, Maged; Bangs, Julie; Bernardo, Nelson L

    2009-11-01

    Excimer laser has been successfully applied to complex atherosclerotic plaques in acute coronary syndromes; however, its role in debulking in left main coronary artery disease has not been fully explored. Details of a series of 20 patients who underwent excimer laser revascularization of a spectrum of left main coronary artery lesions are presented. Twenty symptomatic patients who received excimer laser debulking were examined for procedural outcome and follow up results. The left main coronary artery was characterized as protected, semi-protected, poorly protected, or unprotected, depending on the presence or absence of patent bypass grafts to the left anterior descending (LAD) and circumflex (CX) arteries. A fully protected left main coronary artery (LMCA) was present in only 20% of the patients. The target lesions included 11(55%) distal LMCA stenoses, six (30%) ostial stenoses, and one (5%) mid-portion lesions. Two (10%) patients had in-stent re-stenosis of the entire length of the LMCA. Small (0.7 mm-1.4 mm) excimer laser catheters were mostly used. A relatively high number of laser energy pulses (1,334 +/- 643) were required to achieve adequate debulking. Successful LMCA intervention was performed in 19 (95%) patients, while in-hospital complications occurred in only one (5%) patient. Subacute/late stent thrombosis developed 3 months after the procedure in one patient, and two patients died from non-cardiac causes during follow-up. Lesions in LMCAs can be revascularized in selected patients by laser debulking and adjunct stenting. Inadequate protection by bypass grafts and decreased left ventricular function do not contradict utilization of excimer laser. Small laser catheters and high energy levels are required during laser debulking of stenoses of left main coronary arteries.

  13. Atomic Oxygen Lamp Cleaning Facility Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Stueber, Thomas J.

    1999-01-01

    NASA Lewis Research Center's Atomic Oxygen Lamp Cleaning Facility was designed to produce an atomic oxygen plasma within a metal halide lamp to remove carbon-based contamination. It is believed that these contaminants contribute to the high failure rate realized during the production of these lamps. The facility is designed to evacuate a metal halide lamp and produce a radio frequency generated atomic oxygen plasma within it. Oxygen gas, with a purity of 0.9999 percent and in the pressure range of 150 to 250 mtorr, is used in the lamp for plasma generation while the lamp is being cleaned. After cleaning is complete, the lamp can be backfilled with 0.9999-percent pure nitrogen and torch sealed. The facility comprises various vacuum components connected to a radiation-shielded box that encloses the bulb during operation. Radiofrequency power is applied to the two parallel plates of a capacitor, which are on either side of the lamp. The vacuum pump used, a Leybold Trivac Type D4B, has a pumping speed of 4-m3/hr, has an ultimate pressure of <8x10-4, and is specially adapted for pure oxygen service. The electronic power supply, matching network, and controller (500-W, 13.56-MHz) used to supply the radiofrequency power were purchased from RF Power Products Inc. Initial test results revealed that this facility could remove the carbon-based contamination from within bulbs.

  14. Convection venting lensed reflector-type compact fluorescent lamp system

    DOEpatents

    Pelton, B.A.; Siminovitch, M.

    1997-07-29

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures. 12 figs.

  15. Fluorescent lamp with static magnetic field generating means

    DOEpatents

    Moskowitz, P.E.; Maya, J.

    1987-09-08

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

  16. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  17. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  18. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  19. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  20. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  1. Convection venting lensed reflector-type compact fluorescent lamp system

    DOEpatents

    Pelton, Bruce A.; Siminovitch, Michael

    1997-01-01

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures.

  2. Fluorescent lamp with static magnetic field generating means

    DOEpatents

    Moskowitz, Philip E.; Maya, Jakob

    1987-01-01

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed.

  3. Commercially available sun lamps and vitamin D formation

    PubMed Central

    Devgun, M. S.; Johnson, B. E.; Cruickshank, Alison J. M.; Paterson, C. R.

    1981-01-01

    Four commercially available, medium pressure mercury sun lamps were used to assess their effects on promoting vitamin D synthesis in the skin. It was found that all the lamps studied had vitamin D synthesizing spectral wavelengths and caused an increase in the serum concentrations of 25-hydroxyvitamin D. However, the ultraviolet and visible irradiance measurements showed that a considerable proportion of the ultraviolet radiation was below 290 nm. It was not surprising, therefore, to find that these lamps caused adverse skin reactions. While a useful rise in vitamin D production can be obtained with these sun lamps, the difficulty involved in avoiding skin reaction limits their usefulness. Such lamps are unlikely to provide a safe practical routine method for the prevention of vitamin D deficiency in the home. PMID:7329878

  4. Tanning lamps ultraviolet emissions and compliance with technical standards.

    PubMed

    Bonino, A; Facta, S; Saudino, S; Anglesio, L; D'Amore, G

    2009-12-01

    In this work the compliance of tanning lamps with technical standards EN 60335-2-27 'Household and similar electrical appliances-Safety. Part 2: Particular requirements for appliances for skin exposure to ultraviolet and infrared radiation' was analysed. Results of this analysis showed that none of the examined technical documentation produced by the lamps manufacturers is fully compliant with the standard technique. Furthermore data reported in the same manuals, such as effective radiant exposure or irradiance, would indicate that these sources may be the cause of undue exposure to ultraviolet (UV) radiation. For this reason a measurement campaign on UV lamps used in tanning salons was organised. The first results of these measurements seem to confirm the doubts raised from the analysis of the lamp manuals: the use of a tanning lamp can lead to UV radiation exposure levels higher than reference maximum values recommended by EN 60335-2-27. PMID:19880416

  5. Frequency domain fluorimetry using a mercury vapor lamp

    NASA Astrophysics Data System (ADS)

    Bohn, Matthew J.; Lundin, Michael A.; Marciniak, Michael A.

    2009-04-01

    Frequency Domain (FD) fluorimetry, capitalizes on the frequency response function of a fluorophore and offers independence from light scatter and excitation/emission intensity variations in order to extract the sample's fluorescent lifetime. Mercury vapor lamps, a common source of industrial facility lighting, emit radiation that overlaps the UV/blue absorption spectrum of many fluorophores and may be used as an efficient and portable excitation source. The AC power modulation of mercury vapor lamps modulates the lamp's intensity at 120 Hz (in the United States) and higher harmonics. The fluorescent lifetimes for 3 different materials (willemite, uranium doped glass and U3O8) are measured with conventional techniques and compared with the FD technique using the power harmonics from a mercury vapor lamp. The mercury lamp measurements agree to within 25% of the conventional methods.

  6. Mobilizing slit lamp to the field: A new affordable solution.

    PubMed

    Farooqui, Javed Hussain; Jorgenson, Richard; Gomaa, Ahmed

    2015-11-01

    We are describing a simple and affordable design to pack and carry the slit lamp to the field. Orbis staff working on the Flying Eye Hospital (FEH) developed this design to facilitate mobilization of the slit lamp to the field during various FEH programs. The solution involves using a big toolbox, a central plywood apparatus, and foam. These supplies were cut to measure and used to support the slit lamp after being fitted snuggly in the box. This design allows easy and safe mobilization of the slit lamp to remote places. It was developed with the efficient use of space in mind and it can be easily reproduced in developing countries using same or similar supplies. Mobilizing slit lamp will be of great help for staff and institutes doing regular outreach clinical work.

  7. Mobilizing slit lamp to the field: A new affordable solution

    PubMed Central

    Farooqui, Javed Hussain; Jorgenson, Richard; Gomaa, Ahmed

    2015-01-01

    We are describing a simple and affordable design to pack and carry the slit lamp to the field. Orbis staff working on the Flying Eye Hospital (FEH) developed this design to facilitate mobilization of the slit lamp to the field during various FEH programs. The solution involves using a big toolbox, a central plywood apparatus, and foam. These supplies were cut to measure and used to support the slit lamp after being fitted snuggly in the box. This design allows easy and safe mobilization of the slit lamp to remote places. It was developed with the efficient use of space in mind and it can be easily reproduced in developing countries using same or similar supplies. Mobilizing slit lamp will be of great help for staff and institutes doing regular outreach clinical work. PMID:26669342

  8. Direct current ballast circuit for metal halide lamp

    NASA Technical Reports Server (NTRS)

    Lutus, P. (Inventor)

    1981-01-01

    A direct current ballast circuit for a two electrode metal halide lamp is described. Said direct current ballast circuit includes a low voltage DC input and a high frequency power amplifier and power transformer for developing a high voltage output. The output voltage is rectified by diodes and filtered by inductor and capacitor to provide a regulated DC output through commutating diodes to one terminal of the lamp at the output terminal. A feedback path from the output of the filter capacitor through the bias resistor to power the high frequency circuit which includes the power amplifier and the power transformer for sustaining circuit operations during low voltage transients on the input DC supply is described. A current sensor connected to the output of the lamp through terminal for stabilizing lamp current following breakdown of the lamp is described.

  9. Compatibility testing of fluorescent lamp and ballast systems

    SciTech Connect

    Ji, Y.; Davis, R.; O'Rourke, C.; Chui, E.W.M.

    1999-12-01

    The rapid growth in the use of electronic ballasts for fluorescent lighting systems, and the corresponding increase in the number of new products and new manufacturers in the market, has raised a number of questions regarding the compatibility of the lamps and ballasts used in fluorescent systems. Because many of the new products start and operate lamps differently than previous products, the relevant American National Standards Institute requirements may no longer be adequate for addressing compatibility concerns. The impacts on system performance of the newer products of a parametric study designed to test key hypotheses regarding the impact of ballast parameters on fluorescent lamp life. In this study, samples of 4-ft T8 fluorescent lamps were operated on duty cycles of 5 min on and 5 min off, using seven different ballast types. The results of the study indicate which parameters seem to have the biggest effect on lamp life, and can be used in establishing new performance standards for fluorescent systems.

  10. Contrast between the vertical and horizontal mercury discharge lamps

    SciTech Connect

    Ben Hamida, M. B.; Helali, H.; Araoud, Z.; Charrada, K.

    2011-06-15

    This paper discusses the thermal behavior of a high pressure mercury lamp in a horizontal position, compared with that of a vertical lamp. The model adopted is three-dimensional, steady, and powered DC. After the model validation, we analyzed temperature fields and velocities for the case of the lamp in a horizontal position by comparing it with those of a lamp in vertical position. This setting initially fixed the wall temperature equal to 1000 K. However, the morphology of the temperature profile in the case of the horizontal lamp indicates that the temperature of the wall cannot be uniform. Thus, we have, in a second time, performed an energy balance at the wall to calculate its temperature. This aims to understand the influence of convection on the thermal properties of the source.

  11. Micro-hollow cathode discharge arrays: high pressure, nonthermal plasma sources

    SciTech Connect

    Schoenbach, Karl H.

    1999-10-26

    Microhollow cathode discharges are gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 mm range. The characteristics of the microhollow cathode discharges allow their utilization in flat panel excimer (UV and VUV) lamps, as micro for gaseous emission treatment, and as broad area electron and ion sources. The electrical and optical properties of these nonthermal, high-pressure discharges have been studied, with particular emphasis on their use as compact, direct current excimer lamps, and, to a lesser degree, as gas reactors for treatment of polluted gases. The large concentration of high-energy electrons, in combination with the high neutral gas density in microhollow cathode discharges favors three-body processes such as excimer formation. Excimer emission in rare gases, xenon and argon, at wavelengths of 130 nm and 172 nm, respectively, was observed with intensity increasing monotonically with pressure. The efficiency of excimer emitters, however, defined as ratio of the radiant power in the VUV (172 nm) to the electrical power supplied to the discharge, peaks at approximately 400 Torr. For xenon the maximum efficiency is between 6% and 9%. We demonstrated the existence of stable micro discharges in rare gas halogen mixtures, argon fluoride (193 nm) and xenon chloride (308 nm). Efficiencies of approximately 3% were measured for argon fluoride excimer emission. Parallel operation of these discharges, which has also been demonstrated indicates that power densities on the order of 5 W/cm{sup 2} can be obtained for cd operation, >500 W/cm{sup 2} for pulsed operation. The high electron energies in microhollow cathode discharges favor the generation of radicals in any gas, which is flowed through the cathode opening. In experiments where toluene, a volatile organic compound, was added to atmospheric air, the concentration of the toluene was reduced by almost two orders of magnitude after passing through the

  12. CALiPER Benchmark Report: Performance of Incandescent A Type and Decorative Lamps and LED Replacements

    SciTech Connect

    Lingard, R. D.; Myer, M. A.; Paget, M. L.

    2008-11-01

    This benchmark report addresses common omnidirectional incandescent lamps - A-type and small decorative, candelabra-type lamps - and their commercially available light-emitting diode (LED) replacements.

  13. Quartz lamp thermocycling rig for combustion liners

    SciTech Connect

    Pfeifer, G.D.

    1986-01-01

    Improved combustor liner durability is a major design objective for advanced combustors. Combinations of low cycle fatigue, creep, oxidation and crack propagation are the damage mechanisms that reduce durability. Each of these mechanisms is a consequence of cyclic thermal loading. Closely controlled rig tests can simulate these damage mechanisms. Although rig testing requires duplicating the actual thermal strain range on a full size liner, it is economically more attractive than full-engine testing. A suitable rig for controlled cyclic thermal loading of large size cylindrical test specimens is developed using a 672 KW electric quartz lamp radiant heat source. The design objectives, operational features and development shake-down test results are presented in this paper. The development discusses deals specifically with combustor liner test specimens. The rig is also suitable for high temperature testing of large advanced material specimens including composite ceramics.

  14. Application Summary Report 22: LED MR16 Lamps

    SciTech Connect

    Royer, Michael P.

    2014-07-23

    This report analyzes the independently tested photometric performance of 27 LED MR16 lamps. It describes initial performance based on light output, efficacy, distribution, color quality, electrical characteristics, and form factor, with comparisons to a selection of benchmark halogen MR16s and ENERGY STAR qualification thresholds. Three types of products were targeted. First, CALiPER sought 3000 K lamps with the highest rated lumen output (i.e., at least 500 lm) or a claim of equivalency to a 50 W halogen MR16 or higher. The test results indicate that while the initial performance of LED MR16s has improved across the board, market-available products still do not produce the lumen output and center beam intensity of typical 50 W halogen MR16 lamps. In fact, most of the 18 lamps in this category had lower lumen output and center beam intensity than a typical 35 W halogen MR16 lamp. Second, CALiPER sought lamps with a CRI of 90 or greater. Only four manufacturers were identified with a product in this category. CALiPER testing confirmed the performance of these lamps, which are a good option for applications where high color fidelity is needed. A vast majority of the LED MR16 lamps have a CRI in the low 80s; this is generally acceptable for ambient lighting, but may not always be acceptable for focal lighting. For typical LED packages, there is a fundamental tradeoff between CRI and efficacy, but the lamps in the high-CRI group in this report still offer comparable performance to the rest of the Series 22 products in other performance areas. Finally, CALiPER sought lamps with a narrow distribution, denoted as a beam angle less than 15°. Five such lamps were purchased. Notably, no lamp was identified as having high lumen output (500 lumens or greater), high CRI (90 or greater), a narrow distribution (15° or less), and an efficacy greater than 60 lm/W. This would be an important achievement for LED MR16s especially if output could reach approximately 700 800 lumens

  15. A Medical Excimer Laser System For Corneal Surgery And Laser Angioplasty

    NASA Astrophysics Data System (ADS)

    Caro, R. G.; Muller, D. F.

