Science.gov

Sample records for 308-nm xenon chloride

  1. Applications of the 308-nm excimer laser in dermatology

    NASA Astrophysics Data System (ADS)

    Farkas, A.; Kemeny, L.

    2006-05-01

    Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.

  2. Series operation of direct current xenon chloride excimer sources

    NASA Astrophysics Data System (ADS)

    El-Habachi, Ahmed; Shi, Wenhui; Moselhy, Mohamed; Stark, Robert H.; Schoenbach, Karl H.

    2000-09-01

    Stable, direct current microhollow cathode discharges in mixtures of hydrochloric acid, hydrogen, xenon, and neon have been generated in a pressure range of 200-1150 Torr. The cathode hole diameter was 250 μm. Sustaining voltages range from 180 to 250 V at current levels of up to 5 mA. The discharges are strong sources of xenon chloride excimer emission at a wavelength of 308 nm. Internal efficiencies of approximately 3% have been reached at a pressure of 1050 Torr. The spectral radiant power at this pressure was measured as 5 mW/nm at 308 nm for a 3 mA discharge. By using a sandwich electrode configuration, consisting of five perforated, alternate layers of metal and dielectric, a tandem discharge—two discharges in series—could be generated. For an anode-cathode-anode configuration the excimer irradiance, recorded on the axis of the discharge, was twice as large as that of a single discharge. The extension of this basic tandem electrode structure to a multiple electrode configuration allows the generation of high irradiance excimer sources. Placing such a structure with a string of microhollow cathode discharge into an optical resonator promises to lead to a direct current microexcimer laser.

  3. Electrical and chemical properties of XeCl*(308 nm) exciplex lamp created by a dielectric barrier discharge

    SciTech Connect

    Baadj, S.; Harrache, Z. Belasri, A.

    2013-12-15

    The aim of this work is to highlight, through numerical modeling, the chemical and the electrical characteristics of xenon chloride mixture in XeCl* (308 nm) excimer lamp created by a dielectric barrier discharge. A temporal model, based on the Xe/Cl{sub 2} mixture chemistry, the circuit and the Boltzmann equations, is constructed. The effects of operating voltage, Cl{sub 2} percentage in the Xe/Cl{sub 2} gas mixture, dielectric capacitance, as well as gas pressure on the 308-nm photon generation, under typical experimental operating conditions, have been investigated and discussed. The importance of charged and excited species, including the major electronic and ionic processes, is also demonstrated. The present calculations show clearly that the model predicts the optimal operating conditions and describes the electrical and chemical properties of the XeCl* exciplex lamp.

  4. 308-nm excimer laser in endodontics

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  5. A repetitively pulsed xenon chloride excimer laser with all ferrite magnetic cores (AFMC) based all solid state exciter

    NASA Astrophysics Data System (ADS)

    Benerji, N. S.; Varshnay, N. K.; Ghodke, D. V.; Singh, A.

    2016-10-01

    Performance of repetitively pulsed xenon chloride excimer laser (λ~308 nm) with solid state pulser consisting of magnetic pulse compression circuit (MPC) using all ferrite magnetic cores (AFMC) is reported. Laser system suitable for 100 Hz operation with inbuilt pre-ionizer, compact gas circulation and cooling has been developed and presented. In this configuration, high voltage pulses of ~8 μs duration are compressed to ~100 ns by magnetic pulse compression circuit with overall compression factor of ~80. Pulse energy of ~18 J stored in the primary capacitor is transferred to the laser head with an efficiency of ~85% compared to ~70% that is normally achieved in such configurations using annealed met-glass core. This is a significant improvement of about 21%. Maximum output laser pulse energy of ~100 mJ was achieved at repetition rate of 100 Hz with a typical pulse to pulse energy stability of ±5% and laser pulse energy of 150 mJ was generated at low rep-rate of ~40 Hz. This exciter uses a low current and low voltage solid state switch (SCR) that replaces high voltage and high current switch i. e, thyratron completely. The use of solid state exciter in turn reduces electromagnetic interference (EMI) effects particularly in excimer lasers where high EMI is present due to high di/dt. The laser is focused on a thin copper sheet for generation of micro-hole and the SEM image of the generated micro hole shows the energy stability of the laser at high repetition rate operation. Nearly homogeneous, regular and well developed xenon chloride (XeCl) laser beam spot was achieved using the laser.

  6. Nanobumps on silicon created with polystyrene spheres and 248 or 308 nm laser pulses

    SciTech Connect

    Piparia, Reema; Rothe, Erhard W.; Baird, R. J.

    2006-11-27

    Huang et al. [Appl. Phys. Lett. 86, 161911 (2005)] formed arrays of nanobumps on a silicon substrate. They applied a 248 nm laser pulse to a surface monolayer of 1-{mu}m-diameter polystyrene spheres. The authors first replicated their experiment with 248 nm light. But when 308 nm pulses were applied instead, the nanobumps had a different shape and composition. At 248 nm, much of the laser light is absorbed in the polystyrene, which serves to quickly distort, melt, and ablate the sphere. At 308 nm, very little light is absorbed. The nanobumps from 248 nm radiation are organic polymers, while those formed with 308 nm pulses are silicon based.

  7. Application of XeCl308 nm excimer laser radiation to mutagenesis of industrial microorganisms

    NASA Astrophysics Data System (ADS)

    Alifano, P.; Lorusso, A.; Nassisi, V.; Talà, A.; Tredici, S. M.

    (UV) lamps are widely used in mutagenesis-selection protocols. Nevertheless, since the eighties, due to the development of excimer lasers, new frontiers in the study of UV applications have been opened. It has been established that the presence of an intact SOS response system is required for the mutagenic effect of UV254 nm. The exposure to UV254 nm radiation is not mutagenic for Escherichia coli mutants lacking the RecA protein, the regulator of the SOS response. We have recently demonstrated that at variance with the UV254 nm mutagenesis, the UV308 nm mutagenesis by XeCl308 nm excimer laser is RecA-independent. This suggests that the UV308 nm might be mutagenic also in microorganisms naturally lacking the SOS response. In this study, we have developed an innovative mutagenesis protocol based on a homemade XeCl308 nm excimer laser and have demonstrated its efficiency on mutagenesis of Nonomuraea American type culture collection 39727, an industrial strain producing an antibiotic, which is relatively refractory to UV254 nm radiation-induced mutagenesis.

  8. Favorable response of reticular erythematous mucinosis to ultraviolet B irradiation using a 308-nm excimer lamp.

    PubMed

    Miyoshi, Ken; Miyajima, Osamu; Yokogawa, Maki; Sano, Shigetoshi

    2010-02-01

    Abstract Reticular erythematous mucinosis (REM) is a rare chronic mucinosis. Histologically, the presence of mucin in the upper dermis is the most specific feature. A 73-year-old woman presented to our outpatient clinic with a 4-year history of netlike macular erythema with slight edema on her left arm. She was diagnosed as having REM on the basis of the clinical picture and histological findings. She was treated with ultraviolet B irradiation using the VTRAC Excimer Lamp system with favorable response. This is the first reported case that was treated with a 308-nm excimer lamp. PMID:20175851

  9. Interaction of 308-nm excimer laser light with temporomandibular joint related structures

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim; Funk, Armin

    1994-02-01

    Arthroscopy of TMJ has become a clinically important and more and more accepted method for diagnosis and treatment of TMJ alteration. This minimal invasive method is clearly limited by the anatomical dimensions of the TMJ. A 308 nm excimer laserlight has already found clinical applications in angioplasty, ophthalmology, and dentistry. The aim of the presented study was to find out if it is possible to ablate TMJ related structures under arthroscopic conditions. It also aims to evaluate the energy-threshold for ablation and the maximal possible rate of ablation. Contrary to other laser systems it offers a unique combination of minimal tissue alteration, precise tissue ablation guidability through optical fibers, and a good transmission through water.

  10. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    SciTech Connect

    Gulati, P.; Prakash, R.; Pal, U. N.; Kumar, M.; Vyas, V.

    2014-07-07

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308 nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl{sub 2} deteriorates the performance of the developed source and around 2% Cl{sub 2} in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  11. Effect of 308-nm excimer laser light on peri-implantitis-associated bacteria: an in vitro investigation.

    PubMed

    Deppe, Herbert; Horch, Hans-Henning; Schrödl, Veit; Haczek, Cornelia; Miethke, Thomas

    2007-11-01

    Dental implants are becoming increasingly important in prosthodontic rehabilitation. Bacterial infections, however, can induce bone loss and jeopardize clinical success. Recent literature has demonstrated that infrared CO(2) laser light is suitable for the decontamination of exposed implant surfaces. The aim of the present study was to investigate the influence of 308-nm excimer laser irradiation on peri-implantitis-associated bacteria in vitro. In this study, a XeCl excimer laser (308 nm) was used (Summit Technology, Boston, USA). Both aerobe (Streptococcus mutans, S. sanguis, Actinomyces naeslundii) and anaerobe microorganisms (A. odontolyticus, Prevotella melaninogenica) were tested. According to previous studies, a constant energy of 0.8 J/cm(2) and a constant frequency of 20 Hz were used for all irradiations. Colony-forming units after laser irradiation were counted. Excimer laser irradiation showed significant influence on the growth of all microorganisms. As compared to S. mutans and S. sanguis, A. naeslundii demonstrated higher sensitivity to laser irradiation. Anaerobe microorganisms, in contrast, demonstrated that a total of 200 pulses were sufficient to reduce the replication of these germs for more than 99.9%. Excimer laser irradiation (lambda = 308 nm) can significantly reduce both aerobe and anaerobe microorganisms. Depending on the parameters chosen, 200 pulses are sufficient for sterilization. New studies are necessary to evaluate if this wavelength is more of value in the treatment of peri-implantitis than other wavelengths or conventional therapies.

  12. Mechanism of injurious effect of excimer (308 nm) laser on the cell

    NASA Astrophysics Data System (ADS)

    Nevorotin, Alexey J.; Kallikorm, A. P.; Zeltzer, Gregory L.; Kull, Mart M.; Mihkelsoo, Virgo T.

    1991-06-01

    -operating infrared (Nd:YAG) and a 308 nm ultraviolet (XeCl) laser in rate liver hepatocytes. A conclusion has been made on the predominantly nonthermal injuries produced by the excimer as opposed to clearly thermal damage by the Nd:YAG. Besides, it was suggested that a kind of dynamic effect should prevail in the excimer action. In the present study we continue our line of investigation by extending a spectrum of experiments designed for better understanding the biological action of the excimer laser.

  13. Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm

    NASA Astrophysics Data System (ADS)

    Beke, S.; Anjum, F.; Ceseracciu, L.; Romano, I.; Athanassiou, A.; Diaspro, A.; Brandi, F.

    2013-03-01

    High-resolution photocrosslinking of the biodegradable poly(propylene fumarate) (PPF) and diethyl fumarate (DEF), using pulsed laser light at 248 and 308 nm is presented. The curing depth can be modulated between a few hundreds of nm and a few μm when using 248 nm and ten to a hundred μm when using 308 nm. By adjusting the total fluence (pulse numbers×laser fluence) dose and the weight ratios of PPF, DEF, and the photoinitiator in the photocrosslinkable mixtures, the height of polymerized structures can be precisely tuned. The lateral resolution is evaluated by projecting a pattern of a grid with a specified line width and line spacing. Young’s modulus of the cured parts is measured and found to be several GPa for both wavelengths, high enough to support bone formation. Several 2D and 2.5D microstructures, as well as porous 3D scaffolds fabricated by a layer-by-layer method, are presented. The results demonstrate that excimer laser-based photocuring is suitable for the fabrication of stiff and biocompatible structures with defined patterns of micrometer resolution in all three spatial dimensions.

  14. Gas-phase photodissociation of CH{sub 3}COCN at 308 nm by time-resolved Fourier-transform infrared emission spectroscopy

    SciTech Connect

    Yeh, Yu-Ying; Chao, Meng-Hsuan; Tsai, Po-Yu; Chang, Yuan-Bin; Tsai, Ming-Tsang; Lin, King-Chuen

    2012-01-28

    By using time-resolved Fourier-transform infrared emission spectroscopy, the fragments of HCN(v= 1, 2) and CO(v= 1-3) are detected in one-photon dissociation of acetyl cyanide (CH{sub 3}COCN) at 308 nm. The S{sub 1}(A'), {sup 1}(n{sub O}, {pi}*{sub CO}) state at 308 nm has a radiative lifetime of 0.46 {+-} 0.01 {mu}s, long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of Ar collision-induced internal conversion is estimated to be (1-7) x 10{sup -12} cm{sup 3} molecule{sup -1} s{sup -1}. The measurements of O{sub 2} dependence exclude the production possibility of these fragments via intersystem crossing. The high-resolution spectra of HCN and CO are analyzed to determine the ro-vibrational energy deposition of 81 {+-} 7 and 32 {+-} 3 kJ/mol, respectively. With the aid of ab initio calculations, a two-body dissociation on the energetic ground state is favored leading to HCN + CH{sub 2}CO, in which the CH{sub 2}CO moiety may further undergo secondary dissociation to release CO. The production of CO{sub 2} in the reaction with O{sub 2} confirms existence of CH{sub 2} and a secondary reaction product of CO. The HNC fragment is identified but cannot be assigned, as restricted to a poor signal-to-noise ratio. Because of insufficient excitation energy at 308 nm, the CN and CH{sub 3} fragments that dominate the dissociation products at 193 nm are not detected.

  15. Intraocular microablation of choroidal tissue by a 308 nm AIDA excimer laser for RPE-transplantation in patients with age-related macular degeneration.

    PubMed

    Holz, F G; Bindewald, A; Schutt, F; Specht, H

    2003-04-01

    Age-related macular degeneration (AMD) is the leading cause of legal blindness in the western nations beyond 50 years of age. The most frequent cause for severe visual loss is the growth of neovascular membrances from the choroid into the subretinal space. This usually results in irreversible degeneration of the overlying retina. Surgical removal of the membrane is feasible, however, usually results in functional loss of apposing retinal photoreceptors since retinal pigment epithelial (RPE) cells are removed concurrently due to their tight adherence to the neovascular complex. Therefore, various attempts have been undertaken to fill the resulting RPE cell defect with either heterologous or autologous RPE cell transplants. So far cell survival, function and subsequent visual function has been disappointing. To minimize trauma and resulting dedifferentiation harvesting in the eye and transplantation in whole sheets and without temporary removal from the eyes would be desirable. This may be achieved by isolating grafts consisting of choroid, Bruch's membrance and RPE cells from the peripheral retina and transplantation of this graft under the neurosensory retina after removal of the choroidal neovascularization. However, the choroidal component of such a graft would be expected to interfere with diffusion of metabolites to and from the retina. Therefore, outcome would be expected to be better if the choroidal tissue would be removed before translocation. In preclinical experiments we used a 308 nm UV AIDA excimer laser to microablate choroidal tissue from such a graft in human donor eyes. PMID:12749285

  16. Absorption by XeCl* excimer molecules of their own emission of the B-X transition (λ = 308 nm) in a dense Ar-Xe-CCl4 medium upon pumping by fast electrons and uranium-235 fission fragments

    NASA Astrophysics Data System (ADS)

    Mis'kevich, A. I.; Dyuzhov, Yu. A.; Suvorov, A. A.

    2016-08-01

    Luminescence of dense Ar-Xe-CCl4 gas mixtures with a low CCl4 content upon pumping by fast electrons and uranium-235 fission fragments is studied by spectroscopic methods. It is found that, in a cell with a resonator tuned to the B-X transition of the XeCl* molecule (λ = 308 nm), the D-state population of the XeCl* excimer molecule (the D-X transition, λ = 235 nm) depends on the B-state population and increases by many times with increasing B-state population of the XeCl* molecule. The stimulated absorption coefficient k = 1.2 × 10-16 of B-X transition emission of the XeCl* molecule (λmax = 308 nm), which leads to population of the D-state of this molecule, and the coefficient of amplification μ = 2.5 × 10-4 cm-1 of B-X transition emission of the Xe Cl* molecule (λ = 308 nm) are measured upon pumping by uranium- 235 fission fragments with the specific energy input into the gas medium of ~60 mJ/cm3 and a specific power of energy input of about 240 W/cm3.

  17. The Cosmochemistry of Terrestrial Xenon

    NASA Astrophysics Data System (ADS)

    Gilmour, J. D.; Parai, R.

    2016-08-01

    As an alternative to seeking specific meteoritic xenon signatures in the Earth, we investigate how the processes that relate meteoritic xenon to the solar composition can account for the variation observed among terrestrial xenon signatures.

  18. Is xenon eldest?

    NASA Astrophysics Data System (ADS)

    Zahnle, K.

    It is well known that the solubility of noble gases in magmas decreases with increasing atomic weight. Xenon, the weightiest of the stable noble gases, is the least soluble atmospheric gas in magma. It is not unreasonable to suppose that the noble gases should have degassed from (or equilibrated with) a bubbling mantle in order of increasing solubility, such that xenon was the most rapidly degassed and helium the least. The apparent relative ages of the famous radiogenic noble gas isotopes agrees, at least qualitatively, with this premise. When atmospheric loss processes are assigned their proper place, several long-standing xenonological puzzles become added evidence for xenon's relative antiquity. Xenon being the afore-mentioned sense the oldest atmospheric gas, will have been most greatly subject to escape, be it impact-driven or EUV-driven. Nonradiogenic xenon's pronounced isotopic fractionation has already been attributed to escape; why it should be more fractionated than krypton would be assigned to xenon's greater atmospheric age. The small atmospheric inventory of xenon relative to the other nonradiogenic noblegases, known as the 'missing xenon' problem, could easily be explained by differential escape. The relatively tiny atmospheric inventories of the radiogenic daughter products of 129 Iodine and 244 Plutonium, both much smaller than would be expected from the inferred abundances of the parents in meteorites, offer a third and fourth data to support the hypothesis that Earth has lost most of its xenon.

  19. Is xenon eldest?

    NASA Technical Reports Server (NTRS)

    Zahnle, K.

    1994-01-01

    It is well known that the solubility of noble gases in magmas decreases with increasing atomic weight. Xenon, the weightiest of the stable noble gases, is the least soluble atmospheric gas in magma. It is not unreasonable to suppose that the noble gases should have degassed from (or equilibrated with) a bubbling mantle in order of increasing solubility, such that xenon was the most rapidly degassed and helium the least. The apparent relative ages of the famous radiogenic noble gas isotopes agrees, at least qualitatively, with this premise. When atmospheric loss processes are assigned their proper place, several long-standing xenonological puzzles become added evidence for xenon's relative antiquity. Xenon being the afore-mentioned sense the oldest atmospheric gas, will have been most greatly subject to escape, be it impact-driven or EUV-driven. Nonradiogenic xenon's pronounced isotopic fractionation has already been attributed to escape; why it should be more fractionated than krypton would be assigned to xenon's greater atmospheric age. The small atmospheric inventory of xenon relative to the other nonradiogenic noblegases, known as the 'missing xenon' problem, could easily be explained by differential escape. The relatively tiny atmospheric inventories of the radiogenic daughter products of 129 Iodine and 244 Plutonium, both much smaller than would be expected from the inferred abundances of the parents in meteorites, offer a third and fourth data to support the hypothesis that Earth has lost most of its xenon.

  20. Communication: Photodissociation of CH{sub 3}CHO at 308 nm: Observation of H-roaming, CH{sub 3}-roaming, and transition state pathways together along the ground state surface

    SciTech Connect

    Li, Hou-Kuan; Tsai, Po-Yu; Hung, Kai-Chan; Kasai, Toshio; Lin, King-Chuen

    2015-01-28

    Following photodissociation of acetaldehyde (CH{sub 3}CHO) at 308 nm, the CO(v = 1–4) fragment is acquired using time-resolved Fourier-transform infrared emission spectroscopy. The CO(v = 1) rotational distribution shows a bimodal feature; the low- and high-J components result from H-roaming around CH{sub 3}CO core and CH{sub 3}-roaming around CHO radical, respectively, in consistency with a recent assignment by Kable and co-workers (Lee et al., Chem. Sci. 5, 4633 (2014)). The H-roaming pathway disappears at the CO(v ≥ 2) states, because of insufficient available energy following bond-breaking of H + CH{sub 3}CO. By analyzing the CH{sub 4} emission spectrum, we obtained a bimodal vibrational distribution; the low-energy component is ascribed to the transition state (TS) pathway, consistent with prediction by quasiclassical trajectory calculations, while the high-energy component results from H- and CH{sub 3}-roamings. A branching fraction of H-roaming/CH{sub 3}-roaming/TS contribution is evaluated to be (8% ± 3%)/(68% ± 10%)/(25% ± 5%), in which the TS pathway was observed for the first time. The three pathways proceed concomitantly along the electronic ground state surface.

  1. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The sample cell at the heart of CVX-2 will sit inside a thermostat providing three layers of insulation. The cell itself comprises a copper body that conducts heat efficiently and smoothes out thermal variations that that would destroy the xenon's uniformity. Inside the cell, the oscillating screen viscometer element is supported between two pairs of electrodes that deflect the screen and then measure screen motion.

  2. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Because xenon near the critical point will collapse under its own weight, experiments on Earth (green line) are limited as they get closer (toward the left) to the critical point. CVX in the microgravity of space (red line) moved into unmeasured territory that scientists had not been able to reach.

  3. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of liquid xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Resembling a tiny bit of window screen, the oscillator at the heart of CVX-2 will vibrate between two pairs of paddle-like electrodes. The slight bend in the shape of the mesh has no effect on the data. What counts are the mesh's displacement in the xenon fluid and the rate at which the displacement dampens. The unit shown here is encased in a small test cell and capped with a sapphire windown to contain the xenon at high pressure.

  4. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Shear thirning will cause a normally viscous fluid -- such as pie filling or whipped cream -- to deform and flow more readily under high shear conditions. In shear thinning, a pocket of fluid will deform and move one edge forward, as depicted here.

  5. Scalability study of solid xenon

    SciTech Connect

    Yoo, J.; Cease, H.; Jaskierny, W. F.; Markley, D.; Pahlka, R. B.; Balakishiyeva, D.; Saab, T.; Filipenko, M.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  6. Separation and purification of xenon

    DOEpatents

    Schlea, deceased, Carl Solomon

    1978-03-14

    Xenon is separated from a mixture of xenon and krypton by extractive distillation using carbon tetrafluoride as the partitioning agent. Krypton is flushed out of the distillation column with CF.sub.4 in the gaseous overhead stream while purified xenon is recovered from the liquid bottoms. The distillation is conducted at about atmospheric pressure or at subatmospheric pressure.

  7. Scalability study of solid xenon

    NASA Astrophysics Data System (ADS)

    Yoo, J.; Cease, H.; Jaskierny, W. F.; Markley, D.; Pahlka, R. B.; Balakishiyeva, D.; Saab, T.; Filipenko, M.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified Bridgeman's technique reproduces a large scale optically transparent solid xenon.

  8. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2001 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure that is placed inside a pressure canister. A similar canister holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (not shown) of the National Institutes of Standards and Technology, Gaithersburg, MD. This is a detail view of MSFC 0100143.

  9. Requirements for Xenon International

    SciTech Connect

    Hayes, James C.; Ely, James H.; Haas, Derek A.; Harper, Warren W.; Heimbigner, Tom R.; Hubbard, Charles W.; Humble, Paul H.; Madison, Jill C.; Morris, Scott J.; Panisko, Mark E.; Ripplinger, Mike D.; Stewart, Timothy L.

    2015-12-30

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  10. Requirements for Xenon International

    SciTech Connect

    Hayes, James C.; Ely, James H.

    2013-09-26

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  11. Solid Xenon Project

    NASA Astrophysics Data System (ADS)

    Balakishiyeva, Durdana N.; Mahapatra, Rupak; Saab, Tarek; Yoo, Jonghee

    2010-08-01

    Crystals like Germanium and Silicon need to be grown in specialized facilities which is time and money costly. It takes many runs to test the detector once it's manufactured and mishaps are very probable. It is of a great challenge to grow big germanium crystals and that's why stacking them up in a tower is the only way at the moment to increase testing mass. Liquid Noble gas experiments experiencing contamination problems, their predicted energy resolution at 10 keV and lower energy range is not as good as predicted. Every experiment is targeting one specific purpose, looking for one thing. Why not to design an experiment that is diverse and build a detector that can search for Dark Matter, Solar Axions, Neutrinoless Double Beta decay, etc. Solid Xenon detector is such detector. We designed a simple Xenon crystal growing chamber that was put together at Fermi National Accelerator Laboratory. The first phase of this experiment was to demonstrate that a good, crack free Xenon crystal can be grown (regardless of many failed attempts by various groups) and our first goal, 1 kg crystal, was successful.

  12. Shear Thinning in Xenon

    NASA Technical Reports Server (NTRS)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.

    2009-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  13. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  14. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  15. Status of the XENON Project

    NASA Astrophysics Data System (ADS)

    Garbini, Marco; XENON Collaboration

    2016-05-01

    Astronomical and cosmological observations indicate that a large amount of the energy content of the Universe is made of dark matter. The most promising dark matter candidates are the so-called Weakly Interacting Massive Particles. The search for these particles is performed with various experimental approaches. The XENON Project, at the Gran Sasso National Laboratory, is devoted to the direct search of dark matter particles. It consists in operating a double-phase time projection chamber using ultra-pure liquid Xenon as both target and detection medium for dark matter particle interactions. The WIMPs can be indeed detected via their elastic scattering off Xenon nuclei. The XENON100 detector with 160 kg of liquid Xenon has reached in 2012 the sensitivity of 2×10-45 cm2 at 55 GeV/c 2 and 90% confidence level on spin-independent elastic WIMP-nucleon scattering cross section. The next generation XENON1T detector, that will host 3.3 tonnes of ultra-pure liquid Xenon, is in its final stage of construction and will likely start taking data by the end of 2015. The detector is designed to increase the sensitivity by two orders of magnitude.

  16. Venus, Earth, Xenon

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2013-12-01

    Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with

  17. Critical Viscosity of Xenon investigators

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Dr. Robert F. Berg (right), principal investigator and Dr. Micheal R. Moldover (left), co-investigator, for the Critical Viscosity of Xenon (CVX/CVX-2) experiment. They are with the National Institutes of Standards and Technology, Gaithersburg, MD. The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of chemicals.

  18. Solubilized xenon 133 lung scintigraphy

    SciTech Connect

    Oates, E.; Sarno, R.C.

    1988-11-01

    Lung scanning using solubilized xenon 133 can provide important information concerning both pulmonary perfusion and ventilation. This technique proved valuable in establishing the diagnosis of congenital lobar emphysema in a 7-month-old baby.

  19. A Decade of Xenon Chemistry

    ERIC Educational Resources Information Center

    Moody, G. J.

    1974-01-01

    Presents reactions for the formation of xenon compounds and compounds of the other inert gases. Provides bonding and structure theories for noble gas compounds and speculates on possible applications. (GS)

  20. Development of a functionalized Xenon biosensor

    SciTech Connect

    Spence, Megan M.; Ruiz, E. Janette; Rubin, Seth M.; Lowery, Thomas J.; Winssinger, Nicolas; Schultz, Peter G.; Wemmer, David E.; Pines, Alexander

    2004-03-25

    NMR-based biosensors that utilize laser-polarized xenon offer potential advantages beyond current sensing technologies. These advantages include the capacity to simultaneously detect multiple analytes, the applicability to in vivo spectroscopy and imaging, and the possibility of remote amplified detection. Here we present a detailed NMR characterization of the binding of a biotin-derivatized caged-xenon sensor to avidin. Binding of functionalized xenon to avidin leads to a change in the chemical shift of the encapsulated xenon in addition to a broadening of the resonance, both of which serve as NMR markers of ligand-target interaction. A control experiment in which the biotin-binding site of avidin was blocked with native biotin showed no such spectral changes, confirming that only specific binding, rather than nonspecific contact, between avidin and functionalized xenon leads to the effects on the xenon NMR spectrum. The exchange rate of xenon (between solution and cage) and the xenon spin-lattice relaxation rate were not changed significantly upon binding. We describe two methods for enhancing the signal from functionalized xenon by exploiting the laser-polarized xenon magnetization reservoir. We also show that the xenon chemical shifts are distinct for xenon encapsulated in different diastereomeric cage molecules. This demonstrates the potential for tuning the encapsulated xenon chemical shift, which is a key requirement for being able to multiplex the biosensor.

  1. Xenon Filled Silicon Germanium Thermoelectric Generators

    NASA Technical Reports Server (NTRS)

    Dewinter, F.

    1972-01-01

    An analysis is presented that shows the desirability and feasibility of using a xenon fill in the initial stages of operation of a silicon-germanium radioisotope thermoelectric generator to be used in outer-planetary exploration. The xenon cover gas offers protection against oxidation and against material sublimation, and allows the generator to deliver required power throughout the prelaunch and launch phases. The protective mechanisms afforded by the xenon cover gas and the mechanization of a xenon supply system are also discussed.

  2. Critical Viscosity of Xenon team

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure (at left) that is placed inside a pressure canister. A similar canister (right) holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (not shown) of the National Institutes of Standards and Technology, Gaithersburg, MD.

  3. Critical Viscosity of Xenon team

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure (at left) that is placed inside a pressure canister. A similar canister (right) holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (left) of the National Institutes of Standards and Technology, Gaithersburg, MD.

  4. Atmospheric xenon radioactive isotope monitoring.

    PubMed

    Fontaine, J P; Pointurier, F; Blanchard, X; Taffary, T

    2004-01-01

    The Comprehensive Nuclear Test Ban Treaty (CTBT) organisation is implementing a world-wide monitoring network in order to check that the State Signatories comply with the treaty. One of the monitoring facilities consists of an atmospheric noble gas monitoring equipment. According to the requirements annexed in the treaty, the French Atomic Energy Commission (CEA) developed a device, called SPALAX, which automatically extracts xenon from ambient air and makes in situ measurements of the activities of four xenon radioisotopes (131mXe, 133mXe, 133Xe, 135Xe). The originality of this device is noticeable essentially in the gas sample processing method: thanks to the coupling of a gas permeator and of a noble gas specific adsorbent, it can selectively extract and concentrate xenon to more than 3 x 10 E6. This process is carried out continuously without cryogenic cooling, without any regeneration time. The detection of the xenon radioactive isotopes is done automatically by high spectral resolution gamma spectrometry, a robust technology well-suited for on-field instrumentation. In the year 2000, a prototype was involved in an international evaluation exercise directed by the CTBT organisation (CTBTO). This exercise demonstrated that the SPALAX equipment perfectly met the requirements of the CTBTO for such systems. On the basis of the continuous 24-h resolution record of the atmospheric xenon radioactive isotopes concentrations, the SPALAX system also demonstrated that ambient levels of 133Xe can fluctuate quickly from less than the detection limit to over 40 x 10(-3) Bq m(-3). In order to build an industrial version of this equipment, the CEA entered into a partnership with a French engineering company (S.F.I., Marseille, France), which is now able to produce an industrial version of SPALAX, i.e. more compact and more efficient than the prototypes. The 133Xe minimum detectable concentration is 0.15 x 10(-3) Bq m(-3) air per 24 h sampling cycle.

  5. Xenon Fractionation and Archean Hydrogen Escape

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  6. Spectrum of carbonaceous-chondrite fission xenon

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1976-01-01

    Estimations of the fission spectrum in xenon isotopes from the progenitor of the strange carbonaceous-chondrite xenon must take account of p-process nucleosynthesis if the latter is the source of anomalous Xe-124, 126. Sample calculations of the p-process yields illustrate the magnitude of the effect, which can greatly increase the estimated Xe-132 fission yield.

  7. Xenon fluoride solutions effective as fluorinating agents

    NASA Technical Reports Server (NTRS)

    Hyman, H. H.; Quarterman, L. A.; Sheft, I.

    1967-01-01

    Solutions of xenon fluorides in anhydrous hydrogen fluoride have few disruptive effects and leave a residue consisting of gaseous xenon, which can be recovered and refluorinated. This mild agent can be used with materials which normally must be fluorinated with fluorine alone at high temperatures.

  8. Xenon: anesthesia for the 21st century.

    PubMed

    Joyce, J A

    2000-06-01

    Xenon is a naturally occurring, gaseous element that comprises 0.000008% of air, or 0.05 parts per million. It was discovered by Ramsey and Travers in 1898. Xenon is found on the Periodic Table in group 0, which is the group commonly referred to as the noble or inert gases. It is obtained by fractionally distilling liquefied air. Xenon has been studied sporadically within the discipline of anesthesia as a replacement for nitrous oxide. Because it is a naturally occurring element, xenon is not a pollutant. It is not an occupationally hazardous gas. It is neither teratogenic nor fetotoxic, as is nitrous oxide; it does not contribute to the depletion of stratospheric ozone, as do chlorofluorocarbons and nitrous oxide. Xenon does not contribute to global warming and the greenhouse effect, as does nitrous oxide. Xenon provides excellent anesthesia and analgesia at its minimum alveolar concentration, 71%, as well as excellent analgesia at "subanesthetic" concentrations. Xenon also provides excellent cardiovascular and hemodynamic stability and offers both rapid induction and emergence. Because of the relatively high cost of xenon, a low-flow, closed-system technique is needed to be most cost effective.

  9. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  10. Xenon Gamma Detector Project Support

    SciTech Connect

    Vanier,P.E.; Forman, L.

    2008-04-01

    This project provided funding of $48,500 for part of one year to support the development of compressed xenon spectrometers at BNL. This report describes upgrades that were made to the existing detector system electronics during that period, as well as subsequent testing with check sources and Special Nuclear Materials. Previous testing of the equipment extended only up to the energy of 1.3 MeV, and did not include a spectrum of Pu-239. The new electronics allowed one-button activation of the high voltage ramp that was previously controlled by manual adjustments. Mechanical relays of the charging circuit were replaced by a tera-ohm resistor chain and an optical switch. The preamplifier and shaping amplifier were replaced by more modern custom designs. We found that the xenon purity had not been degraded since the chamber was filled 10 years earlier. The resulting spectra showed significantly better resolution than sodium iodide spectra, and could be analyzed quite effectively by methods using peak area templates.

  11. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  12. The atmosphere of Mars - Detection of krypton and xenon

    NASA Technical Reports Server (NTRS)

    Owen, T.; Biemann, K.; Biller, J. E.; Lafleur, A. L.; Rushneck, D. R.; Howarth, D. W.

    1976-01-01

    Krypton and xenon have been discovered in the Martian atmosphere with the mass spectrometer on the second Viking lander. Krypton is more abundant than xenon. The relative abundances of the krypton isotopes appear normal, but the ratio of xenon-129 to xenon-132 is enhanced on Mars relative to the terrestrial value for this ratio. Some possible implications of these findings are discussed.

  13. Alternative hypothesis for the origin of CCF xenon. [Carbonaceous-Chondrite-Fission xenon

    NASA Technical Reports Server (NTRS)

    Black, D. C.

    1975-01-01

    The relative abundances and origins of the xenon isotopes found in carbonaceous meteorites are discussed. It is proposed that carbonaceous-chondrite-fission (CCF) xenon is not caused by fission, but is the direct result of a modified r-process nucleosynthesis which produces a peak at Z = 54 and N = 82. The xenon produced in this way would have been trapped in dust grains which were subsequently incorporated in the solar system with minimal degassing.

  14. Chloride Test

    MedlinePlus

    ... Addison disease, or increased salt intake. If both chloride and sodium levels are high in a person on a ... anything else I should know? Drugs that affect sodium blood levels will also cause changes in chloride. In addition, swallowing large amounts of baking soda ...

  15. Xenon Blocks Neuronal Injury Associated with Decompression

    PubMed Central

    Blatteau, Jean-Eric; David, Hélène N.; Vallée, Nicolas; Meckler, Cedric; Demaistre, Sebastien; Lambrechts, Kate; Risso, Jean-Jacques; Abraini, Jacques H.

    2015-01-01

    Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS. Xenon has been shown to provide neuroprotection in multiple models of acute ischemic insults. Fast decompression compared to slow decompression induced an increase in lactate dehydrogenase (LDH), a well-known marker of sub-lethal cell injury. Post-decompression administration of xenon blocked the increase in LDH release induced by fast decompression. These data suggest that xenon could be an efficient additional treatment to HBO for the treatment of neurologic DCS. PMID:26469983

  16. Xenon Blocks Neuronal Injury Associated with Decompression.

    PubMed

    Blatteau, Jean-Eric; David, Hélène N; Vallée, Nicolas; Meckler, Cedric; Demaistre, Sebastien; Lambrechts, Kate; Risso, Jean-Jacques; Abraini, Jacques H

    2015-01-01

    Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS. Xenon has been shown to provide neuroprotection in multiple models of acute ischemic insults. Fast decompression compared to slow decompression induced an increase in lactate dehydrogenase (LDH), a well-known marker of sub-lethal cell injury. Post-decompression administration of xenon blocked the increase in LDH release induced by fast decompression. These data suggest that xenon could be an efficient additional treatment to HBO for the treatment of neurologic DCS. PMID:26469983

  17. Transportable Xenon Laboratory (TXL-1) Operations Manual

    SciTech Connect

    Thompson, Robert C.; Stewart, Timothy L.; Willett, Jesse A.; Woods, Vincent T.

    2011-03-07

    The Transportable Xenon Laboratory Operations Manual is a guide to set up and shut down TXL, a fully contained laboratory made up of instruments to identify and measure concentrations of the radioactive isotopes of xenon by taking air samples and analyzing them. The TXL is housed in a standard-sized shipping container. TXL can be shipped to and function in any country in the world.

  18. The XENON100 Dark Matter Experiment

    SciTech Connect

    Tziaferi, E.

    2010-06-23

    The XENON100 experiment is searching for WIMPs, which are particles that may consist dark matter. It is located in the underground laboratory of Gran Sasso (LNGS) in Italy at a depth of {approx}3600 m.w.e.. The experiment description, its performance and the expected background based on Monte Carlo simulations and material screening along with the projected sensitivities of the experiment are presented. In addition, a brief description of the upgrade XENON100 detector is given.

  19. Vinyl chloride and polyvinyl chloride.

    PubMed

    Lewis, R

    1999-01-01

    Polyvinyl chloride (PVC) is an important plastic resin for construction, pipe and tubing, siding, and other uses. Exposures to vinyl chloride monomer during the early years of production resulted in an important sentinel health event: the recognition of an excess of a rare liver cancer, hepatic angiosarcoma, at facilities throughout the world. Several other syndromes, including acro-osteolysis, also have been associated with PVC, but less clearly with vinyl chloride. Extensive research ranging from large-scale epidemiologic studies to biomarker research into molecular mechanisms continues to provide valuable insight into the pathogenesis of occupational cancer.

  20. The Search for Dark Matter with the XENON100 Experiment

    SciTech Connect

    Aprile, Elena

    2008-11-23

    The XENON Dark Matter Experiment aims at the direct detection of dark matter Weakly Interacting Massive Particles (WIMPs) with dual phase (liquid/gas) xenon time projection chambers (XeTPCs). Following the successful performance of the XENON10 detector, which has shown in 2007 the best sensitivity to spin-independent coupling of WIMPs to matter, we have designed and completed the construction of a new TPC with an active LXe shield, containing a total of 170 kg of xenon. The detector is currently undergoing final commissioning at the Gran Sasso Underground Laboratory. I will review the XENON10 results and present the status of the XENON100 experiment.

  1. XENON dark matter searches: Results and the future

    SciTech Connect

    Brown, Andrew; Collaboration: XENON Collaboration

    2014-06-24

    XENON100 is a dark matter search experiment looking for elastic WIMP scattering using a 62 kg liquid target. WIMP search data from XENON100 published in 2012 has set the world's strongest limits on WIMP-nucleus spinindependent, elastic scattering. It has also set the strongest limits on WIMP-nucleus spin-dependent scattering considering neutron scattering only, and competitive limits considering proton scattering only. The successor experiment to XENON100, XENON1T, is currently under construction, with commissioning scheduled to begin in 2014. XENON1T's design goal is a 100 fold increase in sensitivity for elastic WIMP searches over XENON100.

  2. Xenon lighting adjusted to plant requirements

    NASA Technical Reports Server (NTRS)

    Koefferlein, M.; Doehring, T.; Payer, Hans D.; Seidlitz, H. K.

    1994-01-01

    Xenon lamps are available as low and high power lamps with relatively high efficiency and a relatively long lifetime up to several thousand hours. Different construction types of short-arc and long-arc lamps permit a good adaptation to various applications in projection and illumination techniques without substantial changes of the spectral quality. Hence, the xenon lamp was the best choice for professional technical purposes where high power at simultaneously good spectral quality of the light was required. However, technical development does not stand still. Between the luminous efficacy of xenon lamps of 25-50 lm/W and the theoretical limit for 'white light' of 250 lm/W is still much room for improvement. The present development mainly favors other lamp types, like metal halide lamps and fluorescent lamps for commercial lighting purposes. The enclosed sections deal with some of the properties of xenon lamps relevant to plant illumination; particularly the spectral aspects, the temporal characteristics of the emission, and finally the economy of xenon lamps will be addressed. Due to radiation exceeding the natural global radiation in both the ultraviolet (UV) and the infrared (IR) regions, filter techniques have to be included into the discussion referring to the requirements of plant illumination. Most of the presented results were obtained by investigations in the GSF phytotron or in the closed Phytocell chambers of the University of Erlangen. As our experiences are restricted to area plant illumination rather than spot lights our discussion will concentrate on low pressure long-arc xenon lamps which are commonly used for such plant illuminations. As the spectral properties of short-arc lamps do not differ much from those of long-arc lamps most of our conclusions will be valid for high pressure xenon lamps too. These lamps often serve as light sources for small sun simulators and for monochromators which are used for action spectroscopy of plant responses.

  3. Direct Dark Matter search with XENON100

    NASA Astrophysics Data System (ADS)

    Orrigo, S. E. A.

    2016-07-01

    The XENON100 experiment is the second phase of the XENON program for the direct detection of the dark matter in the universe. The XENON100 detector is a two-phase Time Projection Chamber filled with 161 kg of ultra pure liquid xenon. The results from 224.6 live days of dark matter search with XENON100 are presented. No evidence for dark matter in the form of WIMPs is found, excluding spin-independent WIMP-nucleon scattering cross sections above 2 × 10-45 cm2 for a 55 GeV/c2 WIMP at 90% confidence level (C.L.). The most stringent limit is established on the spin-dependent WIMP-neutron interaction for WIMP masses above 6 GeV/c2, with a minimum cross section of 3.5 × 10-40 cm2 (90% C.L.) for a 45 GeV/c2 WIMP. The same dataset is used to search for axions and axion-like-particles. The best limits to date are set on the axion-electron coupling constant for solar axions, gAe < 7.7 × 10-12 (90% C.L.), and for axion-like-particles, gAe < 1 × 10-12 (90% C.L.) for masses between 5 and 10 keV/c2.

  4. HXeOBr in a xenon matrix

    SciTech Connect

    Khriachtchev, Leonid; Tapio, Salla; Domanskaya, Alexandra V.; Raesaenen, Markku; Isokoski, Karoliina; Lundell, Jan

    2011-03-28

    We report on a new noble-gas molecule HXeOBr prepared in a low-temperature xenon matrix from the HBr and N{sub 2}O precursors by UV photolysis and thermal annealing. This molecule is assigned with the help of deuteration experiments and ab initio calculations including anharmonic methods. The H-Xe stretching frequency of HXeOBr is observed at 1634 cm{sup -1}, which is larger by 56 cm{sup -1} than the frequency of HXeOH identified previously. The experiments show a higher thermal stability of HXeOBr molecules in a xenon matrix compared to HXeOH.

  5. Mepiquat chloride

    Integrated Risk Information System (IRIS)

    Mepiquat chloride ; CASRN 24307 - 26 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  6. Methyl chloride

    Integrated Risk Information System (IRIS)

    Methyl chloride ; CASRN 74 - 87 - 3 ( 07 / 17 / 2001 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  7. Ethyl chloride

    Integrated Risk Information System (IRIS)

    Ethyl chloride ; CASRN 75 - 00 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  8. Benzyl chloride

    Integrated Risk Information System (IRIS)

    Benzyl chloride ; CASRN 100 - 44 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  9. Vinyl chloride

    Integrated Risk Information System (IRIS)

    Vinyl chloride ; CASRN 75 - 01 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  10. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  11. Hydrogen chloride

    Integrated Risk Information System (IRIS)

    Hydrogen chloride ; CASRN 7647 - 01 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  12. Allyl chloride

    Integrated Risk Information System (IRIS)

    Allyl chloride ; CASRN 107 - 05 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  13. Transdermal diffusion of xenon in vitro using diffusion cells

    NASA Astrophysics Data System (ADS)

    Verkhovsky, A.; Petrov, E.

    2015-11-01

    The aim of this research was to study the diffusion rate of xenon through guinea pig skin and how viscosity of cosmetic component capryl/capric triglyceride (CCT) facilitates to deliver xenon to surface of skin patches. They were placed in Franz cell for 24 hours and diffusion rate and permeability of xenon were calculated. Thus diffusion rate was 0.031 mg/hour*cm2 and permeability was 0.003 cm/hour. Using Brookfield viscometer it was shown that viscosity of CCT decreased upon increasing xenon concentration. Obtained results can be utilized in developing of new xenon containing drugs for topical administration.

  14. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  15. DFT-MD simulations of shocked Xenon

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph J.; Mattsson, Thomas R.

    2009-03-01

    Xenon is not only a technologically important element used in laser technologies, jet propulsion and dental anesthesia, but it is also arguably the simplest material in which to study the metal-insulator transition at high pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. The relative importance of the van der Waals interaction compared to other Coulomb interactions is considered, and estimates of the relative accuracy of various density functionals are quantified. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Antiapoptotic activity of argon and xenon.

    PubMed

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-08-15

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects. PMID:23907115

  17. Antiapoptotic activity of argon and xenon.

    PubMed

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-08-15

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects.

  18. Anticipatory control of xenon in a pressurized water reactor

    SciTech Connect

    Impink, A.J. Jr.

