Science.gov

Sample records for 316l astm a-240

  1. Structure/property (constitutive and dynamic strength/damage) characterization of additively manufactured 316L SS

    NASA Astrophysics Data System (ADS)

    Gray, G. T., III; Livescu, V.; Rigg, P. A.; Trujillo, C. P.; Cady, C. M.; Chen, S. R.; Carpenter, J. S.; Lienert, T. J.; Fensin, S.

    2015-09-01

    For additive manufacturing (AM), the certification and qualification paradigm needs to evolve as there exists no "ASTM-type" additive manufacturing certified process or AM-material produced specifications. Accordingly, utilization of AM materials to meet engineering applications requires quantification of the constitutive properties of these evolving materials in comparison to conventionally-manufactured metals and alloys. Cylinders of 316L SS were produced using a LENS MR-7 laser additive manufacturing system from Optomec (Albuquerque, NM) equipped with a 1kW Yb-fiber laser. The microstructure of the AM-316L SS is detailed in both the as-built condition and following heat-treatments designed to obtain full recrystallization. The constitutive behavior as a function of strain rate and temperature is presented and compared to that of nominal annealed wrought 316L SS plate. The dynamic damage evolution and failure response of all three materials was probed using flyer-plate impact driven spallation experiments at a peak stress of 4.5 GPa to examine incipient spallation response. The spall strength of AM-produced 316L SS was found to be very similar for the peak shock stress studied to that of annealed wrought or AM-316L SS following recrystallization. The damage evolution as a function of microstructure was characterized using optical metallography.

  2. Mechanical properties of F82H/316L and 316L/316L welds upon the target back-plate of IFMIF

    NASA Astrophysics Data System (ADS)

    Furuya, Kazuyuki; Ida, Mizuho; Miyashita, Makoto; Nakamura, Hiroo

    2009-04-01

    The current material design of the International fusion materials irradiation facility (IFMIF) back-plate in Japan consists of an austenitic stainless steel type-316L and a RAF/M steel type-F82H. The 316L and F82H are welded together. The 316L region of the back-plate is also welded to the target assembly made of 316L. The back-plate operates under a severe neutron irradiation condition (50 dpa/year). Therefore, it is important to perform metallurgical and mechanical tests for these welds in engineering design of the IFMIF. The F82H/316L weld joint with a filler metal type-Y309 was fabricated using TIG-welding method, followed by PWHT at 1013 K for 1 h. The 316L/316L weld joint was fabricated using YAG-laser welding method. The F82H/316L TIG-weld was found to be satisfactory. However, although the 316L/316L YAG-weld showed no harmful defect, the hardness was somewhat lower in the weld metal. Rupture occurred in the weld metal, and strength and elongation decreased somewhat. Furthermore, small dimples with several large voids were also visible in the fracture surface.

  3. ASTM A 312 -- Quality? Who bears the burden?

    SciTech Connect

    Ahluwalia, H.; Kohler, K.

    2000-05-01

    Premature failure occurred in welded type 316L stainless steel pipe ordered to ASTM A 312. This specification can result in great variability in weld-seam quality, affecting corrosion resistance. ASTM A 312 does not sufficiently protect many end users. A clarifying statement should be inserted in this specification, and a new ASTM specification for pipe produced by automated welding mills with in-line induction coil heat treatment should be developed.

  4. Influence of Prior Deformation on the Sensitization Kinetics of Nitrogen Alloyed 316L Stainless Steels

    NASA Astrophysics Data System (ADS)

    Mannepalli, Srinivas; Gupta, Ram Kishor; Kumar, A. Vinod; Parvathavarthini, N.; Mudali, U. Kamachi

    2015-05-01

    This paper presents the influence of prior deformation on the sensitization kinetics of nitrogen-alloyed 316L stainless steels. Systematic investigations were carried out for two varieties of 316L SS containing (i) 0.025% C and 0.14% N; (ii) 0.033% C and 0.11% N. Using ASTM standard A262 Practice A and E tests, time-temperature-sensitization diagrams were constructed for as-received as well as 5-25% cold-worked materials. Using these TTS diagrams, critical cooling rates (CCR) above which there is no risk of sensitization were calculated. TTS diagrams established for these two stainless steels will be useful for avoiding time-temperature combinations that may result in sensitization and susceptibility to IGC. These CCR obtained can be used to optimize heating rates/cooling rates to be followed which will not lead to sensitization during solution annealing, stress-relieving, and dimensional stabilization of critical components for fast breeder reactors.

  5. On high-cycle fatigue of 316L stents.

    PubMed

    Barrera, Olga; Makradi, Ahmed; Abbadi, Mohammed; Azaouzi, Mohamed; Belouettar, Salim

    2014-01-01

    This paper deals with fatigue life prediction of 316L stainless steel cardiac stents. Stents are biomedical devices used to reopen narrowed vessels. Fatigue life is dominated by the cyclic loading due to the systolic and diastolic pressure and the design against premature mechanical failure is of extreme importance. Here, a life assessment approach based on the Dang Van high cycle fatigue criterion and on finite element analysis is applied to explore the fatigue reliability of 316L stents subjected to multiaxial fatigue loading. A finite element analysis of the stent vessel subjected to cyclic pressure is performed to carry out fluctuating stresses and strain at some critical elements of the stent where cracks or complete fracture may occur. The obtained results show that the loading path of the analysed stent subjected to a pulsatile load pressure is located in the safe region concerning infinite lifetime. PMID:22587434

  6. Recrystallization and Grain Growth of 316L Stainless Steel Wires

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuyun; Liu, Yong; Wang, Yan; Feng, Ping; Tang, Huiping

    2014-07-01

    Recrystallization and grain growth behaviors of 316L stainless steel wires with a diameter of 12 µm were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy (TEM), and X-ray diffraction techniques. Heavily cold-drawn wires were isothermally held at temperatures from 1073 K to 1223 K (800 °C to 950 °C) for various holding times. Optical microscopy and TEM observations showed that recrystallization grains have irregular shape and that twins exist. The texture formed during drawing and annealing processes of the wires, as measured by X-ray methods, showed a fiber texture approximated by a <111> and a <100> component. The value of the grain growth exponent n was calculated, and the kinetic rates were plotted using the Arrhenius equation. Results show that the activation energy of the grain growth for 316L stainless steel wire was determined to be 407 kJ/mol, which was much higher than that of the bulk 316L stainless steel. The small wire diameter and the existence of texture played important roles in the increase of the activation energy for grain growth of the wire.

  7. ASTM METHODS

    EPA Science Inventory

    ASTM is a not-for-profit organization that provides a forum for producers, users, ultimate consumers, and those having a general interest (representatives of government and academia) to meet on common ground and write standards for materials, products, systems, and services. From...

  8. Surface modification of investment cast-316L implants: microstructure effects.

    PubMed

    El-Hadad, Shimaa; Khalifa, Waleed; Nofal, Adel

    2015-03-01

    Artificial femur stem of 316L stainless steel was fabricated by investment casting using vacuum induction melting. Different surface treatments: mechanical polishing, thermal oxidation and immersion in alkaline solution were applied. Thicker hydroxyapatite (HAP) layer was formed in the furnace-oxidized samples as compared to the mechanically polished ones. The alkaline treatment enhanced the precipitation of HAP on the samples. It was also observed that the HAP precipitation responded differently to the different phases of the microstructure. The austenite phase was observed to have more homogeneous and smoother layer of HAP. In addition, the growth of HAP was sometimes favored on the austenite phase rather than on ferrite phase. PMID:25579929

  9. Tensile Stress-Strain Results for 304L and 316L Stainless-Steel Plate at Temperature

    SciTech Connect

    R. K. Blandford; D. K. Morton; S. D. Snow; T. E. Rahl

    2007-07-01

    The Idaho National Laboratory (INL) is conducting moderate strain rate (10 to 200 per second) research on stainless steel materials in support of the Department of Energy’s (DOE) National Spent Nuclear Fuel Program (NSNFP). For this research, strain rate effects are characterized by comparison to quasi-static tensile test results. Considerable tensile testing has been conducted resulting in the generation of a large amount of basic material data expressed as engineering and true stress-strain curves. The purpose of this paper is to present the results of quasi-static tensile testing of 304/304L and 316/316L stainless steels in order to add to the existing data pool for these materials and make the data more readily available to other researchers, engineers, and interested parties. Standard tensile testing of round specimens in accordance with ASTM procedure A 370-03a were conducted on 304L and 316L stainless-steel plate materials at temperatures ranging from -20 °F to 600 °F. Two plate thicknesses, eight material heats, and both base and weld metal were tested. Material yield strength, Young’s modulus, ultimate strength, ultimate strain, failure strength and failure strain were determined, engineering and true stress-strain curves to failure were developed, and comparisons to ASME Code minimums were made. The procedures used during testing and the typical results obtained are described in this paper.

  10. Fibrinogen adsorption onto 316L stainless steel, Nitinol and titanium

    NASA Astrophysics Data System (ADS)

    Bai, Zhijun; Filiaggi, M. J.; Dahn, J. R.

    2009-03-01

    Fibrinogen adsorption onto mechanically polished biomedical grade 316L stainless steel (316LSS), nickel titanium alloy (Nitinol) and commercially pure titanium (CpTi) surfaces were studied by measurements of adsorption isotherms and adsorption kinetics using an ex-situ wavelength dispersive spectroscopy technique (WDS). Surface composition, roughness and wettability of these materials were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and water contact angle (WCA) measurements. Adsorption isotherm results showed that surface protein concentration on these materials increased with increasing concentration of fibrinogen in phosphate buffer solution. The fibrinogen adsorption isotherms were modeled by both the monolayer Langmuir isotherm and the multilayer Brunauer-Emmett-Teller (BET) isotherm. The results strongly suggest that fibrinogen forms multilayer structures on these materials when the concentration in solution is high. Complementary measurements on the absorbed fibrinogen films by spectroscopic ellipsometry (SE) support this view.

  11. Influence of microstructure on the corrosion resistance of AISI type 304L and type 316L sintered stainless steels exposed to ferric chloride solution

    SciTech Connect

    Otero, E.; Pardo, A.; Utrilla, M.V.; Perez, F.J.; Saenz, E.

    1995-10-01

    The corrosion behavior of type 304L and type 316L austenitic stainless steels, produced by powder metallurgy, when exposed to a ferric chloride solution was studied. The exposures were conducted according to ASTM G48-76, Method A. The influence of ferric chloride concentration and exposure temperature on the corrosion kinetics of these materials was evaluated. A mechanism is proposed to explain the associated morphology observed in the microstructures produced after exposure of these P/M alloys to the aggressive medium.

  12. Corrosion protection performance of porous strontium hydroxyapatite coating on polypyrrole coated 316L stainless steel.

    PubMed

    Gopi, D; Ramya, S; Rajeswari, D; Kavitha, L

    2013-07-01

    Polypyrrole/strontium hydroxyapatite bilayer coatings were achieved on 316L stainless steel (316L SS) by the electropolymerisation of pyrrole from sodium salicylate solution followed by the electrodeposition of porous strontium hydroxyapatite. The formation and the morphology of the bilayer coatings were characterised by Fourier transform infrared spectroscopy (FT-IR) and high resolution scanning electron microscopy (HRSEM), respectively. The corrosion resistance of the coated 316L SS specimens was investigated in Ringer's solution by electrochemical techniques and the results were substantiated with inductively coupled plasma atomic emission spectrometry (ICP-AES). The passive film underneath the polypyrrole layer is effective in protecting 316L SS against corrosion in Ringer's solution. Moreover, we believe that the top porous strontium hydroxyapatite layer can provide potential bioactivity to the 316L SS. PMID:23475060

  13. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; Liu, Leifeng; Wikman, Stefan; Cui, Daqing; Shen, Zhijian

    2016-03-01

    A feasibility study was performed to fabricate ITER In-Vessel components by Selective Laser Melting (SLM) supported by Fusion for Energy (F4E). Almost fully dense 316L stainless steel (SS316L) components were prepared from gas-atomized powder and with optimized SLM processing parameters. Tensile tests and Charpy-V tests were carried out at 22 °C and 250 °C and the results showed that SLM SS316L fulfill the RCC-MR code. Microstructure characterization reveals the presence of hierarchical macro-, micro- and nano-structures in as-built samples that were very different from SS316L microstructures prepared by other established methods. The formation of a characteristic intragranular cellular segregation network microstructure appears to contribute to the increase of yield strength without losing ductility. Silicon oxide nano-inclusions were formed during the SLM process that generated a micro-hardness fluctuation in the building direction. The combined influence of a cellular microstructure and the nano-inclusions constraints the size of ductile dimples to nano-scale. The crack propagation is hindered by a pinning effect that improves the defect-tolerance of the SLM SS316L. This work proves that it was possible to manufacture SS316L with properties suitable for ITER First Wall panels. Further studies on irradiation properties of SLM SS316L and manufacturing of larger real-size components are needed.

  14. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers.

    PubMed

    Kruszewski, Kristen M; Nistico, Laura; Longwell, Mark J; Hynes, Matthew J; Maurer, Joshua A; Hall-Stoodley, Luanne; Gawalt, Ellen S

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (-CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an "active" antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively. PMID:23498233

  15. Improving the empirical model for plasma nitrided AISI 316L corrosion resistance based on Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Campos, M.; de Souza, S. D.; de Souza, S.; Olzon-Dionysio, M.

    2011-11-01

    Traditional plasma nitriding treatments using temperatures ranging from approximately 650 to 730 K can improve wear, corrosion resistance and surface hardness on stainless steels. The nitrided layer consists of some iron nitrides: the cubic γ ' phase (Fe4N), the hexagonal phase ɛ (Fe2 - 3N) and a nitrogen supersatured solid phase γ N . An empirical model is proposed to explain the corrosion resistance of AISI 316L and ASTM F138 nitrided samples based on Mössbauer Spectroscopy results: the larger the ratio between ɛ and γ ' phase fractions of the sample, the better its resistance corrosion is. In this work, this model is examined using some new results of AISI 316L samples, nitrided under the same previous conditions of gas composition and temperature, but at different pressure, for 3, 4 and 5 h. The sample nitrided for 4 h, whose value for ɛ/ γ ' is maximum (= 0.73), shows a slightly better response than the other two samples, nitrided for 5 and 3 h ( ɛ/ γ ' = 0.72 and 0.59, respectively). Moreover, these samples show very similar behavior. Therefore, this set of samples was not suitable to test the empirical model. However, the comparison between the present results of potentiodynamic polarization curves and those obtained previously at 4 and 4.5 torr, could indicated that the corrosion resistance of the sample which only presents the γ N phase was the worst of them. Moreover, the empirical model seems not to be ready to explain the response to corrosion and it should be improved including the γ N phase.

  16. Corrosion Resistance of Powder Metallurgy Processed TiC/316L Composites with Mo Additions

    NASA Astrophysics Data System (ADS)

    Lin, Shaojiang; Xiong, Weihao

    2015-06-01

    To find out the effects of Mo addition on corrosion resistance of TiC/316L stainless steel composites, TiC/316L composites with addition of different contents of Mo were prepared by powder metallurgy. The corrosion resistance of these composites was evaluated by the immersion tests and polarization curves experiments. Results indicated that Mo addition decreased the corrosion rates of TiC/316L composites in H2SO4 solution in the case of Mo content below 2% whereas it displayed an opposite effect when Mo content was above that value. It was found that with an increase in the Mo content, the pitting corrosion resistance increased monotonically for TiC/316L composites in NaCl solution.

  17. Improvement in the Corrosion Resistance of Austenitic Stainless Steel 316L by Ion Implantation

    NASA Astrophysics Data System (ADS)

    Cai, Xun; Feng, Kai

    In the present work, austenitic stainless steel 316L (SS316L) samples were implanted with Ni and Ni-Cr. A nickel-rich layer about 100 nm in thickness and a Ni-Cr enriched layer about 60 nm thick are formed on the surface of SS316L. The effects of ion implantation on the corrosion performance of SS316L are investigated in a 0.5 M H2SO4 with 2 ppm HF solution at 80°C by open circuit potential (OCP), potentiodynamic and potentiostatic tests. The samples after the potentiostatic test are analyzed by XPS. The results indicate that the composition of the passive film change from a mixture of Fe oxides and Cr oxide to a Cr oxide dominated passive film after the potentiostatic test. The solutions after the potentiostatic test are analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). The results reveal that Fe is selectively dissolved in all cases and a proper Ni and Ni-Cr implant fluence can greatly improve the corrosion resistance of SS316L in the simulated polymer electrolyte membrane fuel cells (PEMFCS) environment. They are in agreement with the electrochemical test results that the bare SS316L has the highest dissolution rate in both cathode and anode environments and the Ni and Ni-Cr implantation reduce markedly the dissolution rate. After the potentiostatic test the interfacial contact resistance (ICR) values are also measured. Ni and Ni-Cr are enriched in the passive film formed in the simulated PEMFC cathode environment after ion implantation thereby providing better conductivity than that formed in the anode one. A significant improvement of ICR is achieved for the SS316L implanted with Ni and Ni-Cr as compared to the bare SS316L, which is attributed to the reduction in passive layer thickness caused by Ni and Ni-Cr implantation. The ICR values for implanted specimens increase with increasing dose.

  18. Electrochemical properties of 316L stainless steel with culturing L929 fibroblasts.

    PubMed

    Hiromoto, Sachiko; Hanawa, Takao

    2006-08-22

    Potentiodynamic polarization and impedance tests were carried out on 316L stainless steel with culturing murine fibroblast L929 cells to elucidate the corrosion behaviour of 316L steel with L929 cells and to understand the electrochemical interface between 316L steel and cells, respectively. Potential step test was carried out on 316L steel with type I collagen coating and culturing L929 cells to compare the effects of collagen and L929 cells. The open-circuit potential of 316L steel slightly shifted in a negative manner and passive current density increased with cells, indicating a decrease in the protective ability of passive oxide film. The pitting potential decreased with cells, indicating a decrease in the pitting corrosion resistance. In addition, a decrease in diffusivity at the interface was indicated from the decrease in the cathodic current density and the increase in the diffusion resistance parameter in the impedance test. The anodic peak current in the potential step test decreased with cells and collagen. Consequently, the corrosion resistance of 316L steel decreases with L929 cells. In addition, collagen coating would provide an environment for anodic reaction similar to that with culturing cells. PMID:16849246

  19. Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Moroz, A.; Alrbaey, K.

    2013-11-01

    Stainless steel is one of the most popular materials used for selective laser melting (SLM) processing to produce nearly fully dense components from 3D CAD models. The tribological and corrosion properties of stainless steel components are important in many engineering applications. In this work, the wear behaviour of SLM 316L stainless steel was investigated under dry sliding conditions, and the corrosion properties were measured electrochemically in a chloride containing solution. The results show that as compared to the standard bulk 316L steel, the SLM 316L steel exhibits deteriorated dry sliding wear resistance. The wear rate of SLM steel is dependent on the vol.% porosity in the steel and by obtaining full density it is possible achieve wear resistance similar to that of the standard bulk 316L steel. In the tested chloride containing solution, the general corrosion behaviour of the SLM steel is similar to that of the standard bulk 316L steel, but the SLM steel suffers from a reduced breakdown potential and is more susceptible to pitting corrosion. Efforts have been made to correlate the obtained results with porosity in the SLM steel.

  20. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    PubMed

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures. PMID:27612756

  1. Resistance of superhydrophobic and oleophobic surfaces to varied temperature applications on 316L SS

    NASA Astrophysics Data System (ADS)

    Shams, Hamza; Basit, Kanza; Saleem, Sajid; Siddiqui, Bilal A.

    316L SS also called Marine Stainless Steel is an important material for structural and marine applications. When superhydrophobic and oleophobic coatings are applied on 316L SS it shows significant resistance to wear and corrosion. This paper aims to validate the coatings manufacturer's information on optimal temperature range and test the viability of coating against multiple oil based cleaning agents. 316L SS was coated with multiple superhydrophic and oleohobic coatings and observed under SEM for validity of adhesion and thickness and then scanned under FFM to validate the tribological information. The samples were then dipped into multiple cleaning agents maintained at the range of operating temperatures specified by the manufacturer. Coating was observed for deterioration over a fixed time intervals through SEM and FFM. A comparison was drawn to validate the most critical cleaning agent and the most critical temperature at which the coating fails to leave the base substrate exposed to the environment.

  2. Laser surface modification of 316 L stainless steel with bioactive hydroxyapatite.

    PubMed

    Balla, Vamsi Krishna; Das, Mitun; Bose, Sreyashree; Ram, G D Janaki; Manna, Indranil

    2013-12-01

    Laser-engineered net shaping (LENS™), a commercial additive manufacturing process, was used to modify the surfaces of 316 L stainless steel with bioactive hydroxyapatite (HAP). The modified surfaces were characterized in terms of their microstructure, hardness and apatite forming ability. The results showed that with increase in laser energy input from 32 J/mm(2) to 59 J/mm(2) the thickness of the modified surface increased from 222±12 μm to 355±6 μm, while the average surface hardness decreased marginally from 403±18 HV0.3 to 372±8 HV0.3. Microstructural studies showed that the modified surface consisted of austenite dendrites with HAP and some reaction products primarily occurring in the inter-dendritic regions. Finally, the surface-modified 316 L samples immersed in simulated body fluids showed significantly higher apatite precipitation compared to unmodified 316 L samples. PMID:24094165

  3. Reduction of 3T3 Fibroblast Adhesion on SS316L by Methyl-Terminated SAMs

    PubMed Central

    Raman, Aparna; Gawalt, Ellen S.

    2010-01-01

    Inhibiting the non-specific adhesion of cells and proteins to biomaterials such as stents, catheters and guide wires is an important interfacial issue that needs to be addressed in order to reduce surface-related implant complications. Medical grade stainless steel 316L was used as a model system to address this issue. To alter the interfacial property of the implant, self assembled monolayers of long chain phosphonic acids with −CH3, −COOH, −OH tail groups were formed on the native oxide surface of medical grade stainless steel 316L. The effect of varying the tail groups on 3T3 fibroblast adhesion was investigated. The methyl terminated phosphonic acid significantly prevented cell adhesion however presentation of hydrophilic tail groups at the interface did not significantly reduce cell adhesion when compared to the control stainless steel 316L. PMID:21461313

  4. Texture evolution of warm-rolled and annealed 304L and 316L austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Lindell, D.

    2015-04-01

    The brass-to-copper rolling texture transition is observed during warm rolling austenitic stainless steels. In the current paper austenitic stainless steels 304L and 316L have been subjected to warm rolling at 700°C to 90% reduction. The evolution of microstructure and texture during subsequent annealing has been studied using dilatometry and electron backscatter diffraction. Recrystallisation texture for 304L was primarily cube with some retained rolling texture while 316L only had retained rolling texture. The different behaviour between the two steels is believed to originate from differences in molybdenum content.

  5. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures.

    PubMed

    Lee, Jason S; Ray, Richard I; Lowe, Kristine L; Jones-Meehan, Joanne; Little, Brenda J

    2003-04-01

    Glycol/seawater mixtures containing > 50% glycol inhibit corrosion of 316L stainless steel and do not support bacterial growth. The results indicate bacteria are able to use low concentrations of glycol (10%) as a growth medium, but bacterial growth decreased with increasing glycol concentration. Pitting potential, determined by anodic polarization, was used to evaluate susceptibility of 316L SS to corrosion in seawater-contaminated glycol. Mixture containing a minimum concentration of 50% propylene glycol-based coolant inhibited pitting corrosion. A slightly higher minimum concentration (55%) was needed for corrosion protection in ethylene glycol mixtures. PMID:14618716

  6. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures

    NASA Technical Reports Server (NTRS)

    Lee, Jason S.; Ray, Richard I.; Lowe, Kristine L.; Jones-Meehan, Joanne; Little, Brenda J.

    2003-01-01

    Glycol/seawater mixtures containing > 50% glycol inhibit corrosion of 316L stainless steel and do not support bacterial growth. The results indicate bacteria are able to use low concentrations of glycol (10%) as a growth medium, but bacterial growth decreased with increasing glycol concentration. Pitting potential, determined by anodic polarization, was used to evaluate susceptibility of 316L SS to corrosion in seawater-contaminated glycol. Mixture containing a minimum concentration of 50% propylene glycol-based coolant inhibited pitting corrosion. A slightly higher minimum concentration (55%) was needed for corrosion protection in ethylene glycol mixtures.

  7. [Corrosion of stainless steel 201, 304 and 316L in the simulated sewage pipes reactor].

    PubMed

    Bao, Guo-Dong; Zuo, Jian-E; Wang, Ya-Jiao; Gan, Li-Li

    2014-08-01

    The corrosion behavior of stainless steel 201, 304 and 316L which would be used as sewer in-situ rehabilitation materials was studied in the simulated sewage pipes reactor. The corrosion potential and corrosion rate of these three materials were studied by potentiodynamic method on the 7th, 14th, 21st, 56th day under two different conditions which were full immersion condition or batch immersion condition with a 2-day cycle. The electrode process was studied by Electrochemical Impedance Spectroscopy (EIS) on the 56th day. The microstructure and composition of the corrosion pitting were analyzed by Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometer (EDS) on the 56th day. The results showed that 304 and 316L had much better corrosion resistance than 201 under both conditions. 304 and 316L had much smaller corrosion rate than 201 under both conditions. The corrosion resistance of all three kinds of stainless steel under the batch immersion condition was much better than those under the full immersion condition. The corrosion rate of all three kinds of stainless steel under the batch immersion condition was much smaller than those under the full immersion condition. Point pitting corrosion was formed on the surfaces of 304 and 316L. In comparison, a large area of corrosion was formed in the surface of 201. PMID:25338372

  8. Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Trelewicz, Jason R.; Halada, Gary P.; Donaldson, Olivia K.; Manogharan, Guha

    2016-03-01

    Additive manufacturing (AM) of metal alloys to produce complex part designs via powder bed fusion methods such as laser melting promises to be a transformative technology for advanced materials processing. However, effective implementation of AM processes requires a clear understanding of the processing-structure-properties-performance relationships in fabricated components. In this study, we report on the formation of micro and nanoscale structures in 316L stainless steel samples printed by laser AM and their implications for general corrosion resistance. A variety of techniques including x-ray diffraction, optical, scanning and transmission electron microscopy, x-ray fluorescence, and energy dispersive x-ray spectroscopy were employed to characterize the microstructure and chemistry of the laser additively manufactured 316L stainless steel, which are compared with wrought 316L coupons via electrochemical polarization. Apparent segregation of Mo has been found to contribute to a loss of passivity and an increased anodic current density. While porosity will also likely impact the environmental performance (e.g., facilitating crevice corrosion) of AM alloys, this work demonstrates the critical influence of microstructure and heterogeneous solute distributions on the corrosion resistance of laser additively manufactured 316L stainless steel.

  9. Structure and Long-Term Stability of Alkylphosphonic Acid Monolayers on SS316L Stainless Steel.

    PubMed

    Kosian, Medea; Smulders, Maarten M J; Zuilhof, Han

    2016-02-01

    Surface modification of stainless steel (SS316L) to improve surface properties or durability is an important avenue of research, as SS316L is widely used in industry and science. We studied, therefore, the formation and stability of a series of organic monolayers on SS316L under industrially relevant conditions. These included acidic (pH 3), basic (pH 11), neutral (Milli-Q water), and physiological conditions [10 mM phosphate-buffered saline (PBS)], as well as dry heating (120 °C). SS316L was modified with alkylphosphonic acids of chain length (CH2)n with n varying between 3 and 18. While alkylphosphonic acids of all chain lengths formed self-assembled monolayers with hydrophobic properties, only monolayers of chain lengths 12-18 formed ordered monolayers, as evidenced by static water contact angle (SCA), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and infrared reflection absorption spectroscopy (IRRAS). A long-term stability study revealed the excellent stability of monolayers with chain lengths 12-18 for up to 30 days in acid, neutral, and physiological solutions, and for up to 7 days under dry heating. Under strong basic conditions a partial breakdown of the monolayer was observed, especially for the shorter chain lengths. Finally, the effect of multivalent surface attachment on monolayer stability was explored by means of a series of divalent bisphosphonic acids. PMID:26771302

  10. Effects of Particle Sizes on Sintering Behavior of 316L Stainless Steel Powder

    NASA Astrophysics Data System (ADS)

    Park, Dong Yong; Lee, Shi W.; Park, Seong Jin; Kwon, Young-Sam; Otsuka, Isamu

    2013-03-01

    In rapidly evolving powder injection molding technology, the wide prevalence of various microstructures demands the powders of smaller particle sizes. The effects of particle size on the sintering behavior are critical to not only shape retention of microstructure but also its mechanical properties. This study investigates the effects of three different particle sizes on the sintering behavior of the 316L stainless steel (STS316L) samples, prepared by powder injection molding, via the dilatometry experiments. For this purpose, the STS316L powders of three different mean particle sizes, i.e., 2.97, 4.16, and 8.04 μm, were produced for STS316L. The samples for the dilatometry test were prepared through powder-binder mixing, injection molding, and solvent and thermal debinding. Dilatometry experiments were carried out with the samples in a H2 atmosphere at three different heating rates of 3, 6, and 10 K/min. The shrinkage data obtained by dilatometry experiments was collected and analyzed to help understand the densification and the sintering behaviors in terms of particles size and heating rate. The master sintering curve (MSC) model was used to quantify the effects of particle sizes. In addition, we investigated the microstructure evolutions in terms of particles sizes.

  11. Development of nanostructured SUS316L-2%TiC with superior tensile properties

    NASA Astrophysics Data System (ADS)

    Sakamoto, T.; Kurishita, H.; Matsuo, S.; Arakawa, H.; Takahashi, S.; Tsuchida, M.; Kobayashi, S.; Nakai, K.; Terasawa, M.; Yamasaki, T.; Kawai, M.

    2015-11-01

    Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below Md (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90-270 nm, accompanied by TiC precipitates with 20-50 nm in grain interior and 70-110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6-21%, respectively, depending on the heat treatment temperature after rolling at -196 °C.

  12. Mechanical and substructural response of incipiently spalled 316L stainless steel.

    SciTech Connect

    Gray, G. T. , III; Bourne, N. K.

    2004-01-01

    316L SS samples were shock prestrained to a peak stress of 6.6 GPa using a 0.75 {mu}sec pulse duration square-topped shock profile and 'soft' recovered while a second sample was similarly shock loaded, without spall momentum trapping, leading to incipient spall damage. Shock prestraining and 'soft' shock recovery to 6.6 GPa led to an increase in the post-shock flow strength of 316L SS by {approx}100 MPa over the starting material while the reload yield strength of the incipiently spall damaged sample increased by {approx}200 MPa. In this paper the sequential processes of defect generation and damage operative during the shock prestraining, spallation, and reloading of incipiently spalled 316L SS is presented. The influence of shock prestraining, using both triangular-wave loading, via both direct HE and triangular-wave pulses on a gas launcher, as well as 'square-topped' shock prestaining via conventional flyer-plate impact, is crucial to understanding the shock hardening and spallation responses of materials(Gray III, et al. [2003]). The development of predictive constitutive models to describe the mechanical response of incipiently damaged metals and alloys requires an understanding of the defect generation and storage due to shock hardening as well as the additional plasticity and damage evolution during spallation. In this paper the influence of shock-wave prestraining on the process of shock hardening and thereafterthe hardeningand damage evolution accompanying incipient spallation in 316L stainless steel (316L SS) on post-shock constitutive behavior is examined using 'soft' recovery techniques and mechanical behavior measurements.

  13. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K. S.; Mathew, M. D.; Bhaduri, A. K.

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  14. Improving endothelialization on 316L stainless steel through wettability controllable coating by sol-gel technology

    NASA Astrophysics Data System (ADS)

    Wang, Mingqi; Wang, Yao; Chen, Yijie; Gu, Hongchen

    2013-03-01

    Rapid endothelialization by surface coverage is considered as a way to increase blood compatibility of the vascular stent and reduce smooth muscle cell (SMC) mediated restenosis. Coatings on 316L stainless steels with different wettabilities and similar topographies were obtained through sol-gel process by regulating the proportions of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES). Adhesion and proliferation of vascular endothelial cells (EC) and SMC on these substrates have been evaluated by cell numbers, cell morphology, and expression of cytoskeletal protein. Results showed that EC and SMC responded differently to the coated surfaces. Enhanced endothelialization of bare 316L was found at the moderately hydrophilic coating (contact angle 45.3°) which exhibited effective inhibition of SMC and negligible influence on EC. These results are expected to lay foundation for the solution of the vascular restenosis which was mainly derived from the hyperplasia of SMC.

  15. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  16. Damage mechanism at different transpassive potentials of solution-annealed 316 and 316l stainless steels

    NASA Astrophysics Data System (ADS)

    Morshed Behbahani, K.; Pakshir, M.; Abbasi, Z.; Najafisayar, P.

    2015-01-01

    Electrochemical impedance spectroscopy (EIS), anodic polarization and scanning electron microscopy techniques were used to investigate the damage mechanism in the transpassive potential region of AISI 316 and AISI 316L solution-annealed stainless steels (SS) with different degrees of sensitization. Depending on the DC potential applied during EIS tests, the AC responses in the transpassive region included three different regions: the first one associated with anodic dissolution of the passive layer, the second one contributed to the dissolution at the area near grain boundaries, and the last one attributed to pitting corrosion. In addition, the fitting results to experimental data showed that as the DC bias during the EIS test increases the charge transfer resistance ( R ct) decreases. Moreover, the R ct values decreased as the sensitization temperature increases but the AISI 316L SS samples exhibited a higher resistance to intergranular corrosion than 316 SS samples.

  17. Effect of in site strain on passivated property of the 316L stainless steels.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Ting, Guo

    2016-04-01

    The effect of the strain of 316L stainless steel on its corrosion resistance in borate buffer solution was investigated by in site tensile test and the electrochemical impedance spectroscopy measurements. It was found that the corrosion resistance of the 316L stainless steel decreased with the increasing of in site strain. The lower corrosion resistance of the stainless steel during in site strain was mainly attributed to the higher doping concentration in passive film. Especially, with the increasing of in site strain, the concentrations of acceptor (i.e., cation vacancies) in the passive films significantly increased. More acceptor concentrations reduced the compactness of the passive film and its corrosion resistance. Moreover, two exponential relationships were found between in site strain and the charge transfer resistance of the passive film and between in site strain and total doping concentrations in passive film, respectively. PMID:26838820

  18. Re-weldability of neutron irradiated Type 304 and 316L stainless steels

    NASA Astrophysics Data System (ADS)

    Morishima, Y.; Koshiishi, M.; Kashiwakura, K.; Hashimoto, T.; Kawano, S.

    2004-08-01

    Weldability of irradiated stainless steel (SS) has been studied to develop the technical guideline regarding the repair-welding of reactor internals. Type 304 and 316L SSs were irradiated at ambient temperature in the US Advanced Test Reactor. The multi-pass bead-on-plate TIG (GTA) and YAG laser welding with heat input levels less than 1 MJ/m were performed on specimens containing helium up to 18 appm. In this paper, results of cross-sectional micrograph observations of the heat affected zone were considered in light of helium bubble properties. The tendency for weld crack formation of irradiated Type 316L SS was compared with that of irradiated Type 304 SS.

  19. Nanosized controlled surface pretreatment of biometallic alloy 316L stainless steel.

    PubMed

    Abdel-Fattah, Tarek M; Loftis, Derek; Mahapatro, Anil

    2011-12-01

    Stainless steel (AISI 316L) is a medical grade stainless steel alloy used extensively in medical devices and in the biomedical field. 316L stainless steel was successfully electropolished via an ecologically friendly and biocompatible ionic liquid (IL) medium based on Vitamin B4 (NB4) and resulting in nanosized surface roughness and topography. Voltammetry and chronoamperometry tests determined optimum polishing conditions for the stainless steel alloy while atomic force microscopy (AFM) and scanning electron microscopy (SEM) provided surface morphology comparisons to benchmark success of each electropolishing condition. Energy dispersive X-ray analysis (EDX) combined with SEM revealed significantly smoother surfaces for each alloy surface while indicating that the constituent metals comprising each alloy effectively electropolished at uniform rates. PMID:22416578

  20. Investigation into the joining of MoSi{sub 2} to 316L stainless steel

    SciTech Connect

    Vaidya, R.U.; Bartlett, A.H.; Conzone, S.D.; Butt, D.P.

    1996-10-01

    Partial transient liquid phase joining and low temperature brazing were applied in joining MoSi{sub 2} to 316L ss. Exploratory studies were carried out on various interlayer materials. Mechanical, physical, and chemical compatibilities between various interlayers, brazing material, and substrate materials were investigated. Effect of thermal expansion mismatch between various components of the joint on the overall joint integrity was also studied. Preliminary findings are outlined.

  1. Laser-driven shock waves to improve the corrosion properties of 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Peyre, Patrice; Berthe, Laurent; Fabbro, Remy; Carboni, Christelle; Bartnicki, Eric; Beranger, Gerard; Lemaitre, Christian

    1999-06-01

    Different laser pulses ranging between 0.6 and 10 ns were used to generate up to 10 GPa amplitude shock waves in an aluminum-coated 316L stainless steel with application to modify its surface behavior, especially its pitting corrosion behavior in NaCl 30g/l medium. Laser shock waves (LSW) characterizations (Hugoniot limits, Shock wave attenuations) were carried out with a VISAR system and compared with 1D simulations using Shylac Lagrangian code. Treated surfaces were analyzed through chemical spectroscopies (GDS, XPS), metallurgical characterizations (deformation bands, twins...) and residual stress measurements. Laser-induced surface modifications were also compared with the classical effects of a shot-peening at high coverage rate. Lastly, rest potential recordings, anodic polarization tests and statistical treatments of the pitting potentials were carried out to estimate the influence of a laser peening on the pitting corrosion resistance of a passive 316L alloy. It was clearly demonstrated that LSW could improve the corrosion behavior of 316L by pure mechanical effects such as compressive residual stresses which tend to reduce the nocivity of surface inclusions.