    1987-03-01

    The authors report the design criteria and performance of the ExciMeda UV200 medical excimer laser system. A beam delivery system for controlled photoablative machining of variable power optical lenses in organic material is described. Some of the potential applications of this delivery system in corneal surgery are presented. The uses of the UV200 laser system in other areas of medical research are discussed and, in particular, its application i the field of laser angioplasty is outlined. There has been considerable interest recently in the use of excimer lasers in a variety of fields in medicine. The ultraviolet, high peak power beam emitted by an excimer laser has been shown to be capable of producing very clean and precise cuts in organic material. In particular, cuts can be made in biological material with minimal disturbance of the material adjacent to the cut. For example, tissue can be cut in such a way as to produce negligible charring or vacuolization in adjacent areas of the tissue. This is in marked contrast to the results when organic material is cut by a continuous wave laser such as an Argon ion laser, or c.w. CO2 laser. The potential applications in clinical settings which are suggested by this feature of the interaction of tissue with excimer laser radiation have been largely unrealized outside the laboratory as yet. A primary reason for this is that, until recently, excimer lasers have been available only in a form that was suitable for the scientific laboratory. These lasers required large amounts of space, were not mobile once installed, and required con nection to external sources of water cooling, vacuum exhaust, a high current electrical supply, and a variety of gas bottles including the gases F2 and C12. These systems were not designed with clinical applications in mind, and thus provided unnecessary performance features at the cost of added complexity. They also posed potential electrical and gaseous safety hazards not suitable for a

  16. Highly Efficient Small Form Factor LED Retrofit Lamp

    SciTech Connect

    Steven Allen; Fred Palmer; Ming Li

    2011-09-11

    This report summarizes work to develop a high efficiency LED-based MR16 lamp downlight at OSRAM SYLVANIA under US Department of Energy contract DE-EE0000611. A new multichip LED package, electronic driver, and reflector optic were developed for these lamps. At steady-state, the lamp luminous flux was 409 lumens (lm), luminous efficacy of 87 lumens per watt (LPW), CRI (Ra) of 87, and R9 of 85 at a correlated color temperature (CCT) of 3285K. The LED alone achieved 120 lumens per watt efficacy and 600 lumen flux output at 25 C. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.90 at a power of only 5 watts. Compared to similar existing MR16 lamps using LED sources, these lamps had much higher efficacy and color quality. The objective of this work was to demonstrate a LED-based MR16 retrofit lamp for replacement of 35W halogen MR16 lamps having (1) luminous flux of 500 lumens, (2) luminous efficacy of 100 lumens per watt, (3) beam angle less than 40{sup o} and center beam candlepower of at least 1000 candelas, and (4) excellent color quality.

  17. A ratiometric fluorescent probe for hyaluronidase detection via hyaluronan-induced formation of red-light emitting excimers.

    PubMed

    Hu, Qinghua; Zeng, Fang; Wu, Shuizhu

    2016-05-15

    Hyaluronidase (HAase), which is involved in various physiological and pathological processes, can selectively degrade hyaluronan (HA) into small fragments, and it has been reported as a diagnostic and prognostic biomarker for bladder cancer. Herein, a facile ratiometric fluorescent sensing system for HAase has been developed, which is based on hyaluronan-induced formation of red-light emitting excimers and can realize sensitive detection of HAase with a detection limit of 0.007 U/mL. A positively-charged pyrene analog (N-Py) has been synthesized and then mixed with the negatively-charged HA, due to electrostatic interaction between the two components, aggregation along with the N-Py excimers readily form which emits red light. While in the presence of HAase, the enzyme catalyzes the hydrolysis of HA into small fragments, which in turn triggers disassembly of excimers; consequently the N-Py excimer emission turns into monomer emission. The emission ratio resulted from the excimer-monomer transition can be used as the sensing signal for detecting HAase. The probe features visible-light excitation and red light emission (excimer), which is conducive to reducing possible interference from autofluorescence of biological samples. Furthermore, the assay system can be successfully used to determine HAase in human urine samples with satisfactory accuracy. This strategy may provide a suitable sensitive and accurate assay for HAase as well as an effective approach for developing fluorescent ratiometric assays for other enzymes. PMID:26774093

  18. REVIEW ARTICLE: UHP lamp systems for projection applications

    NASA Astrophysics Data System (ADS)

    Derra, Guenther; Moench, Holger; Fischer, Ernst; Giese, Hermann; Hechtfischer, Ulrich; Heusler, Gero; Koerber, Achim; Niemann, Ulrich; Noertemann, Folke-Charlotte; Pekarski, Pavel; Pollmann-Retsch, Jens; Ritz, Arnd; Weichmann, Ulrich

    2005-09-01

    Projection systems have found widespread use in conference rooms and other professional applications during the last decade and are now entering the home TV market at a considerable pace. Projectors as small as about one litre are able to deliver several thousand screen lumens and are, with a system efficacy of over 10 lm W-1, the most efficient display systems realized today. Short arc lamps are a key component for projection systems of the highest efficiency for small-size projection displays. The introduction of the ultra high performance (UHP) lamp system by Philips in 1995 can be identified as one of the key enablers of the commercial success of projection systems. The UHP lamp concept features outstanding arc luminance, a well suited spectrum, long life and excellent lumen maintenance. For the first time it combines a very high pressure mercury discharge lamp with extremely short and stable arc gap with a regenerative chemical cycle keeping the discharge walls free from blackening, leading to lifetimes of over 10 000 h. Since the introduction of the UHP lamp system, many important new technology improvements have been realized: burner designs for higher lamp power, advanced ignition systems, miniaturized electronic drivers and innovative reflector concepts. These achievements enabled the impressive increase of projector light output, a remarkable reduction in projector size and even higher optical efficiency in projection systems during the last years. In this paper the concept of the UHP lamp system is described, followed by a discussion of the technological evolution the UHP lamp has undergone so far. Last, but not least, the important improvements of the UHP lamp system including the electronic driver and the reflector are discussed.

  19. New slim automotive taillight using HiPerVision lamps

    NASA Astrophysics Data System (ADS)

    Haenen, Ludo; Ansems, Johan; Schuurmans, Jelle; de Montureux, Philippe

    2002-08-01

    HiPerVision is a new automotive signaling range of lamps (clear and colored) developed by Philips. These lamps offer car life service, reduced size and - consequently - new design opportunities. HiPerVision aims at progressively replacing P21W lamps and at being an economic alternative to LEDs. All lamp dimensions are significantly smaller than P21W's. The HiPerVision 16W lamp produces less heat than the P21W lamp (9 W less dissipation at 13.5 V), what enables a reduced reflector size, the use of low cost plastic or a combination of both. With a luminous flux of 300 lm (instead of 460 lm for P21W), the legal requirements can be easily fulfilled because of the smaller dimensions and tolerances. In order to illustrate the lamps benefits, a complete automotive taillight with 4 functions was designed and made. This paper describes the reflector design process for that taillight with HiPerVision. According to a current styling trend, the reflectors are based on Pillow Shaped Facets and on a clear front lens with no optical structure. With this design method, the whole reflector area is filled with sparkling light. The basic shape of the reflector was used to optimize heat management. By changing the shape and/or number of the pillows the desired light distribution was made. The HiPerVision lamp was measured with a Luminance Goniometer. The measurements were converted to ASAP ray sets as input for accurate simulations. The legal requirements were easily met which was confirmed by actual measurements. The total depth of the complete designed taillight was 53 mm, which is small compared to existing P21W based designs. If the lamp is placed transversal the requirements are still met and the depth of the complete taillight could be reduced to 33 mm, which is comparable with a taillight based on LEDs.

  20. Arc lamp power supply using a voltage multiplier

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.

    1988-01-01

    A power supply is provided for an arc discharge lamp which includes a relatively low voltage high current power supply section and a high voltage starter circuit. The low voltage section includes a transformer, rectifier, variable resistor and a bank of capacitors, while the starter circuit comprises several diodes and capacitors connected as a Cockcroft-Walton multiplier. The starting circuit is effectively bypassed when the lamp arc is established and serves to automatically provide a high starting voltage to re-strike the lamp arc if the arc is extinguished by a power interruption.

  1. Lightweight LED Fluorescent lamp using engineering poly carbonate

    NASA Astrophysics Data System (ADS)

    Cho, Hyun-Ju; Lee, Jong-Phil

    2014-09-01

    In this study, we developed lightweight LED fluorescent lamp using thermally conductive engineering PC a heat sink instead of metal. In order to secure price competitiveness, we used double extrusion molding which extrude both the heat sink plate and diffuser plate simultaneously. Fabricated fluorescent lamp has less than 20% of weight as compare to glass fluorescent lamp and power consumption is 20.2 watts, luminous efficiency 123.9 lm/W, respectively. Despite the heat conductive plastic is adopted, the system temperature is maintained less than 35° and the thermal resistance is 25 °/W.

  2. Determination of non-gaseous and gaseous mercury fractions in unused fluorescent lamps: a study of different lamp types.

    PubMed

    Figi, Renato; Nagel, Oliver; Schreiner, Claudia; Hagendorfer, Harald

    2015-03-01

    Since incandescent light bulbs have been phased out in the European Union from 2009, the use of fluorescent lamps has drastically increased as a reliable, more energy-efficient and cost-effective alternative. State-of-the-art fluorescent lamps are dependent on mercury/mercury alloys, posing a risk for the consumer and the environment, and appropriate waste management is challenging. Consequently analytical methods to determine possible mercury species (non-gaseous/gaseous) in these lamps are of need. Here, a straightforward and wet-chemistry-based analytical strategy for the determination of gaseous and non-gaseous mercury in commercially available fluorescent lamps is presented. It can be adapted in any analytical laboratory, without or with only minimum modifications of already installed equipment. The analytical figures of merit, as well as application of the method to a series of commercially available fluorescent lamps, are presented. Out of 14 analysed and commercially available lamp types, results from this study indicate that only one contains a slightly higher amount of mercury than set by the legislative force. In all new lamps the amount of gaseous mercury is negligible compared with the non-gaseous fraction (88%-99% of total mercury). PMID:25698790

  3. Determination of non-gaseous and gaseous mercury fractions in unused fluorescent lamps: a study of different lamp types.

    PubMed

    Figi, Renato; Nagel, Oliver; Schreiner, Claudia; Hagendorfer, Harald

    2015-03-01

    Since incandescent light bulbs have been phased out in the European Union from 2009, the use of fluorescent lamps has drastically increased as a reliable, more energy-efficient and cost-effective alternative. State-of-the-art fluorescent lamps are dependent on mercury/mercury alloys, posing a risk for the consumer and the environment, and appropriate waste management is challenging. Consequently analytical methods to determine possible mercury species (non-gaseous/gaseous) in these lamps are of need. Here, a straightforward and wet-chemistry-based analytical strategy for the determination of gaseous and non-gaseous mercury in commercially available fluorescent lamps is presented. It can be adapted in any analytical laboratory, without or with only minimum modifications of already installed equipment. The analytical figures of merit, as well as application of the method to a series of commercially available fluorescent lamps, are presented. Out of 14 analysed and commercially available lamp types, results from this study indicate that only one contains a slightly higher amount of mercury than set by the legislative force. In all new lamps the amount of gaseous mercury is negligible compared with the non-gaseous fraction (88%-99% of total mercury).

  4. [Diagnosis of open-angle glaucoma after myopic excimer laser corneal refractive surgery].

    PubMed

    Wu, Ling-ling

    2013-11-01

    Patients with high myopia are at high risk of glaucoma and are difficult to be discovered at early stage in the case of existing glaucoma. Myopic excimer laser corneal refractive surgery changes the structure of the eye, which makes early glaucoma diagnosis more difficult. Furthermore, refractive surgery may aggravate existing condition of glaucoma. To prevent the exacerbation of glaucoma, it is great important to perform the preoperative glaucoma risk assessment. In this paper, we presented the key diagnostic points of glaucoma assessment before and after excimer laser refractive surgery and discussed the postoperative intraocular pressure measurements and its impact on the diagnosis and treatment of glaucoma including characterization of open angle glaucoma and long-term follow up in patients with high myopia.

  5. Finite elements analysis of heteroepitaxial SiGe layers grown by excimer laser

    NASA Astrophysics Data System (ADS)

    Conde, J. C.; González, P.; Lusquiños, F.; Chiussi, S.; Serra, J.; León, B.

    2005-07-01

    In this work, the finite elements analysis using ANSYS ® (8.0) of the heteroepitaxial SiGe alloy formation induced by excimer lasers is presented. The numerical simulation of the temperature distribution induced by KrF excimer laser (energy densities 0.50 < Φ< 0.55 J/cm 2) on thin amorphous Ge films (10 nm thick) deposited on Si<1 0 0> substrates is obtained. An acceptable agreement between the numerical simulations and the experimental results is found. The melting depth is also evaluated and the laser energy density threshold for the partial melting of the Si substrate is estimated. It allows us to determine the optimum conditions to achieve high quality epitaxy. For both the cases, the temperature profile versus time on the top of the Ge film and at the Ge/Si interface are obtained.

  6. Improved model for the angular dependence of excimer laser ablation rates in polymer materials

    SciTech Connect

    Pedder, J. E. A.; Holmes, A. S.; Dyer, P. E.

    2009-10-26

    Measurements of the angle-dependent ablation rates of polymers that have applications in microdevice fabrication are reported. A simple model based on Beer's law, including plume absorption, is shown to give good agreement with the experimental findings for polycarbonate and SU8, ablated using the 193 and 248 nm excimer lasers, respectively. The modeling forms a useful tool for designing masks needed to fabricate complex surface relief by ablation.

  7. Narrow bandwidth tuning of rhodamine 6G dye pumped by a XeCl excimer laser

    SciTech Connect

    Shangguan Cheng; Ling Ying-yi; Wang Yi-man; Dou Ai-rong; Huang Dan-hong

    1986-03-01

    In this paper the experimental study for narrow bandwidth tuning of ethylene glycol solution of rhodamine 6G pumped by a XeCl excimer laser is reported. The tunable range from 572.7 nm to 612.9 nm with linewidth of 0.004 nm has been obtained. The conversion efficiency is 16.0%. The experimental results of seven other dyes are also presented.

  8. Emission from ionic cesium fluoride excimers excited by a laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Kubodera, S.; Frey, L.; Wisoff, P. J.; Sauerbrey, R.

    1988-06-01

    Fluorescence was observed from the Cs(2+)F(-) state at 185 nm using a laser-produced plasma as the excitation source in a CsF heat pipe. The dependence of the ionic excimer emission on CsF vapor pressure and temporally resolved emission from the Cs(2+)F(-) is analyzed. It is found that the pressure dependence of the fluorescence is influenced by self-absorption in the CsF vapor.