    1987-02-10

    A method is described for automatically dampening xenon-135 spatial transients in the core of a pressurized water reactor having control rods which regulate reactor power level, comprising the steps of: measuring the neutron flu in the reactor core at a plurality of axially spaced locations on a real-time, on-line basis; repetitively generating from the neutron flux measurements, on a point-by-point basis, signals representative of the current axial distribution of xenon-135, and signals representative of the current rate of change of the axial distribution of xenon-135; generating from the xenon-135 distribution signals and the rate of change of xenon distribution signals, control signals for reducing the xenon transients; and positioning the control rods as a function of the control signals to dampen the xenon-135 spatial transients.

  19. Atomistic study of stability of xenon nanoclusters in uranium oxide

    SciTech Connect

    Chartier, A.; Van Brutzel, L.; Freyss, M.

    2010-05-01

    Density-functional theory calculations of the xenon incorporation energies in point defects in urania have been done in order to fit empirical potentials. With this set of parameters, we have considered the incorporation of xenon in small and extended defects such as planar interstitials, grain boundaries, faceted, and spherical voids. The results show that xenon atoms are more likely to aggregate than to be homogeneously distributed in the urania grains. SIGMA5 grain boundary and spherical shape voids are the most favorable defects of xenon atom incorporation. The presence of xenon atoms in nanovoids affects their shape. The energy gain to aggregate xenon atoms into clusters saturates for cluster sizes of about 15-20 Schottky defects. This demonstrates that medium size defects are just as favorable as big size defects for xenon incorporation.

  20. Structural Plasticity of the Phage P22 Tail Needle gp26 Probed with Xenon Gas

    SciTech Connect

    Olia, A.; Casjens, S; Cingolani, G

    2009-01-01

    The tail needle, gp26, is a highly stable homo-trimeric fiber found in the tail apparatus of bacteriophage P22. In the mature virion, gp26 is responsible for plugging the DNA exit channel, and likely plays an important role in penetrating the host cell envelope. In this article, we have determined the 1.98 A resolution crystal structure of gp26 bound to xenon gas. The structure led us to identify a calcium and a chloride ion intimately bound at the interior of alpha-helical core, as well as seven small cavities occupied by xenon atoms. The two ions engage in buried polar interactions with gp26 side chains that provide specificity and register to gp26 helical core, thus enhancing its stability. Conversely, the distribution of xenon accessible cavities correlates well with the flexibility of the fiber observed in solution and in the crystal structure. We suggest that small internal cavities in gp26 between the helical core and the C-terminal tip allow for flexible swinging of the latter, without affecting the overall stability of the protein. The C-terminal tip may be important in scanning the bacterial surface in search of a cell-envelope penetration site, or for recognition of a yet unidentified receptor on the surface of the host.

  1. Xenon and iodine reveal multiple distinct exotic xenon components in Efremovka "nanodiamonds"

    NASA Astrophysics Data System (ADS)

    Gilmour, J. D.; Holland, G.; Verchovsky, A. B.; Fisenko, A. V.; Crowther, S. A.; Turner, G.

    2016-03-01

    We identify new xenon components in a nanodiamond-rich residue from the reduced CV3 chondrite Efremovka. We demonstrate for the first time that these, and the previously identified xenon components Xe-P3 and Xe-P6, are associated with elevated I/Xe ratios. The 129I/127I ratio associated with xenon loss from these presolar compositions during processing on planetesimals in the early solar system was (0.369 ± 0.019) × 10-4, a factor of 3-4 lower than the canonical value. This suggests either incorporation of iodine into carbonaceous grains before the last input of freshly synthesized 129I to the solar system's precursor material, or loss of noble gases during processing of planetesimals around 30 Myr after solar system formation. The xenon/iodine ratios and model closure ages were revealed by laser step pyrolysis analysis of a neutron-irradiated, coarse-grained nanodiamond separate. Three distinct low temperature compositions are identified by characteristic I/Xe ratios and 136Xe/132Xe ratios. There is some evidence of multiple compositions with distinct I/Xe ratios in the higher temperature releases associated with Xe-P6. The presence of iodine alongside Q-Xe and these components in nanodiamonds constrains the pathway by which extreme volatiles entered the solid phase and may facilitate the identification of their carriers. There is no detectable iodine contribution to the presolar Xe-HL component, which is released at intermediate temperatures; this suggests a distinct trapping process. Releases associated with the other components all include significant contributions of 128Xe produced from iodine by neutron capture during reactor irradiation. We propose a revised model relating the origin of Xe-P3 (which exhibits an s-process deficit) through a "Q-process" to the Q component (which makes the dominant contribution to the heavy noble gas budget of primitive material). The Q-process incorporates noble gases and iodine into specific carbonaceous phases with mass

  2. Hyperpolarized xenon magnetic resonance of the lung and the brain

    NASA Astrophysics Data System (ADS)

    Venkatesh, Arvind Krishnamachari

    2001-04-01

    Hyperpolarized noble gas Magnetic Resonance Imaging (MRI) is a new diagnostic modality that has been used successfully for lung imaging. Xenon is soluble in blood and inhaled xenon is transported to the brain via circulating blood. Xenon also accumulates in the lipid rich white matter of the brain. Hyperpolarized xenon can hence be used as a tissue- sensitive probe of brain function. The goals of this study were to identify the NMR resonances of xenon in the rat brain and evaluate the role of hyperpolarized xenon for brain MRI. We have developed systems to produce sufficient volumes of hyperpolarized xenon for in vivo brain experiments. The specialized instrumentation developed include an apparatus for optical pump-cell manufacture and high purity gas manifolds for filling cells. A hyperpolarized gas delivery system was designed to ventilate small animals with hyperpolarized xenon for transport to the brain. The T1 of xenon dissolved in blood indicates that the lifetime of xenon in the blood is sufficient for significant magnetization to be transferred to distal tissues. A variety of carrier agents for intravenous delivery of hyperpolarized xenon were tested for transport to distal tissues. Using our new gas delivery system, high SNR 129Xe images of rat lungs were obtained. Spectroscopy with hyperpolarized xenon indicated that xenon was transported from the lungs to the blood and tissues with intact magnetization. After preliminary studies that indicated the feasibility for in vivo rat brain studies, experiments were performed with adult rats and young rats with different stages of white matter development. Both in vivo and in vitro experiments showed the prominence of one peak from xenon in the rat brain, which was assigned to brain lipids. Cerebral brain perfusion was calculated from the wash-out of the hyperpolarized xenon signal in the brain. An increase in brain perfusion during maturation was observed. These experiments showed that hyperpolarized xenon MRI

  3. Optically enhanced production of metastable xenon.

    PubMed

    Hickman, G T; Franson, J D; Pittman, T B

    2016-09-15

    Metastable states of noble gas atoms are typically produced by electrical discharge techniques or "all-optical" excitation methods. Here we combine electrical discharges with optical pumping to demonstrate "optically enhanced" production of metastable xenon (Xe*). We experimentally measure large increases in Xe* density with relatively small optical control field powers. This technique may have applications in systems where large metastable state densities are desirable. PMID:27628400

  4. Optimization of Xenon Biosensors for Detection of ProteinInteractions

    SciTech Connect

    Lowery, Thomas J.; Garcia, Sandra; Chavez, Lana; Ruiz, E.Janette; Wu, Tom; Brotin, Thierry; Dutasta, Jean-Pierre; King, David S.; Schultz, Peter G.; Pines, Alex; Wemmer, David E..

    2005-08-03

    Hyperpolarized 129Xe NMR can detect the presence of specific low-concentration biomolecular analytes by means of the xenon biosensor, which consists of a water-soluble, targeted cryptophane-A cage that encapsulates xenon. In this work we use the prototypical biotinylated xenon biosensor to determine the relationship between the molecular composition of the xenon biosensor and the characteristics of protein-bound resonances. The effects of diastereomer overlap, dipole-dipole coupling, chemical shift anisotropy, xenon exchange, and biosensor conformational exchange on protein-bound biosensor signal were assessed. It was found that optimal protein-bound biosensor signal can be obtained by minimizing the number of biosensor diastereomers and using a flexible linker of appropriate length. Both the linewidth and sensitivity of chemical shift to protein binding of the xenon biosensor were found to be inversely proportional to linker length.

  5. A cryogenic distillation column for the XENON1T experiment

    NASA Astrophysics Data System (ADS)

    Rosendahl, S.; Brown, E.; Cristescu, I.; Fieguth, A.; Huhmann, C.; Murra, M.; Weinheimer, C.

    2014-11-01

    The XENON collaboration aims for the direct detection of cold dark matter in form of weakly interacting massive particles (WIMPs). A dual phase time projection chamber filled with liquid xenon is used to detect the WIMP-nucleon interaction. For the next generation experiment XENON1T with an active target mass of 1 ton of xenon, a new distillation column to remove krypton out of xenon to a concentration of < 5 × 10-13 (0.5 ppt) natural krypton in xenon is designed and tested at the Institut für Kernphysik, Universitat Munster. The experimental setup together with two diagnostic tools is presented, as well as one stability test of a 11 hour distillation run at the designed flowrate of 3 kg per hour.

  6. Liquid-xenon detector under the intensive pulse irradiation conditions

    NASA Astrophysics Data System (ADS)

    Kirsanov, M. A.

    2016-02-01

    The effect of intense pulsed irradiation on the operation of the liquid xenon spectrometer was studied. The ionization chamber filled with liquid xenon was irradiated by bremsstrahlung pulses of the microtron. The pulse repetition rate was 400 Hz. The absorbed dose ranged from 10-7 to 0.1 Gy per pulse. Stable operation of the liquid xenon spectrometer in the intervals between the pulses of the accelerator was shown for a long time.

  7. Relaxation channels of multi-photon excited xenon clusters

    SciTech Connect

    Serdobintsev, P. Yu.; Melnikov, A. S.; Rakcheeva, L. P. Murashov, S. V.; Khodorkovskii, M. A.; Lyubchik, S.; Timofeev, N. A.; Pastor, A. A.

    2015-09-21

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  8. Recovering Residual Xenon Propellant for an Ion Propulsion System

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani; Skakkottai, P.; wu, Jiunn Jeng

    2006-01-01

    Future nuclear-powered Ion-Propulsion- System-propelled spacecraft such as Jupiter Icy Moon Orbiter (JIMO) will carry more than 10,000 kg of xenon propellant. Typically, a small percentage of this propellant cannot be used towards the end of the mission because of the pressure drop requirements for maintaining flow. For large missions such as JIMO, this could easily translate to over 250 kg of unusable xenon. A proposed system, the Xenon Recovery System (XRS), for recovering almost all of the xenon remaining in the tank, would include a cryopump in the form of a condenser/evaporator that would be alternatively cooled by a radiator, then heated electrically. When the pressure of the xenon in the tank falls below 0.7 MPa (100 psia), the previously isolated XRS will be brought online and the gas from the tank would enter the cryopump that is initially cooled to a temperature below saturation temperature of xenon. This causes xenon liquefaction and further cryopumping from the tank till the cryopump is full of liquid xenon. At this point, the cryopump is heated electrically by small heaters (70 to 80 W) to evaporate the liquid that is collected as high-pressure gas (<7 MPa; 1,000 psia) in an intermediate accumulator. Check valves between the tank and the XRS prevent the reverse flow of xenon during the heating cycle. The accumulator serves as the high-pressure source of xenon gas to the Xenon Feed System (XFS) downstream of the XRS. This cycle is repeated till almost all the xenon is recovered. Currently, this system is being baselined for JIMO.

  9. A photochemical answer to the 'xenon paradox'

    NASA Astrophysics Data System (ADS)

    Hébrard; Marty, B.

    2012-12-01

    Xenon is depleted by one order of magnitude relative to other volatile elements when normalized to the chondritic composition. Furthermore, atmospheric xenon is far more enriched in the heavy isotopes relatively to chondritic and solar compositions (3-4%.amu-1) than atmospheric krypton (< 1%.amu-1). This discrepancy, known as the 'xenon paradox', has led to sophisticated models of atmospheric evolution coupled with mantle geodynamics (Pepin, 1991; Tolstikhin and Marty, 1998) and cometary contributions (Dauphas, 2003; Owen et al., 1992) that could explain terrestrial noble gas patterns under ad hoc conditions during the building stages of the Earth, no more than ~200 Ma following the beginning of solar system formation. Yet, xenon having an isotopic composition intermediate between the atmospheric and the chondritic ones has been recently documented in Archean (≤3 Ga-old) sedimentary rocks (Pujol et al., 2011), suggesting that isotopic fractionation of Xe occurred over a much longer period of time than previously thought, during the Hadean and the Archean eons. In that case, assuming a Rayleigh type isotope evolution for atmospheric Xe requires an enrichment fractionation factor of 1.3% in heavy isotopes for Xe remaining in the atmosphere. This is clearly within the range of values observed in laboratory experiments aimed at trapping and fractionating Xe isotopes in solids, which is only effective upon ionization (Marrocchi et al., 2011; Kuga et al., 2012). We report here a possibility for explaining the 'xenon paradox' through interaction of the Hadean/Archean atmosphere with EUV light from the young Sun. By using a new photochemical model, we have found out that atmospheric Xe depletion and enrichment in heavy Xe isotopes could be achieved by EUV photoionization deep enough in the atmosphere to allow the preferential implantation of the heavier Xe isotopes in organic aerosols, the formation of which is itself triggered by UV photochemistry. Most of the ionized

  10. Magnetic resonance imaging of convection in laser-polarized xenon

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Tseng, C. H.; Wong, G. P.; Cory, D. G.; Walsworth, R. L.

    2000-01-01

    We demonstrate nuclear magnetic resonance (NMR) imaging of the flow and diffusion of laser-polarized xenon (129Xe) gas undergoing convection above evaporating laser-polarized liquid xenon. The large xenon NMR signal provided by the laser-polarization technique allows more rapid imaging than one can achieve with thermally polarized gas-liquid systems, permitting shorter time-scale events such as rapid gas flow and gas-liquid dynamics to be observed. Two-dimensional velocity-encoded imaging shows convective gas flow above the evaporating liquid xenon, and also permits the measurement of enhanced gas diffusion near regions of large velocity variation.

  11. Liquid xenon detectors for particle physics and astrophysics

    SciTech Connect

    Aprile, E.; Doke, T.

    2010-07-15

    This article reviews the progress made over the last 20 years in the development and applications of liquid xenon detectors in particle physics, astrophysics, and medical imaging experiments. A summary of the fundamental properties of liquid xenon as radiation detection medium, in light of the most current theoretical and experimental information is first provided. After an introduction of the different type of liquid xenon detectors, a review of past, current, and future experiments using liquid xenon to search for rare processes and to image radiation in space and in medicine is given. Each application is introduced with a survey of the underlying scientific motivation and experimental requirements before reviewing the basic characteristics and expected performance of each experiment. Within this decade it appears likely that large volume liquid xenon detectors operated in different modes will contribute to answering some of the most fundamental questions in particle physics, astrophysics, and cosmology, fulfilling the most demanding detection challenges. From detectors based solely on liquid xenon (LXe) scintillation, such as in the MEG experiment for the search of the rare ''{mu}{yields}e{gamma}'' decay, currently the largest liquid xenon detector in operation, and in the XMASS experiment for dark matter detection, to the class of time projection chambers which exploit both scintillation and ionization of LXe, such as in the XENON dark matter search experiment and in the Enriched Xenon Observatory for neutrinoless double beta decay, unrivaled performance and important contributions to physics in the next few years are anticipated.

  12. Method for the simultaneous preparation of Radon-211, Xenon-125, Xenon-123, Astatine-211, Iodine-125 and Iodine-123

    DOEpatents

    Mirzadeh, Saed; Lambrecht, Richard M.

    1987-01-01

    A method for simultaneously preparing Radon-211, Astatine-211, Xenon-125, Xenon-123, Iodine-125 and Iodine-123 in a process that includes irradiating a fertile metal material then using a one-step chemical procedure to collect a first mixture of about equal amounts of Radon-211 and Xenon-125, and a separate second mixture of about equal amounts of Iodine-123 and Astatine-211.

  13. Chondritic xenon in the Earth's mantle.

    PubMed

    Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G; Füri, Evelyn; Marty, Bernard

    2016-05-01

    Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth's mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth's mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth's accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion. PMID:27111512

  14. Chondritic xenon in the Earth's mantle.

    PubMed

    Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G; Füri, Evelyn; Marty, Bernard

    2016-05-01

    Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth's mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth's mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth's accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.

  15. Xenon-Ion Drilling of Tungsten Films

    NASA Technical Reports Server (NTRS)

    Garner, C. E.

    1986-01-01

    High-velocity xenon ions used to drill holes of controlled size and distribution through tungsten layer that sheaths surface of controlled-porosity dispenser cathode of traveling wave-tube electron emitter. Controlled-porosity dispenser cathode employs barium/calcium/ aluminum oxide mixture that migrates through pores in cathode surface, thus coating it and reducing its work function. Rapid, precise drilling technique applied to films of other metals and used in other applications where micron-scale holes required. Method requires only few hours, as opposed to tens of hours by prior methods.

  16. Xenon and other noble gases in shergottites

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Caffee, M. W.; Hohenberg, C. M.

    1986-01-01

    The isotopic composition of the xenon component trapped in EETA 79001's lithologies B and C has been determined, and other noble gases were measured in some samples. The Xe component was found to have light isotope ratios indistinguishable from those of the terrestrial atmosphere. The trapped component has a Xe-129/Xe-132 ratio of about 2.4, and is enhanced in Xe-134 and Xe-136 relative to the terrestrial atmosphere or the average carbonaceous chondrite. Similarities between values for Ar-40/Ar-36, Xe-129/Xe-132, and N-15/N-14 and the corresponding Martian atmospheric values suggest Martian origin of the trapped gases.

  17. Solubilities of krypton and xenon in dichlorodifluoromethane

    SciTech Connect

    Shaffer, J.H.; Shockley, W.E.; Greene, C.W.

    1984-07-01

    The solubility behavior of krypton and xenon in dichlorodifluoromethane was investigated for the Consolidated Fuel Reprocessing Program (CFRP) in support of the fluorocarbon absorption process. The solubility data derived from solute radioisotopes had uncertainties of approx. 0.1%. Values for Henry's law constants were initially determined under equilibrium conditions at infinite solute dilution. Based on these results, the study was extended to finite solute concentrations. Nonidealities in the two binary systems were expressed as gas phase fugacity coefficients for each solute at 10/sup 0/ intervals over the range -30 to +50/sup 0/C. 22 references, 4 figures, 2 tables.

  18. A high-power xenon dimer excilamp

    NASA Astrophysics Data System (ADS)

    Lomaev, M. I.; Skakun, V. S.; Tarasenko, V. F.; Shitts, D. V.

    2006-06-01

    A high-power sealed-off excilamp operating on xenon dimers excited by a barrier discharge and emitting in the vacuum ultraviolet spectral range (λ ˜ 172 nm) has been designed, constructed, and tested. The lamp comprises six quartz tubes (emitters) and has a total radiating surface area of 20 × 20 = 400 cm2. The average output power density radiated from the surface of each emitter exceeds 120 mW/cm2. The total output power of the excilamp immediately upon discharge ignition exceeds 50 W.

  19. Distillation purification and radon assay of liquid xenon

    SciTech Connect

    Takeuchi, Yasuo

    2005-09-08

    We succeeded to reduce the Kr contamination in liquid xenon by a factor of 1/1000 with a distillation system in Kamioka mine. Then, the remaining radioactivities (Radon and Kr) in purified liquid xenon were measured with the XMASS prototype detector. In this talk, the distillation system and the remaining internal radioactivity levels are reported.

  20. Electron drift in a large scale solid xenon

    DOE PAGES

    Yoo, J.; Jaskierny, W. F.

    2015-08-21

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor twomore » faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.« less

  1. Electron drift in a large scale solid xenon

    SciTech Connect

    Yoo, J.; Jaskierny, W. F.

    2015-08-21

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.

  2. A Temperature-driven Liquid Xenon Recirculation and Purification System

    NASA Astrophysics Data System (ADS)

    Benitez-Medina, Julio Cesar; Hall, Kendy

    2006-10-01

    We have built a liquid xenon recirculation and purification system in order to address the problem of inconsistencies in our Ba^+ fluorescence spectra. In our previous work our liquid xenon purity system did not include recirculation, and the liquid xenon contained ppm of electronegative impurities. By continuous recirculation through a getter purifier, ppb purity is expected. Our recirculation system is driven thermally, by applying heat to the evaporation region, instead of by the pump method used by others. The advantage of thermal driven recirculation is that there are no pressure surges. Therefore, the liquid is calm as it evaporates and condenses. This gives excellent optical quality for Ba^+ spectroscopy in liquid xenon. The goal of this work is to detect fluorescence from single Ba^+ daughter ions in the Enriched Xenon Observatory (EXO) double beta decay experiment.

  3. Incorporation of Xenon in magmas at depth

    NASA Astrophysics Data System (ADS)

    Leroy, C.; Sanloup, C.; Bureau, H.; Schmidt, B.; Konopkova, Z.; Raepsaet, C.

    2014-12-01

    Incorporation of volatile elements in magmas is enhanced at high pressure. The dissolved volatiles affect in turn the physical and chemical properties of silicate melts. Understanding volatiles incorporation in magmas and their effect on the melt's structure can be approached by in situ characterizations such as X-ray diffraction or Raman spectroscopy.Here, we focus on Xenon (Xe) in order to constrain its past and modern geochemical cycles. Indeed the 129I/129Xe extinct isotopic system is used to constrain planetary and atmosphere formation models. Moreover, some studies propose that Xe is currently recycled from the atmosphere to the mantle.To study the solubility of Xe in silicate melts, we have performed in situ X-ray diffraction experiments on the synchrotron beam line P02 in PetraIII (DESY, Hamburg). Experiments were carried out using resistive heating diamond-anvil cells up to 7 GPa and 1300°C. Two compositions have been studied: a hydrous haplogranite (HPG) reference and a hydrous HPG doped with Xe. This composition is a magma analogue that is extremely well documented by petrological studies. Xenon can be identified on the radial distribution functions obtained by processing the x-ray diffraction data. Solubility mechanisms of Xe in silicate melts at depth will be discussed.

  4. Xenon ion propulsion for orbit transfer

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Patterson, M. J.; Gruber, R. P.

    1990-01-01

    For more than 30 years, NASA has conducted an ion propulsion program which has resulted in several experimental space flight demonstrations and the development of many supporting technologies. Technologies appropriate for geosynchronous stationkeeping, earth-orbit transfer missions, and interplanetary missions are defined and evaluated. The status of critical ion propulsion system elements is reviewed. Electron bombardment ion thrusters for primary propulsion have evolved to operate on xenon in the 5 to 10 kW power range. Thruster efficiencies of 0.7 and specific impulse values of 4000 s were documented. The baseline thruster currently under development by NASA LeRC includes ring-cusp magnetic field plasma containment and dished two-grid ion optics. Based on past experience and demonstrated simplifications, power processors for these thrusters should have approximately 500 parts, a mass of 40 kg, and an efficiency near 0.94. Thrust vector control, via individual thruster gimbals, is a mature technology. High pressure, gaseous xenon propellant storage and control schemes, using flight qualified hardware, result in propellant tankage fractions between 0.1 and 0.2. In-space and ground integration testing has demonstrated that ion propulsion systems can be successfully integrated with their host spacecraft. Ion propulsion system technologies are mature and can significantly enhance and/or enable a variety of missions in the nation's space propulsion program.

  5. Perovskites with the Framework-Forming Xenon.

    PubMed

    Britvin, Sergey N; Kashtanov, Sergei A; Krzhizhanovskaya, Maria G; Gurinov, Andrey A; Glumov, Oleg V; Strekopytov, Stanislav; Kretser, Yury L; Zaitsev, Anatoly N; Chukanov, Nikita V; Krivovichev, Sergey V

    2015-11-23

    The Group 18 elements (noble gases) were the last ones in the periodic system to have not been encountered in perovskite structures. We herein report the synthesis of a new group of double perovskites KM(XeNaO6) (M = Ca, Sr, Ba) containing framework-forming xenon. The structures of the new compounds, like other double perovskites, are built up of the alternating sequence of corner-sharing (XeO6) and (NaO6) octahedra arranged in a three-dimensional rocksalt order. The fact that xenon can be incorporated into the perovskite structure provides new insights into the problem of Xe depletion in the atmosphere. Since octahedrally coordinated Xe(VIII) and Si(IV) exhibit close values of ionic radii (0.48 and 0.40 Å, respectively), one could assume that Xe(VIII) can be incorporated into hyperbaric frameworks such as MgSiO3 perovskite. The ability of Xe to form stable inorganic frameworks can further extend the rich and still enigmatic chemistry of this noble gas. PMID:26429762

  6. Space-independent xenon oscillations revisited

    SciTech Connect

    Rizwan-uddin )

    1989-01-01

    Recently, various branches of engineering and science have seen a rapid increase in the number of dynamical analyses undertaken. This modern phenomenon often obscures the fact that such analyses were sometimes carried out even before the current trend began. Moreover, these earlier analyses, which even now seem very ingenuous, were carried out at a time when the available information about dynamical systems was not as well disseminated as it is today. One such analysis, carried out in the early 1960s, showed the existence of stable limit cycles in a simple model for space-independent xenon dynamics in nuclear reactors. The authors, apparently unaware of the now well-known bifurcation theorem by Hopf, could not numerically discover unstable limit cycles, though they did find regions in parameter space where the fixed points are stable for small perturbations but unstable for very large perturbations. The analysis was carried out both analytically and numerically. As a tribute to these early nonlinear dynamicists in the field of nuclear engineering, in this paper, the Hopf theorem and its conclusions are briefly described, and then the solution of the space-independent xenon oscillation problem is presented, which was obtained using the bifurcation analysis BIFDD code. These solutions are presented along with a discussion of the earlier results.

  7. MECHANICAL PROPERTIES OF BLENDS OF PAMAM DENDRIMERS WITH POLY(VINYL CHLORIDE) AND POLY(VINYL ACETATE)

    EPA Science Inventory

    Hybrid blends of poly(amidoamine) PAMAM dendrimers with two linear high polymers, poly(vinyl chloride), PVC, and poly(vinyl acetate), PVAc, are reported. The interaction between the blend components was studied using dynamic mechanical analysis, xenon nuclear magnetic resonacne ...

  8. Environmental Applications of Stable Xenon and Radioxenon Monitoring

    SciTech Connect

    Dresel, P. Evan; Olsen, Khris B.; Hayes, James C.; McIntyre, Justin I.; Waichler, Scott R.; Kennedy, B. M.

    2008-06-01

    Improved detection capabilities are needed at several Department of Energy sites to make remedial decisions about facilities and landfill cleanup. For facility monitoring air samples can be collected from within a facility and analyzed for short lived radioxenons to estimate inventories of residual plutonium holdup within the facility. For landfill cleanup activities soil gas sampling for xenon isotopes can be used to define the locations of spent fuel and transuranic wastes. Short-lived radioxenon isotopes are continuously produced by spontaneous fission of plutonium-240 in transuranic wastes. Large volume soil-gas samples provide extremely sensitive measurement of radioxenon in the subsurface; a characteristic of transuranic waste. The analysis employs a modified Automated Radioxenon Sampling and Analysis (ARSA) system. Proof of principle measurements at a Hanford Site liquid waste disposal site showed xenon-133 at levels in soil gas are approximately 16,000 times the detection limit and lower levels of xenon-135 from the spontaneous fission of plutonium-240 were also measured. Stable xenon isotopes are also produced by spontaneous fission but are subject to background concentrations in ambient air samples (facilities) but less so in soil gas where free exchange with ambient air is restricted. Rare gas mass spectrometry is used for highly precise stable xenon isotopic measurements. Stable xenon isotopic ratios from fission are distinct from natural xenon background ratios. Neutron capture on xenon-135 produces an excess of xenon-136 above fission ratios and thus provides a means of distinguishing reactor sources (e.g. spent fuel) from separated transuranic materials (plutonium).

  9. Thermal neutrons registration by xenon gamma-ray detector

    NASA Astrophysics Data System (ADS)

    Shustov, A. E.; Chernysheva, I. V.; Dmitrenko, V. V.; Dukhvalov, A. G.; Krivova, K. V.; Novikov, A. S.; Petrenko, D. V.; Vlasik, K. F.; Ulin, S. E.; Uteshev, Z. M.

    2016-02-01

    Experimental results of thermal neutrons detection by high pressure xenon gamma- ray spectrometers are presented. The study was performed with two devices with sensitive volumes of 0.2 and 2 litters filled with compressed mixture of xenon and hydrogen without neutron-capture additives. Spectra from Pu-Be neutron source were acquired using both detectors. Count rates of the most intensive prompt neutron-capture gamma-ray lines of xenon isotopes were calculated in order to estimate thermal neutrons efficiency registration for each spectrometer.

  10. Viscosity of Xenon Examined in Microgravity

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.

    1999-01-01

    Why does water flow faster than honey? The short answer, that honey has a greater viscosity, merely rephrases the question. The fundamental answer is that viscosity originates in the interactions between a fluid s molecules. These interactions are so complicated that, except for low-density gases, the viscosity of a fluid cannot be accurately predicted. Progress in understanding viscosity has been made by studying moderately dense gases and, more recently, fluids near the critical point. Modern theories predict a universal behavior for all pure fluids near the liquid-vapor critical point, and they relate the increase in viscosity to spontaneous fluctuations in density near this point. The Critical Viscosity of Xenon (CVX) experiment tested these theories with unprecedented precision when it flew aboard the Space Shuttle Discovery (STS-85) in August 1997. Near the critical point, xenon is a billion times more compressible than water, yet it has about the same density. Because the fluid is so "soft," it collapses under its own weight when exposed to the force of Earth s gravity - much like a very soft spring. Because the CVX experiment is conducted in microgravity, it achieves a very uniform fluid density even very close to the critical point. At the heart of the CVX experiment is a novel viscometer built around a small nickel screen. An oscillating electric field forces the screen to oscillate between pairs of electrodes. Viscosity, which dampens the oscillations, can be calculated by measuring the screen motion and the force applied to the screen. So that the fluid s delicate state near the critical point will not be disrupted, the screen oscillations are set to be both slow and small.

  11. Determination of time-course change rate for arterial xenon using the time course of tissue xenon concentration in xenon-enhanced computed tomography

    SciTech Connect

    Sase, Shigeru; Takahashi, Hideaki; Ikeda, Hiroki; Kobayashi, Minoru; Matsumoto, Nobuyuki; Suzuki, Michihiro

    2008-06-15

    In calculating tissue blood flow (TBF) according to the Fick principle, time-course information on arterial tracer concentration is indispensable and has a considerable influence on the accuracy of calculated TBF. In TBF measurement by xenon-enhanced computed tomography (Xe-CT), nonradioactive xenon gas is administered by inhalation as a tracer, and end-tidal xenon is used as a substitute for arterial xenon. There has been the assumption that the time-course change rate for end-tidal xenon concentration (Ke) and that for arterial xenon concentration (Ka) are substantially equal. Respiratory gas sampling is noninvasive to the patient and Ke can be easily measured by exponential curve fitting to end-tidal xenon concentrations. However, it is pointed out that there would be a large difference between Ke and Ka in many cases. The purpose of this work was to develop a method of determining the Ka value using the time course of tissue xenon concentration in Xe-CT. The authors incorporated Ka into the Kety autoradiographic equation as a parameter to be solved, and developed a method of least-squares to obtain the solution for Ka from the time-course changes in xenon concentration in the tissue. The authors applied this method of least-squares to the data from Xe-CT abdominal studies performed on 17 patients; the solution for Ka was found pixel by pixel in the spleen, and its Ka map was created for each patient. On the one hand, the authors obtained the average value of the Ka map of the spleen as the calculated Ka (Ka{sub calc}) for each patient. On the other hand, the authors measured Ka (Ka{sub meas}) using the time-course changes in CT enhancement in the abdominal aorta for each patient. There was a good correlation between Ka{sub calc} and Ka{sub meas} (r=0.966, P<0.0001), and these two Ka values were close to each other (Ka{sub calc}=0.935xKa{sub meas}+0.089). This demonstrates that Ka{sub calc} would be close to the true Ka value. Accuracy of TBF by Xe-CT can be

  12. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, Raoul B.

    1988-01-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  13. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  14. Fission xenon from extinct Pu-244 in 14,301.

    NASA Technical Reports Server (NTRS)

    Drozd, R.; Hohenberg, C. M.; Ragan, D.

    1972-01-01

    Xenon extracted in step-wise heating of lunar breccia 14,301 contains a fission-like component in excess of that attributable to uranium decay during the age of the solar system. There seems to be no adequate source for this component other than Pu-244. Verification that this component is in fact due to the spontaneous fission of extinct Pu-244 comes from the derived spectrum which is similar to that observed from artificially produced Pu-244. It thus appears that Pu-244 was extant at the time lunar crustal material cooled sufficiently to arrest the thermal diffusion of xenon. Subsequent history has apparently maintained the isotopic integrity of plutonium fission xenon. Of major importance are details of the storage itself. Either the fission component is the result of in situ fission of Pu-244 and subsequent storage in 14,301 material, or the fission xenon was stored in an intermediate reservoir before incorporation into 14,301.

  15. Chloride in diet

    MedlinePlus

    ... found in table salt or sea salt as sodium chloride. It is also found in many vegetables. Foods ... Nutrition Board. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. National Academy Press, Washington, DC: 2005. ...

  16. Effects of xenon gas on generation and propagation of shock waves in the cavity of excimer laser

    NASA Astrophysics Data System (ADS)

    Kosugi, Shinichiroh; Maeno, Kazuo; Honma, Hiroki

    1993-05-01

    High repetition rate excimer lasers are expected for wide industrial application. The power of excimer laser, however, decreases rapidly in a higher repetition rate operation. Shock or acoustic waves, which are caused by the periodic pulse discharge, may limit the repetition rate of an excimer laser up to 2.5 kHz. Such waves cause inhomogeneity of gas density in the discharge region of the excimer laser. In high repetition rate operation this inhomogeneity remains at the next discharge. Arcing may be generated by this inhomogeneity and the homogeneous excitation of the laser gas is obstructed. Although these phenomena have been reported, the research for the effects of shock waves has remained insufficient. And the relation between these shock waves and discharge phenomena has not been clarified. To resolve this problem, we developed a scaling model chamber of a UV preionized excimer laser cavity with windows for flow visualization. We report the first result by using this model and Schlieren technique in a pure helium gas case. In our experiment three types of shock waves are found in the discharge cavity. Those shock waves are generated from the boundary of the main discharge area, from sparking pin gaps, and from the main electrode surfaces. In this study we focus on the effect of xenon gas on the generation and the propagation of shock waves. Components of the Xe-Cl excimer laser gas are helium, xenon, and hydrogen chloride. In those gases xenon has the largest molecular weight of 131.29. So we conclude xenon plays an important role in the shock wave propagation and in discharge phenomenon.

  17. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT WITH SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  18. Factors affecting the adsorption of xenon on activated carbon

    SciTech Connect

    Underhill, D.W.; DiCello, D.C.; Scaglia, L.A.; Watson, J.A.

    1986-08-01

    The presence of water vapor was found to interfere strongly with the dynamic adsorption of /sup 133/Xe on coconut-base activated charcoal. The percent loss in the xenon adsorption coefficient was similar to values reported earlier for the adsorption of krypton on humidified charcoal. Attempts to increase the adsorption of xenon by (a) using a petroleum-based adsorbent with an extremely high surface area and (b) by impregnation of the adsorbent with iodine were not successful.

  19. Software tool for xenon gamma-ray spectrometer control

    NASA Astrophysics Data System (ADS)

    Chernysheva, I. V.; Novikov, A. S.; Shustov, A. E.; Dmitrenko, V. V.; Pyae Nyein, Sone; Petrenko, D.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2016-02-01

    Software tool "Acquisition and processing of gamma-ray spectra" for xenon gamma-ray spectrometers control was developed. It supports the multi-windows interface. Software tool has the possibilities for acquisition of gamma-ray spectra from xenon gamma-ray detector via USB or RS-485 interfaces, directly or via TCP-IP protocol, energy calibration of gamma-ray spectra, saving gamma-ray spectra on a disk.

  20. Distillation column for the XENON1T experiment

    NASA Astrophysics Data System (ADS)

    Fieguth, Alexander; XENON Collaboration

    2016-05-01

    The XENON1T experiment will probe a new parameter space in the direct dark matter search. Besides the enlargement of target mass to the ton scale, a further background reduction with respect to its predecessor XENON100 is necessary. A major contribution to the intrinsic contamination is the β-decaying isotope 85Kr, which leads to the requirement of a concentration less than 0.2 ppt of natural krypton in xenon. Its removal from the xenon gas is achieved by cryogenic distillation. For the new experiment a custom-build distillation column with a separation factor larger than 105 and a throughput of 3kg/h has been designed and built at the University of Muenster. Furthermore its performance has been characterized using different trace gas detection techniques, e.g. a novel 83mKr-tracer method, and its functionality has been tested successfully. The distillation column, which is installed and commissioned at the XENON1T experiment, is ready to process the 3.5 tons of xenon.

  1. Microhollow cathode discharge excimer lamps

    SciTech Connect

    Schoenbach, Karl H.; El-Habachi, Ahmed; Moselhy, Mohamed M.; Shi, Wenhui; Stark, Robert H.

    2000-05-01

    Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 {mu}m range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power to input electrical power), has for xenon and argon fluoride a maximum at {approx}400 Torr. The maximum efficiency is between 6% and 9% for xenon, and {approx}2% for argon fluoride. (c) 2000 American Institute of Physics.

  2. Microhollow cathode discharge excimer lamps

    NASA Astrophysics Data System (ADS)

    Schoenbach, Karl H.; El-Habachi, Ahmed; Moselhy, Mohamed M.; Shi, Wenhui; Stark, Robert H.

    2000-05-01

    Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 μm range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power to input electrical power), has for xenon and argon fluoride a maximum at ˜400 Torr. The maximum efficiency is between 6% and 9% for xenon, and ˜2% for argon fluoride.

  3. Ethane-xenon mixtures under shock conditions

    DOE PAGES

    Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; Cochrane, Kyle Robert; Flicker, Dawn G.

    2015-04-22

    Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. In order to validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. Furthermore, themore » DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.« less

  4. Prospects for Barium Tagging in Gaseous Xenon

    SciTech Connect

    Sinclair, D.; Rollin, E.; Smith, J.; Mommers, A.; Ackerman, N.; Aharmim, B.; Auger, M.; Barbeau, P.S.; Benitez-Medina, C.; Breidenbach, M.; Burenkov, A.; Cook, S.; Coppens, A.; Daniels, T.; DeVoe, R.; Dobi, A.; Dolinski, M.J.; Donato, K.; Fairbank, W., Jr.; Farine, J.; Giroux, G.; /Bern U., LHEP /Carleton U. /Stanford U., Phys. Dept. /Carleton U. /Laurentian U. /Carleton U. /SLAC /Indiana U. /Indiana U., CEEM /Korea U. /Stanford U., Phys. Dept. /SLAC /Alabama U. /Colorado State U. /Stanford U., Phys. Dept. /Alabama U. /SLAC /Stanford U., Phys. Dept. /Alabama U. /Massachusetts U., Amherst /SLAC /Alabama U. /SLAC /Maryland U. /Moscow, ITEP /Stanford U., Phys. Dept. /Maryland U. /Bern U., LHEP /Laurentian U. /SLAC /Maryland U.

    2012-05-03

    Tagging events with the coincident detection of a barium ion would greatly reduce the background for a neutrino-less double beta decay search in xenon. This paper describes progress towards realizing this goal. It outlines a source that can produce large quantities of Ba++ in gas, shows that this can be extracted to vacuum, and demonstrates a mechanism by which the Ba++ can be efficiently converted to Ba+ as required for laser identification. It is clear from this study that electrospray is a convenient mechanism for producing Ba++ is gas at atmospheric pressure. It is likely that the source will perform just as effectively at higher pressures. Even though the source region has water vapour and methanol vapour at the 0.3% level, there is no evidence for molecular formation. The use of TEA offers an effective method to achieve the charge state conversion. The overall design of the ion extraction from high pressure to vacuum is very similar to the scheme proposed for the final detector and this appears to work well although the efficiency is not yet determined.

  5. Ethane-xenon mixtures under shock conditions

    SciTech Connect

    Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; Cochrane, Kyle Robert; Flicker, Dawn G.

    2015-04-22

    Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. In order to validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. Furthermore, the DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.

  6. Ethane-xenon mixtures under shock conditions

    NASA Astrophysics Data System (ADS)

    Flicker, Dawn; Magyar, Rudolph; Root, Seth; Cochrane, Kyle; Mattsson, Thomas

    2015-06-01

    Mixtures of light and heavy elements arise in inertial confinement fusion and planetary science. We present results on the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT/QMD) at elevated-temperature and pressure is used to obtain the properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate the QMD simulations, we performed high-precision shock compression experiments using Sandia's Z-Machine. A bond tracking analysis of the simulations correlates the sharp rise in the Hugoniot curve with completion of dissociation in ethane. DFT-based simulation results compare well with experimental data and are used to provide insight into the dissociation as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for ethane, Xe-ethane, polymethyl-pentene, and polystyrene, suggesting that a limiting compression exists for C-C bonded systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, Security Administration under contract DE-AC04-94AL85000.

  7. Optimization of Xenon Difluoride Vapor Delivery

    SciTech Connect

    Sweeney, Joseph; Marganski, Paul; Kaim, Robert; Wodjenski, Mike; Gregg, John; Yedave, Sharad; Sergi, Steve; Bishop, Steve; Eldridge, David; Zou Peng

    2008-11-03

    Xenon difluoride (XeF{sub 2}) has been shown to provide many process benefits when used as a daily maintenance recipe for ion implant. Regularly flowing XeF{sub 2} into the ion source cleans the deposits generated by ion source operation. As a result, significant increases in productivity have been demonstrated. However, XeF{sub 2} is a toxic oxidizer that must be handled appropriately. Furthermore, it is a low vapor pressure solid under standard conditions ({approx}4.5 torr at 25 deg. C). These aspects present unique challenges for designing a package for delivering the chemistry to an ion implanter. To address these challenges, ATMI designed a high-performance, re-usable cylinder for dispensing XeF{sub 2} in an efficient and reliable manner. Data are presented showing specific attributes of the cylinder, such as the importance of internal heat transfer media and the cylinder valve size. The impact of mass flow controller (MFC) selection and ion source tube design on the flow rate of XeF{sub 2} are also discussed. Finally, cylinder release rate data are provided.

  8. Breakdown characteristics of xenon HID Lamps

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  9. Cerebral blood flow tomography with xenon-133

    SciTech Connect

    Lassen, N.A.

    1985-10-01

    Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-/sup 133/. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission computed tomograph (SPECT) is required. Two brain-dedicated SPECT systems designed for this purpose are mentioned, and the method is described with special reference to the limitations inherent in the soft energy of the 133Xe primary photons. CBF tomography can be used for a multitude of clinical and investigative purposes. This article discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use of other tracers for CBF tomography using SPECT is summarized with emphasis on the /sup 99m/Tc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers.

  10. Xenon-enhanced CT imaging of local pulmonary ventilation

    NASA Astrophysics Data System (ADS)

    Tajik, Jehangir K.; Tran, Binh Q.; Hoffman, Eric A.

    1996-04-01

    We are using the unique features of electron beam CT (EBCT) in conjunction with respiratory and cardiac gating to explore the use of non-radioactive xenon gas as a pulmonary ventilation contrast agent. The goal is to construct accurate and quantitative high-resolution maps of local pulmonary ventilation in humans. We are evaluating xenon-enhanced computed tomography in the pig model with dynamic tracer washout/dilution and single breath inhalation imaging protocols. Scanning is done via an EBCT scanner which offers 50 msec scan aperture speeds. CT attenuation coefficients (image gray scale value) show a linear increase with xenon concentration (r equals 0.99). We measure a 1.55 Hounsfield Unit (HU) enhancement (kV equals 130, mA equals 623) per percentage increase in xenon gas concentration giving an approximately 155 HU enhancement with 100% xenon gas concentration as measured in a plexiglass super-syringe. Early results indicate that a single breath (from functional residual capacity to total lung capacity) of 100% xenon gas provides an average 32 +/- 1.85 (SE) HU enhancement in the lung parenchyma (maximum 50 HU) and should not encounter unwanted xenon side effects. However, changes in lung density occurring during even short breath holds (as short as 10 seconds) may limit using a single breath technique to synchronous volumetric scanning, currently possible only with EBCT. Preliminary results indicate close agreement between measured regional xenon concentration-time curves and theoretical predictions for the same sample. More than 10 breaths with inspirations to as high as 25 cmH2O airway pressure were needed to clear tracer from all lung regions and some regions had nearly linear rather than mono-exponential clearance curves. When regional parenchymal xenon concentration-time curves were analyzed, vertical gradients in ventilation and redistribution of ventilation at higher inspiratory flow rates were consistent with known pulmonary physiology. We present

  11. XEMIS: A liquid xenon detector for medical imaging

    NASA Astrophysics Data System (ADS)

    Gallego Manzano, L.; Bassetto, S.; Beaupere, N.; Briend, P.; Carlier, T.; Cherel, M.; Cussonneau, J.-P.; Donnard, J.; Gorski, M.; Hamanishi, R.; Kraeber Bodéré, F.; Le Ray, P.; Lemaire, O.; Masbou, J.; Mihara, S.; Morteau, E.; Scotto Lavina, L.; Stutzmann, J.-S.; Tauchi, T.; Thers, D.

    2015-07-01

    A new medical imaging technique based on the precise 3D location of a radioactive source by the simultaneous detection of 3γ rays has been proposed by Subatech laboratory. To take advantage of this novel technique a detection device based on a liquid xenon Compton telescope and a specific (β+, γ) emitter radionuclide, 44Sc, are required. A first prototype of a liquid xenon time projection chamber called XEMIS1 has been successfully developed showing very promising results for the energy and spatial resolutions for the ionization signal in liquid xenon, thanks to an advanced cryogenics system, which has contributed to a high liquid xenon purity with a very good stability and an ultra-low noise front-end electronics (below 100 electrons) operating at liquid xenon temperature. The very positive results obtained with XEMIS1 have led to the development of a second prototype for small animal imaging, XEMIS2, which is now under development. To study the feasibility of the 3γ imaging technique and optimize the characteristics of the device, a complete Monte Carlo simulation has been also carried out. A preliminary study shows very positive results for the sensitivity, energy and spatial resolutions of XEMIS2.