  2. Microstructure and Mechanical Properties of 316L Stainless Steel Filling Friction Stir-Welded Joints

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Nakata, K.; Tsumura, T.; Fujii, H.; Ikeuchi, K.; Michishita, Y.; Fujiya, Y.; Morimoto, M.

    2014-10-01

    Keyhole left at 316L stainless steel friction stir welding/friction stir processing seam was repaired by filling friction stir welding (FFSW). Both metallurgical and mechanical bonding characteristics were obtained by the combined plastic deformation and flow between the consumable filling tool and the wall of the keyhole. Two ways based on the original conical and modified spherical keyholes, together with corresponding filling tools and process parameters were investigated. Microstructure and mechanical properties of 316L stainless steel FFSW joints were evaluated. The results showed that void defects existed at the bottom of the refilled original conical keyhole, while excellent bonding interface was obtained on the refilled modified spherical keyhole. The FFSW joint with defect-free interface obtained on the modified spherical keyhole fractured at the base metal side during the tensile test due to microstructural refinement and hardness increase in the refilled keyhole. Moreover, no σ phase but few Cr carbides were formed in the refilled zone, which would not result in obvious corrosion resistance degradation of 316L stainless steel.

  3. Irradiation testing of 316L(N)-IG austenitic stainless steel for ITER

    NASA Astrophysics Data System (ADS)

    van Osch, E. V.; Horsten, M. G.; de Vries, M. I.

    1998-10-01

    In the frame work of the European Fusion Technology Programme and the International Thermonuclear Experimental Reactor (ITER), ECN is investigating the irradiation behaviour of the structural materials for ITER. The main structural material for ITER is austenitic stainless steel Type 316L(N)-IG. The operating temperatures of (parts of) the components are envisaged to range between 350 and 700 K. A significant part of the dose-temperature domain of irradiation conditions relevant for ITER has already been explored, there is, however, very little data at about 600 K. Available data tend to indicate a maximum in the degradation of the mechanical properties after irradiation at this temperature, e.g. a minimum in ductility and a maximum of hardening. Therefore an irradiation program for plate material 316L(N)-IG, its Electron Beam (EB) weld and Tungsten Inert Gas (TIG) weld metal, and also including Hot Isostatically Pressed (HIP) 316L(N) powder and solid-solid joints, was set up in 1995. Irradiations have been carried out in the High Flux Reactor (HFR) in Petten at a temperature of 600 K, at dose levels from 1 to 10 dpa. The paper presents the currently available post-irradiation test results. Next to tensile and fracture toughness data on plate, EB and TIG welds, first results of powder HIP material are included.

  4. 49 CFR 179.220-25 - Stamping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: Examples of required stamping Specifications DOT-115A60W6. Inner container: Material ASTM A240-316L. Shell...-0000. Outer shell: Material ASTM A285-C. Tank builders initials WYZ. Car assembler (if other than...

  5. Investigation on 316L/W functionally graded materials fabricated by mechanical alloying and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Tan, Chao; Wang, Guoyu; Ji, Lina; Tong, Yangang; Duan, Xuan-Ming

    2016-02-01

    316L-W (Tungsten) composite materials were fabricated by spark plasma sintering (SPS) of mechanically alloyed 316L-W powders for the development of functionally graded materials (FGMs). The effect of milling parameters on the morphology of the blended 316L/W powders and its subsequent effect on the transition between 316L and W particles during the SPS process were investigated. Samples were characterized by SEM, EDS and XRD analyses. The results so obtained show that with the increase of milling time, the mechanically activated W powder particles become thinner and smoother, with some broken fragments aggregated or inserted in the severely deformed 316L particles. A further SPS process under the conditions of 1050 °C × 45.5 MPa × 5 min leads to the densification of the powder compact and the formation of a distinguishable gray belt surrounding the retained W particles. Such a belt, which has a width of about 2-8 μm depending on different milling parameters and mainly contains Fe7W6, Fe3W3C and Fe2W phases, is bound to be a transitional region between the retained W particles and the 316L matrix. This favorable behavior with regards to the formation of a transitional belt, is accompanied by a substantial increase in the hardness values of the composite.

  6. Upset welded 304L and 316L vessels for storage tests

    SciTech Connect

    Kanne, W.R. Jr.

    1996-04-01

    Two sets of vessels for tritium storage tests were fabricated using upset welding. A solid-state resistance upset weld was used to join the two halves of each vessel at the girth. The vessels differ from production reservoirs in design, material, and fabrication process. One set was made from forged 304L stainless steel and the other from forged 316L stainless steel. Six vessels of each type were loaded with a tritium mix in November 1995 and placed in storage at 71 C. This memo describes and documents the fabrication of the twelve vessels.

  7. Corrosion tests of 316L and Hastelloy C-22 in simulated tank waste solutions

    SciTech Connect

    MJ Danielson; SG Pitman

    2000-02-23

    Both the 316L stainless steel and Hastelloy{reg_sign} C-22 gave satisfactory corrosion performance in the simulated test environments. They were subjected to 100 day weight loss corrosion tests and electrochemical potentiodynamic evaluation. This activity supports confirmation of the design basis for the materials of construction of process vessels and equipment used to handle the feed to the LAW-melter evaporator. BNFL process and mechanical engineering will use the information derived from this task to select material of construction for process vessels and equipment.

  8. Compatibility of AISI 316 L stainless steel with the Li 17Pbg, eutectic

    NASA Astrophysics Data System (ADS)

    Coen, V.; Fenici, P.; Kolbe, H.; Orecchia, L.; Sasaki, T.

    1982-09-01

    The compatibility of AISI 316 L stainless steel with the Li 17Pb 83, eutectic has been studied in the temperature range 623-873 K for times up to 6000 h. In the corrosion layers formed there is a strong Ni depletion and Pb and Li penetration in the matrix. Tests at 623 K in Li 17Pb 83 on notched tensile specimens under a constant uniaxial tensile load, below the engineering yield stress, have evidenced that. many cracks filled with Pb and possibly Li are formed after relatively short times.

  9. Study of stirred layers on 316L steel created by friction stir processing

    NASA Astrophysics Data System (ADS)

    Langlade, C.; Roman, A.; Schlegel, D.; Gete, E.; Folea, M.

    2014-08-01

    Nanostructured materials are known to exhibit attractive properties, especially in the mechanical field where high hardness is of great interest. The friction stir process (FSP) is a recent surface engineering technique derived from the friction stir welding method (FSW). In this study, the FSP of an 316L austenitic stainless steel has been evaluated. The treated layers have been characterized in terms of hardness and microstructure and these results have been related to the FSP operational parameters. The process has been analysed using a Response Surface Method (RSM) to enable the stirred layer thickness prediction.

  10. 316L stainless steel tubes corrosion influenced by SRB in sea water

    SciTech Connect

    Yoffe, P.

    1997-08-01

    A tube made from SS316L was attacked by stagnated sea water. The typical onion form of the pits were obscured in welded and unwelded sectors of the tube. Iron sulfides FeS{sub 1{minus}x} and FeS{sub 2} (in pyrite form) were observed on effected surface of the tube, in addition to iron chloride and oxide/hydroxide. Theoretical investigation was based on cluster model of alloy and thermodynamic/kinetic characterization of possible reactions. It was concluded that microbially influenced sulfidizing played an accelerating role in the failure that exhibited the typical characteristics for stagnated sea water effect to chromium-nickel stainless steel.

  11. Diffusion bonding of Ti coated Zircaloy-4 and 316-L stainless steel

    SciTech Connect

    Akhter, J.I. Ahmad, M.; Ali, G.

    2009-03-15

    Diffusion bonding of Zircaloy-4 and Type 316-L stainless steel was carried out by coating the joining surfaces with Ti to minimize the interlayer effect. Bonding heat treatments were carried out in vacuum at 1000 deg. C for 4 h and 1050 deg. C for 1 h. The microstructure of the diffusion zone was investigated by scanning electron microscopy and the phases in the diffusion zone were analyzed by energy dispersive spectroscopy. It is observed that Ti coating at the interface produced a dendritic structure in the diffusion zone formed in the Zircaloy-4. The concentration of the dendrites increases with an increase in bonding temperature.

  12. Fine structure analysis of biocompatible ceramic materials based hydroxyapatite and metallic biomaterials 316L

    NASA Astrophysics Data System (ADS)

    Anghelina, F. V.; Ungureanu, D. N.; Bratu, V.; Popescu, I. N.; Rusanescu, C. O.

    2013-11-01

    The aim of this paper was to obtain and characterize (surface morphology and fine structure) two types of materials: Ca10(PO4)6(OH)2 hydroxyapatite powder (HAp) as biocompatible ceramic materials and AISI 316L austenitic stainless steels as metallic biomaterials, which are the components of the metal-ceramic composites used for medical implants in reconstructive surgery and prosthetic treatment. The HAp was synthesized by coprecipitation method, heat treated at 200 °C, 800 °C and 1200 °C for 4 h, analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The stainless steel 316L type was made by casting, annealing and machined with a low speed (100 mm/s) in order to obtain a smooth surface and after that has been studied from residual stresses point of view in three polishing regimes conditions: at low speed polishing (150 rpm), at high speed polishing (1500 rpm) and high speed-vibration contact polishing (1500 rpm) using wide angle X-ray diffractions (WAXD). The chemical compositions of AISI 316 steel samples were measured using a Foundry Master Spectrometer equipped with CCD detector for spectral lines and the sparking spots of AISI 316L samples were analyzed using SEM. By XRD the phases of HAp powders have been identified and also the degree of crystallinity and average size of crystallites, and with SEM, we studied the morphology of the HAp. It has been found from XRD analysis that we obtained HAp with a high degree of crystallinity at 800 °C and 1200 °C, no presence of impurity and from SEM analysis we noticed the influence of heat treatment on the ceramic particles morphology. From the study of residual stress profiles of 316L samples were observed that it differs substantially for different machining regimes and from the SEM analysis of sparking spots we revealed the rough surfaces of stainless steel rods necessary for a better adhesion of HAp on it.

  13. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite.

    PubMed

    Ataollahi Oshkour, Azim; Pramanik, Sumit; Mehrali, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan

    2015-09-01

    This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application. PMID:26072197

  14. The effect of surface roughness on the fretting corrosion of 316L stainless steel biomaterial surfaces

    NASA Astrophysics Data System (ADS)

    Shenoy, Aarti

    The medical device industry is still seeking answers to the mechanically-assisted corrosion (MAC) problem, which becomes increasingly important due to modularity in design. MAC manifests in various forms, some of which are fretting corrosion, crevice corrosion and stress corrosion. Several studies have been conducted to understand the causes and the factors that affect fretting corrosion. Some of the factors are the applied load, surface potential, oxide film characteristics and solution chemistry near the interface. Surface properties such as surface roughness determine the topography of the surface and the nature of asperity-asperity contact, which is a factor that would determine the mechanically assisted corrosion behavior of the interface, like the stem-neck and head-neck taper junctions in modular hip replacement devices. This study aims to understand the correlation between surface roughness of 316L stainless steel samples and fretting corrosion behavior using a variable load pin-on-disc test. It was found that the smoother surfaces are associated with lower fretting currents. However, smoother surfaces also created the conditions for fretting initiated crevice corrosion to occur more readily. Fretting corrosion regimes and the severity are thus dependent upon the surface roughness. A possible explanation could be due to the inverse relationship between the interasperity distance parameter, Delta, and fretting currents. The coefficient of friction between the two surfaces in contact however remained unaffected by surface roughness, but decreased with increasing load. Smoother surfaces, while lowering fretting corrosion reactions can enhance crevice corrosion reactions in 316L stainless steel interfaces.

  15. Fabrication of antibacterial and hydrophilic electroless Ni-B coating on 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Bülbül, Ferhat; Bülbül, Leman Elif

    2016-01-01

    Biomaterial-associated bacterial infection is one of the most common complications with medical vehicles and implants made of stainless steel. A surface coating treatment like electroless Ni-B deposition, a new candidate to be used in a broad range of engineering applications owing to many advantages such as low cost, thickness uniformity, good wear resistance, may improve the antibacterial activity and physical properties of biomedical devices made of stainless steel. In this study, the antibacterial property of the electroless Ni-B film coated on AISI 316L (UNS S31603) stainless steel is basically investigated. Inhibition halo diameter measurement after incubation at 37 °C and 24 h demonstrates the existence of antimicrobial activity of the electroless Ni-B coating deposited on 316L stainless steel over the Escherichia coli test bacteria. The results of X-ray diffraction, scanning electron microscopy, atomic force microscopy and microhardness measurement studies confirms that the coating deposited on the substrate has an uniform amorphous and a harder structure. Besides, the wettability property of the uncoated substrate and the coating was measured as the contact angle of water. The water contact angle reduced about from 97.7 to 69.25°.

  16. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing

    NASA Astrophysics Data System (ADS)

    Hajian, M.; Abdollah-zadeh, A.; Rezaei-Nejad, S. S.; Assadi, H.; Hadavi, S. M. M.; Chung, K.; Shokouhimehr, M.

    2014-07-01

    Commercial AISI 316L plates with the initial grain size of 14.8 μm were friction stir processed (FSP) with different processing parameters, resulting in two fine-grained microstructures with the grain sizes of 4.6 and 1.7 μm. The cavitation erosion behavior, before and after FSP, was evaluated in terms of incubation time, cumulative mass loss and mean depth of erosion. A separate cavitation erosion test was performed on the transverse cross section of a FSP sample to reveal the effect of grain structure. It was observed that FSP samples, depending on their grain size, are at least 3-6 times more resistant than the base material against cavitation erosion. The improvement in cavitation erosion resistance is attributed to smaller grain structure, lower fraction of twin boundaries, and favorable crystallographic orientation of grains in FSP samples. The finer the grain size, the more cavitation erosion resistance was achieved. Moreover, the microstructures of eroded surfaces were studied using a scanning electron microscope equipped with EBSD, and an atomic force microscope. The mechanisms controlling the cavitation erosion damage in friction stir processed AISI 316L are also discussed.

  17. Mechanical properties and biocompatibility of plasma-nitrided laser-cut 316L cardiovascular stents.

    PubMed

    Arslan, Erdem; Iğdil, Mustafa C; Yazici, Hilal; Tamerler, Candan; Bermek, Hakan; Trabzon, Levent

    2008-05-01

    The effect of surface modification of laser-cut 316L cardiovascular stents by low-T plasma nitriding was evaluated in terms of mechanical properties and biocompatibility of the stents. The plasma nitriding was performed at 400, 450 or 500 degrees C using various ratios of nitrogen-hydrogen gas mixtures. The flexibility and radial strength were measured in crimped and expanded state of the stents, respectively. The mechanical properties could be adjusted and improved by plasma nitriding conducted at temperatures lower than 450 degrees C and/or nitrogen content less than 10% in the treatment gas. An osteoblast cell culture model system was utilized to investigate the effect of plasma nitriding of the stents on the biological response towards the stents, using biological criteria such as cell viability, alkaline phosphatase and nitric oxide production. In terms of cell viability and alkaline phosphatase production, the plasma nitriding procedure did not appear to negatively affect the biocompatibility of the 316L steel stents. However, in terms of nitric oxide production that was slightly increased in the presence of the plasma-nitrided stents, an indirect improvement in the biocompatibility could possibly be expected. PMID:17968502

  18. Surface modification of biomedical AISI 316L stainless steel with zirconium carbonitride coatings

    NASA Astrophysics Data System (ADS)

    Wang, L.; Zhao, X.; Ding, M. H.; Zheng, H.; Zhang, H. S.; Zhang, B.; Li, X. Q.; Wu, G. Y.

    2015-06-01

    In the paper, by using radio frequency (rf) magnetron sputtering method, a zirconium carbonitride coating was produced on AISI 316L austenitic stainless steel. The influence of substrate temperature (Ts) on microstructure, mechanical properties, corrosion resistance and hemocompatibility were then investigated. XRD and TEM results revealed that the zirconium carbonitride coatings were almost amorphous when Ts was below 400°C, while nanostructured Zr2CN was formed at Ts of 400 °C. The nanocrystalline formation resulted in a significant increase in the nanohardness of zirconium carbonitride coatings from 17 GPa to over 32 GPa. Electrochemical testing showed that the stable zirconium carbonitride coating had improved the corrosion resistance of AISI 316L stainless steel substrate material. The characterization of platelet adhesion indicated that the zirconium carbonitride coatings presented better hemocompatibility when Ts varied from 25 °C to more than 200 °C, which may be due to the lower surface roughness, interfacial tension and the rate γsd /γsp , where γsd and γsp are the disperse component and polar component of the surface, respectively.

  19. Corrosion of type 316L stainless steel in a mercury thermal convection loop

    SciTech Connect

    DiStefano, J.R.; Manneschmidt, E.T.; Pawel, S.J.

    1999-04-01

    Two thermal convection loops fabricated from 316L stainless steel containing mercury (Hg) and Hg with 1000 wppm gallium (Ga), respectively, were operated continuously for about 5000 h. In each case, the maximum loop temperature was constant at about 305 degrees C and the minimum temperature was constant at about 242 degrees C. Coupons in the hot leg of the Hg-loop developed a posous surface layer substantially depleted of nickel and chromium, which resulted in a transformation to ferrite. The coupon exposed at the top of the hot leg in the Hg-loop experienced the maximum degradation, exhibiting a surface layer extending an average of 9-10 mu m after almost 5000 h. Analysis of the corrosion rate data as a function of temperature (position) in the Hg-loop suggests wetting by the mer cury occurred only above about 255 degrees C and that the rate limiting step in the corrosion process above 255 degrees C is solute diffusion through the saturated liquid boundary layer adjacent to the corroding surface. The latter factor suggests that the corrosion of 316L stainless steel in a mercury loop may be velocity dependent. No wetting and no corrosion were observed on the coupons and wall specimens removed from the Hg/Ga loop after 5000 h of operation.

  20. Partially degradable friction-welded pure iron-stainless steel 316L bone pin.

    PubMed

    Nasution, A K; Murni, N S; Sing, N B; Idris, M H; Hermawan, H

    2015-01-01

    This article describes the development of a partially degradable metal bone pin, proposed to minimize the occurrence of bone refracture by avoiding the creation of holes in the bone after pin removal procedure. The pin was made by friction welding and composed of two parts: the degradable part that remains in the bone and the nondegradable part that will be removed as usual. Rods of stainless steel 316L (nondegradable) and pure iron (degradable) were friction welded at the optimum parameters: forging pressure = 33.2 kPa, friction time = 25 s, burn-off length = 15 mm, and heat input = 4.58 J/s. The optimum tensile strength and elongation was registered at 666 MPa and 13%, respectively. A spiral defect formation was identified as the cause for the ductile fracture of the weld joint. A 40-µm wide intermetallic zone was identified along the fusion line having a distinct composition of Cr, Ni, and Mo. The corrosion rate of the pin gradually decreased from the undeformed zone of pure iron to the undeformed zone of stainless steel 316L. All metallurgical zones of the pin showed no toxic effect toward normal human osteoblast cells, confirming the ppb level of released Cr and Ni detected in the cell media were tolerable. PMID:24757071

  1. Stability of passivated 316L stainless steel oxide films for cardiovascular stents.

    PubMed

    Shih, Chun-Che; Shih, Chun-Ming; Chou, Kuang-Yi; Lin, Shing-Jong; Su, Yea-Yang

    2007-03-15

    Passivated 316L stainless steel is used extensively in cardiovascular stents. The degree of chloride ion attack might increase as the oxide film on the implant degrades from exposure to physiological fluid. Stability of 316L stainless steel stent is a function of the concentration of hydrated and hydrolyated oxide concentration inside the passivated film. A high concentration of hydrated and hydrolyated oxide inside the passivated oxide film is required to maintain the integrity of the passivated oxide film, reduce the chance of chloride ion attack, and prevent any possible leaching of positively charged ions into the surrounding tissue that accelerate the inflammatory process. Leaching of metallic ions from corroded implant surface into surrounding tissue was confirmed by the X-ray mapping technique. The degree of thrombi weight percentage [W(ao): (2.1 +/- 0.9)%; W(ep): (12.5 +/- 4.9)%, p < 0.01] between the amorphous oxide (AO) and the electropolishing (EP) treatment groups was statistically significant in ex-vivo extracorporeal thrombosis experiment of mongrel dog. The thickness of neointima (T(ao): 100 +/- 20 microm; T(ep): 500 +/- 150 microm, p < 0.01) and the area ratio of intimal response at 4 weeks (AR(ao): 0.62 +/- 0.22; AR(ep): 1.15 +/- 0.42, p < 0.001) on the implanted iliac stents of New Zealand rabbit could be a function of the oxide properties. PMID:17072844

  2. Effect of Mercury Velocity on Corrosion of Type 316L Stainless Steel in a Thermal Convection Loop

    SciTech Connect

    Pawel, SJ

    2001-03-23

    Two 316L thermal convection loops (TCLs) containing several types of 316L specimens circulated mercury continuously for 2000 h at a maximum temperature of 300 C. Each TCL was fitted with a venturi-shaped reduced section near the top of the hot leg for the purpose of locally increasing the Hg velocity. Results suggest that an increase in velocity from about 1.2 m/min (bulk flow) to about 5 mmin (reduced section) had no significant impact on compatibility of 316L with Hg. In addition, various surface treatments such as gold-plating, chemical etching, polishing, and steam cleaning resulted in little or no influence on compatibility of 316L with Hg when compared to nominal mill-annealed/surface-ground material. A sensitizing heat treatment also had little/no effect on compatibility of 316L with Hg for the bulk specimen, although intergranular attack was observed around the specimen holes in each case. It was determined that carburization of the hole area had occurred as a result of the specimen fabrication process potentially rendering the specimens susceptible to corrosion by Hg at these locations. To avoid sensitization-related compatibility issues for SNS components, selection of low carbon grades of stainless steel and control of the fabrication process is recommended.

  3. Tensile properties of explosively formed 316L(N)-IG stainless steel with and without an electron beam weld

    NASA Astrophysics Data System (ADS)

    Hegeman, J. B. J.; Luzginova, N. V.; Jong, M.; Groeneveld, H. D.; Borsboom, A.; Stuivinga, M. E. C.; van der Laan, J. G.

    2011-10-01

    The mechanical properties of two explosively formed saddle shaped 60 mm thick plates of 316L(N)-IG steel with and without an electron beam weld have been investigated. Two different conditions have been characterized: (1) Reference condition and (2) ITER relevant condition. The reference material exhibits consistent results for both plates, mechanical properties of reference material are similar to the properties previously observed for 316L(N)-IG steels. No significant difference in mechanical properties and microstructure between different positions in the 60 mm plate is observed. Tensile properties for ITER relevant materials are found to comply both with the RCC-MR code qualified data for 316L(N) steel used for the structural design and with ITER Materials Properties Handbook. As expected total elongation and uniform elongation for weld material are lower than the average curves obtained for the base material.

  4. Surface characterisation and electrochemical behaviour of porous titanium dioxide coated 316L stainless steel for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Nagarajan, S.; Rajendran, N.

    2009-01-01

    Porous titanium dioxide was coated on surgical grade 316L stainless steel (SS) and its role on the corrosion protection and enhanced biocompatibility of the materials was studied. X-ray diffraction analysis (XRD), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) were carried out to characterise the surface morphology and also to understand the structure of the as synthesised coating on the substrates. The corrosion behaviour of titanium dioxide coated samples in simulated body fluid was evaluated using polarisation and impedance spectroscopy studies. The results reveal that the titanium dioxide coated 316L SS exhibit a higher corrosion resistance than the uncoated 316L SS. The titanium dioxide coated surface is porous, uniform and also it acts as a barrier layer to metallic substrate and the porous titanium dioxide coating induces the formation of hydroxyapatite layer on the metal surface.

  5. Improved anticorrosion properties and electrical conductivity of 316L stainless steel as bipolar plate for proton exchange membrane fuel cell by lower temperature chromizing treatment

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Yu, Haijun; Jiang, Lijun; Zhu, Lei; Jian, Xuyu; Wang, Zhong

    The lower temperature chromizing treatment is developed to modify 316L stainless steel (SS 316L) for the application of bipolar plate in proton exchange membrane fuel cell (PEMFC). The treatment is performed to produce a coating, containing mainly Cr-carbide and Cr-nitride, on the substrate to improve the anticorrosion properties and electrical conductivity between the bipolar plate and carbon paper. Shot peening is used as the pretreatment to produce an activated surface on stainless steel to reduce chromizing temperature. Anticorrosion properties and interfacial contact resistance (ICR) are investigated in this study. Results show that the chromized SS 316L exhibits better corrosion resistance and lower ICR value than those of bare SS 316L. The chromized SS 316L shows the passive current density about 3E-7 A cm -2 that is about four orders of magnitude lower than that of bare SS 316L. ICR value of the chromized SS 316L is 13 mΩ cm 2 that is about one-third of bare SS 316L at 200 N cm -2 compaction forces. Therefore, this study clearly states the performance advantages of using chromized SS 316L by lower temperature chromizing treatment as bipolar plate for PEMFC.

  6. Improved corrosion resistance of 316L stainless steel by nanocrystalline and electrochemical nitridation in artificial saliva solution

    NASA Astrophysics Data System (ADS)

    Lv, Jinlong; Liang, Tongxiang

    2015-12-01

    The fluoride ion in artificial saliva significantly changed semiconductor characteristic of the passive film formed on the surface of 316L stainless steels. The electrochemical results showed that nanocrystalline α‧-martensite improved corrosion resistance of the stainless steel in a typical artificial saliva compared with coarse grained stainless steel. Moreover, comparing with nitrided coarse grained stainless steel, corrosion resistance of the nitrided nanocrystalline stainless steel was also improved significantly, even in artificial saliva solution containing fluoride ion. The present study showed that the cryogenic cold rolling and electrochemical nitridation improved corrosion resistance of 316L stainless steel for the dental application.

  7. Rapid heating tensile tests of hydrogen-charged high-energy-rate-forged 316L stainless steel

    SciTech Connect

    Mosley, W.C.

    1989-05-19

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. Proper design of the equipment will require an understanding of how tritium and its decay product helium affect mechanical properties. This memorandum describes results of rapid heating tensile testing of hydrogen-charged specimens of high-energy-rate-forged (HERF) 316L stainless steel. These results provide a data base for comparison with uncharged and tritium-charged-and-aged specimens to distinguish the effects of hydrogen and helium. Details of the experimental equipment and procedures and results for uncharged specimens were reported previously. 3 refs., 10 figs.

  8. Image analysis of corrosion pit initiation on ASTM type A240 stainless steel and ASTM type A 1008 carbon steel

    NASA Astrophysics Data System (ADS)

    Nine, H. M. Zulker

    The adversity of metallic corrosion is of growing concern to industrial engineers and scientists. Corrosion attacks metal surface and causes structural as well as direct and indirect economic losses. Multiple corrosion monitoring tools are available although those are time-consuming and costly. Due to the availability of image capturing devices in today's world, image based corrosion control technique is a unique innovation. By setting up stainless steel SS 304 and low carbon steel QD 1008 panels in distilled water, half-saturated sodium chloride and saturated sodium chloride solutions and subsequent RGB image analysis in Matlab, in this research, a simple and cost-effective corrosion measurement tool has identified and investigated. Additionally, the open circuit potential and electrochemical impedance spectroscopy results have been compared with RGB analysis to gratify the corrosion. Additionally, to understand the importance of ambiguity in crisis communication, the communication process between Union Carbide and Indian Government regarding the Bhopal incident in 1984 was analyzed.

  9. Creep of 304 LN and 316 L stainless steels at cryogenic temperatures

    SciTech Connect

    Roth, L.D.; Manhardt, A.E.; Dalder, E.N.C.; Kershaw, R.P. Jr.

    1985-08-07

    Creep behavior of Type 304 LN plate and 316 L shielded-metal-arc (SMA)-deposited stainless weld metal was investigated at 4/sup 0/K. Testing was performed at constant load in a creep machine with a cryostat designed for long-term stability. Both transient and steady-state creep were observed during tests lasting over 2000 hours. Steady-state creep rates were much greater than expected from extrapolations of 300-K creep data. Creep rates on the order of 10/sup -10/ s/sup -1/ were observed at stresses around the yield stress for both materials. The stress exponent under these conditions if approx.2.3. Possible creep mechanisms at this temperature and the impact of these results on the design of engineering structures for long-term structural stability at cryogenic temperatures are discussed.

  10. Dissolution of a 316L stainless steel vessel by a pool of molten aluminum

    SciTech Connect

    Tutu, N.K.; Finfrock, C.C.; Lara, J.D.; Schwarz, C.E.; Greene, G.A.

    1993-01-01

    Two experiments to study the dissolution of a torospherical stainless steel vessel by an isothermal pool of molten aluminum have been performed. The test vessels consisted of 24 inch diameter 316L stainless steel ``ASME Flanged and Dished Heads.`` The nominal values of the average melt temperatures for the two tests were: 977{degree}C and 1007{degree}C. The measurements of the dissolution depth as a function of the position along the vessel surface showed the dissolution to be spatially highly non-uniform. Large variations in the dissolution depth with respect to the azimuthal coordinate were also observed. The maximum value of the measured time averaged dissolution rate was found to be 5.05 mm/hr, and this occurred near the edge of the molten pool. The concentration measurements indicated that the molten pool was highly stratified with respect to the concentration of stainless steel in the melt (molten aluminum-stainless steel solution).

  11. Effect of Laser Peening without Coating on 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sathyajith, S.; kalainathan, S.

    2015-02-01

    Laser Peening without Coating (LPwC) is an innovative surface modification technique used for the in-suit preventive maintenance of nuclear reactor components using frequency doubled (green) laser. The advantage of LPwC is that the laser required for this technique is in milli joule range and the processes can perform in aqueous environment. This paper discussed the effect of LPwC on 316L austenitic stainless steel using low energy Nd: YAG laser with various laser pulse density. The base specimen and laser peened specimen were subjected to surface residual stress, surface morphology, micro hardness and potentiodynamic polarization studies. The laser peened surface exhibit significant improvement in surface compressive residual stress. The depth profile of micro hardness revealed higher strain hardening on laser peened specimens. Though corrosion potential reported an anodic shift,current density is found to be increased after LPwC for the specimen peened with higher pulse density.

  12. Fatigue properties of a biomedical 316L steel processed by surface mechanical attrition

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Chemkhi, M.; Kanoute, P.; Retraint, D.

    2014-08-01

    This work deals with the influence of surface mechanical attrition treatment (SMAT) on fatigue properties of a medical grade 316L stainless steel. Metallurgical parameters governed by SMAT such as micro-hardness and nanocrystalline layer are characterized using different techniques. Low cycle fatigue tests are performed to investigate the fatigue properties of untreated and SMAT-processed samples. The results show that the stress amplitude of SMAT- processed samples with two different treatment intensities is significantly enhanced compared to untreated samples, while the fatigue strength represented by the number of cycles to failure is not improved in the investigated strain range. The enhancement in the stress amplitude of treated samples can be attributed to the influence of the SMAT affected layer.

  13. Relative Defect Density Measurements of Laser Shock Peened 316L Stainless Steel Using Positron Annihilation Spectroscopy

    SciTech Connect

    Marcus A. Gagliardi; Bulent H. Sencer; A. W. Hunt; Stuart A. Maloy; George T. Gray III

    2011-12-01

    The surface of an annealed 316L stainless steel coupon was laser shock peened and Vickers hardness measurements were subsequently taken of its surface. This Vickers hardness data was compared with measurements taken using the technique of positron annihilation Doppler broadening spectroscopy. When compared, a correlation was found between the Vickers hardness data measurements and those made using Doppler broadening spectroscopy. Although materials with a high defect density can cause the S-parameter measurements to saturate, variations in the Sparameter measurements suggest that through further research the Doppler broadening technique could be used as a viable alternative to measuring a material's hardness. In turn, this technique, could be useful in industrial settings where surface hardness and surface defects are used to predict lifetime of components.

  14. Cytocompatibility and mechanical properties of novel porous 316 L stainless steel.

    PubMed

    Kato, Komei; Yamamoto, Akiko; Ochiai, Shojiro; Wada, Masahiro; Daigo, Yuzo; Kita, Koichi; Omori, Kenichi

    2013-07-01

    Novel 316 L stainless steel (SS) foam with 85% porosity and an open pore diameter of 70-440 μm was developed for hard tissue application. The foam sheet with a 200-μm diameter had superior cell proliferation and penetration as identified through in vitro experiments. Calcification of human osteosarcoma cells in the SS foam was observed. Multi-layered foam preparation is a potential alternative technique that satisfies multi-functional requirements such as cell penetration and binding strength to the solid metal. In tensile tests, Young's modulus and the strength of the SS foam were 4.0 GPa and 11.2 MPa respectively, which is comparable with human cancellous bone. PMID:23623090

  15. Anticoagulant surface of 316 L stainless steel modified by surface-initiated atom transfer radical polymerization.

    PubMed

    Guo, Weihua; Zhu, Jian; Cheng, Zhenping; Zhang, Zhengbiao; Zhu, Xiulin

    2011-05-01

    Polished 316 L stainless steel (SS) was first treated with air plasma to enhance surface hydrophilicity and was subsequently allowed to react with 2-(4-chlorosulfonylphenyl)ethyltrimethoxysilane to introduce an atom transfer radical polymerization (ATRP) initiator. Accordingly, the surface-initiated atom transfer radical polymerization of polyethylene glycol methacrylate (PEGMA) was carried out on the surface of the modified SS. The grafting progress was monitored by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy. The polymer thickness as a function different polymerization times was characterized using a step profiler. The anticoagulative properties of the PEGMA modified SS surface were investigated. The results showed enhanced anticoagulative to acid-citrate-dextrose (ACD) blood after grafting PEGMA on the SS surface. PMID:21528878

  16. Explosive bonding of 316L to C18150 CuCrZr alloy for ITER applications.

    SciTech Connect

    Puskar, Joseph David; Butler, Don J.; Goods, Steven Howard; Brasher, Dave G.

    2010-10-01

    Recent developments in the ITER experimental fusion reactor require that a 316L stainless steel substructure be bonded to a precipitation strengthened CuCrZr heat sink alloy, C18150. This bond defines the cooling water pressure boundary. Given the importance of this interface, a variety of experiments with fusion welding and solid-state joining techniques have been performed. Analysis of the joints includes mechanical measurements of bond strength and microstructural analysis using optical and electron microscopy techniques. A particular emphasis was placed on the mechanical properties of the CuCrZr, since it undergoes additional thermal processing and cannot be solutionized and aged hardened per standard heat treatments. It was determined that the explosion bonding, of all the techniques examined, maximized the residual mechanical strength of the CuCrZr. The bonding parameters were optimized to minimize the amount of mixing and porosity at the interface. The details of these results and the optimization will be discussed.

  17. Wear Resistance of AISI316L Steel Modified by Pre-FPP Treated DLC Coating

    NASA Astrophysics Data System (ADS)

    Nanbu, Hiroshi; Kikuchi, Shoichi; Kameyama, Yutaka; Komotori, Jun

    In order to improve the adhesion strength of the DLC coating, Fine Particle Peening (FPP) treatment was employed as pretreatment for DLC coatings. FPP treatment was performed using SiC shot particles, and then the AISI316L steel was DLC-coated. The FPP treatment increased the surface roughness of the specimen, and a Si-rich layer was formed on the surface because of the mechanical mixing of SiC shot particles into the steel substrate. Reciprocating sliding wear tests were conducted to measure the friction coefficient. While the non-pretreated (only DLC-coated) specimens showed a sudden increase in friction coefficient resulting from delamination of the DLC coating, the pre-FPP-treated specimens maintained a low friction coefficient during the wear tests. This indicates the strong adhesion of the DLC coating of the pre-FPP-treated specimen caused by the increase in surface roughness and the presence of Si on the surface.

  18. Effects of applied potential on SCC and HE for STS 316L in seawater

    NASA Astrophysics Data System (ADS)

    Han, Min-Su; Park, Jae-Cheul; Jang, Seok-Ki; Kim, Seong-Jong

    2010-05-01

    Offshore structures that are made of austenitic stainless steels are exposed to a severe corrosion environment, with fracturing of the passive film occurring by chloride ion intrusion, stress from dynamic external forces and fatigue due to wave and tidal forces. In this paper, we report our evaluation of the durability of STS 316L with respect to stress corrosion cracking and hydrogen embrittlement in natural seawater, which was carried out via electrochemical methods and slow strain rate tests (SSRTs). The effect of hydrogen on the material was assessed using a SSRT with an applied potential of -0.95 V (versus Ag/AgCl). In addition, potentials below an applied potential of -1.2 V indicate samples that are affected by atomic and molecular hydrogen. Theoretically, the optimum corrosion protection range possible without stress corrosion cracking and hydrogen embrittlement occurring is thought to be between-0.56 and -0.9 V.

  19. Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel.