  9. Phosphorus doping of 4H SiC by liquid immersion excimer laser irradiation

    SciTech Connect

    Ikeda, Akihiro; Nishi, Koji; Ikenoue, Hiroshi; Asano, Tanemasa

    2013-02-04

    Phosphorus doping of 4H SiC is performed by KrF excimer laser irradiation of 4H SiC immersed in phosphoric acid. Phosphorus is incorporated to a depth of a few tens of nanometers at a concentration of over 10{sup 20}/cm{sup 3} without generating significant crystal defects. Formation of a pn junction diode with an ideality factor of 1.06 is demonstrated.

  10. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    NASA Astrophysics Data System (ADS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-02-01

    This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser-material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (Fth = 0.087 J/cm2) than that for the femtosecond laser ablation of ABS (Fth = 1.576 J/cm2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α-1 = 223 nm) than that for femtosecond laser ablation (α-1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the Cdbnd C bond completely through the chain scission process whereas Cdbnd C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the Cdbnd C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (Csbnd O and Cdbnd O bond) and nitrogen-rich (Csbnd N) functional groups.

  11. High excimer-state emission of perylene bisimides and recognition of latent fingerprints.

    PubMed

    Wang, Ke-Rang; Yang, Zi-Bo; Li, Xiao-Liu

    2015-04-01

    High excimer-state emission in the H-type aggregate of a novel asymmetric perylene bisimide derivative, 6, with triethyleneglycol chains and lactose functionalization was achieved in water. Furthermore, its application for enhancing the visualization of transfer latent fingerprints from glass slides to the poly(vinylidene fluoride) (PVDF) membrane was explored, which showed clear images of the latent fingerprint in daylight and under 365 nm ultraviolet illumination.

  12. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOEpatents

    Siminovitch, Michael

    1998-01-01

    A novel design for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment.

  13. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOEpatents

    Siminovitch, M.

    1998-02-10

    A novel design is described for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment. 9 figs.

  14. 75 FR 14287 - Energy Conservation Program: Test Procedures for Fluorescent Lamp Ballasts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... Framework Document for Fluorescent Lamp Ballasts,'') on January 22, 2008. 73 FR 3653. DOE has completed the... consumption for fluorescent lamp ballasts in the Federal Register on October 22, 2009. 74 FR 54445. II... service fluorescent lamps and incandescent reflector lamps (74 FR 34080) adopted a new definition...

  15. 46 CFR 32.85-1 - Fireproofing of lamp, oil and paint rooms-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Fireproofing of lamp, oil and paint rooms-T/ALL. 32.85-1..., MACHINERY, AND HULL REQUIREMENTS Lamp and Paint Rooms and Similar Compartments on Tankships § 32.85-1 Fireproofing of lamp, oil and paint rooms—T/ALL. Lamp, oil and paint rooms shall be wholly and tightly...

  16. 46 CFR 32.85-1 - Fireproofing of lamp, oil and paint rooms-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fireproofing of lamp, oil and paint rooms-T/ALL. 32.85-1..., MACHINERY, AND HULL REQUIREMENTS Lamp and Paint Rooms and Similar Compartments on Tankships § 32.85-1 Fireproofing of lamp, oil and paint rooms—T/ALL. Lamp, oil and paint rooms shall be wholly and tightly...

  17. 46 CFR 32.85-1 - Fireproofing of lamp, oil and paint rooms-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Fireproofing of lamp, oil and paint rooms-T/ALL. 32.85-1..., MACHINERY, AND HULL REQUIREMENTS Lamp and Paint Rooms and Similar Compartments on Tankships § 32.85-1 Fireproofing of lamp, oil and paint rooms—T/ALL. Lamp, oil and paint rooms shall be wholly and tightly...

  18. 46 CFR 32.85-1 - Fireproofing of lamp, oil and paint rooms-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Fireproofing of lamp, oil and paint rooms-T/ALL. 32.85-1..., MACHINERY, AND HULL REQUIREMENTS Lamp and Paint Rooms and Similar Compartments on Tankships § 32.85-1 Fireproofing of lamp, oil and paint rooms—T/ALL. Lamp, oil and paint rooms shall be wholly and tightly...

  19. 46 CFR 32.85-1 - Fireproofing of lamp, oil and paint rooms-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Fireproofing of lamp, oil and paint rooms-T/ALL. 32.85-1..., MACHINERY, AND HULL REQUIREMENTS Lamp and Paint Rooms and Similar Compartments on Tankships § 32.85-1 Fireproofing of lamp, oil and paint rooms—T/ALL. Lamp, oil and paint rooms shall be wholly and tightly...

  20. Nd:YAG laser cleaning of ablation debris from excimer-laser-ablated polyimide

    NASA Astrophysics Data System (ADS)

    Gu, Jianhui; Low, Jason; Lim, Puay K.; Lim, Pean

    2001-10-01

    In the processing of excimer laser ablation of nozzles on polyimide in air, both gases like CO2, CO and HCN and solid debris including C2 approximately C12 are produced in laser ablation area. In this paper, we reported for the first time a Nd:YAG laser cleaning of ablation debris generated in excimer laser ablation of polyimide. It demonstrated effective cleaning with the advantages of shortening cleaning cycle time and simplifying cleaning process. The laser used for the cleaning was a Q-switched and frequency doubled Nd:YAG laser with wavelength of 532 nm and repetition rate of 10 Hz. The laser cleaning effect was compared with conventional plasma ashing. AFM measurement showed that the Nd:YAG laser cleaning had no damage to the substrate. XPS results indicated that the polyimide surface cleaned with laser beam had a lower oxygen/carbon ratio than that of plasma ashing. The study shows that frequency doubled Nd:YAG laser cleaning is effective in ablation debris removal from excimer laser ablated polyimide.

  1. On couplings and excimers: lessons from studies of singlet fission in covalently linked tetracene dimers.

    PubMed

    Feng, Xintian; Krylov, Anna I

    2016-03-21

    Electronic factors controlling singlet fission (SF) rates are investigated in covalently linked dimers of tetracene. Using covalent linkers, relative orientation of the individual chromophores can be controlled, maximizing the rates of SF. Structures with coplanar and staggered arrangements of tetracene moieties are considered. The electronic structure calculations and three-state kinetic model for SF rates provide explanations for experimentally observed low SF yields in coplanar dimers and efficient SF in staggered dimers. The calculations illuminate the role of the excimer formation in SF process. The structural relaxation in the S1 state leads to the increased rate of the multi-exciton (ME) state formation, but impedes the second step, separation of the ME state into independent triplets. The slower second step reduces SF yield by allowing other processes, such as radiationless relaxation, to compete with triplet generation. The calculations of electronic couplings also suggest an increased rate of radiationless relaxation at the excimer geometries. Thus, the excimer serves as a trap of the ME state. The effect of covalent linkers on the electronic factors and SF rates is investigated. In all considered structures, the presence of the linker leads to larger couplings, however, the effect on the overall rate is less straightforward, since the linkers generally result in less favorable energetics. This complex behavior once again illustrates the importance of integrative approaches that evaluate the overall rate, rather than focusing on specific electronic factors such as energies or couplings. PMID:26910414

  2. [Corneal wound healing after perforating and non-perforating excimer laser keratectomy. An experimental study].

    PubMed

    Koch, J W; Lang, G K; Kolkmeier, J; Naumann, G O

    1990-01-01

    For clinical use of the excimer laser more detailed knowledge of corneal wound healing is necessary. With an ArF excimer laser (193 nm, 750 mJ/cm2, 20 Hz) and a special slit mask system perforating and non-perforating keratectomies were performed in a series of 55 rabbits with a follow-up from one hour to six months post-op. After enucleation the corneas were immediately processed for light microscopy, scanning and transmission electron microscopy and vital staining of the endothelium (trypan blue/alizarin red S). In perforating cuts the endothelial reaction consists of polymegathism, migration, formation of multi-nucleated giant cells, metaplasia-like proliferation and ultimately stable reformation of the cell pattern (1h to 42d). Epithelium fills the anterior wound gap within three days with subsequent regression of the plug. Fibroblastic activity in the adjacent stroma leads to cellular immigration, production of new collageneous lamellae and complete reorganization of the wound cleft (1d to 6m). Nonperforating excisions showed similar healing tendency of stroma and epithelium, but no severe endothelial damage could be detected. Compared with former studies using knife incisions our results do not reveal significant difference regarding epithelial and stromal wound healing events. The encouraging healing tendency of the endothelium--similar to regeneration after ultrasound and Nd:YAG-laser damage--also confirms the applicability of excimer lasers in corneal surgery.

  3. 193 nm excimer laser sclerostomy in pseudophakic patients with advanced open angle glaucoma.

    PubMed Central

    Allan, B D; van Saarloos, P P; Cooper, R L; Constable, I J

    1994-01-01

    A modified open mask system incorporating an en face air jet to dry the target area during ablation and a conjunctival plication mechanism, which allows ab externo delivery of the 193 nm excimer laser without prior conjunctival dissection, has been developed to form small bore sclerostomies accurately and atraumatically. Full thickness sclerostomies, and sclerostomies guarded by a smaller internal ostium can be created. A pilot therapeutic trial was conducted in pseudophakic patients with advanced open angle glaucoma. Six full thickness sclerostomies (200 microns and 400 microns diameter) and three guarded sclerostomies were created in nine patients by 193 nm excimer laser ablation (fluence per pulse 400 mJ/cm2, pulse rate 16 Hz, air jet pressure intraocular pressure +25 mm Hg). After 6 months' follow up, intraocular pressure was controlled (< or = 16 mm Hg) in eight of the nine patients (6/9 without medication). Early postoperative complications included hyphaema (trace--2.5 mm) (6/9), temporary fibrinous sclerostomy occlusion (4/9), profound early hypotony (all patients without fibrinous occlusion), and suprachoroidal haemorrhage in one case. Conjunctival laser wounds were self sealing. Small bore laser sclerostomy procedures are functionally equivalent to conventional full thickness procedures, producing early postoperative hypotony, with an increased risk of suprachoroidal haemorrhage in association with this. Further research is required to improve control over internal guarding in excimer laser sclerostomy before clinical trials of this technique can safely proceed. Images PMID:8148335

  4. Expression of Epidermal c-Kit+ of Vitiligo Lesions Is Related to Responses to Excimer Laser

    PubMed Central

    Park, Oun Jae; Han, Ji Su; Lee, Sang Hyung; Park, Chan-Sik; Won, Chong Hyun; Lee, Mi Woo; Choi, Jee Ho

    2016-01-01

    Background The survival and growth of melanocytes are controlled by the binding of stem cell factor to its cell surface receptor c-kit+ (CD117). We have observed that c-kit+ melanocytes existed in some lesions of vitiligo, while Melan A+ cells were absent. Objective To verify possible relation between c-kit+ expression and treatment response in non-segmental vitiligo lesions Methods Skin biopsies were done from the center of the 47 lesions from the 47 patients with non-segmental vitiligo. Expression of c-kit+ and Melan A, and amounts of melanin in the epidermis were assessed in each lesion, and treatment responses to excimer laser were evaluated. Results Thirty-five of the 47 lesions (74.5%) had c-kit+ phenotypes. There was significant difference of c-kit staining value between good responders in 3 months of excimer laser treatment (average of 24 sessions) and the others. Conclusion c-Kit expression in vitiliginous epidermis may be related to better treatment responses to excimer laser. PMID:27489428

  5. Simulation of excimer laser micromachined 3D surface using a CAD solid modeling package

    NASA Astrophysics Data System (ADS)

    Hume, Richard G.; Iovenitti, Pio G.; Hayes, Jason P.; Harvey, Erol C.

    2002-11-01

    This paper describes the research on the development of a visualisation tool to generate 3D solid models of structures produced by micromachining using an excimer laser system. Currently, the development of part programs to achieve a desired microstructure is by a trial and error approach. This simulation tool assists designers and excimer machine programmers to produce microstructures using the excimer laser. Users can develop their microstructures and part programs with the assistance of digital prototypes rather than designing products using expensive laser micromachining equipment. The methods to simulate micromachining using the solid modelling package, SolidWorks, are described, and simulation and actual machined examples are reported. A basic knowledge of the solid modelling package is required to develop the simulations, and complex models take time to prepare, however, the development time can be minimised by working from previous simulations. The models developed can be parameterised so that families of designs can be investigated for little additional effort to optimise the design before committing to laser micromachining.

  6. Excimer ablation of ITO on flexible substrates for large format display applications

    NASA Astrophysics Data System (ADS)

    Ghandour, Osman A.; Constantinide, Dan; Sheets, Ronald E.

    2002-06-01

    Excimer-based ablative patterning of Indium Tin Oxide (ITO) thin film on flexible substrates has been evaluated for large format display applications. In display package manufacturing, excimer-based ITO ablation can provide a great advantage over conventional photolithographic processing. It can eliminate many steps from the manufacturing cycle, resulting in significant cost reduction. Flexible substrate display packaging is desirable for at least two reasons. It allows roll-to-roll low cost, large volume manufacturing. Its low weight provides for an easy scale up to larger format displays. An XeCl excimer, 1x, amplitude mask pattern projection, scan-and-repeat system was utilized in the evaluation work. The mask pattern had line groupings of line-widths varying from 8 to 30 micrometers with line length of 44 mm. Lines from all the groupings were simultaneously ablated in 150 nm-thick ITO layer on a flexible 100 micrometers thick Polyethylene terephtalate (PET) substrate using scanning with optimized dwell duration of 10 pulses and optimized fluence level of 350 mJ/cm2. Lines ablated with mask line groupings of line-width greater than or equal to 11 micrometers showed complete electrical isolation indicating complete ITO removal. Scanning electron Microscopy (SEM) showed the presence of a slight curling effect at ablated line edges. The effect was studied as a function of wavelength and imaging resolution. A CO2 cleaning method was evaluated for removing the extruding curled material.