  12. Emergence in Elderly Patient Undergoing General Anesthesia with Xenon

    PubMed Central

    Wefki Abdelgawwad Shousha, Ahmed Abdelgawwad; Paparazzo, Antonella

    2013-01-01

    Introduction. It is a consensus that the postoperative cognitive function is impaired in elderly patients after general anaesthesia, and such category patient takes more time to recover. Xenon is a noble gas with anesthetic properties mediated by antagonism of N-methyl-D-aspartate receptors. With a minimum alveolar concentration of 0.63, xenon is intended for maintaining hypnosis with 30% oxygen. The fast recovery after xenon anaesthesia was hypothesized to be advantageous in this scenario. Case Presentation. We report the case of 99-year-old woman who underwent sigmoid colon carcinoma resection with colorectal anastomosis. We carried out the induction phase by propofol, oxygen, fentanil, and rocuronium bromide, and then we proceeded to a rapid sequence endotracheal intubation consequently. The patient was monitored by IBP, NIBP, ECG, cardiac frequency, respiratory rate, capnometry, TOF Guard, blood gas analysis, and BIS. For maintenance we administrated oxygen, remifentanil, rocuronium bromide, and xenon gas 60–65%. Shortly after the end of surgery the patients started an autonomous respiratory activity, and a high BIS level was also recorded. Decision was made by our team to proceed into the emergence phase. The residual neuromuscular block was antagonized by sugammadex, modified Aldrete score was implicated, and we got our patient fully awake without any cognitive dysfunction or delirium. Conclusion. The rapid emergence to full orientation in very elderly patient who had been anesthetized by xenon shows concordance to the high BIS values and the clinical signs of the depth of anesthesia. PMID:23762640

  13. Spectrally Resolved Magnetic Resonance Imaging of the XenonBiosensor

    SciTech Connect

    Hilty, Christian; Lowery, Thomas; Wemmer, David; Pines, Alexander

    2005-07-15

    Due to its ability to non-invasively record images, as well as elucidate molecular structure, nuclear magnetic resonance is the method of choice for applications as widespread as chemical analysis and medical diagnostics. Its detection threshold is, however, limited by the small polarization of nuclear spins in even the highest available magnetic fields. This limitation can, under certain circumstances, be alleviated by using hyper-polarized substances. Xenon biosensors make use of the sensitivity gain of hyperpolarized xenon to provide magnetic resonance detection capability for a specific low-concentration target. They consist of a cryptophane cage, which binds one xenon atom, and which has been connected via a linker to a targeting moiety such as a ligand or antibody. Recent work has shown the possibility of using the xenon biosensor to detect small amounts of a substance in a heterogeneous environment by NMR. Here, we demonstrate that magnetic resonance (MR) provides the capability to obtain spectrally and spatially resolved images of the distribution of immobilized biosensor, opening the possibility for using the xenon biosensor for targeted imaging.

  14. Hugoniot measurements of double-shocked precompressed dense xenon plasmas.

    PubMed

    Zheng, J; Chen, Q F; Gu, Y J; Chen, Z Y

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ∼6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures. PMID:23368058

  15. Electroluminescence yield for {lambda} > 165 nm in neon-xenon mixtures: Experimental results

    SciTech Connect

    Borges, F.I.G.M.; Santos, J.M.F. dos; Conde, C.A.N.; Kubota, S.

    1996-12-31

    The electroluminescence yield for {lambda} > 165 am in different neon-xenon mixtures is studied as a function of the reduced electric field. These studies were performed using a uniform-field gas proportional scintillation counter. The experimental values obtained for the scintillation and ionization thresholds decrease from approximately 1 and 6 Vcm{sup -1} torr{sup -1} for 100% xenon, to about 0.5 and 3.8 Vcm{sup -1} torr{sup -1} for 20% xenon, to 0.4 and 2.8 Vcm{sup -1} torr{sup -1} for 10% xenon and to 0.3 and 2.2 Vcm{sup -1} torr{sup -1} for 5% xenon. Detector energy resolutions for the Al K line (1.5 keV) are 15% for 20% xenon, 19% for 10% xenon and 22% for 5% xenon.

  16. The next generation dark matter hunter: XENON1T status and perspective

    NASA Astrophysics Data System (ADS)

    Rizzo, A.

    2016-07-01

    The XENON Dark Matter Experiment has been ongoing at LNGS since 2005 with the goal of searching for dark matter WIMPs with liquid xenon as target and detector material. With detectors of increasing target mass and decreasing background, the XENON program has achieved competitive limits on WIMP-nucleon interaction couplings, but also on axions and axion like particles. With the start of the next generation experiment, XENON1T expected in 2015, XENON Dark Matter Experiment will continue to lead field of dark matter direct detection. XENON1T will be the first experiment to use multi-tons of liquid xenon in a time projection chamber and is designed to achieve two orders of magnitude higher sensitivity than the current best limits. I will review the status of construction and the scientific goals of XENON1T.

  17. Single Ion Trapping for the Enriched Xenon Observatory

    SciTech Connect

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC

    2006-03-28

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  18. Estimation of Anomalous Single Scatter Events in XENON100 Data

    NASA Astrophysics Data System (ADS)

    Lim, Kyungeun; Xenon100 Collaboration

    2011-04-01

    Anomalous single scatter events in XENON100 are events that have only one scintillation pulse (S1) and one ionization pulse (S2), but are multiple scatters in nature. Only one scatter takes place inside the detector's charge and light sensitive volume, resulting in a S2/S1 ratio that is lower than that of true single scatter events and typical of that expected from a WIMP interaction. The identification and suppression of these anomalous events is therefore essential for a sensitive dark matter search. I present results from a Monte Carlo (MC) study that was carried out to estimate the expected number of anomalous single scatter events in the XENON100 WIMP search data. The MC was validated with a comparison with Co-60 gamma-calibration data. We gratefully acknowledge support from NSF, DOE, SNF, the Volkswagen Foundation, FCT, and STCSM. We are grateful to the LNGS for hosting and supporting the XENON program.

  19. Liquid xenon purification, de-radonation (and de-kryptonation)

    SciTech Connect

    Pocar, Andrea

    2015-08-17

    Liquid xenon detectors are at the forefront of rare event physics, including searches for neutrino-less double beta decay and WIMP dark matter. The xenon for these experiments needs to be purified from chemical impurities such as electronegative atoms and molecules, which absorb ionization electrons, and VUV (178 nm) scintillation light-absorbing chemical species. In addition, superb purification from radioactive impurities is required. Particularly challenging are radioactive noble isotopes ({sup 85}Kr,{sup 39,42}Ar,{sup 220,222}Rn). Radon is a particularly universal problem, due to the extended decay sequence of its daughters and its ubiquitous presence in detector materials. Purification and de-radonation of liquid xenon are addressed with particular focus on the experience gained with the EXO-200 neutrino-less double beta decay detector.

  20. High-pressure xenon detector development at Constellation Technology Corporation

    NASA Astrophysics Data System (ADS)

    Austin, Robert A.; Bastian, Lloyd F.

    2006-08-01

    Xenon-filled ionization detectors, due to their high atomic number fill gas (Z=54), moderate densities (~0.3 g/cm 3-0.5 g/cm 3) and good energy resolution (2%-4% at 662 keV), fill an important niche between more familiar technologies such as NaI(Tl) scintillators and Germanium detectors. Until recently, difficulties with obtaining sufficient Xenon purity, reducing microphonic sensitivity, and developing low-noise electronics compatible with small ionization signals have hampered the development of this nuclear detection field. Constellation Technology Corporation, whose experience with xenon detectors goes back to the mid 1990's, has made significant progress in these areas and has developed a commercial line of detectors with active volumes ranging from small (35 g Xe) to large (1400 g Xe). Here we will discuss our development of a mobile, large area, spectroscopic array.

  1. Probing lung physiology with xenon polarization transfer contrast (XTC).

    PubMed

    Ruppert, K; Brookeman, J R; Hagspiel, K D; Mugler, J P

    2000-09-01

    One of the major goals of hyperpolarized-gas MRI has been to obtain (129)Xe dissolved-phase images in humans. So far, this goal has remained elusive, mainly due to the low concentration of xenon that dissolves in tissue. A method is proposed and demonstrated in dogs that allows information about the dissolved phase to be obtained by imaging the gas phase following the application of a series of RF pulses that selectively destroy the longitudinal magnetization of xenon dissolved in the lung parenchyma. During the delay time between consecutive RF pulses, the depolarized xenon rapidly exchanges with the gas phase, thus lowering the gas polarization. It is demonstrated that the resulting contrast in the (129)Xe gas image provides information about the local tissue density. It is further argued that minor pulse-sequence modifications may provide information about the alveolar surface area or lung perfusion.

  2. Direct observation of bubble-assisted electroluminescence in liquid xenon

    NASA Astrophysics Data System (ADS)

    Erdal, E.; Arazi, L.; Chepel, V.; Rappaport, M. L.; Vartsky, D.; Breskin, A.

    2015-11-01

    Bubble formation in liquid xenon underneath a Thick Gaseous Electron Multiplier (THGEM) electrode immersed in liquid xenon was observed with a CCD camera. With voltage across the THGEM, the appearance of bubbles was correlated with that of electroluminescence signals induced by ionization electrons from alpha-particle tracks. This confirms recent indirect evidence that the observed photons are due to electroluminescence within a xenon vapor layer trapped under the electrode. The bubbles seem to emerge spontaneously due to heat flow from 300 K into the liquid, or in a controlled manner by locally boiling the liquid with resistive wires. Controlled bubble formation resulted in energy resolution of σ/E ≈ 7.5% for ~ 6000 ionization electrons. The phenomenon could pave ways towards the conception of large-volume `local dual-phase' noble-liquid TPCs.

  3. Xenon bubble chambers for direct dark matter detection

    NASA Astrophysics Data System (ADS)

    Levy, C.; Fallon, S.; Genovesi, J.; Khaitan, D.; Klimov, K.; Mock, J.; Szydagis, M.

    2016-03-01

    The search for dark matter is one of today's most exciting fields. As bigger detectors are being built to increase their sensitivity, background reduction is an ever more challenging issue. To this end, a new type of dark matter detector is proposed, a xenon bubble chamber, which would combine the strengths of liquid xenon TPCs, namely event by event energy resolution, with those of a bubble chamber, namely insensitivity to electronic recoils. In addition, it would be the first time ever that a dark matter detector is active on all three detection channels, ionization and scintillation characteristic of xenon detectors, and heat through bubble formation in superheated fluids. Preliminary simulations show that, depending on threshold, a discrimination of 99.99% to 99.9999+% can be achieved, which is on par or better than many current experiments. A prototype is being built at the University at Albany, SUNY. The prototype is currently undergoing seals, thermal, and compression testing.

  4. Xenon excimer emission from pulsed microhollow cathode discharges

    NASA Astrophysics Data System (ADS)

    Moselhy, M.; Shi, W.; Stark, R. H.; Schoenbach, K. H.

    2001-08-01

    By applying electrical pulses of 20 ns duration to xenon microplasmas, generated by direct current microhollow cathode discharges, we were able to increase the xenon excimer emission by more than an order of magnitude over direct current discharge excimer emission. For pulsed voltages in excess of 500 V, the optical power at 172 nm was found to increase exponentially with voltage. Largest values obtained were 2.75 W of vacuum-ultraviolet optical power emitted from a single microhollow cathode discharge in 400 Torr xenon with a 750 V pulse applied to a discharge. Highest radiative emittance was 15.2 W/cm2. The efficiency for excimer emission was found to increase linearly with pulsed voltages above 500 V reaching values of 20% at 750 V.

  5. Standardization of xenon-127 and measurement of photon emission intensities.

    PubMed

    Rodrigues, M; Lépy, M-C; Cassette, P; Mougeot, X; Bé, M M

    2014-05-01

    Xenon-127 was standardized by internal gas counting using three proportional counters in a differential arrangement to eliminate edge effects. The detection efficiency of the proportional counters was calculated by considering the cascade of events following the electron capture and associated gamma transitions. Activity per unit volume was measured with 0.7% relative standard uncertainty. Gamma-ray spectrometry was performed and absolute photon emission intensities were derived. This study shows that (127)Xe could be a surrogate for (133)Xe for the calibration of remote radio-xenon monitoring stations.

  6. Xenon-mediated neuroprotection in response to sustained, low-level excitotoxic stress.

    PubMed

    Lavaur, J; Lemaire, M; Pype, J; Le Nogue, D; Hirsch, E C; Michel, P P

    2016-01-01

    Noble gases such as xenon and argon have been reported to provide neuroprotection against acute brain ischemic/anoxic injuries. Herein, we wished to evaluate the protective potential of these two gases under conditions relevant to the pathogenesis of chronic neurodegenerative disorders. For that, we established cultures of neurons typically affected in Alzheimer's disease (AD) pathology, that is, cortical neurons and basal forebrain cholinergic neurons and exposed them to L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) to generate sustained, low-level excitotoxic stress. Over a period of 4 days, PDC caused a progressive loss of cortical neurons which was prevented substantially when xenon replaced nitrogen in the cell culture atmosphere. Unlike xenon, argon remained inactive. Xenon acted downstream of the inhibitory and stimulatory effects elicited by PDC on glutamate uptake and efflux, respectively. Neuroprotection by xenon was mimicked by two noncompetitive antagonists of NMDA glutamate receptors, memantine and ketamine. Each of them potentiated xenon-mediated neuroprotection when used at concentrations providing suboptimal rescue to cortical neurons but most surprisingly, no rescue at all. The survival-promoting effects of xenon persisted when NMDA was used instead of PDC to trigger neuronal death, indicating that NMDA receptor antagonism was probably accountable for xenon's effects. An excess of glycine failed to reverse xenon neuroprotection, thus excluding a competitive interaction of xenon with the glycine-binding site of NMDA receptors. Noticeably, antioxidants such as Trolox and N-acetylcysteine reduced PDC-induced neuronal death but xenon itself lacked free radical-scavenging activity. Cholinergic neurons were also rescued efficaciously by xenon in basal forebrain cultures. Unexpectedly, however, xenon stimulated cholinergic traits and promoted the morphological differentiation of cholinergic neurons in these cultures. Memantine reproduced some of these

  7. Phosphonium chloride for thermal storage

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    Development of systems for storage of thermal energy is discussed. Application of phosphonium chloride for heat storage through reversible dissociation is described. Chemical, physical, and thermodynamic properties of phosphonium chloride are analyzed and dangers in using phosphonium chloride are explained.

  8. Xe-129 NMR of xenon dissolved in biological media.

    NASA Astrophysics Data System (ADS)

    Mazitov, R. K.; Kuzma, N. N.; Happer, W.; Driehuys, B.; Merrill, G. F.

    2002-03-01

    The high solubility and large chemical shift of ^129Xe in various tissues makes it an ideal, non-invasive probe for pathological conditions such as cancer or atherosclerosis. To this end, we report NMR measurements of lineshapes, chemical shifts, and relaxation times of ^129Xe dissolved in the following biological tissues in vitro: heart, muscle, sinew, stomach(R.K. Mazitov, K. M. Enikeev, et al., Dokl. Akad. Nauk) 365, 396 (1999)., and the white and yolk of egg. NMR measurements of xenon dissolved in olive and sunflower oils are also reported. Tissues weighing 160--250 mg, not exposed to freezing, were studied in a 11.75 T field at the ^129Xe resonance frequency of 138.4 MHz; the pressure of xenon in the sealed-sample ampoules was ~20 bar. The influence of drugs and water content on tissues was studied. No xenon-water clathrates(J.A. Ripmeester and D.W. Davidson, J. Mol. Struct. ) 75, 67 (1981). were observed in the tissues, even at the high pressures used. The aim of this study is to establish possible correlations between the NMR parameters of dissolved xenon and the state of the tissue.

  9. Pulsed xenon flashlamp device for the treatment of psoriasis

    NASA Astrophysics Data System (ADS)

    Baumgardner, Jonathan M.; Hennings, David R.; Johnston, Thomas F., Jr.; Taylor, Eric

    2003-06-01

    We present our research into a pulsed xenon lamp source for the treatment of psoriasis and other skin disorders. Various filtering techniques, lamp configurations, power supply configurations and delivery systems are discussed. Comparisons are made to existing treatment modalities. Cryogen cooling of the treatment site is discussed.

  10. Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes

    SciTech Connect

    Kathawa, J.; Fry, C.; Thoennessen, M.

    2013-01-15

    Currently, thirty-eight palladium, thirty-eight antimony, thirty-nine tellurium, thirty-eight iodine, and forty xenon isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  11. Density Functional Theory (dft) Simulations of Shocked Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Magyar, Rudolph J.

    2009-12-01

    Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as xenon is known to form compounds under normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. We present DFT-MD simulations of shocked liquid xenon with the goal of developing an improved equation of state. The calculated Hugoniot to 2 MPa compares well with available experimental shock data. Sandia is a mul-tiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Density Functional Theory (DFT) Simulations of Shocked Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Magyar, Rudolph J.

    2009-06-01

    Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. NASA's Evolutionary Xenon Thruster (NEXT) Ion Propulsion System Information Summary

    NASA Technical Reports Server (NTRS)

    Pencil, Eirc S.; Benson, Scott W.

    2008-01-01

    This document is a guide to New Frontiers mission proposal teams. The document describes the development and status of the NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system (IPS) technology, its application to planetary missions, and the process anticipated to transition NEXT to the first flight mission.

  14. Chloride flux in phagocytes.

    PubMed

    Wang, Guoshun

    2016-09-01

    Phagocytes, such as neutrophils and macrophages, engulf microbes into phagosomes and launch chemical attacks to kill and degrade them. Such a critical innate immune function necessitates ion participation. Chloride, the most abundant anion in the human body, is an indispensable constituent of the myeloperoxidase (MPO)-H2 O2 -halide system that produces the potent microbicide hypochlorous acid (HOCl). It also serves as a balancing ion to set membrane potentials, optimize cytosolic and phagosomal pH, and regulate phagosomal enzymatic activities. Deficient supply of this anion to or defective attainment of this anion by phagocytes is linked to innate immune defects. However, how phagocytes acquire chloride from their residing environment especially when they are deployed to epithelium-lined lumens, and how chloride is intracellularly transported to phagosomes remain largely unknown. This review article will provide an overview of chloride protein carriers, potential mechanisms for phagocytic chloride preservation and acquisition, intracellular chloride supply to phagosomes for oxidant production, and methods to measure chloride levels in phagocytes and their phagosomes. PMID:27558337

  15. On the behavior of solutions of xenon in liquid n-alkanes: solubility of xenon in n-pentane and n-hexane.

    PubMed

    Bonifácio, Rui P M F; Martins, Luís F G; McCabe, Clare; Filipe, Eduardo J M

    2010-12-01

    The solubility of xenon in liquid n-pentane and n-hexane has been studied experimentally, theoretically, and by computer simulation. Measurements of the solubility are reported for xenon + n-pentane as a function of temperature from 254 to 305 K. The uncertainty in the experimental data is less than 0.15%. The thermodynamic functions of solvation such as the standard Gibbs energy, enthalpy, and entropy of solvation have been calculated from Henry's law coefficients for xenon + n-pentane solutions and also for xenon + n-hexane, which were reported in previous work. The results provide a further example of the similarity between the xenon + n-alkane interaction and the n-alkane + n-alkane interactions. Using the SAFT-VR approach we were able to quantitatively predict the experimental solubility for xenon in n-pentane and semiquantitatively that of xenon in n-hexane using simple Lorentz-Berthelot combining rules to describe the unlikely interaction. Henry's constants at infinite dilution for xenon + n-pentane and xenon + n-hexane were also calculated by Monte Carlo simulation using a united atom force field to describe the n-alkane and the Widom test particle insertion method. PMID:21067166

  16. On the behavior of solutions of xenon in liquid n-alkanes: solubility of xenon in n-pentane and n-hexane.

    PubMed

    Bonifácio, Rui P M F; Martins, Luís F G; McCabe, Clare; Filipe, Eduardo J M

    2010-12-01

    The solubility of xenon in liquid n-pentane and n-hexane has been studied experimentally, theoretically, and by computer simulation. Measurements of the solubility are reported for xenon + n-pentane as a function of temperature from 254 to 305 K. The uncertainty in the experimental data is less than 0.15%. The thermodynamic functions of solvation such as the standard Gibbs energy, enthalpy, and entropy of solvation have been calculated from Henry's law coefficients for xenon + n-pentane solutions and also for xenon + n-hexane, which were reported in previous work. The results provide a further example of the similarity between the xenon + n-alkane interaction and the n-alkane + n-alkane interactions. Using the SAFT-VR approach we were able to quantitatively predict the experimental solubility for xenon in n-pentane and semiquantitatively that of xenon in n-hexane using simple Lorentz-Berthelot combining rules to describe the unlikely interaction. Henry's constants at infinite dilution for xenon + n-pentane and xenon + n-hexane were also calculated by Monte Carlo simulation using a united atom force field to describe the n-alkane and the Widom test particle insertion method.

  17. Applications of highly spin-polarized xenon in NMR

    SciTech Connect

    Long, H.W. |

    1993-09-01

    The main goal of the work presented in this thesis is produce highly spin-polarized xenon to create much greater signal intensities (up to 54,000 times greater) so as to allow studies to be made on systems with low surface area and long spin-lattice relaxation times. The spin-exchange optical pumping technique used to create high nuclear spin polarization is described in detail in chapter two. This technique is initially applied to some multiple-pulse optically detected NMR experiments in low magnetic field (50G) that allow the study of quadrupoler interactions with a surface of only a few square centimeters. In chapter three the apparatus used to allow high field {sup 129}Xe NMR studies to be performed with extremely high sensitivity is described and applied to experiments on diamagnetic susceptibility effects in thin ({approximately}2000 layers) films of frozen xenon. Preliminary surface investigations of laser polarized {sup 129}Xe adsorbed an a variety of materials (salts, molecular crystals, amorphous carbon, graphite) are then discussed. A full detailed study of the surface of a particular polymer, poly(acrylic acid), is presented in chapter four which shows the kind of detailed information that can be obtained from this technique. Along with preliminary results for several similar polymers, a summary is given of xenon studies of a novel ultra-high surface area polymer, poly(triarylcarbinol). Finally in chapter five the exciting possibility of transferring the high spin order of the laser polarized xenon has been used to transfer nuclear spin order to {sup 13}CO{sub 2} in a xenon matrix and to protons on poly(triarylcarbinol).

  18. Xenon-mediated neuroprotection in response to sustained, low-level excitotoxic stress

    PubMed Central

    Lavaur, J; Lemaire, M; Pype, J; Nogue, D Le; Hirsch, E C; Michel, P P

    2016-01-01

    Noble gases such as xenon and argon have been reported to provide neuroprotection against acute brain ischemic/anoxic injuries. Herein, we wished to evaluate the protective potential of these two gases under conditions relevant to the pathogenesis of chronic neurodegenerative disorders. For that, we established cultures of neurons typically affected in Alzheimer's disease (AD) pathology, that is, cortical neurons and basal forebrain cholinergic neurons and exposed them to L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) to generate sustained, low-level excitotoxic stress. Over a period of 4 days, PDC caused a progressive loss of cortical neurons which was prevented substantially when xenon replaced nitrogen in the cell culture atmosphere. Unlike xenon, argon remained inactive. Xenon acted downstream of the inhibitory and stimulatory effects elicited by PDC on glutamate uptake and efflux, respectively. Neuroprotection by xenon was mimicked by two noncompetitive antagonists of NMDA glutamate receptors, memantine and ketamine. Each of them potentiated xenon-mediated neuroprotection when used at concentrations providing suboptimal rescue to cortical neurons but most surprisingly, no rescue at all. The survival-promoting effects of xenon persisted when NMDA was used instead of PDC to trigger neuronal death, indicating that NMDA receptor antagonism was probably accountable for xenon’s effects. An excess of glycine failed to reverse xenon neuroprotection, thus excluding a competitive interaction of xenon with the glycine-binding site of NMDA receptors. Noticeably, antioxidants such as Trolox and N-acetylcysteine reduced PDC-induced neuronal death but xenon itself lacked free radical-scavenging activity. Cholinergic neurons were also rescued efficaciously by xenon in basal forebrain cultures. Unexpectedly, however, xenon stimulated cholinergic traits and promoted the morphological differentiation of cholinergic neurons in these cultures. Memantine reproduced some of these

  19. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT OF CENTER WITH TOP OF SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  20. Strontium-89 Chloride

    MedlinePlus

    ... ask your doctor or pharmacist for more information.Strontium-89 chloride is in a class of drugs known as radioisotopes. It delivers radiation to cancer sites and ultimately decreases bone pain. The length of treatment depends on the ...

  1. Mercuric chloride poisoning

    MedlinePlus

    ... Mercuric chloride is a very poisonous form of mercury. It is a type of mercury salt. There are different types of mercury poisonings . This article discusses poisoning from swallowing mercuric ...

  2. Hydrogen chloride test set

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1976-01-01

    Detector uses tertiary amine, which makes reaction fairly specific for relatively small highly polarized hydrogen chloride molecule. Reaction is monitored by any microbalance capable of measuring extremely small mass differences in real time.

  3. Mesoscale Backtracking by Means of Atmospheric Transport Modeling of Xenon Plumes Measured by Radionuclide Gas Stations

    NASA Astrophysics Data System (ADS)

    Armand, P. P.; Achim, P.; Taffary, T.

    2006-12-01

    The monitoring of atmospheric radioactive xenon concentration is performed for nuclear safety regulatory requirements. It is also planned to be used for the detection of hypothetical nuclear tests in the framework of the Comprehensive nuclear-Test-Ban Treaty (CTBT). In this context, the French Atomic Energy Commission designed a high sensitive and automated fieldable station, named SPALAX, to measure the activity concentrations of xenon isotopes in the atmosphere. SPALAX stations were set up in Western Europe and have been operated quite continuously for three years or more, detecting principally xenon-133 and more scarcely xenon-135, xenon-133m and xenon-131m. There are around 150 nuclear power plants in the European Union, research reactors, reprocessing plants, medical production and application facilities releasing radioactive xenon in normal or incidental operations. A numerical study was carried out aiming to explain the SPALAX measurements. The mesoscale Atmospheric Transport Modelling involves the MM5 suite (PSU- NCAR) to predict the wind fields on nested domains, and FLEXPART, a 3D Lagrangian particle dispersion code, used to simulate the backward transport of xenon plumes detected by the SPALAX. For every event of detection, at least one potential xenon source has a significant efficiency of emission. The identified likely sources are located quite close to the SPALAX stations (some tens of kilometres), or situated farther (a few hundreds of kilometres). A base line of some mBq per cubic meter in xenon-133 is generated by the nuclear power plants. Peaks of xenon-133 ranging from tens to hundreds of mBq per cubic meter originate from a radioisotope production facility. The calculated xenon source terms required to obtain the SPALAX measurements are discussed and seem consistent with realistic emissions from the xenon sources in Western Europe.

  4. Xenon NMR measurements of permeability and tortuosity in reservoir rocks.

    PubMed

    Wang, Ruopeng; Pavlin, Tina; Rosen, Matthew Scott; Mair, Ross William; Cory, David G; Walsworth, Ronald Lee

    2005-02-01

    In this work we present measurements of permeability, effective porosity and tortuosity on a variety of rock samples using NMR/MRI of thermal and laser-polarized gas. Permeability and effective porosity are measured simultaneously using MRI to monitor the inflow of laser-polarized xenon into the rock core. Tortuosity is determined from measurements of the time-dependent diffusion coefficient using thermal xenon in sealed samples. The initial results from a limited number of rocks indicate inverse correlations between tortuosity and both effective porosity and permeability. Further studies to widen the number of types of rocks studied may eventually aid in explaining the poorly understood connection between permeability and tortuosity of rock cores. PMID:15833638

  5. Development of liquid xenon detectors for gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Aprile, Elena; Suzuki, Masayo

    1989-01-01

    The application of liquid xenon in high-resolution detectors for gamma-ray astronomy is being investigated. Initial results from a pulse-shape analysis of ionization signals in a liquid-xenon gridded chamber indicate that it is possible to achieve the necessary liquid purity for the transport of free electrons with simple techniques. The energy resolution has been measured as a function of applied electric field, using electrons and gamma-rays from a 207Bi source. At a field of 12 kV/cm the noise-substracted energy resolution of the dominant 569-keV gamma-ray line is 34 keV FWHM (full width at half maximum). This value is mostly determined by recombination of electron-ion pairs on delta-electron tracks.

  6. Constraints on inelastic dark matter from XENON10

    SciTech Connect

    Angle, J; Aprile, E; Arneodo, F; Baudis, L; Bernstein, A; Bolozdynya, A; Coelho, L C; Dahl, C E; DeViveiros, L; Ferella, A D; Fernandes, L P; Fiorucci, S; Gaitskell, R J; Giboni, K L; Gomez, R; Hasty, R; Kastens, L; Kwong, J; Lopes, J M; Madden, N; Manalaysay, A; Manzur, A; McKinsey, D N; Monzani, M E; Ni, K; Oberlack, U; Orboeck, J; Plante, G; Santorelli, R; dos Santos, J; Shagin, P; Shutt, T; Sorensen, P; Schulte, S; Winant, C; Yamashita, M

    2009-11-23

    It has been suggested that dark matter particles which scatter inelastically from detector target nuclei could explain the apparent incompatibility of the DAMA modulation signal (interpreted as evidence for particle dark matter) with the null results from CDMS-II and XENON10. Among the predictions of inelastically interacting dark matter are a suppression of low-energy events, and a population of nuclear recoil events at higher nuclear recoil equivalent energies. This is in stark contrast to the well-known expectation of a falling exponential spectrum for the case of elastic interactions. We present a new analysis of XENON10 dark matter search data extending to E{sub nr} = 75 keV nuclear recoil equivalent energy. Our results exclude a significant region of previously allowed parameter space in the model of inelastically interacting dark matter. In particular, it is found that dark matter particle masses m{sub x} {approx}> 150 GeV are disfavored.

  7. A Study of Radon Background in the XENON100 Experiment

    SciTech Connect

    Weber, Marc

    2011-04-27

    The XENON100 Dark Matter experiment has recently published first results from an analysis of 11.2 live days of data, setting an upper limit on the spin-independent WIMP-nucleon elastic scattering cross section of 3.4x10{sup -44} cm{sup 2} at 55 GeV/c{sup 2} and 90% confidence level. This article focuses on one specific background component of the XENON100 detector by presenting two independent methods of measuring the {sup 222}Rn concentration during operation phase. A first estimate of radon activity is derived for the 11.2 days analysis, proving the feasibility of on-line radon monitoring. Remaining systematic uncertainties are discussed.

  8. Dark matter sensitivity of multi-ton liquid xenon detectors

    SciTech Connect

    Schumann, Marc; Bütikofer, Lukas; Baudis, Laura; Kish, Alexander; Selvi, Marco E-mail: lbaudis@physik.uzh.ch E-mail: alexkish@physik.uzh.ch

    2015-10-01

    We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t × y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as 2.5 × 10{sup −49} cm{sup 2} can be probed for WIMP masses around 40 GeV/c{sup 2}. Additional improvements in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei.

  9. Gamma background discrimination in the XENON100 experiment

    NASA Astrophysics Data System (ADS)

    Melgarejo, Antonio; Xenon100 Collaboration

    2011-04-01

    Direct dark matter detection experiments rely on the ability to have an expected background close to 0 in order to be able to identify possible WIMP signals. Among the multiple strategies to achieve this goal, most of the experiments use background reduction techniques which exploit the difference between electron-like signal (most radioactive backgrounds) and neutron-like signals (neutrons and WIMPs). In this talk we will show the studies and measurements within the XENON100 experiment to distinguish signals from electrons and neutrons by comparing their light to signal ratio. A straightforward prediction of this work is the amount of events expected in the dark matter region in this experiment. We gratefully acknowledge support from NSF, DOE, SNF, the Volkswagen Foundation, FCT and STCSM. We are grateful to the LNGS for hosting and supporting the XENON program.

  10. Dark matter sensitivity of multi-ton liquid xenon detectors

    NASA Astrophysics Data System (ADS)

    Schumann, Marc; Baudis, Laura; Bütikofer, Lukas; Kish, Alexander; Selvi, Marco

    2015-10-01

    We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t × y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as 2.5 × 10-49 cm2 can be probed for WIMP masses around 40 GeV/c2. Additional improvements in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei.

  11. A portable gamma-ray spectrometer using compressed xenon

    SciTech Connect

    Mahler, G.J.; Yu, B.; Smith, G.C.; Kane, W.R.; Lemley, J.R.

    1997-10-01

    An ionization chamber using compressed xenon has been designed and built for gamma-ray spectrometry. The device is based on signal measurement from a parallel plate detector, with the gas enclosure constructed specifically for packaging into a portable instrument; thus, appropriate engineering practices comprises two small containers that can be setup for operation in just a few minutes. Its sensitivity is 100 keV to over 1 MeV, with a resolution at 662 keV of 2.5% FWHM for uniform irradiation, and 2% FWHM for collimated irradiation, comparable to the best ever with compressed xenon. It also exhibits greater specificity that most scintillators, such as NaI. The device is insensitive to neutron damage and has a low power requirement.

  12. Driving Rabi oscillations at the giant dipole resonance in xenon

    NASA Astrophysics Data System (ADS)

    Pabst, Stefan; Wang, Daochen; Santra, Robin

    2015-11-01

    Free-electron lasers (FELs) produce short and very intense light pulses in the XUV and x-ray regimes. We investigate the possibility to drive Rabi oscillations in xenon with an intense FEL pulse by using the unusually large dipole strength of the giant dipole resonance (GDR). The GDR decays within less than 30 as due to its position, which is above the 4 d ionization threshold. We find that intensities around 1018W /cm2 are required to induce Rabi oscillations with a period comparable to the lifetime. The pulse duration should not exceed 100 as because xenon will be fully ionized within a few lifetimes. Rabi oscillations reveal themselves also in the photoelectron spectrum in the form of Autler-Townes splittings extending over several tens of electronvolts.

  13. The uses of helium and xenon in current clinical practice.

    PubMed

    Harris, P D; Barnes, R

    2008-03-01

    The noble gases have always been an enigma. Discovered late in the history of chemistry and in seemingly small quantities in our atmosphere, they are some of the most unreactive elements known. However, despite being extremely inert, the noble gases (helium, neon, argon, krypton, xenon and radon) have found diverse and ever expanding applications in medicine. Of all of them, the gases that have found the greatest number of uses in the field of anaesthesia and related specialties are helium and xenon. This review focuses on the history of the discovery of both gases, their unique physicochemical properties and describes their uses in clinical practice with particular emphasis on those applicable to anaesthesia. PMID:18289236

  14. Rotational spectrum and molecular properties of pyridine...xenon.

    PubMed

    Tang, Shouyuan; Evangelisti, Luca; Velino, Biagio; Caminati, Walther

    2008-10-14

    The rotational spectra of six isotopologues of pyridine-xenon, two isotopes of the nitrogen atom ((14)N and (15)N) in pyridine with three isotopes of the rare gas atom ((129)Xe, (131)Xe, and (132)Xe) have been measured by pulsed jet Fourier transform microwave spectroscopy. The complex has a structure with the xenon atom located in the plane of symmetry perpendicular to the aromatic ring plane. Its distance from the center of mass of pyridine is 3.81 A, and it is tilted--with respect to the c principal axis of pyridine--by 7 degrees toward the N atom. The (14)N and (131)Xe nuclear quadrupole coupling constants have been determined for the isotopologues containing these nuclei. Information on the dynamics of the Xe van der Waals motions was obtained from the centrifugal distortion and from the changes in the planar moments of inertia in going from pyridine to pyridine...Xe.

  15. DAX: A Versatile Testbed for Xenon Detector R&D

    NASA Astrophysics Data System (ADS)

    Cutter, Jacob

    2016-03-01

    The DAX (DAvis Xenon) system serves as a test bed for liquid-xenon (LXe) detector research and development, particularly in the context of future dark matter direct detection searches. A number of important technologies are being tested in this system, including an active liquid-purity monitor, silicon photomultiplier sensors, wavelength shifters, and a direct measurement of the scintillation and ionization response of LXe to low-energy Pb-206 recoils. The last item is important because Pb-206 is a decay product of Po-210, which is a prominent surface background resulting from radon plate-out, and its behavior in LXe is poorly understood. I discuss the motivation and design of this system, along with the current status and recent results of its goals.

  16. Searching for Double Beta Decay with the Enriched Xenon Observatory

    SciTech Connect

    Hall, C.; /SLAC

    2007-03-16

    The Enriched Xenon Observatory (EXO) Collaboration is building a series of experiments to search for the neutrinoless double beta decay of {sup 136}Xe. The first experiment, known as EXO-200, will utilize 200 kg of xenon enriched to 80% in the isotope of interest, making it the largest double beta decay experiment to date by one order of magnitude. This experiment is rapidly being constructed, and will begin data taking in 2007. The EXO collaboration is also developing a technique to identify on an event-by-event basis the daughter barium ion of the double beta decay. If successful, this method would eliminate all conventional radioactive backgrounds to the decay, resulting in an ideal experiment. We summarize here the current status of EXO-200 construction and the barium tag R&D program.

  17. Xenon gamma-ray spectrometer for radioactive waste controlling complex

    NASA Astrophysics Data System (ADS)

    Ulin, S.; Novikov, A.; Dmitrenko, V.; Vlasik, K.; Krivova, K.; Petrenko, D.; Uteshev, Z.; Shustov, A.; Petkovich, E.

    2016-02-01

    Xenon detector based gamma-ray spectrometer for a radioactive waste sorting complex and its characteristics are described. It has been shown that the “thin-wall” modification of the detector allows better registration of low-energy gamma rays (tens of keV). The spectrometer is capable of operation in unfavorable field conditions and can identify radionuclides of interest in less than 1 second.

  18. Cryogenic Technology Development For The MEG Liquid Xenon Calorimeter

    SciTech Connect

    Haruyama, Tomiyoshi

    2008-02-21

    Cryogenic key technologies have been developed for the muon rare decay experiment (MEG) at the Paul Scherrer Institute, Switzerland. These technologies are the high power pulse tube cryocooler for precise temperature and pressure control of liquid xenon in the calorimeter, a purification system with a cryogenic liquid pump and a cryogenic dewar with 1000 L storage capacity. The paper describes the general concepts and the first test results of each technology. All the results imply a promising performance for the coming MEG experiment.

  19. Neutrino physics with multi-ton scale liquid xenon detectors

    SciTech Connect

    Baudis, L.; Ferella, A.; Kish, A.; Manalaysay, A.; Undagoitia, T. Marrodán; Schumann, M. E-mail: alfredo.ferella@lngs.infn.it E-mail: aaronm@ucdavis.edu E-mail: marc.schumann@lhep.unibe.ch

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and {sup 7}Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ∼ 2 × 10{sup −48} cm{sup 2} and WIMP masses around 50 GeV⋅c{sup −2}, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ∼ 6 GeV⋅c{sup −2} to cross sections above ∼ 4 × 10{sup −45}cm{sup 2}. DARWIN could reach a competitive half-life sensitivity of 5.6 × 10{sup 26} y to the neutrinoless double beta decay of {sup 136}Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

  20. Quench gases for xenon- (and krypton-) filled proportional counters

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Agrawal, P. C.

    1988-01-01

    Xenon-filled proportional counters are used extensively in astronomy, particularly in the hard X-ray region. The choice of quench gas can have a significant effect on the operating characteristics of the instrument although the data necessary to make the choice are not easily obtainable. Results which detail the performance obtained from both cylindrical and parallel field geometries for a wide variety of readily available, ultrahigh or research grade purity, quench gases are presented.

  1. Photoionization of atoms and molecules. [of hydrogen, helium, and xenon

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1976-01-01

    A literature review on the present state of knowledge in photoionization is presented. Various experimental techniques that have been developed to study photoionization, such as fluorescence and photoelectron spectroscopy, mass spectroscopy, are examined. Various atoms and molecules were chosen to illustrate these techniques, specifically helium and xenon atoms and hydrogen molecules. Specialized photoionization such as in positive and negative ions, excited states, and free radicals is also treated. Absorption cross sections and ionization potentials are also discussed.

  2. Excimer emission from high pressure microhollow cathode discharges in xenon

    SciTech Connect

    El-Habachi, A.; Schoenbach, K.H.

    1998-12-31

    By reducing the diameter of the cathode opening in hollow cathode discharge geometry to values on the order of 100 micrometers the authors were able to operate the discharged in argon and xenon in a direct current mode at atmospheric pressure. The micro-discharges have been shown to emit excimer radiation peaking at wavelengths of 130 nm and 170 nm, respectively. They have in this study particularly concentrated on the xenon VUV radiation. The emission from a 100 micrometers microhollow cathode discharge in xenon at pressures between 40 and 760 Torr was measured over the spectral range from 130 nm to 400 nm. At 40 Torr, the 147 nm Xenon resonance line dominates the emission spectra. There are some indications of the first continuum which extends from the resonance line towards longer wavelength. The second excimer continuum peaking at 170 nm appears at higher pressures. At pressures greater than 300 Torr, it dominates the emission spectra up to the longest recorded wavelength of 400 nm. In order to determine the absolute values of the excimer radiation the emission was compared to that of calibrated UV sources: a Hg lamp and a Deuterium lamp. The results gave them a value of the efficiency defined as the ratio of the optical power of the excimer emitter to the input electrical power, of 5.3% and 6.3%, respectively. A single discharge, which was in this experiment run with a current of 3 mA at a forward voltage of 200 to 250 V, emits therefore {approximately}40 mW of VUV radiation concentrated in the spectral range from 150 to 190 nm. The possibility to operate the discharges in parallel opens the possibility to fabricate scalable flat panel excimer lamps.

  3. Allende meteorite: Isotopically anomalous xenon is accompanied by normal osmium.

    PubMed

    Takahashi, H; Higuchi, H; Gros, J; Morgan, J W; Anders, E

    1976-12-01

    The (184)Os/(190)Os ratio of six Allende meteorite samples was determined by neutron activation analysis. Four chromite concentrates gave a ratio differing from the terrestrial ratio by only -0.1 +/- 0.4%, although they contained highly anomalous xenon enriched by up to 67% in (124)Xe and 93% in (136)Xe. In view of this result and the normal isotopic composition of carbon and oxygen in these fractions, it seems very unlikely that the xenon anomalies were produced in a supernova by the p and r processes. More probably, the xenon anomalies were established in the early solar system, by mass fractionation during trapping of noble gases in solids and by spontaneous fission of a superheavy element.Two other samples, containing osmium from the calcium,aluminum-rich inclusions, also gave an (184)Os/(190)Os ratio within -0.1 +/- 0.5% of the terrestrial value, although these inclusions show well-established anomalies in the light elements oxygen and magnesium, which appear to be due to pre-solar dust grains of distinctive nuclear history. Apparently the stellar source of the anomalous oxygen and magnesium did not synthesize heavier elements.

  4. Allende meteorite: Isotopically anomalous xenon is accompanied by normal osmium

    PubMed Central

    Takahashi, H.; Higuchi, H.; Gros, Jacques; Morgan, John W.; Anders, Edward

    1976-01-01

    The 184Os/190Os ratio of six Allende meteorite samples was determined by neutron activation analysis. Four chromite concentrates gave a ratio differing from the terrestrial ratio by only -0.1 ± 0.4%, although they contained highly anomalous xenon enriched by up to 67% in 124Xe and 93% in 136Xe. In view of this result and the normal isotopic composition of carbon and oxygen in these fractions, it seems very unlikely that the xenon anomalies were produced in a supernova by the p and r processes. More probably, the xenon anomalies were established in the early solar system, by mass fractionation during trapping of noble gases in solids and by spontaneous fission of a superheavy element. Two other samples, containing osmium from the calcium,aluminum-rich inclusions, also gave an 184Os/190Os ratio within -0.1 ± 0.5% of the terrestrial value, although these inclusions show well-established anomalies in the light elements oxygen and magnesium, which appear to be due to pre-solar dust grains of distinctive nuclear history. Apparently the stellar source of the anomalous oxygen and magnesium did not synthesize heavier elements. PMID:16592365

  5. Very-low-field MRI of laser polarized xenon-129

    NASA Astrophysics Data System (ADS)

    Zheng, Yuan; Cates, Gordon D.; Tobias, William A.; Mugler, John P.; Miller, G. Wilson

    2014-12-01

    We describe a homebuilt MRI system for imaging laser-polarized xenon-129 at a very low holding field of 2.2 mT. A unique feature of this system was the use of Maxwell coils oriented at so-called 'magic angles' to generate the transverse magnetic field gradients, which provided a simple alternative to Golay coils. We used this system to image a laser-polarized xenon-129 phantom with both a conventional gradient-echo and a fully phase-encoded pulse sequence. In other contexts, a fully phase-encoded acquisition, also known as single-point or constant-time imaging, has been used to enable distortion-free imaging of short-T2∗species. Here we used this technique to overcome imperfections associated with our homebuilt MRI system while also taking full advantage of the long T2∗available at very low field. Our results demonstrate that xenon-129 image quality can be dramatically improved at low field by combining a fully phase-encoded k-space acquisition with auxiliary measurements of system imperfections including B0 field drift and gradient infidelity.

  6. Isotopic signature of atmospheric xenon released from light water reactors.

    PubMed

    Kalinowski, Martin B; Pistner, Christoph

    2006-01-01

    A global monitoring system for atmospheric xenon radioactivity is being established as part of the International Monitoring System to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The isotopic activity ratios of (135)Xe, (133m)Xe, (133)Xe and (131m)Xe are of interest for distinguishing nuclear explosion sources from civilian releases. Simulations of light water reactor (LWR) fuel burn-up through three operational reactor power cycles are conducted to explore the possible xenon isotopic signature of nuclear reactor releases under different operational conditions. It is studied how ratio changes are related to various parameters including the neutron flux, uranium enrichment and fuel burn-up. Further, the impact of diffusion and mixing on the isotopic activity ratio variability are explored. The simulations are validated with reported reactor emissions. In addition, activity ratios are calculated for xenon isotopes released from nuclear explosions and these are compared to the reactor ratios in order to determine whether the discrimination of explosion releases from reactor effluents is possible based on isotopic activity ratios.

  7. High-pressure xenon detector development at Constellation Technology Corporation

    NASA Astrophysics Data System (ADS)

    Austin, Robert A.