    PubMed

    Thanh, Dinh Thi Mai; Nam, Pham Thi; Phuong, Nguyen Thu; Que, Le Xuan; Anh, Nguyen Van; Hoang, Thai; Lam, Tran Dai

    2013-05-01

    Hydroxyapatite (HAp) coatings were prepared on 316L stainless steel (316LSS) substrates by electrochemical deposition in the solutions containing Ca(NO3)2·4H2O and NH4H2PO4 at different electrolyte concentrations. Along with the effect of precursor concentration, the influence of temperature and H2O2 content on the morphology, structure and composition of the coating was thoroughly discussed with the help of X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectra. The in vitro tests in simulated body fluids (SBF) were carried out and then the morphological and structural changes were estimated by SEM and electrochemical techniques (open circuit potential, polarization curves, Nyquist and Bode spectra measurements). Being simple and cost-effective, this method is advantageous for producing HAp implant materials with good properties/characteristics, aiming towards in vivo biomedical applications. PMID:23498230

  20. Parylene coatings on stainless steel 316L surface for medical applications--mechanical and protective properties.

    PubMed

    Cieślik, Monika; Kot, Marcin; Reczyński, Witold; Engvall, Klas; Rakowski, Wiesław; Kotarba, Andrzej

    2012-01-01

    The mechanical and protective properties of parylene N and C coatings (2-20 μm) on stainless steel 316L implant materials were investigated. The coatings were characterized by scanning electron and confocal microscopes, microindentation and scratch tests, whereas their protective properties were evaluated in terms of quenching metal ion release from stainless steel to simulated body fluid (Hanks solution). The obtained results revealed that for parylene C coatings, the critical load for initial cracks is 3-5 times higher and the total metal ions release is reduced 3 times more efficiently compared to parylene N. It was thus concluded that parylene C exhibits superior mechanical and protective properties for application as a micrometer coating material for stainless steel implants. PMID:23177768

  1. Material Corrosion and Plate-Out Test of Types 304L and 316L Stainless Steel

    SciTech Connect

    Zapp, P.E.

    2001-02-06

    Corrosion and plate-out tests were performed on 304L and 316L stainless steel in pretreated Envelope B and Envelope C solutions. Flat coupons of the two stainless steels were exposed to 100 degrees C liquid and to 74 degrees C and 88 degrees C vapor above the solutions for 61 days. No significant corrosion was observed either by weight-loss measurements or by microscopic examination. Most coupons had small weight gains due to plate-out of solids, which remained to some extent even after 24-hour immersion in 1 N nitric acid at room temperature. Plate-out was more significant in the Envelope B coupons, with film thickness from less than 0.001 in. to 0.003-inches.

  2. Process mapping of laser surface modification of AISI 316L stainless steel for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chikarakara, Evans; Naher, Sumsun; Brabazon, Dermot

    2010-11-01

    A 1.5-kW CO2 laser in pulsed mode at 3 kHz was used to investigate the effects of varied laser process parameters and resulting morphology of AISI 316L stainless steel. Irradiance and residence time were varied between 7.9 to 23.6 MW/cm2 and 50 to 167 μs, respectively. A strong correlation between irradiance, residence time, depth of processing and roughness of processed steel was established. The high depth of altered microstructure and increased roughness were linked to higher levels of both irradiance and residence times. Energy fluence and surface temperature models were used to predict levels of melting occurring on the surface through the analysis of roughness and depth of the region processed. Microstructural images captured by the SEM revealed significant grain structure changes at higher irradiances, but due to increased residence times, limited to the laser in use, the hardness values were not improved.

  3. Effect of Starch Binders in Alumina Coatings on Aisi 316 L Stainless Steel for Medical Application

    NASA Astrophysics Data System (ADS)

    Ghazali, M. J.; Pauzi, A. A.; Azhari, C. H.; Ghani, J. A.; Sulong, A. B.; Mustafa, R.

    A slurry immersion technique of alumina coatings was carried out on several AISI 316 L stainless steels using two types of binding agents; commercial starch and Sarawakian starch (sago), which were also mixed with polyvinylchloride (PVA) for strengthening purposes. The sintering temperatures in this work were varied from 500 to 1000°C. Prior to sintering process, all stainless steels were metallographically ground and polished to approximately 0.6 µm of average roughness. Detailed characterisations on the sintered specimens were carried out with the aid of the secondary electron microscopy (SEM), microhardness and a profilometer. The results revealed that coated steels using sago binder showed improved adhesion and homogenous microstructures with greater hardness of 2642 HV than those found in coated steel with commercial starch after sintering process.

  4. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings

    PubMed Central

    Jones, John Eric; Chen, Meng; Yu, Qingsong

    2015-01-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20–25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH3/O2 plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O-and N-contents on the surfaces were substantially increased after NH3/O2 plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH3/O2 plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electro-chemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. PMID:24500866

  5. Electron stimulated desorption of H 3O + from 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Cole, C. R.; Outlaw, R. A.; Champion, R. L.; Holloway, B. C.; Kelly, M. A.

    2007-02-01

    Surface ions generated by electron stimulated desorption from mass spectrometer ion source grids are frequently observed, but often misidentified. For example, in the case of mass 19, the source is often assumed to be surface fluorine, but since the metal oxide on grid surfaces has been shown to form water and hydroxides, a more compelling case can be made for the formation of hydronium. Further, fluorine is strongly electronegative, so it is rarely generated as a positive ion. A commonly used metal for ion source grids is 316L stainless steel. Thermal vacuum processing by bakeout or radiation heating from the filament typically alters the surface composition to predominantly Cr 2O 3. X-ray photoelectron spectral shoulders on the O 1s and Cr 2p 3/2 peaks can be attributed to adsorbed water and hydroxides, the intensity of which can be substantially increased by hydrogen dosing. On the other hand, the sub-peak intensities are substantially reduced by heating and/or by electron bombardment. Electron bombardment diode measurements show an initial work function increase corresponding to predominant hydrogen desorption (H 2) and a subsequent work function decrease corresponding to predominant oxygen desorption (CO). The fraction of hydroxide concentration on the surface was determined from X-ray photoelectron spectroscopy and from the deconvolution of temperature desorption spectra. Electron stimulated desorption yields from the surface show unambiguous H 3O + peaks that can be significantly increased by hydrogen dosing. Time of flight secondary ion mass spectrometry sputter yields show small signals of H 3O +, as well as its constituents (H +, O + and OH +) and a small amount of fluorine as F -, but no F + or F + complexes (HF +, etc.). An electron stimulated desorption cross-section of σ+ ˜ 1.4 × 10 -20 cm 2 was determined for H 3O + from 316L stainless steel for hydrogen residing in surface chromium hydroxide.

  6. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings.

    PubMed

    Eric Jones, John; Chen, Meng; Yu, Qingsong

    2014-10-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20-25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH₃/O₂ plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O- and N-contents on the surfaces were substantially increased after NH₃/O₂ plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH₃/O₂ plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. PMID:24500866

  7. Effect of thermal exposure in helium on mechanical properties and microstructure of 316L and P91

    NASA Astrophysics Data System (ADS)

    Kunzova, Klara; Berka, Jan; Siegl, Jan; Hausild, Petr

    2016-04-01

    In this paper, the effects of high temperature exposure in air as well as in impure He on mechanical properties of 316L and P91 steels were investigated. The experimental programme was part of material design of new experimental facility - high temperature helium loop. Some of the specimens were exposed in air at 750 °C for up to 1000 h. Another set of specimens were exposed in impure helium containing 1 ppmv CO2, 2 ppmv O2, 35 ppmv CH4, 250 ppmv CO and 400 ppmv H2 at 750 °C for up to 1000 h. Metalographical analysis, tensile tests, fracture toughness and hardness tests of exposed and non-exposed specimens were carried out. After the exposure both in air and He, the ultimate tensile strength of P91 decreased significantly more than that of 316L. After the exposure in He, the fracture toughness of 316L was reduced to 60% while fracture toughness of P91 showed no significant changes. The hardness of P91 decreased with exposure time in air. The measurement of the hardness of 316L was very scattered the most probably due to the heterogeneities in microstructure, the trend was not possible to evaluate.

  8. A novel silica nanotube reinforced ionic incorporated hydroxyapatite composite coating on polypyrrole coated 316L SS for implant application.

    PubMed

    Prem Ananth, K; Joseph Nathanael, A; Jose, Sujin P; Oh, Tae Hwan; Mangalaraj, D

    2016-02-01

    An attempt has been made to deposit a novel smart ion (Sr, Zn, Mg) substituted hydroxyapatite (I-HAp) and silica nanotube (SiNTs) composite coatings on polypyrrole (PPy) coated surgical grade 316L stainless steel (316L SS) to improve its biocompatibility and corrosion resistance. The I-HAp/SiNTS/PPy bilayer coating on 316L SS was prepared by electrophoretic deposition technique. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies were carried out. These results confirmed the significant improvement of the corrosion resistance of the 316L SS alloy by the I-HAp/SiNTs/PPy bilayer composite coating. The adhesion strength and hardness test confirmed the anticipated mechanical properties of the composite. A low contact angle value revealed the hydrophilic nature. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used for the leach out analysis of the samples. Added to this, the bioactivity of the composite was analyzed by observing the apatite formation in the SBF solution for 7, 14, 21 and 28days of incubation. An enhancement of in vitro osteoblast attachment and cell viability was observed, which could lead to the optimistic orthopedic and dental applications. PMID:26652470

  9. Morphological and Mechanical Properties of Hydroxyapatite Bilayer Coatings Deposited on 316L SS by Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Sidane, Djahida; Khireddine, Hafit; Yala, Sabeha; Ziani, Salima; Bir, Fatima; Chicot, Didier

    2015-10-01

    The present paper reports on the influence of the addition of TiO2 and SiO2 oxides as sub-layer, on the morphological and mechanical properties of the hydroxyapatite (HAP) bioceramic coatings deposited on 316L stainless steel by sol-gel method in order to improve the properties of hydroxyapatite and expand its clinical application. The stability of the sols suspensions was evaluated by measuring the time dependence of the viscosity. Annealed properties of the coatings were analyzed by XPS, XRD, SEM, and EDS. The Vickers microhardness of the coatings is obtained under the same indentation load of 10 g. The hydroxyapatite coating deposited on the surface of the 316L SS substrate exhibits a porous carbonated apatitic structure. The results clearly demonstrate that HAP-TiO2 and HAP-SiO2 bilayer coatings where hydroxyapatite is deposited on the surface of TiO2- and SiO2-coated 316L SS substrate systems were highly homogeneous and uniform and show higher microhardness compared to HAP-coated 316L SS. A gap of nearly 10 pct is observed. The addition of TiO2 and SiO2 as sub-layer of a hydroxyapatite coating results in changes in surface morphology as well as an increase of the microhardness.

  10. Electrochemical and in vitro bioactivity of polypyrrole/ceramic nanocomposite coatings on 316L SS bio-implants.

    PubMed

    Madhan Kumar, A; Nagarajan, S; Ramakrishna, Suresh; Sudhagar, P; Kang, Yong Soo; Kim, Hyongbum; Gasem, Zuhair M; Rajendran, N

    2014-10-01

    The present investigation describes the versatile fabrication and characterization of a novel composite coating that consists of polypyrrole (PPy) and Nb2O5 nanoparticles. Integration of the two materials is achieved by electrochemical deposition on 316L stainless steel (SS) from an aqueous solution of oxalic acid containing pyrrole and Nb2O5 nanoparticles. Fourier transform infrared spectral (FTIR) and X-ray diffraction (XRD) studies revealed that the existence of Nb2O5 nanoparticles in PPy matrix with hexagonal structure. Surface morphological analysis showed that the presence of Nb2O5 nanoparticles strongly influenced the surface nature of the nanocomposite coated 316L SS. Micro hardness results revealed the enhanced mechanical properties of PPy nanocomposite coated 316L SS due to the addition of Nb2O5 nanoparticles. The electrochemical studies were carried out using cyclic polarization and electrochemical impedance spectroscopy (EIS) measurements. In order to evaluate the biocompatibility, contact angle measurements and in vitro characterization were performed in simulated body fluid (SBF) and on MG63 osteoblast cells. The results showed that the nanocomposite coatings exhibit superior biocompatibility and enhanced corrosion protection performance over 316L SS than pure PPy coatings. PMID:25175190

  11. Cobalt-Free Laser Cladding on AISI Type 316L Stainless Steel for Improved Cavitation and Slurry Erosion Wear Behavior

    NASA Astrophysics Data System (ADS)

    Paul, C. P.; Gandhi, B. K.; Bhargava, P.; Dwivedi, D. K.; Kukreja, L. M.

    2014-09-01

    Laser cladding of Colmonoy-5 (a nickel base alloy) and Metco-41C (an iron base alloy) on AISI type 316L stainless steel (SS316L) and their wear behaviors were investigated to establish Co-free clad layers for potential applications in nuclear industry. A 3.5 kW CO2 laser-based system was used to optimize the laser cladding on SS316L substrate. The observed optimum parameters were: laser power of 1.6 kW, scan speed of 0.6 m/min, and powder feed rate of 8 g/min with 60% overlapping. The microstructure studies revealed that the clad layers primarily comprise very fine columnar dendritic structures, while clad-substrate interface exhibited planar and non-epitaxial mode of solidification due to high cooling rates. The cavitation and slurry erosion behaviors of laser clad layers were also compared to that of Stellite-6 for potential direct replacement. The cavitation erosion resistance was improved by a factor of 1.6, 3.7, and 4.1, while the slurry erosion resistances at an impingement angle of 30° were 1.5, 4.8, and 1.8 times better for laser clad surfaces of Colmonoy-5, Metco-41C, and Stellite-6, respectively, as compared to that of bare SS316L substrate. The study demonstrated that Metco-41C is a better choice as Co-free clad material for potential nuclear applications.

  12. Cobalt-Free Laser Cladding on AISI Type 316L Stainless Steel for Improved Cavitation and Slurry Erosion Wear Behavior

    NASA Astrophysics Data System (ADS)

    Paul, C. P.; Gandhi, B. K.; Bhargava, P.; Dwivedi, D. K.; Kukreja, L. M.

    2014-12-01

    Laser cladding of Colmonoy-5 (a nickel base alloy) and Metco-41C (an iron base alloy) on AISI type 316L stainless steel (SS316L) and their wear behaviors were investigated to establish Co-free clad layers for potential applications in nuclear industry. A 3.5 kW CO2 laser-based system was used to optimize the laser cladding on SS316L substrate. The observed optimum parameters were: laser power of 1.6 kW, scan speed of 0.6 m/min, and powder feed rate of 8 g/min with 60% overlapping. The microstructure studies revealed that the clad layers primarily comprise very fine columnar dendritic structures, while clad-substrate interface exhibited planar and non-epitaxial mode of solidification due to high cooling rates. The cavitation and slurry erosion behaviors of laser clad layers were also compared to that of Stellite-6 for potential direct replacement. The cavitation erosion resistance was improved by a factor of 1.6, 3.7, and 4.1, while the slurry erosion resistances at an impingement angle of 30° were 1.5, 4.8, and 1.8 times better for laser clad surfaces of Colmonoy-5, Metco-41C, and Stellite-6, respectively, as compared to that of bare SS316L substrate. The study demonstrated that Metco-41C is a better choice as Co-free clad material for potential nuclear applications.

  13. Effects of Heat Treatments on Microstructure Changes in The Interface of Cu/SS316L Joint Materials

    SciTech Connect

    Xu, Q.; Yoshiie, T.; Edwards, Danny J.

    2000-09-01

    In both joints iron and chromium diffused from the stainless steel into the copper alloy, producing a narrow zone of about a 15 ?m containing FeCr precipitates and small voids. Failure in some bending tests occurred by a crack propagating through this zone in a direction parallel to the interface, indicating that the formation of these precipitates may not be conducive to good joint properties. The results of annealing experiments showed that temperatures # 673 K did not change the initial microstructure or composition of CuAl25/SS316L and CuNiBe/SS316L joints. Although there are no data from annealing experiments longer than 100 hours, it is expected that the microstructure and composition of CuAl25/SS316L and CuNiBe/SS316L are stable under the thermal operating conditions of fusion reactors. However, irradiation may lead to significant changes because of radiation-enhanced segregation, precipitation or dissolution near and at the interface that could alter the properties. In addition, the preexisting voids near the interface of the joints may coarsen under irradiation and enhance the sensitivity of joints to failure. Given the uncertainties in the response to irradiation, neutron irradiation experiments should be performed at appropriate temperatures to investigate the response of the different materials.

  14. Comparison of Strength and Serration at Cryogenic Temperatures among 304L, 316L and 310S Steels

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Ogata, T.; Nyilas, A.; Yuri, T.; Fujii, H.; Ohmiya, S.; Onishi, T.; Weiss, K. P.

    2008-03-01

    Tensile tests of 310S steel were performed at temperatures below 300 K and the yield strength and deformation behavior were compared with those of 304L and 316L steels. Computer simulations were also carried out to graph stress-elongation curves in order to discuss the effects of martensitic transformations induced during deformation on their strengths and deformation behavior at low temperatures. Tensile tests showed that yield strength of 310S steel is highest and that of 304L is lowest. The differences in yield strengths between 316L and 310S steels and between 304L and 316L steels are larger than those expected from the differences in solid solution strengthening. This can be explained by the effect of the strain through γ to ɛ martensitic transformation induced by elastic stress in 304L and 316L steels. The strength level and the shape of stress-elongation curves at cryogenic temperatures excluding serration can be qualitatively revealed by simulation when higher strength of ɛ phase comparing to α' phase and the window effect of α' were considered simultaneously. In liquid hydrogen, the three steels exhibit large serrations on the stress-elongation curves after the deformation near to the ultimate stress, while the curves are smooth before the onset of the serration. Such serrations in liquid hydrogen could not be revealed by simulation.

  15. Biocompatibility evaluation of surface-treated AISI 316L austenitic stainless steel in human cell cultures.

    PubMed

    Martinesi, M; Bruni, S; Stio, M; Treves, C; Bacci, T; Borgioli, F

    2007-01-01

    The effects of AISI 316L austenitic stainless steel, tested in untreated state or subjected to glow-discharge nitriding (at 10 or 20 hPa) and nitriding + post-oxidizing treatments, on human umbilical vein endothelial cells (HUVEC) and on peripheral blood mononuclear cells (PBMC) were evaluated. All the treated samples showed a better corrosion resistance in PBS and higher surface hardness in comparison with the untreated alloy. In HUVEC put in contact for 72 h with the sample types, proliferation and apoptosis decreased and increased, respectively, in the presence of the nitrided + post-oxidized samples, while only slight differences in cytokine (TNF-alpha, IL-6, and TGF-beta1) release were registered. Intercellular adhesion molecule-1 (ICAM-1) increased in HUVEC incubated with all the treated samples, while vascular cell adhesion molecule-1 (VCAM-1) and E-selectin increased in the presence of all the sample types. PBMC incubated for 48 h with the samples showed a decrease in proliferation and an increase in apoptosis in the presence of the untreated samples and the nitrided + post-oxidized ones. All the sample types induced a remarkable increase in TNF-alpha and IL-6 release in PBMC culture medium, while only the untreated sample and the nitrided at 10 hPa induced an increase in ICAM-1 expression. In HUVEC cocultured with PBMC, previously put in contact with the treated AISI 316L samples, increased levels of ICAM-1 were detected. In HUVEC coincubated with the culture medium of PBMC, previously put in contact with the samples under study, a noteworthy increase in ICAM-1, VCAM-1, and E-selectin levels was always registered, with the exception of VCAM-1, which was not affected by the untreated sample. In conclusion, even if the treated samples do not show a marked increase in biocompatibility in comparison with the untreated alloy, their higher corrosion resistance may suggest a better performance as the contact with physiological environment becomes longer. PMID

  16. The influence of surface condition on the localized corrosion of 316L stainless steel orthopaedic implants.

    PubMed

    Beddoes, J; Bucci, K

    1999-07-01

    The localized corrosion of austenitic stainless steel 316L intended for use as orthopaedic implants is determined as a function of the surface condition and metallurgical state. From the examination of samples exposed to a ferric chloride solution, at both 22 and 37 degrees C, the independent contribution of crevice and pitting corrosion to localized corrosion is determined. Both forms of localized corrosion occur to a greater extent at the higher temperature. The results indicate that weight loss measurements may not be sufficient to determine the extent of crevice corrosion separately from the influence of pitting corrosion. More importantly, the surface conditions required for the best resistance to crevice or pitting corrosion differ. Electropolished surfaces provide the best resistance to crevice corrosion, while "bead blasted" surfaces provide the best resistance to pitting corrosion. The implication of this result in terms of the serviceability as orthopaedic implants is discussed. The current results indicate the cold-worked state exhibits improved resistance to pitting corrosion. However, the influence of the metallurgical state could not be separated from a possible compositional effect. PMID:15348123

  17. SCC crack growth rate of cold worked 316L stainless steel in PWR environment

    NASA Astrophysics Data System (ADS)

    Du, Donghai; Chen, Kai; Yu, Lun; lu, Hui; Zhang, Lefu; Shi, Xiuqiang; Xu, Xuelian

    2015-01-01

    Many component failures in nuclear power plants were found to be caused by stress corrosion cracking (SCC) of cold worked austenitic steels. Some of the pressure boundary component materials are even cold worked up to 35% plastic deformation, leaving high residual stress and inducing high growth rate of corrosion crack. Controlling water chemistry is one of the best counter measure to mitigate this problem. In this work, the effects of temperature (200 up to 325 °C) and dissolved oxygen (0 up to 2000 μg/L) on SCC crack growth rates of cold worked austenitic stainless steel type 316L have been tested by using direct current potential drop (DCPD) method. The results showed that temperature affected SCC crack growth rates more significantly in oxygenated water than in deaerated water. In argon deaerated water, the crack growth rate exhibited a peak at about 250 °C, which needs further verification. At 325 °C, the SCC crack growth rate increased rapidly with the increase of dissolved oxygen concentration within the range from 0 up to 200 μg/L, while when dissolved oxygen was above 200 μg/L, the crack growth rate followed a shallower dependence on dissolved oxygen concentration.

  18. Electrophoretic deposition of bioactive glass coating on 316L stainless steel and electrochemical behavior study

    NASA Astrophysics Data System (ADS)

    Mehdipour, Mehrad; Afshar, Abdollah; Mohebali, Milad

    2012-10-01

    In this research, submicron bioactive glass (BG) particles were synthesized by a sol-gel process and were then coated on a 316L stainless steel substrate using an electrophoretic deposition (EPD) technique. Stable suspension of bioactive glass powders in ethanol solvent was prepared by addition of triethanol amine (TEA), which increased zeta potential from 16.5 ± 1.6 to 20.3 ± 1.4 (mv). Thickness, structure and electrochemical behavior of the coating were characterized. SEM studies showed that increasing EPD voltage leads to a coating with more agglomerated particles, augmented porosity and micro cracks. The results of Fourier transformed infrared (FTIR) spectroscopy revealed the adsorption of TEA via methyl and amid groups on bioactive glass particles. Presence of bioactive glass coating reduced corrosion current density (icorr) and shifted corrosion potential (Ecorr) toward more noble values in artificial saliva at room temperature. Percent porosity of the coating measured by potentiodynamic polarization technique increased as EPD voltage was raised. The results of impedance spectroscopic studies demonstrated that the coating acts as a barrier layer in artificial saliva.

  19. Spinodal decomposition in AISI 316L stainless steel via high-speed laser remelting

    NASA Astrophysics Data System (ADS)

    Chikarakara, Evans; Naher, Sumsun; Brabazon, Dermot

    2014-05-01

    A 1.5 kW CO2 pulsed laser was used to melt the surface of AISI 316L stainless steel with a view to enhancing the surface properties for engineering applications. A 90 μm laser beam spot size focused onto the surface was used to provide high irradiances (up to 23.56 MW/cm2) with low residence times (as low as 50 μs) in order to induce rapid surface melting and solidification. Variations in microstructure at different points within the laser treated region were investigated. From this processing refined lamellar and nodular microstructures were produced. These sets of unique microstructures were produced within the remelted region when the highest energy densities were selected in conjunction with the lowest residence times. The transformation from the typical austenitic structure to much finer unique lamellar and nodular structures was attributed to the high thermal gradients achieved using these selected laser processing parameters. These structures resulted in unique characteristics including elimination of cracks and a reduction of inclusions within the treated region. Grain structure reorientation between the bulk alloy and laser-treated region occurred due to the induced thermal gradients. This present article reports on microstructure forms resulting from the high-speed laser surface remelting and corresponding underlying kinetics.

  20. Microbiological test results using three urine pretreatment regimes with 316L stainless steel

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    1993-01-01

    Three urine pretreatments, (1) Oxone (Dupont) and sulfuric acid, (2) sodium hypochlorite and sulfuric acid, (3) and ozone, were studied for their ability to reduce microbial levels in urine and minimize surface attachment to 316L stainless steel coupons. Urine samples inoculated with Bacillus insolitus and a filamentous mold, organisms previously recovered from the vapor compression distillation subsystem of NASA Space Station Freedom water recovery test were tested in glass corrosion cells containing base or weld metal coupons. Microbial levels, changes in pH, color, turbidity, and odor of the fluid were monitored over the course of the 21-day test. Specimen surfaces were examined by scanning electron microscopy at completion of the test for microbial attachment. Ozonated urine samples were less turbid and had lower microbial levels than controls or samples receiving other pretreatments. Base metal coupons receiving pretreatment were relatively free of attached bacteria. However, well-developed biofilms were found in the heat-affected regions of welded coupons receiving Oxone and hypochlorite pretreatments. Few bacteria were observed in the same regions of the ozone pretreatment sample.

  1. Structural and magnetic characterization of plasma ion nitrided layer on 316L stainless steel alloy

    NASA Astrophysics Data System (ADS)

    Öztürk, O.; Okur, S.; Riviere, J. P.

    2009-05-01

    In this study, an FeCrNi alloy (316L stainless steel disc) was nitrided in a low-pressure R.F. plasma at 430 °C for 72 min under a gas mixture of 60% N2-40% H2. Structural, compositional and magnetic properties of the plasma nitrided layer was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and magnetic force microscopy (MFM). The magnetic behaviour of the nitrided layer was also investigated with a vibrating sample magnetometer (VSM). Combined X-ray diffraction, cross-sectional SEM, AFM and MFM, as well as VSM analyses provide strong evidence for the formation of the γN phase, [γN-(Fe, Cr, Ni)], with mainly ferromagnetic characteristics. The uniform nature of the γN layer is clearly demonstrated by the XRD, cross-sectional SEM and AFM analyses. Based on the AFM and SEM data, the thickness of the γN layer is found to be ∼6 μm. According to the MFM and VSM analyses, ferromagnetism in the γN layer is revealed by the observation of stripe domain structures and the hysteresis loops. The cross-sectional MFM results demonstrate the ferromagnetic γN phase distributed across the plasma nitrided layer. The MFM images show variation in the size and form of the magnetic domains from one grain to another.

  2. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    NASA Astrophysics Data System (ADS)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  3. Fabrication of low-cost, cementless femoral stem 316L stainless steel using investment casting technique.

    PubMed

    Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Suhasril, Andril Arafat; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Omar, Mohd Afian; Abd Kader, Ab Saman; Mohd Noor, Alias; A Harris, Arief Ruhullah; Abdul Majid, Norazman

    2014-07-01

    Total hip arthroplasty is a flourishing orthopedic surgery, generating billions of dollars of revenue. The cost associated with the fabrication of implants has been increasing year by year, and this phenomenon has burdened the patient with extra charges. Consequently, this study will focus on designing an accurate implant via implementing the reverse engineering of three-dimensional morphological study based on a particular population. By using finite element analysis, this study will assist to predict the outcome and could become a useful tool for preclinical testing of newly designed implants. A prototype is then fabricated using 316L stainless steel by applying investment casting techniques that reduce manufacturing cost without jeopardizing implant quality. The finite element analysis showed that the maximum von Mises stress was 66.88 MPa proximally with a safety factor of 2.39 against endosteal fracture, and micromotion was 4.73 μm, which promotes osseointegration. This method offers a fabrication process of cementless femoral stems with lower cost, subsequently helping patients, particularly those from nondeveloped countries. PMID:24404766

  4. Dynamic Mechanical Response of Biomedical 316L Stainless Steel as Function of Strain Rate and Temperature

    PubMed Central

    Lee, Woei-Shyan; Chen, Tao-Hsing; Lin, Chi-Feng; Luo, Wen-Zhen

    2011-01-01

    A split Hopkinson pressure bar is used to investigate the dynamic mechanical properties of biomedical 316L stainless steel under strain rates ranging from 1 × 103 s−1 to 5 × 103 s−1 and temperatures between 25°C and 800°C. The results indicate that the flow stress, work-hardening rate, strain rate sensitivity, and thermal activation energy are all significantly dependent on the strain, strain rate, and temperature. For a constant temperature, the flow stress, work-hardening rate, and strain rate sensitivity increase with increasing strain rate, while the thermal activation energy decreases. Catastrophic failure occurs only for the specimens deformed at a strain rate of 5 × 103 s−1 and temperatures of 25°C or 200°C. Scanning electron microscopy observations show that the specimens fracture in a ductile shear mode. Optical microscopy analyses reveal that the number of slip bands within the grains increases with an increasing strain rate. Moreover, a dynamic recrystallisation of the deformed microstructure is observed in the specimens tested at the highest temperature of 800°C. PMID:22216015

  5. Characterization of irradiated AISI 316L stainless steel disks removed from the Spallation Neutron Source

    SciTech Connect

    Vevera, Bradley J; Hyres, James W; McClintock, David A; Riemer, Bernie

    2014-01-01

    Irradiated AISI 316L stainless steel disks were removed from the Spallation Neutron Source (SNS) for post-irradiation examination (PIE) to assess mechanical property changes due to radiation damage and erosion of the target vessel. Topics reviewed include high-resolution photography of the disk specimens, cleaning to remove mercury (Hg) residue and surface oxides, profile mapping of cavitation pits using high frequency ultrasonic testing (UT), high-resolution surface replication, and machining of test specimens using wire electrical discharge machining (EDM), tensile testing, Rockwell Superficial hardness testing, Vickers microhardness testing, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The effectiveness of the cleaning procedure was evident in the pre- and post-cleaning photography and permitted accurate placement of the test specimens on the disks. Due to the limited amount of material available and the unique geometry of the disks, machine fixturing and test specimen design were critical aspects of this work. Multiple designs were considered and refined during mock-up test runs on unirradiated disks. The techniques used to successfully machine and test the various specimens will be presented along with a summary of important findings from the laboratory examinations.

  6. Thermally Driven Stability of Octadecylphosphonic Acid Thin Films Grown on SS316L

    PubMed Central

    Lim, Min Soo; Smiley, Katelyn J.; Gawalt, Ellen S.

    2010-01-01

    Stainless steel 316L is widely used as a biomedical implant material; however, there is concern about the corrosion of metallic implants in the physiological environment. The corrosion process can cause mechanical failure due to resulting cracks and cavities in the implant. Alkyl phosphonic acid forms a thin film by self-assembly on the stainless steel surface and this report conclusively shows that thermal treatment of the octadecylphosphonic acid (ODPA) film greatly enhances the stability of the ODPA molecules on the substrate surface. AFM images taken from the modified substrates revealed that thermally treated films remain intact after methanol, THF and water flushes while untreated films suffer substantial loss. Water contact angles also show that the hydrophobicity of thermally treated films does not diminish after being incubated in a dynamic flow of water for a three hour period while the untreated film becomes increasingly hydrophilic due to loss of ODPA. IR spectra taken of both treated and untreated films after water and THF flushes show that the remaining film retains its initial crystallinity. A model is suggested to explain the stability of ODPA film enhanced by thermal treatment. An ODPA molecule is physisorbed to the surface weakly by hydrogen bonding. Heating drives away water molecules leading to the formation of strong monodentate or mixed mono/bi-dentate bonds of ODPA molecule to the surface. PMID:20648546

  7. Rolling of 316L Stainless Steel with Rough Rolls to Potentially Obtain Superficial Nanograins

    NASA Astrophysics Data System (ADS)

    Camurri, Carlos; Gallegos, Alejo; Carrasco, Claudia

    2014-06-01

    316L stainless steel plates of 5-mm thickness, normalized at 900 °C, were cold rolled with different reductions and number of passes using rolls with three different surface roughnesses: grain heights of 0.17 and 0.33 mm and rhomboid-shaped grains of 1.5-mm height. Subsequently, the rolled samples were annealed at 275 °C for 1 h in an effort to achieve superficial nanograins. The plates laminated using low-roughness rolls had continuous superficial microcrystallization when they were rolled for at least 26 passes. For samples made with rougher rolls, the recrystallized superficial grains formed on the surface (sized ~10-15 μm) were smaller than those below the surface; this behavior was caused by the major deformation induced by repeated indentations. The superficial recrystallization of the sample also tended to be more continuous for higher number of passes; micrographs of the penetration profiles of indentation in the samples rolled with high-roughness rolls revealed that a sample rolled 24 times had not yet reached the steady surface topology. As a conclusion, in order to successfully form superficial nanograins, very low-roughness rolls must be used as well as a small absolute reduction per pass, followed by annealing. These rolling conditions generate a continuous field of highly superficial deformations, which act as nucleation centers for nanograins during annealing.

  8. On the fate of tritium in thermally treated stainless steel type 316L

    NASA Astrophysics Data System (ADS)

    Penzhorn, R.-D.; Torikai, Y.; Watanabe, K.; Matsuyama, M.; Perevezentsev, A.

    2012-10-01

    Several type 316L stainless steel specimens of 6 mm thickness were charged with tritium at 473 K at Joint European Torus (JET) using five sets of conditions. Isothermal tritium release rates were investigated at Hydrogen Isotope Research Centre (HRC) over extended periods of time at 473, 573, or 673 K constant temperature. The HTO/HT ratio of the liberated tritium was generally high, but decreased with decreasing release temperature. Nearly complete release of tritium required additional prolonged heating at 1073 K. Chemical etching and beta-ray-induced X-ray spectrometry measurements carried out at HRC provided complementary information on the tritium distribution in surface and bulk of thermally treated specimens. Whereas the thickness of the material and initial distribution of tritium in its bulk were found to play an important role for expedient thermal decontamination, the influence of the type of purge gas was only minor. Experimental evidence for tritium grain boundary diffusion is provided. Implications of the results for waste conditioning are discussed.

  9. An in vitro investigation of the anodic polarization and capacitance behavior of 316-L stainless steel.

    PubMed

    Sutow, E J; Pollack, S R; Korostoff, E

    1976-09-01

    Determinations were made of how the corrosion-resistant properties of the passive film on 316-L stainless steel are influenced by the material's mechanical and surface states, and the variable pH and PO2 conditions of the interstitial fluid. Cold-rolled and annealed specimens were surface-prepared, commercially and in the laboratory, respectively, as if for orthopedic implantation. Passive film behavior was studied by the anodic polarization and pulse-potentiostatic capacitance methods. The pH and PO2 of the Ringer's test solution were varied to include interstitial fluid values occurring postoperatively and onto recovery. The anodic polarization behavior of all specimens was found to be pH- and PO2-independent. Breakdown potentials of annealed specimens were 800-950 mV (SCE), in contrast to previously reported values of approximately 350 mV. This substantial increase is related to the influence of surface preparation and, in particular, to the optimization of electropolishing time which acts to produce a microscopically smooth surface, free of debris and disarrayed material. Capacitance behavior of annealed material for potentials greater than 400 mV was consistent with a model involving the entry of chloride and metal ions (mostly Fe) into the passive film. This entry is related to the onset of pitting. PMID:10307

  10. Thermally driven stability of octadecylphosphonic acid thin films grown on SS316L.

    PubMed

    Lim, Min Soo; Smiley, Katelyn J; Gawalt, Ellen S

    2010-01-01

    Stainless steel 316L is widely used as a biomedical implant material; however, there is concern about the corrosion of metallic implants in the physiological environment. The corrosion process can cause mechanical failure due to resulting cracks and cavities in the implant. Alkyl phosphonic acid forms a thin film by self-assembly on the stainless steel surface and this report conclusively shows that thermal treatment of the octadecylphosphonic acid (ODPA) film greatly enhances the stability of the ODPA molecules on the substrate surface. AFM images taken from the modified substrates revealed that thermally treated films remain intact after methanol, THF, and water flushes, whereas untreated films suffer substantial loss. Water contact angles also show that the hydrophobicity of thermally treated films does not diminish after being incubated in a dynamic flow of water for a 3-hour period, whereas the untreated film becomes increasingly hydrophilic due to loss of ODPA. IR spectra taken of both treated and untreated films after water and THF flushes show that the remaining film retains its initial crystallinity. A model is suggested to explain the stability of ODPA film enhanced by thermal treatment. An ODPA molecule is physisorbed to the surface weakly by hydrogen bonding. Heating drives away water molecules leading to the formation of strong monodentate or mixed mono/bi-dentate bonds of ODPA molecule to the surface. PMID:20648546

  11. Reduced graphene oxide growth on 316L stainless steel for medical applications

    NASA Astrophysics Data System (ADS)

    Cardenas, L.; MacLeod, J.; Lipton-Duffin, J.; Seifu, D. G.; Popescu, F.; Siaj, M.; Mantovani, D.; Rosei, F.

    2014-07-01

    We report a new method for the growth of reduced graphene oxide (rGO) on the 316L alloy of stainless steel (SS) and its relevance for biomedical applications. We demonstrate that electrochemical etching increases the concentration of metallic species on the surface and enables the growth of rGO. This result is supported through a combination of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), density functional theory (DFT) calculations and static water contact angle measurements. Raman spectroscopy identifies the G and D bands for oxidized species of graphene at 1595 cm-1 and 1350 cm-1, respectively, and gives an ID/IG ratio of 1.2, indicating a moderate degree of oxidation. XPS shows -OH and -COOH groups in the rGO stoichiometry and static contact angle measurements confirm the wettability of rGO. SEM and AFM measurements were performed on different substrates before and after coronene treatment to confirm rGO growth. Cell viability studies reveal that these rGO coatings do not have toxic effects on mammalian cells, making this material suitable for biomedical and biotechnological applications.