  7. Competitive Excimer Formation and Energy Transfer in Zr-Based Heterolinker Metal-Organic Frameworks.

    PubMed

    Gutiérrez, Mario; Sánchez, Félix; Douhal, Abderrazzak

    2016-09-01

    The spectroscopy and dynamics of a series of Zr-based MOFs in dichloromethane suspension are reported. These Zr-NADC MOFs were constructed by using different mixtures of 2,6-naphthalenedicarboxylate (NDC) and 4-amino-2,6-naphthalenedicarboxylate (NADC) as organic linkers. The fraction of NADC relative to NDC in these heterolinker MOFs ranges from 2 to 35 %. The results indicate two competitive photoprocesses: NDC excimer formation and an energy transfer (ET) from excited NDC linkers to NADC linkers. Increasing the fraction of NADC linkers in the Zr-NADC nanostructure decreases the mean time constant of NDC excimer formation, while the NADC emission intensity experiences a drop at the highest fraction of this linker in the MOF. The first observation is explained by an increase in the energy-transfer probability between the two linkers, and the second by emission quenching in the NADC linkers due to ultrafast charge transfer assisted by the amino group. Femtosecond time-resolved emission studies showed that the ET process (recorded as decaying and rising components) from excited NDC to NADC takes place in 1.2 ps. Direct excitation of the NADC linkers (at 410 nm) shows a decaying, but not rising, component of 250-480 fs, which could reflect the formation of a nonemissive charge-separation state. The results show that by using MOFs having heterolinkers it is possible to trigger and tune excimer formation and ET processes. PMID:27404091

  8. 34. VIEW TO EAST; DETAIL OF LAMP ON VEHICULAR RAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VIEW TO EAST; DETAIL OF LAMP ON VEHICULAR RAMP LIGHTING PYLON (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  9. Interior view, law library (note one of aluminum lamps designed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view, law library (note one of aluminum lamps designed by Jennwein is in the foreground; the murals were painted by Maurice Sterne) - United States Department of Justice, Constitution Avenue between Ninth & Tenth Streets, Northwest, Washington, District of Columbia, DC

  10. 11. Detail of horse lamp fixture in original Clubhouse bar. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Detail of horse lamp fixture in original Clubhouse bar. Fixture is at north end of bar. Camera pointed up and NW. (July 1993) - Longacres, Clubhouse & Additions, 1621 Southwest Sixteenth Street, Renton, King County, WA

  11. VIEW OF LAMP FIXTURE (EXTERIOR) ADJACENT TO ENTRANCE AT SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF LAMP FIXTURE (EXTERIOR) ADJACENT TO ENTRANCE AT SOUTHWEST CORNER OF BUILDING 23, FACING NORTH - Roosevelt Base, Auditorium-Gymnasium, West Virginia Street between Richardson & Reeves Avenues, Long Beach, Los Angeles County, CA

  12. Ti:sapphire laser with long-pulse lamp pumping

    NASA Astrophysics Data System (ADS)

    Koselja, Michael P.; Kubelka, Jiri; Kvapil, Jiri

    1992-06-01

    Lamp pumping of Ti:Sapphire has some advantages over laser pumping and represents some interest due to possible applications. The paper will present laser behavior of Ti:Sapphire under very long lamp pulse pumping. Pulse lamp duration (FWHM) was more than 100 times greater than the lifetime of Ti3+. Output energy with no tuning element was achieved greater than 1.5 J with 0.12% electrical-to-optical efficiency. Dimensions of the rod used was 7 mm in diameter and 148 mm in length. The doping level of Ti3+ was 0.09% Ti2O3 in the rod. Tuning characteristics with different tuning elements are also presented. Further development to obtain CW lamp pumping operation will be discussed.

  13. 25. Detail of cast iron lamp post base with fluted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Detail of cast iron lamp post base with fluted wooded post at top, located at north end of bridge. VIEW NORTHEAST - Chelsea Street Bridge & Draw Tender's House, Spanning Chelsea River, Boston, Suffolk County, MA

  14. Closeup view of EPA Farm cattle shelter lamp, facing west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of EPA Farm cattle shelter lamp, facing west - Nevada Test Site, Environmental Protection Agency Farm, Shelter Unit Type, Area 15, Yucca Flat, 10-2 Road near Circle Road, Mercury, Nye County, NV

  15. Dysprosium oxide ceramic arc tube for HID lamps

    NASA Astrophysics Data System (ADS)

    Wei, G. C.; Lapatovich, W. P.; Browne, J.; Snellgrove, R.

    2008-07-01

    Polycrystalline dysprosium oxide is a candidate arc tube material for advanced metal halide lamps because of high transparency, low thermodynamic driving potentials for corrosion and reaction with the salt fills, satisfactory mechanical strength and resistance to thermal shock. This material is cubic and can be polished to achieve higher in-line transmittance than the conventional polycrystalline alumina arc tubes. Rare-earth halide fills, glass frit seals and niobium leads were used in the construction of the Dy2O3 lamps. The experimental lamps exhibited a colour temperature of ~2500 K and CRI of ~90 with rapid warm-up behaviour. The transparent Dy2O3 ceramic offers opportunities to push the limit of ceramic envelopes for improved discharge lamps.

  16. One piece microwave container screens for electrodeless lamps

    DOEpatents

    Turner, Brian; Ury, Michael

    1998-01-01

    A microwave powered electrodeless lamp includes an improved screen unit having mesh and solid sections with an internal reflector to reflect light into a light-transmitting chamber defined in the lamp microwave cavity by the reflector and the mesh section. A discharge envelope of a bulb is disposed in the light-transmitting chamber. Light emitted from the envelope is prevented by the reflector from entering the cavity portion bounded by the solid section of the screen. Replacing mesh material by solid metal material as part of the screen unit significantly reduces leakage of microwave energy from the lamp. The solid section has multiple compliant fingers defined therein for engaging the periphery of a flange on the waveguide unit so that a hose clamp can easily secure the screen to the assembly. Screen units of this type having different mesh section configurations can be interchanged in the lamp assembly to produce different respective illumination patterns.

  17. High-luminance LEDs replace incandescent lamps in new applications

    NASA Astrophysics Data System (ADS)

    Evans, David L.

    1997-04-01

    The advent of high luminance AlInGaP and InGaN LED technologies has prompted the use of LED devices in new applications formally illuminated by incandescent lamps. The luminous efficiencies of these new LED technologies equals or exceeds that attainable with incandescent sources, with reliability factors that far exceed those of incandescent sources. The need for a highly efficient, dependable, and cost effective replacement for incandescent lamps is being fulfilled with high luminance LED lamps. This paper briefly described some of the new applications incorporating high luminance LED lamps, traffic signals and roadway signs for traffic management, automotive exterior lighting, active matrix and full color displays for commercial advertising, and commercial aircraft panel lighting and military aircraft NVG compatible lighting.

  18. Light shield and cooling apparatus. [high intensity ultraviolet lamp

    NASA Technical Reports Server (NTRS)

    Meador, T. G., Jr. (Inventor)

    1974-01-01

    A light shield and cooling apparatus was developed for a high intensity ultraviolet lamp including water and high pressure air for cooling and additional apparatus for shielding the light and suppressing the high pressure air noise.

  19. Studies on Temperature Dependence of Rubidium Lamp for Atomic Frequency Standard

    SciTech Connect

    Ghosal, Bikash; Banik, Alak; Vats, Vaibhav; Pal, Sukamal; Bahl, R. K

    2011-10-20

    Rb lamp is a very critical component of the Rb atomic clock's Physics Package. The Rb lamp's performance is very sensitive to temperature and its stability. In this paper we discuss the behaviors of Rb Lamp with temperature. The Rb lamp exciter power and temperature of Rb bulb are very important parameters in controlling the performance of the Rb Lamp. It is observed that at temperatures beyond 110 deg. C, the lamp mode changes from the ring to red mode resulting in abnormal broadening of emission lines and self reversal. The results of our studies on spectral analysis of Rb lamp under various operating conditions are reported in the paper.

  20. Life of fluorescent lamps operated at high frequencies with solid-state ballasts

    NASA Astrophysics Data System (ADS)

    Verderber, R. R.; Morse, O.; Rubinstein, F. M.

    1985-07-01

    Standard 40-watt, F-40, rapid-start, fluorescent lamps were operated with solid-state ballasts following the standard life-testing cycle of 3 hours on and 20 minutes off for more than 20,000 hours at high frequency. Lamp operating characteristics (starting voltage, filament voltage, arc current, and current-crest factor) were studied as factors affecting lamp life. Measurements show that fluorescent lamps can attain rated life at high frequency using solid-state ballasts. When lamps are operated in the dimmed mode, full filament power is required to sustain lamplife. The rate of lamp lumen depreciation is dependent on the lamp loading and not the operating frequency.

  1. Lamp method and apparatus using multiple reflections

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.

    2001-01-01

    An electrodeless microwave discharge lamp includes an envelope with a discharge forming fill disposed therein which emits light, the fill being capable of absorbing light at one wavelength and re-emitting the absorbed light at a different wavelength, the light emitted from the fill having a first spectral power distribution in the absence of reflection of light back into the fill, a source of microwave energy coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed within the microwave cavity and configured to reflect at least some of the light emitted by the fill back into the fill while allowing some light to exit, the exiting light having a second spectral power distribution with proportionately more light in the visible region as compared to the first spectral power distribution, wherein the light re-emitted by the fill is shifted in wavelength with respect to the absorbed light and the magnitude of the shift is in relation to an effective optical path length.

  2. The LAMP instrument at the LCLS

    NASA Astrophysics Data System (ADS)

    Osipov, Timur; Castagna, Jean-Charles; Bostedt, Christoph; Xiong, Hui; Ferguson, Ken; Bucher, Maximilian; Berrah, Nora

    2015-05-01

    We have commissioned and used a new instrument at the Linac Coherent Light (LCLS) Source at SLAC National Laboratory called LAMP. It consists of several detectors housed in a double chambered vacuum system. One detection scheme offered relies on the use of a double velocity map imaging (VMI) spectrometer which enables research in the gas phase such as molecular dynamics experiments. The latter are monitored via the detection of electron and ionic fragments resulting from x-ray photo-absorption of x-ray photons. With this new tool, we can record the different fragmentation pathways by measuring multi-particles ion-ion coincidences/multi-particle correlations. We can also simultaneously image the electrons momenta to capture the most detailed x-ray induced reaction in molecules and nano-systems. The other detection scheme offered consists of two imaging detectors of the pnCCD type for diffraction experiments of clusters and bio-specimens. This instrument, available to any users, has the possibility to uncover new mechanisms in physics, chemistry and biology. This work is funded in part by the Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under a SISGR grant and funds from the LCLS, funded by DOE-BES.

  3. Corneal astigmatism measuring module for slit lamps

    NASA Astrophysics Data System (ADS)

    Ventura, L.; Riul, C.; Sousa, S. J. F.; DeGroote, J. G. S.; Rosa Filho, A. B.; Oliveira, G. C. D.

    2006-06-01

    We have developed an automatic keratometer module for slit lamps that provides automatic measurements of the radii of the corneal curvature. The system projects 72 light spots displayed in a precise circle at the examined cornea. The displacement and deformation of the reflected image of these light spots are analysed providing the keratometry. Measurements in the range of 26.8-75 D can be obtained and a self-calibration system has been specially designed in order to keep the system calibrated. Infrared LEDs indicate automatically which eye is being examined. Volunteer patients (492) have been submitted to the system and the results show that our system has a high correlation factor with the commercially available manual keratometers and the keratometry measurements from a topographer. Our developed system is 95% in agreement with the corneal topographer (Humphrey—Atlas 995 CZM) and the manual keratometer (Topcon OM-4). The system's nominal precision is 0.05 mm for the radii of curvature and 1° for the associated axis. This research has been supported by Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP).

  4. Management of fluorescent lamps in controlled environment chambers

    NASA Technical Reports Server (NTRS)

    Romer, Mark

    1994-01-01

    Management of fluorescent lights is recommended to (1) maintain uniformity of light intensity over time and (2) permit reproducibility of lighting conditions during experimental replications. At the McGill Phytotron, the lighting intensity can be controlled to desired level because any individual pair of the 40 lamps in each chamber can be set to be 'on' at any particular time. A lamp canopy service history is maintained for each experiment permitting accurate replication of lighting conditions for subsequent replicate trials.

  5. Perceptions of compact fluorescent lamps in the residential market

    SciTech Connect

    Weiner, J.; Campbell, C.J. )

    1992-07-01

    Compact fluorescent lamps offer significant energy savings over other forms of residential lighting and last up to 10 times longer than conventional incandescent bulbs. In order to better understand existing barriers to acceptance and future opportunities for growth of compact fluorescent lighting in the residential retrofit sector, a three stage research project was designed and conducted by MACRO Consulting, Inc. Assessment of whether or not the benefits of compact fluorescent lamps are sufficient to overcome price resistance was one of the major purposes of this project. Residential customers were interviewed in focus group sessions to help determine key issues and motivating forces in the lighting/energy saving/cost saving equation. Residential customers in 5 major market areas were contacted by telephone, and data about their awareness, knowledge and use of compact fluorescent lighting were collected. These customers also participated in an attribute rating exercise in which compact fluorescent lamps were compared with fluorescent tubes and incandescent bulbs on a series of product attributes. A price elasticity exercise was also conducted. Teleconferences with retailers of compact fluorescent lamps were conducted in order to explore their knowledge of and attitudes towards compact fluorescent lamps. Customers agree that energy savings and longer life are both positive attributes for residential lighting products, but they are not yet ready to make the switch away from inexpensive, versatile and readily available incandescent bulbs to compact fluorescent lamps. Compact fluorescent lamps are rated poorly (even by satisfied'' users) on each of seven positive attributes of home lighting. Major barriers to increased use of compact fluorescent lamps include price, convenience, and performance. Prices above $10 are considered outrageous''. Product improvements are needed for appearance, light output and versatility.

  6. Preventing mercury vapor release from broken fluorescent lamps during shipping.

    PubMed

    Glenz, Tracy T; Brosseau, Lisa M; Hoffbeck, Richard W

    2009-03-01

    Fluorescent lamps are estimated to annually release 1 t of mercury into the air in the United States; transport of used lamps may play an important role in these emissions. In 1999, the U.S. Environmental Protection Agency added lamps to the universal waste rule to encourage recycling by allowing shipment to recycling facilities by common carrier. The rules required that lamp packaging must be structurally sound and adequate to prevent breakage but did not address vapor release. In 2005, a requirement was added that packaging must be designed to prevent the escape of mercury into the environment, but this change does not apply to fluorescent lamps. The goal of this research was to compare mercury vapor containment among different packaging configurations. In 10 replicate experiments of 5 different packages containing 40 broken, used, low-mercury lamps, two 6-hr samples of airborne mercury vapor concentrations were taken in a well-mixed sealed chamber held at 83 +/- 2 degrees F. Average chamber concentrations ranged from 0.977 mg/m3 for a single cardboard box to 0.004 mg/m3 for a double cardboard box with a plastic-foil laminate bag sandwiched between the boxes. In comparison to the single cardboard box, a single box with an unsealed thin plastic liner lowered mercury concentrations in the chamber by 52%, single or double boxes with a thicker tape-sealed plastic bag lowered concentrations by 90-92%, and a double box with a ziplock plastic-foil laminate bag lowered concentrations by 99.7%. The latter was the only configuration capable of maintaining airborne concentrations below all occupational exposure levels. Standards more specific to mercury containment are needed for packages used to ship fluorescent lamps to recyclers. Results from this study suggest that an effective packaging design should minimize the effect of cuts from broken glass while also preventing the release of mercury vapor from broken lamps.

  7. Magnetic fluorescent lamp having reduced ultraviolet self-absorption

    DOEpatents

    Berman, Samuel M.; Richardson, Robert W.