    2007-08-01

    Xenon-filled ionization detectors, due to their high atomic number fill gas ( Z=54), moderate densities (˜0.3-0.5 g/cm 3) and good energy resolution (2-4% at 662 keV), fill an important niche between more familiar technologies such as NaI(Tl) scintillators and germanium detectors. Until recently, difficulties with obtaining sufficient xenon purity, reducing microphonic sensitivity, and developing low-noise electronics compatible with small ionization signals have hampered the development of this nuclear detection field. Constellation Technology Corporation, whose experience with xenon detectors goes back to the mid 1990s, has made significant progress in these areas and has developed a commercial line of detectors with active volumes ranging from small (35 g Xe) to large (1400 g Xe). Current applications for Constellation's detectors are principally in the area of defense (Unmanned Aerial Vehicles and Advanced Spectroscopic Portals), but as awareness of this technology grows, it will surely find applications in a much expanded range of fields.

  8. A Comprehensive Study of the Large Underground Xenon Detector

    NASA Astrophysics Data System (ADS)

    Woods, Michael Austin

    The Large Underground Xenon (LUX) dark matter search experiment operates a time projection chamber constructed of 370 kg of xenon, currently installed in the Homestake gold mine. The goal of the experiment is to detect Weakly Interacting Massive Particles (WIMPs). Novel calibration methods for this uniquely large detector are discussed. Background events due to standard model physics processes including cosmogenically activated xenon, alpha emission, and neutron production are shown to be negligible in recent 85 day WIMP search data. The LUX Monte Carlo simulation includes a new physical model, the Nobel Element Simulation Technique (NEST), for scintillation and ionization. NEST describes energy-, particle-, field- and medium-dependent behavior of a charge recombination model. A simulated data acquisition chain that bridges the gap between simulation and data has been developed to permit full testing of the analysis tools employed by LUX. Signal generation by cumulative photon responses are described algorithmically. Computational optimization has been performed to decrease processing time by a factor of fifty. A new technique for event depth estimation using machine learning and image analysis is introduced. Variable length waveforms are converted to fixed dimension field maps for use in machine learning. A support vector machine trained against pulse shapes with known depth successfully regressed depth without direct measurement of highly variable pulse widths. The world's most stringent limits on spin-independent WIMP-nucleon scattering cross section are presented.

  9. A coherent understanding of low-energy nuclear recoils in liquid xenon

    SciTech Connect

    Sorensen, Peter

    2010-09-01

    Liquid xenon detectors such as XENON10 and XENON100 obtain a significant fraction of their sensitivity to light (∼<10 GeV) particle dark matter by looking for nuclear recoils of only a few keV, just above the detector threshold. Yet in this energy regime a correct treatment of the detector threshold and resolution remains unclear. The energy dependence of the scintillation yield of liquid xenon for nuclear recoils also bears heavily on detector sensitivity, yet numerous measurements have not succeeded in obtaining concordant results. In this article we show that the ratio of detected ionization to scintillation can be leveraged to constrain the scintillation yield. We also present a rigorous treatment of liquid xenon detector threshold and energy resolution. Notably, the effective energy resolution differs significantly from a simple Poisson distribution. We conclude with a calculation of dark matter exclusion limits, and show that existing data from liquid xenon detectors strongly constrain recent interpretations of light dark matter.

  10. A coherent understanding of low-energy nuclear recoils in liquid xenon

    NASA Astrophysics Data System (ADS)

    Sorensen, Peter

    2010-09-01

    Liquid xenon detectors such as XENON10 and XENON100 obtain a significant fraction of their sensitivity to light (lesssim10 GeV) particle dark matter by looking for nuclear recoils of only a few keV, just above the detector threshold. Yet in this energy regime a correct treatment of the detector threshold and resolution remains unclear. The energy dependence of the scintillation yield of liquid xenon for nuclear recoils also bears heavily on detector sensitivity, yet numerous measurements have not succeeded in obtaining concordant results. In this article we show that the ratio of detected ionization to scintillation can be leveraged to constrain the scintillation yield. We also present a rigorous treatment of liquid xenon detector threshold and energy resolution. Notably, the effective energy resolution differs significantly from a simple Poisson distribution. We conclude with a calculation of dark matter exclusion limits, and show that existing data from liquid xenon detectors strongly constrain recent interpretations of light dark matter.

  11. Gamma detectors based on high pressure xenon: their development and application

    NASA Astrophysics Data System (ADS)

    Ulin, Sergey E.; Dmitrenko, Valery V.; Grachev, V. M.; Uteshev, Z. M.; Vlasic, K. F.; Chernysheva, I. V.; Duhvalov, A. G.; Kotler, F. G.; Pushkin, K. N.

    2004-01-01

    Various modifications of xenon detectors and their parameters in comparison with gamma-detectors of other types are considered. Prospects of xenon detectors' applications in gamma-spectroscopy based on experimental results are discussed including detection and control of radioactive and fissile materials displacement, definition of uranium enrichment rate, and measurements of nuclear reactor radioactive gas waste concentration. Possibilities for xenon detector use for environmental control and measurement of cosmic gamma radiation on orbital stations are considered.

  12. Gamma detectors based on high-pressure xenon: their development and application

    NASA Astrophysics Data System (ADS)

    Ulin, Sergey E.; Dmitrenko, Valery V.; Grachev, V. M.; Uteshev, Z. M.; Vlasik, K. F.; Chernysheva, I. V.; Dukhvalov, A. G.; Kotler, F. G.; Pushkin, K. N.

    2004-10-01

    Various modifications of xenon detectors and their parameters in comparison with gamma-detectors of other types are considered. Prospects of xenon detectors' applicatins in gamma-spectroscopy based on experimental results are discussed including detection and control of radioactive and fissile materials displacement, definition of uranium enrichment rate, and measurements of nuclear reactor radioactive gas waste concentration. Possibilities for xenon detector use for environmental control and measurement of cosmic gamma radiation on orbital stations are considered.

  13. NMR investigations of surfaces and interfaces using spin-polarized xenon

    SciTech Connect

    Gaede, H C

    1995-07-01

    {sup 129}Xe NMR is potentially useful for the investigation of material surfaces, but has been limited to high surface area samples in which sufficient xenon can be loaded to achieve acceptable signal to noise ratios. In Chapter 2 conventional {sup 129}Xe NMR is used to study a high surface area polymer, a catalyst, and a confined liquid crystal to determine the topology of these systems. Further information about the spatial proximity of different sites of the catalyst and liquid crystal systems is determined through two dimensional exchange NMR in Chapter 3. Lower surface area systems may be investigated with spin-polarized xenon, which may be achieved through optical pumping and spin exchange. Optically polarized xenon can be up to 10{sup 5} times more sensitive than thermally polarized xenon. In Chapter 4 highly polarized xenon is used to examine the surface of poly(acrylonitrile) and the formation of xenon clathrate hydrates. An attractive use of polarized xenon is as a magnetization source in cross polarization experiments. Cross polarization from adsorbed polarized xenon may allow detection of surface nuclei with drastic enhancements. A non-selective low field thermal mixing technique is used to enhance the {sup 13}C signal of CO{sub 2} of xenon occluded in solid CO{sub 2} by a factor of 200. High-field cross polarization from xenon to proton on the surface of high surface area polymers has enabled signal enhancements of {approximately}1,000. These studies, together with investigations of the efficiency of the cross polarization process from polarized xenon, are discussed in Chapter 5. Another use of polarized xenon is as an imaging contrast agent in systems that are not compatible with traditional contrast agents. The resolution attainable with this method is determined through images of structured phantoms in Chapter 6.

  14. Diffusion NMR methods applied to xenon gas for materials study.

    PubMed

    Mair, R W; Rosen, M S; Wang, R; Cory, D G; Walsworth, R L

    2002-12-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. PMID:12807139

  15. Diffusion NMR methods applied to xenon gas for materials study

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  16. Early outgassing of Mars supported by differential water solubility of iodine and xenon

    NASA Technical Reports Server (NTRS)

    Musselwhite, Donald S.; Drake, Michael J.; Swindle, Timothy D.

    1991-01-01

    The Martian atmosphere has a high X-129/Xe-132 ratio compared to the Martian mantle. As Xe-129 is the daughter product of the extinct nuclide I-129, a means of fractionating iodine from xenon early in Martian history appears necessary to account for the X-129/Xe-132 ratios of its known reservoirs. A model is presented here to account for the Marian xenon data which relies on the very different solubilities of xenon and iodine in water to fractionate them after outgassing. Atmospheric xenon is lost by impact erosion during heavy bombardment, followed by release of Xe-129 produced from I-129 decay in the crust.

  17. Solubility of xenon in amino-acid solutions. II. Nine less-soluble amino acids

    NASA Astrophysics Data System (ADS)

    Kennan, Richard P.; Himm, Jeffrey F.; Pollack, Gerald L.

    1988-05-01

    Ostwald solubility (L) of xenon gas, as the radioisotope 133Xe, has been measured as a function of solute concentration, at 25.0 °C, in aqueous solutions of nine amino acids. The amino-acid concentrations investigated covered much of their solubility ranges in water, viz., asparagine monohydrate (0-0.19 M), cysteine (0-1.16 M), glutamine (0-0.22 M), histidine (0-0.26 M), isoleucine (0-0.19 M), methionine (0-0.22 M), serine (0-0.38 M), threonine (0-1.4 M), and valine (0-0.34 M). We have previously reported solubility results for aqueous solutions of six other, generally more soluble, amino acids (alanine, arginine, glycine, hydroxyproline, lysine, and proline), of sucrose and sodium chloride. In general, L decreases approximately linearly with increasing solute concentration in these solutions. If we postulate that the observed decreases in gas solubility are due to hydration, the results under some assumptions can be used to calculate hydration numbers (H), i.e., the number of H2O molecules associated with each amino-acid solute molecule. The average values of hydration number (H¯) obtained at 25.0 °C are 15.3±1.5 for asparagine, 6.8±0.3 for cysteine, 11.5±1.1 for glutamine, 7.3±0.7 for histidine, 5.9±0.4 for isoleucine, 10.6±0.8 for methionine, 11.2±1.3 for serine, 7.7± 1.0 for threonine, and 6.6±0.6 for valine. We have also measured the temperature dependence of solubility L(T) from 5-40 °C for arginine, glycine, and proline, and obtained hydration numbers H¯(T) in this range. Between 25-40 °C, arginine has an H¯ near zero. This may be evidence for an attractive interaction between xenon and arginine molecules in aqueous solution.

  18. Probing Oxygen Activation Sites in Two Flavoprotein Oxidases Using Chloride as an Oxygen Surrogate

    SciTech Connect

    Kommoju, Phaneeswara-Rao; Chen, Zhi-wei; Bruckner, Robert C.; Mathews, F. Scott; Jorns, Marilyn Schuman

    2011-08-16

    A single basic residue above the si-face of the flavin ring is the site of oxygen activation in glucose oxidase (GOX) (His516) and monomeric sarcosine oxidase (MSOX) (Lys265). Crystal structures of both flavoenzymes exhibit a small pocket at the oxygen activation site that might provide a preorganized binding site for superoxide anion, an obligatory intermediate in the two-electron reduction of oxygen. Chloride binds at these polar oxygen activation sites, as judged by solution and structural studies. First, chloride forms spectrally detectable complexes with GOX and MSOX. The protonated form of His516 is required for tight binding of chloride to oxidized GOX and for rapid reaction of reduced GOX with oxygen. Formation of a binary MSOX-chloride complex requires Lys265 and is not observed with Lys265Met. Binding of chloride to MSOX does not affect the binding of a sarcosine analogue (MTA, methylthioactetate) above the re-face of the flavin ring. Definitive evidence is provided by crystal structures determined for a binary MSOX-chloride complex and a ternary MSOX-chloride-MTA complex. Chloride binds in the small pocket at a position otherwise occupied by a water molecule and forms hydrogen bonds to four ligands that are arranged in approximate tetrahedral geometry: Lys265:NZ, Arg49:NH1, and two water molecules, one of which is hydrogen bonded to FAD:N5. The results show that chloride (i) acts as an oxygen surrogate, (ii) is an effective probe of polar oxygen activation sites, and (iii) provides a valuable complementary tool to the xenon gas method that is used to map nonpolar oxygen-binding cavities.

  19. Chloride Channels of Intracellular Membranes

    PubMed Central

    Edwards, John C.; Kahl, Christina R.

    2010-01-01

    Proteins implicated as intracellular chloride channels include the intracellular ClC proteins, the bestrophins, the cystic fibrosis transmembrane conductance regulator, the CLICs, and the recently described Golgi pH regulator. This paper examines current hypotheses regarding roles of intracellular chloride channels and reviews the evidence supporting a role in intracellular chloride transport for each of these proteins. PMID:20100480

  20. Xenon arc lamp spectral radiance modelling for satellite instrument calibration

    NASA Astrophysics Data System (ADS)

    Rolt, Stephen; Clark, Paul; Schmoll, Jürgen; Shaw, Benjamin J. R.

    2016-07-01

    Precise radiometric measurements play a central role in many areas of astronomical and terrestrial observation. We focus on the use of continuum light sources in the absolute radiometric calibration of detectors in an imaging spectrometer for space applications. The application, in this instance, revolves around the ground based calibration of the Sentinel-4/UVN instrument. This imaging spectrometer instrument is expected to be deployed in 2019 and will make spatially resolved spectroscopic measurements of atmospheric chemistry. The instrument, which operates across the UV/VIS and NIR spectrum from 305-775 nm, is designed to measure the absolute spectral radiance of the Earth and compare it with the absolute spectral irradiance of the Sun. Of key importance to the fidelity of these absolute measurements is the ground based calibration campaign. Continuum lamp sources that are temporally stable and are spatially well defined are central to this process. Xenon short arc lamps provide highly intense and efficient continuum illumination in a range extending from the ultra-violet to the infra-red and their spectrum is well matched to this specific application. Despite their widespread commercial use, certain aspects of their performance are not well documented in the literature. One of the important requirements in this calibration application is the delivery of highly uniform, collimated illumination at high radiance. In this process, it cannot be assumed that the xenon arc is a point source; the spatial distribution of the radiance must be characterised accurately. We present here careful measurements that thoroughly characterise the spatial distribution of the spectral radiance of a 1000W xenon lamp. A mathematical model is presented describing the spatial distribution. Temporal stability is another exceptionally important requirement in the calibration process. As such, the paper also describes strategies to re-inforce the temporal stability of the lamp output by

  1. Physics reach of the XENON1T dark matter experiment.

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arazi, L.; Arneodo, F.; Balan, C.; Barrow, P.; Baudis, L.; Bauermeister, B.; Berger, T.; Breur, P.; Breskin, A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Contreras, H.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Di Gangi, P.; Di Giovanni, A.; Duchovni, E.; Fattori, S.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Galloway, M.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Gross, E.; Hampel, W.; Hasterok, C.; Itay, R.; Kaether, F.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Le Calloch, M.; Levy, C.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Lyashenko, A.; Macmullin, S.; Manfredini, A.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Mayani, D.; Melgarejo Fernandez, A. J.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Simgen, H.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; von Sivers, M.; Wall, R.; Wang, H.; Weber, M.; Wei, Y.; Weinheimer, C.; Wulf, J.; Zhang, Y.

    2016-04-01

    The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80 ± 0.15) · 10-4 (kg·day·keV)-1, mainly due to the decay of 222Rn daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 ± 0.1) (t·y)-1 from radiogenic neutrons, (1.8 ± 0.3) · 10-2 (t·y)-1 from coherent scattering of neutrinos, and less than 0.01 (t·y)-1 from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency Script Leff, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 t fiducial volume, the sensitivity reaches a minimum cross section of 1.6 · 10-47 cm2 at mχ = 50 GeV/c2.

  2. Chondritic xenon in the Earth’s mantle

    NASA Astrophysics Data System (ADS)

    Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G.; Füri, Evelyn; Marty, Bernard

    2016-05-01

    Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth’s mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth’s mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth’s accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.

  3. Heat capacity of xenon adsorbed on nanobundle grooves

    NASA Astrophysics Data System (ADS)

    Chishko, K. A.; Sokolova, E. S.

    2016-02-01

    A model of a one-dimensional nonideal gas in an external transverse force field is used to interpret the experimentally observed thermodynamic properties of xenon deposited in grooves on the surface of carbon nanobundles. A nonideal gas model with pairwise interactions is not entirely adequate for describing dense adsorbates (at low temperatures), but makes it easy to account for the exchange of particles between the 1D adsorbate and the 3D atmosphere, which is an important factor at intermediate (on the order of 35 K for xenon) and, especially, high (˜100 K) temperatures. In this paper, we examine a 1D real gas taking only the one-dimensional Lennard-Jones interaction into account, but under exact equilibrium with respect to the number of particles between the 1D adsorbate and the 3D atmosphere of the measurement cell. The low-temperature branch of the specific heat is fitted independently by an elastic chain model so as to obtain the best agreement between theory and experiment over the widest possible region, beginning at zero temperature. The gas approximation sets in after temperatures for which the phonon specific heat of the chain essentially transforms to a one-dimensional equipartition law. Here the basic parameters of both models can be chosen so that the heat capacity C(T) of the chain transforms essentially continuously into the corresponding curve for the gas approximation. Thus, it can be expected that an adequate interpretation of the real temperature dependences of the specific heat of low-dimensionality atomic adsorbates can be obtained through a reasonable combination of the phonon and gas approximations. The main parameters of the gas approximation (such as the desorption energy) obtained by fitting the theory to experiments on the specific heat of xenon correlate well with published data.

  4. Xenon Sputter Yield Measurements for Ion Thruster Materials

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Gardner, Michael M.; Johnson, Mark L.; Wilbur, Paul J.

    2003-01-01

    In this paper, we describe a technique that was used to measure total and differential sputter yields of materials important to high specific impulse ion thrusters. The heart of the technique is a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. Differential sputtering yields were generally measured over a full 180 deg arc in a plane that included the beam centerline and the normal vector to the target surface. Sputter yield results are presented for a xenon ion energy range from 0.5 to 10 keV and an angle of incidence range from 0 deg to 70 deg from the target surface normal direction for targets consisting of molybdenum, titanium, solid (Poco) graphite, and flexible graphite (grafoil). Total sputter yields are calculated using a simple integration procedure and comparisons are made to sputter yields obtained from the literature. In general, the agreement between the available data is good. As expected for heavy xenon ions, the differential and total sputter yields are found to be strong functions of angle of incidence. Significant under- and over-cosine behavior is observed at low- and high-ion energies, respectively. In addition, strong differences in differential yield behavior are observed between low-Z targets (C and Ti) and high-Z targets (Mo). Curve fits to the differential sputter yield data are provided. They should prove useful to analysts interested in predicting the erosion profiles of ion thruster components and determining where the erosion products re-deposit.

  5. Evaluation of carrier agents for hyperpolarized xenon MRI

    NASA Technical Reports Server (NTRS)

    Venkatesh, A. K.; Zhao, L.; Balamore, D.; Jolesz, F. A.; Albert, M. S.

    2000-01-01

    Several biocompatible carrier agents, in which xenon is highly soluble and has a long T(1), were tested, and injected in living rats. These included saline, Intralipid suspension, perfluorocarbon emulsion and (129)Xe gas-filled liposomes. The T(1) of (129)Xe in these compounds ranged from 47 to 116 s. Vascular injection of these carrier agents was tolerated well, encouraging their use for further experiments in live animals. In vivo spectra, obtained from gas-filled liposomes and perfluorocarbon solutions, suggest that these carrier agents have potential for use in angiography and perfusion imaging. Copyright 2000 John Wiley & Sons, Ltd.

  6. The polarization sensitivity of the liquid xenon imaging telescope

    NASA Technical Reports Server (NTRS)

    Aprile, E.; Bolotnikov, A.; Chen, D.; Mukherjee, R.; Xu, F.

    1994-01-01

    The properties and the expected performance of a liquid xenon (LXe) gamma-ray imaging telescope, optimized for the MeV energy region, are presented. The unique potential of this telescope as a Compton polarimeter is particularly emphasized. Based on Monte Carlo simulations, we show that the modulation factor is as high as 40% at 1 MeV with a detection efficiency close to 20%. These figures of merit, combined with the excellent background suppression capability of the three-dimensional position sensitive LXe detector, yield sensitivity at the 3 sigma level to polarization fractions as small as a few percent for strong sources, even in a balloon flight.

  7. The polarization sensitivity of the liquid xenon imaging telescope

    NASA Technical Reports Server (NTRS)

    Aprile, Elena; Bolotnikov, A.; Chen, D.; Mukherjee, R.

    1993-01-01

    The properties and the expected performance of a liquid xenon (LXe) gamma ray imaging telescope, optimized for the MeV energy region, are presented. The unique potential of this telescope as a Compton polarimeter is particularly emphasized. Based on Monte Carlo simulations we show that the modulation factor is as high as 40 percent at 1 MeV with a detection efficiency close to 20 percent. These figures of merit combined with the excellent background suppression capability of the three dimensional position sensitive LXe detector yield sensitivity at the three sigma level to polarization fractions as small as a few percent for strong sources, even in a balloon flight.

  8. Mission Advantages of NEXT: Nasa's Evolutionary Xenon Thruster

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Gefert, Leon; Benson, Scott; Patterson, Michael; Noca, Muriel; Sims, Jon

    2002-01-01

    With the demonstration of the NSTAR propulsion system on the Deep Space One mission, the range of the Discovery class of NASA missions can now be expanded. NSTAR lacks, however, sufficient performance for many of the more challenging Office of Space Science (OSS) missions. Recent studies have shown that NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system is the best choice for many exciting potential OSS missions including outer planet exploration and inner solar system sample returns. The NEXT system provides the higher power, higher specific impulse, and higher throughput required by these science missions.

  9. Mechanism for transient migration of xenon in UO2

    NASA Astrophysics Data System (ADS)

    Liu, X.-Y.; Uberuaga, B. P.; Andersson, D. A.; Stanek, C. R.; Sickafus, K. E.

    2011-04-01

    In this letter, we report recent work on atomistic modeling of diffusion migration events of the fission gas product xenon in UO2 nuclear fuel. Under nonequilibrium conditions, Xe atoms can occupy the octahedral interstitial site, in contrast to the thermodynamically most stable uranium substitutional site. A transient migration mechanism involving Xe and two oxygen atoms is identified using basin constrained molecular dynamics employing a Buckingham type interatomic potential. This mechanism is then validated using density functional theory calculations using the nudged elastic band method. An overall reduction in the migration barrier of 1.6-2.7 eV is obtained compared to vacancy-mediated diffusion on the uranium sublattice.

  10. Xenon gamma-ray detector for ecological applications

    NASA Astrophysics Data System (ADS)

    Novikov, Alexander S.; Ulin, Sergey E.; Chernysheva, Irina V.; Dmitrenko, Valery V.; Grachev, Victor M.; Petrenko, Denis V.; Shustov, Alexander E.; Uteshev, Ziyaetdin M.; Vlasik, Konstantin F.

    2015-01-01

    A description of the xenon detector (XD) for ecological applications is presented. The detector provides high energy resolution and is able to operate under extreme environmental conditions (wide temperature range and unfavorable acoustic action). Resistance to acoustic noise as well as improvement in energy resolution has been achieved by means of real-time digital pulse processing. Another important XD feature is the ionization chamber's thin wall with composite housing, which significantly decreases the mass of the device and expands its energy range, especially at low energies.

  11. Frequency-Dependent Viscosity of Xenon Near the Critical Point

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    1999-01-01

    We used a novel, overdamped oscillator aboard the Space Shuttle to measure the viscosity eta of xenon near its critical density rho(sub c), and temperature T(sub c). In microgravity, useful data were obtained within 0.1 mK of T(sub c), corresponding to a reduced temperature t = (T -T(sub c))/T(sub c) = 3 x 10(exp -7). The data extend two decades closer to T(sub c) than the best ground measurements, and they directly reveal the expected power-law behavior eta proportional to t(sup -(nu)z(sub eta)). Here nu is the correlation length exponent, and our result for the small viscosity exponent is z(sub eta) = 0.0690 +/- 0.0006. (All uncertainties are one standard uncertainty.) Our value for z(sub eta) depends only weakly on the form of the viscosity crossover function, and it agrees with the value 0.067 +/- 0.002 obtained from a recent two-loop perturbation expansion. The measurements spanned the frequency range 2 Hz less than or equal to f less than or equal to 12 Hz and revealed viscoelasticity when t less than or equal to 10(exp -1), further from T(sub c) than predicted. The viscoelasticity scales as Af(tau), where tau is the fluctuation-decay time. The fitted value of the viscoelastic time-scale parameter A is 2.0 +/- 0.3 times the result of a one-loop perturbation calculation. Near T(sub c), the xenon's calculated time constant for thermal diffusion exceeded days. Nevertheless, the viscosity results were independent of the xenon's temperature history, indicating that the density was kept near rho(sub c), by judicious choices of the temperature vs. time program. Deliberately bad choices led to large density inhomogeneities. At t greater than 10(exp -5), the xenon approached equilibrium much faster than expected, suggesting that convection driven by microgravity and by electric fields slowly stirred the sample.

  12. A 5-kW xenon ion thruster lifetest

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Verhey, Timothy R.

    1990-01-01

    The results of the first life test of a high power ring-cusp ion thruster are presented. A 30-cm laboratory model thruster was operated steady-state at a nominal beam power of 5 kW on xenon propellant for approximately 900 hours. This test was conducted to identify life-timing erosion modifications, and to demonstrate operation using simplified power processing. The results from this test are described including the conclusions derived from extensive post-test analyses of the thruster. Modifications to the thruster and ground support equipment, which were incorporated to solve problems identified by the lifetest, are also described.

  13. Simplified Ion Thruster Xenon Feed System for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Hofer, Richard R.; Goebel, Dan M.

    2009-01-01

    The successful implementation of ion thruster technology on the Deep Space 1 technology demonstration mission paved the way for its first use on the Dawn science mission, which launched in September 2007. Both Deep Space 1 and Dawn used a "bang-bang" xenon feed system which has proven to be highly successful. This type of feed system, however, is complex with many parts and requires a significant amount of engineering work for architecture changes. A simplified feed system, with fewer parts and less engineering work for architecture changes, is desirable to reduce the feed system cost to future missions. An attractive new path for ion thruster feed systems is based on new components developed by industry in support of commercial applications of electric propulsion systems. For example, since the launch of Deep Space 1 tens of mechanical xenon pressure regulators have successfully flown on commercial spacecraft using electric propulsion. In addition, active proportional flow controllers have flown on the Hall-thruster-equipped Tacsat-2, are flying on the ion thruster GOCE mission, and will fly next year on the Advanced EHF spacecraft. This present paper briefly reviews the Dawn xenon feed system and those implemented on other xenon electric propulsion flight missions. A simplified feed system architecture is presented that is based on assembling flight-qualified components in a manner that will reduce non-recurring engineering associated with propulsion system architecture changes, and is compared to the NASA Dawn standard. The simplified feed system includes, compared to Dawn, passive high-pressure regulation, a reduced part count, reduced complexity due to cross-strapping, and reduced non-recurring engineering work required for feed system changes. A demonstration feed system was assembled using flight-like components and used to operate a laboratory NSTAR-class ion engine. Feed system components integrated into a single-string architecture successfully operated

  14. Shear Thinning Near the Critical Point of Xenon

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.; Yao, Minwu

    2008-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids, near the critical point of xenon. The data span a wide range of reduced shear rate: 10(exp -3) < gamma-dot tau < 700, where gamma-dot tau is the shear rate scaled by the relaxation time tau of critical fluctuations. The measurements had a temperature resolution of 0.01 mK and were conducted in microgravity aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity. The viscometer measured the drag on a delicate nickel screen as it oscillated in the xenon at amplitudes 3 mu,m < chi (sub 0) >430 mu, and frequencies 1 Hz < omega/2 pi < 5 Hz. To separate shear thinning from other nonlinearities, we computed the ratio of the viscous force on the screen at gamma-dot tau to the force at gamma-dot tau approximates 0: C(sub gamma) is identical with F(chi(sub 0), omega tau, gamma-dot tau )/F)(chi(sub 0, omega tau, 0). At low frequencies, (omega tau)(exp 2) < gamma-dot tau, C(sub gamma) depends only on gamma-dot tau, as predicted by dynamic critical scaling. At high frequencies, (omega tau)(exp 2) > gamma-dot tau, C(sub gamma) depends also on both x(sub 0) and omega. The data were compared with numerical calculations based on the Carreau-Yasuda relation for complex fluids: eta(gamma-dot)/eta(0)=[1+A(sub gamma)|gamma-dot tau|](exp - chi(sub eta)/3+chi(sub eta)), where chi(sub eta) =0.069 is the critical exponent for viscosity and mode-coupling theory predicts A(sub gamma) =0.121. For xenon we find A(sub gamma) =0.137 +/- 0.029, in agreement with the mode coupling value. Remarkably, the xenon data close to the critical temperature T(sub c) were independent of the cooling rate (both above and below T(sub c) and these data were symmetric about T(sub c) to within a temperature scale factor. The scale factors for the magnitude of the oscillator s response differed from those for the oscillator's phase; this suggests that the surface tension of the two

  15. Krypton and xenon in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Hoffman, J. H.; Hodges, R. R., Jr.

    1981-01-01

    The paper reports a determination by the Pioneer Venus large probe neutral mass spectrometer of upper limits to the concentration of krypton and xenon along with most of their isotopes in the atmosphere of Venus. The upper limit to the krypton mixing ratio is estimated at 47 ppb, with a very conservative estimate at 69 ppb. The probable upper limit to the sum of the mixing ratios of the isotopes Xe-128, Xe-129, Xe-130, Xe-131, and Xe-132 is 40 ppb by volume, with a very conservative upper limit three times this large.

  16. Excimer Emission from Pulsed Tandem Microhollow Cathode Discharges in Xenon

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Joon; Rahaman, Hasibur; Nam, Sang Hoon; Iberler, Marcus; Teske, Christian; Jacoby, Joachim; Frank, Klaus

    2012-05-01

    This paper describes an extension of a basic single microhollow cathode discharge (MHCD) to a tandem MHCD, i.e., two discharges in series from an anode-cathode-anode configuration. When a high-voltage pulse is superimposed with a direct current (DC) tandem MHCD, an intense excimer emission along the discharge axis in a high pressure xenon gas is generated which is two orders of magnitude higher than that of the DC tandem MHCD. In addition, the emission intensity increases to almost twice by increasing cathode thickness from 250 to 1000 µm. The emission is further enhanced by increasing the gas pressure from 400 to 800 mbar.

  17. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    The benefits of high-power solar electric propulsion (SEP) for both NASA's human and science exploration missions combined with the technology investment from the Space Technology Mission Directorate have enabled the development of a 50kW-class SEP mission. NASA mission concepts developed, including the Asteroid Redirect Robotic Mission, and those proposed by contracted efforts for the 30kW-class demonstration have a range of xenon propellant loads from 100's of kg up to 10,000 kg. A xenon propellant load of 10 metric tons represents greater than 10% of the global annual production rate of xenon. A single procurement of this size with short-term delivery can disrupt the xenon market, driving up pricing, making the propellant costs for the mission prohibitive. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper discusses approaches for acquiring on the order of 10 MT of xenon propellant considering realistic programmatic constraints to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for mission campaigns utilizing multiple high-power solar electric propulsion vehicles requiring 100's of metric tons of xenon over an extended period of time where a longer term acquisition approach could be implemented.

  18. Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.

    PubMed

    Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z

    2014-08-14

    The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found.

  19. Design and comparison of exchange spectroscopy approaches to cryptophane-xenon host-guest kinetics

    NASA Astrophysics Data System (ADS)

    Korchak, Sergey; Kilian, Wolfgang; Schröder, Leif; Mitschang, Lorenz

    2016-04-01

    Exchange spectroscopy is used in combination with a variation of xenon concentration to disentangle the kinetics of the reversible binding of xenon to cryptophane-A. The signal intensity of either free or crytophane-bound xenon decays in a manner characteristic of the underlying exchange reactions when the spins in the other pool are perturbed. Three experimental approaches, including the well-known Hyper-CEST method, are shown to effectively entail a simple linear dependence of the signal depletion rate, or of a related quantity, on free xenon concentration. This occurs when using spin pool saturation or inversion followed by free exchange. The identification and quantification of contributions to the binding kinetics is then straightforward: in the depletion rate plot, the intercept at the vanishing free xenon concentration represents the kinetic rate coefficient for xenon detachment from the host by dissociative processes while the slope is indicative of the kinetic rate coefficient for degenerate exchange reactions. Comparing quantified kinetic rates for hyperpolarized xenon in aqueous solution reveals the high accuracy of each approach but also shows differences in the precision of the numerical results and in the requirements for prior knowledge. Because of their broad range of applicability the proposed exchange spectroscopy experiments can be readily used to unravel the kinetics of complex formation of xenon with host molecules in the various situations appearing in practice.

  20. Mobility and fluorescence of barium ions in xenon gas for the exo experiment

    NASA Astrophysics Data System (ADS)

    Benitez Medina, Julio Cesar

    The Enriched Xenon Observatory (EXO) is an experiment which aims to observe the neutrinoless double beta decay of 136Xe. The measurement of this decay would give information about the absolute neutrino mass and whether or not the neutrino is its own antiparticle. Since this is a very rare decay, the ability to reject background events by detecting the barium ion daughter from the double beta decay would be a major advantage. EXO is currently operating a detector with 200 kg of enriched liquid xenon, and there are plans to build a ton scale xenon detector. Measurements of the purity of liquid xenon in our liquid xenon test cell are reported. These results are relevant to the research on detection of single barium ions by our research group at Colorado State University. Details of the operation of the purity monitor are described. The effects of using a purifier, recirculation and laser ablation on the purity of liquid xenon are discussed. Mobility measurements of barium in xenon gas are reported for the first time. The variation of mobility with xenon gas pressure suggests that a significant fraction of molecular ions are formed when barium ions interact with xenon gas at high pressures. The measured mobility of Ba+ in Xe gas at different pressures is compared with the predicted theoretical value, and deviations are explained by a model that describes the fraction of molecular ions in Xe gas as a function of pressure. The results are useful for the analysis of experiments of fluorescence of Ba+ in xenon gas. It is also important to know the mobility of the ions in order to calculate the time they interact with an excitation laser in fluorescence experiments and in proposed 136 Ba+ daughter detection schemes. This thesis presents results of detection of laser induced fluorescence of Ba+ ions in Xe gas. Measurements of the pressure broadening of the excitation spectra of Ba+ in xenon gas are presented. Nonradiative decays due to gas collisions and optical pumping

  1. Chloride channels as drug targets

    PubMed Central

    Verkman, Alan S.; Galietta, Luis J. V.

    2013-01-01

    Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery. PMID:19153558

  2. Sensitivity Enhancement by Exchange Mediated MagnetizationTransfer of the Xenon Biosensor Signal

    SciTech Connect

    Garcia, Sandra; Chavez, Lana; Lowery, Thomas J.; Han, Song-I.; Wemmer, David E.; Pines, Alexander

    2006-08-31

    Hyperpolarized xenon associated with ligand derivitized cryptophane-A cages has been developed as a NMR based biosensor. To optimize the detection sensitivity we describe use of xenon exchange between the caged and bulk dissolved xenon as an effective signal amplifier. This approach, somewhat analogous to 'remote detection' described recently, uses the chemical exchange to repeatedly transfer spectroscopic information from caged to bulk xenon, effectively integrating the caged signal. After an optimized integration period, the signal is read out by observation of the bulk magnetization. The spectrum of the caged xenon is reconstructed through use of a variable evolution period before transfer and Fourier analysis of the bulk signal as a function of the evolution time.

  3. Application of scintillating properties of liquid xenon and silicon photomultiplier technology to medical imaging

    NASA Astrophysics Data System (ADS)

    Gomez-Cadenas, J. J.; Benlloch-Rodriguez, J. M.; Ferrario, Paola

    2016-04-01

    We describe a new positron emission time-of-flight apparatus using liquid xenon. The detector is based in a liquid xenon scintillating cell. The cell shape and dimensions can be optimized depending on the intended application. In its simplest form, the liquid xenon scintillating cell is a box in which two faces are covered by silicon photomultipliers and the others by a reflecting material such as Teflon. It is a compact, homogenous and highly efficient detector which shares many of the desirable properties of monolithic crystals, with the added advantage of high yield and fast scintillation offered by liquid xenon. Our initial studies suggest that good energy and spatial resolution comparable with that achieved by lutetium oxyorthosilicate crystals can be obtained with a detector based in liquid xenon scintillating cells. In addition, the system can potentially achieve an excellent coincidence resolving time of better than 100 ps.

  4. XENON in medical area: emphasis on neuroprotection in hypoxia and anesthesia

    PubMed Central

    2013-01-01

    Xenon is a medical gas capable of establishing neuroprotection, inducing anesthesia as well as serving in modern laser technology and nuclear medicine as a contrast agent. In spite of its high cost, its lack of side effects, safe cardiovascular and organoprotective profile and effective neuroprotective role after hypoxic-ischemic injury (HI) favor its applications in clinics. Xenon performs its anesthetic and neuroprotective functions through binding to glycine site of glutamatergic N-methyl-D-aspartate (NMDA) receptor competitively and blocking it. This blockage inhibits the overstimulation of NMDA receptors, thus preventing their following downstream calcium accumulating cascades. Xenon is also used in combination therapies together with hypothermia or sevoflurane. The neuroprotective effects of xenon and hypothermia cooperate synergistically whether they are applied synchronously or asynchronously. Distinguishing properties of Xenon promise for innovations in medical gas field once further studies are fulfilled and Xenon’s high cost is overcome. PMID:23369273

  5. Xenon plasma sustained by pulse-periodic laser radiation

    SciTech Connect

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.; Shilov, A. O.; Yakimov, M. Yu.

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse, plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.

  6. Response of liquid xenon to low-energy ionizing radiation and its use in the XENON10 dark matter search

    NASA Astrophysics Data System (ADS)

    Manalaysay, Aaron Gosta

    This dissertation focuses on developments aimed at improving the effectiveness and understanding of liquid xenon particle detectors in their use in the field of dark matter direct detection. Chapter 3 covers the XENON10 experiment, which searches for evidence of direct interactions between Weakly Interacting Massive Particles (WIMPs) and Xe nuclei. The 3-D position sensitive liquid xenon time projection chamber acquired 58.6 live days of WIMP search data from October, 2006 through February, 2007. The results of these data set new limits on both spin-independent and spin-dependent interactions. The spin-independent WIMP-nucleon cross section is constrained to be less than 4.5 x 10-44 cm2 for WIMPs of mass 30 GeV/ c2 and less than 8.8 x 10-44 cm2 for WIMPs of mass 100 GeV/c2 at the 90% confidence level. The spin-dependent WIMP-neutron and WIMP-proton cross sections are constrained to be less than 10-39 cm 2 and 10-36 cm2, respectively. Finally, the mass of the heavy Majorana neutrino, in the context of a dark matter candidate, is excluded for masses in the range 10 GeV/c2 to 2.2TeV/c2. Chapter 4 discusses the study of the relative scintillation efficiency of nuclear recoils in liquid xenon. The two existing measurements of the relative scintillation efficiency of nuclear recoils below 20 keV lead to inconsistent extrapolations at lower energies. This results in a different energy scale and thus sensitivity reach of liquid xenon dark matter detectors. A new measurement of the relative scintillation efficiency below 10 keV, performed with a liquid xenon scintillation detector and optimized for maximum light collection is discussed. Greater than 95% of the interior surface of this detector was instrumented with photomultiplier tubes, giving a scintillation yield of 19.6 photoelectrons/keV electron equivalent for 122 keV gamma rays. The relative scintillation efficiency for nuclear recoils of 5 keV is found to be 0.14, staying constant around this value up to 10 keV. For

  7. GraXe, graphene and xenon for neutrinoless double beta decay searches

    NASA Astrophysics Data System (ADS)

    Gómez-Cadenas, J. J.; Guinea, F.; Fogler, M. M.; Katsnelson, M. I.; Martín-Albo, J.; Monrabal, F.; Muñoz Vidal, J.

    2012-02-01

    We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in 136XE. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, graphene. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the 136XE isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to the xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope 136XE is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.

  8. Revisiting XENON100's constraints (and signals?) for low-mass dark matter

    SciTech Connect

    Hooper, Dan

    2013-09-01

    Although observations made with the CoGeNT and CDMS experiments have been interpreted as possible signals of low-mass ( ∼ 7–10 GeV) dark matter particles, constraints from the XENON100 collaboration appear to be incompatible with this hypothesis, at least at face value. In this paper, we revisit XENON100's constraint on dark matter in this mass range, and consider how various uncertainties and assumptions made might alter this conclusion. We also note that while XENON100's two nuclear recoil candidates each exhibit very low ratios of ionization-to-scintillation signals, making them difficult to attribute to known electronic or neutron backgrounds, they are consistent with originating from dark matter particles in the mass range favored by CoGeNT and CDMS. We argue that with lower, but not implausible, values for the relative scintillation efficiency of liquid xenon (L{sub eff}), and the suppression of the scintillation signal in liquid xenon at XENON100's electric field (S{sub nr}), these two events could consistently arise from dark matter particles with a mass and cross section in the range favored by CoGeNT and CDMS. If this interpretation is correct, we predict that the LUX experiment, with a significantly higher light yield than XENON100, should observe dark matter induced events at an observable rate of ∼ 3–24 per month.

  9. GraXe, graphene and xenon for neutrinoless double beta decay searches

    SciTech Connect

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Monrabal, F.; Vidal, J. Muñoz; Guinea, F.; Fogler, M.M.; Katsnelson, M.I. E-mail: paco.guinea@icmm.csic.es E-mail: katsnel@sci.kun.nl E-mail: francesc.monrabal@ific.uv.es

    2012-02-01

    We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in {sup 136}XE. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, graphene. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the {sup 136}XE isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to the xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope {sup 136}XE is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.

  10. Can xenon in water inhibit ice growth? Molecular dynamics of phase transitions in water-Xe system.

    PubMed

    Artyukhov, Vasilii I; Pulver, Alexander Yu; Peregudov, Alex; Artyuhov, Igor

    2014-07-21

    Motivated by recent experiments showing the promise of noble gases as cryoprotectants, we perform molecular dynamics modeling of phase transitions in water with xenon under cooling. We follow the structure and dynamics of xenon water solution as a function of temperature. Homogeneous nucleation of clathrate hydrate phase is observed and characterized. As the temperature is further reduced we observe hints of dissociation of clathrate due to stronger hydrophobic hydration, pointing towards a possible instability of clathrate at cryogenic temperatures and conversion to an amorphous phase comprised of "xenon + hydration shell" Xe·(H2O)21.5 clusters. Simulations of ice-xenon solution interface in equilibrium and during ice growth reveal the effects of xenon on the ice-liquid interface, where adsorbed xenon causes roughening of ice surface but does not preferentially form clathrate. These results provide evidence against the ice-blocker mechanism of xenon cryoprotection.

  11. Heterogeneous Nuclear Reactor Models for Optimal Xenon Control.

    NASA Astrophysics Data System (ADS)

    Gondal, Ishtiaq Ahmad

    Nuclear reactors are generally modeled as homogeneous mixtures of fuel, control, and other materials while in reality they are heterogeneous-homogeneous configurations comprised of fuel and control rods along with other materials. Similarly, for space-time studies of a nuclear reactor, homogeneous, usually one-group diffusion theory, models are used, and the system equations are solved by either nodal or modal expansion approximations. Study of xenon-induced problems has also been carried out using similar models and with the help of dynamic programming or classical calculus of variations or the minimum principle. In this study a thermal nuclear reactor is modeled as a two-dimensional lattice of fuel and control rods placed in an infinite-moderator in plane geometry. The two-group diffusion theory approximation is used for neutron transport. Space -time neutron balance equations are written for two groups and reduced to one space-time algebraic equation by using the two-dimensional Fourier transform. This equation is written at all fuel and control rod locations. Iodine -xenon and promethium-samarium dynamic equations are also written at fuel rod locations only. These equations are then linearized about an equilibrium point which is determined from the steady-state form of the original nonlinear system equations. After studying poisonless criticality, with and without control, and the stability of the open-loop system and after checking its controllability, a performance criterion is defined for the xenon-induced spatial flux oscillation problem in the form of a functional to be minimized. Linear -quadratic optimal control theory is then applied to solve the problem. To perform a variety of different additional useful studies, this formulation has potential for various extensions and variations; for example, different geometry of the problem, with possible extension to three dimensions, heterogeneous -homogeneous formulation to include, for example, homogeneously

  12. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  13. High-efficiency plasma display panel based on a high xenon mole fraction

    SciTech Connect

    Uhm, Han S.; Son, Chang G.; Hong, Byung H.; Choi, Eun H.

    2009-09-15

    The luminance efficiency of a plasma display panel is directly related to the vacuum-ultraviolet (VUV) light emitted from excited xenon atoms and molecules. The emission efficiency of 173 nm VUV light is measured in terms of the xenon mole fraction ({chi}) and is shown to become considerably enhanced at a high xenon mole fraction. For example, the emission efficiency at {chi}=0.35 under a pressure of 400 Torr is more than 2.5 times that at {chi}=0.1. The experimental data agree remarkably well with theoretical predictions.

  14. A Linear RFQ Ion Trap for the Enriched Xenon Observatory

    SciTech Connect

    Flatt, B.; Green, M.; Wodin, J.; DeVoe, R.; Fierlinger, P.; Gratta, G.; LePort, F.; Montero Diez, M.; Neilson, R.; O'Sullivan, K.; Pocar, A.; Baussan, E.; Breidenbach, M.; Conley, R.; Fairbank Jr., W.; Farine, J.; Hall, K.; Hallman, D.; Hargrove, C.; Hauger, M.; Hodgson, J.; /Stanford U., Phys. Dept. /Neuchatel U. /SLAC /Colorado State U. /Laurentian U. /Carleton U. /Alabama U.