  12. Computaional Modeling of the Stability of Crevice Corrosion of Wetted SS316L

    SciTech Connect

    F. Cui; F.J. Presuel-Moreno; R.G. Kelly

    2006-04-17

    The stability of localized corrosion sites on SS 316L exposed to atmospheric conditions was studied computationally. The localized corrosion system was decoupled computationally by considering the wetted cathode and the crevice anode separately and linking them via a constant potential boundary condition at the mouth of the crevice. The potential of interest for stability was the repassivation potential. The limitations on the ability of the cathode that are inherent due to the restricted geometry were assessed in terms of the dependence on physical and electrochemical parameters. Physical parameters studied include temperature, electrolyte layer thickness, solution conductivity, and the size of the cathode, as well as the crevice gap for the anode. The current demand of the crevice was determined considering a constant crevice solution composition that simulates the critical crevice solution as described in the literature. An analysis of variance showed that the solution conductivity and the length of the cathode were the most important parameters in determining the total cathodic current capacity of the external surface. A semi-analytical equation was derived for the total current from a restricted geometry held at a constant potential at one end. The equation was able to reproduce all the model computation results both for the wetted external cathode and the crevice and give good explanation on the effects of physicochemical and kinetic parameters.

  13. Structural analysis and intergranular corrosion tests of AISI 316L steel.

    PubMed

    Stonawská, Z; Svoboda, M; Sozańska, M; Krístková, M; Sojka, J; Dagbert, C; Hyspecká, L

    2006-10-01

    Pure AISI 316L steel is investigated after solution heat treatment (1050 degrees C/H(2)O) and structural sensitization (650 degrees C). Two quite different intergranular corrosion tests are used to determine the degree of structural sensitization due to the precipitation of secondary phases along the grain boundaries (mainly the M(23)C(6) and sigma-phase): the oxalic acid etch test and the electrochemical potentio-kinetic reactivation test. Generally, the dissolution of chromium-rich carbides (M(23)C(6)) is provoked by oxalic acid etch tests, whereas the chromium-depleted zones, in the vicinity of chromium-rich carbides (M(23)C(6)), are attacked by electrochemical potentio-kinetic reactivation tests. Both intergranular corrosion tests are used to determine the maximum degree of structural sensitization. Thus structural analysis by carbon replicas reveals the Laves phase, and both the M(23)C(6) and (Cr,Mo)(x)(Fe,Ni)(y) phases. The results of intergranular corrosion tests are related to the findings of the structural analysis. PMID:17100908

  14. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel.

    PubMed

    Blanda, Giuseppe; Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia; Piazza, Salvatore; Sunseri, Carmelo; Inguanta, Rosalinda

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO4·H2O; HA, Ca10(PO4)6(OH)2) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO3)2·4H2O and NH4H2PO4 by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50°C for all deposition times, while at 25°C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. PMID:27127032

  15. Low-Temperature Aging Characteristics of Type 316L Stainless Steel Welds: Dependence on Solidification Mode

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Watanabe, Yutaka

    2008-06-01

    Thermal aging embrittlement of light water reactor (LWR) components made of stainless steel cast has been recognized as a potential degradation issue, and careful attention has been paid to it. Although welds of austenitic stainless steels have γ-δ duplex microstructure, which is similar to that of the stainless steel cast, examination of the thermal aging characteristics of the stainless steel welds is very limited. In this investigation, two types of type 316L stainless steel weld metal with different solidification modes were prepared using two kinds of filler metals having tailored Ni equivalent and Cr equivalent. Differences between the two weld metals in the morphology of microstructure, in the composition of δ-ferrite, and in hardening behaviors with isothermal aging at 335 °C have been investigated. The hardness of the ferrite phase has increased with aging time, while the hardness of austenite phase has stayed the same. The mottled aspect has been observed in δ-ferrite of aged samples by transmission electron microscopy (TEM) observation. These characteristics suggest that spinodal decomposition has occurred in δ-ferrite by aging at 335 °C. The age-hardening rate of δ-ferrite was faster for the primary austenite solidification mode (AF mode) sample than the primary ferrite solidification mode (FA mode) sample in the initial stage of the aging up to 2000 hours. It has been suggested that the solidification mode can affect the kinetics of spinodal decomposition.

  16. On microstructure-property correlation of thermally aged type 316L stainless steel weld metal

    NASA Astrophysics Data System (ADS)

    Gill, T. P. S.; Vijayalkshmi, M.; Rodriguez, P.; Padmanabhan, K. A.

    1989-06-01

    This paper deals with the microstructural changes and consequent deterioration in the room temperature tensile properties of type 316L stainless steel weld metal when exposed to elevated temperatures (773 to 973 K) for prolonged periods (up to 5000 hours). The microstructure-property correlation derived in this study is based on a variety of techniques: Magne-Gage, electrochemical extraction, X-ray diffraction, tensile testing, and both optical and electron microscopy. It has been established that the amount and morphology of the sigma phase are the key factors in determining the changes in the strength levels, total elongation, and extent of work hardening. The amount and morphology of sigma, in turn, is seen to depend on the relative kinetics of the various transformations, such as dissolution of delta-ferrite, growth of carbides, etc., shape changes in sigma, and the relative stabilities of the phases at the corresponding temperature of aging. The complicated dependence of the tensile properties on the microstrutural changes has been explained with direct quantitative evidence.

  17. The influence of electropolishing on the corrosion resistance of 316L stainless steel.

    PubMed

    Sutow, E J

    1980-09-01

    A study was conducted which examined the influence of electropolishing on the corrosion resistance of a cold rolled 316L stainless steel. Test specimens were surface prepared to a final mechanical finish of wetted 600 grit SiC paper, prior to electropolishing. An o-H3PO4/Glycerol/H2O electropolishing solution was employed for times of 15, 20, and 25 min. Control specimens were surface prepared only to the final mechanical finish. Anodic polarization tests were performed in a deaerated Ringer's solution (37 degrees C) which was acidified to pH 1, with HCl. The electropolished specimens demonstrated increased corrosion resistance, when compared to the control specimens. This was evidenced for the former by more anodic corrosion and breakdown potentials, and the absence of a dissolution peak which was observed for the control specimens at the initial polarization potentials. Surface hardness measurements indicated that this increase in corrosion resistance was produced, in part, by the removal of the cold worked surface layer produced by the mechanical finish. In terms of increasing corrosion resistance, no optimum electropolishing time was found within the 15-25 min treatment period. PMID:7349665

  18. Corrosion behaviour of 316L stainless steel and anti-corrosion materials in a high acidified chloride solution

    NASA Astrophysics Data System (ADS)

    Jin, Z. H.; Ge, H. H.; Lin, W. W.; Zong, Y. W.; Liu, S. J.; Shi, J. M.

    2014-12-01

    The corrosion behaviour of a type 316L (UNS S31603) stainless steel (SS) expansion joint in a simulated leaching solution of sediment on blast furnace gas pipeline in a power plant is investigated by using dynamic potential polarization curves, electrochemical impedance spectroscopy (EIS), optical microscope, atomic force microscope (AFM) and Scan Kelvin Probe (SKP). Severe general corrosion accompanied by pitting corrosion occurs on the type 316L SS surface in this solution. As the immersion period increases, the charge transfer resistance Rct decreases, the dissolution rate accelerates, the surface roughness increases and the surface potential difference enhances significantly. Then eight corrosion-resistant materials are tested, the corrosion rates of type 254SMo SS, type 2507 SS and TA2 are relatively minor in the solution. The corrosion resistance properties of TA2 is most excellent, indicating it would be the superior material choice for blast furnace gas pipeline.

  19. Structural, electrical and magnetic measurements on oxide layers grown on 316L exposed to liquid lead-bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Hosemann, Peter; Hofer, Christian; Hlawacek, Gregor; Li, Ning; Maloy, Stuart A.; Teichert, Christian

    2012-02-01

    Fast reactors and spallation neutron sources may use lead-bismuth eutectic (LBE) as a coolant. Its physical, chemical, and irradiation properties make it a safe coolant compared to Na cooled designs. However, LBE is a corrosive medium for most steels and container materials. The present study was performed to evaluate the corrosion behavior of the austenitic steel 316L (in two different delivery states). Detailed atomic force microscopy, magnetic force microscopy, conductive atomic force microscopy, and scanning transmission electron microscopy analyses have been performed on the oxide layers to get a better understanding of the corrosion and oxidation mechanisms of austenitic and ferritic/martensitic stainless steel exposed to LBE. The oxide scale formed on the annealed 316L material consisted of multiple layers with different compositions, structures, and properties. The innermost oxide layer maintained the grain structure of what used to be the bulk steel material and shows two phases, while the outermost oxide layer possessed a columnar grain structure.

  20. Effect of ITER components manufacturing cycle on the irradiation behaviour of 316L(N)-IG steel

    NASA Astrophysics Data System (ADS)

    Rodchenkov, B. S.; Prokhorov, V. I.; Makarov, O. Yu; Shamardin, V. K.; Kalinin, G. M.; Strebkov, Yu. S.; Golosov, O. A.

    2000-12-01

    The main options for the manufacturing of high heat flux (HHF) components is hot isostatic pressing (HIP) using either solid pieces or powder. There was no database on the radiation behaviour of these materials, and in particular stainless steel (SS) 316L(N)-IG with ITER components manufacturing thermal cycle. Irradiation of wrought steel, powder-HIP, solid-HIP and HIPed joints has been performed within the framework of an ITER task. Specimens cut from 316L(N)-IG plate, HIP products, and solid-HIP joints were irradiated in the SM-3 reactor in Dimitrovgrad up to 4 and 10 dpa at 175°C and 265°C. The paper describes the results of post-irradiation tensile and fracture toughness tests.

  1. Microstructural evolution and hardness changes in the interface of Cu/316L joint materials under aging and ion irradiation

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Yoshiie, T.; Muroga, T.; Yoshida, N.; Iwai, T.; Edwards, D. J.

    2004-08-01

    The effects of aging and ion irradiation on microstructure stability and hardness change in the joint materials of CuNiBe/316L and CuAl25/316L have been investigated in the present study. The aging at 673 K for 1000 h or Ni ion irradiation at 573 and 673 K to 10 dpa did not promote the interdiffusion and void swelling at the interface. The hardness in both Cu alloys and stainless steel was increased by irradiation, however, it was decreased by aging except for CuNiBe alloy. The hardness change in CuNiBe alloy was larger than that in CuAl25 alloy. The hardness changes would have a significant effect on the mechanical properties of joint materials.

  2. Result of International Round Robin Test on Young's Modulus Measurement of 304L and 316L Steels at Cryogenic Temperatures

    SciTech Connect

    Shibata, K.; Ogata, T.; Nyilas, A.; Walsh, R. P.; Toplosky, V. J.; Millet, M. F.; Shindo, Y.; Fujii, H.; Ohmiya, S.; Ishio, K.; Nakajima, H.; Takano, K.; Mitterbacher, H.; Gigante, P.

    2006-03-31

    Ogata et al. reported in 1996 results of international Round Robin tests on mechanical property measurement of several metals at cryogenic temperatures. Following the report, the standard deviation of Young's modulus of 316L steel is much larger than those of yield and tensile strengths, that is, 4.6 % of the mean value for Young's modulus, while 1.4 % and 1.6 % of the mean values for yield and for tensile strengths, respectively. Therefore, an international Round Robin test on Young's modulus of two austenitic stainless steels at cryogenic temperatures under the participation often institutes from four nations has been initiated within these two years. As a result, the ratios of standard deviation to the mean values are 4.2 % for 304L and 3.6 % for 316L. Such a drop in the standard deviation is attributable to the decrease in the number of institute owing to the application of single extensometer or direct strain gage technique.

  3. Tensile, low cycle fatigue and fracture toughness behaviour of type 316L steel irradiated to 0.3 dpa

    NASA Astrophysics Data System (ADS)

    Josefsson, Bertil; Bergenlid, Ulf

    1994-09-01

    The effect of a low dose neutron irradiation on the tensile, low cycle fatigue and fracture toughness properties of type 316L steel plate and weld material was investigated. The specimens were irradiated at a temperature of about 35°C to a neutron fluence of approximately 2.5 × 10 20 n/cm 2 ( E > 1 MeV). The testing was performed at 75, 250 and 450°C. Irradiated tensile specimens showed a substantial radiation hardening combined with some reduction of elongations. There was no significant effect of the irradiation on the low cycle fatigue endurances. The fracture toughness of the TIG weld specimens was roughly half of that of the 316L plate and electron beam weld. Some reductions of toughness owing to the irradiation were observed.

  4. CORROSION STUDY FOR THE EFFLUENT TREATMENT FACILITY CHROME (VI) REDUCTANT SOLUTION USING 304 AND 316L STAINLESS STEEL

    SciTech Connect

    DUNCAN JB; WYRAS RB

    2007-10-08

    This report documents the laboratory testing and analyses as directed under the test plan, RPP PLAN-34065, and documented in laboratory notebooks HNF 2742 and HNF-N-473-1. The purpose of this study was to evaluate and compare the electrochemical corrosion and pitting susceptibility of the 304 and 316L stainless steel in the acidified reducing solution that will be contained in either the secondary waste receiving tank or concentrate tank.

  5. Effect of forming technique BixSiyOz coatings obtained by sol- gel and supported on 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Bautista Ruiz, J.; Olaya Flórez, J.; Aperador, W.

    2016-02-01

    BixSiyOz type coatings via sol-gel synthesized from bismuth nitrate pentahydrate, and tetraethyl orthosilicate as precursors; glacial acetic acid and 2-ethoxyethanol as solvents, and ethanolamine as complexing. The coatings were supported on AISI 316L stainless steel substrate through dip-coating and spin-coating techniques. The study showed that the spin-coating technique is efficient than dip-coating because it allows more dense and homogeneous films.

  6. Creep deformation and fracture behavior of types 316 and 316L(N) stainless steels and their weld metals

    NASA Astrophysics Data System (ADS)

    Sasikala, G.; Mannan, S. L.; Mathew, M. D.; Rao, K. Bhanu

    2000-04-01

    The creep properties of a nuclear-grade type 316(L) stainless steel (SS) alloyed with nitrogen (316L(N) SS) and its weld metal were studied at 873 and 923 K in the range of applied stresses from 100 to 335 MPa. The results were compared with those obtained on a nuclear-grade type 316 SS, which is lean in nitrogen. The creep rupture lives of the weld metals were found to be lower than those of the respective base metals by a factor of 5 to 10. Both the base and weld metals of 316L(N) SS exhibited better resistance to creep deformation compared to their 316 SS counterparts at identical test conditions. A power-law relationship between the minimum creep rate and applied stress was found to be obeyed for both the base and weld metals. Both the weld metals generally exhibited lower rupture elongation than the respective base metals; however, at 873 K, the 316 SS base and weld metals had similar rupture elongation at identical applied stresses. Comparison of the rupture lives of the two steels to the ASME curves for the expected minimum stress to rupture for 316 SS base and weld metals showed that, for 316L(N) SS, the specifications for maximum allowable stresses based on data for 316 SS could prove overconservative. The influence of nitrogen on the creep deformation and fracture behavior, especially in terms of its modifying the precipitation kinetics, is discussed in light of the microstructural observations. In welds containing δ ferrite, the kinetics of its transformation and the nature of the transformation products control the deformation and fracture behavior. The influence of nitrogen on the δ ferrite transformation behavior and coarsening kinetics is also discussed, on the basis of extensive characterization by metallographic techniques.

  7. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.

    PubMed

    Tang, Yee-Chin; Katsuma, Shoji; Fujimoto, Shinji; Hiromoto, Sachiko

    2006-11-01

    The electrochemical corrosion behaviour of Type 304 and 316L stainless steels was studied in Hanks' solution, Eagle's minimum essential medium (MEM), serum containing medium (MEM with 10% of fetal bovine serum) without cells, and serum containing medium with cells over a 1-week period. Polarization resistance measurements indicated that the stainless steels were resistant to Hanks' and MEM solutions. Type 304 was more susceptible to pitting corrosion than Type 316L in Hanks' and MEM solutions. The uniform corrosion resistance of stainless steels, determined by R(p), was lower in culturing medium than in Hanks' and MEM. The low corrosion resistance was due to surface passive film with less protective to reveal high anodic dissolution rate. When cells were present, the initial corrosion resistance was low, but gradually increased after 3 days, consistent with the trend of cell coverage. The presence of cells was found to suppress the cathodic reaction, that is, oxygen reduction, and increase the uniform corrosion resistance as a consequence. On the other hand, both Type 304 and 316L stainless steels became more susceptible to pitting corrosion when they were covered with cells. PMID:16935040

  8. Selective surface preoxidation to inhibit the corrosion of AISI type 316L stainless steel by liquid Pb17Li

    NASA Astrophysics Data System (ADS)

    Sample, T.; Coen, V.; Kolbe, H.; Orecchia, L.

    1992-09-01

    This paper describes the formation of a ternary oxide coating on 316L stainless steel from the reaction of Pb17Li with the preoxidized surface of steel specimens. The preoxidized surfaces were prepared by heating 316L stainless steel specimens to 800°C in a controlled H2/H2O atmosphere (ratio 1000:1). The oxide layer before reaction with the Pb17Li was characterized as Mn1.5Cr1.5P4. Analysis after reaction with Pb17Li indicated a LiMn2O4 structure with some of the manganese sites occupied by chromium.316L specimens prepared with different oxide layer thicknesses, along with uncoated specimens, were corroded in the isothermal hot legs of two Pb17Li filled thermal convection loops.Post-test analysis of the specimens indicated that the oxide coated specimens had, on average, a thinner ferritic corrosion layer than the uncoated specimens. The coated specimens also showed areas with no ferritic corrosion layer.

  9. Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria

    SciTech Connect

    Xu Congmin; Zhang Yaoheng; Cheng Guangxu Zhu Wensheng

    2008-03-15

    Pitting corrosion behavior of 316L SS was investigated in the presence of aerobic and anaerobic bacteria isolated from cooling water system in oil refinery using polarization measurement, electrochemical impedance spectroscopy, scanning electron microscopy examinations and energy dispersive spectrum analysis. The results show the corrosion potential (E{sub corr}), pitting potential (E{sub pit}) and polarization resistance (R{sub P}) of 316L SS had a distinct decrease in the presence of bacteria, in comparison with those observed in the sterile medium for the same exposure time interval. Micrometer-scale pitting was observed on the 316L SS surface in the presence of bacteria. The combination of SRB and IOB demonstrated higher corrosion rates than SRB or IOB alone. The synergy of 0.01 M NaCl + SRB + IOB yielded the highest corrosion rate. The synergies between the metal surface, abiotic corrosion products, chloride anion, and bacterial cells and their metabolic products increased the corrosion damage degree of the passive film and accelerated pitting propagation.

  10. The high temperature three point bend testing of proton irradiated 316L stainless steel and Mod 9Cr 1Mo

    NASA Astrophysics Data System (ADS)

    Maloy, Stuart A.; Zubelewicz, A.; Romero, T.; James, M. R.; Sommer, W. F.; Dai, Y.

    2005-08-01

    The predicted operating conditions for a lead-bismuth eutectic target to be used in an accelerator driven system for the Advanced Fuel Cycle Initiative span a temperature range of 300-600 °C while being irradiated by a high energy (˜600 MeV) proton beam. Such spallation conditions lead to high displacement rates coupled with high accumulation rates of helium and hydrogen up to 150 appm/dpa. Some candidate materials for these applications include Mod9Cr-1Mo and 316L stainless steel. To investigate the effect of irradiation on these materials, the mechanical properties are being measured through three point bend testing on Mod 9Cr-1Mo and 316L at 25, 250, 350 and 500 °C after irradiation in a high energy proton beam (500-800 MeV) to a dose of 9.8 dpa at temperatures from 200 to 320 °C. By comparing measurements made in bending to tensile measurements measured on identically irradiated materials, a measurement of 0.2% offset yield stress was obtained from 0.05% offset yield stress measured in three point bend testing. Yield stress increased by more than a factor of two after irradiation to 9.8 dpa. Observation of the outer fiber surface of 316L showed very localized deformation when tested after irradiation at 70 °C and deformation on multiple slip systems when tested after irradiation at 250-320 °C.

  11. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Fujii, H.

    2004-06-01

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation.

  12. Plasma-sprayed yttria-stabilized zirconia coatings on type 316L stainless steel for pyrochemical reprocessing plant

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Kamachi Mudali, U.; Sole, Ravikumar; Khatak, H. S.; Raj, Baldev

    2008-01-01

    Type 316L stainless steel (SS) is one of the candidate materials proposed for application in pyrochemical reprocessing plants. In the present work, yttria-stabilized zirconia coatings of 300 μm were applied over type 316L SS with a metallic bond coating of 50 μm by an optimized plasma spray process, and were assessed for the corrosion behaviour in molten LiCl-KCl medium at 873 K for periods of 5 h, 100 h, 250 h and 500 h. The as-coated and tested samples were examined by optical microscopy and SEM for homogeneity, penetration of molten salt through coating and corrosion of type 316L SS substrate. The results indicated that the yttria-stabilized zirconia coatings performed well without significant degradation and corrosion attack. Laser melting of the coated samples using CO 2 laser was attempted to consolidate the coatings. The development of large grains with segmented cracks was noticed after laser melting, though the coating defects have been eliminated.

  13. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    SciTech Connect

    Shibata, K.; Fujii, H.

    2004-06-28

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation.

  14. Formation of Expanded Austenite on a Cold-Sprayed AISI 316L Coating by Low-Temperature Plasma Nitriding

    NASA Astrophysics Data System (ADS)

    Adachi, Shinichiro; Ueda, Nobuhiro

    2015-12-01

    Low-temperature plasma nitriding at temperatures below 450 °C is commonly applied to austenitic stainless steels to enhance wear resistance, while maintaining corrosion resistance, by forming expanded austenite (known as the S-phase). In this work, low-temperature plasma nitriding of cold-sprayed AISI 316L coatings was examined. A cold-spray technique was developed to produce metal coatings with less oxidation. However, the cold-sprayed AISI 316L coating obtained by use of nitrogen gas as propellant contained many interconnected pores and cracks, and was, consequently, unsuitable as an anticorrosive coating. Therefore, laser post-treatment was used to modify the coating and increase its density to similar to that of bulk steel. The anticorrosive performance of this coating on a carbon steel substrate in NaCl solution was substantially improved. Subsequent low-temperature plasma nitriding enhanced the wear resistance by two orders of magnitude. It is concluded that cold-sprayed AISI 316L coatings treated by laser post-treatment and subsequent low-temperature plasma nitriding could be used as protective coatings under severe wear and corrosion conditions.

  15. Emissivity calibration for temperature measurement using infrared thermography in orthogonal cutting of 316L and 100Cr6 grinding

    NASA Astrophysics Data System (ADS)

    Valiorgue, Frédéric; Brosse, Alexandre; Rech, Joël; Hamdi, Hédi; Bergheau, Jean Michel

    2011-01-01

    Material removal operations such as turning or grinding are prone to generate very high temperatures at the tool/chip and tool/workpiece interfaces. These phenomena are involved in studies concerning tools or workpieces, and their estimation is a key point for predicting damages. Temperature elevation is the main cause in workpieces worsening because it generates residual stresses and metallurgical modifications. It is also linked to the tools wear because of the thermal fatigue phenomena and the thermally activated diffusion process. In this paper, a first attempt to measure the temperature fields during 316L orthogonal cutting and 100Cr6 grinding is presented and can be divided in three parts. In the first part the physics of temperature measurement using infrared thermography are presented. Then, the calibration of the infrared camera is realized and allows to obtain of the emissivity curves of 316L and 100Cr6 steels. To do so, an experimental device has been set up to reproduce the luminance recording conditions encountered during the machining operations. The last step is the computation of all the experimental data to obtain the temperature fields from the recorded luminance and the 316L and 100Cr6 emissivity curve. At last, temperature level measured is compared to those presented in the bibliography.

  16. Repassivation behavior of 316L stainless steel in borate buffer solution: Kinetics analysis of anodic dissolution and film formation

    NASA Astrophysics Data System (ADS)

    Xu, Haisong; Sun, Dongbai; Yu, Hongying

    2015-12-01

    The repassivation behavior of metals or alloys after oxide film damage determines the development of local corrosion and corrosion resistance. In this work, the repassivation kinetics of 316L stainless steel (316L SS) are investigated in borate buffer solution (pH 9.1) by using the abrading electrode technique. The current densities flowing from bare 316L SS surface are measured by potentiostatic method and analyzed to characterize repassivation kinetics. The initial stages of current decay (t < 500 ms) are discussed according to a film growth model, which describes the initial current transient should be divided into substrate dissolution current and passive film formation current based on Avrami kinetics. Then the two independent components are analyzed individually. The film formation rate and the thickness of film are compared in different applied potential. It is shown that anodic dissolution dominates the repassivation for a short time during the early times, and a higher applied potential will promote the anodic dissolution of metal. The film growth rate increases slightly with increasing in potential. Correspondingly, increase in applied potential from 0 VSCE to 0.8 VSCE results in thicker monolayer, which covers the whole bare surface at the time of θ = 1. The electric field strengths through the thin passive film could reach 3.97 × 106 V cm-1.

  17. Influence of mercury velocity on compatibility with type 316L/316LN stainless steel in a flow loop

    NASA Astrophysics Data System (ADS)

    Pawel, S. J.; Taleyarkhan, R. P.; Felde, D. K.; Manneschmidt, E. T.

    2003-05-01

    Previous experiments to examine corrosion resulting from thermal gradient mass transfer of type 316L stainless steel in mercury were conducted in thermal convection loops (TCLs) with an Hg velocity of about 1 m/min. These tests have now been supplemented with a series of experiments designed to examine the influence of increased flow velocity and possible cavitation conditions on compatibility. In one experiment, the standard TCL design was modified to include a reduced section in the hot leg that provided a concomitant increase in the local velocity by a factor of five. In addition, a pumped-loop experiment was operated with a flow velocity of about 1 m/s. Finally, a TCL was modified to include an ultrasonic transducer at the top of the hot leg in an attempt to generate cavitation conditions with corresponding extreme local velocity associated with collapsing bubbles. The results indicate that compatibility of type 316L/316LN stainless steel does not depend significantly on liquid metal velocity in the range of 1 m/min to 1 m/s. Benchtop cavitation experiments revealed susceptibility of 316L coupons to significant weight losses and increases in surface roughness as a result of 24 h exposure to 1.5 MPa pressure waves in Hg generated ultrasonically at 20 kHz. However, attempts to generate cavitation conditions on coupons inside the TCL with the ultrasonic transducer proved largely unsuccessful.

  18. COMPUTATIONAL MODELING OF CATHODIC LIMITATIONS ON LOCALIZED CORROSION OF WETTED SS 316L, AT ROOM TEMPERATURE

    SciTech Connect

    F. Cui; F.J. Presuel-Moreno; R.G. Kelly

    2005-10-13

    The ability of a SS316L surface wetted with a thin electrolyte layer to serve as an effective cathode for an active localized corrosion site was studied computationally. The dependence of the total net cathodic current, I{sub net}, supplied at the repassivation potential E{sub rp} (of the anodic crevice) on relevant physical parameters including water layer thickness (WL), chloride concentration ([Cl{sup -}]) and length of cathode (Lc) were investigated using a three-level, full factorial design. The effects of kinetic parameters including the exchange current density (i{sub o,c}) and Tafel slope ({beta}{sub c}) of oxygen reduction, the anodic passive current density (i{sub p}) (on the cathodic surface), and E{sub rp} were studied as well using three-level full factorial designs of [Cl{sup -}] and Lc with a fixed WL of 25 {micro}m. The study found that all the three parameters WL, [Cl{sup -}] and Lc as well as the interactions of Lc x WL and Lc x [Cl{sup -}] had significant impact on I{sub net}. A five-factor regression equation was obtained which fits the computation results reasonably well, but demonstrated that interactions are more complicated than can be explained with a simple linear model. Significant effects on I{sub net} were found upon varying either i{sub o,c}, {beta}{sub c}, or E{sub rp}, whereas i{sub p} in the studied range was found to have little impact. It was observed that I{sub net} asymptotically approached maximum values (I{sub max}) when Lc increased to critical minimum values. I{sub max} can be used to determine the stability of coupled localized corrosion and the critical Lc provides important information for experimental design and corrosion protection.

  19. Laser Surface Treatment of Stellite 6 Coating Deposited by HVOF on 316L Alloy

    NASA Astrophysics Data System (ADS)

    Shoja-Razavi, Reza

    2016-07-01

    This research aimed to study the effects of laser glazing treatment on microstructure, hardness, and oxidation behavior of Stellite 6 coating deposited by high velocity oxygen fuel (HVOF) spraying. The as-sprayed Stellite 6 coating (ST-HVOF) was subjected to single-pass and multiple-pass laser treatments to achieve the optimum glazing parameters. Microstructural characterizations were performed by x-ray diffractometry and field emission scanning electron microscopy equipped with energy-dispersive spectroscopy. Two-step optimization showed that laser treatment at the power of 200 W with a scan rate of 4 mm/s causes a surface layer with a thickness of 208 ± 32 µm to be remelted, while the underlying layers retain the original ST-HVOF coating structure. The obtained sample (ST-Glazing) exhibited a highly dense and uniform structure with an extremely low porosity of ~0.3%, much lower than that of ST-HVOF coating (2.3%). The average microhardness of ST-Glazing was measured to be 519 Hv0.3 indicating a 17% decrease compared to ST-HVOF (625 Hv0.3) due to the residual stress relief and dendrite coarsening from submicron size to ~3.4 µm after laser treatment. The lowest oxidation mass gain was obtained for ST-Glazing by 2 mg/cm2 after 8 cycles at 900 °C indicating 52 and 84% improvement in oxidation resistance in comparison to ST-HVOF and bare 316L steel substrates, respectively.

  20. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.

    2015-09-01

    For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.

  1. Laser Surface Treatment of Stellite 6 Coating Deposited by HVOF on 316L Alloy

    NASA Astrophysics Data System (ADS)

    Shoja-Razavi, Reza

    2016-05-01

    This research aimed to study the effects of laser glazing treatment on microstructure, hardness, and oxidation behavior of Stellite 6 coating deposited by high velocity oxygen fuel (HVOF) spraying. The as-sprayed Stellite 6 coating (ST-HVOF) was subjected to single-pass and multiple-pass laser treatments to achieve the optimum glazing parameters. Microstructural characterizations were performed by x-ray diffractometry and field emission scanning electron microscopy equipped with energy-dispersive spectroscopy. Two-step optimization showed that laser treatment at the power of 200 W with a scan rate of 4 mm/s causes a surface layer with a thickness of 208 ± 32 µm to be remelted, while the underlying layers retain the original ST-HVOF coating structure. The obtained sample (ST-Glazing) exhibited a highly dense and uniform structure with an extremely low porosity of ~0.3%, much lower than that of ST-HVOF coating (2.3%). The average microhardness of ST-Glazing was measured to be 519 Hv0.3 indicating a 17% decrease compared to ST-HVOF (625 Hv0.3) due to the residual stress relief and dendrite coarsening from submicron size to ~3.4 µm after laser treatment. The lowest oxidation mass gain was obtained for ST-Glazing by 2 mg/cm2 after 8 cycles at 900 °C indicating 52 and 84% improvement in oxidation resistance in comparison to ST-HVOF and bare 316L steel substrates, respectively.

  2. Nanohardness, corrosion and protein adsorption properties of CuAlO2 films deposited on 316L stainless steel for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chang, Shih-Hang; Chen, Jian-Zhang; Hsiao, Sou-Hui; Lin, Guan-Wei

    2014-01-01

    This study preliminarily assesses the biomedical applications of CuAlO2 coatings according to nanoindentation, electrochemical, and protein adsorption tests. Nanoindentation results revealed that the surface hardness of 316L stainless steel increased markedly after coating with CuAlO2 films. Electrochemical tests of corrosion potential, breakdown potential, and corrosion current density showed that the corrosion resistance properties of 316L stainless steel are considerably improved by CuAlO2 coatings. Bicinchoninic acid (BCA) protein assay results revealed that the protein adsorption behavior of 316L stainless steel did not exhibit notable differences with or without CuAlO2 coatings. A CuAlO2 coating of 100 nm thickness improved the surface nanohardness and corrosion resistance ability of 316L stainless steel. CuAlO2 is a potential candidate for biomaterial coating applications, particularly for surface modification of fine, delicate implants.

  3. Effect of grain refinement and electrochemical nitridation on corrosion resistance of the 316L stainless steel for bipolar plates in PEMFCs environment

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Tongxiang, Liang; Hongyun, Luo

    2015-10-01

    The stain-induced nanocrystalline α'-martensite was obtained by cryogenic cold rolling at liquid-nitrogen temperature for 316L stainless steel. The electrochemical results showed nanocrystalline 316L stainless steel deteriorated its corrosion resistance in a typical proton exchange membrane fuel cell environment compared with coarse grained one. However, comparing with electrochemically nitrided coarse grained stainless steel, electrochemically nitrided nanocrystalline stainless steel improved significantly corrosion resistance in the same environment, which was supported further by Mott-Shottky analysis. X-ray photoelectron spectroscopy analysis revealed that the nanocrystalline promoted the enrichment of nitrogen and chromium and inhibited form of NH3 on the surface, which could significantly improve the corrosion resistance of the 316L stainless steel. The present study showed that the electrochemically nitrided 316L stainless steel was more suitable for the bipolar plates in proton exchange membrane fuel cell environment than the untreated one, especially for nanocrystalline stainless steel.

  4. Standard specification for heat-resisting chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels. ASTM standard

    SciTech Connect

    1998-10-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.17 on Flat Stainless Steel Products. Current edition approved Sep. 10, and Nov. 10, 1997, Apr. 10, and Jun. 10, 1998. Published October 1998. Originally published as A 240-40T. Last previous edition A 240/A 240M-97a.

  5. Comparative study of mechanical properties of 316L stainless steel between traditional production methods and selective laser melting

    NASA Astrophysics Data System (ADS)

    Lackey, Alton Dale

    Additive manufacturing, also known as 3D printing, is a technology which has recently seen expanding use, as well as expansion of the materials and methods able to be used. This thesis looks at the comparison of mechanical properties of 316L stainless steel manufactured by both traditional methods and selective laser melting found by tensile testing. The traditional method used here involved cold rolled 316L steel being machined to the desired part geometry. Selective laser melting used additive manufacturing to produce the parts from powdered 316L stainless steel, doing so in two different build orientations, flat and on edge with regards to the build plate. Solid test specimens, as well as specimens containing a circular stress concentration in the center of the parts, were manufactured and tensile tested. The tensile tests of the specimens were used to find the mechanical properties of the material; including yield strength, ultimate tensile strength (UTS), and Young's modulus of elasticity; where statistical analyses were performed to determine if the different manufacturing processes caused significant differences in the mechanical properties of the material. These analysis consisting of f-tests, to test for variance, and t-test, testing for significant difference of means. Through this study it was found that there were statistically significant differences existing between the mechanical properties of selective laser melting, and its orientations, and cold roll forming of production of parts. Even with a statistical difference, it was found that the results were reasonably close between flat oriented SLM parts and purchased parts. So it can be concluded that, with regards to strength, SLM methods produce parts similar to traditional production methods.

  6. Creep deformation and fracture behavior of types 316 and 316L(N) stainless steels and their weld metals

    SciTech Connect

    Sasikala, G.; Mathew, M.D.; Bhanu Sankara Rao, K.; Mannan, S.L.

    2000-04-01

    The creep properties of a nuclear-grade type 316(L) stainless steel (SS) alloyed with nitrogen (316L(N)SS) and its weld metal were studied at 873 and 923 K in the range of applied stresses from 100 to 335 MPa. The results were compared with those obtained on a nuclear-grade type 316 SS, which is lean in nitrogen. The creep rupture lives of the weld metals were found to be lower than those of the respective base metals by a factor of 5 to 10. Both the base and weld metals of 314L(N)SS exhibited better resistance to creep deformation compared to their 316SS counterparts at identical test conditions. A power-law relationship between the minimum creep rate and applied stress was found to be obeyed for both the base and weld metals. Both the weld metals generally exhibited lower rupture elongation than the respective base metals; however, at 873 K, the 316 SS base and weld metals had similar rupture elongation at identical applied stresses. Comparison of the rupture lives of the two steels to the ASME curves for the expected minimum stress to rupture for 316 Ss base and weld metals showed that, for 316L(N) SS, the specifications for maximum allowable stresses based on data for 316 SS could prove overconservative. The influence of nitrogen on the creep deformation and fracture behavior, especially in terms of its modifying the precipitation kinetics, is discussed in light of the microstructural observations. In welds containing {delta} ferrite, the kinetics of its transformation and the nature of the transformation products control the deformation and fracture behavior. The influence of nitrogen on the {delta} ferrite transformation behavior and coarsening kinetics is also discussed, on the basis of extensive characterization by metallographic techniques.

  7. One-dimensional migration of interstitial clusters in SUS316L and its model alloys at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Satoh, Y.; Abe, H.; Matsukawa, Y.; Matsunaga, T.; Kano, S.; Arai, S.; Yamamoto, Y.; Tanaka, N.