    1985-01-01

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly (10) is enhanced by providing means (30) for establishing a magnetic field with lines of force along the path of electron flow through the bulb (12) of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  8. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  9. A study of structure formation on PET, PBT, and PS surfaces by excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Kim, Jongdae

    Usually polymer surface treatment is performed to modify surface layers by inserting some functional group and/or by inducing roughness on surfaces to improve their wettability, printability, and adhesion to other polymers or metals. In this work, different polymer surfaces were treated using an excimer laser (LPX 240i, Lambda Physik). Polystyrene, polyethylene terephtalate, and polybutylene terephtalate were chosen as model materials for this study. Films were made by cast film processing and stretched with biaxial stretching machine. With excimer laser treatment on polymer surfaces, it was found that we could produce 1--2 micron size structures depending on material properties and film processing conditions. Materials with lower UV absorption coefficient produced double digit micron size structures, while those with higher UV absorption coefficients produced single digit micron size structures. In all these cases the structures formed only on stretched films. In addition to those microstructure developments, the determination of ablation threshold fluence was of interest mainly for understanding fundamentals of ablation behavior and technical applications. In this study, ablation thresholds were measured by various methods including ablation depth, ablation weight, and ablation sound level measurements. Among these methods, we confirmed that the measurement by ablation sound level gives the most reliable results, because this method is based on single pulse ablation. To understand the ablation phenomenon, and how microstructures can be developed during ablation, different material processing and excimer laser conditions were chosen for experimentation. During our experiments, we observed incubation phenomenon during laser ablation and showed that this incubation was significant for materials with low UV absorption coefficients. Based on UV absorption value change after excimer laser irradiation, we proposed a mechanism to explain the ablation of PS films. From

  10. CALiPER Benchmark Report: Performance of T12 and T8 Fluorescent Lamps and Troffers and LED Linear Replacement Lamps

    SciTech Connect

    Myer, M. A.; Paget, M. L.; Lingard, R. D.

    2009-01-01

    This report examines standard fluorescent lamps, the recessed troffers they are commonly used in, and available LED replacements for T12 and T8 fluorescent lamps and their application in fluorescent troffers.

  11. Valacyclovir for the prevention of recurrent herpes simplex virus eye disease after excimer laser photokeratectomy.

    PubMed Central

    Asbell, P A

    2000-01-01

    PURPOSE: A variety of factors have been reported as inducing the reactivation of latent herpes simplex virus (HSV), among them stress, trauma, and UV radiation. Excimer laser photorefractive keratectomy (PRK) is a surgical procedure utilizing a 193 nm ultraviolet light to alter the curvature of the cornea and hence correct vision. Reactivation of ocular herpes simplex keratitis following such excimer laser PRK has been reported. All published cases of HSV reactivation following excimer laser treatment in humans are reviewed. The present study evaluates whether stress, trauma of the corneal de-epithelialization prior to the laser, or the excimer laser treatment itself to the stromal bed induces this ocular reactivation of the latent HSV, and whether a systemic antiviral agent, valacyclovir, would prevent such laser PRK-induced reactivation of the HSV. METHODS: Forty-three normal 1.5- to 2.5-kg New Zealand white rabbits were infected on the surface of the cornea with HSV-1, strain RE. The animals were monitored until resolution, and then all animals were divided into 5 treatment groups: (1) de-epithelialization only, intraperitoneal (i.p.) saline for 14 days; (2) de-epithelialization plus laser, i.p. saline for 14 days; (3) de-epithelialization plus laser, valacyclovir 50 mg/kg per day i.p. for 14 days; (4) de-epithelialization plus laser, valacyclovir 100 mg/kg per day i.p. for 14 days; (5) de-epithelialization plus laser, valacyclovir 150 mg/kg per day i.p. for 14 days. Animals were evaluated in a masked fashion by clinical examination biweekly and viral cultures biweekly through day 28. RESULTS: The reactivation rates were as follows: group 1, 0%; group 2, 67%; group 3, 50%; group 4, 17%; and group 5, 0%. Viral titers were negative in animals that had no reactivation but persistently positive in those that had reactivation (day 6 through day 28). CONCLUSIONS: Excimer laser (193 nm) treatment can trigger reactivation of ocular herpes disease (67%) and viral

  12. Characterization of a FEL lamp type source towards a blue light irradiance intercomparison in medical field

    NASA Astrophysics Data System (ADS)

    Ferreira, A. F. G., Jr.

    2011-01-01

    This work presents the characterization of modified FEL 1000W lamp housing to be used as a transference standard in the blue light irradiance intercomparison. It aims to support the metrological issues of medical equipment manufactures concerning the phototherapy treatment stated on the standard NBR/IEC 60601-2-50. The light source characterization consists of lamp seasoning, lamp short-term drift and lamp irradiance relative spatial distribution at the plane of measurement. The lamp seasoning is performed by a software developed in LabView® which measures the lamp voltage, current and irradiance at each 5 minutes during 25 hours of seasoning. The lamp short-term drift is evaluated by measuring the lamp irradiance during a sequence of 2 hours of lamp using. The lamp irradiance relative spatial distribution is verified using a radiometer head with a reduced aperture attached to an YZ positing system at each 2 mm in an interval of 24 mm. The lamp presented variation of about 0.1%/h during seasoning. Short-term drift for the lamp after a warm-up of 20 minutes was less than 0.9% for series of 4 lamp switching cycles. Lamp irradiance relative spatial distribution showed a variation of ±1.25% for a circular diameter of 20 mm. The overall uncertainty for lamp irradiance was 3.65%.

  13. Surgical removal of infected pacemaker leads without cardiopulmonary bypass after failed extraction using the Excimer Laser Sheath Extraction System.

    PubMed

    Tokunaga, Chiho; Enomoto, Yoshiharu; Sato, Fujio; Kanemoto, Shinya; Matsushita, Shonosuke; Hiramatsu, Yuji; Aonuma, Kazutaka; Sakakibara, Yuzuru

    2012-03-01

    With the growing number of cardiac pacemakers and internal cardioverter defibrillator implantations, problems with endocardial lead infection have been increasing. The newly developed Excimer Laser Sheath Lead Extraction System has been recognized as being highly useful for removing chronic infected leads. However, serious bleeding complications are a concern when this system is used. Here we report our experience with a 67-year-old man who was diagnosed with pacemaker endocarditis. Initially, lead removal was attempted using the Excimer Laser Sheath Extraction System, though this was abandoned because of severe adhesion of the leads and the junction of the supra vena cava (SVC) with the right atrium. Surgical removal of the leads was performed without using cardiopulmonary bypass and the leads were removed without any complications. During surgery, we found there was a silent perforation of the innominate vein brought about by the Excimer Laser Sheath System. Also, the junction of the SVC with the right atrium was thought to be an area potentially at high risk of perforation, because of a lack of surrounding tissue. It is our opinion that those who carry out procedures with the Excimer Laser Sheath System should understand the potential risk of perforation based on cardiac anatomy and should be prepared for lethal bleeding complications. Also, for emergent situations, we believe that close backup by a cardiovascular surgical team should be considered essential for performing the Excimer Laser Sheath Lead Extraction safely.

  14. Optical design of LED-based automotive tail lamps

    NASA Astrophysics Data System (ADS)

    Domhardt, André; Rohlfing, Udo; Klinger, Karsten; Manz, Karl; Kooß, Dieter; Lemmer, Uli

    2007-09-01

    The application of ultra bright monochromatic and white High-Power-LEDs in the range of automotive lighting systems is now state of the art. These LEDs offer new possibilities in optical design and engineering within different fields of automotive lighting, e.g., tail lamps, signal lamps, headlamps and interior lighting. This contribution describes the process of the optical design of an automotive LED tail lamp based on a practical example. We will elaborate the principal geometric approach, the radiometric conditions and the optical design by using standard and advanced mathematical optimization methods. Special attention will be paid to the following topics: efficient light coupling from the LED into the optical device, adaptation of the illuminance and optimization with respect to the requirements from SAE/ECE regulations. It will be shown that the development of LED-lamps requires the complex interaction of several factors. The challenge for the optical designer is to fulfill the technical demands while also considering the appearance of the final product desired by the customer. Further design specifications emerge from the electrical and thermal layout of the lamp.

  15. Red phosphors for use in high CRI fluorescent lamps

    DOEpatents

    Srivastava, Alok; Comanzo, Holly; Manivannan, Vankatesan; Setlur, Anant Achyut

    2005-11-15

    Novel red emitting phosphors for use in fluorescent lamps resulting in superior color rendering index values compared to conventional red phosphors. Also disclosed is a fluorescent lamp including a phosphor layer comprising blends of one or more of a blue phosphor, a blue-green phosphor, a green phosphor and a red a phosphor selected from the group consisting of SrY.sub.2 O.sub.4 :Eu.sup.3+, (Y,Gd)Al.sub.3 B.sub.4 O.sub.12 :Eu.sup.3+, and [(Y.sub.1-x-y-m La.sub.y)Gd.sub.x ]BO.sub.3 :Eu.sub.m wherein y<0.50 and m=0.001-0.3. The phosphor layer can optionally include an additional deep red phosphor and a yellow emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of the disclosed red phosphors in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over the course of the lamp life.

  16. Oxygen free radical damage in the cornea after excimer laser therapy

    PubMed Central

    Hayashi, S.; Ishimoto, S.; Wu, G.; Wee, W.; Rao, N.; McDonnell, P.

    1997-01-01

    AIMS/BACKGROUND—To evaluate the extent of oxygen radical damage in the cornea after excimer laser ablation.
METHODS—The 193 nm argon fluoride excimer laser was programmed for an average fluence of 150 mJ/cm2, with a firing rate of 5 Hz and an ablation zone diameter of 6 mm. Phototherapeutic keratectomy was performed to remove 30 µm of epithelium and 50 µm of stroma from the corneas of New Zealand white rabbits. Oxidative tissue damage after laser was determined by measuring oxidised lipids (conjugated dienes and ketodienes) in corneal lipid extracts, and by fast blue B staining to localise the lipid peroxide in the tissue.
RESULTS—Conjugated diene levels were 3.73 (SD 0.56) nmol per hemicornea in ablated corneas and 1.99 (0.33) nmol per hemicornea in normal corneas (p = 0.0044). Ketodiene levels were 2.72 (0.38) nmol per hemicornea in treated corneas and 0.91 (0.12) nmol per hemicornea in normal corneas (p < 0.001). Fast blue B staining disclosed that the tissue damage occurred primarily on the surface of the ablated cornea.
CONCLUSION—The presence of lipid peroxidation in the superficial corneal stroma in excimer laser treated corneas was demonstrated. This lipid peroxidation could be from oxygen free radicals generated by the infiltrating polymorphonuclear cells at the site of tissue damage.

 PMID:9059249

  17. XeCl excimer laser with new prism resonator configurations and its performance characteristics.

    PubMed

    Benerji, N S; Singh, A; Varshnay, N; Singh, Bijendra

    2015-07-01

    New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configuration with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications. PMID:26233361

  18. XeCl excimer laser with new prism resonator configurations and its performance characteristics

    SciTech Connect

    Benerji, N. S. E-mail: bsingh@rrcat.gov.in; Singh, A.; Varshnay, N.; Singh, Bijendra E-mail: bsingh@rrcat.gov.in

    2015-07-15

    New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configuration with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications.

  19. Cyclic up-regulation fluorescence of pyrene excimer for studying polynucleotide kinase activity based on dual amplification.

    PubMed

    Xu, Jing; Gao, Yanfang; Li, Baoxin; Jin, Yan

    2016-06-15

    Due to its important biological and clinical roles of polynucleotide kinase (PNK), accurate monitoring of PNK activity and inhibition is highly desirable. Herein, a homogeneous and sensitive fluorescence assay has been proposed for the detection of PNK activity by integrating target recycling signal amplification of DNA toehold strand displacement reaction (TSDR) with gamma-cyclodextrin (γ-CD) enhancement of pyrene excimer. A label-free hairpin DNA1 (H1) and two singly pyrene-labelled DNA, H2 and H3, are designed. Accompanying the occurrence of the efficient enzyme reactions, namely phosphorylation-actuated λ exonuclease reaction, a single-stranded DNA as a trigger DNA (tDNA) of TSDR can be released from H1. Then, tDNA drives circulatory interactions between H2 and H3 to continuously form H2/H3 duplex, resulting in formation of pyrene excimer and a "turn on" fluorescence signal of pyrene excimer. Furthermore, the fluorescence of pyrene excimer is further amplified by introducing gamma-cyclodextrin (γ-CD), which can regulate the space proximity of two pyrene molecules. Thus, TSDR-induced cyclic formation of pyrene excimer and γ-CD enhancement can specifically up-regulate the fluorescence of pyrene excimer for detection of PNK activity, the detection limit is 9.3 × 10(-5)UmL(-1), which is superior to those of most existing approaches. Moreover, the proposed strategy can also be successfully utilized to study inhibition efficiency of different PNK inhibitors as well. Therefore, a dual amplification approach is provided for nucleic acid phosphorylation related researches. PMID:26807522

  20. Effects of xenon gas on generation and propagation of shock waves in the cavity of excimer laser

    NASA Astrophysics Data System (ADS)

    Kosugi, Shinichiroh; Maeno, Kazuo; Honma, Hiroki

    1993-05-01

    High repetition rate excimer lasers are expected for wide industrial application. The power of excimer laser, however, decreases rapidly in a higher repetition rate operation. Shock or acoustic waves, which are caused by the periodic pulse discharge, may limit the repetition rate of an excimer laser up to 2.5 kHz. Such waves cause inhomogeneity of gas density in the discharge region of the excimer laser. In high repetition rate operation this inhomogeneity remains at the next discharge. Arcing may be generated by this inhomogeneity and the homogeneous excitation of the laser gas is obstructed. Although these phenomena have been reported, the research for the effects of shock waves has remained insufficient. And the relation between these shock waves and discharge phenomena has not been clarified. To resolve this problem, we developed a scaling model chamber of a UV preionized excimer laser cavity with windows for flow visualization. We report the first result by using this model and Schlieren technique in a pure helium gas case. In our experiment three types of shock waves are found in the discharge cavity. Those shock waves are generated from the boundary of the main discharge area, from sparking pin gaps, and from the main electrode surfaces. In this study we focus on the effect of xenon gas on the generation and the propagation of shock waves. Components of the Xe-Cl excimer laser gas are helium, xenon, and hydrogen chloride. In those gases xenon has the largest molecular weight of 131.29. So we conclude xenon plays an important role in the shock wave propagation and in discharge phenomenon.

  1. Spectrally narrowed lasing of a self-injection KrF excimer laser

    NASA Astrophysics Data System (ADS)

    Shimada, Yasuhiro; Wani, Koichi; Miki, Tadaaki; Kawahara, Hidehito; Mimasu, Mutsumi; Ogata, Yoshiro

    1990-08-01

    Spectrally nantwed lasing of a KrF excimer laser has teen ahieved by a self-injection technique using abeam splitter for power extraction aixi intravity etalons for spectral-narrowing. The laser cavity is divithi into an amplifying branch aix! a spectralnarrowing branch. The spectral bandwidth was narrowed to <3pm FWHM with air-sed etalons placed in the spectral-narrowing branch. A laser propagation model was intrOdUced for describing the laser intensity traveling in the laser cavity. The calculated intensityincident onthe intracavityetalons wassmaller thanthat in theconventional Fabry-Perotcavity withplane-parallel mirrors.