    2008-01-14

    The design, construction, and performance of a linear radio-frequency ion trap (RFQ) intended for use in the Enriched Xenon Observatory (EXO) are described. EXO aims to detect the neutrinoless double-beta decay of {sup 136}Xe to {sup 136}Ba. To suppress possible backgrounds EXO will complement the measurement of decay energy and, to some extent, topology of candidate events in a Xe filled detector with the identification of the daughter nucleus ({sup 136}Ba). The ion trap described here is capable of accepting, cooling, and confining individual Ba ions extracted from the site of the candidate double-beta decay event. A single trapped ion can then be identified, with a large signal-to-noise ratio, via laser spectroscopy.

  15. Structures of small mixed krypton-xenon clusters.

    PubMed

    Nagasaka, Masanari; Kosugi, Nobuhiro; Rühl, Eckart

    2012-06-21

    Structures of small mixed krypton-xenon clusters of different compositions with an average size of 30-37 atoms are investigated. The Kr 3d(5/2) and Xe 4d(5/2) surface core level shifts and photoelectron intensities originating from corner, edge, and face/bulk sites are analyzed by using soft x-ray photoelectron spectroscopy. Structural models are derived from these experiments, which are confirmed by theoretical simulation taking induced dipole interactions into account. It is found that one or two small Xe cores are partly embedded in the surface of the Kr clusters. These may grow and merge leading to a phase separation between the two rare gas moieties in mixed clusters with increasing the Xe content.

  16. A New Electrostatically-focused UV HPD for Liquid Xenon

    SciTech Connect

    Cushman, Priscilla Brooks

    2013-07-10

    Appropriate photodetectors are a major challenge for liquid xenon technology as proposed by the next generation of double beta decay, solar neutrino, and dark matter searches. The primary photon signal is tiny and in the hard ultraviolet, the installation is cryogenic, and the sensors themselves must not introduce background. Hybrid photodiodes (HPDs) provide an easy substitute for a conventional PMT with the added advantages of low radioactivity, better area coverage, and single photoelectron counting. A computer-controlled test setup capable of characterizing optical properties of ultraviolet photodetectors was installed. It was used to compare photomultiplier tubes, silicon photomultipliers, avalanche photodiodes, and a novel-design custom HPD developed by the DEP company under this proposal.

  17. Investigation of many-body forces in krypton and xenon

    SciTech Connect

    Salacuse, J.J.; Egelstaff, P.A.

    1988-10-15

    The simplicity of the state dependence at relatively high temperatures ofthe many-body potential contribution to the pressure and energy has been pointed out previously (J. Ram and P. A. Egelstaff, J. Phys. Chem. Liq. 14, 29 (1984); A. Teitsima and P. A. Egelstaff, Phys. Rev. A 21, 367 (1980)). In this paper, we investigate how far these many-body potential terms may be represented by simple models in the case of krypton on the 423-, 273-, 190-, and 150-K isotherms, and xenon on the 170-, 210-, and 270-K isotherms. At the higher temperatures the best agreement is found for the mean-field type of theory, and some consequences are pointed out. On the lower isotherms a state point is found where the many-body energy vanishes, and large departures from mean-field behavior are observed. This is attributed to the influence of short-ranged many-body forces.

  18. Investigations of Wafer Scale Etching with Xenon Difluoride

    NASA Astrophysics Data System (ADS)

    Chen, K. N.; Hoivik, N.; Lin, C. Y.; Young, A.; Ieong, M.; Shahidi, G.

    2006-03-01

    A good and uniform bulk silicon wafer etching method can be applied to the wafer thinning process in MEMS and 3D applications. In this study, the use of a Xenon Difluoride (XeF2) gas-phase etching system, operating at room temperature, has been investigated for bulk silicon wafer thinning. We investigated the Si-wafer surface morphology and profile following each XeF2 etching process cycle. Theoretical results are used to compare with the experimental results as well. A clean wafer surface by proper surface treatments is significant to achieve a uniform surface profile and morphology for XeF2 etching. A proper design of etching cycle with nitrogen ambient during etching is necessary to achieve the fastest and uniform silicon etching rate. The silicon etching rate is reported as a function of etching pressure, nitrogen pressure, and etching duration.

  19. Gamma-ray spectrometer utilizing xenon at high pressure

    SciTech Connect

    Smith, G.C.; Mahler, G.J.; Yu, B.; Kane, W.R.; Markey, J.K.

    1994-08-01

    A prototype gamma-ray spectrometer utilizing xenon gas near the critical point (166{degrees}C, 58 atm) is under development. The spectrometer will function as a room-temperature ionization chamber detecting gamma rays in the energy range 100 keV2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. The energy resolution is superior to that of a NaI scintillation spectrometer by a substantial margin (approximately a factor 5), and accordingly, much more information can be extracted from a given gamma-ray spectrum. Unlike germanium detectors, the spectrometer possesses the capability for sustained operation under ambient temperature conditions without a requirement for liquid nitrogen.

  20. Search for light dark matter in XENON10 data.

    PubMed

    Angle, J; Aprile, E; Arneodo, F; Baudis, L; Bernstein, A; Bolozdynya, A I; Coelho, L C C; Dahl, C E; DeViveiros, L; Ferella, A D; Fernandes, L M P; Fiorucci, S; Gaitskell, R J; Giboni, K L; Gomez, R; Hasty, R; Kastens, L; Kwong, J; Lopes, J A M; Madden, N; Manalaysay, A; Manzur, A; McKinsey, D N; Monzani, M E; Ni, K; Oberlack, U; Orboeck, J; Plante, G; Santorelli, R; dos Santos, J M F; Schulte, S; Shagin, P; Shutt, T; Sorensen, P; Winant, C; Yamashita, M

    2011-07-29

    We report results of a search for light (≲10  GeV) particle dark matter with the XENON10 detector. The event trigger was sensitive to a single electron, with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear recoil energy. Considering spin-independent dark matter-nucleon scattering, we exclude cross sections σ(n)>7×10(-42)  cm(2), for a dark matter particle mass m(χ)=7  GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.

  1. Vertebrobasilar insufficiency revealed by xenon-133 inhalation SPECT

    SciTech Connect

    Delecluse, F.; Voordecker, P.; Raftopoulos, C.

    1989-07-01

    A study of cerebral and cerebellar blood flow reactivity to acetazolamide by xenon-133-inhalation single photon emission computed tomography (/sup 133/Xe SPECT) was carried out in a patient with bouts of transient basilar ischemia, whose neurological examination, computed tomographic scan, and auditory evoked potentials were normal. Though the patient was symptom-free at the time of the study, /sup 133/Xe SPECT demonstrated vertebrobasilar insufficiency by showing an impaired vasodilatory response in both the occipital lobes and the right cerebellar hemisphere. Three weeks later, the patient suffered an extensive stroke in these same areas. We therefore suggest that this method could be of great value in the assessment of vertebrobasilar insufficiency.

  2. Performance of 10-kW class xenon ion thrusters

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Rawlin, Vincent K.

    1988-01-01

    Presented are performance data for laboratory and engineering model 30 cm-diameter ion thrusters operated with xenon propellant over a range of input power levels from approximately 2 to 20 kW. Also presented are preliminary performance results obtained from laboratory model 50 cm-diameter cusp- and divergent-field ion thrusters operating with both 30 cm- amd 50 cm-diameter ion optics up to a 20 kW input power. These data include values of discharge chamber propellant and power efficiencies, as well as values of specific impulse, thruster efficiency, thrust and power. The operation of the 30 cm- and 50 cm-diameter ion optics are also discussed.

  3. Trace anesthetic gases during xenon arc photocoagulation for retinoblastoma.

    PubMed

    Rosenberg, A M; Abramson, D H; Sussman, D; Servodidio, C; Turner, L

    1989-10-01

    In pediatric ocular examinations, administration of continuous-flow anesthetic gases containing nitrous oxide, halothane, and oxygen enables the physician to do safe, controlled, reproducible examinations. We did a study in which the levels of waste anesthetic gases were measured during xenon arc photocoagulation procedures used for retinoblastoma. Waste nitrous oxide and halothane gases measured during these procedures significantly exceeded the levels recommended by the National Institute of Safety and Health. These high levels are of particular importance because of the physician's proximity to the patient during the procedure. The high levels of waste gases may have immediate deleterious effects on the physician's functioning capacity and may also pose long-term health hazards for the physician and operating room personnel. PMID:2589745

  4. Increasing the Life of a Xenon-Ion Spacecraft Thruster

    NASA Technical Reports Server (NTRS)

    Goebel, Dan; Polk, James; Sengupta, Anita; Wirz, Richard

    2007-01-01

    A short document summarizes the redesign of a xenon-ion spacecraft thruster to increase its operational lifetime beyond a limit heretofore imposed by nonuniform ion-impact erosion of an accelerator electrode grid. A peak in the ion current density on the centerline of the thruster causes increased erosion in the center of the grid. The ion-current density in the NSTAR thruster that was the subject of this investigation was characterized by peak-to-average ratio of 2:1 and a peak-to-edge ratio of greater than 10:1. The redesign was directed toward distributing the same beam current more evenly over the entire grid andinvolved several modifications of the magnetic- field topography in the thruster to obtain more nearly uniform ionization. The net result of the redesign was to reduce the peak ion current density by nearly a factor of two, thereby halving the peak erosion rate and doubling the life of the thruster.

  5. Deep Space Mission Applications for NEXT: NASA's Evolutionary Xenon Thruster

    NASA Technical Reports Server (NTRS)

    Oh, David; Benson, Scott; Witzberger, Kevin; Cupples, Michael

    2004-01-01

    NASA's Evolutionary Xenon Thruster (NEXT) is designed to address a need for advanced ion propulsion systems on certain future NASA deep space missions. This paper surveys seven potential missions that have been identified as being able to take advantage of the unique capabilities of NEXT. Two conceptual missions to Titan and Neptune are analyzed, and it is shown that ion thrusters could decrease launch mass and shorten trip time, to Titan compared to chemical propulsion. A potential Mars Sample return mission is described, and compassion made between a chemical mission and a NEXT based mission. Four possible near term applications to New Frontiers and Discovery class missions are described, and comparisons are made to chemical systems or existing NSTAR ion propulsion system performance. The results show that NEXT has potential performance and cost benefits for missions in the Discovery, New Frontiers, and larger mission classes.

  6. Predicted properties of microhollow cathode discharges in xenon

    NASA Astrophysics Data System (ADS)

    Boeuf, J. P.; Pitchford, L. C.; Schoenbach, K. H.

    2005-02-01

    A fluid model has been developed and used to help clarify the physical mechanisms occurring in microhollow cathode discharges (MHCD). Calculated current-voltage (I-V) characteristics and gas temperatures in xenon at 100 Torr are presented. Consistent with previous experimental results in similar conditions, we find a voltage maximum in the I-V characteristic. We show that this structure reflects a transition between a low-current, abnormal discharge localized inside the cylindrical hollow cathode to a higher-current, normal glow discharge sustained by electron emission from the outer surface of the cathode. This transition, due to the geometry of the device, is a factor contributing to the well-known stability of MHCDs.

  7. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... hydrogen chloride. The pure material occurs as hydroscopic, hexagonal, dark crystals. Ferric chloride... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric chloride. 184.1297 Section 184.1297 Food... Specific Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III)...

  8. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride, FeC13, CAS Reg. No. 7705-08-0) may be prepared from iron and chlorine or from ferric oxide and hydrogen chloride. The pure... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric chloride. 184.1297 Section 184.1297...

  9. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... hydrogen chloride. The pure material occurs as hydroscopic, hexagonal, dark crystals. Ferric chloride... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric chloride. 184.1297 Section 184.1297 Food... Specific Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III)...

  10. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... hydrogen chloride. The pure material occurs as hydroscopic, hexagonal, dark crystals. Ferric chloride... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferric chloride. 184.1297 Section 184.1297 Food... Specific Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III)...

  11. Benzalkonium Chloride and Glaucoma

    PubMed Central

    Kaufman, Paul L.; Kiland, Julie A.

    2014-01-01

    Abstract Glaucoma patients routinely take multiple medications, with multiple daily doses, for years or even decades. Benzalkonium chloride (BAK) is the most common preservative in glaucoma medications. BAK has been detected in the trabecular meshwork (TM), corneal endothelium, lens, and retina after topical drop installation and may accumulate in those tissues. There is evidence that BAK causes corneal and conjunctival toxicity, including cell loss, disruption of tight junctions, apoptosis and preapoptosis, cytoskeleton changes, and immunoinflammatory reactions. These same effects have been reported in cultured human TM cells exposed to concentrations of BAK found in common glaucoma drugs and in the TM of primary open-angle glaucoma donor eyes. It is possible that a relationship exists between chronic exposure to BAK and glaucoma. The hypothesis that BAK causes/worsens glaucoma is being tested experimentally in an animal model that closely reflects human physiology. PMID:24205938

  12. Progress on Acoustic Measurements of the Bulk Viscosity of Near-Critical Xenon (BVX)

    NASA Technical Reports Server (NTRS)

    Gillis, Keith A.; Shinder, Iosif I.; Moldover, Michael R.; Zimmerli, Gregory A.

    2004-01-01

    We plan to determine the bulk viscosity of xenon 10 times closer [in reduced temperature tau = (T-Tc)/Tc] to its liquid-vapor critical point than ever before. (Tc is the critical temperature.) To do so, we must measure the dispersion and attenuation of sound at frequencies 1/100 of those used previously. In general, sound attenuation has contributions from the bulk viscosity acting throughout the volume of the xenon as well as contributions from the thermal conductivity and the shear viscosity acting within thin thermoacoustic boundary layers at the interface between the xenon and the solid walls of the resonator. Thus, we can determine the bulk viscosity only when the boundary layer attenuation is small and well understood. We present a comparison of calculations and measurements of sound attenuation in the acoustic boundary layer of xenon near its liquid-vapor critical point.

  13. [Anesthesia and sedation by admixture of xenon-oxygen in dentistry. Part I].

    PubMed

    Rabinovich, S A; Zavodilenko, L A; Babikov, A S

    2014-01-01

    The modern out-patient dental treatment which is performed under combined anesthesia with of xenon-oxygen inhalations provides comfortable conditions for the doctor and the patient, effective anesthesia and safe level of the sedation controlled by dentist.

  14. A study of xenon isotopes in a martian meteorite using the RELAX ultrasensitive mass spectrometer

    SciTech Connect

    Whitby, J A; Gilmour, J D; Turner, G

    1997-01-15

    The Refrigerator Enhanced Analyser for Xenon (RELAX), an ultrasensitive resonance ionization time-of-flight mass spectrometer, has been used with a laser microprobe to investigate the isotopic composition of xenon trapped in the martian meteorite ALH84001. The laser microprobe has a spatial resolution of the order of 100{mu}m thus allowing the in situ analysis of individual mineral grains in a polished section when combined with ultrasensitive, low blank sample analysis. We present results showing that the mineral orthopyroxene in ALH84001 contains a trapped xenon component consistent with a martian origin. Additionally, a cosmic ray exposure age of 15Ma for ALH84001 is obtained from spallation derived xenon trapped within an apatite grain.

  15. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    PubMed

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  16. Photochemical method for the separation of mixtures of xenon and krypton

    SciTech Connect

    Donohue, T.; Geosling, C.E.

    1984-05-01

    This invention relates generally to processes for the separation of noble gases and more specifically to processes for the separation of xenon from a gaseous mixture containing krypton. Fluorine is added to the mixture and the resulting mixture then irradiated with light of about 250-370 nm to form crystals of xenon difluoride. The unreacted gases are removed and the remaining crystals are decomposed, typically by thermal means, to yield xenon and fluorine gas. The xenon gas may be easily isolated by conventional means from the fluorine gas. Krypton may also be easily isolated from the remaining gases by conventional means. The process is particularly applicable to the treatment of off gases from a nuclear reactor or reprocessing plant.

  17. Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Agostini, F.; Alfonsi, M.; Arazi, L.; Arisaka, K.; Arneodo, F.; Auger, M.; Balan, C.; Barrow, P.; Baudis, L.; Bauermeister, B.; Behrens, A.; Beltrame, P.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Cardoso, J. M. R.; Coderre, D.; Colijn, A. P.; Contreras, H.; Cussonneau, J. P.; Decowski, M. P.; Giovanni, A. Di; Duchovni, E.; Fattori, S.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Galloway, M.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grignon, C.; Gross, E.; Hampel, W.; Itay, R.; Kaether, F.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Calloch, M. Le; Lellouch, D.; Levinson, L.; Levy, C.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Lyashenko, A.; Macmullin, S.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Mayani, D.; Fernandez, A. J. Melgarejo; Meng, Y.; Messina, M.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pantic, E.; Persiani, R.; Piastra, F.; Pienaar, J.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; dos Santos, J. M. F.; Sartorelli, G.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Simgen, H.; Teymourian, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vitells, O.; Wall, R.; Wang, H.; Weber, M.; Weinheimer, C.; Laubenstein, M.

    2015-11-01

    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment.

  18. Spatial anisotropy of xenon-defect configurations in cubic single crytals

    NASA Astrophysics Data System (ADS)

    Claes, J.; Namavar, F.; Rots, M.

    1982-03-01

    Ion-implanted tungsten and copper single crystals are investigated by the perturbed angular correlation technique, using an allowed β- γ cascade in 133Xe decay. The spatial distribution function describing the orientation of the quadrupole hyperfine interaction does not show up the cubic symmetry of the lattice in the case of xenon-induced radiation damage. This conclusion is interpreted in terms of xenon-vacancy loop interaction.

  19. Shadowing in the muon-xenon inelastic scattering cross section at 490 GeV

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Aïd, S.; Anthony, P. L.; Baker, M. D.; Bartlett, J.; Bhatti, A. A.; Braun, H. M.; Busza, W.; Carroll, T. J.; Conrad, J. M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S. K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Fang, G.; Figiel, J.; Gebauer, H. J.; Geesaman, D. F.; Gilman, R.; Green, M. C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V. W.; Jackson, H. E.; Jaffe, D. E.; Jancso, G.; Jansen, D. M.; Kaufman, S.; Kennedy, R. D.; Kirk, T.; Kobrak, H. G. E.; Krzywdzinski, S.; Kunori, S.; Lord, J. J.; Lubatti, H. J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D. G.; Mohr, W.; Montgomery, H. E.; Morfin, J. G.; Nickerson, R. B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F. M.; Ramberg, E. J.; Röser, A.; Ryan, J. J.; Salgado, C.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schüler, K. P.; Seyerlein, H. J.; Skuja, A.; Snow, G. A.; Söldner-Rembold, S.; Steinberg, P. H.; Stier, H. E.; Stopa, P.; Swanson, R. A.; Talaga, R.; Tentindo-Repond, S.; Trost, H.-J.; Venkataramania, H.; Vidal, M.; Wilhelm, M.; Wilkes, J.; Wilson, Richard; Wittek, W.; Wolbers, S. A.; Zhao, T.; Fermilab E665 Collaboration

    1992-08-01

    Inelastic scattering of 490 GeV μ + from deuterium and xenon nuclei has been studied for xBj> s.001. The ratio of the xenon/deuterium cross section per nucleon is observed to vary with xBj, with a depletion in the kinematic range 0.001 < xBj < 0.025 which exhibits no significant Q2 dependence. An electromagnetic calorimeter was used to verify the radiative corrections.

  20. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    PubMed

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection.

  1. a Comparison of the Measured and Modelled Effects of Brewster Angle Anisotropies upon Pulsed Xenon Chloride Excimer Laser Output

    NASA Astrophysics Data System (ADS)

    Hahn, John Frederick

    We have demonstrated the effectiveness of stacked, fused-silica, intra-cavity Brewster angle plates in generating highly polarized XeCl^{*} laser output. Output polarization in excess of 95%, with coincident energy degradation of less than 20%, have been observed, data which compare favorably with results obtained with more sophisticated, more expensive intra-cavity laser polarizers (DOB 81). The optimal arrangement of the polarizing plates is shown to be at the rear of the cavity, near the mirror. We have observed the temporal development of the component pulses and the degree of polarization. For the optimal rear polarizer arrangements, the polarization has been shown to be large throughout the entire observable pulse. We have observed the dependence of the polarization upon the gas mixture pressure when weaker anisotropies are in place. We have developed a model to simulate the experimental results. The model is an innovative use of established rate equation techniques and also makes use of the short coherence length of XeCl* emissions to permit decoupling of the p- and s-plane polarization components. We thus avoid the more complicated semi-classical model which makes explicit use of the vector properties of the polarization components. We account for the presence of Brewster angle plates in the cavity as changes in the effective mirror/outcoupler reflectivities in the respective planes of polarization. We successfully simulate the output energy, E, the peak-to -peak polarization, {cal P}_ {o} and the temporally averaged polarization, |{cal P}, for the tested polarizer configurations. We attain only moderate success with our simulations of the temporally resolved polarizations. We use the model also to predict what operating conditions are required to successfully implement the use of Brewster angle end windows in generating highly polarized output.

  2. Reactor-chromatographic determination of vinyl chloride in polyvinyl chloride

    SciTech Connect

    Berezkin, V.G.

    1986-08-01

    The authors carry out a chromatographic study of the volatile products that evolve when various grades of domestic polyvinyl chloride are heated, to determine the concentration of residual monomer. To find vinyl chloride in complex mixtures of air pollutants the authors used sorptive reaction concentration of impurities. This new combination of methods is based on preliminary separation at the sampling stage of impurities that interfere in the analysis, followed by concentration of the desired components in a trap with an adsorbent, and chromatographic determination of the concentrated trace materials. The method obtains low vinyl chloride concentrations (down to 10/sup -4/-10/sup -5/ wt. %) with +/-5 relative error.

  3. Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities

    SciTech Connect

    Doll, Charles G.; Sorensen, Christina M.; Bowyer, Ted W.; Friese, Judah I.; Hayes, James C.; Hoffman, Emma L.; Kephart, Rosara F.

    2014-04-01

    The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunities to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes.

  4. Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel

    PubMed Central

    Sauguet, Ludovic; Fourati, Zeineb; Prangé, Thierry; Delarue, Marc; Colloc'h, Nathalie

    2016-01-01

    GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and “locally-closed” (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels. PMID:26910105

  5. The applied research and solar simulation spectral design based on pulse xenon lamp with coating film

    NASA Astrophysics Data System (ADS)

    Chen, Wenzhi; Cheng, Qijin; Zhang, Fengyan

    2014-09-01

    In the paper the spectrum of realistic sunlight and pulse xenon lamp were compared to each other, the result shows that the infrared part of luminescence spectrum of xenon lamp without coating film occupies the total spectrum's 57.4%, but the infrared part of the standard solar spectrum only reaches to 28.3%. The transmittance curve of pulse xenon lamp is got by fitting. Using appropriate method and coating film parameter, the film is done to pulse xenon lamp, and the negative film coefficient transmittance is 16% is got at 935nm central wavelength. At the range of 400-760nm wavelength the average transmittance is more than 86%, and the average transmittance is more than 96% at the range of 400-760nm wavelength. A portion of infrared light can be filtered after coating film. By the spectral testing of two coating film xenon lamp, it can be found that the spectral matching rate is from 0.792 to 1.176 and it is satisfied to A grade standard request. By using A and C grade pulse xenon lamp electric performance of 40.5W thin film cell is tested and the power value by C grade simulative light source is lower than real power for 11.2W. The result indicates the spectral matching rate of solar simulator is very important for cell electric performance.

  6. Design and construction of a cryogenic distillation device for removal of krypton for liquid xenon dark matter detectors.

    PubMed

    Wang, Zhou; Bao, Lei; Hao, Xihuan; Ju, Yonglin

    2014-01-01

    Liquid xenon (Xe) is one of the commendable detecting media for the dark matter detections. However, the small content of radioactive krypton-85 ((85)Kr) always exists in the commercial xenon products. An efficient cryogenic distillation system to remove this krypton (Kr) from commercial xenon products has been specifically designed, developed, and constructed in order to meet the requirements of the dark matter experiments with high- sensitivity and low-background. The content of krypton in regular commercial xenon products can be reduced from 10(-9) to 10(-12), with 99% xenon collection efficiency at maximum flow rate of 5 kg/h (15SLPM). The purified xenon gases produced by this distillation system can be used as the detecting media in the project of Panda X, which is the first dark matter detector developed in China.

  7. Design of a rugged 308 nm tunable UV laser for airborne LIF measurements on top of Zeppelin NT

    NASA Astrophysics Data System (ADS)

    Strotkamp, M.; Munk, A.; Jungbluth, B.; Dahlhoff, K.; Jansen, P.; Broch, S.; Gomm, S.; Bachner, M.; Fuchs, H.; Holland, F.; Hofzumahaus, A.

    2013-03-01

    In this work, a detailed analysis and redesign of a tunable UV laser is presented. The laser is part of measurement system of "IEK 8, Forschungszentrum Jülich" for airborne LIF analysis of the OH-radical concentration. The design concept of the laser comprises a frequency doubled Nd:YAG laser as pump source, a dye as active medium to emit light at 616 nm, and a NLO crystal as intracavity frequency doubler. The output wavelength is tunable by a combination of dispersion prisms and an etalon. During measurement campaigns, the laser is mounted on top of Zeppelin NT and therefore is exposed to temperatures ranging from 10 to 40 °C and ambient pressures from 800 to 1000 hPa. In former flights the output power of an existing laser decreased rapidly and the wavelength was unstable during the flights and therefore hinders continuous measurements. The analysis of the existing laser combines a theoretical study of tolerance requirements with experimental testing of opto-mechanical components and of the entire laser system in a climatic test chamber. The performance of the laser is measured over the expected temperature range. It is shown that changing the baseplate temperature by a few Kelvin stops laser emission completely. The optical mounts that are used in the laser and worthwhile alternatives were tested separately in the climatic chamber. The stability of the best mounts exceeds those currently used by a factor of 50. A new laser has been built based on the results of the analysis and further experiments for an optical redesign. This laser was on a field campaign for several weeks and worked reliably.

  8. Studies Update Vinyl Chloride Hazards.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1980-01-01

    Extensive study affirms that vinyl chloride is a potent animal carcinogen. Epidemiological studies show elevated rates of human cancers in association with extended contact with the compound. (Author/RE)

  9. Fast oscillatory behavior of the excited xenon density in the discharge cells of a plasma display panel

    SciTech Connect

    Uhm, Han S.; Choi, Eun H.

    2009-03-15

    Fast oscillation of the excited xenon density occurs universally after an electrical discharge in the cells of a plasma display panel. A theoretical model based on ion plasma oscillation simulates this oscillatory behavior of the excited xenon density reasonably well. The magnitude and lifetime of the excited xenon density in a metastable state depend highly on the electrode configuration. Particularly, T-type electrodes provide better generation and confinement of excited xenon atoms for an abundant emission of 173 nm ultraviolet light at a high level of efficiency.

  10. Cation location in microporous zeolite, SSZ-13, probed with xenon adsorption measurement and 129Xe NMR spectrum.

    PubMed

    Shin, Na Ra; Kim, Su Hyun; Shin, Hye Sun; Jang, Ik Jun; Cho, Sung June

    2013-06-01

    The location of metal ion, Ag2+, Ca2+, Cu2+ and Y3+ in the SSZ-13 has been investigated with xenon adsorption measurement and 129Xe NMR spectrum. It was referred that the location of the metal ion varies depending on the corresponding charge. The ion-exchanged Ag ion was located in the alpha-cage to interact directly with xenon. Others multivalent cation contributed little with xenon because these were present near the six membered rings where xenon cannot access. PMID:23862500

  11. Extended-testing of xenon ion thruster hollow cathodes

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1992-01-01

    A hollow cathode wear-test of 508 hours was successfully completed at an emission current of 23.0 A and a xenon flow rate of 10 Pa-L/s. This test was the continuation of a hollow cathode contamination investigation. Discharge voltage was stable at 16.7 V. The cathode temperature averaged 1050 C with a 7 percent drop during the wear-test. Discharge ignition voltage was found to be approximately 20 V and was repeatable over four starts. Post-test analyses of the hollow cathode found a much improved internal cathode condition with respect to earlier wear-test cathodes. Negligible tungsten movement occurred and no formation of mono-barium tungsten was observed. These results correlated with an order-of-magnitude reduction in propellant feed-system leakage rate. Ba2CaWO6 and extensive calcium crystal formation occurred on the upstream end of the insert. Ba-Ca compound depositions were found on the Mo insert collar, on the Re electrical leads, and in the gap between the insert and cathode wall. This wear-test cathode was found to be in the best internal condition and had the most stable operating performance of any hollow cathode tested during this contamination investigation.

  12. Axial Magnetic Field Effects on Xenon Short-Arc Lamps

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Chen, Tang; Li, Wanwan; Zha, Jun; Xia, Weidong

    2014-12-01

    The effect of an axial magnetic field (AMF) on an old xenon short-arc lamp is experimentally investigated in this work. As the AMF increases up to 18 mT, the visible radiation power and electric power ascend more than 80% and 70% respectively, and the radiation efficiency is improved by 23% for the best increment at 12 mT AMF. The measurement of radiation intensity shows that the increment of radiation intensity comes mostly from the plasma area close to the cathode tip, and partially from the other area of the arc column. Successive images of the arc indicate that the arc column not only rotates about its axis, but revolves around the axis of electrodes with the AMF. The arc column structure is constricted, distorted and elongated as the AMF increases. It is suggested that the improvements of the radiation intensity and radiation efficiency are attributed to the constriction of the arc column, which is mainly induced by the enhanced cathode jet.

  13. Formation of xenon-nitrogen compounds at high pressure

    PubMed Central

    Howie, Ross T.; Turnbull, Robin; Binns, Jack; Frost, Mungo; Dalladay-Simpson, Philip; Gregoryanz, Eugene

    2016-01-01

    Molecular nitrogen exhibits one of the strongest known interatomic bonds, while xenon possesses a closed-shell electronic structure: a direct consequence of which renders both chemically unreactive. Through a series of optical spectroscopy and x-ray diffraction experiments, we demonstrate the formation of a novel van der Waals compound formed from binary Xe-N2 mixtures at pressures as low as 5 GPa. At 300 K and 5 GPa Xe(N2)2-I is synthesised, and if further compressed, undergoes a transition to a tetragonal Xe(N2)2-II phase at 14 GPa; this phase appears to be unexpectedly stable at least up to 180 GPa even after heating to above 2000 K. Raman spectroscopy measurements indicate a distinct weakening of the intramolecular bond of the nitrogen molecule above 60 GPa, while transmission measurements in the visible and mid-infrared regime suggest the metallisation of the compound at ~100 GPa. PMID:27748357

  14. Human Regional Pulmonary Gas Exchange with Xenon Polarization Transfer (XTC)

    NASA Astrophysics Data System (ADS)

    Muradian, Iga; Butler, James; Hrovat, Mirko; Topulos, George; Hersman, Elizabeth; Ruset, Iulian; Covrig, Silviu; Frederick, Eric; Ketel, Stephen; Hersman, F. W.; Patz, Samuel

    2007-03-01

    Xenon Transfer Contrast (XTC) is an existing imaging method (Ruppert et al, Magn Reson Med, 51:676-687, 2004) that measures the fraction F of ^129Xe magnetization that diffuses from alveolar gas spaces to septal parenchymal tissue in lungs in a specified exchange time. As previously implemented, XTC is a 2-breath method and has been demonstrated in anesthetized animals. To use XTC in humans and to avoid issues associated with obtaining identical gas volumes on subsequent breath-hold experiments as well as precise image registration in post-processing, a single breath XTC method was developed that acquires three consecutive gradient echo images in an 8s acquisition. We report here initial measurements of the mean and variance of F for 5 normal healthy subjects as well as 7 asymptomatic smokers. The experiments were performed at two lung volumes (˜45 and 65% of TLC). We found that both the mean and variance of F increased with smoking history. In comparison, standard pulmonary function tests such as DLCO FEV1 showed no correlation with smoking history.

  15. Formation of xenon-nitrogen compounds at high pressure

    NASA Astrophysics Data System (ADS)

    Howie, Ross T.; Turnbull, Robin; Binns, Jack; Frost, Mungo; Dalladay-Simpson, Philip; Gregoryanz, Eugene

    2016-10-01

    Molecular nitrogen exhibits one of the strongest known interatomic bonds, while xenon possesses a closed-shell electronic structure: a direct consequence of which renders both chemically unreactive. Through a series of optical spectroscopy and x-ray diffraction experiments, we demonstrate the formation of a novel van der Waals compound formed from binary Xe-N2 mixtures at pressures as low as 5 GPa. At 300 K and 5 GPa Xe(N2)2-I is synthesised, and if further compressed, undergoes a transition to a tetragonal Xe(N2)2-II phase at 14 GPa this phase appears to be unexpectedly stable at least up to 180 GPa even after heating to above 2000 K. Raman spectroscopy measurements indicate a distinct weakening of the intramolecular bond of the nitrogen molecule above 60 GPa, while transmission measurements in the visible and mid-infrared regime suggest the metallisation of the compound at ~100 GPa.

  16. Thrust Stand Characterization of the NASA Evolutionary Xenon Thruster (NEXT)

    NASA Technical Reports Server (NTRS)

    Diamant, Kevin D.; Pollard, James E.; Crofton, Mark W.; Patterson, Michael J.; Soulas, George C.

    2010-01-01

    Direct thrust measurements have been made on the NASA Evolutionary Xenon Thruster (NEXT) ion engine using a standard pendulum style thrust stand constructed specifically for this application. Values have been obtained for the full 40-level throttle table, as well as for a few off-nominal operating conditions. Measurements differ from the nominal NASA throttle table 10 (TT10) values by 3.1 percent at most, while at 30 throttle levels (TLs) the difference is less than 2.0 percent. When measurements are compared to TT10 values that have been corrected using ion beam current density and charge state data obtained at The Aerospace Corporation, they differ by 1.2 percent at most, and by 1.0 percent or less at 37 TLs. Thrust correction factors calculated from direct thrust measurements and from The Aerospace Corporation s plume data agree to within measurement error for all but one TL. Thrust due to cold flow and "discharge only" operation has been measured, and analytical expressions are presented which accurately predict thrust based on thermal thrust generation mechanisms.

  17. First Detection of Krypton and Xenon in a White Dwarf

    NASA Technical Reports Server (NTRS)

    Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.

    2012-01-01

    We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 KrVI-VII and Xe VI-VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 plus or minus 0.5 and log Xe = -4.2 plus or minus 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the-precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and thaI the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell nash or a binary white dwarf merger.

  18. FIRST DETECTION OF KRYPTON AND XENON IN A WHITE DWARF

    SciTech Connect

    Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.

    2012-07-01

    We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 Kr VI- VII and Xe VI- VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 {+-} 0.5 and log Xe = -4.2 {+-} 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and that the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell flash or a binary white dwarf merger.

  19. Conceptual Design of the Nuclear Electronic Xenon Ion System (NEXIS)

    NASA Technical Reports Server (NTRS)

    Monheiser, Jeff; Polk, Jay; Randolph, Tom

    2004-01-01

    In support of the NEXIS program, Aerojet-Redmond Operations, with review and input from the JPL and Boeing, has completed the design for a development model (DM) discharge chamber assembly and main discharge cathode assembly. These efforts along with the work by JPL to develop the carbon-carbon-composite ion optics assembly have resulted in a complete ion engine design. The goal of the NEXIS program is to significantly advance the current state of the art by developing an ion engine capable of operating at an input power of 20kW, an Isp of 7500 sec and have a total xenon through put capability of 2000 kg. In this paper we will describe the methodology used to design the discharge chamber and cathode assemblies and describe the resulting final design. Specifics will include the concepts used for the mounting of the ion optics along with the concepts used for the gimbal mounts. In addition, we will present results of a vibrational analysis showing how the engine will respond to a typical Delta IV heavy vibration spectrum.

  20. The self-associating behavior of pyrrole in liquid xenon

    NASA Astrophysics Data System (ADS)

    De Beuckeleer, Liene I.; Herrebout, Wouter A.

    2016-03-01

    The self-associating behavior of pyrrole in liquid xenon was investigated by analyzing a data set of 185-113 infrared spectra obtained for different concentrations recorded at a constant temperature of 203 K. Analysis of the data using a recently developed least-squares approach allows the vibrational spectra of the monomer and of the different oligomers to be isolated. Apart from the monomer transitions, intense absorption bands originating from pyrrole trimers are observed in almost every spectral region including regions for which no data have yet been reported. Apart from these bands, weak features proving the presence of pyrrole dimer and pyrrole tetramer in the solutions are also reported. The weak character of the dimer bands observed and the low concentrations of these species deduced are explained by the fact that the cryosolutions studied are in chemical equilibrium and by the fact that due to strong cooperative effect present in the trimer, the complexation equilibria are strongly shifted towards the latter species, thereby strongly reducing the equilibrium concentrations of dimer and tetramer.

  1. Ionization yield in xenon due to electron impact

    NASA Astrophysics Data System (ADS)

    Dayashankar

    1982-04-01

    The ionization yield in xenon for complete energy degradation of electrons with initial energy up to 1 keV has been calculated by solving the generalized Fowler equation. The expression for the energy spectrum of secondary electrons from the O shell was obtained by using the empirical scaling functions to weight the Williams-Weizsäcker cross section for glancing collisions and the Mott cross section for knock-on collisions. The total ionization and excitation cross sections were taken from the recent evaluation reported by De Heer et al. Contributions from the inner-shell ionization and the Auger process were explicitly taken into account. The results are expressed in terms of the quantity W, the mean energy required to produce an ion pair. The W value is found to decrease with increasing incident energy, finally approaching a constant value of 23.1 eV for electrons with an energy above 200 eV. The results are generally in good agreement with the available experimental work.

  2. Reactivity of xenon with ice at planetary conditions.

    PubMed

    Sanloup, Chrystèle; Bonev, Stanimir A; Hochlaf, Majdi; Maynard-Casely, Helen E

    2013-06-28

    We report results from high pressure and temperature experiments that provide evidence for the reactivity of xenon with water ice at pressures above 50 GPa and a temperature of 1500 K-conditions that are found in the interiors of Uranus and Neptune. The x-ray data are sufficient to determine a hexagonal lattice with four Xe atoms per unit cell and several possible distributions of O atoms. The measurements are supplemented with ab initio calculations, on the basis of which a crystallographic structure with a Xe4O12H12 primitive cell is proposed. The newly discovered compound is formed in the stability fields of superionic ice and η-O2, and has the same oxygen subnetwork as the latter. Furthermore, it has a weakly metallic character and likely undergoes sublattice melting of the H subsystem. Our findings indicate that Xe is expected to be depleted in the atmospheres of the giant planets as a result of sequestration at depth. PMID:23848893

  3. Biothiol Xenon MRI Sensor Based on Thiol-Addition Reaction.

    PubMed

    Yang, Shengjun; Jiang, Weiping; Ren, Lili; Yuan, Yaping; Zhang, Bin; Luo, Qing; Guo, Qianni; Bouchard, Louis-S; Liu, Maili; Zhou, Xin

    2016-06-01

    Biothiols such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) play an important role in regulating the vital functions of living organisms. Knowledge of their biodistribution in real-time could help diagnose a variety of conditions. However, existing methods of biothiol detection are invasive and require assays. Herein we report a molecular biosensor for biothiol detection using the nuclear spin resonance of (129)Xe. The (129)Xe biosensor consists of a cryptophane cage encapsulating a xenon atom and an acrylate group. The latter serves as a reactive site to covalently bond biothiols through a thiol-addition reaction. The biosensor enables discrimination of Cys from Hcy and GSH through the chemical shift and average reaction rate. This biosensor can be detected at a concentration of 10 μM in a single scan and it has been applied to detect biothiols in bovine serum solution. Our results indicate that this biosensor is a promising tool for the real-time imaging of biothiol distributions. PMID:27128102

  4. Excimer emission from pulsed microhollow cathode discharges in xenon

    SciTech Connect

    Lee, B.-J.; Nam, S. H.; Rahaman, H.; Iberler, M.; Jacoby, J.; Frank, K.

    2013-12-15

    Direct current (dc) microhollow cathode discharge (MHCD) is an intense source for excimer radiation in vacuum ultraviolet at a wavelength of 172 nm in a high pressure xenon (Xe) gas. The concentration of precursors for the excimer formation, i.e., excited and ionized gas atoms, increases significantly by applying high voltage pulse onto the dc MHCD over the pulse duration range from 20 to 100 ns. The intensity of the excimer emission for the voltage pulse of 20 ns duration exceeds that of the emission intensity obtained from the same MHCD operated only in the dc mode, by one order of magnitude. In addition, the emission intensity increases by one order of magnitude over the pulse duration range from 20 to 100 ns. It can be assumed that the emission intensity of the MHCD source increases as long as the duration of the high voltage pulse is shorter than the electron relaxation time. For the high voltage pulse of 100 ns duration, the emission intensity has been found to be further enhanced by a factor of three when the gas pressure is increased from 200 to 800 mbar.

  5. Self-organization in cathode boundary layer discharges in xenon

    NASA Astrophysics Data System (ADS)

    Takano, Nobuhiko; Schoenbach, Karl H.

    2006-05-01

    Self-organization of direct current xenon microdischarges in cathode boundary layer configuration has been studied for pressures in the range 30-140 Torr and for currents in the range 50 µA-1 mA. Side-on and end-on observations of the discharge have provided information on the structure and spatial arrangement of the plasma filaments. The regularly spaced filaments, which appear in the normal glow mode when the current is lowered, have a length which is determined by the cathode fall. It varies, dependent on pressure and current, between 50 and 70 µm. The minimum diameter is approximately 80 µm, as determined from the radiative emission in the visible. The filaments are sources of extensive excimer emission. Measurements of the cathode fall length have allowed us to determine the secondary emission coefficient for the discharge in the normal glow mode and to estimate the cathode fall voltage at the transition from normal glow mode to filamentary mode. It was found that the cathode fall voltage at this transition decreases, indicating the onset of additional electron gain processes at the cathode. The regular arrangement of the filaments, self-organization, is assumed to be due to Coulomb interactions between the positively charged cathode fall channels and positive space charges on the surface of the surrounding dielectric spacer. Calculations based on these assumptions showed good agreement with experimentally observed filament patterns.

  6. Reactivity of xenon with ice at planetary conditions.

    PubMed

    Sanloup, Chrystèle; Bonev, Stanimir A; Hochlaf, Majdi; Maynard-Casely, Helen E

    2013-06-28

    We report results from high pressure and temperature experiments that provide evidence for the reactivity of xenon with water ice at pressures above 50 GPa and a temperature of 1500 K-conditions that are found in the interiors of Uranus and Neptune. The x-ray data are sufficient to determine a hexagonal lattice with four Xe atoms per unit cell and several possible distributions of O atoms. The measurements are supplemented with ab initio calculations, on the basis of which a crystallographic structure with a Xe4O12H12 primitive cell is proposed. The newly discovered compound is formed in the stability fields of superionic ice and η-O2, and has the same oxygen subnetwork as the latter. Furthermore, it has a weakly metallic character and likely undergoes sublattice melting of the H subsystem. Our findings indicate that Xe is expected to be depleted in the atmospheres of the giant planets as a result of sequestration at depth.

  7. An homeopathic cure to pure Xenon large diffusion

    NASA Astrophysics Data System (ADS)

    Azevedo, C. D. R.; Fernandes, L. M. P.; Freitas, E. D. C.; Gonzalez-Diaz, D.; Monrabal, F.; Monteiro, C. M. B.; Dos Santos, J. M. F.; Veloso, J. F. C. A.; Gomez-Cadenas, J. J.

    2016-02-01

    The NEXT neutrinoless double beta decay (ββ0ν) experiment will use a high-pressure gas electroluminescence-based TPC to search for the decay of Xe-136. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qββ. The rejection potential associated to the topology reconstruction is limited by our capacity to properly reconstruct the original path of the electrons in the gas. This reconstruction is limited by different factors that include the geometry of the detector, the density of the sensors in the tracking plane and the separation among them, etc. Ultimately, the resolution is limited by the physics of electron diffusion in the gas. In this paper we present a series of molecular additives that can be used in Xenon gas at very low partial pressure to reduce both longitudinal and transverse diffusion. We will show the results of different Monte-Carlo simulations of electron transport in the gas mixtures from wich we have extracted the value of some important parameters like diffusion, drift velocity and light yields. These results show that there is a series of candidates that can reduce diffusion without affecting the energy resolution of the detector and they should be studied experimentally. A comparison with preliminary results from such an ongoing experimental effort is given.

  8. s-process studies - Xenon and krypton isotopic abundances

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.; Ward, R. A.

    1978-01-01

    We propose an analysis of the s-process contributions to the isotopes of xenon and krypton. The object is to aid studies of the possibility that meteorites may contain gas that was carried in presolar grains that were grown in stellar ejecta and that were not degassed prior to incorporation into parent bodies. That model suggests routine interstellar fractionation of s-isotopes from r-isotopes owing to differential incorporation into dust. We show that a deficiency of s-process nuclei cannot yield details of Xe-X, but the gross similarities are strong enough to lead one to think that such a deficiency may play a role in a more complicated explanation. We predict the existence of an s-rich complement somewhere if fractional separation of this type has played a role in Xe-X. We show that the analogous decomposition of krypton is more uncertain, and we call for measurements of neutron-capture cross sections to alleviate these uncertainties.

  9. Excimer emission from pulsed microhollow cathode discharges in xenon

    NASA Astrophysics Data System (ADS)

    Lee, B.-J.; Rahaman, H.; Nam, S. H.; Iberler, M.; Jacoby, J.; Frank, K.

    2013-12-01

    Direct current (dc) microhollow cathode discharge (MHCD) is an intense source for excimer radiation in vacuum ultraviolet at a wavelength of 172 nm in a high pressure xenon (Xe) gas. The concentration of precursors for the excimer formation, i.e., excited and ionized gas atoms, increases significantly by applying high voltage pulse onto the dc MHCD over the pulse duration range from 20 to 100 ns. The intensity of the excimer emission for the voltage pulse of 20 ns duration exceeds that of the emission intensity obtained from the same MHCD operated only in the dc mode, by one order of magnitude. In addition, the emission intensity increases by one order of magnitude over the pulse duration range from 20 to 100 ns. It can be assumed that the emission intensity of the MHCD source increases as long as the duration of the high voltage pulse is shorter than the electron relaxation time. For the high voltage pulse of 100 ns duration, the emission intensity has been found to be further enhanced by a factor of three when the gas pressure is increased from 200 to 800 mbar.