    2015-05-01

    For self-interstitial atom (SIA) clusters in various concentrated alloys, one-dimensional (1D) migration is induced by electron irradiation around 300 K. But at elevated temperatures, the 1D migration frequency decreases to less than one-tenth of that around 300 K in iron-based bcc alloys. In this study, we examined mechanisms of 1D migration at elevated temperatures using in situ observation of SUS316L and its model alloys with high-voltage electron microscopy. First, for elevated temperatures, we examined the effects of annealing and short-term electron irradiation of SIA clusters on their subsequent 1D migration. In annealed SUS316L, 1D migration was suppressed and then recovered by prolonged irradiation at 300 K. In high-purity model alloy Fe-18Cr-13Ni, annealing or irradiation had no effect. Addition of carbon or oxygen to the model alloy suppressed 1D migration after annealing. Manganese and silicon did not suppress 1D migration after annealing but after short-term electron irradiation. The suppression was attributable to the pinning of SIA clusters by segregated solute elements, and the recovery was to the dissolution of the segregation by interatomic mixing under electron irradiation. Next, we examined 1D migration of SIA clusters in SUS316L under continuous electron irradiation at elevated temperatures. The 1D migration frequency at 673 K was proportional to the irradiation intensity. It was as high as half of that at 300 K. We proposed that 1D migration is controlled by the competition of two effects: induction of 1D migration by interatomic mixing and suppression by solute segregation.

  8. Study of scale formation on AISI 316L in simulated solid oxide fuel cell bi-polar environments

    SciTech Connect

    Ziomek-Moroz, M.; Covino, Bernard S., Jr.; Cramer, Stephen D.; Holcomb, Gordon R.; Bullard, Sophie J.; Singh , P.; Windisch, C.F., Jr.

    2004-01-01

    Significant progress made towards reducing the operating temperature of solid oxide fuel cells (SOFC) from {approx}1000 C to {approx}600 C is expected to permit the use of metallic materials with substantial cost reduction. One of the components in a SOFC stack to be made of metallic materials is a bipolar separator, also called an interconnect. It provides electrical connection between individual cells and serves as a gas separator to prevent mixing of the fuel and air. At operating temperature, the material selected for interconnects should possess good chemical and mechanical stability in complex fuel and oxidant gaseous environments, good electrical conductivity, and a coefficient of thermal expansion (CTE) that matches that of the cathode, anode, and electrolyte components. Cr2O3 scale-forming alloys appear to be the most promising candidates. There appears to be a mechanism whereby the environment on the fuel side of a stainless steel interconnect changes the corrosion behavior of the metal on the air side. The corrosion behavior of 316L stainless steel simultaneously exposed to air on one side and H2+3%H2O on the other at 907 K was studied using X-ray diffraction (XRD) and Raman spectroscopy. The electrical property of the investigated material was determined in terms of area-specific resistance (ASR). The chemical and electrical properties of 316L exposed to a dual environment of air/ (H2+H2O) were compared to those of 316L exposed to a single environment of air/air.

  9. Crack growth behavior of warm-rolled 316L austenitic stainless steel in high-temperature hydrogenated water

    NASA Astrophysics Data System (ADS)

    Choi, Kyoung Joon; Yoo, Seung Chang; Jin, Hyung-Ha; Kwon, Junhyun; Choi, Min-Jae; Hwang, Seong Sik; Kim, Ji Hyun

    2016-08-01

    To investigate the effects of warm rolling on the crack growth of 316L austenitic stainless steel, the crack growth rate was measured and the oxide structure was characterized in high-temperature hydrogenated water. The warm-rolled specimens showed a higher crack growth rate compared to the as-received specimens because the slip bands and dislocations produced during warm rolling served as paths for corrosion and cracking. The crack growth rate increased with the dissolved hydrogen concentration. This may be attributed to the decrease in performance and stability of the protective oxide layer formed on the surface of stainless steel in high-temperature water.

  10. Improving the oxidation resistance of 316L stainless steel in simulated pressurized water reactor primary water by electropolishing treatment

    NASA Astrophysics Data System (ADS)

    Han, Guangdong; Lu, Zhanpeng; Ru, Xiangkun; Chen, Junjie; Xiao, Qian; Tian, Yongwu

    2015-12-01

    The oxidation behavior of 316L stainless steel specimens after emery paper grounding, mechanical polishing, and electropolishing were investigated in simulated pressurized water reactor primary water at 310 °C for 120 and 500 h. Electropolishing afforded improved oxidation resistance especially during the early immersion stages. Duplex oxide films comprising a coarse Fe-rich outer layer and a fine Cr-rich inner layer formed on all specimens after 500 h of immersion. Only a compact layer was observed on the electropolished specimen after 120 h of immersion. The enrichment of chromium in the electropolished layer contributed to the passivity and protectiveness of the specimen.

  11. Effect of Filler Metals on the Weldability and Mechanical Properties of Multi-pass PCGTA Weldments of AISI 316L

    NASA Astrophysics Data System (ADS)

    Devendranath Ramkumar, K.; Maruthi Mohan Reddy, P.; Raja Arjun, B.; Choudhary, Ayush; Srivastava, Anubhav; Arivazhagan, N.

    2015-04-01

    The influence of filler metals on the microstructure, mechanical properties, and corrosion behavior of AISI 316L welds was investigated. Pulsed current gas tungsten arc welding was employed to join the AISI 316L plates using two different fillers ER2553 and ERNiCr-3. Microstructures studies showed the presence of different forms of austenite on employing ER2553 filler and formation of migrated grain boundaries at the weld zone while using ERNiCr-3 filler. Tensile studies corroborated that the tensile strength was greater for the weldments employing ER2553 filler. Charpy V-notch studies ascertained that the impact toughness was greater for ER2553 weldments as compared to the parent metal. Potentiodynamic polarization curves clearly inferred that the weld zone of ER2553 exhibited better corrosion resistance among the various coupons tested. It was concluded from the study that ER2553 exhibited better mechanical and corrosion properties and could be adopted to achieve optimal properties compared to over-alloyed filler.

  12. Improving the Adhesion Resistance of the Boride Coatings to AISI 316L Steel Substrate by Diffusion Annealing

    NASA Astrophysics Data System (ADS)

    Campos-Silva, I.; Bernabé-Molina, S.; Bravo-Bárcenas, D.; Martínez-Trinidad, J.; Rodríguez-Castro, G.; Meneses-Amador, A.

    2016-07-01

    In this study, new results about the practical adhesion resistance of boride coating/substrate system formed at the surface of AISI 316 L steel and improved by means of a diffusion annealing process are presented. First, the boriding of AISI 316 L steel was performed by the powder-pack method at 1173 K with different exposure times (4-8 h). The diffusion annealing process was conducted on the borided steels at 1273 K with 2 h of exposure using a diluent atmosphere of boron powder mixture. The mechanical behavior of the boride coating/substrate system developed by both treatments was established using Vickers and Berkovich tests along the depth of the boride coatings, respectively. Finally, for the entire set of experimental conditions, the scratch tests were performed with a continuously increasing normal force, in which the practical adhesion resistance of the boride coating/substrate system was represented by the critical load. The failure mechanisms developed over the surface of the scratch tracks were analyzed; the FeB-Fe2B/substrate system exhibited an adhesive mode, while the Fe2B/substrate system obtained by the diffusion annealing process showed predominantly a cohesive failure mode.

  13. HYDROGEN EFFECTS ON FRACTURE TOUGHNESS OF TYPE 316L STAINLESS STEEL FROM 175 K TO 425 K

    SciTech Connect

    Morgan, M; Glenn Chapman, G

    2009-05-04

    The effects of hydrogen on the fracture-toughness properties of Type 316L stainless steel from 175 K to 425 K were measured. Fracture-toughness samples were fabricated from Type 316L stainless steel forgings and hydrogen-charged with hydrogen at 34 MPa and 623 K for two weeks prior to testing. The effect of hydrogen on the J-Integral vs. crack extension behavior was measured at various temperatures by fracturing non-charged and hydrogen-charged samples in an environmental chamber. Hydrogen-charged steels had lower toughness values than non-charged ones, but still retained good toughness properties. The fracture-toughness values of hydrogen-charged samples tested near ambient temperature were about 70% of non-charged values. For hydrogen-charged samples tested at 225 K and 425 K, the fracture-toughness values were 50% of the non-charged values. In all cases, fracture occurred by microvoid nucleation and coalescence, although the hydrogen-charged samples had smaller and more closely spaced microvoids. The results suggest that hydrogen effects on toughness are greater at 225 K than they are at ambient temperature because of strain-induced martensite formation. At 425 K, the hydrogen effects on toughness are greater than they are at ambient temperature because of the higher mobility of hydrogen.

  14. Corrosion-erosion test of SS316L grain boundary engineering material (GBEM) in lead bismuth flowing loop

    NASA Astrophysics Data System (ADS)

    Saito, Shigeru; Kikuchi, Kenji; Hamaguchi, Dai; Tezuka, Masao; Miyagi, Masanori; Kokawa, Hiroyuki; Watanabe, Seiichi

    2012-12-01

    To evaluate the lifetime of structural materials utilized in a spallation neutron source, corrosion tests in lead-bismuth eutectic (LBE) have been done at JAEA. Austenitic steels are preferable as the structural material for ADS. However, previous studies have revealed that austenitic steel SS316 shows severe corrosion-erosion in LBE because of LBE penetration through grain boundaries and separation of grains. So it was considered that GBE (grain-boundary engineered) materials may be effective to improve the corrosion resistance of austenitic steels in LBE. In this study, the results of corrosion tests on austenitic steel SS316L-BM (base metal) and SS316L-GBEM (grain-boundary-engineered material) under flowing LBE conditions will be reported. The corrosion test was performed using the JAEA lead-bismuth material corrosion loop (JLBL-1). The experimental conditions were as follows: The high and low temperature parts of the loop were 450 °C and 350 °C, respectively. The flow velocity at the test specimens was about 0.7 m/s. The oxygen concentration in LBE was not controlled and was estimated to have been very low. After the 3600 h of operation, macroscopic, SEM, and SIM observations and EDX analysis were carried out. The results showed that the corrosion depth and LBE penetration through the grain boundaries of the 316SS-GBEM were smaller than those of the 316SS-BM.

  15. A New Vacuum Brazing Route for Niobium-316L Stainless Steel Transition Joints for Superconducting RF Cavities

    NASA Astrophysics Data System (ADS)

    Kumar, Abhay; Ganesh, P.; Kaul, R.; Bhatnagar, V. K.; Yedle, K.; Ram Sankar, P.; Sindal, B. K.; Kumar, K. V. A. N. P. S.; Singh, M. K.; Rai, S. K.; Bose, A.; Veerbhadraiah, T.; Ramteke, S.; Sridhar, R.; Mundra, G.; Joshi, S. C.; Kukreja, L. M.

    2015-02-01

    The paper describes a new approach for vacuum brazing of niobium-316L stainless steel transition joints for application in superconducting radiofrequency cavities. The study exploited good wettability of titanium-activated silver-base brazing alloy (CuSil-ABA®), along with nickel as a diffusion barrier, to suppress brittle Fe-Nb intermetallic formation, which is well reported during the established vacuum brazing practice using pure copper filler. The brazed specimens displayed no brittle intermetallic layers on any of its interfaces, but instead carried well-distributed intermetallic particles in the ductile matrix. The transition joints displayed room temperature tensile and shear strengths of 122-143 MPa and 80-113 MPa, respectively. The joints not only exhibited required hermeticity (helium leak rate <1.1 × 10-10 mbar l/s) for service in ultra-high vacuum but also withstood twelve hour degassing heat treatment at 873 K (suppresses Q-disease in niobium cavities), without any noticeable degradation in the microstructure and the hermeticity. The joints retained their leak tightness even after undergoing ten thermal cycles between the room temperature and the liquid nitrogen temperature, thereby establishing their ability to withstand service-induced low cycle fatigue conditions. The study proposes a new lower temperature brazing route to form niobium-316L stainless steel transition joints, with improved microstructural characteristics and acceptable hermeticity and mechanical properties.

  16. Liquid Metal Corrosion of 316L Stainless Steel, 410 Stainless Steel, and 1015 Carbon Steel in a Molten Zinc Bath

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Bright, Mark A.; Liu, Xingbo; Barbero, Ever

    2007-11-01

    Corrosion tests of 1015 low-carbon steel and two stainless steels (410 and 316L) were conducted in a pure zinc bath (99.98 wt pct Zn) in order to better understand the reaction mechanisms that occur during the degradation of submerged hardware at industrial general (batch) galvanizing operations. Through this testing, it was found that, in general, 316L stainless steel showed the best dissolution resistance among these three alloys, while 1015 carbon steel provided a lower solubility than 410 stainless steel. Investigating the failure mechanisms, both metallurgical composition and lattice structure played important roles in the molten metal corrosion behaviors of these alloys. High contents of nickel combined with the influence of chromium improved the resistance to molten zinc corrosion. Moreover, a face-centered-cubic (fcc) structure was more corrosion resistant than body-centered-cubic (bcc) possibly due to the compactness of the atomic structure. Analogously, the body-centered-tetragonal (bct) martensite lattice structure possessed enhanced susceptibility to zinc corrosion as a result of the greater atomic spacing and high strain energy. Finally, an increased bath temperature played an important role in molten metal corrosion by accelerating the dissolution process and changing the nature of intermetallic layers.

  17. Effect of Zr, Nb and Ti addition on injection molded 316L stainless steel for bio-applications: Mechanical, electrochemical and biocompatibility properties.

    PubMed

    Gulsoy, H Ozkan; Pazarlioglu, Serdar; Gulsoy, Nagihan; Gundede, Busra; Mutlu, Ozal

    2015-11-01

    The research investigated the effect of Zr, Nb and Ti additions on mechanical, electrochemical properties and biocompatibility of injection molded 316L stainless steel. Addition of elemental powder is promoted to get high performance of sintered 316L stainless steels. The amount of additive powder plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders used with the elemental Zr, Nb and Ti powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperatures. The debinded samples were sintered at 1350°C for 60 min. Mechanical, electrochemical property and biocompatibility of the sintered samples were performed mechanical, electrochemical, SBF immersion tests and cell culture experiments. Results of study showed that sintered 316L and 316L with additives samples exhibited high corrosion properties and biocompatibility in a physiological environment. PMID:26275484

  18. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-05-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  19. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-04-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  20. On the corrosion resistance of AISI 316L-type stainless steel coated with manganese and annealed with flow of oxygen

    NASA Astrophysics Data System (ADS)

    Savaloni, Hadi; Agha-Taheri, Ensieh; Abdi, Fateme

    2016-06-01

    AISI 316L-type stainless steel was coated with 300-nm-thick Mn thin films and post-annealed at 673 K with a constant flow of oxygen (250 cm3/min). The films crystallographic and morphological structures were analyzed using X-ray diffraction (XRD) and atomic force microscopy (AFM) before corrosion test and scanning electron microscopy (SEM) after corrosion test. Corrosion behavior of the samples in 0.3, 0.5 and 0.6 M NaCl solutions was investigated by means of potentiodynamic and electrochemical impedance spectroscopy (EIS) techniques. Results showed that the corrosion inhibition of annealed Mn/SS316L in all NaCl solutions with different concentrations is higher than that of bare SS316L. A correlation is achieved between the structural variation of the films with the potentiodynamic and EIS corrosion results.

  1. Effects of Ti-C:H coating and plasma nitriding treatment on tribological, electrochemical, and biocompatibility properties of AISI 316L.

    PubMed

    Kao, W H; Su, Y L; Horng, J H; Zhang, K X

    2016-08-01

    Ti-C:H coatings were deposited on original, nitrided, and polished-nitrided AISI 316L stainless steel substrates using a closed field unbalanced magnetron sputtering system. Sliding friction wear tests were performed in 0.89 wt.% NaCl solution under a load of 30 N against AISI 316L stainless steel, Si3N4, and Ti6Al4V balls, respectively. The electrochemical properties of the various specimens were investigated by means of corrosion tests performed in 0.89 wt.% NaCl solution at room temperature. Finally, the biocompatibility properties of the specimens were investigated by performing cell culturing experiments using purified mouse leukemic monocyte macrophage cells (Raw264.7). In general, the results showed that plasma nitriding followed by Ti-C:H coating deposition provides an effective means of improving the wear resistance, anti-corrosion properties, and biocompatibility performance of AISI 316L stainless steel. PMID:27422714

  2. Improving the corrosion wear resistance of AISI 316L stainless steel by particulate reinforced Ni matrix composite alloying layer

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Zhuo, Chengzhi; Tao, Jie; Jiang, Shuyun; Liu, Linlin

    2009-01-01

    In order to overcome the problem of corrosion wear of AISI 316L stainless steel (SS), two kinds of composite alloying layers were prepared by a duplex treatment, consisting of Ni/nano-SiC and Ni/nano-SiO2 predeposited by brush plating, respectively, and subsequent surface alloying with Ni-Cr-Mo-Cu by a double glow process. The microstructure of the two kinds of nanoparticle reinforced Ni-based composite alloying layers was investigated by means of SEM and TEM. The electrochemical corrosion behaviour of composite alloying layers compared with the Ni-based alloying layer and 316L SS under different conditions was characterized by potentiodynamic polarization test and electrochemical impedance spectroscopy. Results showed that under alloying temperature (1000 °C) conditions, amorphous nano-SiO2 particles still retained the amorphous structure, whereas nano-SiC particles were decomposed and Ni, Cr reacted with SiC to form Cr6.5Ni2.5Si and Cr23C6. In static acidic solution, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is lower than that of the Ni-based alloying layer. However, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is prominently superior to that of the Ni-based alloying layer under acidic flow medium condition and acidic slurry flow condition. The corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiC particles interlayer is evidently lower than that of the Ni-based alloying layer, but higher than that of 316L SS under all test conditions. The results show that the highly dispersive nano-SiO2 particles are helpful in improving the corrosion wear resistance of the Ni-based alloying layer, whereas carbides and silicide phase are deleterious to that of the Ni-based alloying layer due to the fact that the preferential removal of the matrix around the precipitated phase takes place by the chemical

  3. Localized corrosion of 316L stainless steel with SiO2-CaO films obtained by means of sol-gel treatment.

    PubMed

    Vallet-Regí, M; Izquierdo-Barba, I; Gil, F J

    2003-11-01

    Sol-gel films on austenitic stainless steel (AISI 316L) polished wafer were prepared from sono-sols obtained from tetraethylorthosilane and hydrated calcium nitrate. However, pitting was observed in different places on the stainless steel surfaces. The corrosion resistance was evaluated by the polarization resistance in simulated body fluid environment at 37 degrees C. The critical current density, the passive current density, the corrosion potential, and the critical pitting potential were studied. The austenitic stainless steel 316L treated presents important electrochemical corrosion and consequently its application as endosseous implants is not possible. PMID:14566812

  4. The electrochemical behaviour of 316L austenitic stainless steel in Cl- containing environment under different H2S partial pressures

    NASA Astrophysics Data System (ADS)

    Ding, Jinhui; Zhang, Lei; Lu, Minxu; Wang, Jing; Wen, Zhibin; Hao, Wenhui

    2014-01-01

    In oil-gas production environments, presence of H2S-Cl- can induce deterioration of the passive film, leading to pitting corrosion of stainless steels. In this paper, by using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and capacitance measurements (Mott-Schottky analysis), the electrochemical behaviour of AISI 316L austenitic stainless steel was investigated in Cl- solutions under different H2S partial pressures (from 0 to 1.0 bar). The results indicated that presence of H2S in Cl- solution can accelerate both the cathodic and anodic current density, leading to a metastable passive state in higher passive potential range, changing the semiconductor behaviour from p-type to n-type, increasing its susceptibility to corrosion. XPS analysis was employed to characterize the surface film after potentiostatic polarization, whose results provide good evidences for the electrochemical measurements.

  5. Preferred Crystallographic Orientation Development in Nano/Ultrafine-Grained 316L Stainless Steel During Martensite to Austenite Reversion

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Mohtadi-Bonab, M. A.; Basu, R.; Nezakat, M.; Kermanpur, A.; Szpunar, J. A.; Nahar, S.; Baghpanah, A. H.

    2015-02-01

    The crystallographic orientation of cold-rolled 316L stainless steel is investigated during reversion of strain-induced ά-martensite to nano/ultrafine-grained austenite upon annealing at 750 °C for different holding times; 1, 5, 15, and 30 min. The texture of nanoscale reverted austenite reveals a Brass ({110}<112>) and a Goss ({110}<100>) textures after annealing for 1 min. No new texture component is appeared through the completion of martensite to austenite reversion for 5 min, but the intensity of Brass and Goss textures are increased. Further annealing for 30 min results in a stronger texture with higher intensity for Brass compared to Goss.

  6. Characterization of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316 L by varying laser energy

    NASA Astrophysics Data System (ADS)

    Khandelwal, Himanshu; Singh, Gurbhinder; Agrawal, Khelendra; Prakash, Satya; Agarwal, R. D.

    2013-01-01

    Hydroxyapatite is an attractive biomaterial mainly used in bone and tooth implants because it closely resembles human tooth and bone mineral and has proven to be biologically compatible with these tissues. In spite of this advantage of hydroxyapatite it has also certain limitation like inferior mechanical properties which do not make it suitable for long term load bearing applications; hence a lot of research is going on in the development of hydroxyapatite coating over various metallic implants. These metallic implants have good biocompatibility and mechanical properties. The aim of the present work is to deposit hydroxyapatite coating over stainless steel grade 316 L by pulse laser deposition technique by varying laser energy. To know the effect of this variation, the coatings were than characterized in detail by X-ray diffraction, finite emission-scanning electron microscope, atomic force microscope and energy dispersive X-ray spectroscopy.

  7. Dependence of the tensile properties of 316 L parent material and welds on implanted hydrogen and/or helium

    NASA Astrophysics Data System (ADS)

    Schroeder, Herbert; Liu, Wanpei

    1992-09-01

    The interest in the low temperature tensile properties of candidate alloys for first wall and blanket structures of future fusion devices is due to the possible low pressure water cooling and the associated low operation temperature in recent design studies. Therefore, the tensile properties of hydrogen and/or helium implanted 316 L stainless steel and its weldments as a function of gas concentrations and temperature were investigated. The main effects of the implantation are hardening, resulting in large increases of the yield strength proportional to the implanted gas concentration, and a gradual decrease of the corresponding rupture strain. The ultimate tensile stresses are less affected. The effect of helium implantation seems to be more pronounced than that of hydrogen implantation. At 673 K most of the implantation induced changes are recovered. Generally parent material and welds still show large ductility (≥20%) under all conditions investigated.

  8. Helium effects on the post-implantation creep properties and the microstructure of AISI 316L welds and parent material

    NASA Astrophysics Data System (ADS)

    Dai, Yong; Schroeder, Herbert

    1992-09-01

    The influence of implanted helium on the creep properties in electron-beam welds of the Next European Torus (NET) reference material, AISI 316L, and its parent material in the as-received condition has been investigated at 873 K. Helium degredation effects (i.e. reduced creep rupture time and creep rupture strain) are more serious in the parent material than in the welds. The fracture mode for implanted weld specimens is usually transgranular, while for the parent material specimens it is mixed trans- and intergranular. TEM investigations show that in the welds there is a lot of σ-ferrite at grain boundaries (occupying about 50% of grain boundary area) and in the interior of grains as well. Helium bubble sizes increase with increasing helium concentration, while helium bubble densities remain constant. Helium bubbles in the matrix are larger in size but much lower in density than those at boundaries or interfaces.

  9. Effect of laser shot peening without coating on the surface properties and corrosion behavior of 316L steel

    NASA Astrophysics Data System (ADS)

    Kalainathan, S.; Sathyajith, S.; Swaroop, S.

    2012-12-01

    This paper discusses the results of laser peening without coating on low carbon austenitic stainless steel 316L. Unlike typical experiments on laser peening without coating (LPwC) performed with frequency doubled (green) laser and underwater irradiation, the present study reports LPwC with infrared radiation using thin layer of water as confinement medium. The dependence of laser pulse density on properties such as surface roughness, surface residual stress, microhardness, and corrosion behavior of LPwC specimen were investigated. The magnitude of surface compressive residual stress on laser peened specimen showed appreciable improvement compared to unpeened base material. Microhardness of the specimen improved by 30-40% after LPwC. However, the potentiodynamic polarization study indicated that though there is an enhancement of corrosion potential (Ecorr), the corrosion current density (Icorr) increased with increase in laser pulse density.

  10. Performance Optimization of Cold Rolled Type 316L Stainless Steel by Sand Blasting and Surface Linishing Treatment

    NASA Astrophysics Data System (ADS)

    Krawczyk, B.; Heine, B.; Engelberg, D. L.

    2016-03-01

    Sand blasting followed by a surface linishing treatment was applied to optimize the near-surface microstructure of cold rolled type 316L stainless steel. The introduction of cold rolling led to the formation of α-martensite. Specimens with large thickness reductions (40, 53%) were more susceptible to localized corrosion. The application of sand blasting produced a near-surface deformation layer containing compressive residual stresses with significantly increased surface roughness, resulting in reduced corrosion resistance. The most resistant microstructure was obtained with the application of a final linishing treatment after sand blasting. This treatment produced microstructures with compressive near-surface residual stresses, reduced surface roughness, and increased resistance to localized corrosion.

  11. Microstructural aspects of creep-rupture life of Type 316L(N) stainless steel in liquid sodium environment

    NASA Astrophysics Data System (ADS)

    Mishra, M. P.; Borgstedt, H. U.; Frees, G.; Seith, B.; Mannan, S. L.; Rodriguez, P.

    1993-04-01

    The influence of flowing sodium on creep-rupture properties of AISI Type 316L(N) stainless steel base material has been investigated at 550 and 600°C. In sodium test results were compared with reference creep-rupture data generated in air. The creep-rupture lives were longer in air than in sodium environment at 550°C, however, at 600°C, creep-rupture lives were longer in the latter than in the former environment. Microstructural studies showed the presence of sensitization and χ phase on longer duration test specimens at both temperatures. Surface cracks in sodium tested specimens were sharp and relatively more in numbers than in air where cracks were blunted. Cracks seem to follow the intergranular mode. Cavities were formed in long duration tests and propagated ahead of the χ phase.

  12. Microstructural examination of the effect of surface machining on stress corrosion cracking in core shroud made of 316L

    SciTech Connect

    Sueishi, Y.; Kohyama, A.; Narui, M.; Asano, K.

    2006-07-01

    Cracks exhibited on the hardened surface region of the boiling water reactor (BWR) core shroud made of 316L were examined. The sample was removed from the circumference ring of a commercial power plant after about 9 years in service. On the surface with mechanical milling followed by grinding during the manufacturing process, micro-crack was found to propagate nearly perpendicular to the grinding direction. Cross-sectional transmission electron microscopy (TEM) observation of the micro-crack indicates that the crack has been initiated along the boundary of [111[<112> type deformation twins and the shear bands in Goss position [110]<001>. Along the crack wall, the Cr-Fe spinel and the grained magnetite were identified in inner and outer layer of the oxide thin film, respectively. The results suggest one potential mechanism of the cracking that the heavily deformed structure by surface machining is the origin or the factor for acceleration of the cracking. (authors)

  13. Corrosion resistance of multilayer hybrid sol-gel coatings deposited on the AISI 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Caballero, Y. T.; Rondón, E. A.; Rueda, L.; Hernández Barrios, C. A.; Coy, A.; Viejo, F.

    2016-02-01

    In the present work multilayer hybrid sol-gel coatings were synthesized on the AISI 316L austenitic stainless steel employed in the fabrication of orthopaedic implants. Hybrid sols were obtained from a mixture of inorganic precursor, TEOS, and organic, GPTMS, using ethanol as solvent, and acetic acid as catalyst. The characterization of the sols was performed using pH measurements, rheological tests and infrared spectroscopy (FTIR) for different ageing times. On the other hand, the coatings were characterized by scanning electron microscopy (SEM), while the corrosion resistance was evaluated using anodic potentiodynamic polarization in SBF solution at 37±2°C. The results confirmed that sol-gel synthesis employing TEOS-GPTMS systems produces uniform and homogeneous coatings, which enhanced the corrosion resistance with regard to the parent alloy. Moreover, corrosion performance was retained after applying more than one layer (multilayer coatings).

  14. Compatibility study of 316L stainless steel bellows for XMC3690 reserve lithium/thionyl-chloride battery

    SciTech Connect

    Cieslak, W.R.; Delnick, F.M.; Crafts, C.C.

    1986-02-01

    Maintenance of the integrity of a battery's active electrochemical components throughout shelf life is essential to achieving acceptable performance characteristics. The electrolyte in the XMC3690 reserve lithium/thionyl-chloride (RLTC) battery is stored in a 316L stainless steel welded-bellows assembly. Corrosion of the bellows that might compromise battery performance must be avoided. Postmortem examination of welded bellows following electrolyte storage for 2 years, including up to 1 year at 70/sup 0/C, revealed no significant corrosion or any sign of stress-corrosion cracking. Transition metal ion concentrations in the electrolyte were very low and did not change with aging conditions. Based on these observations, we do not expect corrosion of the bellows assembly to limit shelf life of the XMC3690 RLTC battery.

  15. Effect of Different Degrees of Sensitization on the EIS Response of 316L and 316 SS in Transpassive Region

    NASA Astrophysics Data System (ADS)

    Morshed Behbahani, K.; Pakshir, M.

    2014-06-01

    Different heat treatments were conducted on 316L and 316 stainless steels, and the sensitized specimens were characterized using anodic polarization and EIS tests in 0.5 M H2SO4 containing 0.01 molar KSCN. The potential ranges related to the transpassive region related to each specimen were determined. The EIS experiments were conducted at different potentials in that region, and the results showed the presence of three different regions, namely the anodic dissolution of the passive layer, dissolution of the grain boundaries, and the occurrence of pitting corrosion owing to the variations in the anodic potential. The higher the applied sensitization temperature, the lower the obtained charge-transfer resistance ( R ct) values, but healing effect was observed at the temperatures above 600 °C for these alloys.

  16. Preparation of uniform TiO 2 nanostructure film on 316L stainless steel by sol-gel dip coating

    NASA Astrophysics Data System (ADS)

    Barati, N.; Sani, M. A. Faghihi; Ghasemi, H.; Sadeghian, Z.; Mirhoseini, S. M. M.

    2009-07-01

    Sol was prepared by the mixing of tetra-η-butyle titanat, ethyl aceto acetate, and ethanol in an optimized condition. Polished 316L specimens were coated with the sol by dip-coating method. The influences of drying condition, withdrawal speed, calcination temperature, addition of dispersant, and pH of sol on TiO 2 nanostructure coating were investigated. Choosing of alcohol as drying atmosphere hindered the crack formation. The relation between coating thickness and withdrawal speed was evaluated. The optimum temperature to create a uniform distribution of nanoparticles of anatase was derived as 400 °C. Average roughness of coating was found about 10.61 nm by AFM analysis. Dispersant addition promoted formation of a uniform film as well as prevention of agglomeration. Acidic sol provided smaller particles than neutral sol.

  17. CORROSION STUDY FOR THE EFFLUENT TREATMENT FACILITY (ETF) CHROME (VI) REDUCTANT SOLUTION USING 304 & 316L STAINLESS STEEL

    SciTech Connect

    DUNCAN, J.B.

    2007-06-27

    The Effluent Treatment Facility has developed a method to regenerate spent resin from the groundwater pump and treat intercepting chrome(VI) plumes (RPP-RPT-32207, Laboratory Study on Regeneration of Spent DOWEX 21K 16-20 Mesh Ion Exchange Resin). Subsequent laboratory studies have shown that the chrome(VI) may be reduced to chrome(III) by titrating with sodium metabisulfite to an oxidation reduction potential (ORP) of +280 mV at a pH of 2. This test plan describes the use of cyclic potentiodynamic polarization and linear polarization techniques to ascertain the electrochemical corrosion and pitting propensity of the 304 and 316L stainless steel in the acidified reducing the solution that will be contained in either the secondary waste receiver tank or concentrate tank.

  18. Galvanic couples of 316L steel with Ti and ion plated Ti and TiN coatings in Ringer's solutions.

    PubMed

    Gluszek, J; Jedrkowiak, J; Markowski, J; Masalski, J

    1990-07-01

    Steel 316L was coated with titanium or titanium nitride by ion plating. The tightness of the coatings was examined electro-chemically. The galvanic effects for the galvanic couples steel-titanium, steel-titanium-coated steel and steel-titanium nitride-coated steel were studied. It was found that both titanium and titanium nitride coatings were non-porous in Ringer's solution; titanium served as an anode in the couple steel-titanium; it was oxidized according to the logarithmic law. For the other two couples, the coatings were the cathodes. The rate of dissolution of steel in these couples, was however, smaller than expected, owing to a strong polarization of the coatings. The potential of the couple was similar to that of steel. PMID:2400799

  19. Laser surface alloying of 316L stainless steel coated with a bioactive hydroxyapatite-titanium oxide composite.

    PubMed

    Ghaith, El-Sayed; Hodgson, Simon; Sharp, Martin

    2015-02-01

    Laser surface alloying is a powerful technique for improving the mechanical and chemical properties of engineering components. In this study, laser surface irradiation process employed in the surface modification off 316L stainless steel substrate using hydroxyapatite-titanium oxide to provide a composite ceramic layer for the suitability of applying this technology to improve the biocompatibility of medical alloys and implants. Fusion of the metal surface incorporating hydroxyapatite-titania ceramic particles using a 30 W Nd:YAG laser at different laser powers, 40, 50 and 70% power and a scan speed of 40 mm s(-1) was observed to adopt the optimum condition of ceramic deposition. Coatings were evaluated in terms of microstructure, surface morphology, composition biocompatibility using XRD, ATR-FTIR, SEM and EDS. Evaluation of the in vitro bioactivity by soaking the treated metal in SBF for 10 days showed the deposition of biomimetic apatite. PMID:25636972

  20. Methodology for optimizing the electropolishing of stainless steel AISI 316L combining criteria of surface finish and dimensional precision

    NASA Astrophysics Data System (ADS)

    Núñez, P. J.; García-Plaza, E.; Martín, A. R.; Trujillo, R.; De la Cruz, C.

    2009-11-01

    This work examines a methodology for optimizing electrochemical polishing conditions bearing in mind the criteria that enhance minimum surface roughness and dimensional precision (minimum loss of thickness). The study consisted in electrochemically polishing stainless steel AISI 316L (ISO 4954 X2CrNiMo17133E) under a combination of different temperatures (T) baths and current densities (J), and application times (t). The surface finish (ΔRa) and dimensional variations (Δh) of the electrochemically polished workpieces were assessed, and the experimental data of the variables was correlated as can be seen by the response surfaces. This methodology enables optimum working areas to be specified using the sole criteria of surface finish, or by using a combination of both criteria (minimum roughness and maximum precision). The methodology has proven to be an optimum method for selecting electrochemical polishing conditions using the combined criteria of surface finish and dimensional precision in accordance with design requirements.

  1. Experimental investigations on effects of frequency in ultrasonically-assisted end-milling of AISI 316L: A feasibility study.

    PubMed

    Maurotto, A; Wickramarachchi, C T

    2016-02-01

    The effects of frequency in ultrasonic vibration assisted milling (UVAM) with axial vibration of the cutter is investigated in this paper. A series of face-mill experiment in dry conditions were conducted on AISI 316L, an alloy of widespread use in industry. The finished surfaces roughness were studied along with basic considerations on tool wear for both conventional milling and an array of frequencies for UVAM (20–40–60 kHz) in a wide range of cutting conditions. Surface residual stresses and cross-cut metallographic slides were used to investigate the hidden effects of UVAM. Experimental results showed competitive results for both surface roughness and residual stress in UVAM when compared with conventional milling especially in the low range of frequency with similar trend for tool wear. PMID:26601562

  2. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel.

    PubMed

    Bagherifard, Sara; Hickey, Daniel J; de Luca, Alba C; Malheiro, Vera N; Markaki, Athina E; Guagliano, Mario; Webster, Thomas J

    2015-12-01

    Substrate grain structure and topography play major roles in mediating cell and bacteria activities. Severe plastic deformation techniques, known as efficient metal-forming and grain refining processes, provide the treated material with novel mechanical properties and can be adopted to modify nanoscale surface characteristics, possibly affecting interactions with the biological environment. This in vitro study evaluates the capability of severe shot peening, based on severe plastic deformation, to modulate the interactions of nanocrystallized metallic biomaterials with cells and bacteria. The treated 316L stainless steel surfaces were first investigated in terms of surface topography, grain size, hardness, wettability and residual stresses. The effects of the induced surface modifications were then separately studied in terms of cell morphology, adhesion and proliferation of primary human osteoblasts (bone forming cells) as well as the adhesion of multiple bacteria strains, specifically Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and ampicillin-resistant Escherichia coli. The results indicated a significant enhancement in surface work hardening and compressive residual stresses, maintenance of osteoblast adhesion and proliferation as well as a remarkable decrease in the adhesion and growth of gram-positive bacteria (S. aureus and S. epidermidis) compared to non-treated and conventionally shot peened samples. Impressively, the decrease in bacteria adhesion and growth was achieved without the use of antibiotics, for which bacteria can develop a resistance towards anyway. By slightly grinding the surface of severe shot peened samples to remove differences in nanoscale surface roughness, the effects of varying substrate grain size were separated from those of varying surface roughness. The expression of vinculin focal adhesions from osteoblasts was found to be singularly and inversely related to grain size, whereas the attachment of gram

  3. Electron Backscatter Diffraction Analysis of Joints Between AISI 316L Austenitic/UNS S32750 Dual-Phase Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shamanian, Morteza; Mohammadnezhad, Mahyar; Amini, Mahdi; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-01

    Stainless steels are among the most economical and highly practicable materials widely used in industrial areas due to their mechanical and corrosion resistances. In this study, a dissimilar weld joint consisting of an AISI 316L austenitic stainless steel (ASS) and a UNS S32750 dual-phase stainless steel was obtained under optimized welding conditions by gas tungsten arc welding technique using AWS A5.4:ER2594 filler metal. The effect of welding on the evolution of the microstructure, crystallographic texture, and micro-hardness distribution was also studied. The weld metal (WM) was found to be dual-phased; the microstructure is obtained by a fully ferritic solidification mode followed by austenite precipitation at both ferrite boundaries and ferrite grains through solid-state transformation. It is found that welding process can affect the ferrite content and grain growth phenomenon. The strong textures were found in the base metals for both steels. The AISI 316L ASS texture is composed of strong cube component. In the UNS S32750 dual-phase stainless steel, an important difference between the two phases can be seen in the texture evolution. Austenite phase is composed of a major cube component, whereas the ferrite texture mainly contains a major rotated cube component. The texture of the ferrite is stronger than that of austenite. In the WM, Kurdjumov-Sachs crystallographic orientation relationship is found in the solidification microstructure. The analysis of the Kernel average misorientation distribution shows that the residual strain is more concentrated in the austenite phase than in the other phase. The welding resulted in a significant hardness increase in the WM compared to initial ASS.