  2. Sub-500-nm patterning of glass by nanosecond KrF excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Bekesi, J.; Meinertz, J.; Simon, P.; Ihlemann, J.

    2013-01-01

    The surface of flint glass of type F2 is patterned by nanosecond KrF excimer laser ablation. Strong UV absorption provides a comparatively low ablation threshold and precise ablation contours. By using a two-grating interferometer, periodic surface patterns with 330 nm period and 100 nm modulation depth are obtained. This method enables the fabrication of 7 mm×13 mm wide grating areas with perfectly aligned grooves without the need of high-precision sample positioning. By double exposure, crossed gratings with adjustable depths in the two orthogonal directions can be generated.

  3. The effect of excimer laser annealing on ZnO nanowires and their field effect transistors.

    PubMed

    Maeng, Jongsun; Heo, Sungho; Jo, Gunho; Choe, Minhyeok; Kim, Seonghyun; Hwang, Hyunsang; Lee, Takhee

    2009-03-01

    We have investigated the effect of excimer laser annealing on the chemical bonding, electrical, and optical properties of ZnO nanowires. We demonstrate that after laser annealing on the ZnO nanowire field effect transistors, the on-current increases and the threshold voltage shifts in the negative gate bias direction. These electrical results are attributed to the increase of oxygen vacancies as n-type dopants after laser annealing, consistent with the shifts towards higher binding energies of Zn 2p and O 1s in the x-ray photoelectron spectroscopy analysis of as-grown nanowires and laser-annealed ZnO nanowires.

  4. Corneal surgery by two-dimensional scanning of a low-energy excimer laser beam

    NASA Astrophysics Data System (ADS)

    Unkroth, Angela; Pachomis, Karin; Walther, Jens-Uwe; Zimare, D.

    1994-06-01

    We describe a new multipurpose maskless method of corneal surgery based on the point-by-point scanning of a focused laser beam which allows the application of a low-energy excimer laser. The crucial scanning parameters to achieve a smooth corneal surface have been investigated. A computer program for the simulation and optimization of the point-by-point scanning process has been developed and tested on contact lenses consisting of PMMA. In addition, a method of measuring the eye-movement by means of the computer-assisted interpretation of photographs was proved for its application in an eye-tracking-system.

  5. Excimer laser-induced ablation in corneal surgery by a two-dimensional scanning method

    NASA Astrophysics Data System (ADS)

    Unkroth, Angela; Pachomis, Karin; Welsch, Eberhard; Walther, Jens-Uwe; Zimare, D.; Krause, Ulf

    1994-02-01

    We describe a new multi-purpose maskless method of corneal surgery based on the point-by- point scanning of a focused laser beam which allows the application of a low-energy excimer laser. The crucial scanning parameters (beam diameter, step width, overlap...) to achieve a smooth corneal surface have been investigated. A computer program for the simulation and optimization of the point-by-point scanning process has been developed and tested on contact lenses consisting of PMMA. In addition, a method of measuring the eye-movement by means of the computer-assisted interpretation of photographs was proved for its application in an eye- tracking-system.

  6. A novel solution for LED wall lamp design and simulation

    NASA Astrophysics Data System (ADS)

    Ge, Rui; Hong, Weibin; Li, Kuangqi; Liang, Pengxiang; Zhao, Fuli

    2014-11-01

    The model of the wall washer lamp and the practical illumination application have been established with a new design of the lens to meet the uniform illumination demand for wall washer lamp based on the Lambertian light sources. Our secondary optical design of freeform surface lens to LED wall washer lamp based on the conservation law of energy and Snell's law can improve the lighting effects as a uniform illumination. With the relationship between the surface of the lens and the surface of the target, a great number of discrete points of the freeform profile curve were obtained through the iterative method. After importing the data into our modeling program, the optical entity was obtained. Finally, to verify the feasibility of the algorithm, the model was simulated by specialized software, with both the LED Lambertian point source and LED panel source model.

  7. Remote sensing phase fluorimetry using mercury vapor lamp

    NASA Astrophysics Data System (ADS)

    Lundin, Michael A.; Bohn, Matthew J.

    2007-04-01

    Phase Fluorimetry, or Frequency Domain (FD) Fluorimetry, capitalizes on the phase delay from excitation modulation of fluorescent media and offers independence from light scatter and excitation/emission intensity variations in order to extract the sample's fluorescent lifetime. Samples which fluoresce in the UV are commonly excited with UV laser sources, which are not necessarily high power, portable devices. Mercury vapor lamps, a common source of industrial facility lighting, emit wavelengths (365 nm, 405 nm, and 436 nm) that overlap the UV/blue spectrum and may be used as an efficient and portable excitation source. Mercury vapor lamps show strong peak intensities at 120 Hz and higher harmonics, due to the modulation of facility power at 60 Hz in the United States. For this research effort, single exponential decay will be assumed and lifetime calculation will be performed by least squares analysis with corrections made for lamp intensity variations at the harmonics of facility power.

  8. Cyclotron resonance effects in a fluorescent lamp plasma

    NASA Astrophysics Data System (ADS)

    Orr, Julie; Wolfson, Richard

    1990-10-01

    A plasma physics experiment is described, which is suitable for undergraduate courses in electromagnetism as well as for independent projects. Using the plasma of a fluorescent lamp inside a conducting cavity that is immersed in a magnetic field, the experiment shows the effect of electron cyclotron motion of plasma electrons on the resonant modes of the cavity. An added benefit of the magnetic field is the ability to measure the plasma density through a frequency shift technique, but without having to know the mode frequencies in the absence of plasma. Density measurements made using this technique are consistent with those described in an earlier article on the unmagnetized fluorescent lamp plasma, and with the literature on fluorescent lamps and gas discharges. Understanding the experiment described here will give the advanced undergraduate experience in the theory of electromagnetic wave propagation in magnetized plasma, in the theory of resonant cavities, and in microwave and instrumentation techniques.

  9. Finite element simulation for ultraviolet excimer laser processing of patterned Si/SiGe/Si(100) heterostructures

    NASA Astrophysics Data System (ADS)

    Conde, J. C.; Martín, E.; Chiussi, S.; Gontad, F.; Serra, C.; González, P.

    2010-07-01

    Ultraviolet (UV) Excimer laser assisted processing is an alternative strategy for producing patterned silicon germanium heterostructures. We numerically analyzed the effects caused by pulsed 193 Excimer laser radiation impinging on patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bilayers deposited on a crystalline silicon substrate [Si(100)]. The proposed two dimensional axisymmetric numerical model allowed us to estimate the temperature and concentration gradients caused by the laser induced rapid melting and solidification processes. Energy density dependence of maximum melting depth and melting time evolution as well as three dimensional temperature and element distribution have been simulated and compared with experimentally obtained results.

  10. Finite element simulation for ultraviolet excimer laser processing of patterned Si/SiGe/Si(100) heterostructures

    SciTech Connect

    Conde, J. C.; Chiussi, S.; Gontad, F.; Gonzalez, P.; Martin, E.; Serra, C.

    2010-07-05

    Ultraviolet (UV) Excimer laser assisted processing is an alternative strategy for producing patterned silicon germanium heterostructures. We numerically analyzed the effects caused by pulsed 193 Excimer laser radiation impinging on patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bilayers deposited on a crystalline silicon substrate [Si(100)]. The proposed two dimensional axisymmetric numerical model allowed us to estimate the temperature and concentration gradients caused by the laser induced rapid melting and solidification processes. Energy density dependence of maximum melting depth and melting time evolution as well as three dimensional temperature and element distribution have been simulated and compared with experimentally obtained results.

  11. Detection of Acute HIV-1 Infection by RT-LAMP.

    PubMed

    Rudolph, Donna L; Sullivan, Vickie; Owen, S Michele; Curtis, Kelly A

    2015-01-01

    A rapid, cost-effective diagnostic test for the detection of acute HIV-1 infection is highly desired. Isothermal amplification techniques, such as reverse-transcription loop-mediated isothermal amplification (RT-LAMP), exhibit characteristics that are ideal for the development of a rapid nucleic acid amplification test (NAAT) because they are quick, easy to perform and do not require complex, dedicated equipment and laboratory space. In this study, we assessed the ability of the HIV-1 RT-LAMP assay to detect acute HIV infection as compared to a representative rapid antibody test and several FDA-approved laboratory-based assays. The HIV-1 RT-LAMP assay detected seroconverting individuals one to three weeks earlier than a rapid HIV antibody test and up to two weeks earlier than a lab-based antigen/antibody (Ag/Ab) combo enzyme immunoassay (EIA). RT-LAMP was not as sensitive as a lab-based qualitative RNA assay, which could be attributed to the significantly smaller nucleic acid input volume. To our knowledge, this is the first demonstration of detecting acute HIV infection using the RT-LAMP assay. The availability of a rapid NAAT, such as the HIV-1 RT-LAMP assay, at the point of care (POC) or in laboratories that do not have access to large platform NAAT could increase the percentage of individuals who receive an acute HIV infection status or confirmation of their HIV status, while immediately linking them to counseling and medical care. In addition, early knowledge of HIV status could lead to reduced high-risk behavior at a time when individuals are at a higher risk for transmitting the virus. PMID:25993381

  12. Investigating antennas as ignition aid for automotive HID lamps

    NASA Astrophysics Data System (ADS)

    Bergner, A.; Engelhardt, M.; Bienholz, S.; Ruhrmann, C.; Hoebing, T.; Groeger, S.; Mentel, J.; Awakowicz, P.

    2015-01-01

    This paper considers the ignition of mercury-free high-intensity discharge (HID) lamps for car headlights. Due to safety reasons, these lamps need to have a fast run-up phase which is ensured, amongst other things, by a high Xe pressure of roughly 15 bar (cold) in the discharge vessel. The high Xe pressure causes an increased ignition voltage compared with former mercury-containing automotive HID lamps or low-pressure lamps used for general-lighting applications. The increase in ignition voltage can be limited if the electric field in front of the electrodes is raised by an uplifting of the electrical conductivity along the outer wall of the inner bulb either by a conductive layer on its surface or by a dielectric barrier discharge (DBD) within the outer bulb. This paper considers on the one hand conventional antennas deposited by physical vapour deposition (PVD) and on the other hand a combination of these antennas with a DBD within the outer-bulb operated in 100 mbar Ar as ignition aids. In both cases the antenna potential and antenna width are varied. Additionally, the effects of antenna thickness and antenna material are investigated. The ignition voltage, ignition current and light emission during ignition are measured on a nanosecond timescale. Furthermore, for the very first time, the ignition process is recorded in four consecutive intensified charge-coupled device images using a high-speed camera system with a time resolution in the range of nanoseconds. It was found that antennas strongly reduce the ignition voltage of automotive HID lamps. Active antennas reduce the ignition voltage significantly more than passive antennas, proportional to the conductance of the antenna. Combining conventional antennas with an outer-bulb discharge reduces the ignition voltage from 19 kV without any ignition aid to the intrinsic ignition voltage of the lamp below 10 kV, in the best case.

  13. LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the Intracellular Proliferation of Salmonella typhimurium

    PubMed Central

    Lee, Eun-Ju; Park, Kwan-Sik; Jeon, In-Sook; Choi, Jae-Woon; Lee, Sang-Jeon; Choy, Hyun E.; Song, Ki-Duk; Lee, Hak-Kyo; Choi, Joong-Kook

    2016-01-01

    Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella-induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation. PMID:27329040

  14. Very high efficacy electrodeless high intensity discharge lamps

    DOEpatents

    Johnson, P.D.

    1985-10-03

    An electrodeless arc lamp comprises an outer jacket hermetically sealing and thermally protecting an arc tube inside which has an upwardly convex bottom center section. The absence of chemically reactive electrode material makes it possible to use metal halides other than iodides. The tube contains chlorides, bromides or a mixture thereof of scandium and sodium in a nearly equimolar relationship in addition to mercury and an inert gas. Good color balance can be obtained at reduced reservoir temperature and with less power loss. Reduction in wall temperature makes it possible to attain longer lamp life.

  15. Electron plasma wave propagation in external-electrode fluorescent lamps

    SciTech Connect

    Cho, Guangsup; Kim, Jung-Hyun; Jeong, Jong-Mun; Hong, Byoung-Hee; Koo, Je-Huan; Choi, Eun-Ha; Verboncoeur, John P.; Uhm, Han Sup

    2008-01-14

    The optical propagation observed along the positive column of external electrode fluorescent lamps is shown to be an electron plasma wave propagating with the electron thermal speed of (kT{sub e}/m){sup 1/2}. When the luminance of the lamp is 10 000-20 000 cd/m{sup 2}, the electron plasma temperature and the plasma density in the positive column are determined to be kT{sub e}{approx}1.26-2.12 eV and n{sub o}{approx}(1.28-1.69)x10{sup 17} m{sup -3}, respectively.

  16. Very high efficacy electrodeless high intensity discharge lamps

    DOEpatents

    Johnson, Peter D.

    1987-01-01

    An electrodeless arc lamp comprises an outer jacket hermetically sealing and thermally protecting an arc tube inside which has an upwardly convex bottom center section. The absence of chemically reactive electrode material makes it possible to use metal halides other than iodides. The tube contains chlorides, bromides or a mixture thereof of scandium and sodium in a nearly equimolar relationship in addition to mercury and an inert gas. Good color balance can be obtained at reduced reservoir temperature and with less power loss. Reduction in wall temperature makes it possible to attain longer lamp life.

  17. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... is produced by radiation of metal halides and their products of dissociation, possibly in combination... electromagnetic ballast that starts a pulse-start metal halide lamp with high voltage pulses, where lamps shall...

  18. 40 CFR 426.120 - Applicability; description of the incandescent lamp envelope manufacturing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... incandescent lamp envelope manufacturing subcategory. 426.120 Section 426.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GLASS MANUFACTURING POINT SOURCE CATEGORY Incandescent Lamp Envelope Manufacturing Subcategory § 426.120...

  19. 40 CFR 426.120 - Applicability; description of the incandescent lamp envelope manufacturing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... incandescent lamp envelope manufacturing subcategory. 426.120 Section 426.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GLASS MANUFACTURING POINT SOURCE CATEGORY Incandescent Lamp Envelope Manufacturing Subcategory § 426.120...

  20. 40 CFR 426.120 - Applicability; description of the incandescent lamp envelope manufacturing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... incandescent lamp envelope manufacturing subcategory. 426.120 Section 426.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Incandescent Lamp Envelope Manufacturing Subcategory § 426.120 Applicability; description of...

  1. 40 CFR 426.120 - Applicability; description of the incandescent lamp envelope manufacturing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... incandescent lamp envelope manufacturing subcategory. 426.120 Section 426.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Incandescent Lamp Envelope Manufacturing Subcategory § 426.120 Applicability; description of...