  10. Gamma background studies for the XENON experiment using a High Purity Germanium Detector

    NASA Astrophysics Data System (ADS)

    Angle, Jesse Isaac

    The XENON Dark Matter Experiment, deployed at the Gran Sasso National Laboratory in Italy on March 2006, is a liquid noble gas detector designed to directly detect dark matter. The detector uses a dual-phase (gas/liquid) Xenon target to search for nuclear recoils associated with nucleus-WIMP interactions. Due to the high sensitivity needed in such an experiment, it is vital to not only reduce the background but to also understand the remaining background so as to aid in the understanding of the data as well as to facilitate upgrades beyond the early Research and Development phases. Many of the components of the XENON10 detector have been screened using a High Purity Germanium Detector known as the GATOR detector. Full analysis of the screening data requires Monte Carlo simulations of the GATOR detector and the sample. Results from this screening will be presented. Using the information obtained from the screening operation, Monte Carlo simulations of the XENON10 electron recoil background will be examined and compared to the actual detector data. The success of this simulation to data comparison indicates that we have a good understanding of the XENON10 gamma background and will be able to make more informed decisions regarding the next stage of detector development. This type of analysis has aided in the selection and design of many of the materials and components being incorporated into the new XENON100 detector, the next generation detector which will be capable of improving the limit set by XENON10 by at least an order of magnitude. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http:/ /www.uflib.ufl.edu/etd.html)

  11. An XAFS study of nickel chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride/ aluminum chloride

    SciTech Connect

    D Roeper; G Cheek; K Pandya; W OGrady

    2011-12-31

    Nickel chloride was studied with cyclic voltammetry and X-ray absorption spectroscopy in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride (EMIC) ionic liquids. Acidic melts display metal stripping peaks which are not observed in the basic melt. EXAFS analysis shows that the nickel is tetrahedrally coordinated with chloride ions in the basic solution. In the acidic solution the nickel is coordinated by six chloride ions that are also associated with aluminum ions.

  12. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in...

  13. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg. No. 7447-40-7) is a white... manufacturing practice. Potassium chloride may be used in infant formula in accordance with section 412(g)...

  14. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in...

  15. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in...

  16. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... from the filtrate on cooling. Alternatively, hydrogen chloride formed by the burning of hydrogen in... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS...

  17. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... from the filtrate on cooling. Alternatively, hydrogen chloride formed by the burning of hydrogen in... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS...

  18. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... from the filtrate on cooling. Alternatively, hydrogen chloride formed by the burning of hydrogen in... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS...

  19. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... from the filtrate on cooling. Alternatively, hydrogen chloride formed by the burning of hydrogen in... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS...

  20. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Alternatively, hydrogen chloride formed by the burning of hydrogen in chlorine is dissolved in water and then... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ammonium chloride. 184.1138 Section 184.1138 Food... GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is...

  1. Regeneration of zinc chloride hydrocracking catalyst

    DOEpatents

    Zielke, Clyde W.

    1979-01-01

    Improved rate of recovery of zinc values from the solids which are carried over by the effluent vapors from the oxidative vapor phase regeneration of spent zinc chloride catalyst is achieved by treatment of the solids with both hydrogen chloride and calcium chloride to selectively and rapidly recover the zinc values as zinc chloride.

  2. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in...

  3. CHLORIDE WASHER PERFORMACE TESTING

    SciTech Connect

    Coughlin, J; David Best, D; Robert Pierce, R

    2007-11-30

    Testing was performed to determine the chloride (Cl-) removal capabilities of the Savannah River National Laboratory (SRNL) designed and built Cl- washing equipment intended for HB-Line installation. The equipment to be deployed was tested using a cerium oxide (CeO2) based simulant in place of the 3013 plutonium oxide (PuO2) material. Two different simulant mixtures were included in this testing -- one having higher Cl- content than the other. The higher Cl- simulant was based on K-Area Interim Surveillance Inspection Program (KIS) material with Cl- content approximately equal to 70,000 ppm. The lower Cl- level simulant was comparable to KIS material containing approximately 8,000-ppm Cl- content. The performance testing results indicate that the washer is capable of reducing the Cl- content of both surrogates to below 200 ppm with three 1/2-liter washes of 0.1M sodium hydroxide (NaOH) solution. Larger wash volumes were used with similar results - all of the prescribed test parameters consistently reduced the Cl- content of the surrogate to a value below 200 ppm Cl- in the final washed surrogate material. The washer uses a 20-micron filter to retain the surrogate solids. Tests showed that 0.16-0.41% of the insoluble fraction of the starting mass passed through the 20-micron filter. The solids retention performance indicates that the fissile masses passing through the 20-micron filter should not exceed the waste acceptance criteria for discard in grout to TRU waste. It is recommended that additional testing be pursued for further verification and optimization purposes. It is likely that wash volumes smaller than those tested could still reduce the Cl- values to acceptable levels. Along with reduced wash volumes, reuse of the third wash volume (in the next run processed) should be tested as a wash solution minimization plan. A 67% reduction in the number of grouted paint pails could be realized if wash solution minimization testing returned acceptable results.

  4. Method for the simultaneous preparation of radon-211, xenon-125, xenon-123, astatine-211, iodine-125 and iodine-123

    DOEpatents

    Mirzadeh, S.; Lambrecht, R.M.

    1985-07-01

    The invention relates to a practical method for commercially producing radiopharmaceutical activities and, more particularly, relates to a method for the preparation of about equal amount of Radon-211 (/sup 211/Rn) and Xenon-125 (/sup 125/Xe) including a one-step chemical procedure following an irradiation procedure in which a selected target of Thorium (/sup 232/Th) or Uranium (/sup 238/U) is irradiated. The disclosed method is also effective for the preparation in a one-step chemical procedure of substantially equal amounts of high purity /sup 123/I and /sup 211/At. In one preferred arrangement of the invention almost equal quantities of /sup 211/Rn and /sup 125/Xe are prepared using a onestep chemical procedure in which a suitably irradiated fertile target material, such as thorium-232 or uranium-238, is treated to extract those radionuclides from it. In the same one-step chemical procedure about equal quantities of /sup 211/At and /sup 123/I are prepared and stored for subsequent use. In a modified arrangement of the method of the invention, it is practiced to separate and store about equal amounts of only /sup 211/Rn and /sup 125/Xe, while preventing the extraction or storage of the radionuclides /sup 211/At and /sup 123/I.

  5. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride, FeC13, CAS Reg. No. 7705-08-0) may be prepared from iron and chlorine or from ferric oxide and hydrogen chloride... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric chloride. 184.1297 Section 184.1297 Food...

  6. Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures

    SciTech Connect

    Seoung, Donghoon; Cynn, Hyunchae; Park, Changyong; Choi, Kwang -Yong; Blom, Douglas A.; Evans, William J.; Kao, Chi -Chang; Vogt, Thomas; Lee, Yongjae

    2014-09-01

    Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag16Al16Si24O8·16H2O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 °C, while Ag+ is reduced to metallic Ag and possibly oxidized to Ag2+. In contrast to krypton, xenon is retained within the pores of this zeolite after pressure release and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres.

  7. Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures

    DOE PAGES

    Seoung, Donghoon; Cynn, Hyunchae; Park, Changyong; Choi, Kwang -Yong; Blom, Douglas A.; Evans, William J.; Kao, Chi -Chang; Vogt, Thomas; Lee, Yongjae

    2014-09-01

    Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag16Al16Si24O8·16H2O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 °C, while Ag+ is reduced to metallic Ag and possibly oxidized to Ag2+. In contrast to krypton, xenon is retained within the pores of this zeolite after pressure releasemore » and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres.« less

  8. Evaluation of pulmonary perfusion in lung regions showing isolated xenon-133 ventilation washout defects

    SciTech Connect

    Bushnell, D.L.; Sood, K.B.; Shirazi, P.; Pal, I. )

    1990-08-01

    Xenon-133 washout phase imaging is often used to help determine whether the etiology of a perfusion defect is embolic or due to pulmonary parenchymal pathology, such as chronic obstructive pulmonary disease. This study was designed to evaluate the pulmonary blood flow patterns associated with isolated defects on xenon washout images. Scintigraphic lung studies were reviewed until 100 cases with abnormal ventilation results were obtained. Ventilation abnormalities were compared with the corresponding perfusion scan results at the same anatomic site. Of the 208 individual lung regions with xenon abnormalities, 111 showed isolated washout defects (that is, with normal washin). Ninety-four of these 111 sites showed either normal perfusion or a small, nonsegmental corresponding perfusion defect. Three segmental perfusion defects were noted in association with isolated xenon retention. In each of these cases, however, the patient was felt actually to have pulmonary embolism. Thus, it is recommended that, for interpretation of scintigraphic images in the assessment of pulmonary embolism, lung pathology associated with isolated xenon retention not be considered a potential cause for large or segmental perfusion defects.

  9. Detection of residual krypton in xenon gas for WIMP dark matter searches

    NASA Astrophysics Data System (ADS)

    Dobi, Attila

    2011-04-01

    The next generation of WIMP dark matter searches using liquid xenon as a target medium will require unprecedented rejection of residual krypton contamination. Krypton contains the beta emitting isotope 85 Kr, with a relative abundance of about 10-11 (85 Kr /nat Kr), and this beta decay can be an important source of background for these experiments. Krypton is typically present in commercially produced xenon at the level of tens of parts-per-billion, about four orders of magnitude too large for present day dark matter experiments such as XENON, LUX, and XMASS. Additional processing via gas chromatography and distillation are used to separate krypton from xenon, but measuring the remaining krypton level at the part-per-trillion (ppt) level is challenging. Recently we have developed a highly sensitive and simple technique to measure residual krypton contamination in xenon gas using an RGA mass spectrometer and a liquid nitrogen cold trap. We describe here the results of our calibration experiments to determine the ultimate limit of detection of the method, and we discuss the implications for the next generation of WIMP dark matter experiments. Supported by the National Science Foundation.

  10. Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique

    SciTech Connect

    Yamamoto, N.; Tomita, K.; Sugita, K.; Kurita, T.; Nakashima, H.; Uchino, K.

    2012-07-15

    This paper reports on the development of a method for measuring xenon plasma properties using the laser Thomson scattering technique, for application to ion engine system design. The thresholds of photo-ionization of xenon plasma were investigated and the number density of metastable atoms, which are photo-ionized by a probe laser, was measured using laser absorption spectroscopy, for several conditions. The measured threshold energy of the probe laser using a plano-convex lens with a focal length of 200 mm was 150 mJ for a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W; the probe laser energy was therefore set as 80 mJ. Electron number density was found to be (6.2 {+-} 0.4) Multiplication-Sign 10{sup 17} m{sup -3} and electron temperature was found to be 2.2 {+-} 0.4 eV at a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W. The threshold of the probe laser intensity against photo-ionization in a miniature xenon ion thruster is almost constant for various mass flow rates, since the ratio of population of the metastable atoms to the electron number density is little changed.

  11. Internal plasma potential measurements of a Hall thruster using xenon and krypton propellant

    SciTech Connect

    Linnell, Jesse A.; Gallimore, Alec D.

    2006-09-15

    For krypton to become a realistic option for Hall thruster operation, it is necessary to understand the performance gap between xenon and krypton and what can be done to reduce it. A floating emissive probe is used with the Plasmadynamics and Electric Propulsion Laboratory's High-speed Axial Reciprocating Probe system to map the internal plasma potential structure of the NASA-173Mv1 Hall thruster [R. R. Hofer, R. S. Jankovsky, and A. D. Gallimore, J. Propulsion Power 22, 721 (2006); and ibid.22, 732 (2006)] using xenon and krypton propellant. Measurements are taken for both propellants at discharge voltages of 500 and 600 V. Electron temperatures and electric fields are also reported. The acceleration zone and equipotential lines are found to be strongly linked to the magnetic-field lines. The electrostatic plasma lens of the NASA-173Mv1 Hall thruster strongly focuses the xenon ions toward the center of the discharge channel, whereas the krypton ions are defocused. Krypton is also found to have a longer acceleration zone than the xenon cases. These results explain the large beam divergence observed with krypton operation. Krypton and xenon have similar maximum electron temperatures and similar lengths of the high electron temperature zone, although the high electron temperature zone is located farther downstream in the krypton case.

  12. Xenon porometry: a novel method for the derivation of pore size distributions.

    PubMed

    Telkki, Ville-Veikko; Lounila, Juhani; Jokisaari, Jukka

    2007-05-01

    Xenon porometry is a novel method used for characterizing porous materials by the (129)Xe nuclear magnetic resonance of xenon gas. With the method, the diffusion of gas is slowed down by immersing the material in a medium, which can be in liquid or solid state during measurements. Because of slow diffusion, the signal of a xenon atom is characteristic of the properties of only one pore, and the composite signal of all atoms represents the distribution of properties. The method is especially applicable for determining pore size distribution because the chemical shifts of two different xenon signals (one from liquid and the other from gas pockets in solid) are dependent on pore size. Therefore, the shapes of these signals represent pore size distribution function. In addition, the porosity of the material can be determined by comparing the intensities of two signals. This article focuses on describing xenon signals observed from gas pockets in a solid medium, which has turned out to be most convenient for pore size determination. PMID:17466763

  13. Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures.

    PubMed

    Seoung, Donghoon; Lee, Yongmoon; Cynn, Hyunchae; Park, Changyong; Choi, Kwang-Yong; Blom, Douglas A; Evans, William J; Kao, Chi-Chang; Vogt, Thomas; Lee, Yongjae

    2014-09-01

    Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag16Al16Si24O8·16H2O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 °C, while Ag(+) is reduced to metallic Ag and possibly oxidized to Ag(2+). In contrast to krypton, xenon is retained within the pores of this zeolite after pressure release and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres. PMID:25143221

  14. Iodine-xenon studies and the relax mass spectrometer

    NASA Astrophysics Data System (ADS)

    Gilmour, J. D.; Ash, R. D.; Lyon, I. C.; Johnston, W. A.; Hutchison, R.; Bridges, J. C.; Turner, G.

    1994-07-01

    RELAX combines a resonance ionization ion source with a cryogenic sample concentrator to achieve ultrasensitivity. Gas is extracted from samples using either a continuous wave laser microprobe based on an argon-ion laser or a filament microfurnace. Recent refinements in the operating procedure have resulted in optimum sensitivities such that detection rates of 1 cps are achieved from fewer than 500 atoms. A Xe-128 spike reservoir has also been added and characterized, allowing accurate determinations of absolute amounts of gas. We have completed a preliminary study of the iodine-xenon system in samples from the Bjurbole and Parnallee meteorites. Bjurbole chondrules ranging in mass from 5.45 mg to 260 micrograms were analyzed by laser microprobe. The results from these samples are consistent with an effectively uniform formation age, suggesting that the use of Bjurbole chondrules for calibration of this chronometer can be extended to samples in this size range. Samples from two chondrules from the Parnallee meteorite have been analyzed to date. An alpha-cristobalite-bearing chondrule (designated CB1) was found to have a formation age 4.62 +/- 0.44 Ma after Bjurboele, while a porphyritic olivine macrochondrule appears to have been reset after the decay of I-129(t1/2 17 Ma). Consideration of these results alongside Ar-Ar data from the macrochondrule and whole rock samples suggests that Parnallee has a complex history: The macrochondrule underwent an early postcrystallization degassing event but appears to have been essentially unaffected by the later (1.9 Ga) partial resetting of the bulk meteorite.

  15. Collectivity in the light xenon isotopes: A shell model study

    SciTech Connect

    Caurier, E.; Nowacki, F.; Sieja, K.; Poves, A.

    2010-12-15

    The lightest xenon isotopes are studied in the shell model framework, within a valence space that comprises all the orbits lying between the magic closures N=Z=50 and N=Z=82. The calculations produce collective deformed structures of triaxial nature that encompass nicely the known experimental data. Predictions are made for the (still unknown) N=Z nucleus {sup 108}Xe. The results are interpreted in terms of the competition between the quadrupole correlations enhanced by the pseudo-SU(3) structure of the positive parity orbits and the pairing correlations brought in by the 0h{sub 11/2} orbit. We also have studied the effect of the excitations from the {sup 100}Sn core on our predictions. We show that the backbending in this region is due to the alignment of two particles in the 0h{sub 11/2} orbit. In the N=Z case, one neutron and one proton align to J=11 and T=0. In {sup 110,112}Xe the alignment begins in the J=10, T=1 channel and it is dominantly of neutron-neutron type. Approaching the band termination the alignment of a neutron-proton pair to J=11 and T=0 takes over. In a more academic mood, we have studied the role of the isovector and isoscalar pairing correlations on the structure on the yrast bands of {sup 108,110}Xe and examined the possible existence of isovector and isoscalar pairing condensates in these N{approx}{approx}Z nuclei.

  16. Momentum Transfer in a Spinning Fuel Tank Filled with Xenon

    NASA Technical Reports Server (NTRS)

    Peugeot, John W.; Dorney, Daniel J.

    2006-01-01

    Transient spin-up and spin-down flows inside of spacecraft fuel tanks need to be analyzed in order to properly design spacecraft control systems. Knowledge of the characteristics of angular momentum transfer to and from the fuel is used to size the de-spin mechanism that places the spacecraft in a controllable in-orbit state. In previous studies, several analytical models of the spin-up process were developed. However, none have accurately predicted all of the flow dynamics. Several studies have also been conducted using Navier-Stokes based methods. These approaches have been much more successful at simulating the dynamic processes in a cylindrical container, but have not addressed the issue of momentum transfer. In the current study, the spin-up and spin-down of a fuel tank filled with gaseous xenon has been investigated using a three-dimensional unsteady Navier-Stokes code. Primary interests have been concentrated on the spin-up/spin-down time constants and the initial torque imparted on the system. Additional focus was given to the relationship between the dominant flow dynamics and the trends in momentum transfer. Through the simulation of both a cylindrical and a spherical tank, it was revealed that the transfer of angular momentum is nonlinear at early times and tends toward a linear pattern at later times. Further investigation suggests that the nonlinear spin up is controlled by the turbulent transport of momentum, while the linear phase is controlled by a Coriolis driven (Ekman) flow along the outer wall. These results indicate that the spinup and spin-down processes occur more quickly in tanks with curved surfaces than those with defined top, bottom, and side walls. The results also provide insights for the design of spacecraft de-spin mechanisms.

  17. A New Wide-Range Equation of State for Xenon

    NASA Astrophysics Data System (ADS)

    Carpenter, John H.

    2011-06-01

    We describe the development of a new wide-range equation of state (EOS) for xenon. Three different prior EOS models predicted significant variations in behavior along the high pressure Hugoniot from an initial liquid state at 163.5 K and 2.97 g/cm3, which is near the triple point. Experimental measurements on Sandia's Z machine as well as density functional theory based molecular dynamics calculations both invalidate the prior EOS models in the pressure range from 200 to 840 GPa. The reason behind these EOS model disagreements is found to lie in the contribution from the thermal electronic models. A new EOS, based upon the standard separation of the Helmholtz free energy into ionic and electronic components, is constructed by combining the successful parts of prior models with a semi-empirical electronic model. Both the fluid and fcc solid phases are combined in a wide-range, multi-phase table. The new EOS is tabulated on a fine temperature and density grid, to preserve phase boundary information, and is available as table number 5191 in the LANL SESAME database. Improvements over prior EOS models are found not only along the Hugoniot, but also along the melting curve and in the region of the liquid-vapor critical point. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. NASA's Evolutionary Xenon Thruster (NEXT) Component Verification Testing

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Pinero, Luis R.; Sovey, James S.

    2009-01-01

    Component testing is a critical facet of the comprehensive thruster life validation strategy devised by the NASA s Evolutionary Xenon Thruster (NEXT) program. Component testing to-date has consisted of long-duration high voltage propellant isolator and high-cycle heater life validation testing. The high voltage propellant isolator, a heritage design, will be operated under different environmental condition in the NEXT ion thruster requiring verification testing. The life test of two NEXT isolators was initiated with comparable voltage and pressure conditions with a higher temperature than measured for the NEXT prototype-model thruster. To date the NEXT isolators have accumulated 18,300 h of operation. Measurements indicate a negligible increase in leakage current over the testing duration to date. NEXT 1/2 in. heaters, whose manufacturing and control processes have heritage, were selected for verification testing based upon the change in physical dimensions resulting in a higher operating voltage as well as potential differences in thermal environment. The heater fabrication processes, developed for the International Space Station (ISS) plasma contactor hollow cathode assembly, were utilized with modification of heater dimensions to accommodate a larger cathode. Cyclic testing of five 1/22 in. diameter heaters was initiated to validate these modified fabrication processes while retaining high reliability heaters. To date two of the heaters have been cycled to 10,000 cycles and suspended to preserve hardware. Three of the heaters have been cycled to failure giving a B10 life of 12,615 cycles, approximately 6,000 more cycles than the established qualification B10 life of the ISS plasma contactor heaters.

  19. Worker exposure to vinyl chloride and poly(vinyl chloride).

    PubMed

    Jones, J H

    1981-10-01

    The National Institute for Occupational Safety and Health (NIOSH) in early 1974 began industrial hygiene studies of vinyl chloride exposed workers. Three VC monomer plants, three VC polymerization plants, and seven PVC fabrication plants were surveyed. V polymerization plant workers and workers in one job category in VC monomer plants were exposed to average levels above 1 ppm. The highest average exposure was 22 ppm. NIOSH health hazard evaluation studies since these initial surveys have primarily shown nondetectable levels of vinyl chloride. A NIOSH control technology study in 1977 showed that exposure levels in VC polymerization plants had been drastically reduced but exposure levels above 1 ppm were still found in several cases.

  20. Probe of Multielectron Dynamics in Xenon by Caustics in High-Order Harmonic Generation.

    PubMed

    Faccialà, D; Pabst, S; Bruner, B D; Ciriolo, A G; De Silvestri, S; Devetta, M; Negro, M; Soifer, H; Stagira, S; Dudovich, N; Vozzi, C

    2016-08-26

    We investigated the giant resonance in xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a nonperturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring subcycles resulting in the appearance of spectral caustics at two distinct cutoff energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this Letter we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in xenon. The collective excitations of the giant dipole resonance in xenon combined with the spectral manipulation associated with the two-color driving field allow us to see features that are normally not accessible and to obtain a good agreement between the experimental results and the theoretical predictions. PMID:27610855

  1. Probe of Multielectron Dynamics in Xenon by Caustics in High-Order Harmonic Generation.

    PubMed

    Faccialà, D; Pabst, S; Bruner, B D; Ciriolo, A G; De Silvestri, S; Devetta, M; Negro, M; Soifer, H; Stagira, S; Dudovich, N; Vozzi, C

    2016-08-26

    We investigated the giant resonance in xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a nonperturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring subcycles resulting in the appearance of spectral caustics at two distinct cutoff energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this Letter we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in xenon. The collective excitations of the giant dipole resonance in xenon combined with the spectral manipulation associated with the two-color driving field allow us to see features that are normally not accessible and to obtain a good agreement between the experimental results and the theoretical predictions.

  2. Rapid measurement of spatial light distribution of a short-arc xenon flash lamp.

    PubMed

    Zhao, Youquan; Guo, Dexia; Liu, Xiao; Wang, Lingli; Jiang, Nan; Wang, Xianquan

    2016-08-20

    Small short-arc xenon flash lamps, yielding high energy and ultraviolet radiation without cooling structures, provide ideal analytic-instrument light. Improving instrument designs requires accurately determining spatial optical-flux distribution. Thus, this paper presents rapid scanning of a xenon lamp's central light intensity using a high-sensitivity photodiode to capture short light pulses. Results show two-dimensional optical illumination patterns. In the horizontal mode, the anode and cathode lie in the target plane. In the vertical mode, the two electrodes are centered in a circle. Thus, because the xenon lamp's spatial light flux varies by orientation and main driving voltage, we recommend sampling light horizontally in front of the lamp across small angles. PMID:27556976

  3. A Search for Nonstandard Neutron Spin Interactions using Dual Species Xenon Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Larsen, Michael; Mirijanian, James; Fu, Changbo; Yan, Haiyang; Smith, Erick; Snow, Mike; Walker, Thad

    2012-06-01

    NMR measurements using polarized noble gases can constrain possible exotic spin-dependent interactions involving nucleons. A differential measurement insensitive to magnetic field fluctuations can be performed using a mixture of two polarized species with different ratios of nucleon spin to magnetic moment. We used the NMR cell test station at Northrop Grumman Corporation (NGC) (developed to evaluate dual species xenon vapor cells for the Nuclear Magnetic Resonance Gyroscope) to search for NMR frequency shifts of xenon-129 and xenon-131 when a non-magnetic zirconia rod is modulated near the NMR cell. We simultaneously excited both Xe isotopes and detected free-induction-decay transients. In combination with theoretical calculations of the neutron spin contribution to the nuclear angular momentum, the measurements put a new upper bound on possible monopole-dipole interactions of the neutron for ranges around 1mm. This work is supported by the NGC Internal Research and Development (IRAD) funding, the Department of Energy, and the NSF.

  4. Probe of Multielectron Dynamics in Xenon by Caustics in High-Order Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Faccialà, D.; Pabst, S.; Bruner, B. D.; Ciriolo, A. G.; De Silvestri, S.; Devetta, M.; Negro, M.; Soifer, H.; Stagira, S.; Dudovich, N.; Vozzi, C.

    2016-08-01

    We investigated the giant resonance in xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a nonperturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring subcycles resulting in the appearance of spectral caustics at two distinct cutoff energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this Letter we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in xenon. The collective excitations of the giant dipole resonance in xenon combined with the spectral manipulation associated with the two-color driving field allow us to see features that are normally not accessible and to obtain a good agreement between the experimental results and the theoretical predictions.

  5. Extreme confinement of xenon by cryptophane-111 in the solid state.

    PubMed

    Joseph, Akil I; Lapidus, Saul H; Kane, Christopher M; Holman, K Travis

    2015-01-26

    Solids that sorb, capture and/or store the heavier noble gases are of interest because of their potential for transformative rare gas separation/production, storage, or recovery technologies. Herein, we report the isolation, crystal structures, and thermal stabilities of a series of xenon and krypton clathrates of (±)-cryptophane-111 (111). One trigonal crystal form, Xe@111⋅y(solvent), is exceptionally stable, retaining xenon at temperatures of up to about 300 °C. The high kinetic stability is attributable not only to the high xenon affinity and cage-like nature of the host, but also to the crystal packing of the clathrate, wherein each window of the molecular container is blocked by the bridges of adjacent containers, effectively imprisoning the noble gas in the solid state. The results highlight the potential of discrete molecule materials exhibiting intrinsic microcavities or zero-dimensional pores. PMID:25504739

  6. Calibration of a liquid xenon detector with {sup 83}Kr{sup m}

    SciTech Connect

    Kastens, L. W.; Cahn, S. B.; Manzur, A.; McKinsey, D. N.

    2009-10-15

    We report the preparation of a {sup 83}Kr{sup m} source and its use in calibrating a liquid xenon detector. {sup 83}Kr{sup m} atoms were produced through the decay of {sup 83}Rb and introduced into liquid xenon. Decaying {sup 83}Kr{sup m} nuclei were detected through liquid xenon scintillation. Conversion electrons with energies of 9.4 and 32.1 keV from the decay of {sup 83}Kr{sup m} were observed. This calibration source will allow the characterization of the response of noble liquid detectors at low energies. {sup 83}Kr{sup m} may also be useful for measuring fluid flow dynamics, both to understand purification in noble liquid-based particle detectors, as well as for studies of classical and quantum turbulence in superfluid helium.

  7. Thermodynamics, compressibility, and phase diagram: shock compression of supercritical fluid xenon.

    PubMed

    Zheng, J; Chen, Q F; Gu, Y J; Chen, Z Y; Li, C J

    2014-09-28

    Supercritical fluids have intriguing behaviors at extreme pressure and temperature conditions, prompting the need for thermodynamic properties of supercritical fluid xenon (SCF) under shock compression. Double-shock experimental data on SCF xenon in the 140 GPa pressure range were directly measured by means of a multi-channel pyrometer and a Doppler-pins-system. It entered the so-called warm dense region. We found that the shock compressed SCF Xe had higher dynamic compression and higher number density than that of liquid Xe at same shock pressure. The larger compressibility of SCF Xe in our experiments could be explained that the increase of electronic excitations and ionizations leaded to a large drop of thermal pressure and a softening of Hugoniot. The high pressure phase diagram of xenon was depicted with the aid of the degeneracy, coupling parameter, and current available experiments on the pressure-temperature plane. PMID:25273430

  8. Comparison between the ultraviolet emission from pulsed microhollow cathode discharges in xenon and argon

    NASA Astrophysics Data System (ADS)

    Petzenhauser, Isfried; Biborosch, Leopold D.; Ernst, Uwe; Frank, Klaus; Schoenbach, Karl H.

    2003-11-01

    We measured the dynamic I-V characteristics and vacuum ultraviolet (VUV) emission lines of the second continuum in xenon (170 nm) and argon (130.5 nm) from pulsed microhollow cathode discharges (MHCD). For pulse lengths between 1 and 100 μs the dynamic I-V characteristics are similar in both inert gases. Only the time variation of the VUV emission line at 170 nm for xenon can be related to the dimer excited states. In argon the energy transfer between the Ar2* dimers and the oxygen impurity atoms is responsible for a qualitatively different time behavior of the resonance line at 130.5 nm. Consequently, the relative VUV efficiency reveals an inverse dependence on the electrical pulse lengths for the MHCD in xenon and argon, respectively.

  9. Facile xenon capture and release at room temperature using a metal-organic framework: a comparison with activated charcoal

    SciTech Connect

    Thallapally, Praveen K.; Grate, Jay W.; Motkuri, Radha K.

    2012-01-11

    Two well known Metal organic frameworks (MOF-5, NiDOBDC) were synthesized and studied for facile xenon capture and separation. Our results indicate the NiDOBDC adsorbs significantly more xenon than MOF-5, releases it more readily than activated carbon, and is more selective for Xe over Kr than activated carbon.

  10. Stirring Up an Elastic Fluid: Critical Viscosity of Xenon-2 (CVX-2)

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.; Motil, Susan M. (Technical Monitor)

    2002-01-01

    Whipped cream stays in place even when turned upside down. Yet it readily flows through the nozzle of a spray can to reach the dessert plate. This demonstrates the phenomenon of shear thinning that is important to many industrial and physical processes. Paints, film emulsions, and other complex solutions that are highly viscous under normal conditions but become thin and flow easily under shear forces. A simple fluid, such as water, does not exhibit shear thinning under normal conditions. Very close to the liquid-vapor critical point, where the distinction between liquid and vapor disappears, the fluid becomes more complex and is predicted to display shear thinning. At the critical point, xenon atoms interact over long distances in a classical model of cooperative phenomena. Physicists rely on this system to learn how long-range order arises. The Critical Viscosity of Xenon Experiment (CVX-2) will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of fluids. Viscosity originates from the interactions of individual molecules. It is so complicated that, except for the simplest gas, it cannot be calculated accurately from theory. Tests with critical fluids can provide key data, but are limited on Earth because critical fluids are highly compressed by gravity. CVX-2 employs a tiny metal screen vibrating between two electrodes in a bath of critical xenon. The vibrations and how they dampen are used to measure viscosity. CVX flew on STS-85 (1997), where it revealed that, close to the critical point, the xenon is partly elastic: it can 'stretch' as well as flow. For STS-107, the hardware has been enhanced to determine if critical xenon is a shear-thinning fluid.

  11. Stirring Up an Elastic Fluid: Critical Viscosity of Xenon-2 (CVX-2)

    NASA Astrophysics Data System (ADS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    2002-12-01

    Whipped cream stays in place even when turned upside down. Yet it readily flows through the nozzle of a spray can to reach the dessert plate. This demonstrates the phenomenon of shear thinning that is important to many industrial and physical processes. Paints, film emulsions, and other complex solutions that are highly viscous under normal conditions but become thin and flow easily under shear forces. A simple fluid, such as water, does not exhibit shear thinning under normal conditions. Very close to the liquid-vapor critical point, where the distinction between liquid and vapor disappears, the fluid becomes more complex and is predicted to display shear thinning. At the critical point, xenon atoms interact over long distances in a classical model of cooperative phenomena. Physicists rely on this system to learn how long-range order arises. The Critical Viscosity of Xenon Experiment (CVX-2) will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of fluids. Viscosity originates from the interactions of individual molecules. It is so complicated that, except for the simplest gas, it cannot be calculated accurately from theory. Tests with critical fluids can provide key data, but are limited on Earth because critical fluids are highly compressed by gravity. CVX-2 employs a tiny metal screen vibrating between two electrodes in a bath of critical xenon. The vibrations and how they dampen are used to measure viscosity. CVX flew on STS-85 (1997), where it revealed that, close to the critical point, the xenon is partly elastic: it can 'stretch' as well as flow. For STS-107, the hardware has been enhanced to determine if critical xenon is a shear-thinning fluid.

  12. Xenon behavior in TiN: A coupled XAS/TEM study

    NASA Astrophysics Data System (ADS)

    Bès, R.; Gaillard, C.; Millard-Pinard, N.; Gavarini, S.; Martin, P.; Cardinal, S.; Esnouf, C.; Malchère, A.; Perrat-Mabilon, A.

    2013-03-01

    Titanium nitride is a refractory material that is being considered as an inert matrix in future Generation IV nuclear reactors, in particular in relation to the Gas-cooled Fast Reactor. The main role of this matrix would be to act as a barrier against the release of fission products, in particular gaseous ones like xenon. This release phenomenon will be enhanced by high temperatures expected in the fuel vicinity: 1200 °C under normal conditions, and up to 1800 °C under accidental conditions. It is therefore necessary to investigate the behavior of volatile fission products in TiN under high temperature and irradiation. Indeed, these basic data are very useful to predict the volatile fission products released under these extreme conditions. Our previous work has shown that Xe introduced by ion implantation in sintered TiN tends to be released as a result of annealing, due to a transport mechanism towards the sample surface. The aim of the present work is to determine under which physical state Xe is in TiN. Xenon was first introduced using ion implantation at 800 keV in TiN samples obtained by hot pressing at several concentrations ranging from 0.4 to 8 at.%. Secondly, samples were annealed at high temperature, from 1000 °C to 1500 °C. Xe was then characterized by X-ray Absorption Spectroscopy and Transmission Electron Microscopy. The formation of intragranular xenon bubbles was demonstrated, and the xenon concentration which is sufficient to form bubbles is found to be lower than 0.4 at.% under our experimental conditions. These bubbles were found unpressurised at 15 K. Their size increases with the temperature and the local xenon concentration. For the highest xenon concentrations, a mechanism involving the formation of a Xe interconnected bubble network is proposed to explain Xe massive release observed by Rutherford Backscattering Spectrometry experiments.

  13. l-Nebiviololinium chloride dihydrate

    PubMed Central

    Tuchalski, Gisbert; Hänsicke, Andre; Reck, Günther; Emmerling, Franziska

    2008-01-01

    The hydro­chloride salt of chiral l-nebivolol {systematic name: (+)−(R,S,S,S)-bis­[2-(6-fluoro-3,4-dihydro-2H-1-benzopyran-2-yl)-2-hydroxy­ethyl]ammonium chloride dihydrate}, C22H26F2NO4 +·Cl−·2H2O, was obtained by chiral liquid chromatography as a dihydrate. The pyran rings adopt half-chair conformations. Hydrogen bonds between the cation, anions and water mol­ecules contribute to the formation of layers parallel to the ac plane. PMID:21200930

  14. Boltzmann expansion in a radiofrequency conical helicon thruster operating in xenon and argon

    SciTech Connect

    Charles, C.; Boswell, R.; Takahashi, K.

    2013-06-03

    A low pressure ({approx}0.5 mTorr in xenon and {approx}1 mTorr in argon) Boltzmann expansion is experimentally observed on axis within a magnetized (60 to 180 G) radiofrequency (13.56 MHz) conical helicon thruster for input powers up to 900 W using plasma parameters measured with a Langmuir probe. The axial forces, respectively, resulting from the electron and magnetic field pressures are directly measured using a thrust balance for constant maximum plasma pressure and show a higher fuel efficiency for argon compared to xenon.

  15. Measurement of Xenon Viscosity as a Function of Low Temperature and Pressure

    NASA Technical Reports Server (NTRS)

    Grisnik, Stanley P.

    1998-01-01

    The measurement of xenon gas viscosity at low temperatures (175-298 K) and low pressures (350 torr-760 torr) has been performed in support of Hall Thruster testing at NASA Lewis Research Center. The measurements were taken using the capillary flow technique. Viscosity measurements were repeatable to within 3%. The results in this paper are in agreement with data from Hanley and Childs and suggest that the data from Clarke and Smith is approximately 2% low. There are no noticeable pressure effects on xenon absolute viscosity for the pressure range from 350 torr to 760 torr.

  16. Differential Sputtering Behavior of Pyrolytic Graphite and Carbon-Carbon Composite Under Xenon Bombardment

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Johnson, Mark L.; Williams, Desiree D.

    2003-01-01

    A differential sputter yield measurement technique is described, which consists of a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. This apparatus has been used to characterize the sputtering behavior of various forms of carbon including polycrystalline graphite, pyrolytic graphite, and PVD-infiltrated and pyrolized carbon-carbon composites. Sputter yield data are presented for pyrolytic graphite and carbon-carbon composite over a range of xenon ion energies from 200 eV to 1 keV and angles of incidence from 0 deg (normal incidence) to 60 deg .

  17. Mapping cerebral blood flow by xenon-enhanced computed tomography: clinical experience

    SciTech Connect

    Yonas, H.; Good, W.F.; Gur, D.; Wolfson, S.K. Jr.; Latchaw, R.E.; Good, B.C.; Leanza, R.; Miller, S.L.

    1984-08-01

    Local cerebral blood flow was measured and mapped using xenon-enhanced x-ray transmission computed tomography. Studies involving 4-6 minutes of xenon-oxygen inhalation can be performed routinely in awake and anesthetized patients with acceptable patient tolerance and compliance. Several case studies of patients with acute and chronic ischemic injuries and other cerebral abnormalities are presented to illustrate characterization of flow pattern in normal and abnormal tissue, as well as the relevance of this flow information to clinical patient management.

  18. Results from the XENON10 and the Race to Detect Dark Matter with Noble Liquids

    ScienceCinema

    Shutt, Tom [Case Western Reserve, Cleveland, Ohio, United States

    2016-07-12

    Detectors based on liquid noble gases have the potential to revolutionize the direct search for WIMP dark matter. The XENON10 experiment, of which I am a member, has recently announced the results from it's first data run and is now the leading WIMP search experiment. This and other experiments using xenon, argon and neon have the potential to rapidly move from the current kg-scale target mass to the ton scale and well beyond. This should allow a (nearly) definitive test or discovery of dark matter if it is in the form of weakly interacting massive particles.

  19. Development of a xenon/computed tomography cerebral blood flow quality assurance phantom

    SciTech Connect

    Good, W.F.; Gur, D.; Herron, J.M.; Kennedy, W.H.

    1987-09-01

    A simple, easy to use, quality assurance and performance test phantom was developed for the xenon/computed tomography (CT) cerebral blood flow method. The phantom combines an inhalation system which allows for the simulation of xenon buildup or washout in the arterial blood as well as a multisection translatable cylinder in which several sections can be scanned during a preselected protocol to simulate the CT enhancement in brain tissue during a study. The phantom and scanning protocol are described and their use is demonstrated. The results compare favorably to the theoretically expected fast, intermediate, and slow flow values designed into the phantom.

  20. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    NASA Astrophysics Data System (ADS)

    Elliott, Drew; Scime, Earl; Short, Zachary

    2016-11-01

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen is 0.024 ± 0.001.

  1. First-principles calculation of the reflectance of shock-compressed xenon

    SciTech Connect

    Norman, G. E.; Saitov, I. M. Stegailov, V. V.

    2015-05-15

    Within electron density functional theory (DFT), the reflectance of radiation from shock-compressed xenon plasma is calculated. The dependence of the reflectance on the frequency of the incident radiation and on the plasma density is considered. The Fresnel formula is used. The expression for the longitudinal dielectric tensor in the long-wavelength limit is used to calculate the imaginary part of the dielectric function (DF). The real part of the DF is determined by the Kramers-Kronig transformation. The results are compared with experimental data. An approach is proposed to estimate the plasma frequency in shock-compressed xenon.

  2. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    NASA Astrophysics Data System (ADS)

    Sorensen, Peter; Dahl, Carl Eric

    2011-03-01

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  3. Long term spectral irradiance measurements of a 1000-watt xenon arc lamp

    NASA Technical Reports Server (NTRS)

    Schneider, W. E.

    1974-01-01

    Spectral irradiance measurements over the range of 200 to 1060 nm were made on a 1000-watt xenon arc lamp over a period of 1500 hours. Four sets of measurements were made after periods of 70, 525, 1000, and 1500 hours of operation. The lamp (Hanovia Compact Xenon Arc Lamp) was mounted in the NASA Solar Irradiation System. When used in the System, the lamp is used as the radiating source for six test stations. Measurements were made of both the longterm stability (or variation of spectral irradiance as a function of time) and the actual spectral irradiance incident on the test specimen.

  4. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    SciTech Connect

    Sorensen, P; Dahl, C E

    2011-02-14

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al.. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well-described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  5. Hyperpolarized Xenon-129 Magnetic Resonance Imaging of Functional Lung Microstructure

    NASA Astrophysics Data System (ADS)

    Dregely, Isabel

    Hyperpolarized 129Xe (HXe) is a non-invasive contrast agent for lung magnetic resonance imaging (MRI), which upon inhalation follows the functional pathway of oxygen in the lung by dissolving into lung tissue structures and entering the blood stream. HXe MRI therefore provides unique opportunities for functional lung imaging of gas exchange which occurs from alveolar air spaces across the air-blood boundary into parenchymal tissue. However challenges in acquisition speed and signal-to-noise ratio have limited the development of a HXe imaging biomarker to diagnose lung disease. This thesis addresses these challenges by introducing parallel imaging to HXe MRI. Parallel imaging requires dedicated hardware. This work describes design, implementation, and characterization of a 32-channel phased-array chest receive coil with an integrated asymmetric birdcage transmit coil tuned to the HXe resonance on a 3 Tesla MRI system. Using the newly developed human chest coil, a functional HXe imaging method, multiple exchange time xenon magnetization transfer contrast (MXTC) is implemented. MXTC dynamically encodes HXe gas exchange into the image contrast. This permits two parameters to be derived regionally which are related to gas-exchange functionality by characterizing tissue-to-alveolar-volume ratio and alveolar wall thickness in the lung parenchyma. Initial results in healthy subjects demonstrate the sensitivity of MXTC by quantifying the subtle changes in lung microstructure in response to orientation and lung inflation. Our results in subjects with lung disease show that the MXTC-derived functional tissue density parameter exhibits excellent agreement with established imaging techniques. The newly developed dynamic parameter, which characterizes the alveolar wall, was elevated in subjects with lung disease, most likely indicating parenchymal inflammation. In light of these observations we believe that MXTC has potential as a biomarker for the regional quantification of 1

  6. Phenoxyethanol absorption by polyvinyl chloride.

    PubMed

    Lee, M G

    1984-12-01

    Phenoxyethanol was found to be absorbed by polyvinyl chloride administration sets during continuous irrigation therapy. Depending upon the conditions of administration up to 20% loss of potency could occur. Absorption of the drug by the rigid plastic luer-lock fitting of the set caused softening and decreased rigidity of the plastic.

  7. Method for the abatement of hydrogen chloride

    DOEpatents

    Winston, S.J.; Thomas, T.R.

    1975-11-14

    A method is described for reducing the amount of hydrogen chloride contained in a gas stream by reacting the hydrogen chloride with ammonia in the gas phase so as to produce ammonium chloride. The combined gas stream is passed into a condensation and collection vessel, and a cyclonic flow is created in the combined gas stream as it passes through the vessel. The temperature of the gas stream is reduced in the vessel to below the condensation temperature of ammonium chloride in order to crystallize the ammonium chloride on the walls of the vessel. The cyclonic flow creates a turbulence which breaks off the larger particles of ammonium chloride which are, in turn, driven to the bottom of the vessel where the solid ammonium chloride can be removed from the vessel. The gas stream exiting from the condensation and collection vessel is further cleaned and additional ammonium chloride is removed by passing through additional filters.

  8. Method for the abatement of hydrogen chloride

    DOEpatents

    Winston, Steven J.; Thomas, Thomas R.

    1977-01-01

    The present invention provides a method for reducing the amount of hydrogen chloride contained in a gas stream by reacting the hydrogen chloride with ammonia in the gas phase so as to produce ammonium chloride. The combined gas stream is passed into a condensation and collection vessel and a cyclonic flow is created in the combined gas stream as it passes through the vessel. The temperature of the gas stream is reduced in the vessel to below the condensation temperature of ammonium chloride in order to crystallize the ammonium chloride on the walls of the vessel. The cyclonic flow creates a turbulence which breaks off the larger particles of ammonium chloride which are, in turn, driven to the bottom of the vessel where the solid ammonium chloride can be removed from the vessel. The gas stream exiting from the condensation and collection vessel is further cleaned and additional ammonium chloride is removed by passing through additional filters.

  9. 21 CFR 582.5252 - Choline chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use....

  10. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use....

  11. 21 CFR 582.5252 - Choline chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use....

  12. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use....

  13. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use....

  14. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use....

  15. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use....

  16. 21 CFR 582.5252 - Choline chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use....

  17. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use....

  18. 21 CFR 582.5252 - Choline chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use....

  19. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use....

  20. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use....

  1. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use....

  2. 21 CFR 582.5252 - Choline chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use....

  3. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2, CAS Reg. No. 7773-01-5) is a pink... manganous oxide, pyrolusite ore (MnO2), or reduced manganese ore in hydrochloric acid. The...

  4. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Specific Substances Affirmed as GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2, CAS Reg.... It is prepared by dissolving manganous oxide, pyrolusite ore (MnO2), or reduced manganese ore...

  5. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Specific Substances Affirmed as GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2, CAS Reg.... It is prepared by dissolving manganous oxide, pyrolusite ore (MnO2), or reduced manganese ore...