  4. Effects of Thermal Aging on Material Properties, Stress Corrosion Cracking, and Fracture Toughness of AISI 316L Weld Metal

    NASA Astrophysics Data System (ADS)

    Lucas, Timothy; Forsström, Antti; Saukkonen, Tapio; Ballinger, Ronald; Hänninen, Hannu

    2016-06-01

    Thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels, as well as duplex, and high-Cr ferritic stainless steels. Spinodal decomposition is largely responsible for the well-known "748 K (475 °C) embrittlement" that results in drastic reductions in ductility and toughness in these materials. This process is also operative in welds of either cast or wrought stainless steels where δ-ferrite is present. While the embrittlement can occur after several hundred hours of aging at 748 K (475 °C), the process is also operative at lower temperatures, at the 561 K (288 °C) operating temperature of a boiling water reactor (BWR), for example, where ductility reductions have been observed after several tens of thousands of hours of exposure. An experimental program was carried out in order to understand how spinodal decomposition may affect changes in material properties in Type 316L BWR piping weld metals. The study included material characterization, nanoindentation hardness, double-loop electrochemical potentiokinetic reactivation (DL-EPR), Charpy-V, tensile, SCC crack growth, and in situ fracture toughness testing as a function of δ-ferrite content, aging time, and temperature. SCC crack growth rates of Type 316L stainless steel weld metal under simulated BWR conditions showed an approximate 2 times increase in crack growth rate over that of the unaged as-welded material. In situ fracture toughness measurements indicate that environmental exposure can result in a reduction of toughness by up to 40 pct over the corresponding at-temperature air-tested values. Material characterization results suggest that spinodal decomposition is responsible for the degradation of material properties measured in air, and that degradation of the in situ properties may be a result of hydrogen absorbed during exposure to the high-temperature water environment.

  5. Development of Silica Glass Coatings on 316L SS and Evaluation of its Corrosion Resistance Behavior in Ringer's Solution

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, U.; Rajeswari, S.

    2012-12-01

    Sol-gel derived silica glasses have many promising features, including low-temperature preparation as well as chemical and physical stability. Two silica glasses with Si100 and Si80 composition were prepared to understand the factors contributing to the rate of bioactivity. The effects of pH, solution aging temperature, and molar ratio of H2O/tetraethyl orthosilicate (TEOS) were studied, and the obtained powder sample was characterized by Fourier transform infrared spectroscopy, X-ray diffraction studies, and scanning electron microscopy. The synthesized silica glasses were deposited on 316L SS by the spin coating method at the optimized speed of 2000 revolutions per minute. The corrosion resistance behavior of the coatings was determined by (1) open-circuit potential vs time of exposure, (2) electrochemical impedance spectroscopy, and (3) cyclic polarization in Ringer's solution. A higher breakdown potential ( E b) and repassivation potential ( E p) value with lower current density was obtained from cyclic polarization. Similar results were observed from impedance analysis with higher charge transfer resistance ( R ct) and lower double layer capacitance ( C dl) indicating the corrosion resistance behavior of the coatings compared with the uncoated 316L stainless steel. From the results, it was observed that both Si100 and Si80 glass coatings had a positive effect on the corrosion resistance behavior. An adhesive strength of 46 MPa and 45 MPa was obtained for the Si100 and Si80 coatings, respectively. An accelerated leach out study was carried out by impressing the potential at their breakdown potential to determine the effect of glass coating for long-term contact between the implant and a normal biological medium.

  6. Effects of Thermal Aging on Material Properties, Stress Corrosion Cracking, and Fracture Toughness of AISI 316L Weld Metal

    NASA Astrophysics Data System (ADS)

    Lucas, Timothy; Forsström, Antti; Saukkonen, Tapio; Ballinger, Ronald; Hänninen, Hannu

    2016-08-01

    Thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels, as well as duplex, and high-Cr ferritic stainless steels. Spinodal decomposition is largely responsible for the well-known "748 K (475 °C) embrittlement" that results in drastic reductions in ductility and toughness in these materials. This process is also operative in welds of either cast or wrought stainless steels where δ-ferrite is present. While the embrittlement can occur after several hundred hours of aging at 748 K (475 °C), the process is also operative at lower temperatures, at the 561 K (288 °C) operating temperature of a boiling water reactor (BWR), for example, where ductility reductions have been observed after several tens of thousands of hours of exposure. An experimental program was carried out in order to understand how spinodal decomposition may affect changes in material properties in Type 316L BWR piping weld metals. The study included material characterization, nanoindentation hardness, double-loop electrochemical potentiokinetic reactivation (DL-EPR), Charpy-V, tensile, SCC crack growth, and in situ fracture toughness testing as a function of δ-ferrite content, aging time, and temperature. SCC crack growth rates of Type 316L stainless steel weld metal under simulated BWR conditions showed an approximate 2 times increase in crack growth rate over that of the unaged as-welded material. In situ fracture toughness measurements indicate that environmental exposure can result in a reduction of toughness by up to 40 pct over the corresponding at-temperature air-tested values. Material characterization results suggest that spinodal decomposition is responsible for the degradation of material properties measured in air, and that degradation of the in situ properties may be a result of hydrogen absorbed during exposure to the high-temperature water environment.

  7. Analysis of bi-layer oxide on austenitic stainless steel, 316L, exposed to Lead-Bismuth Eutectic (LBE) by X-ray Photoelectron Spectroscopy (XPS)

    NASA Astrophysics Data System (ADS)

    Koury, D.; Johnson, A. L.; Ho, T.; Farley, J. W.

    2013-09-01

    Corrosion of the austenitic stainless steel alloy 316L by Lead-Bismuth Eutectic (LBE) was studied using X-ray Photoelectron Spectroscopy (XPS) with Sputter-Depth Profiling (SDP), and compared to data taken by Scanning Electron Microscopy (SEM) and Energy Dispersive X-rays (EDXs). Exposed and unexposed samples were compared. Annealed 316L samples, exposed to LBE for durations of 1000, 2000 and 3000 h, developed bi-layer oxides up to 30 μm thick. Analysis of the charge-states of the 2p3/2 peaks of iron, chromium, and nickel in the oxide layers reveal an inner layer consisting of iron and chromium oxides (likely spinel-structured) and an outer layer consisting of iron oxides (Fe3O4). Cold-rolled 316L samples, exposed for the same durations, form a chromium-rich, thin (⩽1 μm) oxide with some oxidized iron in the outermost ˜200 nm of the oxide layer. This is the first experiment to investigate what components of the 316L are oxidized by LBE exposure. It is shown here that nickel is metallic in the inner layer.

  8. Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment

    NASA Astrophysics Data System (ADS)

    Zhang, Litao; Wang, Jianqiu

    2014-03-01

    Stress corrosion crack growth tests of a cold worked nuclear grade 316L stainless steel were conducted in simulated pressurized water reactor (PWR) primary water environment containing various dissolved oxygen (DO) contents but no dissolved hydrogen. The crack growth rate (CGR) increased with increasing DO content in the simulated PWR primary water. The fracture surface exhibited typical intergranular stress corrosion cracking (IGSCC) characteristics.

  9. Microstructural characterization of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint

    SciTech Connect

    Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu Han, En-Hou; Ke, Wei

    2014-11-15

    The microstructure of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint was characterized in this work by optical microscopy, scanning electron microscopy (with electron back scattering diffraction) and micro-hardness testing. Epitaxial growth and competitive growth are evident in the 308L–316L fusion boundary regions. A martensite layer, carbon-depleted zones, and type-II and type-I boundaries are found in the SA508–309L fusion boundary regions, while only martensite and austenite mixed zones are observed in the SA508–308L fusion boundary regions. The microstructure near the fusion boundary and the microstructure transition in the SA508 heat affected zone are quite complex. Both for SA508–309L/308L and 308L–316L, the highest residual strain is located on the outside of the weldment. The residual strain and the grain boundary character distribution change with increasing distance from the fusion boundary in the heat affected zone of 316L. Micro-hardness measurements also reveal non-uniform mechanical properties across the weldment. - Highlights: • The microstructure of SA508 HAZ, especially near the FB, is very complex. • The outside of the dissimilar metal welded joint has the highest residual. • The micro-hardness distributions along the DMWJ are non-uniform.

  10. Influence of particle velocity and molten phase on the chemical and mechanical properties of HVOF-sprayed structural coatings of alloy 316L

    SciTech Connect

    Voggenreiter, H.; Huber, H.; Beyer, S.; Spies, H.J.

    1995-12-31

    The HP/HVOF spraying process allows the production of oxide-low, thick coatings with low porosity. This fact implies the feasibility of load-bearing HP/HVOF-sprayed structures. Optimum mechanical properties are required for structural applications of HP/HVOF-sprayed iron base alloy 316L. Process-parameter-dependent particle properties like temperature and velocity strongly influence the microstructure and the chemical and mechanical properties of HP/HVOF-sprayed alloy 316L. Results of metallographical and chemical analysis and laser-optic-aided particle velocity measurement lead to a new understanding of particle oxidation based on a high volume fraction of liquid phase and high particle impact velocity. The volume fraction of oxides greatly affects the mechanical properties of homogenized HP/HVOF-316 L. Optimum process parameters result in reduced oxide content less than 0.9% and consequently in strength and elongation comparable to that of wrought alloy 316L. Additionally to these excellent mechanical properties, a low porosity level of about 0.1 to 0.2% is achieved. These fundamental results were transferred successfully to a new type of combustion chamber for hypersonic aircraft with reduced complexity and weight.

  11. Biofilm initiation and growth of Pseudomonas aeruginosa on 316L stainless steel in low gravity in orbital space flight

    NASA Astrophysics Data System (ADS)

    Todd, Paul; Pierson, Duane L.; Allen, Britt; Silverstein, JoAnn

    The formation of biofilms by water microorganisms such as Pseudomonas aeruginosa in spacecraft water systems has been a matter of concern for long-duration space flight. Crewed spacecraft plumbing includes internal surfaces made of 316L stainless steel. Experiments were therefore undertaken to compare the ability of P. aeruginosa to grow in suspension, attach to stainless steel and to grow on stainless steel in low gravity on the space shuttle. Four categories of cultures were studied during two space shuttle flights (STS-69 and STS-77). Cultures on the ground were held in static horizontal or vertical cylindrical containers or were tumbled on a clinostat and activated under conditions identical to those for the flown cultures. The containers used on the ground and in flight were BioServe Space Technologies’ Fluid Processing Apparatus (FPA), an open-ended test tube with rubber septa that allows robotic addition of bacteria to culture media to initiate experiments and the addition of fixative to conclude experiments. Planktonic growth was monitored by spectrophotometry, and biofilms were characterized quantitatively by epifluorescence and scanning electron microscopy. In these experiments it was found that: (1) Planktonic growth in flown cultures was more extensive than in static cultures, as seen repeatedly in the history of space microbiology, and closely resembled the growth of tumbled cultures. (2) Conversely, the attachment of cells in flown cultures was as much as 8 times that in tumbled cultures but not significantly different from that in static horizontal and vertical cultures, consistent with the notion that flowing fluid reduces microbial attachment. (3) The final surface coverage in 8 days was the same for flown and static cultures but less by a factor of 15 in tumbled cultures, where coverage declined during the preceding 4 days. It is concluded that cell attachment to 316L stainless steel in the low gravity of orbital space flight is similar to that

  12. Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L(N)

    NASA Astrophysics Data System (ADS)

    Mandal, Sumantra; Jayalakshmi, M.; Bhaduri, A. K.; Subramanya Sarma, V.

    2014-11-01

    In this paper, the effect of strain rate (in the domain of 0.001 to 10 s-1) on dynamic recrystallization (DRX) kinetics in a nitrogen-enhanced 316L(N) austenitic stainless steel during high temperature [≥1123 K (≥850 °C)] deformation is reported. In the low strain rate domain ( i.e., <0.1 s-1), the DRX is predominantly governed by higher growth of DRX grains resulting in a higher DRX fraction and larger DRX grain size. On the other hand, DRX at higher strain rates ( i.e., ≥1 s-1) is mainly controlled by higher nucleation resulting in higher DRX fraction with a finer grain size. In the intermediate strain rate regime of 0.1 s-1, sluggish kinetics of DRX is observed since neither the nucleation nor the growth of DRX grains is predominant. The annealing twinning event, which may accelerates the DRX kinetics, is also observed to occur more frequently during the low and high strain rate deformations.

  13. Effect of thermal treatment on the corrosion resistance of Type 316L stainless steel exposed in supercritical water

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Zheng, W.; Guzonas, D. A.; Cook, W. G.; Kish, J. R.

    2015-09-01

    There are still unknown aspects about the growth mechanism of oxide scales formed on candidate stainless steel fuel cladding materials during exposure in supercritical water (SCW) under the conditions relevant to the Canadian supercritical water-cooled reactor (SCWR). The tendency for intermetallic precipitates to form within the grains and on grain boundaries during prolonged exposure at high temperatures represents an unknown factor to corrosion resistance, since they tend to bind alloyed Cr. The objective of this study was to better understand the extent to which intermetallic precipitates affects the mode and extent of corrosion in SCW. Type 316L stainless steel, used as a model Fe-Cr-Ni-Mo alloy, was exposed to 25 MPa SCW at 550 °C for 500 h in a static autoclave for this purpose. Mechanically-abraded samples were tested in the mill-annealed (MA) and a thermally-treated (TT) condition. The thermal treatment was conducted at 815 °C for 1000 h to precipitate the carbide (M23C6), chi (χ), laves (η) and sigma (σ) phases. It was found that although relatively large intermetallic precipitates formed at the scale/alloy interface locally affected the oxide scale formation, their discontinuous formation did not affect the short-term overall apparent corrosion resistance.

  14. Stress corrosion cracking and corrosion fatigue on 316L stainless steel in boric acid concentrated media at 320 C

    SciTech Connect

    Herms, E.; Olive, J.M.; Puiggali, M.; Boursier, J.M.

    1999-07-01

    Stress Corrosion Cracking (SCC) and Corrosion-Fatigue (CF) tests were performed in autoclave at 320 C in concentrated boric acid chlorinated media in presence of oxygen or hydrogen on type 316L austenitic stainless steel. Crack Growth Rates (CGR) are higher in non deaerated solutions for both SCC and CF than in hydrogenated solutions. CGR are relatively similar in CF and in SCC, excepted for high load ratio in CF where CGR are higher than in SCC. Detailed analysis of the fracture surface shows some distinct features between SCC and CF. Intergranular and transgranular mode of fracture are observed on SCC and CF. Fracture modes depend on the chemistry of solution in SCC and on frequency in CF. Traces of slip bands and crack front marking associated with oxide scale present on fracture surfaces exist in SCC and CF. Fatigue striations appear for low load ratio and high frequency. Secondary intergranular and transgranular cracking is observed only on SCC fracture surfaces and ligament morphology can be different in SCC relative to FC.

  15. Optimization of Process Parameters of Hybrid Laser-Arc Welding onto 316L Using Ensemble of Metamodels

    NASA Astrophysics Data System (ADS)

    Zhou, Qi; Jiang, Ping; Shao, Xinyu; Gao, Zhongmei; Cao, Longchao; Yue, Chen; Li, Xiongbin

    2016-04-01

    Hybrid laser-arc welding (LAW) provides an effective way to overcome problems commonly encountered during either laser or arc welding such as brittle phase formation, cracking, and porosity. The process parameters of LAW have significant effects on the bead profile and hence the quality of joint. This paper proposes an optimization methodology by combining non-dominated sorting genetic algorithm (NSGA-II) and ensemble of metamodels (EMs) to address multi-objective process parameter optimization in LAW onto 316L. Firstly, Taguchi experimental design is adopted to generate the experimental samples. Secondly, the relationships between process parameters (i.e., laser power (P), welding current (A), distance between laser and arc (D), and welding speed (V)) and the bead geometries are fitted using EMs. The comparative results show that the EMs can take advantage of the prediction ability of each stand-alone metamodel and thus decrease the risk of adopting inappropriate metamodels. Then, the NSGA-II is used to facilitate design space exploration. Besides, the main effects and contribution rates of process parameters on bead profile are analyzed. Eventually, the verification experiments of the obtained optima are carried out and compared with the un-optimized weld seam for bead geometries, weld appearances, and welding defects. Results illustrate that the proposed hybrid approach exhibits great capability of improving welding quality in LAW.

  16. The Effect of Post-Heat Treatment on Microstructure of 316L Cold-Sprayed Coatings and Their Corrosion Performance

    NASA Astrophysics Data System (ADS)

    Dikici, B.; Yilmazer, H.; Ozdemir, I.; Isik, M.

    2016-04-01

    The combined effects of process gases and post-heat treatment temperature on the microstructure of 316L cold-sprayed coatings on Al5052 substrates have been investigated in this study. The stainless steel coatings were subjected to heat treatment at four different temperatures (250, 500, 750, and 1000 °C) to study the effect of heat treatment. In addition, the corrosion performances of the coatings at different process temperatures have been compared using the potentiodynamic scanning technique. Microstructural characterization of the coatings was carried out using scanning and transmission electron microscopy and x-ray diffraction. The results of present study showed that cold-sprayed stainless steel coatings processed with helium exhibited higher corrosion resistance than those of coatings sprayed with nitrogen process gas. This could partially be attributed to the reduction in porosity level (4.9%) and improvement of particle-particle bonding. In addition, evaluation of the mechanical and microstructural properties of the coatings demonstrated that subsequent heat treatment has major influence on the deposited layers sprayed with He process gas.

  17. Effect of SUS316L stainless steel surface conditions on the wetting of molten multi-component oxides ceramic

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Matsuda, Nozomu; Shinozaki, Nobuya; Miyoshi, Noriko; Shiraishi, Takanobu

    2015-02-01

    A study on the effect of SUS316L stainless steel surface conditions on the wetting behavior of molten multi-component oxides ceramic was performed and aimed to contribute to the further understanding of the application of oxides ceramic in penetration treatment of stainless steel coatings and the deposition of stainless steel cermet coatings. The results show that at 1273 K, different surface pre-treatments (polishing and heating) had an important effect on the wetting behavior. The molten multi-component oxides showed good wettability on both stainless steel substrates, however, the wetting process on the polished substrate was significantly slower than that on the heated substrates. The mechanism of the interfacial reactions was discussed based on the microscopic and thermodynamic analysis, the substrates reacted with oxygen generated from the decomposition of the molten multi-component oxides and oxygen contained in the argon atmosphere, and the oxide film caused the molten multi-component oxides ceramic to spread on the substrates surfaces. For the polished substrate, more time was required for the surface oxidation to reach the surface composition of Heated-S, which resulted in relatively slow spreading and wetting rates. Moreover, the variance of the surface roughness drove the final contact angles to slightly different values following the sequence Polished-S > Heated-S.

  18. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.

    PubMed

    Huang, Qiaoling; Yang, Yun; Hu, Ronggang; Lin, Changjian; Sun, Lan; Vogler, Erwin A

    2015-01-01

    Superhydrophilic and superhydrophobic TiO2 nanotube (TNT) arrays were fabricated on 316L stainless steel (SS) to improve corrosion resistance and hemocompatibility of SS. Vertically-aligned superhydrophilic amorphous TNTs were fabricated on SS by electrochemical anodization of Ti films deposited on SS. Calcination was carried out to induce anatase phase (superhydrophilic), and fluorosilanization was used to convert superhydrophilicity to superhydrophobicity. The morphology, structure and surface wettability of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and contact angle goniometry. The effects of surface wettability on corrosion resistance and platelet adhesion were investigated. The results showed that crystalline phase (anatase vs. amorphous) and wettability strongly affected corrosion resistance and platelet adhesion. The superhydrophilic amorphous TNTs failed to protect SS from corrosion whereas superhydrophobic amorphous TNTs slightly improved corrosion resistance of SS. Both superhydrophilic and superhydrophobic anatase TNTs significantly improved corrosion resistance of SS. The superhydrophilic amorphous TNTs minimized platelet adhesion and activation whereas superhydrophilic anatase TNTs activated the formation of fibrin network. On the contrary, both superhydrophobic TNTs (superhydrophobic amorphous TNTs and superhydrophobic anatase TNTs) reduced platelet adhesion significantly and improved corrosion resistance regardless of crystalline phase. Superhydrophobic anatase TNTs coating on SS surface offers the opportunity for the application of SS as a promising permanent biomaterial in blood contacting biomedical devices, where both reducing platelets adhesion/activation and improving corrosion resistance can be effectively combined. PMID:25481855

  19. In situ monitoring the pulse CO 2 laser interaction with 316-L stainless steel using acoustical signals and plasma analysis

    NASA Astrophysics Data System (ADS)

    Khosroshahi, M. E.; pour, F. Anoosheh; Hadavi, M.; Mahmoodi, M.

    2010-10-01

    In most laser material processing, material removal by different mechanisms is involved. Here, application of acoustic signals with thermoelastic (below threshold) and breakdown origin (above threshold) together with plasma plume analysis as a simple monitoring system of interaction process is suggested. In this research the interaction of pulse CO 2 laser with 200 ns duration and maximum energy of 1.3 J operating at 1 Hz with austenitic stainless steel (316-L) is reported. The results showed that the non-linear point of the curve can serve as a useful indicator of melting fluence threshold (in this case ≈830 J cm -2) with corresponding temperature calculated using plasma plume analysis. Higher acoustic amplitudes and larger plasma plume volume indicates more intense interaction. Also, analysis showed that a phase explosion process with material removal (ejecta) in the form of non-adiabatic (i.e., dt ≫ α-1) is at play after laser pulse is ended. Also, SEM photographs show different surface quality medication at different laser intensities, which indicates the importance of recoil momentum pressure and possibly electrons and ions densities in heat transfer. Finally, electrochemical test indicate an improved corrosion resistance for laser treated samples compared to untreated ones.

  20. Biocompatibility studies of low temperature nitrided and collagen-I coated AISI 316L austenitic stainless steel.

    PubMed

    Martinesi, M; Stio, M; Treves, C; Borgioli, F

    2013-06-01

    The biocompatibility of austenitic stainless steels can be improved by means of surface engineering techniques. In the present research it was investigated if low temperature nitrided AISI 316L austenitic stainless steel may be a suitable substrate for bioactive protein coating consisting of collagen-I. The biocompatibility of surface modified alloy was studied using as experimental model endothelial cells (human umbilical vein endothelial cells) in culture. Low temperature nitriding produces modified surface layers consisting mainly of S phase, the supersaturated interstitial solid solution of nitrogen in the austenite lattice, which allows to enhance surface microhardness and corrosion resistance in PBS solution. The nitriding treatment seems to promote the coating with collagen-I, without chemical coupling agents, in respect of the untreated alloy. For biocompatibility studies, proliferation, lactate dehydrogenase levels and secretion of two metalloproteinases (MMP-2 and MMP-9) were determined. Experimental results suggest that the collagen protection may be favourable for endothelial cell proliferation and for the control of MMP-2 release. PMID:23471501

  1. Influence of flowing sodium on creep deformation and rupture behaviour of 316L(N) austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Laha, K.; Mathew, M. D.; Vijayaraghavan, S.; Shanmugavel, M.; Rajan, K. K.; Jayakumar, T.

    2012-08-01

    The influence of flowing sodium on creep deformation and rupture behaviour of AISI 316L(N) austenitic stainless steel has been investigated at 873 K over a stress range of 235-305 MPa. The results were compared with those obtained from testing in air environment. The steady state creep rates of the material were not influenced appreciably by the testing environments. The time to onset of tertiary stage of creep deformation was delayed in sodium environment. The creep-rupture lives of the material increased in sodium environment, which became more pronounced at lower applied stresses. The increase in rupture life of the material in flowing sodium was accompanied by an increase in rupture ductility. The creep damage on specimen surface as well as inside the specimen was less in specimen tested in sodium. SEM fractographic investigation revealed predominantly transgranular dimple failure for the specimen tested in sodium, whereas predominantly intergranular creep failure was observed in the air tested specimens. Almost no oxidation was observed in the specimens creep tested in the sodium environment. Absence of oxidation and less creep damage cavitation extended the secondary state in liquid sodium tests and lead to increase in creep rupture life and ductility of the material as compared to in air.

  2. MC3T3-E1 cell response to stainless steel 316L with different surface treatments.

    PubMed

    Zhang, Hongyu; Han, Jianmin; Sun, Yulong; Huang, Yongling; Zhou, Ming

    2015-11-01

    In the present study, stainless steel 316L samples with polishing, aluminum oxide blasting, and hydroxyapatite (HA) coating were prepared and characterized through a scanning electron microscope (SEM), optical interferometer (surface roughness, Sq), contact angle, surface composition and phase composition analyses. Osteoblast-like MC3T3-E1 cell adhesion on the samples was investigated by cell morphology using a SEM (4h, 1d, 3d, 7d), and cell proliferation was assessed by MTT method at 1d, 3d, and 7d. In addition, adsorption of bovine serum albumin on the samples was evaluated at 1h. The polished sample was smooth (Sq: 1.8nm), and the blasted and HA coated samples were much rougher (Sq: 3.2μm and 7.8μm). Within 1d of incubation, the HA coated samples showed the best cell morphology (e.g., flattened shape and complete spread), but there was no significant difference after 3d and 7d of incubation for all the samples. The absorbance value for the HA coated samples was the highest after 1d and 3d of incubation, indicating better cell viability. However, it reduced to the lowest value at 7d. Protein adsorption on the HA coated samples was the highest at 1h. The results indicate that rough stainless steel surface improves cell adhesion and morphology, and HA coating contributes to superior cell adhesion, but inhibits cell proliferation. PMID:26249561

  3. Femtosecond laser treatment of 316L improves its surface nanoroughness and carbon content and promotes osseointegration: An in vitro evaluation.

    PubMed

    Kenar, Halime; Akman, Erhan; Kacar, Elif; Demir, Arif; Park, Haiwoong; Abdul-Khaliq, Hashim; Aktas, Cenk; Karaoz, Erdal

    2013-08-01

    Cell-material surface interaction plays a critical role in osseointegration of prosthetic implants used in orthopedic surgeries and dentistry. Different technical approaches exist to improve surface properties of such implants either by coating or by modification of their topography. Femtosecond laser treatment was used in this study to generate microspotted lines separated by 75, 125, or 175μm wide nanostructured interlines on stainless steel (316L) plates. The hydrophobicity and carbon content of the metallic surface were improved simultaneously through this method. In vitro testing of the laser treated plates revealed a significant improvement in adhesion of human endothelial cells and human bone marrow mesenchymal stem cells (hBM MSCs), the cells involved in microvessel and bone formation, respectively, and a significant decrease in fibroblast adhesion, which is implicated in osteolysis and aseptic loosening of prostheses. The hBM MSCs showed an increased bone formation rate on the laser treated plates under osteogenic conditions; the highest mineral deposition was obtained on the surface with 125μm interline distance (292±18mg/cm(2) vs. 228±43mg/cm(2) on untreated surface). Further in vivo testing of these laser treated surfaces in the native prosthetic implant niche would give a real insight into their effectiveness in improving osseointegration and their potential use in clinical applications. PMID:23563298

  4. Electrochemical and In Vitro Behavior of Nanostructure Sol-Gel Coated 316L Stainless Steel Incorporated with Rosemary Extract

    NASA Astrophysics Data System (ADS)

    Motalebi, Abolfazl; Nasr-Esfahani, Mojtaba

    2013-06-01

    The corrosion resistance of AISI 316L stainless steel for biomedical applications, was significantly enhanced by means of hybrid organic-inorganic sol-gel thin films deposited by spin-coating. Thin films of less than 100 nm with different hybrid characters were obtained by incorporating rosemary extract as green corrosion inhibitor. The morphology, composition, and adhesion of hybrid sol-gel coatings have been examined by SEM, EDX, and pull-off test, respectively. Addition of high additive concentrations (0.1%) did not disorganize the sol-gel network. Direct pull-off test recorded a mean coating-substrate bonding strength larger than 21.2 MPa for the hybrid sol-gel coating. The effect of rosemary extract, with various added concentrations from 0.012 to 0.1%, on the anticorrosion properties of sol-gel films have been characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in simulated body fluid (SBF) solution and has been compared to the bare metal. Rosemary extract additions (0.05%) have significantly increased the corrosion protection of the sol-gel thin film to higher than 90%. The in vitro bioactivity of prepared films indicates that hydroxyapatite nuclei can form and grow on the surface of the doped sol-gel thin films. The present study shows that due to their excellent anticorrosion properties, bioactivity and bonding strength to substrate, doped sol-gel thin films are practical hybrid films in biomedical applications.

  5. Summary of recommended correlations for ITER-grade type 316L(N) for the ITER materials properties handbook

    SciTech Connect

    Billone, M.C.; Pawel, J.E.

    1996-04-01

    The focus of this effort is the effects of irradiation on the ultimate tensile strengths (UTS), the yield strength (YS), the uniform elongation (UE), the total elongation (TE) and the reduction in area (RA) in the ITER-relevant temperature range of 100-400{degrees}C. For the purpose of this summary, data for European heats of 316 with 0.020.08 wt.% are referred to as E316L(N) data and grouped together. Other heats of 316 and Ti-modified 316 are also included in the data base. For irradiation and postirradiation-test temperatures in the range of 200-400{degrees}C, the common behavior of these heats of stainless steel is a yield strength approaching the ultimate tensile strength approaching 800 MPa, a uniform elongation approaching 0.3%, a total elongation approaching 3-9%, and a high (about 60%) reduction in area as the neutron damage approaches 10 dpa.

  6. Electrochemical characterization of AISI 316L stainless steel in contact with simulated body fluid under infection conditions.

    PubMed

    López, Danián Alejandro; Durán, Alicia; Ceré, Silvia Marcela

    2008-05-01

    Titanium and cobalt alloys, as well as some stainless steels, are among the most frequently used materials in orthopaedic surgery. In industrialized countries, stainless steel devices are used only for temporary implants due to their lower corrosion resistance in physiologic media when compared to other alloys. However, due to economical reasons, the use of stainless steel alloys for permanent implants is very common in developing countries. The implantation of foreign bodies is sometimes necessary in the modern medical practice. However, the complex interactions between the host and the can implant weaken the local immune system, increasing the risk of infections. Therefore, it is necessary to further study these materials as well as the characteristics of the superficial film formed in physiologic media in infection conditions in order to control their potential toxicity due to the release of metallic ions in the human body. This work presents a study of the superficial composition and the corrosion resistance of AISI 316L stainless steel and the influence of its main alloying elements when they are exposed to an acidic solution that simulates the change of pH that occurs when an infection develops. Aerated simulated body fluid (SBF) was employed as working solution at 37 degrees C. The pH was adjusted to 7.25 and 4 in order to reproduce normal body and disease state respectively. Corrosion resistance was measured by means of electrochemical impedance spectroscopy (EIS) and anodic polarization curves. PMID:17999036

  7. Effects of Hydrogen Gas Environment on Fatigue Strength at 107 cycles in Plain Specimen of Type 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kawamoto, Kyohei; Ochi, Kazuhiko; Oda, Yasuji; Noguchi, Hiroshi

    In order to clarify the hydrogen effect on the fatigue strength at 107 cycles in a plain specimen of type 316L austenitic stainless steel, rotating bending fatigue tests in laboratory air and plane bending fatigue tests in 1.0 MPa dry hydrogen gas and in air at 313 K were carried out. The main results obtained are as follows. The observed fatigue behavior showed that the fatigue strength at 107 cycles in both environments is determined by the non-propagation of a fatigue crack of the order of the grain size. Also, the strength at 107 cycles in hydrogen gas is slightly higher than that in air. In the region of high-cycle fatigue, the fatigue life in hydrogen gas is longer than that in air, which is mainly caused by the longer crack initiation life in hydrogen gas. The crack propagation life in hydrogen gas is shorter than that in air but has only a small ratio to the fatigue life in this region.

  8. TEM study of the nucleation of bubbles induced by He implantation in 316L industrial austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Jublot-Leclerc, S.; Lescoat, M.-L.; Fortuna, F.; Legras, L.; Li, X.; Gentils, A.

    2015-11-01

    10 keV He ions were implanted in-situ in a TEM into thin foils of 316L industrial austenitic stainless steel at temperatures ranging from 200 to 550 °C. As a result, overpressurized nanometric bubbles are created with density and size depending strongly on both the temperature and fluence of implantation. An investigation on their nucleation and growth is reported through a rigorous statistical analysis whose procedure, including the consideration of free surface effects, is detailed. In the parameter range considered, the results show that an increase of fluence promotes both the nucleation and growth of the bubbles whilst an increase of temperature enhances the growth of the bubbles at the expense of their nucleation. The confrontation of resulting activation energies with existing models for bubble nucleation enables the identification of the underlying mechanisms. In spite of slight differences resulting from different conditions of implantation among which the He concentration, He production rate and He/dpa ratio, it appears that the dominating mechanisms are the same as those obtained in metals in previous studies, which, in addition to corroborating literature results, shows the suitability of in-situ TEM experiments to simulate the production of helium in nuclear materials.

  9. Surface morphology and void formation in 316L stainless steel irradiated with high energy C-ions

    NASA Astrophysics Data System (ADS)

    Wang, Z. G.; Chen, K. Q.; Li, L. W.; Zhang, C. H.; Quan, J. M.; Hou, M. D.; Xu, R. H.; Ma, F.; Jin, Y. F.; Li, C. L.; Sun, Y. M.

    This work reports the study of changes of surface topography and bulk structure of 316L stainless steel (SS) irradiated at 773 K with 51.4 MeV C-ions to a fluence of 1.14 × 10 22 ions/m 2. The calculated damage levels at the surface and at the damage peak position were 0.9 and 124 displacements per atom (dpa), respectively. The changes of surface topography and bulk structure were checked at room temperature by the use of scanning probe microscopy (SPM), scanning electron microscopy (SEM), 1 MV high voltage electron microscopy (HVEM) and transmission electron microscopy (TEM) with cross-section technique. The experimental results suggested that high dose carbon ion irradiation led to (1) serious pitting, flaking, and crazing along grain boundaries of the irradiated surface; (2) voids formed in the area around the damage peak and mean void swelling is about 4%. The void swelling data deduced from the SEM and TEM observations were the same within the experimental error. Furthermore, some phase change has been detected in the carbon ion stop region. All these observed phenomena were interrelated and have been discussed.

  10. The Effect of Surface Finish on Low-Temperature Acetylene-Based Carburization of 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ge, Yindong; Ernst, Frank; Kahn, Harold; Heuer, Arthur H.

    2014-12-01

    We observed a strong influence of surface finish on the efficacy of low-temperature acetylene-based carburization of AISI 316L austenitic stainless steel. Steel coupons were prepared with different surface finishes prior to carburization, from P400 SiC grit paper to 1- µm-diameter-diamond-paste. The samples with the finer surface finish developed a thicker "case" (a carbon-rich hardened surface layer) and a larger surface carbon concentration. Transmission electron microscopy revealed that the differences arose mainly from the nature of the deformation-induced disturbed layer on the steel surface. A thick (>400 nm) disturbed layer consisting of nano-crystalline grains (≈10 nm diameter) inhibits acetylene-based carburization. The experimental observations can be explained by assuming that during machining or coarse polishing, the surface oxide layer is broken up and becomes incorporated into the deformation-induced disturbed layer. The incorporated oxide-rich films retard or completely prevent the ingress of carbon into the stainless steel.

  11. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate

    NASA Astrophysics Data System (ADS)

    Latifi, Afrooz; Imani, Mohammad; Khorasani, Mohammad Taghi; Daliri Joupari, Morteza

    2014-11-01

    Stainless steel 316L is one of the most widely used materials for fabricating of biomedical devices hence, improving its surface properties is still of great interest and challenging in biomaterial sciences. Plasma oxidation, in comparison to the conventional chemical or mechanical methods, is one of the most efficient methods recently used for surface treatment of biomaterials. Here, stainless steel specimens were surface oxidized by radio-frequency plasma irradiation operating at 34 MHz under pure oxygen atmosphere. Surface chemical composition of the samples was significantly changed after plasma oxidation by appearance of the chromium and iron oxides on the plasma-oxidized surface. A wettable surface, possessing high surface energy (83.19 mN m-1), was observed after plasma oxidation. Upon completion of the surface modification process, silicone rubber was spray coated on the plasma-treated stainless steel surface. Morphology of the silicone rubber coating was investigated by scanning electron microscopy (SEM). A uniform coating was formed on the oxidized surface with no delamination at polymer-metal interface. Pull-off tests showed the lowest adhesion strength of coating to substrate (0.12 MPa) for untreated specimens and the highest (0.89 MPa) for plasma-oxidized ones.