  2. 40 CFR 426.120 - Applicability; description of the incandescent lamp envelope manufacturing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... incandescent lamp envelope manufacturing subcategory. 426.120 Section 426.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GLASS MANUFACTURING POINT SOURCE CATEGORY Incandescent Lamp Envelope Manufacturing Subcategory § 426.120...

  3. 78 FR 24233 - Certain Dimmable Compact Fluorescent Lamps and Products Containing Same: Notice of Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Dimmable Compact Fluorescent Lamps and Products Containing Same: Notice of Institution of... importation of certain dimmable compact fluorescent lamps (``CFLs'') and products containing the same by...

  4. Treatment of band keratopathy by excimer laser phototherapeutic keratectomy: surgical techniques and long term follow up.

    PubMed Central

    O'Brart, D P; Gartry, D S; Lohmann, C P; Patmore, A L; Kerr Muir, M G; Marshall, J

    1993-01-01

    A series of 122 eyes with band keratopathy was treated by excimer laser phototherapeutic keratectomy (PTK), with a mean follow up of over 12.3 months (range 3 to 60 months). A single photoablation zone was used to remove the opacity over the visual axis in smooth surfaced band deposition. In eyes with reduced vision, an improvement was reported in 88% and in a series of 66 eyes mean Snellen visual acuity increased significantly (p < 0.05, t = 2.27). A reduction in glare was reported in 88% and in a series of 17 patients, visual contrast sensitivity (p < 0.01) and measurements of disability glare (p < 0.01) improved postoperatively. The mean hyperopic shift in 32 eyes at 6 months was 1.4 D (range 0-4.25 D). Multiple overlapping ablation zones, with mechanical debulking of large calcium plaques, were used to smooth the irregular corneal surface in eyes with rough bands. Ocular discomfort was improved in 95%. Band keratopathy recurred in nine eyes (8%) within 2 to 30 months (mean 12 months) of surgery, with silicone oil responsible in five eyes. Reablation was necessary in three eyes and performed successfully in all cases. Excimer laser PTK is a safe and effective outpatient treatment for band keratopathy. Images PMID:8280683

  5. Clinical use of the 193-nm excimer laser in the treatment of corneal scars.

    PubMed

    Sher, N A; Bowers, R A; Zabel, R W; Frantz, J M; Eiferman, R A; Brown, D C; Rowsey, J J; Parker, P; Chen, V; Lindstrom, R L

    1991-04-01

    Phototherapeutic keratectomy using a 193-nm excimer laser was performed at four centers on 33 sighted patients with corneal opacity and/or irregular astigmatism. Pathologic conditions included anterior stromal and superficial scarring from postinfectious and posttraumatic causes, including inactive herpes simplex virus, anterior corneal dystrophies, recurrent erosions, granular dystrophy, and band keratopathy. Most patients received peribulbar anesthesia and underwent removal of the epithelium prior to laser ablation. A majority of patients had a reduction in the amount of corneal scarring and approximately half had improved visual acuity. No intraocular reaction or changes in endothelial counts were seen, and some patients avoided the need for penetrating keratoplasty. Reepithelialization usually occurred within 4 or 5 days and we noted no significant scarring secondary to use of the laser. It was difficult to eliminate preexisting irregular astigmatism despite the use of surface modulators, such as methylcellulose. A hyperopic shift secondary to corneal flattening was encountered in approximately 50% of the patients. A combination of myopic ablation, followed immediately by a secondary hyperopic steepening, may minimize this refractive change. The 193-nm excimer laser is an effective new tool in the treatment of selected patients with superficial corneal opacity from a variety of conditions. PMID:2012547

  6. Precision drilling of fused silica with 157-nm excimer laser radiation

    NASA Astrophysics Data System (ADS)

    Temme, Thorsten; Ostendorf, Andreas; Kulik, Christian; Meyer, Klaus

    2003-07-01

    μFor drilling fused silica, mechanical techniques like with diamond drills, ultrasonic machining, sand blasting or water jet machining are used. Also chemical techniques like laser assisted wet etching or thermal drilling with CO2-lasers are established. As an extension of these technologies, the drilling of micro-holes in fused silica with VUV laser radiation is presented here. The high absorption of the 157 nm radiation emitted by the F2 excimer laser and the short pulse duration lead to a material ablation with minimised impact on the surrounding material. Contrary to CO2-laser drilling, a molten and solidified phase around the bore can thus be avoided. The high photon energy of 7.9 eV requires either high purity nitrogen flushing or operation in vacuum, which also effects the processing results. Depending on the required precision, the laser can be used for percussion drilling as well as for excimer laser trepanning, by applying rotating masks. Rotating masks are especially used for high aspect ratio drilling with well defined edges and minimised debris. The technology is suitable particularly for holes with a diameter below 200 μm down to some microns in substrates with less than 200 μm thickness, that can not be achieved with mechanical methods. Drilling times in 200 μm fused silica substrates are in the range of ten seconds, which is sufficient to compete with conventional methods while providing similar or even better accuracy.

  7. Quantitative solid sample analysis by ArF excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; von Oldershausen, Georg

    2005-06-01

    Reproducible and sensitive elemental analysis of solid samples is a crucial task in areas of geology (e.g. microanalysis of fluid inclusions), material sciences, industrial quality control as well as in environmental, forensic and biological studies. To date the most versatile detection method is mass-spectroscopic multi-element analysis. In order to obtain reproducible results, this requires transferring the solid sample into the gas-phase while preserving the sample's stoichiometric composition. Laser Ablation in combination with inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a proven powerful technique to meet the requirements for reliable solid sample analysis. The sample is laser ablated in an air-tight cell and the aerosol is carried by an inert gas to a micro-wave induced plasma where its constituents are atomized and ionized prior to mass analysis. The 193 nm excimer laser ablation, in particular, provides athermal sample ablation with very precise lateral ablation and controlled depth profiling. The high photon energy and beam homogeneity of the 193 nm excimer laser system avoids elemental fractionation and permits clean ablation of even transmissive solid materials such as carbonates, fluorites and pure quartz.

  8. New excimer laser technique for the correction of strabismus and diplopia

    NASA Astrophysics Data System (ADS)

    Azar, Dimitri T.

    1994-06-01

    We used the ArF excimer laser to determine the feasibility of performing prismatic photoablations in model eyes (plastic spheres simulating the eye), and in rabbit corneas. This would correct diplopia and small angles of deviation, and result in minimal refractive alterations. We modified excimer laser delivery system that achieved the desired corneal contour of prismatic ablations. 193-nm argon fluoride laser was used at fluence of 160 mJ/cm2 and ablation rate 5 Hz. 5.0-mm diameter, 40 um corneal epithelial ablation were followed by 5.0- mm diameter, prismatic photokeratectomy (PPK). We were able to achieve prismatic photoablation of PMMA blocks and lenses. No other refractive changes accompanied the prismatic photoablation of PMMA blocks and lenses. No other refractive changes accompanied the prismatic effect. In rabbits re-epithelialization of the 5-mm ablations was complete by day 3, and corneal haze was not observed by gross examination. Epithelial hyperplasia and subepithelial scarring were noted at the deep edges. PPK holds important therapeutic potential for fine-tuning results of conventional strabismus surgery, and for patients with stable diplopia following nerve palsy and ocular surgery.

  9. Excimer laser assisted TiN and WC removal from tools as a novel decoating technology

    NASA Astrophysics Data System (ADS)

    Schubert, Emil; Schutte, K.; Emmel, A.; Bergmann, Hans W.

    1995-03-01

    Hard coatings, e.g. TiN or WC on high quality tools are regenerated several times, due to their high costs. Conventional decoating techniques are of chemical nature and problematically regarding the handling of the chemical residues. In addition to that the lifetime of recoated tools after chemical decoating of the damaged functional layers is drastically reduced compared to new tools. Excimer laser treatment using the so-called `Duplex-Technique' enables a damage-free removal of the hard coatings with much longer lifetime of recoated tools than those of chemically decoated. The handling of the waste material is extremely easy using a laser processing head with an integrated exhaust system, that was designed at ATZ- EVUS. The paper gives a detailed presentation of the developed Duplex-Technique, the influence of the laser parameters and the obtained surface properties. Results of internal stress measurements, roughness values, changes in chemical composition and the surface appearance are described. From the technological point of view the removal rates, the productivity and last not least the superior performance of excimer laser decoated and PVD recoated tools in a lifetime test are demonstrated, compared to newly coated and chemical decoated tools.

  10. Temporal Fluctuations in Excimer-Like Interactions between π-Conjugated Chromophores.

    PubMed

    Stangl, Thomas; Wilhelm, Philipp; Schmitz, Daniela; Remmerssen, Klaas; Henzel, Sebastian; Jester, Stefan-S; Höger, Sigurd; Vogelsang, Jan; Lupton, John M

    2015-04-16

    Inter- or intramolecular coupling processes between chromophores such as excimer formation or H- and J-aggregation are crucial to describing the photophysics of closely packed films of conjugated polymers. Such coupling is highly distance dependent and should be sensitive to both fluctuations in the spacing between chromophores as well as the actual position on the chromophore where the exciton localizes. Single-molecule spectroscopy reveals these intrinsic fluctuations in well-defined bichromophoric model systems of cofacial oligomers. Signatures of interchromophoric interactions in the excited state--spectral red shifting and broadening and a slowing of photoluminescence decay--correlate with each other but scatter strongly between single molecules, implying an extraordinary distribution in coupling strengths. Furthermore, these excimer-like spectral fingerprints vary with time, revealing intrinsic dynamics in the coupling strength within one single dimer molecule, which constitutes the starting point for describing a molecular solid. Such spectral sensitivity to sub-Ångström molecular dynamics could prove complementary to conventional FRET-based molecular rulers. PMID:26263130

  11. Mesoscale Laser Processing using Excimer and Short-Pulse Ti: Sapphire Lasers

    SciTech Connect

    Shirk, M D; Rubenchik, A M; Gilmer, G H; Stuart, B C; Armstrong, J P; Oberhelman, S K; Baker, S L; Nikitin, A J; Mariella, R P

    2003-07-28

    Targets to study high-energy density physics and inertial confinement fusion processes have very specific and precise tolerances that are pushing the state-of-the-art in mesoscale microsculpting technology. A significant effort is required in order to advance the capabilities to make these targets with very challenging geometries. Ultrashort pulsed (USP) Ti:Sapphire lasers and excimer lasers are proving to be very effective tools in the fabrication of the very small pieces that make up these targets. A brief description of the dimensional and structural requirements of these pieces will be presented, along with theoretical and experimental results that demonstrate to what extent these lasers are achieving the desired results, which include sub-{mu}m precision and RMS surface values well below 100 nm. This work indicates that excimer lasers are best at sculpting the polymer pieces and that the USP lasers work quite well on metal and aerogel surfaces, especially for those geometries that cannot be produced using diamond machining and where material removal amounts are too great to do with focused ion beam milling in a cost effective manner. In addition, the USP laser may be used as part of the procedure to fill target capsules with fusion fuel, a mixture of deuterium and tritium, without causing large perturbations on the surface of the target by keeping holes drilled through 125 {micro}m of beryllium below 5 {micro}m in diameter.

  12. The development and progress of XeCl Excimer laser system

    NASA Astrophysics Data System (ADS)

    Zhang, Yongsheng; Ma, Lianying; Wang, Dahui; Zhao, Xueqing; Zhu, Yongxiang; Hu, Yun; Qian, Hang; Shao, Bibo; Yi, Aiping; Liu, Jingru

    2015-05-01

    A large angularly multiplexed XeCl Excimer laser system is under development at the Northwest Institute of Nuclear Technology (NINT). It is designed to explore the technical issues of uniform and controllable target illumination. Short wavelength, uniform and controllable target illumination is the fundamental requirement of high energy density physics research using large laser facility. With broadband, extended light source and multi-beam overlapping techniques, rare gas halide Excimer laser facility will provide uniform target illumination theoretically. Angular multiplexing and image relay techniques are briefly reviewed and some of the limitations are examined to put it more practical. The system consists of a commercial oscillator front end, three gas discharge amplifiers, two electron beam pumped amplifiers and the optics required to relay, encode and decode the laser beam. An 18 lens array targeting optics direct and focus the laser in the vacuum target chamber. The system is operational and currently undergoing tests. The total 18 beams output energy is more than 100J and the pulse width is 7ns (FWHM), the intensities on the target will exceed 1013W/cm2. The aberration of off-axis imaging optics at main amplifier should be minimized to improve the final image quality at the target. Automatic computer controlled alignment of the whole system is vital to efficiency and stability of the laser system, an array of automatic alignment model is under test and will be incorporated in the system soon.

  13. Photo-triggering and secondary electron produced ionization in electric discharge ArF* excimer lasers

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Kushner, Mark J.

    2011-10-01

    Electric discharge excimer lasers are sustained in multi-atmosphere attaching gas mixtures that are typically preionized to enable a reproducible, uniform glow, which maximizes optical quality and gain. This preionization is often accomplished using UV light produced by a corona discharge within the plasma cavity. To quantify the relationship between corona discharge properties and those of the laser discharge, the triggering of electron avalanche by preionizing UV light in an electric discharge-pumped ArF* excimer laser was numerically investigated using a two-dimensional model. The preionizing UV fluxes were generated by a corona-bar discharge driven by the same voltage pulse as the main discharge sustained in a multi-atmospheric Ne/Ar/Xe/F2 gas mixture. The resulting peak photo-electron density in the inter-electrode spacing is around 108 cm-3, and its distribution is biased toward the UV source. The preionization density increases with increasing dielectric constant and capacitance of the corona bar. The symmetry and uniformity of the discharge are, however, improved significantly once the main avalanche develops. In addition to bulk electron impact ionization, the ionization generated by sheath accelerated secondary electrons was found to be important in sustaining the discharge current at experimentally observed values. At peak current, the magnitude of the ionization by sheath accelerated electrons is comparable to that from bulk electron impact in the vicinity of the cathode.

  14. Confocal microscope observations of the cornea after excimer laser refractive surgery

    NASA Astrophysics Data System (ADS)

    Gierek-Lapinska, Ariadna; Gierek-Ciaciura, Stanislawa; Mrukwa, Ewa; Rokita-Wala, Iwona; Sarzynski, Adam

    1998-10-01

    Purpose: The aim of this study was to observe human corneas after Photorefractive keratectomy, in vivo, using the Scanning Slit Confocal Microscope `Confoscan P4' (Tomey). Material and method: The material consists of 80 corneas of 45 patients where in vivo, non-invasive evaluation of the corneal structures was performed with a confocal microscope. The confocal microscopic examination was performed in cases after excimer laser refractive surgery and analyzed together with the type of the procedure (myopia, hyperopia and astigmatism correction), and with the patients' age and sex. The results obtained in the right and left eye of each patient after bilateral procedures were compared. The state of the cornea was analyzed in relation to follow-up time. Results: The observations consist of the structure of corneal epithelium, stromal keratocytes, topography of nerve fibers, appearance of Bowman's and Descemet's membranes and condition of endothelial cells. Conclusion: The confocal microscope allows non-invasive in vivo observations of the corneal structures and is capable of the evaluation of corneal healing after excimer laser refractive procedures.