  6. Microbial reductive dehalogenation of vinyl chloride

    DOEpatents

    Spormann, Alfred M [Stanford, CA; Muller, Jochen A [Baltimore, MD; Rosner, Bettina M [Berlin, DE; Von Abendroth, Gregory [Mannheim, DE; Meshulam-Simon, Galit [Los Angeles, CA; McCarty, Perry L [Stanford, CA

    2014-02-11

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  7. Microbial reductive dehalogenation of vinyl chloride

    DOEpatents

    Spormann, Alfred M.; Muller, Jochen A.; Rosner, Bettina M.; Von Abendroth, Gregory; Meshulam-Simon, Galit; McCarty, Perry L

    2011-11-22

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  8. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be...

  9. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be...

  10. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be...

  11. Characteristics of the 2.65 {mu}m atomic xenon laser

    SciTech Connect

    Hebner, G.A.

    1995-10-01

    The laser characteristics of the 2.65 {mu}m xenon laser transition are reviewed. Measured and extrapolated laser efficiency in nuclear pumped and electron beam pumped system is reported. Previous research has indicated that the reported power efficiency is between 0.1 and 2 percent.

  12. In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Pepin, R. O.; Trainer, M. G.; Schwenzer, S. P.; Atreya, S. K.; Freissinet, C.; Jones, J. H.; Manning, H.; Owen, T.; Pavlov, A. A.; Wiens, R. C.; Wong, M. H.; Mahaffy, P. R.

    2016-11-01

    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.

  13. New Results from The Search for Dark Matter with XENON100

    NASA Astrophysics Data System (ADS)

    Aprile, Elena

    2012-03-01

    We report new results from the XENON100 dark matter experiment searching for WIMPs. Operating underground at the LNGS in Italy, XENON100 is a dual phase (liquid/gas) time projection chamber containing a total of 161 kg liquid xenon (LXe) with a 62 kg WIMP target mass and 99 kg shield. Initial results obtained from only 11.2 days of data acquired during a commissioning period at the end of 2009 resulted in world-competitive limits on the WIMP-nucleon interaction cross-section. With no evidence of signal, recently published results from 100.9 live-days set the most stringent limit on dark matter interactions to date, excluding cross-sections above 7.0E-45 cm^2 for a 50 GeV/c^2 WIMP mass at 90% C.L. Following this exposure, in the Summer of 2010, XENON100 was filled with Xe processed through a dedicated cryogenic distillation column to reduce Kr background to levels demonstrated in the 11.2 day commissioning period. The trigger threshold was also lowered and the electron lifetime has improved. Blinded data taking was resumed under these conditions. With excellent stability and performance throughout, the exposure approaches 200 live days at the time of writing. Results from this 200 day WIMP search dataset will be presented.

  14. Penile xenon (/sup 133/Xe) washout: a rapid method of screening for vasculogenic impotence

    SciTech Connect

    Nseyo, U.O.; Wilbur, H.J.; Kang, S.A.; Flesh, L.; Bennett, A.H.

    1984-01-01

    The radioactive inert gas xenon (/sup 133/Xe) is a well-established isotopic indicator used to assess vascular status in many organ systems. Xenon-133 was used to evaluate male impotence. Xenon-133 was injected subcutaneously at the level of the coronal sulcus in the detumescent state. Using the gamma camera, sequential images were obtained and computer-generated curves calculated. The clearance time for 50 per cent washout of the injected /sup 133/Xe (T1/2) was then calculated for each patient, as well as a control group. Preliminary findings indicate a correlation with such established techniques of evaluating erectile impotence as history, physical examination, penile pulse Doppler tracings, and brachial-penile blood pressure index. The xenon-133 washout study was a rapid, minimally invasive, reproducible, and cost-effective method of screening those impotent patients for vasculogenic etiology of their erectile impotence. We recommend the addition of this method to the surgeon engaged in the care of impotent males.

  15. A liquid hydrogen target for the calibration of the MEG and MEG II liquid xenon calorimeter

    NASA Astrophysics Data System (ADS)

    Signorelli, G.; Baldini, A. M.; Bemporad, C.; Cei, F.; Nicolò, D.; Galli, L.; Gallucci, G.; Grassi, M.; Papa, A.; Sergiampietri, F.; Venturini, M.

    2016-07-01

    We designed, built and operated a liquid hydrogen target for the calibration of the liquid xenon calorimeter of the MEG experiment. The target was used throughout the entire data taking period, from 2008 to 2013 and it is being refurbished and partly re-designed to be integrated and used in the MEG-II experiment.

  16. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    SciTech Connect

    TROYER, G.L.

    2000-08-25

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% {at} 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse rise time versus photo peak position and resolution. These data were collected to investigate the effect of pulse rise time compensation on resolution and efficiency.

  17. Metal-organic framework with optimally selective xenon adsorption and separation.

    PubMed

    Banerjee, Debasis; Simon, Cory M; Plonka, Anna M; Motkuri, Radha K; Liu, Jian; Chen, Xianyin; Smit, Berend; Parise, John B; Haranczyk, Maciej; Thallapally, Praveen K

    2016-01-01

    Nuclear energy is among the most viable alternatives to our current fossil fuel-based energy economy. The mass deployment of nuclear energy as a low-emissions source requires the reprocessing of used nuclear fuel to recover fissile materials and mitigate radioactive waste. A major concern with reprocessing used nuclear fuel is the release of volatile radionuclides such as xenon and krypton that evolve into reprocessing facility off-gas in parts per million concentrations. The existing technology to remove these radioactive noble gases is a costly cryogenic distillation; alternatively, porous materials such as metal-organic frameworks have demonstrated the ability to selectively adsorb xenon and krypton at ambient conditions. Here we carry out a high-throughput computational screening of large databases of metal-organic frameworks and identify SBMOF-1 as the most selective for xenon. We affirm this prediction and report that SBMOF-1 exhibits by far the highest reported xenon adsorption capacity and a remarkable Xe/Kr selectivity under conditions pertinent to nuclear fuel reprocessing. PMID:27291101

  18. Molecular oxygen migration through the xenon docking sites of human hemoglobin in the R-state.

    PubMed

    Lepeshkevich, Sergei V; Gilevich, Syargey N; Parkhats, Marina V; Dzhagarov, Boris M

    2016-09-01

    A nanosecond laser flash-photolysis technique was used to study bimolecular and geminate molecular oxygen (O2) rebinding to tetrameric human hemoglobin and its isolated α and β chains in buffer solutions equilibrated with 1atm of air and up to 25atm of xenon. Xenon binding to the isolated α chains and to the α subunits within tetrameric hemoglobin was found to cause a decrease in the efficiency of O2 escape by a factor of ~1.30 and 3.3, respectively. A kinetic model for O2 dissociation, rebinding, and migration through two alternative pathways in the hemoglobin subunits was introduced and discussed. It was shown that, in the isolated α chains and α subunits within tetrameric hemoglobin, nearly one- and two-third escaping molecules of O2 leave the protein via xenon docking sites, respectively. The present experimental data support the idea that O2 molecule escapes from the β subunits mainly through the His(E7) gate, and show unambiguously that, in the α subunits, in addition to the direct E7 channel, there is at least one alternative escape route leading to the exterior via the xenon docking sites. PMID:27288155

  19. Pressure-induced bonding and compound formation in xenon-hydrogen solids

    SciTech Connect

    Somayazulu, Maddury; Dera, Przemyslaw; Goncharov, Alexander F; Gramsch, Stephen A; Liermann, Peter; Yang, Wenge; Liu, Zhenxian; Mao, Ho-kwang; Hemley, Russell J

    2010-11-03

    Closed electron shell systems, such as hydrogen, nitrogen or group 18 elements, can form weakly bound stoichiometric compounds at high pressures. An understanding of the stability of these van der Waals compounds is lacking, as is information on the nature of their interatomic interactions. We describe the formation of a stable compound in the Xe-H{sub 2} binary system, revealed by a suite of X-ray diffraction and optical spectroscopy measurements. At 4.8 GPa, a unique hydrogen-rich structure forms that can be viewed as a tripled solid hydrogen lattice modulated by layers of xenon, consisting of xenon dimers. Varying the applied pressure tunes the Xe-Xe distances in the solid over a broad range from that of an expanded xenon lattice to the distances observed in metallic xenon at megabar pressures. Infrared and Raman spectra indicate a weakening of the intramolecular covalent bond as well as persistence of semiconducting behaviour in the compound to at least 255 GPa.

  20. Metal–organic framework with optimally selective xenon adsorption and separation

    PubMed Central

    Banerjee, Debasis; Simon, Cory M.; Plonka, Anna M.; Motkuri, Radha K.; Liu, Jian; Chen, Xianyin; Smit, Berend; Parise, John B.; Haranczyk, Maciej; Thallapally, Praveen K.

    2016-01-01

    Nuclear energy is among the most viable alternatives to our current fossil fuel-based energy economy. The mass deployment of nuclear energy as a low-emissions source requires the reprocessing of used nuclear fuel to recover fissile materials and mitigate radioactive waste. A major concern with reprocessing used nuclear fuel is the release of volatile radionuclides such as xenon and krypton that evolve into reprocessing facility off-gas in parts per million concentrations. The existing technology to remove these radioactive noble gases is a costly cryogenic distillation; alternatively, porous materials such as metal–organic frameworks have demonstrated the ability to selectively adsorb xenon and krypton at ambient conditions. Here we carry out a high-throughput computational screening of large databases of metal–organic frameworks and identify SBMOF-1 as the most selective for xenon. We affirm this prediction and report that SBMOF-1 exhibits by far the highest reported xenon adsorption capacity and a remarkable Xe/Kr selectivity under conditions pertinent to nuclear fuel reprocessing. PMID:27291101

  1. Transmission of low energy (< 10 eV) oxygen ions through ultrathin xenon films

    NASA Astrophysics Data System (ADS)

    Sack, N. J.; Akbulut, M.; Madey, T. E.

    1994-05-01

    In studies of desorption induced by electronic transitions (DIET) such as electron or photon stimulated desorption, it is important to know whether the desorbing species originate solely from the outermost surface layer, or also from layers beneath the surface. In order to gain better understanding of the charge transfer, elastic scattering, and other inelastic processes involved in this issue, we are currently performing a series of experimental studies of the transmission of low energy ions (˜ 7 eV) through ultrathin films (submonolayer to multilayer) of condensed gases. Here we report on the first quantitative measurements of the yield, angle, and energy of oxygen ions after transmission through ultrathin films of xenon. In our novel approach, a focused 300 eV electron beam bombards a target at 25 K consisting of an oxidized tungsten (100) crystal with adsorbed overlayers of xenon. In the absence of the xenon, O + ions desorb in a sharp beam normal to the surface, as measured in a velocity and angle resolving ESDIAD apparatus (electron stimulated desorption ion angular distribution). When Xe layers are present, some oxygen ions penetrate several monolayers of xenon without significant change in energy and angle while others seem to be scattered by large-angle elastic scattering or to be attenuated from the O + beam. The work presented is the first experimental study of the depth of origin of desorbing ions in DIET processes.

  2. A note on the biological activity of the noble gas compound xenon trioxide.

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Smith, C. W.

    1972-01-01

    Comparison of xenon trioxide for toxicity in the few common oxidants using three bioassays. On a molar basis XeO3 and HOCl were similar, but XeO3 was less active than expected when comparisons were based on normality.

  3. A Liquid Xenon Ionization Chamber in an All-fluoropolymer Vessel

    SciTech Connect

    LePort, F.; Pocar, A.; Bartoszek, L.; DeVoe, R.; Fierlinger, P.; Flatt, B.; Gratta, G.; Green, M.; Montero Diez, M.; Neilson, R.; O'Sullivan, K.; Wodin, J.; Woisard, D.; Baussan, E.; Breidenbach, M.; Conley, R.; Fairbank, W., Jr.; Farine, J.; Hall, K.; Hallman, D.; Hargrove, C.; /Stanford U., Phys. Dept. /Applied Plastics Technology, Bristol /Neuchatel U. /SLAC /Colorado State U. /Laurentian U. /Carleton U. /Alabama U. /Moscow, ITEP

    2007-02-26

    A novel technique has been developed to build vessels for liquid xenon ionization detectors entirely out of ultra-clean fluoropolymer. We describe the advantages in terms of low radioactivity contamination, provide some details of the construction techniques, and show the energy resolution achieved with a prototype all-fluoropolymer ionization detector.

  4. Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.

    PubMed

    Vaara, Juha; Hanni, Matti; Jokisaari, Jukka

    2013-03-14

    Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation. PMID:23514495

  5. Effects of xenon cover gas in CO/sub 2/ laser welding

    SciTech Connect

    Hendrix, T.L.

    1980-07-01

    Weld spatter in CO/sub 2/ laser welding is detrimental to miniature components. The effects of using xenon gas as an inert laser welding atmosphere to reduce weld spatter are discussed. The laser plume characteristics, weld penetration, and weld spatter are evaluated.

  6. 21 CFR 582.5985 - Zinc chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance...

  7. 21 CFR 582.5985 - Zinc chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance...

  8. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc chloride. 182.8985 Section 182.8985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b)...

  9. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Zinc chloride. 182.8985 Section 182.8985 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is generally recognized as safe when used...

  10. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zinc chloride. 182.8985 Section 182.8985 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is generally recognized as safe when used...

  11. 21 CFR 582.5985 - Zinc chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance...

  12. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Zinc chloride. 182.8985 Section 182.8985 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is generally recognized as safe when used...

  13. 21 CFR 182.8252 - Choline chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Choline chloride. 182.8252 Section 182.8252 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized...

  14. 21 CFR 182.8252 - Choline chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Choline chloride. 182.8252 Section 182.8252 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized...

  15. 21 CFR 172.180 - Stannous chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Preservatives § 172.180 Stannous chloride. The food additive stannous chloride may be safely used for color... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Stannous chloride. 172.180 Section 172.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  16. 21 CFR 182.8252 - Choline chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Choline chloride. 182.8252 Section 182.8252 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride....

  17. 21 CFR 582.5985 - Zinc chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance...

  18. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc chloride. 182.8985 Section 182.8985 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is generally recognized as safe when used...

  19. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in...

  20. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in...

  1. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in...

  2. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium chloride. 582.1193 Section 582.1193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This...

  3. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is...

  4. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium chloride. 582.1193 Section 582.1193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This...

  5. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is...

  6. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is...

  7. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium chloride. 582.1193 Section 582.1193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This...

  8. 7 CFR 58.434 - Calcium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Calcium chloride. 58.434 Section 58.434 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.434 Calcium chloride. Calcium chloride, when used, shall meet the requirements of the...

  9. 7 CFR 58.434 - Calcium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Calcium chloride. 58.434 Section 58.434 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.434 Calcium chloride. Calcium chloride, when used, shall meet the requirements of the...

  10. 7 CFR 58.434 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Calcium chloride. 58.434 Section 58.434 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.434 Calcium chloride. Calcium chloride, when used, shall meet the requirements of the...

  11. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is...

  12. 7 CFR 58.434 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Calcium chloride. 58.434 Section 58.434 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.434 Calcium chloride. Calcium chloride, when used, shall meet the requirements of the...

  13. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium chloride. 582.1193 Section 582.1193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This...

  14. 7 CFR 58.434 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Calcium chloride. 58.434 Section 58.434 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.434 Calcium chloride. Calcium chloride, when used, shall meet the requirements of the...

  15. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is...

  16. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium chloride. 582.1193 Section 582.1193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This...

  17. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use....

  18. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Schulz, W.W.

    1959-08-01

    The removal of chlorides from aqueons solutions is described. The process involves contacting the aqueous chloride containing solution with a benzene solution about 0.005 M in phenyl mercuric acetate whereby the chloride anions are taken up by the organic phase and separating the organic phase from the aqueous solutions.

  19. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in...

  20. 21 CFR 172.180 - Stannous chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Food Preservatives § 172.180 Stannous chloride. The food additive stannous chloride may be safely used... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Stannous chloride. 172.180 Section 172.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  1. 21 CFR 172.180 - Stannous chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Food Preservatives § 172.180 Stannous chloride. The food additive stannous chloride may be safely used... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Stannous chloride. 172.180 Section 172.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  2. 21 CFR 172.180 - Stannous chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Food Preservatives § 172.180 Stannous chloride. The food additive stannous chloride may be safely used... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Stannous chloride. 172.180 Section 172.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  3. Optical and electron spin resonance studies of xenon-nitrogen-helium condensates containing nitrogen and oxygen atoms.

    PubMed

    Boltnev, Roman E; Bykhalo, Igor B; Krushinskaya, Irina N; Pelmenev, Alexander A; Khmelenko, Vladimir V; Mao, Shun; Meraki, Adil; Wilde, Scott C; McColgan, Patrick T; Lee, David M

    2015-03-19

    We present the first observations of excimer XeO* molecules in molecular nitrogen films surrounding xenon cores of nanoclusters. Multishell nanoclusters form upon the fast cooling of a helium jet containing small admixtures of nitrogen and xenon by cold helium vapor (T = 1.5 K). Such nanoclusters injected into superfluid helium aggregate into porous impurity-helium condensates. Passage of helium gas with admixtures through a radio frequency discharge allows the storage of high densities of radicals stabilized in impurity-helium condensates. Intense recombination of the radicals occurs during destruction of such condensates and generates excited species observable because of optical emission. Rich spectra of xenon-oxygen complexes have been detected upon destruction of xenon-nitrogen-helium condensates. A xenon environment quenches metastable N((2)D) atoms but has a much weaker effect on the luminescence of N((2)P) atoms. Electron spin resonance spectra of N((4)S) atoms trapped in xenon-nitrogen-helium condensates have been studied. High local concentrations of nitrogen atoms (up to 10(21) cm(-3)) stabilized in xenon-nitrogen nanoclusters have been revealed.

  4. An XAFS Study of Tantalum Chloride in the Ionic Liquid 1-ethyl-3-methyl Imidazolium Chloride/ aluminum Chloride

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    Tantalum chloride was studied with extended X-ray absorption fine structure spectroscopy (XAFS) in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride ionic liquids (ILs). Anhydrous Ta2Cl10 is more soluble in the basic solution than in the acidic solution and the X-ray absorption data shows that the coordination shell of chlorides around the tantalum is larger in the basic solution. In the acidic solution, tantalum has five chlorides in its coordination shell while in the basic solution; the tantalum is coordinated by seven chlorides. This indicates that the Lewis acidity of the tantalum chloride causes the Ta to coordinate differently in the acidic and the basic solutions.

  5. Phase behavior of mixed submonolayer films of krypton and xenon on graphite

    NASA Astrophysics Data System (ADS)

    Patrykiejew, A.; Sokołowski, S.

    2012-04-01

    Using the results of extensive Monte Carlo simulations in the canonical and grand canonical ensembles, we discuss the phase behavior of mixed submonolayer films of krypton and xenon adsorbed on the graphite basal plane. The calculations have been performed using two- and three-dimensional models of the systems studied. It has been demonstrated that out-of-plane motion does not affect the properties of the films as long as the total density is well below the monolayer completion and at moderate temperatures. For the total densities close to the monolayer completion, the promotion of particles to the second layer considerably affects the film properties. Our results are in a reasonable agreement with the available experimental data. The melting point of submonolayer films has been shown to exhibit non-monotonous changes with the film composition, and reaches minimum for the xenon concentration of about 50%. At the temperatures below the melting point, the structure of solid phases depends upon the film composition and the temperature; one can also distinguish commensurate and incommensurate phases. Two-dimensional calculations have demonstrated that for the xenon concentration between about 15% and 65% the adsorbed film exhibits the formation of a superstructure, in which each Xe atom is surrounded by six Kr atoms. This superstructure is stable only at very low temperatures and transforms into the mixed commensurate (√{3}× √{3})R30° phase upon the increase of temperature. Such a superstructure does not appear when a three-dimensional model is used. Grand canonical ensemble calculations allowed us to show that for the xenon concentration of about 3% the phase diagram topology of monolayer films changes from the krypton-like (with incipient triple point) to the xenon-like (with ordinary triple point).

  6. Phase behavior of mixed submonolayer films of krypton and xenon on graphite.

    PubMed

    Patrykiejew, A; Sokołowski, S

    2012-04-14

    Using the results of extensive Monte Carlo simulations in the canonical and grand canonical ensembles, we discuss the phase behavior of mixed submonolayer films of krypton and xenon adsorbed on the graphite basal plane. The calculations have been performed using two- and three-dimensional models of the systems studied. It has been demonstrated that out-of-plane motion does not affect the properties of the films as long as the total density is well below the monolayer completion and at moderate temperatures. For the total densities close to the monolayer completion, the promotion of particles to the second layer considerably affects the film properties. Our results are in a reasonable agreement with the available experimental data. The melting point of submonolayer films has been shown to exhibit non-monotonous changes with the film composition, and reaches minimum for the xenon concentration of about 50%. At the temperatures below the melting point, the structure of solid phases depends upon the film composition and the temperature; one can also distinguish commensurate and incommensurate phases. Two-dimensional calculations have demonstrated that for the xenon concentration between about 15% and 65% the adsorbed film exhibits the formation of a superstructure, in which each Xe atom is surrounded by six Kr atoms. This superstructure is stable only at very low temperatures and transforms into the mixed commensurate (√3×√3)R30° phase upon the increase of temperature. Such a superstructure does not appear when a three-dimensional model is used. Grand canonical ensemble calculations allowed us to show that for the xenon concentration of about 3% the phase diagram topology of monolayer films changes from the krypton-like (with incipient triple point) to the xenon-like (with ordinary triple point).

  7. Phase behavior of mixed submonolayer films of krypton and xenon on graphite.

    PubMed

    Patrykiejew, A; Sokołowski, S

    2012-04-14

    Using the results of extensive Monte Carlo simulations in the canonical and grand canonical ensembles, we discuss the phase behavior of mixed submonolayer films of krypton and xenon adsorbed on the graphite basal plane. The calculations have been performed using two- and three-dimensional models of the systems studied. It has been demonstrated that out-of-plane motion does not affect the properties of the films as long as the total density is well below the monolayer completion and at moderate temperatures. For the total densities close to the monolayer completion, the promotion of particles to the second layer considerably affects the film properties. Our results are in a reasonable agreement with the available experimental data. The melting point of submonolayer films has been shown to exhibit non-monotonous changes with the film composition, and reaches minimum for the xenon concentration of about 50%. At the temperatures below the melting point, the structure of solid phases depends upon the film composition and the temperature; one can also distinguish commensurate and incommensurate phases. Two-dimensional calculations have demonstrated that for the xenon concentration between about 15% and 65% the adsorbed film exhibits the formation of a superstructure, in which each Xe atom is surrounded by six Kr atoms. This superstructure is stable only at very low temperatures and transforms into the mixed commensurate (√3×√3)R30° phase upon the increase of temperature. Such a superstructure does not appear when a three-dimensional model is used. Grand canonical ensemble calculations allowed us to show that for the xenon concentration of about 3% the phase diagram topology of monolayer films changes from the krypton-like (with incipient triple point) to the xenon-like (with ordinary triple point). PMID:22502538

  8. Chemically fractionated fission-xenon in meteorites and on the earth

    NASA Astrophysics Data System (ADS)

    Shukolyukov, Yuri A.; Jessberger, Elmar K.; Meshik, Alexander P.; Vu Minh, Dang; Jordan, Jimmy L.

    1994-07-01

    This is a report on the nature of isotopically anomalous xenon, which has been detected in two Ca-Al-rich inclusions of the Allende carbonaceous chondrite. It is extremely enriched in 132Xe, 129Xe, and to a lesser extent in 131Xe. Similar large excesses of 132Xe as well as of 131Xe, 134Xe, and 129Xe have previously been found in material processed in a natural nuclear reactor (Oklo phenomenon). Excess of these isotopes had also been encountered in MORB-glasses, in an ancient Greenland anorthosite. Thus, this Xe-type, which had previously been termed "alien" ( JORDON et al., 1980a) does not seem to be unique. To determine the origin of "alien" Xe, we analysed Xe (a) in neutron irradiated pitchblende and in the irradiation capsule, (b) in non-irradiated extremely fine-grained pitchblende (so-called Colorado-type deposit), and (c) in sandstone taken from the epicentre of an atomic explosion. In addition, the isotopic composition of xenon released by stepwise degassing and after selective dissolving of rocks from the Oklo natural reactor was determined. The results of these dedicated experiments demonstrate that the formation of alien Xe is due to the migration of the radioactive precursors of the stable isotopes 134Xe, 132Xe, 131Xe, and 129Xe. Due to this reason we now call it CFF-Xe - Chemically Fractionated Fission Xenon. Prerequisites for its formation are the simultaneous prevalence of two conditions: (1) fission (of 238U, 235U, and/ or 244Pu) and (2) a physicochemical environment (temperature, pressure, fluidity) at which the precursors of xenon (mainly Te and I) are mobile. Taking into account the occurrence of xenon in meteorites and terrestrial rocks, not all excesses of 129Xe in mantle rocks and natural gases are necessarily connected with the decay of primordial 129I.

  9. Xenon migration in UO2 under irradiation studied by SIMS profilometry

    NASA Astrophysics Data System (ADS)

    Marchand, B.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Garnier, C.; Raimbault, L.; Sainsot, P.; Epicier, T.; Delafoy, C.; Fraczkiewicz, M.; Gaillard, C.; Toulhoat, N.; Perrat-Mabilon, A.; Peaucelle, C.

    2013-09-01

    During Pressurized Water Reactor operation, around 25% of the created Fission Products (FP) are Xenon and Krypton. They have a low solubility in the nuclear fuel and can either (i) agglomerate into bubbles which induce mechanical stress in the fuel pellets or (ii) be released from the pellets, increasing the pressure within the cladding and decreasing the thermal conductivity of the gap between pellets and cladding. After fifty years of studies on the nuclear fuel, all mechanisms of Fission Gas Release (FGR) are still not fully understood. This paper aims at studying the FGR mechanisms by decoupling thermal and irradiation effects and by assessing the Xenon behavior for the first time by profilometry. Samples are first implanted with 136Xe at 800 keV corresponding to a projected range of 140 nm. They are then either annealed in the temperature range 1400-1600 °C, or irradiated with heavy energy ions (182 MeV Iodine) at Room Temperature (RT), 600 °C or 1000 °C. Depth profiles of implanted Xenon in UO2 are determined by Secondary Ion Mass Spectrometry (SIMS). It is shown that Xenon is mobile during irradiation at 1000 °C. In contrast, thermal treatments do not induce any Xenon migration process: these results are correlated to the formation of Xenon bubbles observed by Transmission Electron Microscopy. At depths lower than about 40 nm (zone 1), no bubbles are observed, At depths in between 40 nm and 110 nm (zone 2), a large number of small bubbles (around 2 nm in diameter) can be observed. By comparing with the SRIM profile, it appears that this area corresponds to the maximum of the defect profile, The third zone displays two bubble populations. The first population has the same size than the bubbles present in zone 2. The bubble size of the second population is significantly larger (up to around 10 nm). A STEM micrograph is presented in Fig. 4. It highlights the Xenon bubbles more clearly. It appears that the largest bubbles are located mainly near dislocations

  10. Chloride flux out of Yellowstone National Park

    USGS Publications Warehouse

    Norton, D.R.; Friedman, I.

    1985-01-01

    Monitoring of the chloride concentration, electrical conductivity, and discharge was carried out for the four major rivers of Yellowstone National Park from September 1982 to January 1984. Chloride flux out of the Park was determined from the measured values of chloride concentration and discharge. The annual chloride flux from the Park was 5.86 ?? 1010 g. Of this amount 45% was from the Madison River drainage basin, 32% from the Yellowstone River basin, 12% from the Snake River basin, and 11% from the Falls River basin. Of the annual chloride flux from the Yellowstone River drainage basin 36% was attributed to the Yellowstone Lake drainage basin. The geothermal contribution to the chloride flux was determined by subtracting the chloride contribution from rock weathering and atmospheric precipitation and is 94% of the total chloride flux. Calculations of the geothermal chloride flux for each river are given and the implications of an additional chloride flux out of the western Park boundary discussed. An anomalous increase in chloride flux out of the Park was observed for several weeks prior to the Mt. Borah earthquake in Central Idaho on October 28, 1983, reaching a peak value shortly thereafter. It is suggested that the rise in flux was a precursor of the earthquake. The information in this paper provides baseline data against which future changes in the hydrothermal systems can be measured. It also provides measurements related to the thermal contributions from the different drainage basins of the Park. ?? 1985.

  11. Salt, chloride, bleach, and innate host defense.

    PubMed

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense.

  12. Salt, chloride, bleach, and innate host defense

    PubMed Central

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  13. Salt, chloride, bleach, and innate host defense.

    PubMed

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  14. Laser ablation of human atherosclerotic plaque without adjacent tissue injury

    NASA Technical Reports Server (NTRS)

    Grundfest, W. S.; Litvack, F.; Forrester, J. S.; Goldenberg, T.; Swan, H. J. C.

    1985-01-01

    Seventy samples of human cadaver atherosclerotic aorta were irradiated in vitro using a 308 nm xenon chloride excimer laser. Energy per pulse, pulse duration and frequency were varied. For comparison, 60 segments were also irradiated with an argon ion and an Nd:YAG laser operated in the continuous mode. Tissue was fixed in formalin, sectioned and examined microscopically. The Nd:YAG and argon ion-irradiated tissue exhibited a central crater with irregular edges and concentric zones of thermal and blast injury. In contrast, the excimer laser-irradiated tissue had narrow deep incisions with minimal or no thermal injury. These preliminary experiments indicate that the excimer laser vaporizes tissue in a manner different from that of the continuous wave Nd:YAG or argon ion laser. The sharp incision margins and minimal damage to adjacent normal tissue suggest that the excimer laser is more desirable for general surgical and intravascular uses than are the conventionally used medical lasers.

  15. Application of benzo[a]phenoxazinium chlorides in Antimicrobial Photodynamic Therapy of Candida albicans biofilms.

    PubMed

    Lopes, Marisa; Alves, Carlos Tiago; Rama Raju, B; Gonçalves, M Sameiro T; Coutinho, Paulo J G; Henriques, Mariana; Belo, Isabel

    2014-12-01

    The use of Antimicrobial Photodynamic Therapy (APDT) as a new approach to treat localized Candida infections is an emerging and promising field nowadays. The aim of this study was to verify the efficacy of photodynamic therapy using two new benzo[a]phenoxazinium photosensitizers against Candida albicans biofilms: N-(5-(3-hydroxypropylamino)-10-methyl-9H-benzo[a]phenoxazin-9-ylidene)ethanaminium chloride (FSc) and N-(5-(11-hydroxyundecylamino)-10-methyl-9H-benzo[a]phenoxazin-9-ylidene)ethanaminium chloride (FSd). The photodynamic activity of dyes against C. albicans biofilms was evaluated by incubating biofilms with dyes in the range of 100-300 μM for 3 or 18 h followed by illumination at 12 or 36 J cm(-2), using a xenon arc lamp (600 ± 2 nm). A total photoinactivation of C. albicans biofilm cells was achieved using 300 μM of FSc with 18 h of incubation, followed by illumination at 36 J cm(-2). Contrarily, FSd had insignificant effect on biofilms inactivation by APDT. The higher uptake of FSc than FSd dye by biofilms during the dark incubation may explain the greater photodynamic effectiveness achieved with FSc. The results obtained stresses out the FSc-mediated APDT potential use to treat C. albicans infections.

  16. Studies of K-Ar dating and xenon from extinct radioactivities in breccia 14318; implications for early lunar history

    NASA Technical Reports Server (NTRS)

    Reynolds, J. H.; Alexander, E. C., Jr.; Davis, P. K.; Srinivasan, B.

    1974-01-01

    The lunar breccia 14318 is one of three Apollo-14 breccias containing substantial amounts of parentless xenon from the spontaneous fission of extinct Pu-244. The argon and xenon contained in this breccia were studied by stepwise heating of pristine and neutron-irradiated samples. The isotopic composition of xenon from fission, determined by an improved method, is shown to be from Pu-244. Concentrations of this fissiogenic xenon are in substantial excess (15-fold) of what could be produced by spontaneous fission of U-238. The breccia is found to contain abundant trapped argon with an Ar-40/Ar-36 ratio of roughly 14. Otherwise, the argon is radiogenic and gives a convincing K-Ar age of 3.69 plus or minus 0.09 b.y. by the stepwise Ar-40/Ar-39 method, nearly in agreement with ages for other Apollo-14 breccias.

  17. Design and First Results of the CoDeX Liquid-Xenon Compton-Imaging Detector

    NASA Astrophysics Data System (ADS)

    Tennyson, Brian; Cahn, Sidney; Bernard, Ethan; Boulton, Elizabeth; Destefano, Nicholas; Edwards, Blair; Hackenburg, Ariana; Horn, Markus; Larsen, Nicole; Nikkel, James; Wahl, Christopher; Gai, Moshe; McKinsey, Daniel

    2016-03-01

    CoDeX (Compton-imaging Detector in Xenon) is an R&D Compton gamma-ray imaging detector that uses 30 kg of xenon in a two-phase time projection chamber. Time projection relative to the initial scintillation signal provides the vertical interaction positions, and either PMT-sensed gas electroluminescence or a charge-sensitive amplifier quantifies the drifted ionization signal. Detector features to enable Compton imaging are a pair of instrumented wire grids added to sense the horizontal position of clouds of drifted electrons that traverse the detector. Each wire is individually amplified in the cold xenon environment. Design choices addressing the thermodynamic and xenon purity constraints of this system will be discussed. We will also discuss the mechanical designs, engineering challenges, and performance of this Compton-imaging detector.

  18. [Effects of xenon and krypton-containing breathing mixtures on clinical and biochemical blood indices in animals].

    PubMed

    Kussmaul', A R; Bogacheva, M A; Shkurat, T P; Pavlov, B N

    2007-01-01

    Effects of 24-hr breathing air mixtures containing xenon (XBM) and krypton (KBM) were compared in terms of hormonal status, and blood biochemical indices and morphology in laboratory animals. Some changes observed in blood and hormone indices could be a nonspecific adaptive response. Hence, we should elicit whether these effects are quickly reversible or long. For several indices krypton was a more favorable factor than xenon. However, some of its effects invite to delve into effects of different krypton concentrations on organism.

  19. Chloride Transporting CLC Proteins1

    NASA Astrophysics Data System (ADS)

    Pusch, Michael

    In the early 1980s, Chris Miller and colleagues described a curious "double-barreled" chloride channel from the electric organ of Torpedo fish reconstituted in planar lipid bilayers (Miller and White, 1980). Single-channel openings occurred in "bursts" separated by long closures. A single burst was characterized by the presence of two open conductance levels of equal size and the gating (i.e., openings and closings) during a burst could be almost perfectly described as a superposition of two identical and independent conductances that switched between open and closed states with voltage-dependent rates α and β (Hanke and Miller, 1983) (Fig. 8.1).

  20. An XAFS Study of Niobium chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride/ aluminum chloride

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    Niobium chloride was studied with extended X-ray absorption fine structure spectroscopy (EXAFS) in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride (EMIC) ionic liquids. Although anhydrous Nb2Cl10 is more soluble in the basic melt than in the acidic melt, the EXAFS data shows that the coordination shell around the niobium does not change in the different ionic liquids. Both the acidic and basic melts show a coordination of five chlorides in the first shell. This indicates that in this series of ionic liquids, the Nb2Cl10 breaks up into two NbCl5 entities in both the acidic and the basic melts.

  1. Development and evaluation of a silver mordenite composite sorbent for the partitioning of xenon from krypton in gas compositions

    SciTech Connect

    Garn, Troy G.; Greenhalgh, Mitchell; Law, Jack D.

    2015-12-22

    A new engineered form composite sorbent for the selective separation of xenon from krypton in simulant composition off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A sodium mordenite powder was incorporated into a macroporous polymer binder, formed into spherical beads and successfully converted to a 9 wt.% silver form composite sorbent. The final engineered form sorbent retained the characteristic surface area indicative of sodium mordenite powder. The sorbent was evaluated for xenon adsorption potential with capacities measured as high as 30 millimoles of xenon per kilogram of sorbent achieved at ambient temperature and 460 millimoles of xenon per kilogram sorbent at 220 K. Xenon/krypton selectivity was calculated to be 22.4 with a 1020 µL/L xenon, 150 µL/L krypton in a balance of air feed gas at 220 K. Furthermore, adsorption/desorption thermal cycling effects were evaluated with results indicating sorbent performance was not significantly impacted while undergoing numerous adsorption/desorption thermal cycles.

  2. Development and evaluation of a silver mordenite composite sorbent for the partitioning of xenon from krypton in gas compositions

    DOE PAGES

    Garn, Troy G.; Greenhalgh, Mitchell; Law, Jack D.

    2015-12-22

    A new engineered form composite sorbent for the selective separation of xenon from krypton in simulant composition off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A sodium mordenite powder was incorporated into a macroporous polymer binder, formed into spherical beads and successfully converted to a 9 wt.% silver form composite sorbent. The final engineered form sorbent retained the characteristic surface area indicative of sodium mordenite powder. The sorbent was evaluated for xenon adsorption potential with capacities measured as high as 30 millimoles of xenon per kilogram of sorbent achieved at ambient temperature andmore » 460 millimoles of xenon per kilogram sorbent at 220 K. Xenon/krypton selectivity was calculated to be 22.4 with a 1020 µL/L xenon, 150 µL/L krypton in a balance of air feed gas at 220 K. Furthermore, adsorption/desorption thermal cycling effects were evaluated with results indicating sorbent performance was not significantly impacted while undergoing numerous adsorption/desorption thermal cycles.« less

  3. Calculated characteristics of radio-frequency plasma display panel cells including the influence of xenon metastables

    NASA Astrophysics Data System (ADS)

    Pitchford, L. C.; Kang, J.; Punset, C.; Boeuf, J. P.

    2002-12-01

    Although alternating-current plasma display panels (ac PDPs) are now produced by several companies, improvements are still necessary. In particular, the overall efficiency of the discharge in the standard configuration is low, on the order of 1 lm/W i.e., about 0.5% of the power dissipated in the discharge is transformed into useful visible photons. One way to substantially improve the efficiency of PDPs is to use radio-frequency (rf) excitation because, when compared to ac PDPs, less of the electrical energy input is dissipated by ions in the sheath and relatively more power is deposited in excitation of the xenon, which produces the ultraviolet photons used to excite the phosphors. In this article, we show calculated discharge characteristics for typical rf PDP conditions and pay particular attention to the role of the xenon metastable atoms in the ionization balance. Our discussion is limited to the sustaining regime, the "on-state," of a PDP cell.

  4. [Practicing subnarcotic xenon dose inhalation in spa treatment of posttraumatic stress-induced disorders].

    PubMed

    Igoshina, T V; Kotrovskaya, T I; Bubeev, Yu A; Schastlivtseva, D V; Potapov, A V

    2014-01-01

    Purpose of the investigation was to compare and contrast effectiveness of xenon therapy of stress-induced neurotic disorders and traditional spa-based therapy. Patients of the experimental and control groups were people of risky professions who received drug therapy, psychotherapy and physiotherapy. The experimental group was additionally treated by inhalation therapeutic doses of medical xenon. Comparative analysis of qualitative and quantitative parameters of electroencephalogram (EEG), blood oxygen level, heart rate and blood pressure were compared in the groups before and after treatment. Recovery of the central nervous system functions, activation of parasympathetic involvement, abatement of main psychopathological and somatovegetative disorders in the experimental group were considered as signs of psychic improvement and return to the gestalt behavior. PMID:26036001

  5. SAUNA—a system for automatic sampling, processing, and analysis of radioactive xenon

    NASA Astrophysics Data System (ADS)

    Ringbom, A.; Larson, T.; Axelsson, A.; Elmgren, K.; Johansson, C.

    2003-08-01

    A system for automatic sampling, processing, and analysis of atmospheric radioxenon has been developed. From an air sample of about 7 m3 collected during 12 h, 0.5 cm3 of xenon is extracted, and the atmospheric activities from the four xenon isotopes 133Xe, 135Xe, 131mXe, and 133mXe are determined with a beta-gamma coincidence technique. The collection is performed using activated charcoal and molecular sieves at ambient temperature. The sample preparation and quantification are performed using preparative gas chromatography. The system was tested under routine conditions for a 5-month period, with average minimum detectable concentrations below 1 mBq/ m3 for all four isotopes.

  6. Determining reactor flux from xenon-136 and cesium-135 in spent fuel

    NASA Astrophysics Data System (ADS)

    Hayes, A. C.; Jungman, Gerard

    2012-10-01

    The ability to infer reactor flux from spent fuel or seized fissile material would enhance the tools of nuclear forensics and nuclear nonproliferation significantly. We show that reactor flux can be inferred from the ratios of xenon-136 to xenon-134 and cesium-135 to cesium-137. If the average flux of a reactor is known, the flux inferred from measurements of spent fuel could help determine whether that spent fuel was loaded as a blanket or close to the mid-plane of the reactor. The cesium ratio also provides information on reactor shutdowns during the irradiation of fuel, which could prove valuable for identifying the reactor in question through comparisons with satellite reactor heat monitoring data. We derive analytic expressions for these correlations and compare them to experimental data and to detailed reactor burn simulations. The enrichment of the original uranium fuel affects the correlations by up to 3%, but only at high flux.

  7. Ab initio electron scattering cross-sections and transport in liquid xenon

    NASA Astrophysics Data System (ADS)

    Boyle, G. J.; McEachran, R. P.; Cocks, D. G.; Brunger, M. J.; Buckman, S. J.; Dujko, S.; White, R. D.

    2016-09-01

    Ab initio fully differential cross-sections for electron scattering in liquid xenon are developed from a solution of the Dirac-Fock scattering equations, using a recently developed framework (Boyle et al 2015 J. Chem. Phys. 142 154507) which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann’s equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10-4-1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase cross-sections, is presented to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculations.

  8. Development of a xenon polarizer for magnetometry in neutron electric dipole moment experiments

    NASA Astrophysics Data System (ADS)

    Dawson, Troy

    Next generation electric dipole moment experiments require precise knowledge of the local magnetic fields in the experimental volume. Hyperpolarized xenon-129 has been proposed as a comagnetometer gas to be used in the neutron electric dipole moment experiment planned for TRIUMF. A flow through xenon polarizer was constructed and tested, and the hyperpolarized Xe-129 produced was transported to and characterized using a new AFP-NMR spectrometer. The polarization measured in the external AFP-NMR spectrometer was (12 +/- 4)%. The longitudinal spin relaxation time T1 was found to be (77 +/- 24) s in the experimental NMR volume, limited by leaks and field inhomogeneity. This represents good progress towards the eventual system for nEDM experiments where polarizations greater than 50% and T1, T2 relaxation times greater than 1000 s are expected.

  9. A liquid xenon imaging telescope for 1-30 MeV gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Aprile, Elena; Mukherjee, Reshmi; Suzuki, Masayo

    1989-01-01

    A study of the primary scintillation light in liquid xenon excited by 241 Am alpha particles and 207 Bi internal conversion electrons are discussed. The time dependence and the intensity of the light at different field strengths have been measured with a specifically designed chamber, equipped with a CaF sub 2 light transmitting window coupled to a UV sensitive PMT. The time correlation between the fast light signal and the charge signal shows that the scintillation signals produced in liquid xenon by ionizing particles provides an ideal trigger in a Time Projection type LXe detector aiming at full imaging of complex gamma-ray events. Researchers also started Monte Carlo calculations to establish the performance of a LXe imaging telescope for high energy gamma-rays.

  10. Ab initio electron scattering cross-sections and transport in liquid xenon

    NASA Astrophysics Data System (ADS)

    Boyle, G. J.; McEachran, R. P.; Cocks, D. G.; Brunger, M. J.; Buckman, S. J.; Dujko, S.; White, R. D.

    2016-09-01

    Ab initio fully differential cross-sections for electron scattering in liquid xenon are developed from a solution of the Dirac–Fock scattering equations, using a recently developed framework (Boyle et al 2015 J. Chem. Phys. 142 154507) which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann’s equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10‑4–1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase cross-sections, is presented to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculations.

  11. Prospective use of xenon /sup 133/Xe clearance for amputation level selection

    SciTech Connect

    Moore, W.S.; Henry, R.E.; Malone, J.M.; Daly, M.J.; Patton, D.; Childers, S.J.

    1981-01-01

    Xenon /sup 133/Xe clearance was used to select the most distal amputation level that would allow sufficient blood flow for healing. Capillary blood flow was first measured at the most distal potential amputation level, then at successive proximal levels until an amputation site was found that had a capillary skin blood flow rate greater than or equal to 2.6 mL/min/100 g of tissue. Xenon /sup 133/Xe in saline was injected intracutaneously at each level, and flow rates were determined using a gamma camera interfaced with a computer system programmed for the Ketty-Schmidt formula modified for capillary blood flow. There were 45 cases, including one toes, six transmetatarsal, five Syme's, 25 below-knee, four knee disarticulation, three above-knee, and one hip disarticulation amputation. All amputations in patients with flow rates exceeding 2.4 mL/min/100 g of tissue healed, with two exceptions.

  12. PERFORMANCE OF A LIQUID XENON CALORIMETER CRYOGENIC SYSTEM FOR THE MEG EXPERIMENT

    SciTech Connect

    Haruyama, T.; Kasami, K.; Hisamitsu, Y.; Iwamoto, T.; Mihara, S.; Mori, T.; Nishiguchi, H.; Otani, W.; Sawada, R.; Uchiyama, Y.; Nishitani, T.

    2008-03-16

    The {mu}-particle rare decay physics experiment, the MU-E-GAMMA (MEG) experiment, will soon be operational at the Paul Scherrer Institute in Zurich. To achieve the extremely high sensitivity required to detect gamma rays, 800 L of liquid xenon is used as the medium in the calorimeter, viewed by 830 photomultiplier tubes (PMT) immersed in it. The required liquid xenon purity is of the order of ppb of water, and is obtained by using a cryogenic centrifugal pump and cold molecular sieves. The heat load of the calorimeter at 165 K is to be approximately 120 W, which is removed by a pulse-tube cryocooler developed at KEK and built by Iwatani Industrial Gas Corp., with a cooling power of about 200 W at 165 K. The cryogenic system is also equipped with a 1000-L dewar. This paper describes the results of an initial performance test of each cryogenic component.

  13. A field-deployable gamma-ray spectrometer utilizing high pressure xenon

    SciTech Connect

    Smith, G.C.; Mahler, G.J.; Yu, Bo; Kane, W.R.; Lemley, J.R.