  12. Study on cerium-doped nano-TiO2 coatings for corrosion protection of 316 L stainless steel

    NASA Astrophysics Data System (ADS)

    Li, Suning; Wang, Qian; Chen, Tao; Zhou, Zhihua; Wang, Ying; Fu, Jiajun

    2012-04-01

    Many methods have been reported on improving the photogenerated cathodic protection of nano-TiO2 coatings for metals. In this work, nano-TiO2 coatings doped with cerium nitrate have been developed by sol-gel method for corrosion protection of 316 L stainless steel. Surface morphology, structure, and properties of the prepared coatings were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The corrosion protection performance of the prepared coatings was evaluated in 3 wt% NaCl solution by using electrochemical techniques in the presence and absence of simulated sunlight illumination. The results indicated that the 1.2% Ce-TiO2 coating with three layers exhibited an excellent photogenerated cathodic protection under illumination attributed to the higher separation efficiency of electron-hole pairs and higher photoelectric conversion efficiency. The results also showed that after doping with an appropriate concentration of cerium nitrate, the anti-corrosion performance of the TiO2 coating was improved even without irradiation due to the self-healing property of cerium ions.

  13. Influence of Sigma Phase on Pitting Resistance Depending on Solidification Mode in AISI316L Weld Metal

    NASA Astrophysics Data System (ADS)

    Jang, A. Y.; Lee, H. W.

    2012-06-01

    The pitting corrosion resistances were investigated in the AISI 316L stainless steel weld metals with respect to the sigma phase precipitation in a 0.1 M NaCl solution. The modified flux-cored arc welding filler wires were fabricated at various chromium and nickel equivalent ratios using the flux-cored arc welding process. As the Cr/Ni equivalent ratio increased, the precipitated σ phase content increased in the temperature range of 923 K to 1123 K (650 °C to 850 °C), and the specimen that was aged at 1123 K (850 °C) precipitated the σ phase rapidly. The hardness increased with increasing sigma contents. During the potentiodynamic anodic polarization test, the specimens that were aged at 923 K to 1123 K (650 °C to 850 °C) exhibited lower pitting potentials than the as-weld metal. Additionally, the specimens that were aged for longer times exhibited lower pitting potentials. The pits occurred preferentially in the ductility dip cracking in specimen 1, whereas intergranular pits occurred in the sigma phase regions along the vermicular ferrite and acicular ferrite grain boundaries in specimens 2 and 3.

  14. Low-Temperature Aging of Delta-Ferrite in 316L SS Welds; Changes in Mechanical Properties and Etching Properties

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Shimizu, Keita; Watanabe, Yutaka

    Thermal aging embrittlement of LWR components made of stainless cast (e.g. CF-8 and CF-8M) is a potential degradation issue, and careful attention has been paid on it. Although welds of austenitic stainless steels (SSs) have γ-δ duplex microstructure, which is similar to that of the stainless cast, examination on thermal aging characteristics of the SS welds is very limited. In order to evaluate thermal aging behavior of weld metal of austenitic stainless steel, the 316L SS weld metal has been prepared and changes in mechanical properties and in etching properties at isothermal aging at 335°C have been investigated. The hardness of the ferrite phase has increased with aging, while the hardness of austenite phase has stayed same. It has been suggested that spinodal decomposition has occurred in δ-ferrite by the 335°C aging. The etching rates of δ-ferrite at immersion test in 5wt% hydrochloric acid solution have been also investigated using an AFM technique. The etching rate of ferrite phase has decreased consistently with the increase in hardness of ferrite phase. It has been thought that this characteristic is also caused by spinodal decomposition of ferrite into chromium-rich (α') and iron-rich (α).

  15. Optimization of Process Parameters of Hybrid Laser-Arc Welding onto 316L Using Ensemble of Metamodels

    NASA Astrophysics Data System (ADS)

    Zhou, Qi; Jiang, Ping; Shao, Xinyu; Gao, Zhongmei; Cao, Longchao; Yue, Chen; Li, Xiongbin

    2016-08-01

    Hybrid laser-arc welding (LAW) provides an effective way to overcome problems commonly encountered during either laser or arc welding such as brittle phase formation, cracking, and porosity. The process parameters of LAW have significant effects on the bead profile and hence the quality of joint. This paper proposes an optimization methodology by combining non-dominated sorting genetic algorithm (NSGA-II) and ensemble of metamodels (EMs) to address multi-objective process parameter optimization in LAW onto 316L. Firstly, Taguchi experimental design is adopted to generate the experimental samples. Secondly, the relationships between process parameters ( i.e., laser power ( P), welding current ( A), distance between laser and arc ( D), and welding speed ( V)) and the bead geometries are fitted using EMs. The comparative results show that the EMs can take advantage of the prediction ability of each stand-alone metamodel and thus decrease the risk of adopting inappropriate metamodels. Then, the NSGA-II is used to facilitate design space exploration. Besides, the main effects and contribution rates of process parameters on bead profile are analyzed. Eventually, the verification experiments of the obtained optima are carried out and compared with the un-optimized weld seam for bead geometries, weld appearances, and welding defects. Results illustrate that the proposed hybrid approach exhibits great capability of improving welding quality in LAW.

  16. Microstructural Development and Technical Challenges in Laser Additive Manufacturing: Case Study with a 316L Industrial Part

    NASA Astrophysics Data System (ADS)

    Marya, Manuel; Singh, Virendra; Marya, Surendar; Hascoet, Jean Yves

    2015-08-01

    Additive manufacturing (AM) brings disruptive changes to the ways parts, and products are designed, fabricated, tested, qualified, inspected, marketed, and sold. These changes introduce novel technical challenges and concerns arising from the maturity and diversity of today's AM processes, feedstock materials, and process parameter interactions. AM bears a resemblance with laser and electron beam welding in the so-called conduction mode, which involves a multitude of dynamic physical events between the projected feedstock and a moving heat source that eventually influence AM part properties. For this paper, an air vent was selected for its thin-walled, hollow, and variable cross section, and limited size. The studied air vents, randomly selected from a qualification batch, were fabricated out of 316L stainless steel using a 4 kW fiber laser powder-fed AM system, referred to as construction laser additive direct (CLAD). These were systematically characterized by microhardness indentation, visual examination, optical and scanning electron microscopy, and electron-back-scattering diffraction in order to determine AM part suitability for service and also broadly discuss metallurgical phenomena. The paper then briefly expands the discussion to include additional engineering alloys and further analyze relationships between AM process parameters and AM part properties, consistently utilizing past experience with the same powder-fed CLAD 3D printer, the well-established science and technology of welding and joining, and recent publications on additive manufacturing.

  17. Microstructural Variations Across a Dissimilar 316L Austenitic: 9Cr Reduced Activation Ferritic Martensitic Steel Weld Joint

    NASA Astrophysics Data System (ADS)

    Thomas Paul, V.; Karthikeyan, T.; Dasgupta, Arup; Sudha, C.; Hajra, R. N.; Albert, S. K.; Saroja, S.; Jayakumar, T.

    2016-03-01

    This paper discuss the microstructural variations across a dissimilar weld joint between SS316 and 9Cr-RAFM steel and its modifications on post weld heat treatments (PWHT). Detailed characterization showed a mixed microstructure of austenite and martensite in the weld which is in agreement with the phases predicted using Schaeffler diagram based on composition measurements. The presence of very low volume fraction of δ-ferrite in SS316L has been identified employing state of the art electron back-scattered diffraction technique. PWHT of the ferritic steel did not reduce the hardness in the weld metal. Thermal exposure at 973 K (700 °C) showed a progressive reduction in hardness of weld joint with duration of treatment except in austenitic base metal. However, diffusion annealing at 1073 K (800 °C) for 100 hours resulted in an unexpected increase in hardness of weld metal, which is a manifestation of the dilution effects and enrichment of Ni on the transformation characteristics of the weld zone. Migration of carbon from ferritic steel aided the precipitation of fine carbides in the austenitic base metal on annealing at 973 K (700 °C); but enhanced diffusion at 1073 K (880 °C) resulted in coarsening of carbides and thereby reduction of hardness.

  18. Surface interactions of a W-DLC-coated biomedical AISI 316L stainless steel in physiological solution.

    PubMed

    Antunes, Renato A; de Lima, Nelson Batista; Rizzutto, Márcia de Almeida; Higa, Olga Zazuco; Saiki, Mitiko; Costa, Isolda

    2013-04-01

    The corrosion stability of a W-DLC coated surgical AISI 316L stainless steel in Hanks' solution has been evaluated. Particle induced X-ray emission (PIXE) measurements were performed to evaluate the incorporation of potentially bioactive elements from the physiological solution. The film structure was analyzed by X-ray diffractometry and micro-Raman spectroscopy. The wear behavior was assessed using the sphere-on-disc geometry. The in vitro biocompatibility of the W-DLC film was evaluated by cytotoxicity tests. The corrosion resistance of the stainless steel substrate decreased in the presence of the PVD layer. EIS measurements suggest that this behavior was closely related to the corrosion attack through the coating pores. PIXE measurements revealed the presence of Ca and P in the W-DLC film after immersion in Hanks' solution. This result shows that the PIXE technique can be applied to identify and evaluate the incorporation of bioactive elements by W-DLC films. The film showed good wear resistance and biocompatibility. PMID:23371768

  19. Electrochemical Behavior of CrN Coated on 316L Stainless Steel in Simulated Cathodic Environment of Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Nam, Nguyen Dang; Kim, Jung-Gu

    2008-08-01

    Four types of CrN coating were deposited on type 316L stainless steel by magnetron sputtering physical vapor deposition (PVD) for use in bipolar plates. Four samples deposited at various bias voltages were evaluated under potentiodynamic, potentiostatic, and electrochemical impedance spectroscopy (EIS) conditions. EIS data were monitored for 96 h in an aerated corrosive environment at 70 °C to determine coating performance at +600 mV application. The electrochemical behavior of the coatings was enhanced with decreasing bias voltage. The CrN films on the 316L stainless steel substrate exhibited high protective efficiency, that is, increasing corrosion resistance with decreasing bias voltage. X-ray diffraction (XRD) analysis confirmed the formation of crystalline-refined CrN(200) at a low bias voltage.

  20. Rapid heating tensile tests of high-energy-rate-forged 316L stainless steel containing internal helium from radioactive decay of absorbed tritium

    SciTech Connect

    Mosley, W.C.

    1990-01-01

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. This austenitic stainless steel is frequently used in the high-energy-rate-forged (HERF) metallurgical condition to take advantage of increased strength produced by cold work introduced by this process. Proper design of tritium-handling equipment will require an understanding of how helium-3, the product of radioactive decay of tritium, affects mechanical properties. This report describes results of elevated-temperature tensile testing of HERF 316L stainless steel specimens containing helium concentrations of 171 (calculated) atomic parts per million (appm). Results are compared with those reported previously for specimens containing 0 and 94 (measured) appm helium.

  1. Rapid heating tensile tests of high-energy-rate-forged 316L stainless steel containing internal helium from radioactive decay of absorbed tritium

    SciTech Connect

    Mosley, W.C.

    1990-12-31

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. This austenitic stainless steel is frequently used in the high-energy-rate-forged (HERF) metallurgical condition to take advantage of increased strength produced by cold work introduced by this process. Proper design of tritium-handling equipment will require an understanding of how helium-3, the product of radioactive decay of tritium, affects mechanical properties. This report describes results of elevated-temperature tensile testing of HERF 316L stainless steel specimens containing helium concentrations of 171 (calculated) atomic parts per million (appm). Results are compared with those reported previously for specimens containing 0 and 94 (measured) appm helium.

  2. A study of Ta xC 1 -x coatings deposited on biomedical 316L stainless steel by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ding, M. H.; Wang, B. L.; Li, L.; Zheng, Y. F.

    2010-11-01

    In this paper, Ta xC 1 -x coatings were deposited on 316L stainless steel (316L SS) by radio-frequency (RF) magnetron sputtering at various substrate temperatures ( Ts) in order to improve its corrosion resistance and hemocompatibility. XRD results indicated that Ts could significantly change the microstructure of Ta xC 1 -x coatings. When Ts was <150 °C, the Ta xC 1 -x coatings were in amorphous condition, whereas when Ts was ≥150 °C, TaC phase was formed, exhibiting in the form of particulates with the crystallite sizes of about 15-25 nm ( Ts = 300 °C). Atomic force microscope (AFM) results showed that with the increase of Ts, the root-mean-square (RMS) values of the Ta xC 1 -x coatings decreased. The nano-indentation experiments indicated that the Ta xC 1 -x coating deposited at 300 °C had a higher hardness and modulus. The scratch test results demonstrated that Ta xC 1 -x coatings deposited above 150 °C exhibited good adhesion performance. Tribology tests results demonstrated that Ta xC 1 -x coatings exhibited excellent wear resistance. The results of potentiodynamic polarization showed that the corrosion resistance of the 316L SS was improved significantly because of the deposited Ta xC 1 -x coatings. The platelet adhesion test results indicated that the Ta xC 1 -x coatings deposited at Ts of 150 °C and 300 °C possessed better hemocompatibility than the coating deposited at Ts of 25 °C. Additionally, the hemocompatibility of the Ta xC 1 -x coating on the 316L SS was found to be influenced by its surface roughness, hydrophilicity and the surface energy.

  3. Multilayered Zr-C/a-C film on stainless steel 316L as bipolar plates for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Bi, Feifei; Peng, Linfa; Yi, Peiyun; Lai, Xinmin

    2016-05-01

    A multilayered zirconium-carbon/amorphous carbon (Zr-C/a-C) coating is synthesized by magnetron sputtering in order to improve the corrosion resistance and interfacial conductivity of stainless steel 316L (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). Zr-C/a-C film contains an outmost pure amorphous carbon layer and a sub zirconium containing carbon layer. Interfacial contact resistance (ICR) between carbon paper and coated SS316L decreases to 3.63 mΩ cm2 at 1.4 MPa. Potentiodynamic polarization results reveal that the corrosion potential of Zr-C/a-C coated sample is more positive than pure a-C coated sample and the current density is only 0.49 μA cm-2 at the cathode applied potential 0.6 V. Electrochemical impendence spectroscopy also indicates that multilayered Zr-C/a-C film coated SS316L has much higher charge transfer resistance than the bare sample. After potentiostatic polarization, ICR values are 3.92 mΩ cm2 and 3.82 mΩ cm2 in the simulated PEMFCs cathode and anode environment, respectively. Moreover, XPS analysis of the coated samples before and after potential holding tests shows little difference, which disclose the chemical stability of multilayered Zr-C/a-C film. Therefore, the multilayered Zr-C/a-C coating exhibits excellent performance in various aspects and is preferred for the application of stainless steel bipolar plates.

  4. In vitro response of human peripheral blood mononuclear cells to AISI 316L austenitic stainless steel subjected to nitriding and collagen coating treatments.

    PubMed

    Stio, Maria; Martinesi, Maria; Treves, Cristina; Borgioli, Francesca

    2015-02-01

    Surface modification treatments can be used to improve the biocompatibility of austenitic stainless steels. In the present research two different modifications of AISI 316L stainless steel were considered, low temperature nitriding and collagen-I coating, applied as single treatment or in conjunction. Low temperature nitriding produced modified surface layers consisting mainly of S phase, which enhanced corrosion resistance in PBS solution. Biocompatibility was assessed using human peripheral blood mononuclear cells (PBMC) in culture. Proliferation, lactate dehydrogenase (LDH) levels, release of cytokines (TNF-α, IL-1β, IL-12, IL-10), secretion of metalloproteinase (MMP)-9 and its inhibitor TIMP-1, and the gelatinolytic activity of MMP-9 were determined. While the 48-h incubation of PBMC with all the sample types did not negatively influence cell proliferation, LDH and MMP-9 levels, suggesting therefore a good biocompatibility, the release of the pro-inflammatory cytokines was always remarkable when compared to that of control cells. However, in the presence of the nitrided and collagen coated samples, the release of the pro-inflammatory cytokine IL-1β decreased, while that of the anti-inflammatory cytokine IL-10 increased, in comparison with the untreated AISI 316L samples. Our results suggest that some biological parameters were ameliorated by these surface treatments of AISI 316L. PMID:25655502

  5. Influence of Prior Fatigue Damage on Tensile Properties of 316L(N) Stainless Steel and Modified 9Cr-1Mo Steel

    NASA Astrophysics Data System (ADS)

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Mathew, M. D.; Bhaduri, A. K.

    2015-02-01

    In the current study, the effect of prior low-cycle fatigue (LCF) damage on the tensile properties of 316L(N) stainless steel (SS) and modified 9Cr-1Mo steel were systematically investigated. The LCF tests were interrupted at 5, 10, 30, and 50 pct of the total fatigue life followed by tensile tests on the same specimens at the same strain rate (3 × 10-3 s-1) and temperatures of 300 K, 823 K, and 873 K (27 °C, 550 °C, and 600 °C). Prior strain cycling at elevated temperatures had remarkable effect on the tensile properties of both cyclically hardening and cyclically softening materials. An exponential relationship between the yield stress and the amount of pre-strain cycles is obtained for both the materials. The initial drastic change in the yield strength values up to 10 pct of fatigue life may be due to the microstructural changes that lead to hardening or softening in 316L(N) SS and modified 9Cr-1Mo steel, respectively. Saturation in the yield strength values beyond 10 pct of fatigue life has practical importance for remnant fatigue life assessment. Evolution of fatigue damage in both the 316L(N) SS and modified 9Cr-1Mo steel was analyzed using the surface replica technique.

  6. Effect of Surface Condition and Heat Treatment on Corrosion of Type 316L Stainless Steel in a Mercury Thermal Convection Loop

    SciTech Connect

    Pawel, S J

    2001-09-25

    Two thermal convection loops (TCLs) fabricated from 316L stainless steel and containing mercury and a variety of 316L coupons representing variable surface conditions and heat treatments have been operated continuously for 2000 h. Surface conditions included surface ground, polished, gold-coated, chemically etched, bombarded with Fe to simulate radiation damage, and oxidized. Heat treatments included solution treated, welded, and sensitized. In addition, a nitrogen doped 316L material, termed 316LN, was also examined in the solution treated condition. Duplicate TCLs were operated in this experiment--both were operated with a 305 C peak temperature, a 65 C temperature gradient, and mercury velocity of 1.2 m/min--but only one included a 36 h soak in Hg at 310 C just prior to operation to encourage wetting. Results indicate that the soak in Hg at 310 C had no lasting effect on wetting or compatibility with Hg. Further, based on examination of post-test wetting and coupon weight loss, only the gold-coated surfaces revealed significant interaction with Hg. In areas wetted significantly by Hg, the extreme surface of the stainless steel (ca 10 {micro}m) was depleted in Ni and Cr compared to the bulk composition.

  7. Effect of Surface Condition and Heat Treatment on Corrosion of Type 316L Stainless Steel in a Mercury Thermal Convection Loop

    SciTech Connect

    Pawel, S.J.

    2000-10-17

    Two thermal convection loops (TCLs) fabricated from 316L stainless steel and containing mercury and a variety of 316L coupons representing variable surface conditions and heat treatments have been operated continuously for 2000 h. Surface conditions included surface ground, polished, gold-coated, chemically etched, bombarded with Fe to simulate radiation damage, and oxidized. Heat treatments included solution treated, welded, and sensitized. In addition, a nitrogen doped 316L material, termed 316LN, was also examined in the solution treated condition. Duplicate TCLs were operated in this experiment--both were operated with a 305 C peak temperature, a 65 C temperature gradient, and mercury velocity of 1.2 m/min--but only one included a 36 h soak in Hg at 310 C just prior to operation to encourage wetting. Results indicate that the soak in Hg at 310 C had no lasting effect on wetting or compatibility with Hg. Further, based on examination of post-test wetting and coupon weight loss, only the gold-coated surfaces revealed significant interaction with Hg. In areas wetted significantly by Hg, the extreme surface of the stainless steel (ca 10 {micro}m) was depleted in Ni and Cr compared to the bulk composition.

  8. Electrochemical Corrosion and In Vitro Bioactivity of SiO2:ZrO2-Coated 316L Stainless Steel in Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Srinivasan, A.; Rajendran, N.

    2015-08-01

    The effect of Si:Zr ratio on the in vitro bioactivity and electrochemical corrosion behavior of SiO2:ZrO2-mixed oxide-coated 316L stainless steel (SS) was evaluated in simulated body fluid (SBF) solution for 72, 120, and 168 h. Growth of Hydroxyapatite (HAp) was accelerated when Si content in the coating was increased. The Zr content in the coating improved the corrosion resistance of 316L SS rather than accelerating the HAp growth. When the Si:Zr ratio was 50:50, the coating exhibited significant improvement in corrosion resistance as well as HAp growth. The mechanism of HAp growth was proposed based on the change in surface zeta potential values of the coatings. Potentiodynamic polarization studies revealed about 10 and 5 times reduction in corrosion current density ( i corr) values for SiO2:ZrO2 (50:50)-coated 316L SS after 168 h of immersion compared to SiO2, ZrO2, and Si:Zr (70:30) coatings in SBF solutions thus confirming the superior corrosion resistance. The equivalent circuit parameters derived from electrochemical impedance spectroscopy studies further confirmed significant improvement in charge transfer resistance value even after 168 h of exposure.

  9. EBSD and TEM investigation of the hot deformation substructure characteristics of a type 316L austenitic stainless steel.

    PubMed

    Cizek, P; Whiteman, J A; Rainforth, W M; Beynon, J H

    2004-03-01

    The evolution of crystallographic texture and deformation substructure was studied in a type 316L austenitic stainless steel, deformed in rolling at 900 degrees C to true strain levels of about 0.3 and 0.7. Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used in the investigation and a comparison of the substructural characteristics obtained by these techniques was made. At the lower strain level, the deformation substructure observed by EBSD appeared to be rather poorly developed. There was considerable evidence of a rotation of the pre-existing twin boundaries from their original orientation relationship, as well as the formation of highly distorted grain boundary regions. In TEM, at this strain level, the substructure was more clearly revealed, although it appeared rather inhomogeneously developed from grain to grain. The subgrains were frequently elongated and their boundaries often approximated to traces of [111] slip planes. The corresponding misorientations were small and largely displayed a non-cumulative character. At the larger strain, the substructure within most grains became well developed and the corresponding misorientations increased. This resulted in better detection of sub-boundaries by EBSD, although the percentage of indexing slightly decreased. TEM revealed splitting of some sub-boundaries to form fine microbands, as well as the localized formation of microshear bands. The substructural characteristics observed by EBSD, in particular at the larger strain, generally appeared to compare well with those obtained using TEM. With increased strain level, the mean subgrain size became finer, the corresponding mean misorientation angle increased and both these characteristics became less dependent on a particular grain orientation. The statistically representative data obtained will assist in the development of physically based models of microstructural evolution during thermomechanical processing of austenitic

  10. Effects of surface mechanical attrition treatment (SMAT) on a rough surface of AISI 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Arifvianto, B.; Suyitno; Mahardika, M.

    2012-03-01

    Surface mechanical attrition treatment (SMAT) improves mechanical properties of metallic materials through the formation of nanocrystallites at their surface layer. It also modifies the morphology and roughness of the work surface. Surface roughening by the SMAT has been reported previously in a smooth specimen, however in this study the starting point was a rough surface and a smoothening phenomenon is observed. In this paper, the mechanisms involved in the surface smoothening of AISI 316L stainless steel during the SMAT are elucidated. The SMAT was conducted on a specimen with a roughness of Ra = 3.98 μm for 0-20 min. The size of milling balls used in the SMAT was varied from 3.18 mm to 6.35 mm. The modification of subsurface microhardness, surface morphology, roughness and mass reduction of the specimen due to the SMAT were studied. The result shows the increasing microhardness of the surface and subsurface of the steel due to the SMAT. The impacts of milling balls deform the surface and produce a flat-like structure at this layer. Surface roughness decreases until its saturation is achieved in the SMAT. The mass reduction of the specimens is also detected and may indicate material removal or surface erosion by the SMAT. The size of milling ball is found to be the important feature determining the pattern of roughness evolution and material removal during the SMAT. From this study, two principal mechanisms in the evolution of surface morphology and roughness during the SMAT are proposed, i.e. indentation and surface erosion by the multiple impacts of milling balls. A comparative study with the results of the previous experiment indicates that the initial surface roughness has no influence in the work hardening by the SMAT but it does slightly on the saturated roughness value obtained by this treatment.

  11. Influence of the Carbo-Chromization Process on the Microstructural, Hardness, and Corrosion Properties of 316L Sintered Stainless Steel

    NASA Astrophysics Data System (ADS)

    Iorga, Sorin; Cojocaru, Mihai; Chivu, Adriana; Ciuca, Sorin; Burdusel, Mihail; Badica, Petre; Leuvrey, Cédric; Schmerber, Guy; Ulhaq-Bouillet, Corinne; Colis, Silviu

    2014-06-01

    We report on the changes on the microstructural, hardness, and corrosion properties induced by carbo-chromization of 316L stainless steel prepared by Spark Plasma Sintering technique. The thermo-chemical treatments have been performed using pack cementation. The carburizing and chromization were carried out between 1153 K (880 °C)/4 h to 1253 K (980 °C)/12 h and 1223 K (950 °C)/6 h to 1273 K (1000 °C)/12 h in a solid powder mixture of charcoal/BaCO3 and ferrochromium/alumina/NH4Cl, respectively. The obtained layers were investigated using X-ray and electron diffraction, optical and scanning electron microscopies, Vickers micro-hardness, and potentiodynamic measurements. The thickness of the carbo-chromized layer ranges between 300 and 500 μm. Besides the host γ-phase, the layers are mainly constituted of carbides (Fe7C3, Cr23C6, Cr7C3, and Fe3C) and traces of α'-martensite. The average hardness values decrease smoothly from 650 HV at the sample surface down to 200 HV at the center of the sample. The potentiodynamic tests revealed that the carbo-chromized samples have smaller corrosion resistance with respect to the untreated material. For strong chromization regimes, the corrosion rate is increased by a factor of four with respect to that of the untreated material, while the micro-hardness of the layer is three times larger. Such materials are suited to be used in environments where good corrosion resistance and wear properties are required.

  12. COMPUTATION MODELING OF LOCALIZED CORROSION STABILITY ON WETTED SS316L AT 25 AND 95 DEGREE C

    SciTech Connect

    F. Cuti; F.J. Presuel-Moreno; R.G. Kelly

    2005-10-13

    For corrosion resistant materials exposed to low-temperature atmospheric environments, the corrosion mode of highest risk is expected to be localized corrosion (pitting, crevice, stress-corrosion cracking) due to accumulation of aggressive species within thin solution layers and/or formation of occluded local geometries. The stability of such a localized corrosion site requires that the corroding site (anode) must dissolve at a sufficient high rate to maintain the critical chemistry, and a robust cathodic area (cathode) must exist that can provide sufficient cathodic current. The characteristics of both the anode and the cathode depend on a large number of physiochemical variables (e.g., temperature, ionic concentration, water layer thickness, etc) and electrochemical parameters (i.e., cathodic and anodic polarization behavior). The effects of all these parameters add significantly to the dimensionality of the problem and a systematic study of these parameters is thus more tractable computationally than experimentally. The objective of this study was to computationally characterize the stability of such a local corrosion site and explore the effects of physiochemical and electrochemical parameters on that stability. The overall goal is to contribute to the establishment of a scientific basis for the prediction of the stabilization of localized attack on wetted, corrosion resistant material surface. A localized corrosion site, illustrated in Figure 1, consists of two parts: (a) the external wetted surface (cathode) and (b) the crevice (anode). This study computationally separated the two and modeled them individually, linking them through the imposition of a common fixed potential at the junction point (i.e., the mouth of the crevice). An objected-oriented computational code, CREVICER, developed at UVa, was extended to study separately both the wet surface (cathode) and the crevice (anode). SS316L was chosen as the material of interest.

  13. 49 CFR 179.220-25 - Stamping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: Material ASTM A240-316L. Shell thickness Shell 0.167 in. Head thickness Head 0.150 in. Tank builders initials ABC. Date of original test 00-0000. Outer shell: Material ASTM A285-C. Tank builders initials...

  14. Evaluation of the soft tissue biocompatibility of MgCa0.8 and surgical steel 316L in vivo: a comparative study in rabbits

    PubMed Central

    2010-01-01

    Background Recent studies have shown the potential suitability of magnesium alloys as biodegradable implants. The aim of the present study was to compare the soft tissue biocompatibility of MgCa0.8 and commonly used surgical steel in vivo. Methods A biodegradable magnesium calcium alloy (MgCa0.8) and surgical steel (S316L), as a control, were investigated. Screws of identical geometrical conformation were implanted into the tibiae of 40 rabbits for a postoperative follow up of two, four, six and eight weeks. The tibialis cranialis muscle was in direct vicinity of the screw head and thus embedded in paraffin and histologically and immunohistochemically assessed. Haematoxylin and eosin staining was performed to identify macrophages, giant cells and heterophil granulocytes as well as the extent of tissue fibrosis and necrosis. Mouse anti-CD79α and rat anti-CD3 monoclonal primary antibodies were used for B- and T-lymphocyte detection. Evaluation of all sections was performed by applying a semi-quantitative score. Results Clinically, both implant materials were tolerated well. Histology revealed that a layer of fibrous tissue had formed between implant and overlying muscle in MgCa0.8 and S316L, which was demarcated by a layer of synoviocyte-like cells at its interface to the implant. In MgCa0.8 implants cavities were detected within the fibrous tissue, which were surrounded by the same kind of cell type. The thickness of the fibrous layer and the amount of tissue necrosis and cellular infiltrations gradually decreased in S316L. In contrast, a decrease could only be noted in the first weeks of implantation in MgCa0.8, whereas parameters were increasing again at the end of the observation period. B-lymphocytes were found more often in MgCa0.8 indicating humoral immunity and the presence of soluble antigens. Conversely, S316L displayed a higher quantity of T-lymphocytes. Conclusions Moderate inflammation was detected in both implant materials and resolved to a minimum

  15. Nuclear Data Sheets for A = 240

    SciTech Connect

    Singh, Balraj; Browne, E.

    2008-10-15

    Evaluated experimental data for radioactive decays and reactions for known nuclides (U, Np, Pu, Am, Cm, Bk, Cf) of A = 240 are presented together with adopted values for level energies, {gamma}-ray energies, relative branching ratios and other nuclear properties. This revision was primarily motivated by the need for re-evaluation of absolute gamma-ray intensities from the {epsilon} decay of {sup 240}Am to {sup 240}Pu. These quantities are essential for determining precise and accurate cross-sections for the {sup 241}Am(n,2n){sup 240}Am reaction using fast neutrons (see e.g. Americium Workshop, Santa Fe, New Mexico, September 2007, 2008To06, 2007Ta01, 2006Pe14) and {sup 241}Am({gamma},n) reaction (see e.g. 2006Ri08). For {sup 240}U, the {gamma}-ray data have now become available. The data sets for {sup 244}Pu {alpha} decay to {sup 240}U; {sup 244}Cm {alpha} decay to {sup 240}Pu and {sup 244}Cf {alpha} decay to {sup 240}Cm have been adapted from evaluations by 1998Ak04 and 2003Ak04. For {sup 244}Cm decay, evaluation by 2006BeZL under the Decay Data Evaluation Project (DDEP) is also used. The {gamma}-ray data (energies and intensities) for {sup 240}Cm decay are not considered (by the evaluators) as well established. Most detailed data are available only for {sup 240}Pu. Extensive data in the second potential well are available for this nuclide together with fission isomers and several superdeformed (SD) structures. For other nuclides spectroscopic data are rather sparse in the literature; especially for the following radioactive decays: The {epsilon} decays of {sup 240}Cf, {sup 240}Bk and {sup 240}Cm; multipolarities of {gamma}-ray transitions in {sup 240}Np from {sup 240}U {beta}{sup -} decay; {gamma}-ray transitions from {sup 244}Cf {alpha} decay and %{epsilon} branch of {sup 244}Cf decay; spins and parities of excited states in {sup 240}U and multipolarities of associated {gamma}-ray transitions in {sup 240}U. This work supersedes earlier full evaluations of A

  16. Rubber compounding materials -- ground coal. ASTM standard

    SciTech Connect

    1993-05-01

    This classification is under the jurisdiction of ASTM Committee on Rubber and is the direct responsibility of Subcommittee D11.20 on Compounding Materials and Procedures. The current edition was approved March 15, 1193 and published in May 1993.

  17. ASTM standards on thermocouples, 2nd edition

    SciTech Connect

    Not Available

    1986-01-01

    This edition has been expanded to include sixteen selected ASTM methods and practices on thermocouples. It also contains a Temperature Electromotive Force (EMF) Table for the NICROSIL-NISIL Thermocouple System.

  18. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants.

    PubMed

    Sutha, S; Kavitha, K; Karunakaran, G; Rajendran, V

    2013-10-01

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58-1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. PMID:23910313

  19. High-Temperature Oxidation Resistance of a Nanoceria Spray-Coated 316L Stainless Steel Under Short-Term Air Exposure

    NASA Astrophysics Data System (ADS)

    Lopez, Hugo F.; Mendoza, Humberto; Church, Ben

    2013-10-01

    Nanoceria coatings using a spray method were implemented on a 316L stainless steel (SS). Coated and uncoated coupons were exposed to dry air at 1073 K to 1273 K (800 °C to 1000 °C) for short time periods (up to 24 hours) and in situ measurements of oxidation were carried out using a highly sensitive thermogravimetric balance. From the experimental outcome, activation energies were determined in both, coated and uncoated 316 SS coupons. The estimated exhibited activation energies for oxidation in the coated and uncoated conditions were 174 and 356 kJ/mol, respectively. In addition, the developed scales were significantly different. In the coated steel, the dominant oxide was an oxide spinel (Fe, Mn)3O4 and the presence of Fe2O3 was sharply reduced, particularly at 1273 K (1000 °C). In contrast, no spinel was found in the uncoated 316L SS, and Fe2O3 was always present in the scale at all the investigated oxidation temperatures. The coated steels developed a highly adherent fine-grained scale structure. Apparently, the nanoceria particles enhanced nucleation of the newly formed scale while restricting coarsening. Coarse grain structures were found in the uncoated steels with scale growth occurring at grain ledges. Moreover, the oxidation rates for the coated 316L SS were at least an order of magnitude lower than those exhibited by the steel in the uncoated condition. The reduction in oxidation rates is attributed to a shift in the oxidation mechanism from outward cation diffusion to inward oxygen diffusion.

  20. 46 CFR 163.003-3 - ASTM standard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false ASTM standard. 163.003-3 Section 163.003-3 Shipping...: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Ladder § 163.003-3 ASTM standard. The following standard of the American Society for Testing and Materials (ASTM) is incorporated by reference into this subpart: ASTM...

  1. 46 CFR 163.003-3 - ASTM standard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false ASTM standard. 163.003-3 Section 163.003-3 Shipping...: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Ladder § 163.003-3 ASTM standard. The following standard of the American Society for Testing and Materials (ASTM) is incorporated by reference into this subpart: ASTM...

  2. 46 CFR 163.003-3 - ASTM standard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false ASTM standard. 163.003-3 Section 163.003-3 Shipping...: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Ladder § 163.003-3 ASTM standard. The following standard of the American Society for Testing and Materials (ASTM) is incorporated by reference into this subpart: ASTM...

  3. 46 CFR 163.003-3 - ASTM standard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false ASTM standard. 163.003-3 Section 163.003-3 Shipping...: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Ladder § 163.003-3 ASTM standard. The following standard of the American Society for Testing and Materials (ASTM) is incorporated by reference into this subpart: ASTM...

  4. 46 CFR 163.003-3 - ASTM standard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false ASTM standard. 163.003-3 Section 163.003-3 Shipping...: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Ladder § 163.003-3 ASTM standard. The following standard of the American Society for Testing and Materials (ASTM) is incorporated by reference into this subpart: ASTM...

  5. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment

    PubMed Central

    Ruiz, A.; Timke, T.; van de Sande, A.; Heftrich, T.; Novotny, R.; Austin, T.

    2016-01-01

    This article presents corrosion data and microstructural analysis data of austenitic stainless steels AISI 316L and AISI 347H exposed to supercritical water (25 MPa, 550 °C) with 2000 ppb of dissolved oxygen. The corrosion tests lasted a total of 1200 h but were interrupted at 600 h to allow measurements to be made. The microstructural data have been collected in the grain interior and at grain boundaries of the bulk of the materials and at the superficial oxide layer developed during the corrosion exposure. PMID:27158647

  6. Laser surface texturing of 316L stainless steel in air and water: A method for increasing hydrophilicity via direct creation of microstructures

    NASA Astrophysics Data System (ADS)

    Razi, Sepehr; Madanipour, Khosro; Mollabashi, Mahmoud

    2016-06-01

    Laser processing of materials in water contact is sometimes employed for improving the machining, cutting or welding quality. Here, we demonstrate surface patterning of stainless steel grade 316L by nano-second laser processing in air and water. Suitable adjustments of laser parameters offer a variety of surface patterns on the treated targets. Furthermore alterations of different surface features such as surface chemistry and wettability are investigated in various processing circumstances. More than surface morphology, remarkable differences are observed in the surface oxygen content and wettability of the samples treated in air and water at the same laser processing conditions. Mechanisms of the changes are discussed extensively.

  7. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment.

    PubMed

    Ruiz, A; Timke, T; van de Sande, A; Heftrich, T; Novotny, R; Austin, T

    2016-06-01

    This article presents corrosion data and microstructural analysis data of austenitic stainless steels AISI 316L and AISI 347H exposed to supercritical water (25 MPa, 550 °C) with 2000 ppb of dissolved oxygen. The corrosion tests lasted a total of 1200 h but were interrupted at 600 h to allow measurements to be made. The microstructural data have been collected in the grain interior and at grain boundaries of the bulk of the materials and at the superficial oxide layer developed during the corrosion exposure. PMID:27158647

  8. Effect of Heat Treatment on the Microstructure and Mechanical Properties of Stainless Steel 316L Coatings Produced by Cold Spray for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    AL-Mangour, Bandar; Vo, Phuong; Mongrain, Rosaire; Irissou, Eric; Yue, Stephen

    2014-04-01

    In this study, the effects of heat treatment on the microstructure and mechanical properties of cold sprayed stainless steel 316L coatings using N2 and He as propellant gases were investigated. Powder and coating characterizations, including coating microhardness, coating porosity, and XRD phase analysis were performed. It was found that heat treatment reduced porosity, improved inter-particle bonding, and increased ductility. XRD results confirmed that no phase transformation occurred during deposition. Significant increase in UTS and ductility was observed for the annealed specimens obtained with nitrogen propellant, whereas little changes were observed for the helium propellant produced specimen.