  15. Color-variable highly efficient organic electrophosphorescent diodes manipulating molecular exciton and excimer emissions

    NASA Astrophysics Data System (ADS)

    Cocchi, Massimo; Kalinowski, Jan; Fattori, Valeria; Williams, J. A. Gareth; Murphy, Lisa

    2009-02-01

    A simple way of tuning the emission color and electroluminescence efficiency from vacuum-deposited emitters of phosphorescent organic light emitting diodes (LEDs) is demonstrated. For each color a single-emissive layer consisting of a blend of two materials, one of Pt(N∧C∧N) complex series [where (N∧C∧N)=di(2-pyridinyl)benzene-based tridentate ligands] as either the low-concentration bluish green (molecular) phosphorescence emitter or high-concentration red (excimer) phosphorescence emitter, and (4,4',4″-tris(N-carbazolyl-triphenylamine) as the host was employed. By adjusting the relative amount of blue and red emissive species, the color of the light emission was tuned from bluish green through green and white up to red. Very high external quantum efficiency (up to 18.3±0.5%) and current efficiency (up to 44.8±0.5 cd/A) at ˜500 cd/m2 four-layer devices were achieved with white and greenish light emitting layers, respectively. It is found that the introduction of electron-withdrawing fluorine atoms at the central ring and electron-donating groups at the lateral rings of the Pt complex leads to a blueshift in the molecular and excimer emissions, respectively. This allows to refine colors and optimize the efficiency of the LEDs by selecting suitable substituents.

  16. Endovascular treatment of in-stent restenosis using excimer laser angioplasty and drug eluting balloons.

    PubMed

    Van Den Berg, J C; Pedrotti, M; Canevascini, R; Chimchila Chevili, S; Giovannacci, L; Rosso, R

    2012-04-01

    In-stent restenosis after endovascular treatment of stenotic and occlusive disease of the infrainguinal arteries is still a clinical challenge. In this paper an overview of the current status of drug-eluting balloon technology and results of clinical trials with drug-eluting balloon angioplasty is given. Furthermore a case series of 10 patients with in-stent restenosis that were treated with excimer laser angioplasty and drug eluting balloons is described. In this case series the mean lesion length treated was 115 mm, and the mean time to occurrence of restenosis after initial treatment was 7.2 months. At a mean follow-up (of all patients) of 7.6 months no target vessel revascularization was seen. In 7 patients that had Duplex and/or angiographic control (mean follow-up 7 months) no signs of neointimal hyperplasia were demonstrated. These short-term data compare favorable to results obtained with standard balloon angioplasty and cutting-balloon angioplasty. Long-term follow-up is necessary to define the role of combined excimer laser and drug-eluting balloon angioplasty in the treatment of in-stent restenosis further.

  17. Cation-Controlled Excimer Packing in Langmuir-Blodgett Films of Hemicyanine Amphiphilic Chromoionophores.

    PubMed

    Selektor, S L; Shcherbina, M A; Bakirov, A V; Batat, P; Grauby-Heywang, C; Grigorian, S; Arslanov, V V; Chvalun, S N

    2016-01-19

    Supramolecular structure of ultrathin films of hemicyanine dye bearing a crown ether group (CrHCR) was tuned by lateral pressure and investigated by means of compression isotherms, UV-vis and fluorescence spectroscopies, and X-ray reflectivity. Two different types of aggregation were revealed, depending on the absence or the presence of metal cations in the water subphase. While CrHCR forms at high surface pressures head-to-tail stacking aggregates on pure water, changing the subphase to a metal-cation-containing one leads to the appearance of well-defined excimers with head-to-head orientation. The structure of monolayers transferred onto solid supports by the Langmuir-Blodgett (LB) technique was examined by use of X-ray reflectivity measurements and molecular modeling. A model of cation-induced excimer formation in hemicyanine Langmuir monolayers is proposed. Finally, fluorescence emission properties of LB films of CrHCR can be managed by appropriate changes in the subphase composition, this last one determining the type of chromophore aggregation.

  18. Excimer fluorescence compared to depolarization in the flow cytometric characterization of lateral membrane mobility in platelets

    NASA Astrophysics Data System (ADS)

    Rothe, Gregor; Schaefer, Buerk; Wimmer, Martin S.; Schmitz, Gerd

    1998-04-01

    An altered cellular membrane fluidity secondary to changes of cholesterol metabolism is a potentially important mechanism in the pathogenesis of atherosclerosis. Especially in blood platelets an increased sensitivity for stimulation dependent aggregation which is a risk factor for thrombosis has been experimentally linked to disorders of lipid and lipoprotein metabolism. The goal of this study was the development of a flow cytometric assay for the direct analysis of cellular membrane microviscosity in correlation to activation associated phenotypic changes of platelets in vitro. The analysis of fluorescence polarization following the staining of hydrophobic lipid regions of cell membranes with the fluorescent dye 1,6-diphenyl-1,3,5-hexatriene (DPH) is a well established method for the analysis of membrane fluidity. The extent of fluorescence anisotropy dependent on the rotational mobility of this fluorochrome is indirectly proportional to the microviscosity of the stained membrane subcompartment. In this study, an alternative and more simple method based on the diffusion dependent excimer formation of pyrenedecanoic acid (PDA) (J. Immunol. Methods 96:225-31, 1987) was characterized in comparison to the DPH method as a reference. Human platelets showed a rapid uptake of both DPH and PDA resulting in the staining primarily of the plasma membrane after up to 30 min of incubation. Staining analyzed at 351 nm excitation resulted in a saturation of the depolarization coefficient of DPH at 20 (mu) M but an increase of the excimer to monomer ratio of PDA with increasing dye concentration. A 'membrane fluidity coefficient' which saturated at 5 (mu) M PDA was calculated as the excimer fluorescence divided through the square of monomer fluorescence thereby correcting for the influence of dye concentration on excimer formation. The temperature dependent changes of membrane viscosity were further used as a model for the comparison of both methods. Cells analyzed at temperatures

  19. The Effects of Lamp Spectral Distribution on Sky Glow over Observatories

    NASA Astrophysics Data System (ADS)

    Luginbuhl, C. B.; Boley, P. A.; Davis, D. R.; Duriscoe, D. M.

    2015-03-01

    Using a wavelength-generalized version of the Garstang (1991) model, we evaluate overhead sky glow as a function of distance up to 300 km, from a variety of lamp types, including common gas discharge lamps and several types of LED lamps. We conclude for both professional, and especially cultural (visual), astronomy, that low-pressure sodium and narrow-spectrum amber LED lamps cause much less sky glow than all broad-spectrum sources.

  20. 30 CFR 56.12035 - Weatherproof lamp sockets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Weatherproof lamp sockets. 56.12035 Section 56.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity §...

  1. 30 CFR 56.12035 - Weatherproof lamp sockets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Weatherproof lamp sockets. 56.12035 Section 56.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity §...

  2. 30 CFR 56.12035 - Weatherproof lamp sockets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Weatherproof lamp sockets. 56.12035 Section 56.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity §...

  3. 30 CFR 56.12035 - Weatherproof lamp sockets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Weatherproof lamp sockets. 56.12035 Section 56.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity §...

  4. 30 CFR 56.12035 - Weatherproof lamp sockets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Weatherproof lamp sockets. 56.12035 Section 56.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity §...

  5. 15. LIGHTING DETAIL ON WAVERLY DRIVE OVERCROSSING HYPERION BOULEVARD. LAMPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. LIGHTING DETAIL ON WAVERLY DRIVE OVERCROSSING HYPERION BOULEVARD. LAMPS ALSO SEEN IN CA-272-13. LOOKING EAST/SOUTHEAST. - Glendale-Hyperion Viaduct, Spanning Golden State Freeway (I-5) & Los Angeles River at Glendale Boulevard, Los Angeles, Los Angeles County, CA

  6. Liquid Motion Lamp: A Learning-Cycle Approach to Solubility

    ERIC Educational Resources Information Center

    Brown, Sherri L.; Votaw, Nikki L.

    2008-01-01

    The abstract concepts of density and solubility are often difficult for middle-grade students and should be taught within several contexts to provide multiple experiences with the phenomena. To authenticate the learning of these concepts, this article provides instructional guidelines for constructing a liquid motion lamp to engage students in…

  7. On the Intensity Profile of Electric Lamps and Light Bulbs

    ERIC Educational Resources Information Center

    Bacalla, Xavier; Salumbides, Edcel John

    2013-01-01

    We demonstrate that the time profile of the light intensity from domestic lighting sources exhibits simple yet interesting properties that foster lively student discussions. We monitor the light intensity of an industrial fluorescent lamp (also known as TL) and an incandescent bulb using a photodetector connected to an oscilloscope. The light…

  8. Investigation of breakdown processes in automotive HID lamps

    NASA Astrophysics Data System (ADS)

    Bergner, Andre; Hoebing, Thomas; Ruhrmann, Cornelia; Mentel, Juergen; Awakowicz, Peter

    2011-10-01

    HID lamps are used for applications where high lumen output levels are required. Car headlights are a special field of HID lamp application. For security reasons and lawful regulations these lamps have to have a fast run-up phase and the possibility of hot re-strike. Therefore the background gas pressure amounts to 1.5 MPa xenon. But this high background gas pressure has the disadvantage that the ignition voltage becomes quite high due to Paschen's law. For that reason this paper deals with the investigation of the breakdown process of HID lamps for automotive application. The ignition is investigated by electrical as well as optical methods. Ignition voltage and current are measured on a nanosecond time scale and correlated with simultaneous phase resolved high speed photography done by an ICCD camera. So the ignition process can be observed from the first light emission until to the formation of whole discharge channel. The authors gratefully acknowledge the financial support by BMBF within the European project 'SEEL - Solutions for Energy Efficient Lighting' (FKZ: 13N11265). Furthermore the author would like to thank Philips Lighting (Aachen) for valuable discussions.

  9. 30 CFR 20.9 - Class 2 lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Unless special features of the lamp prevent ignition of explosive mixtures of methane and air by the... surrounded with explosive mixtures of Pittsburgh natural gas 1 and air. A sufficient number of tests of each... explosive mixtures are not ignited, if external flame is observed, if excessive pressures are developed,...

  10. 30 CFR 20.9 - Class 2 lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Unless special features of the lamp prevent ignition of explosive mixtures of methane and air by the... surrounded with explosive mixtures of Pittsburgh natural gas 1 and air. A sufficient number of tests of each... explosive mixtures are not ignited, if external flame is observed, if excessive pressures are developed,...

  11. Quadrichromatic white solid state lamp with digital feedback

    NASA Astrophysics Data System (ADS)

    Zukauskas, Arturas; Vaicekauskas, Rimantas; Ivanauskas, Felikas; Kurilcik, Genadij; Bliznikas, Zenius; Breive, Kestutis; Krupic, Jevgenij; Rupsys, Andrius; Novickovas, Algirdas; Vitta, Pranciskus; Navickas, Alvydas; Raskauskas, Vytautas; Shur, Michael S.; Gaska, Remis

    2004-01-01

    White light with high color rendering indices can be produced by additive color mixing of emissions from several light-emitting diodes (LEDs) having different primary colors. White Versatile Solid-State Lamps (VSSLs) with variable color temperature, constant-chromaticity dimming, and efficiency/color-rendering trade-off can be developed using pulse-width modulation (PWM) driving technique. However, such lamps exhibit chromaticity shifts caused by different temperature and aging coefficients of the optical output for primary LEDs of different colors. To overcome this drawback, we developed a polychromatic white solid-state lamp with an internal digital feedback. The lamp features a quadrichromatic (red-amber-green-blue) design based on commercially available high-power LEDs. The design is optimized to achieve high values of the general color rendering index (69 to 79 points) in the color-temperature range of 2856 to 6504 K. A computer-controlled driving circuit contains a pulse-width modulator and a photodiode-based meter. The software performs periodical measurement of the radiant flux from primary LEDs of each color and adjusts the widths of the driving pulses. These VSSLs with feedback found application in phototherapy of seasonal affective disorder (SAD).

  12. 49 CFR 393.11 - Lamps and reflective devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., meet the applicable requirements of 49 CFR 571.108 (FMVSS No. 108) in effect at the time of manufacture... of 49 CFR 571.108, Equipment combinations. Footnote—1Identification lamps may be mounted on the... 1829 mm (6 feet) in overall length, including the trailer tongue, need not be equipped with front...

  13. 49 CFR 393.11 - Lamps and reflective devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., meet the applicable requirements of 49 CFR 571.108 (FMVSS No. 108) in effect at the time of manufacture... of 49 CFR 571.108, Equipment combinations. Footnote—1Identification lamps may be mounted on the... 1829 mm (6 feet) in overall length, including the trailer tongue, need not be equipped with front...

  14. 49 CFR 393.11 - Lamps and reflective devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., meet the applicable requirements of 49 CFR 571.108 (FMVSS No. 108) in effect at the time of manufacture... of 49 CFR 571.108, Equipment combinations. Footnote—1Identification lamps may be mounted on the... 1829 mm (6 feet) in overall length, including the trailer tongue, need not be equipped with front...

  15. 49 CFR 393.11 - Lamps and reflective devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., meet the applicable requirements of 49 CFR 571.108 (FMVSS No. 108) in effect at the time of manufacture... of 49 CFR 571.108, Equipment combinations. Footnote—1Identification lamps may be mounted on the... 1829 mm (6 feet) in overall length, including the trailer tongue, need not be equipped with front...

  16. 49 CFR 393.11 - Lamps and reflective devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., meet the applicable requirements of 49 CFR 571.108 (FMVSS No. 108) in effect at the time of manufacture... of 49 CFR 571.108, Equipment combinations. Footnote—1Identification lamps may be mounted on the... 1829 mm (6 feet) in overall length, including the trailer tongue, need not be equipped with front...

  17. 30 CFR 20.8 - Class 1 lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... required. Alternative designs will be evaluated by mechanical impact tests, temperature tests and thermal shock tests to determine that the protection provided is no less effective than a safety device. (2.... Lamps passing a laboratory spilling test will be considered satisfactory in this respect,...

  18. Calibration and Temperature Profile of a Tungsten Filament Lamp

    ERIC Educational Resources Information Center

    de Izarra, Charles; Gitton, Jean-Michel

    2010-01-01

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament…

  19. Afterbay, looking north at hydraulic gate check cylinders and lamps. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Afterbay, looking north at hydraulic gate check cylinders and lamps. The gate lift in the foreground is an addition associated with the ca. 1974-1975 regulatory pumps - Wellton-Mohawk Irrigation System, Pumping Plant No. 2, Bounded by Interstate 8 to south, Wellton, Yuma County, AZ

  20. 21 CFR 866.2600 - Wood's fluorescent lamp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wood's fluorescent lamp. 866.2600 Section 866.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2600 Wood's...