    1997-05-01

    Most nuclear materials in the nuclear energy, safeguards, arms control, and nonproliferation regimes emit gamma rays with a unique signature. Currently, two categories of spectrometers are available to evaluate these materials: (1) Semiconductors, with excellent energy resolution, which operate at cryogenic temperatures. (2) Scintillation detectors, which function at ambient temperature, but with poor energy resolution. A detector which functions for extended periods in a range of environments, with an energy resolution superior to that of a scintillation spectrometer, would have evident utility. Recently, in the research community, such a device has evolved, an ionization chamber utilizing xenon gas at very high pressure (60 atm). Its energy resolution, typically, is 20 keV for the 661 keV gamma ray of {sup 137}Cs. With high xenon density and its high atomic number (Z=54), and superior energy resolution, its sensitivity is comparable to that of a scintillator.

  14. The missing modes of self-organization in cathode boundary layer discharge in xenon

    NASA Astrophysics Data System (ADS)

    Zhu, WeiDong; Niraula, Prajwal

    2014-10-01

    Self-organized pattern formation has been previously observed in cathode boundary layer discharges (CBLDs) in high-purity xenon gas at pressures ranging from about 60 Torr to atmospheric pressure. However, certain modes predicted by the COMSOL multiphysics simulation were never observed. In this paper, using the same reactor design, we managed to fine tune the discharge current into regions that were not fully explored before. Two new self-organized patterns were observed, at the verge of the extinguishing of the self-organization. One pattern was a perfect ring that was detached from the dielectric walls. The other pattern was a series elongated spots arranged along a circle. Both patterns were preferably observed at pressures ranging from 60 to 120 Torr. The observation of these patterns may open up new discussions to the self-organized pattern formation in CBLD in xenon.

  15. Numerical simulation of the Zeeman effect in neutral xenon from NIR diode-laser spectroscopy

    SciTech Connect

    Ngom, Baielo B.; Smith, Timothy B.; Huang Wensheng; Gallimore, Alec D.

    2008-07-15

    We present a numerical method for simulating neutral xenon absorption spectra from diode-laser spectroscopy of the Zeeman-split 6S{sup '}[1/2]{yields}6P{sup '}[1/2] line at 834.682 nm-air in a galvatron's plasma. To simulate the spectrum, we apply a Voigt profile to a spectrum of {sigma}-transition lines of even- and odd-numbered isotopes computed from anomalous Zeeman and nonlinear Zeeman hyperfine structure theories, respectively. Simulated spectra agree well with Zeeman-split spectra measured from 30 to 300 G. A commercial nonlinear least-squares solver (LSQNONLIN) returns field strengths and translational plasma kinetic temperatures that minimize the error between simulated and experimental spectra. This work is a preamble to computing magnetic field topology and the speed distribution of neutral xenon particles in the plume of a Hall thruster from diode laser-induced fluorescence.

  16. Radiolytic generation of radical cations in xenon matrices. Tetramethylcyclopropane radical cation and its transformations

    SciTech Connect

    Qin, X.Z.; Trifunac, A.D. )

    1990-04-05

    Radiolytic generation of radical cations in xenon matrices containing electron scavengers is illustrated by studying the 1,1,2,2-tetramethylcyclopropane radical cation. Dilute and concentrated solutions of tetramethylcyclopropane in xenon without electron scavengers and neat tetramethylcyclopropane yielded neutral radicals upon {gamma}-irradiation. Speculation on the mechanisms of radical formation is presented. The radical species observed in the {gamma}-irradiation of neat tetramethylcyclopropane appears to be identical with the paramagnetic species observed in CF{sub 2}ClCFCl{sub 2} above 120 K, suggesting that a neutral radical rather than the ring-opened distonic radical cation is observed in the CF{sub 2}ClCFCl{sub 2} matrix.

  17. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge

    SciTech Connect

    MacDonald, N. A.; Cappelli, M. A.; Hargus, W. A. Jr.

    2012-11-15

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s{sup Prime }[1/2]{sub 1}{sup 0}-6p{sup Prime }[3/2]{sub 2} xenon atomic transition at {lambda}= 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  18. Extinct lunar radio activities - Xenon from Pu-244 and I-129 in Apollo 14 breccias.

    NASA Technical Reports Server (NTRS)

    Behrmann, C. J.; Drozd, R. J.; Hohenberg, C. M.

    1973-01-01

    Two Apollo 14 breccias have been found to contain xenon from the spontaneous fission of 82 my Pu-244. A third contains 60 times as much fission xenon as local uranium can account for and is probably of similar character. One of the breccias shows a Xe-129 excess most likely due to the decay of 17 my I-129. That these components can be separated and identified at all implies that complete isotopic homogenization has not occurred over a period which encompasses both extinction of these radionuclides and compaction of the breccias into their final form. In this sense isotope pre-history has been preserved in some lunar breccias providing information that pre-dates the formation of the rock itself (as determined by conventional techniques).

  19. Radiogenic Xenon-129 in Silicate Inclusions in the Campo Del Cielo Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Meshik, A.; Kurat, G.; Pravdivtseva, O.; Hohenberg, C. M.

    2004-01-01

    Iron meteorites present a challenge for the I-Xe dating technique because it is usually the inclusions, not metal, that contain radiogenic xenon and iodine. Silicate inclusions are frequent in only types IAB and IIE, and earlier studies of irons have demonstrated that I-Xe system can survive intact in these inclusions preserving valuable age information. Our previous studies of the I-Xe record in pyroxene grains from Toluca iron suggested an intriguing relationship between apparent I-Xe ages and (Mg+Fe)/Fe ratios. The I-Xe system in K-feldspar inclusions from Colomera (IIE) had the fingerprint of slow cooling, with an indicated cooling rate of 2-4 C/Ma. Here we present studies of the iodine-xenon system in a silicate-graphite-metal (SiGrMet) inclusion of the IA Campo del Cielo iron meteorite from the collection of the Museum of Natural History in Vienna.

  20. Harmonic generation in the discrete spectral region of xenon using broadband femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kutzner, J.; Tsilimis, G.; Zacharias, H.

    2005-02-01

    The conversion of 34-fs Ti:sapphire laser pulses into the wavelength region 105 210 nm has been studied in xenon for laser intensities up to 5×1013 W/cm2. A strongly structured, pressure-dependent emission spectrum is observed. Radiation is detected in regions expected for the 5th and 7th harmonics but also in regions in between. In the resonance region (λ<147 nm), self-phase-modulation processes in the conversion medium together with phase-matched, efficient harmonic generation in negative-dispersive spectral regions explain the observations. Broadband emission is detected in the resonance-free, positive-dispersive spectral region 155 210 nm. Emission from the xenon dimer is superimposed on a ‘direct’ 5th-harmonic signal.

  1. Influence of the cathode composition on the performance of high pressure short arc xenon lamps

    NASA Astrophysics Data System (ADS)

    Minayeva, Olga B.; Doughty, Douglas A.

    2006-10-01

    Thoriated tungsten has been widely used as a cathode material in arc lamps. The addition of thorium reduces the work function of tungsten and allows the cathode to operate at a lower temperature. However, most of the studies on thoriated cathodes were done either for welding arcs or for metal halide lamps, where reactions with the ambient gas could contribute to the cathode erosion. In the case of completely inert, high-purity xenon gas and highly collisional arc plasma, the differences in performance of thoriated and non-thoriated cathodes are mainly material-based. In this talk we will discuss how 2% ThO2 addition to tungsten cathodes changes the lifetime, ignition performance, and stability of xenon lamps.

  2. Production of anhydrous aluminum chloride composition

    DOEpatents

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  3. [Sodium chloride 0.9%: nephrotoxic crystalloid?].

    PubMed

    Dombre, Vincent; De Seigneux, Sophie; Schiffer, Eduardo

    2016-02-01

    Sodium chloride 0.9%, often incorrectly called physiological saline, contains higher concentration of chloride compared to plasma. It is known that the administration of sodium chloride 0.9% can cause hyperchloremic metabolic acidosis in a reproducible manner. The elevated chloride concentration in 0.9% NaCl solution can also adversely affect renal perfusion. This effect is thought to be induced by hyperchloremia that causes renal artery vasoconstriction. For these reasons, the use of 0.9% NaCl solution is raising attention and some would advocate the use of a more "physiological" solution, such as balanced solutions that contain a level of chloride closer to that of plasma. Few prospective, randomized, controlled trials are available today and most were done in a perioperative setting. Some studies suggest that the chloride excess in 0.9% NaCl solution could have clinical consequences; however, this remains to be established by quality randomized controlled trials. PMID:26999998

  4. [Sodium chloride 0.9%: nephrotoxic crystalloid?].

    PubMed

    Dombre, Vincent; De Seigneux, Sophie; Schiffer, Eduardo

    2016-02-01

    Sodium chloride 0.9%, often incorrectly called physiological saline, contains higher concentration of chloride compared to plasma. It is known that the administration of sodium chloride 0.9% can cause hyperchloremic metabolic acidosis in a reproducible manner. The elevated chloride concentration in 0.9% NaCl solution can also adversely affect renal perfusion. This effect is thought to be induced by hyperchloremia that causes renal artery vasoconstriction. For these reasons, the use of 0.9% NaCl solution is raising attention and some would advocate the use of a more "physiological" solution, such as balanced solutions that contain a level of chloride closer to that of plasma. Few prospective, randomized, controlled trials are available today and most were done in a perioperative setting. Some studies suggest that the chloride excess in 0.9% NaCl solution could have clinical consequences; however, this remains to be established by quality randomized controlled trials.

  5. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS Reg. No. 7786-30-3) is a... prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous hydrochloric acid solution...

  6. Metal chloride cathode for a battery

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); Distefano, Salvador (Inventor); Bankston, C. Perry (Inventor)

    1991-01-01

    A method of fabricating a rechargeable battery is disclosed which includes a positive electrode which contains a chloride of a selected metal when the electrode is in its active state. The improvement comprises fabricating the positive electrode by: providing a porous matrix composed of a metal; providing a solution of the chloride of the selected metal; and impregnating the matrix with the chloride from the solution.

  7. Physiological response of rats to delivery of helium and xenon: implications for hyperpolarized noble gas imaging

    NASA Technical Reports Server (NTRS)

    Ramirez, M. P.; Sigaloff, K. C.; Kubatina, L. V.; Donahue, M. A.; Venkatesh, A. K.; Albert, M. S.; ALbert, M. S. (Principal Investigator)

    2000-01-01

    The physiological effects of various hyperpolarized helium and xenon MRI-compatible breathing protocols were investigated in 17 Sprague-Dawley rats, by continuous monitoring of blood oxygen saturation, heart rate, EKG, temperature and endotracheal pressure. The protocols included alternating breaths of pure noble gas and oxygen, continuous breaths of pure noble gas, breath-holds of pure noble gas for varying durations, and helium breath-holds preceded by two helium rinses. Alternate-breath protocols up to 128 breaths caused a decrease in oxygen saturation level of less than 5% for either helium or xenon, whereas 16 continuous-breaths caused a 31.5% +/- 2.3% decrease in oxygen saturation for helium and a 30.7% +/- 1. 3% decrease for xenon. Breath-hold protocols up to 25 s did not cause the oxygen saturation to fall below 90% for either of the noble gases. Oxygen saturation values below 90% are considered pathological. At 30 s of breath-hold, the blood oxygen saturation dropped precipitously to 82% +/- 0.6% for helium, and to 76.5% +/- 7. 4% for xenon. Breath-holds longer than 10 s preceded by pre-rinses caused oxygen saturation to drop below 90%. These findings demonstrate the need for standardized noble gas inhalation procedures that have been carefully tested, and for continuous physiological monitoring to ensure the safety of the subject. We find short breath-hold and alternate-breath protocols to be safe procedures for use in hyperpolarized noble gas MRI experiments. Copyright 2000 John Wiley & Sons, Ltd.

  8. Irreversible gettering of thionyl chloride

    SciTech Connect

    LeRoy Whinnery; Steve Goods; George Buffleben; Tim Sheppodd

    1999-11-01

    The authors have successfully demonstrated the irreversible gettering of SOCl{sub 2} by ZnO/ASZMTEDA carbon over a modest temperature range. While thionyl chloride decomposition was slow below {minus}20 C, lower temperatures are expected to be less of a problem than at higher temperatures. The approximately 30 cc of thionyl chloride in a typical D-cell would require 50 g of ZnO and 107 g of ASZMTEDA carbon. Fortunately, since it is unlikely to happen at all, it is common practice to assume only one cell will fail (leak) in a given battery pack. So, one charge of getter can protect the whole battery pack. In summary, ZnO/ASZMTEDA carbon fulfills all of the requirements of an ideal getter including: irreversible binding or reaction with SOCl{sub 2}, high volumetric uptake capacity, high efficiency, non-volatile, air stable, insensitive to poisoning, non-toxic, cheap, non-corrosive, and the gettering product is not a liquid or oil that could block further flow or accessibility. Future work in this area includes incorporation of the ZnO and carbon into a structural open-celled porous monolith, as well as, gettering for other types of batteries (e.g., Li/MnO{sub 2}).

  9. Enrofloxacin hydro-chloride dihydrate.

    PubMed

    Miranda-Calderón, Jorge E; Gutiérrez, Lilia; Flores-Alamo, Marcos; García-Gutiérrez, Ponciano; Sumano, Héctor

    2014-04-01

    The asymmetric unit of the title compound, C19H23FN3O3 (+)·Cl(-)·2H2O [systematic name: 4-(3-carb-oxy-1-cyclo-propyl-6-fluoro-4-oxo-1,4-di-hydro-quin-o-lin-7-yl)-1-ethyl-piperazin-1-ium chloride dihydrate], consists of two independent monocations of the protonated enrofloxacin, two chloride anions and four water mol-ecules. In the cations, the piperazinium rings adopt chair conformations and the dihedral angles between the cyclo-propyl ring and the 10-membered quinoline ring system are 56.55 (2) and 51.11 (2)°. An intra-molecular O-H⋯O hydrogen bond is observed in each cation. In the crystal, the components are connected via O-H⋯Cl, N-H⋯Cl and O-H⋯O hydrogen bonds, and a π-π inter-action between the benzene rings [centroid-centroid distance = 3.6726 (13) Å], resulting in a three-dimensional array.

  10. Arsenic removal by ferric chloride

    SciTech Connect

    Hering, J.G.; Chen, P.Y.; Wilkie, J.A.; Elimelech, M.; Liang, S.

    1996-04-01

    Bench-scale studies were conducted in model freshwater systems to investigate how various parameters affected arsenic removal during coagulation with ferric chloride and arsenic adsorption onto preformed hydrous ferric oxide. Parameters included arsenic oxidation state and initial concentration, coagulant dosage or adsorbent concentration, pH, and the presence of co-occurring inorganic solutes. Comparison of coagulation and adsorption experiments and of experimental results with predictions based on surface complexation modeling demonstrated that adsorption is an important (though not the sole) mechanism governing arsenic removal during coagulation. Under comparable conditions, better removal was observed with arsenic(V) [As(V)] than with arsenic(III) [As(III)] in both coagulation and adsorption experiments. Below neutral pH values, As(III) removal-adsorption was significantly decreased in the presence of sulfate, whereas only a slight decrease in As(V) removal-adsorption was observed. At high pH, removal-adsorption of As(V) was increased in the presence of calcium. Removal of As(V) during coagulation with ferric chloride is both more efficient and less sensitive than that of As(III) to variations in source water composition.

  11. Production of chlorine from chloride salts

    DOEpatents

    Rohrmann, Charles A.

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  12. Fabrication Of Metal Chloride Cathodes By Sintering

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Di Stefano, Salvador; Bankston, C. Perry

    1992-01-01

    Transition-metal chloride cathodes for use in high-temperature rechargeable sodium batteries prepared by sintering transition-metal powders mixed with sodium chloride. Need for difficult and dangerous chlorination process eliminated. Proportions of transition metal and sodium chloride in mixture adjusted to suit specific requirements. Cathodes integral to sodium/metal-chloride batteries, which have advantages over sodium/sulfur batteries including energy densities, increased safety, reduced material and thermal-management problems, and ease of operation and assembly. Being evaluated for supplying electrical power during peak demand and electric vehicles.

  13. Measurements of the equations of state and spectrum of nonideal xenon plasma under shock compression.

    PubMed

    Zheng, J; Gu, Y J; Chen, Z Y; Chen, Q F

    2010-08-01

    Experimental equations of state on generation of nonideal xenon plasma by intense shock wave compression was presented in the ranges of pressure of 2-16 GPa and temperature of 31-50 kK, and the xenon plasma with the nonideal coupling parameter Γ range from 0.6-2.1 was generated. The shock wave was produced using the flyer plate impact and accelerated up to ∼6 km/s with a two-stage light gas gun. Gaseous specimens were shocked from two initial pressures of 0.80 and 4.72 MPa at room temperature. Time-resolved spectral radiation histories were recorded by using a multiwavelength channel pyrometer. The transient spectra with the wavelength range of 460-700 nm were recorded by using a spectrometer to evaluate the shock temperature. Shock velocity was measured and particle velocity was determined by the impedance matching methods. The equations of state of xenon plasma and ionization degree have been discussed in terms of the self-consistent fluid variational theory.

  14. Distribution of Hyperpolarized Xenon in the Brain Following Sensory Stimulation: Preliminary MRI Findings

    PubMed Central

    Mazzanti, Mary L.; Walvick, Ronn P.; Zhou, Xin; Sun, Yanping; Shah, Niral; Mansour, Joey; Gereige, Jessica; Albert, Mitchell S.

    2011-01-01

    In hyperpolarized xenon magnetic resonance imaging (HP 129Xe MRI), the inhaled spin-1/2 isotope of xenon gas is used to generate the MR signal. Because hyperpolarized xenon is an MR signal source with properties very different from those generated from water-protons, HP 129Xe MRI may yield structural and functional information not detectable by conventional proton-based MRI methods. Here we demonstrate the differential distribution of HP 129Xe in the cerebral cortex of the rat following a pain stimulus evoked in the animal's forepaw. Areas of higher HP 129Xe signal corresponded to those areas previously demonstrated by conventional functional MRI (fMRI) methods as being activated by a forepaw pain stimulus. The percent increase in HP 129Xe signal over baseline was 13–28%, and was detectable with a single set of pre and post stimulus images. Recent innovations in the production of highly polarized 129Xe should make feasible the emergence of HP 129Xe MRI as a viable adjunct method to conventional MRI for the study of brain function and disease. PMID:21789173

  15. Studies of selenium and xenon in inductively coupled plasma mass spectrometry

    SciTech Connect

    Bricker, T.

    1994-07-27

    Since its development, inductively coupled plasma mass spectrometry (ICP-MS) has been a widely used analytical technique. ICP-MS offers low detection limits, easy determination of isotope ratios, and simple mass spectra from analyte elements. ICP-MS has been successfully employed for many applications including geological, environmental, biological, metallurgical, food, medical, and industrial. One specific application important to many areas of study involves elemental speciation by using ICP-MS as an element specific detector interfaced to liquid chromatography. Elemental speciation information is important and cannot be obtained by atomic spectrometric methods alone which measure only the total concentration of the element present. Part 1 of this study describes the speciation of selenium in human serum by size exclusion chromatography (SEC) and detection by ICP-MS. Although ICP-MS has been widely sued, room for improvement still exists. Difficulties in ICP-MS include noise in the background, matrix effects, clogging of the sampling orifice with deposited solids, and spectral interference caused by polyatomic ions. Previous work has shown that the addition of xenon into the central channel of the ICP decreases polyatomic ion levels. In Part 2 of this work, a fundamental study involving the measurement of the excitation temperature is carried out to further understand xenon`s role in the reduction of polyatomic ions. 155 refs.

  16. An improved measurement of electron-ion recombination in high-pressure xenon gas

    NASA Astrophysics Data System (ADS)

    Serra, L.; Sorel, M.; Álvarez, V.; Borges, F. I. G.; Camargo, M.; Cárcel, S.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Díaz, J.; Esteve, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Gehman, V. M.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Irastorza, I. G.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Nygren, D.; Oliveira, C. A. B.; Pérez, J.; Pérez Aparicio, J. L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Shuman, D.; Simón, A.; Sofka, C.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R.; White, J. T.; Yahlali, N.

    2015-03-01

    We report on results obtained with the NEXT-DEMO prototype of the NEXT-100 high-pressure xenon gas time projection chamber (TPC), filled with pure xenon gas at 10 bar pressure and exposed to an alpha decay calibration source. Compared to our previous measurements with alpha particles, an upgraded detector and improved analysis techniques have been used. We measure event-by-event correlated fluctuations between ionization and scintillation due to electron-ion recombination in the gas, with correlation coefficients between -0.80 and -0.56 depending on the drift field conditions. By combining the two signals, we obtain a 2.8% FWHM energy resolution for 5.49 MeV alpha particles and a measurement of the optical gain of the electroluminescent TPC. The improved energy resolution also allows us to measure the specific activity of the radon in the gas due to natural impurities. Finally, we measure the average ratio of excited to ionized atoms produced in the xenon gas by alpha particles to be 0.561± 0.045, translating into an average energy to produce a primary scintillation photon of Wex=(39.2± 3.2) eV.

  17. Time-resolved spectroscopic measurements behind incident and reflected shock waves in air and xenon

    NASA Technical Reports Server (NTRS)

    Yoshinaga, T.

    1973-01-01

    Time-resolved spectra have been obtained behind incident and reflected shock waves in air and xenon at initial pressures of 0.1 and 1.0 torr using a rotating drum spectrograph and the OSU (The Ohio State University) arc-driven shock tube. These spectra were used to determine the qualitative nature of the flow as well as for making estimates of the available test time. The (n+1,n) and (n,n) band spectra of N2(+) (1st negative) were observed in the test gas behind incident shock waves in air at p1=1.0 torr and Us=9-10 km/sec. Behind reflected shock waves in air, the continuum of spectra appeared to cover almost the entire wavelength of 2,500-7,000 A for the shock-heated test gas. For xenon, the spectra for the incident shock wave cases for p1=0.1 torr show an interesting structure in which two intensely bright regions are witnessed in the time direction. The spectra obtained behind reflected shock waves in xenon were also dominated by continuum radiation but included strong absorption spectra due to FeI and FeII from the moment the reflected shock passed and on.

  18. Consciousness and Complexity during Unresponsiveness Induced by Propofol, Xenon, and Ketamine.

    PubMed

    Sarasso, Simone; Boly, Melanie; Napolitani, Martino; Gosseries, Olivia; Charland-Verville, Vanessa; Casarotto, Silvia; Rosanova, Mario; Casali, Adenauer Girardi; Brichant, Jean-Francois; Boveroux, Pierre; Rex, Steffen; Tononi, Giulio; Laureys, Steven; Massimini, Marcello

    2015-12-01

    A common endpoint of general anesthetics is behavioral unresponsiveness, which is commonly associated with loss of consciousness. However, subjects can become disconnected from the environment while still having conscious experiences, as demonstrated by sleep states associated with dreaming. Among anesthetics, ketamine is remarkable in that it induces profound unresponsiveness, but subjects often report "ketamine dreams" upon emergence from anesthesia. Here, we aimed at assessing consciousness during anesthesia with propofol, xenon, and ketamine, independent of behavioral responsiveness. To do so, in 18 healthy volunteers, we measured the complexity of the cortical response to transcranial magnetic stimulation (TMS)--an approach that has proven helpful in assessing objectively the level of consciousness irrespective of sensory processing and motor responses. In addition, upon emergence from anesthesia, we collected reports about conscious experiences during unresponsiveness. Both frontal and parietal TMS elicited a low-amplitude electroencephalographic (EEG) slow wave corresponding to a local pattern of cortical activation with low complexity during propofol anesthesia, a high-amplitude EEG slow wave corresponding to a global, stereotypical pattern of cortical activation with low complexity during xenon anesthesia, and a wakefulness-like, complex spatiotemporal activation pattern during ketamine anesthesia. Crucially, participants reported no conscious experience after emergence from propofol and xenon anesthesia, whereas after ketamine they reported long, vivid dreams unrelated to the external environment. These results are relevant because they suggest that brain complexity may be sensitive to the presence of disconnected consciousness in subjects who are considered unconscious based on behavioral responses.

  19. Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp

    SciTech Connect

    Zalach, J.; Franke, St.

    2013-01-28

    The Boltzmann plot method allows to calculate plasma temperatures and pressures if absolutely calibrated emission coefficients of spectral lines are available. However, xenon arcs are not very well suited to be analyzed this way, as there are only a limited number of lines with atomic data available. These lines have high excitation energies in a small interval between 9.8 and 11.5 eV. Uncertainties in the experimental method and in the atomic data further limit the accuracy of the evaluation procedure. This may result in implausible values of temperature and pressure with inadmissible uncertainty. To omit these shortcomings, an iterative scheme is proposed that is making use of additional information about the xenon fill pressure. This method is proved to be robust against noisy data and significantly reduces the uncertainties. Intentionally distorted synthetic data are used to illustrate the performance of the method, and measurements performed on a laboratory xenon high pressure discharge lamp are analyzed resulting in reasonable temperatures and pressures with significantly reduced uncertainties.

  20. First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory

    SciTech Connect

    Angle, J.; Manalaysay, A.; Aprile, E.; Giboni, K. L.; Monzani, M. E.; Plante, G.; Santorelli, R.; Yamashita, M.; Arneodo, F.; Baudis, L.; Orboeck, J.; Schulte, S.; Bernstein, A.; Madden, N.; Winant, C.; Bolozdynya, A.; Brusov, P.; Shutt, T.; Coelho, L. C. C.; Fernandes, L. M. P.

    2008-01-18

    The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg xenon dual phase time projection chamber to search for dark matter weakly interacting massive particles (WIMPs). The detector measures simultaneously the scintillation and the ionization produced by radiation in pure liquid xenon to discriminate signal from background down to 4.5 keV nuclear-recoil energy. A blind analysis of 58.6 live days of data, acquired between October 6, 2006, and February 14, 2007, and using a fiducial mass of 5.4 kg, excludes previously unexplored parameter space, setting a new 90% C.L. upper limit for the WIMP-nucleon spin-independent cross section of 8.8x10{sup -44} cm{sup 2} for a WIMP mass of 100 GeV/c{sup 2}, and 4.5x10{sup -44} cm{sup 2} for a WIMP mass of 30 GeV/c{sup 2}. This result further constrains predictions of supersymmetric models.

  1. Crossover Equation of State Models Applied to the Critical Behavior of Xenon

    NASA Astrophysics Data System (ADS)

    Garrabos, Y.; Lecoutre, C.; Marre, S.; Guillaument, R.; Beysens, D.; Hahn, I.

    2015-03-01

    The turbidity () measurements of Güttinger and Cannell (Phys Rev A 24:3188-3201, 1981) in the temperature range along the critical isochore of homogeneous xenon are reanalyzed. The singular behaviors of the isothermal compressibility () and the correlation length () predicted from the master crossover functions are introduced in the turbidity functional form derived by Puglielli and Ford (Phys Rev Lett 25:143-146, 1970). We show that the turbidity data are thus well represented by the Ornstein-Zernike approximant, within 1 % precision. We also introduce a new crossover master model (CMM) of the parametric equation of state for a simple fluid system with no adjustable parameter. The CMM model and the phenomenological crossover parametric model are compared with the turbidity data and the coexisting liquid-gas density difference (). The excellent agreement observed for , , , and in a finite temperature range well beyond the Ising-like preasymptotic domain confirms that the Ising-like critical crossover behavior of xenon can be described in conformity with the universal features estimated by the renormalization-group methods. Only 4 critical coordinates of the vapor-liquid critical point are needed in the (pressure, temperature, molecular volume) phase surface of xenon.

  2. Calibration of Liquid Xenon Time Projection Chambers for the Direct Detection of Dark Matter

    NASA Astrophysics Data System (ADS)

    Kastens, Louis William, IV

    Contemporary cosmological observations strongly suggest the presence of weakly interacting massive particles (WIMPs) which have not been directly detected to date. In this paper, I discuss the cosmological evidence which suggests the presence of WIMPs, and the justification for believing the cosmological models built around this evidence are sound. I will then discuss the expected WIMP-nucleon interaction rate, and methods of directly detecting these interactions, emphasizing liquid xenon two phase time projection chambers. Two of these liquid xenon time projection chambers will be discussed in detail, from design philosophies, construction, operation, and results to date. Finally, a novel method of calibrating large liquid xenon detectors with 83 mKr will be discussed. Calibration with a 83 mKr source allows for low energy electronic recoils in the fiducial region of the detector, a calibration need which traditional external sources cannot meet. The development of the 83 mKr source for use in a low-background dark matter detector is discussed.

  3. Consciousness and Complexity during Unresponsiveness Induced by Propofol, Xenon, and Ketamine.

    PubMed

    Sarasso, Simone; Boly, Melanie; Napolitani, Martino; Gosseries, Olivia; Charland-Verville, Vanessa; Casarotto, Silvia; Rosanova, Mario; Casali, Adenauer Girardi; Brichant, Jean-Francois; Boveroux, Pierre; Rex, Steffen; Tononi, Giulio; Laureys, Steven; Massimini, Marcello

    2015-12-01

    A common endpoint of general anesthetics is behavioral unresponsiveness, which is commonly associated with loss of consciousness. However, subjects can become disconnected from the environment while still having conscious experiences, as demonstrated by sleep states associated with dreaming. Among anesthetics, ketamine is remarkable in that it induces profound unresponsiveness, but subjects often report "ketamine dreams" upon emergence from anesthesia. Here, we aimed at assessing consciousness during anesthesia with propofol, xenon, and ketamine, independent of behavioral responsiveness. To do so, in 18 healthy volunteers, we measured the complexity of the cortical response to transcranial magnetic stimulation (TMS)--an approach that has proven helpful in assessing objectively the level of consciousness irrespective of sensory processing and motor responses. In addition, upon emergence from anesthesia, we collected reports about conscious experiences during unresponsiveness. Both frontal and parietal TMS elicited a low-amplitude electroencephalographic (EEG) slow wave corresponding to a local pattern of cortical activation with low complexity during propofol anesthesia, a high-amplitude EEG slow wave corresponding to a global, stereotypical pattern of cortical activation with low complexity during xenon anesthesia, and a wakefulness-like, complex spatiotemporal activation pattern during ketamine anesthesia. Crucially, participants reported no conscious experience after emergence from propofol and xenon anesthesia, whereas after ketamine they reported long, vivid dreams unrelated to the external environment. These results are relevant because they suggest that brain complexity may be sensitive to the presence of disconnected consciousness in subjects who are considered unconscious based on behavioral responses. PMID:26752078

  4. Xenon purity measurements via mass spectroscopy for the EXO-200 double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Yen, Yung-Ruey; EXO Collaboration

    2011-04-01

    We report on the construction and operation of a gas sampling and measurement system for the EXO-200 double beta decay experiment. In order to observe ionization charge and scintillation light from the double beta decay event, EXO requires the concentration of electronegative impurities such as oxygen to be less than one part per billion. We have constructed a dedicated gas sampling and measurement apparatus to monitor for the presence of these impurities and to determine their source. Half-liter samples of xenon gas are collected at various points in the EXO-200 gas handling system, and their composition is analyzed using a RGA mass spectrometer. In order to achieve the required sensitivity, the apparatus includes a cold trap which removes most of the bulk xenon from the sample before it reaches the RGA. This system has allowed us to certify the purity of the commercial xenon source cylinders before detector filling and to monitor the effectiveness of the gas purifiers. Work supported by the National Science Foundation. Beginning APS data extraction...17:51:38

  5. Isotopic Enrichment of Boron in the Sputtering of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1998-01-01

    An experimental study is described to measure the isotopic enrichment of boron. Xenon ions from 100 eV to 1.5 keV were used to sputter a boron nitride target. An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 microA/sq cm. Xenon ions impinged on the target surface at 50 deg angle to the surface normal. Since boron nitride is an insulator, a flood electron gun was used in our experiments to neutralize the positive charge buildup on the target surface. The sputtered secondary ions of boron were detected by a quadrupole mass spectrometer. The spectrometer entrance aperture was located perpendicular to the ion beam direction and 10 mm away from the target surface. The secondary ion flux was observed to be enriched in the heavy isotopes at lower ion energies. The proportion of heavy isotopes in the sputtered secondary ion flux was found to decrease with increasing primary ion energy from 100 to 350 eV. Beyond 350 eV, light isotopes were sputtered preferentially. The light isotope enrichment factor was observed to reach an asymptotic value of 1.27 at 1.5 keV. This trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy range.

  6. Measurements of the equations of state and spectrum of nonideal xenon plasma under shock compression

    SciTech Connect

    Zheng, J.; Gu, Y. J.; Chen, Z. Y.; Chen, Q. F.

    2010-08-15

    Experimental equations of state on generation of nonideal xenon plasma by intense shock wave compression was presented in the ranges of pressure of 2-16 GPa and temperature of 31-50 kK, and the xenon plasma with the nonideal coupling parameter {Gamma} range from 0.6-2.1 was generated. The shock wave was produced using the flyer plate impact and accelerated up to {approx}6 km/s with a two-stage light gas gun. Gaseous specimens were shocked from two initial pressures of 0.80 and 4.72 MPa at room temperature. Time-resolved spectral radiation histories were recorded by using a multiwavelength channel pyrometer. The transient spectra with the wavelength range of 460-700 nm were recorded by using a spectrometer to evaluate the shock temperature. Shock velocity was measured and particle velocity was determined by the impedance matching methods. The equations of state of xenon plasma and ionization degree have been discussed in terms of the self-consistent fluid variational theory.

  7. Measurements of the equations of state and spectrum of nonideal xenon plasma under shock compression.

    PubMed

    Zheng, J; Gu, Y J; Chen, Z Y; Chen, Q F

    2010-08-01

    Experimental equations of state on generation of nonideal xenon plasma by intense shock wave compression was presented in the ranges of pressure of 2-16 GPa and temperature of 31-50 kK, and the xenon plasma with the nonideal coupling parameter Γ range from 0.6-2.1 was generated. The shock wave was produced using the flyer plate impact and accelerated up to ∼6 km/s with a two-stage light gas gun. Gaseous specimens were shocked from two initial pressures of 0.80 and 4.72 MPa at room temperature. Time-resolved spectral radiation histories were recorded by using a multiwavelength channel pyrometer. The transient spectra with the wavelength range of 460-700 nm were recorded by using a spectrometer to evaluate the shock temperature. Shock velocity was measured and particle velocity was determined by the impedance matching methods. The equations of state of xenon plasma and ionization degree have been discussed in terms of the self-consistent fluid variational theory. PMID:20866920

  8. XAFS Studies of Ni Ta and Nb Chlorides in the Ionic Liquid 1-Ethyl-3-Methyl Imidazolium Chloride / Aluminum Chloride

    SciTech Connect

    W OGrady; D Roeper; K Pandya; G Cheek

    2011-12-31

    The structures of anhydrous nickel, niobium, and tantalum chlorides have been investigated in situ in acidic and basic ionic liquids (ILs) of 1-methyl-3-ethylimidazolium chloride (EMIC)/AlCl{sub 3} with X-ray absorption spectroscopy (XAS). The coordination of NiCl{sub 2} changes from tetrahedral in basic solution to octahedral in acidic solution. The NiCl{sub 2} is a strong Lewis acid in that it can induce the AlCl{sub 3} to share its chlorides in the highly acidic IL, forming a structure with six near Cl{sup -} ions and eight further distant Al ions which share the chloride ions surrounding the Ni{sup 2+}. When Nb{sub 2}Cl{sub 10}, a dimer, is added to the acidic or basic solution, the dimer breaks apart and forms two species. In the acid solution, two trigonal bipyramids are formed with five equal chloride distances, while in the basic solution, a square pyramid with four chlorides forming a square base and one shorter axial chloride bond. Ta{sub 2}Cl{sub 10} is also a dimer and divides into half in the acidic solution and forms two trigonal bipyramids. In the basic solution, the dimer breaks apart but the species formed is sufficiently acidic that it attracts two additional chloride ions and forms a seven coordinated tantalum species.

  9. Chloride substitution in sodium borohydride

    SciTech Connect

    Ravnsbaek, Dorthe B.; Rude, Line H.; Jensen, Torben R.

    2011-07-15

    The dissolution of sodium chloride and sodium borohydride into each other resulting in formation of solid solutions of composition Na(BH{sub 4}){sub 1-x}Cl{sub x} is studied. The dissolution reaction is facilitated by two methods: ball milling or combination of ball milling and annealing at 300 deg. C for three days of NaBH{sub 4}-NaCl samples in molar ratios of 0.5:0.5 and 0.75:0.25. The degree of dissolution is studied by Rietveld refinement of synchrotron radiation powder X-ray diffraction (SR-PXD) data. The results show that dissolution of 10 mol% NaCl into NaBH{sub 4}, forming Na(BH{sub 4}){sub 0.9}Cl{sub 0.1}, takes place during ball milling. A higher degree of dissolution of NaCl in NaBH{sub 4} is obtained by annealing resulting in solid solutions containing up to 57 mol% NaCl, i.e. Na(BH{sub 4}){sub 0.43}Cl{sub 0.57}. In addition, annealing results in dissolution of 10-20 mol% NaBH{sub 4} into NaCl. The mechanism of the dissolution during annealing and the decomposition pathway of the solid solutions are studied by in situ SR-PXD. Furthermore, the stability upon hydrogen release and uptake were studied by Sieverts measurements. - Graphical Abstract: Dissolution of sodium chloride and sodium borohydride into each other resulting in formation of solid solutions of composition Na(BH{sub 4}){sub 1-x}Cl{sub x} is studied. Dissolution is facilitated by two methods: ball milling or annealing at 300 deg. C for three days of NaBH{sub 4}-NaCl samples. Sample compositions and dissolution mechanism are studied by Rietveld refinement of synchrotron radiation powder X-ray diffraction data. Highlights: > Studies of dissolution of sodium chloride and sodium borohydride into each other. > Solid state diffusion facilitated by mechanical and thermal treatments. > Dissolution is more efficiently induced by heating than by mechanical treatment. > Mechanism for dissolution studied by Rietveld refinement of in situ SR-PXD data.

  10. Chloride Analysis of RFSA Second Campaign Dissolver Solution

    SciTech Connect

    Holcomb, H.P.

    2001-05-17

    The dissolver solution from the second RFSA campaign was analyzed for chloride using the recently-developed turbidimetric method. Prior to chloride removal in head end, the solution contained 1625 ppm chloride. After chloride removal with Hg(I) and prior to feeding to solvent extraction, the solution contained only 75 ppm chloride. This report discusses those analysis results.

  11. Sodium-metal chloride batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1992-01-01

    It was concluded that rapid development in the technology of sodium metal chloride batteries has been achieved in the last decade mainly due to the: expertise available with sodium sulfur system; safety; and flexibility in design and fabrication. Long cycle lives of over 1000 and high energy densities of approx. 100 Wh/kg have been demonstrated in both Na/FeCl2 and Na/NiCl2 cells. Optimization of porous cathode and solid electrolyte geometries are essential for further enhancing the battery performance. Fundamental studies confirm the capabilities of these systems. Nickel dichloride emerges as the candidate cathode material for high power density applications such as electric vehicle and space.

  12. Process for synthesis of beryllium chloride dietherate

    DOEpatents

    Bergeron, Charles; Bullard, John E.; Morgan, Evan

    1991-01-01

    A low temperature method of producing beryllium chloride dietherate through the addition of hydrogen chloride gas to a mixture of beryllium metal in ether in a reaction vessel is described. A reflux condenser provides an exit for hydrogen produced form the reaction. A distillation condenser later replaces the reflux condenser for purifying the resultant product.

  13. 75 FR 19657 - Barium Chloride From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... Commission found that the domestic interested party group response to its notice of institution (74 FR 31757... COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION: Notice of... chloride from China. SUMMARY: The Commission hereby gives notice that it will proceed with a full...

  14. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Specific Substances Affirmed as GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2·4H2O, CAS... dichloride. It is prepared by dissolving manganous oxide, pyrolusite ore (MnO2), or reduced manganese ore...

  15. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Specific Substances Affirmed as GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2·4H2O, CAS... dichloride. It is prepared by dissolving manganous oxide, pyrolusite ore (MnO2), or reduced manganese ore...

  16. Hydrocracking with molten zinc chloride catalyst containing 2-12% ferrous chloride

    DOEpatents

    Zielke, Clyde W.; Bagshaw, Gary H.

    1981-01-01

    In a process for hydrocracking heavy aromatic polynuclear carbonaceous feedstocks to produce hydrocarbon fuels boiling below about 475.degree. C. by contacting the feedstocks with hydrogen in the presence of a molten zinc chloride catalyst and thereafter separating at least a major portion of the hydrocarbon fuels from the spent molten zinc chloride catalyst, an improvement comprising: adjusting the FeCl.sub.2 content of the molten zinc chloride to from about 2 to about 12 mol percent based on the mixture of ferrous chloride and molten zinc chloride.

  17. Chloride transport in the cystic fibrosis enterocyte.

    PubMed

    Bijman, J; Veeze, H; Kansen, M; Tilly, B; Scholte, B; Hoogeveen, A; Halley, D; Sinaasappel, M; de Jonge, H

    1991-01-01

    Molecular mechanisms of intestinal chloride channel regulation and potential abnormalities in electrogenic chloride secretion in intestinal epithelium from cystic fibrosis (CF) patients were investigated by a combination of Ussing chamber, vesicle transport and off-cell patch-clamp analysis. Short circuit current (Isc) measurements in normal and CF rectal biopsies provided evidence for i) a defect in the cAMP-provoked activation of chloride secretion and a (hyper)expression of cAMP-dependent potassium secretion in all CF patients examined (n = 11); ii) a defect in the carbachol-provoked chloride secretion and a (hyper)expression of carbachol-induced potassium secretion in 6/11 patients; iii) a residual (but still impaired) carbachol-induced chloride secretion in 5/11 CF patients (including 2 sibs). The latter class of CF patients appeared to consist genetically of compound heterozygotes for the major delta-F508 deletion, suggesting a correlation between the nature of the mutation in the CF gene and the severity of the chloride secretory defect in CF intestine. In our search for a regulatory function of GTP-binding (G-) proteins detected previously in the luminal membrane of rat and human intestinal epithelial cells, evidence was found for the presence of a GTP[S]-activatable- and GDP[S]-inhibitable chloride conductance in the apical membrane of rat enterocytes and human colonocytes. In excised patches of human colonocyt membranes, this G-proteine-sensitive chloride conductance was identified further as a novel type of chloride channel (20pS; inwardly rectifying) that was different from the 33pS outwardly rectifying chloride channel activatable by cAMP-dependent proteinkinase (PK-A) and voltage depolarization.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Factors influencing electrochemical removal of chloride from concrete

    SciTech Connect

    Arya, C.; Sa`id-Shawqi, Q.; Vassie, P.R.W.

    1996-06-01

    Electrochemical chloride removal was studied using prisms made from concrete containing various levels of chlorides derived from sodium chloride added during mixing. The amount of chloride removed during the treatment was assessed by analyzing the anolyte. Chloride removal increased with increasing applied potential, number of reinforcing bars at a particular depth and initial chloride content of the concrete. A greater percentage of chloride was removed from prisms where the thickness of the chloride bearing layer of concrete was less than the depth of cover to the reinforcement. Where the thickness of the chloride bearing layer exceeded the cover to the reinforcement, the use of an external cathode significantly increased the total amount of chloride removed. Chloride removal from a face remote from the source of the chloride contamination (soffit desalination) was shown to be feasible.

  19. Synthesis and stability of xenon oxides Xe2O5 and Xe3O2 under pressure.

    PubMed

    Dewaele, Agnès; Worth, Nicholas; Pickard, Chris J; Needs, Richard J; Pascarelli, Sakura; Mathon, Olivier; Mezouar, Mohamed; Irifune, Tetsuo

    2016-08-01

    The noble gases are the most inert group of the periodic table, but their reactivity increases with pressure. Diamond-anvil-cell experiments and ab initio modelling have been used to investigate a possible direct reaction between xenon and oxygen at high pressures. We have now synthesized two oxides below 100 GPa (Xe2O5 under oxygen-rich conditions, and Xe3O2 under oxygen-poor conditions), which shows that xenon is more reactive under pressure than predicted previously. Xe2O5 was observed using X-ray diffraction methods, its structure identified through ab initio random structure searching and confirmed using X-ray absorption and Raman spectroscopies. The experiments confirm the recent prediction of Xe3O2 as a stable xenon oxide under high pressure. Xenon atoms adopt mixed oxidation states of 0 and +4 in Xe3O2 and +4 and +6 in Xe2O5. Xe3O2 and Xe2O5 form extended networks that incorporate oxygen-sharing XeO4 squares, and Xe2O5 additionally incorporates oxygen-sharing XeO5 pyramids. Other xenon oxides (XeO2, XeO3) are expected to form at higher pressures.

  20. Synthesis and stability of xenon oxides Xe2O5 and Xe3O2 under pressure.

    PubMed

    Dewaele, Agnès; Worth, Nicholas; Pickard, Chris J; Needs, Richard J; Pascarelli, Sakura; Mathon, Olivier; Mezouar, Mohamed; Irifune, Tetsuo

    2016-08-01

    The noble gases are the most inert group of the periodic table, but their reactivity increases with pressure. Diamond-anvil-cell experiments and ab initio modelling have been used to investigate a possible direct reaction between xenon and oxygen at high pressures. We have now synthesized two oxides below 100 GPa (Xe2O5 under oxygen-rich conditions, and Xe3O2 under oxygen-poor conditions), which shows that xenon is more reactive under pressure than predicted previously. Xe2O5 was observed using X-ray diffraction methods, its structure identified through ab initio random structure searching and confirmed using X-ray absorption and Raman spectroscopies. The experiments confirm the recent prediction of Xe3O2 as a stable xenon oxide under high pressure. Xenon atoms adopt mixed oxidation states of 0 and +4 in Xe3O2 and +4 and +6 in Xe2O5. Xe3O2 and Xe2O5 form extended networks that incorporate oxygen-sharing XeO4 squares, and Xe2O5 additionally incorporates oxygen-sharing XeO5 pyramids. Other xenon oxides (XeO2, XeO3) are expected to form at higher pressures. PMID:27442284