  9. 47 CFR 90.379 - ASTM E2213-03 DSRC Standard (ASTM-DSRC Standard).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may... for Telecommunications and Information Exchange Between Roadside and Vehicle Systems—5 GHz Band... from ASTM via the Internet at http://www.astm.org....

  10. 47 CFR 90.379 - ASTM E2213-03 DSRC Standard (ASTM-DSRC Standard).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may... for Telecommunications and Information Exchange Between Roadside and Vehicle Systems—5 GHz Band... from ASTM via the Internet at http://www.astm.org....

  11. 47 CFR 90.379 - ASTM E2213-03 DSRC Standard (ASTM-DSRC Standard).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may... for Telecommunications and Information Exchange Between Roadside and Vehicle Systems—5 GHz Band... from ASTM via the Internet at http://www.astm.org....

  12. 47 CFR 90.379 - ASTM E2213-03 DSRC Standard (ASTM-DSRC Standard).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false ASTM E2213-03 DSRC Standard (ASTM-DSRC Standard). 90.379 Section 90.379 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Intelligent Transportation Systems Radio Service Regulations Governing the Licensing and...

  13. Corrosion resistance of 316L stainless steel with surface layer of Ni 2Al 3 or NiAl in molten carbonates

    NASA Astrophysics Data System (ADS)

    Moon, Youngjoon; Lee, Dokyol

    Double layers of nickel and aluminum are electroplated on a 316L stainless steel (316L SS) plate, which is routinely used as a separator in molten carbonate fuel cell (MCFC) stacks, and then heat-treated at 650 or 800 °C for 1 h. This results in the respective formation of a surface layer of Ni 2Al 3 or NiAl intermetallic compound, which are known to be highly corrosion-resistant in molten carbonate electrolyte. The corrosion behaviour of each plate in a molten electrolyte of (Li 0.62K 0.38) 2CO 3 or (Li 0.52Na 0.48) 2CO 3 is evaluated through immersion tests and polarisation measurements. The surface layer of Ni 2Al 3 or NiAl maintains good adhesion to the stainless steel substrate and no corrosion product is detected in any of the plates with a surface layer after immersion tests. Polarisation measurements reveal that, regardless of experimental conditions, the corrosion potentials of the plates with a surface layer shift to more positive values and the passive currents are lower than that for a bare SS plate. The corrosion rate of the NiAl surface layer is slightly lower than that of Ni 2Al 3.

  14. Cultures and co-cultures of human blood mononuclear cells and endothelial cells for the biocompatibility assessment of surface modified AISI 316L austenitic stainless steel.

    PubMed

    Stio, Maria; Martinesi, Maria; Treves, Cristina; Borgioli, Francesca

    2016-12-01

    Samples of AISI 316L austenitic stainless steel were subjected either to grinding and polishing procedure, or to grinding and then low temperature glow-discharge nitriding treatment, or to grinding, nitriding and subsequently coating with collagen-I. Nitrided samples, even if only ground, show a higher corrosion resistance in PBS solution, in comparison with ground and polished AISI 316L. Biocompatibility was evaluated in vitro by incubating the samples with either peripheral blood mononuclear cells (PBMC) or human umbilical vein endothelial cells (HUVEC), tested separately or in co-culture. HUVEC-PBMC co-culture and co-incubation of HUVEC with PBMC culture medium, after the previous incubation of PBMC with metallic samples, allowed to determine whether the incubation of PBMC with the different samples might affect HUVEC behaviour. Many biological parameters were considered: cell proliferation, release of cytokines, matrix metalloproteinases (MMPs) and sICAM-1, gelatinolytic activity of MMPs, and ICAM-1 protein expression. Nitriding treatment, with or without collagen coating of the samples, is able to ameliorate some of the biological parameters taken into account. The obtained results point out that biocompatibility may be successfully tested in vitro, using cultures of normal human cells, as blood and endothelial cells, but more than one cell line should be used, separately or in co-culture, and different parameters should be determined, in particular those correlated with inflammatory phenomena. PMID:27612806

  15. Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cells

    NASA Astrophysics Data System (ADS)

    Alishahi, M.; Mahboubi, F.; Mousavi Khoie, S. M.; Aparicio, M.; Hübner, R.; Soldera, F.; Gago, R.

    2016-08-01

    Insufficient corrosion resistance and surface conductivity are two main issues that plague large-scale application of stainless steel (SS) bipolar plates in proton exchange membrane fuel cells (PEMFCs). This study explores the use of nanocrystalline Ta/TaN multilayer coatings to improve the electrical and electrochemical performance of polished 316L SS bipolar plates. The multilayer coatings have been deposited by (reactive) magnetron sputtering and characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. The electrochemical behavior of bare and coated substrates has been evaluated in simulated PEMFC working environments by potentiodynamic and potentiostatic polarization tests at ambient temperature and 80 °C. The results show that the Ta/TaN multilayer coating increases the polarization resistance of 316L SS by about 30 and 104 times at ambient and elevated temperatures, respectively. The interfacial contact resistance (ICR) shows a low value of 12 mΩ × cm2 before the potentiostatic test. This ICR is significantly lower than for the bare substrate and remains mostly unchanged after potentiostatic polarization for 14 h. In addition, the high contact angle (92°) with water for coated substrates indicates a hydrophobic character, which can improve the water management within the cell in PEMFC stacks.

  16. Effect of Heat Treatment on Low Temperature Toughness of Reduced Pressure Electron Beam Weld Metal of Type 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Nakagawa, H.; Fujii, H.; Tamura, M.

    2006-03-01

    Austenitic stainless steels are considered to be the candidate materials for liquid hydrogen vessels and the related equipments, and those welding parts that require high toughness at cryogenic temperature. The authors have found that the weld metal of Type 316L stainless steel processed by reduced pressure electron beam (RPEB) welding has high toughness at cryogenic temperature, which is considered to be due to the single-pass welding process without reheating effect accompanied by multi-pass welding process. In this work, the effect of heat treatment on low temperature toughness of the RPEB weld metal of Type 316L was investigated by Charpy impact test at 77K. The absorbed energy decreased with higher temperature and longer holding time of heat treatment. The remarkable drop in the absorbed energy was found with heat treatment at 1073K for 2 hours, which is as low as that of conventional multi-pass weld metal such as tungsten inert gas welding. The observations of fracture surface and microstructure revealed that the decrease in the absorbed energy with heat treatment resulted from the precipitation of intermetallic compounds near delta-ferrite phase.

  17. Effect of Oxygen Content Upon the Microstructural and Mechanical Properties of Type 316L Austenitic Stainless Steel Manufactured by Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Cooper, Adam J.; Cooper, Norman I.; Dhers, Jean; Sherry, Andrew H.

    2016-09-01

    Although hot isostatic pressing (HIP) has been shown to demonstrate significant advances over more conventional manufacture routes, it is important to appreciate and quantify the detrimental effects of oxygen involvement during the HIP manufacture process on the microstructural and material properties of the resulting component. This paper quantifies the effects of oxygen content on the microstructure and Charpy impact properties of HIP'd austenitic stainless steel, through combination of detailed metallographic examination and mechanical testing on HIP'd Type 316L steel containing different concentrations (100 to 190 ppm) of oxygen. Micron-scale pores were visible in the microstructure of the HIP'd materials postmetallographic preparation, which result from the removal of nonmetallic oxide inclusions during metallographic preparation. The area fraction of the resulting pores is shown to correlate with the oxygen concentration which influences the Charpy impact toughness over the temperature range of 77 K to 573 K (-196 °C to 300 °C), and demonstrates the influence of oxygen involved during the HIP manufacture process on Charpy toughness. The same test procedures and microstructural analyses were performed on commercially available forged 316L. This showed comparatively fewer inclusions and exhibited higher Charpy impact toughness over the tested temperature range.

  18. Effect of Heat Treatment on Low Temperature Toughness of Reduced Pressure Electron Beam Weld Metal of Type 316L Stainless Steel

    SciTech Connect

    Nakagawa, H.; Fujii, H.; Tamura, M.

    2006-03-31

    Austenitic stainless steels are considered to be the candidate materials for liquid hydrogen vessels and the related equipments, and those welding parts that require high toughness at cryogenic temperature. The authors have found that the weld metal of Type 316L stainless steel processed by reduced pressure electron beam (RPEB) welding has high toughness at cryogenic temperature, which is considered to be due to the single-pass welding process without reheating effect accompanied by multi-pass welding process.In this work, the effect of heat treatment on low temperature toughness of the RPEB weld metal of Type 316L was investigated by Charpy impact test at 77K. The absorbed energy decreased with higher temperature and longer holding time of heat treatment. The remarkable drop in the absorbed energy was found with heat treatment at 1073K for 2 hours, which is as low as that of conventional multi-pass weld metal such as tungsten inert gas welding. The observations of fracture surface and microstructure revealed that the decrease in the absorbed energy with heat treatment resulted from the precipitation of intermetallic compounds near delta-ferrite phase.

  19. Ion Beam Analysis, structure and corrosion studies of nc-TiN/a-Si3N4 nanocomposite coatings deposited by sputtering on AISI 316L

    NASA Astrophysics Data System (ADS)

    García, J.; Canto, C. E.; Flores, M.; Andrade, E.; Rodríguez, E.; Jiménez, O.; Solis, C.; de Lucio, O. G.; Rocha, M. F.

    2014-07-01

    In this work, nanocomposite coatings of nc-TiN/a-Si3N4, were deposited on AISI 316L stainless steel substrate by a DC and RF reactive magnetron co-sputtering technique using an A-N2 plasma. The structure of the coatings was characterized by means of XRD (X-ray Diffraction). The substrate and coating corrosion resistance were evaluated by potentiodynamic polarization using a Ringer solution as electrolyte. Corrosion tests were conducted with the purpose to evaluate the potential of this coating to be used on biomedical alloys. IBA (Ion Beam Analysis) techniques were applied to measure the elemental composition profiles of the films and, XPS (X-ray Photoelectron Spectroscopy) were used as a complementary technique to obtain information about the compounds present in the films. The nanocomposite coatings of nc-TiN/a-Si3N4 show crystalline (TiN) and amorphous (Si3N4) phases which confer a better protection against the corrosion effects compared with that of the AISI 316L.

  20. Effect of Oxygen Content Upon the Microstructural and Mechanical Properties of Type 316L Austenitic Stainless Steel Manufactured by Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Cooper, Adam J.; Cooper, Norman I.; Dhers, Jean; Sherry, Andrew H.

    2016-06-01

    Although hot isostatic pressing (HIP) has been shown to demonstrate significant advances over more conventional manufacture routes, it is important to appreciate and quantify the detrimental effects of oxygen involvement during the HIP manufacture process on the microstructural and material properties of the resulting component. This paper quantifies the effects of oxygen content on the microstructure and Charpy impact properties of HIP'd austenitic stainless steel, through combination of detailed metallographic examination and mechanical testing on HIP'd Type 316L steel containing different concentrations (100 to 190 ppm) of oxygen. Micron-scale pores were visible in the microstructure of the HIP'd materials postmetallographic preparation, which result from the removal of nonmetallic oxide inclusions during metallographic preparation. The area fraction of the resulting pores is shown to correlate with the oxygen concentration which influences the Charpy impact toughness over the temperature range of 77 K to 573 K (-196 °C to 300 °C), and demonstrates the influence of oxygen involved during the HIP manufacture process on Charpy toughness. The same test procedures and microstructural analyses were performed on commercially available forged 316L. This showed comparatively fewer inclusions and exhibited higher Charpy impact toughness over the tested temperature range.

  1. Effects of passive films on corrosion resistance of uncoated SS316L bipolar plates for proton exchange membrane fuel cell application

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Ning, Xiaohui; Tang, Hongsheng; Guo, Liejin; Liu, Hongtan

    2014-11-01

    The effects of passive films on the corrosion behaviors of uncoated SS316L in anode and cathode environments of proton exchange membrane fuel cells (PEMFCs) are studied. Potentiodynamic and potentiostatic polarizations are employed to study the corrosion behavior; Mott-Schottky measurements are used to characterize the semiconductor properties of passive films; X-ray photoelectron spectroscopy (XPS) analyses are used to identify the compositions and the depth profiles of passive films. The passive films formed in the PEMFC anode and cathode environments under corresponding conditions both behave as n-type semiconductor. The passive film formed in the anode environment has a single-layer structure, Cr is the major element (Cr/Fe atomic ratio > 1), and the Cr/Fe atomic ratio decreases from the surface to the bulk; while the passive film formed in the PEMFC cathode environment has a bi-layer structure, Fe is the major element (Cr/Fe atomic ratio < 0.5), and in the external layer of the bi-layer structure Fe content increases rapidly and gradually in the internal layer. SS316L shows better corrosion resistance owing to both the high content of Cr oxide in the passive film and low band bending in normal PEMFC anode environments.

  2. Standard specification for cadmium. ASTM standard

    SciTech Connect

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.04 on Zinc and Cadmium. Current edition approved Apr. 10, 1998 and published September 1998. Originally published as B 440-66T. Last previous edition was B 440-76.

  3. ASTM update for stainless steels II

    SciTech Connect

    Davison, R.M.

    1999-10-01

    Specifiers and users of stainless steel (SS) should be aware that the American Society for Testing and Materials (ASTM) has revised several of its SS specifications. These changes affect grades commonly used in process and other industries. These changes are discussed.

  4. ASTM Validates Air Pollution Test Methods

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    The American Society for Testing and Materials (ASTM) has validated six basic methods for measuring pollutants in ambient air as the first part of its Project Threshold. Aim of the project is to establish nationwide consistency in measuring pollutants; determining precision, accuracy and reproducibility of 35 standard measuring methods. (BL)

  5. Exploring linear rake machining in 316L austenitic stainless steel for microstructure scale-refinement, grain boundary engineering, and surface modification

    NASA Astrophysics Data System (ADS)

    Facco, Giovanni Giuseppe

    Thermo-mechanical processing plays an important role in materials property optimization through microstructure modification, required by demanding modern materials applications. Extreme grain size refinement, grain boundary engineering, and surface modification have been explored to establish enhanced performance properties for numerous metals and alloys in order to meet challenges associated with improving degradation resistance and increasing lifetime in harsh environments. Due to the critical role of austenitic stainless steels, such as 316L, as structural components in harsh environments, e.g. in nuclear power plants, improved degradation resistance is desirable. Linear raking, a novel two dimensional plane strain machining process, has shown promise achieving significant grain size refinement through severe plastic deformation (SPD) and imparting large strains in the surface and near surface regions of the substrate in various metals and alloys, imparting enhanced properties. Here, the effects of linear rake machining on the microstructure and related properties of 316L are investigated systematically for the first time. The controlled variation of linear raking processing parameters in combination with detailed micro-characterization using analytical electron microscopy, x-ray diffraction and associated property measurements enables the determination of the influence of changes in strain and strain rate on the developing deformation microstructure and related properties. Varying the linear raking process parameters, and consequently the strain and strain rate, affects the volume fractions of deformation induced alpha'-martensite and the degree of grain refinement, to the nanoscale, through SPD in the chips produced. Additionally, linear raking is identified as a way to produce surface modified structures in the specimen substrate surface of 316L, with observations of various degrees of deformation and strain up to a depth of 150microm. This research clearly

  6. Effect of Annealing Temperature on Microstructure and Mechanical Properties of Bulk 316L Stainless Steel with Nano- and Micro-crystalline Dual Phases

    NASA Astrophysics Data System (ADS)

    La, Peiqing; Wei, Fuan; Lu, Xuefeng; Chu, Chenggang; Wei, Yupeng; Wang, Hongding

    2014-10-01

    Microstructures and mechanical properties of 316L stainless steels with dual phases austenite prepared by an aluminothermic reaction casting were explored. It is found that the steels consist of nano- and micro-crystalline austenite phases, a little δ ferrite and contaminations. Before and after annealing at 1073 K and 1273 K (800 °C and 1000 °C), average grain sizes of the nanocrystalline austenite phase are about 32, 31, 38 nm, respectively. Tensile strength increases first from 371 to 640 MPa and then decreases to 454 MPa. However, elongation ratio increases gradually from 16 to 23 and then 31 pct after annealing. The results illustrate that the steel after annealing at 1073 K (800 °C) has better properties, also indicating that combination of dual nano- and micro-crystalline austenite phase is conductive to improving tensile properties of materials.

  7. Precipitation in AISI 316L(N) during creep tests at 550 and 600 °C up to 10 years

    NASA Astrophysics Data System (ADS)

    Padilha, A. F.; Escriba, D. M.; Materna-Morris, E.; Rieth, M.; Klimenkov, M.

    2007-05-01

    The precipitation behaviour in the gauge lengths and in the heads of initially solution annealed type 316L(N) austenitic stainless steel specimens tested in creep at 550 and 600 °C for periods of up to 85 000 h has been studied using several metallographic techniques. Three phases were detected: M 23C 6, Laves, and sigma phase. The volume fraction of the precipitated sigma phase was significantly higher than that of carbides and the Laves phase. M 23C 6 carbide precipitation occurred very rapidly and was followed by the sigma and Laves phases formation in the delta ferrite islands. Sigma and Laves phases precipitated at grain boundaries after longer times. Two different mechanisms of sigma phase precipitation have been proposed, one for delta ferrite decomposition and another for grain boundary precipitation. Small quantities of the Laves phase were detected in delta ferrite, at grain boundaries and inside the grains.

  8. Evaluation of the Effect of Dynamic Sodium on the Low Cycle Fatigue Properties of 316L(N) Stainless Steel Base and Weld Joints

    NASA Astrophysics Data System (ADS)

    Ganesan, V.; Kannan, R.; Mariappan, K.; Sukumaran, G.; Sandhya, R.; Rao, K. Bhanu Sankara

    2012-06-01

    Low cycle fatigue (LCF) tests on 316L(N) austenitic stainless steel base and weld joints were at 823 K and 873 K at a constant strain rate of 3 × 10 -3 s -1 with strain ranges varying from {±}0.4% to {±}1.0% in a servo-hydraulic fatigue test system under flowing sodium environment. The cyclic stress response exhibited a similar trend as that in air comprising of an initial rapid hardening, followed by a slight softening stage before saturation. The fatigue lives are significantly improved in sodium environment when compared to identical testing conditions in air environment. The lack of oxidation in sodium environment is attributed to the delayed crack initiation, reduced crack propagation rate and consequent increase in fatigue life. Comparison of the data evaluated in sodium with RCC-MR design code, derived on the basis of data obtained from air shows that the design based on air tests is conservative.

  9. Erosion-corrosion resistance of electroplated Co-Pd film on 316L stainless steel in a hot sulfuric acid slurry environment

    NASA Astrophysics Data System (ADS)

    Li, Sirui; Zuo, Yu; Ju, Pengfei

    2015-03-01

    A Co-Pd film was deposited on 316L stainless steel by electroplating. The erosion-corrosion behavior of the Co-Pd plated samples in hot sulfuric acid solution with SiO2 particles was investigated. The results showed that there was a significant synergistic effect between erosion and corrosion. At higher stirring speed, even in such strong corrosive environment the erosion-corrosion rate of Co-Pd plated samples was controlled mainly by the erosion resistance. The erosion-corrosion resistance of pure Pd plated sample decreased rapidly with increasing stirring speed, whereas that of Co-Pd plated sample kept almost stable under the tested conditions due to the high micro-hardness and good corrosion resistance of the film.

  10. Comparative study: sensitization development in hot-isostatic-pressed cast and wrought structures type 316L(N)-IG stainless steel under isothermal heat treatment

    NASA Astrophysics Data System (ADS)

    Shutko, K. I.; Belous, V. N.

    2002-12-01

    This work focuses on the relative sensitization resistance of type 316L(N)-IG stainless steel (SS). Cast and wrought structures SS after solid hot-isostatic pressing (solid-HIP) operation are investigated under isothermal heat treatment. Wrought SS/SS solid-HIP joint sensitization is taken also into consideration. These experiments employed the quantitative double-loop electrochemical potentiokinetic reactivation (DL-EPR) and oxalic acid etch screening tests. A copper-copper sulfate-16% sulfuric acid test applied for strongly sensitized cast SS to reinforce the results were received by the methods mentioned above. Results from all employed methods correlate well. Sensitization was detected neither in cast nor in wrought SS in as-HIPed condition excluding wrought SS/SS solid-HIP joints. Significant difference between sensitization development rates was determined in cast and wrought SS structures when annealing at 675 °C for a duration up to 50 h.

  11. Influence of Zn as a spallation product on the behaviour of martensitic steel T91 and austenitic steel 316L in liquid Pb-Bi

    NASA Astrophysics Data System (ADS)

    Deloffre, Ph.; Terlain, A.

    2004-11-01

    The liquid Pb-Bi alloy is proposed as material for the spallation target in hybrid systems. During the spallation process, several chemical elements are produced in the target which could generate specific liquid metal embrittlement phenomena. Among these species, zinc is known as an element which can promote LME (liquid metal embrittlement). Corrosion tests were carried out in liquid Pb-Bi in isothermal static conditions without and with 80 wppm of zinc at 150 °C, 350 °C and 600 °C up to 6000 h. No modification of the corrosion kinetics of T91 martensitic and 316L austenitic steels was observed for either unstressed or U-bend specimens with zinc in Pb-Bi. Moreover, no sign of embrittlement was observed for any of the samples with and without zinc.

  12. Correlation between distribution of nitrogen atoms implanted at high energy and high dose and nanohardness measurements into 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Pelletier, H.; Mille, P.; Muller, D.; Stoquert, J. P.; Cornet, A.; Grob, J. J.

    2001-05-01

    Ion implantation causes changes in surface composition or morphology of solids which yield to a modification of physical and particularly mechanical properties, such as hardness, Young's modulus and elastic recovery. The purpose of this study is to focus on the effects occurring during the annealing process of stainless steel 316L samples implanted with high energy (1 MeV) nitrogen ions at high dose (10 18 N cm -2). From nuclear reaction analysis (NRA) measurements, the unusual shape of N distribution is discussed in terms of diffusion and precipitation mechanisms and correlated with the physical and chemical modifications observed with glancing incidence X-ray diffraction (GIXRD). Finally, from nanoindentation measurements, the real hardness profile is extracted using the Bückle's model eliminating the substrate effect. For each specimen, we show that the hardness is the sum of two terms, the first being related to nitrogen concentration and the second to various strengthening mechanisms depending on temperature.

  13. Correlation between optical characterization of the plasma in reactive magnetron sputtering deposition of Zr N on SS 316L and surface and mechanical properties of the deposited films

    NASA Astrophysics Data System (ADS)

    Fragiel, A.; Machorro, R.; Muñoz-Saldaña, J.; Salinas, J.; Cota, L.

    2008-05-01

    Optical and surface spectroscopies as well as nanoindentation techniques have been used to study ZrN coatings on 316L stainless steel obtained by DC-reactive magnetron sputtering. The deposit process was carried out using initial and working pressures of 10 -6 Torr and 10 -3 Torr, respectively. The experimental set-up for optical spectra acquisition was designed for the study in situ of the plasma in the deposition chamber. Auger spectroscopy, SEM and X-ray diffraction were used to characterize the coatings. Nanoindentation tests were carried out to measure the mechanical properties of the coating. Plasma characterization revealed the presence of CN molecules and Cr ions in the plasma. Surface spectroscopy results showed that ZrN, Zr 3N 4 and ZrC coexist in the coating. These results allowed the understanding of the mechanical behavior of the coatings, demonstrating the importance of the plasma characterization as a tool for tailoring the properties of hard coatings.

  14. Corrosion behavior of TiN, TiAlN, TiAlSiN-coated 316L stainless steel in simulated proton exchange membrane fuel cell environment

    NASA Astrophysics Data System (ADS)

    Nam, Nguyen Dang; Vaka, Mahesh; Tran Hung, Nguyen

    2014-12-01

    To gain high hardness, good thermal stability and corrosion resistance, multicomponent TiAlSiN coating has been developed using different deposition methods. In this study, the influence of Al and Si on the electrochemical properties of TiN-coated 316L stainless steel as bipolar plate (BP) materials has been investigated in simulated proton exchange membrane fuel cell environment. The deposited TiN, TiAlN and TiAlSiN possess high hardness of 23.9, 31.7, 35.0 GPa, respectively. The coating performance of the TiN coating is enhanced by Al and Si addition due to lower corrosion current density and higher Rcoating and Rct values. This result could be attributed to the formation of crystalline-refined TiN(200), which improves the surface roughness, surface resistance, corrosion performance, and decreased passive current density.

  15. Electropolishing of Re-melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design

    NASA Astrophysics Data System (ADS)

    Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A.

    2016-07-01

    This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (`green') electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness ( Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.

  16. Electropolishing of Re-melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design

    NASA Astrophysics Data System (ADS)

    Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A.

    2016-05-01

    This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (`green') electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness (Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.

  17. Effect of a Nickel-Iron Mixture of Weld Metal on Hydrogen Permeability at Various Temperatures in 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takahisa; Ikeshoji, Toshi-Taka; Suzumura, Akio; Kobayashi, Daigo; Kamono, Shumpei

    It is important to prevent from hydrogen embrittlement cracking in the heat-affected zone of welded steels. The hydrogen permeation rate for bulk nickel at high temperatures is higher than that of stainless steel, although the reverse is true at low temperatures. Low carbon stainless 316L steel, which contained 12-15% nickel, was selected as the parent material for welding. We have investigated the affect of nickel near the heat-affected zone by measuring the hydrogen permeation at various temperatures. We performed hydrogen permeation tests into the bead on plate specimens using nickel filler. A stationary hydrogen gas flux through the stainless steel specimen was measured by using an orifice and a quadrupole mass spectrometer (QMS). The partial pressure difference for hydrogen that was applied to the specimen was able to be kept constant by maintaining a constant gas flow rate through the orifice in a low- pressure room. An orifice with a 3 mm diameter maintained stationary steady-state hydrogen gas flux from the specimen at 620K, while a 1.2 mm diameter orifice maintained the steady pressure at 520 K. The hydrogen permeability, K was calculated based on the measured steady-state hydrogen gas fluxes at various temperatures. These results plotted as log K versus 1/T (reciprocal temperature) could not be interpolated linearly. The permeability values of the specimen at 570 K and 520 K were less than interpolated ones between the value at 620 K and the value at 520K of the 316 L stainless steel substrate as received.

  18. Influence of cold plastic deformation on critical pitting potential of AISI 316 L and 304 L steels in an artificial physiological solution simulating the aggressiveness of the human body.

    PubMed

    Cigada, A; Mazza, B; Pedeferri, P; Sinigaglia, D

    1977-07-01

    The effect of cold working on critical pitting potential of AISI 316 L and 304 L steels in a buffered physiological solution has been studied. In particular, the importance of deformation degree, orientation of the specimen surface to the deformation direction, and cold working temperature in lowering the critical pitting potential is shown. PMID:873942

  19. SU-E-T-548: Modeling of Breast IORT Using the Xoft 50 KV Brachytherapy Source and 316L Steel Rigid Shield

    SciTech Connect

    Burnside, W

    2015-06-15

    Purpose: Xoft provides a set of 316L Stainless Steel Rigid Shields to be used with their 50 kV X-ray source for Breast IORT treatments. Modeling the different shield sizes in MCNP provides information to help make clinical decisions for selecting the appropriate shield size. Methods: The Xoft Axxent 50 kV Electronic Brachytherapy System has several applications in radiation therapy, one of which is treating cancer of the breast intraoperatively by placing the miniaturized X-ray tube inside an applicator balloon that is expanded to fill the lumpectomy bed immediately following tumor removal. The ribs, lung, and muscular chest wall are all regions at risk to receive undesired dose during the treatment. A Xoft 316L Stainless Steel Rigid Shield can be placed between the intracostal muscles of the chest wall and the remaining breast tissue near the balloon to attenuate the beam and protect these organs. These shields are provided in 5 different sizes, and the effects on dose to the surrounding tissues vary with shield size. MCNP was used to model this environment and tally dose rate to certain regions of interest. Results: The average rib dose rate calculated using 0cm (i.e., no shield), 3cm, and 5cm diameter shields were 26.89, 15.43, and 8.91 Gy/hr respectively. The maximum dose rates within the rib reached 94.74 Gy/hr, 53.56 Gy/hr, and 31.44 Gy/hr for the 0cm, 3cm, and 5cm cases respectively. The shadowing effect caused by the steel shields was seen in the 3-D meshes and line profiles. Conclusion: This model predicts a higher dose rate to the underlying rib region with the 3cm shield compared to the 5cm shield; it may be useful to select the largest possible diameter when choosing a shield size for a particular IORT patient. The ability to attenuate the beam to reduce rib dose was also confirmed. Research sponsored by Xoft Inc, a subsidiary of iCAD.

  20. The effect of CO2 laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro.

    PubMed

    Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded

  1. Characterization of the mechanism of bi-layer oxide growth on austenitic stainless steels 316L and D9 in oxygen-controlled Lead-Bismuth Eutectic (LBE)

    NASA Astrophysics Data System (ADS)

    Koury, Daniel

    Lead Bismuth Eutectic (LBE) has been proposed for use in programs for accelerator-based and reactor-based transmutation of nuclear waste. LBE is a leading candidate material as a spallation target (in accelerator-based transmutation) and an option for the sub-critical blanket coolant. The corrosion by LBE of annealed and cold-rolled 316L stainless steels, and the modified austenitic stainless steel alloy D9, has been studied using Scanning Electron Microscopy (SEM), Electron Probe Micro Analysis (EPMA), and X-ray Photoelectron Spectroscopy (XPS). Exposed and unexposed samples have been compared and the differences studied. Small amounts of surface contamination are present on the samples and have been removed by ion-beam sputtering. The unexposed samples reveal typical stainless steel characteristics: a chromium oxide passivation surface layer and metallic iron and nickel. The exposed samples show protective iron oxide and chromium oxide growths on the surface. Oxygen takes many forms on the exposed samples, including oxides of iron and chromium, carbonates, and organic acids from subsequent handling after exposure to LBE. Different types of surface preparation have lead to considerably different modes of corrosion. The cold-rold samples were resistant to thick oxide growth, having only a thin (< 1 mum), dense chromium-rich oxide. The annealed 316L and D9 samples developed thick, bi-layered oxides, the inner layer consisting of chromium-rich oxides (likely spinel) and the outer layer consisting mostly of iron oxides. The cold-rolled samples were able to maintain a thin chromium oxide layer because of the surface work performed on it, as ample diffusion pathways provided an adequate supply of chromium atoms. The annealed samples grew thick oxides because iron was the primary diffusant, as there are fewer fast-diffusion pathways and therefore an amount of chromium insufficient to maintain a chromium based oxide. Even the thick oxide, however, can prolong the life of

  2. Upgrading UNLV's ASTM E477 test facility to meet the current requirements of ASTM E477

    NASA Astrophysics Data System (ADS)

    Fojas, Ronn Reinier

    A by-product of Heating, Ventilation, and Air-conditioning (HVAC) systems is noise that is produced by fans, compressors, and other related equipments and the noises from the turbulence that is created by moving air. Sometimes, it is impractical to modify the sources of the noise, which requires designers to modify the path of the noise, the duct system. These modifications might include installing an in-duct silencer or acoustical lining on the inside walls of the ducts. The testing and the precise quantification of the performance of these silencers and duct linings are necessary for any designer to be able to make the correct modifications to the ventilation system. The ASTM E477 code calls for strict standardization of the testing of such noise attenuation devices. The ASTM E477 test facility used by the Center for Mechanical & Environmental Systems Technology (CMEST) at UNLV was first constructed in 1991 and required upgrades to meet the newer revisions of the ASTM code. This study includes making modifications to the facility (1) to increase sound input, (2) reduce sound leakage, and (3) to integrate the measurement systems. These upgrades will bring the facility into compliance with the current version of the ASTM E477 test standard.

  3. ASTM standardization of electrochemical noise measurement

    SciTech Connect

    Kearns, J.R.; Eden, D.A.; Yaffe, M.R.; Fahey, J.V.; Reichert, D.L.; Silverman, D.C.

    1996-12-31

    The increased utilization of electrochemical noise measurement in corrosion research and industrial process monitoring prompted the formation in 1991 of an ASTM Task Group within the G1 Corrosion of Metals Committee. The scope of the task group was to develop standards that describe instruments and methods for making and analyzing electrochemical noise measurements. Task group activities are focused exclusively on measurements to be made in the laboratory. The initial goal has been to develop consensus on: (a) terminology, (b) specifications and configurations for laboratory instrumentation, (c) laboratory apparatus, and (d) data analysis methods. A round robin was also organized to develop a body of data on different material/environment systems using a variety of instrument configurations and data analysis techniques. A guide for making valid electrochemical noise results is being prepared based on the round robin results. The status of the effort to address these and other standardization issues within the ASTM G1.11.04 Task Group on Electrochemical Noise Measurement will be presented.

  4. Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy

    SciTech Connect

    Liu, Z.H. Zhang, D.Q. Sing, S.L. Chua, C.K. Loh, L.E.

    2014-08-15

    Multi-material processing in selective laser melting using a novel approach, by the separation of two different materials within a single dispensing coating system was investigated. 316L stainless steel and UNS C18400 Cu alloy multi-material samples were produced using selective laser melting and their interfacial characteristics were analyzed using focused ion beam, scanning electron microscopy, energy dispersive spectroscopy and electron back scattered diffraction techniques. A substantial amount of Fe and Cu element diffusion was observed at the bond interface suggesting good metallurgical bonding. Quantitative evidence of good bonding at the interface was also obtained from the tensile tests where the fracture was initiated at the copper region. Nevertheless, the tensile strength of steel/Cu SLM parts was evaluated to be 310 ± 18 MPa and the variation in microhardness values was found to be gradual along the bonding interface from the steel region (256 ± 7 HV{sub 0.1}) to the copper region (72 ± 3 HV{sub 0.1}). - Highlights: • Multi-material processing was successfully implemented and demonstrated in SLM. • Bi-metallic laminates of steel/Cu were successfully produced with the SLM process. • A substantial amount of Fe and Cu diffusion was observed at the bond interface. • Good metallurgical bonding was obtained at the interface of the steel/Cu laminates. • Highly refined microstructure was obtained due to rapid solidification in SLM.

  5. Comparison between Palm Oil Derivative and Commercial Thermo-Plastic Binder System on the Properties of the Stainless Steel 316L Sintered Parts

    NASA Astrophysics Data System (ADS)

    Ibrahim, R.; Azmirruddin, M.; Wei, G. C.; Fong, L. K.; Abdullah, N. I.; Omar, K.; Muhamad, M.; Muhamad, S.

    2010-03-01

    Binder system is one of the most important criteria for the powder injection molding (PIM) process. Failure in the selection of the binder system will affect on the final properties of the sintered parts. The objectives of this studied is to develop a novel binder system based on the local natural resources and environmental friendly binder system from palm oil derivative which is easily available and cheap in our country of Malaysia. The novel binder that has been developed will be replaced the commercial thermo-plastic binder system or as an alternative binder system. The results show that the physical and mechanical properties of the final sintered parts fulfill the Metal Powder Industries Federation (MPIF) standard 35 for PIM parts. The biocompatibility test using cell osteosarcoma (MG63) and vero fibroblastic also shows that the cell was successfully growth on the sintered stainless steel 316L parts indicate that the novel binder was not toxic. Therefore, the novel binder system based on palm oil derivative that has been developed as a binder system fulfills the important criteria for the binder system in PIM process.

  6. Effect of Welding Current and Time on the Microstructure, Mechanical Characterizations, and Fracture Studies of Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kianersi, Danial; Mostafaei, Amir; Mohammadi, Javad

    2014-09-01

    This article aims at investigating the effect of welding parameters, namely, welding current and welding time, on resistance spot welding (RSW) of the AISI 316L austenitic stainless steel sheets. The influence of welding current and welding time on the weld properties including the weld nugget diameter or fusion zone, tensile-shear load-bearing capacity of welded materials, failure modes, energy absorption, and microstructure of welded nuggets was precisely considered. Microstructural studies and mechanical properties showed that the region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. Electron microscopic studies indicated different types of delta ferrite in welded nuggets including skeletal, acicular, and lathy delta ferrite morphologies as a result of nonequilibrium phases, which can be attributed to a fast cooling rate in the RSW process. These morphologies were explained based on Shaeffler, WRC-1992, and pseudo-binary phase diagrams. The optimum microstructure and mechanical properties were achieved with 8-kA welding current and 4-cycle welding time in which maximum tensile-shear load-bearing capacity or peak load of the welded materials was obtained at 8070 N, and the failure mode took place as button pullout with tearing from the base metal. Finally, fracture surface studies indicated that elongated dimples appeared on the surface as a result of ductile fracture in the sample welded in the optimum welding condition.

  7. In-situ measurements of the oxidation of AISI 316L(NG) and its constituents (Fe,Cr, Ni) in ultra-supercritical water

    SciTech Connect

    Betova, Iva; Bojinov, Martin; Kinnunen, Petri; Lehtovuori, Viivi; Peltonen, Seppo; Penttila, Sami; Saario, Timo

    2006-07-01

    Several new nuclear reactor designs utilizing supercritical water as coolant are currently being developed. In the European concept the design pressure is 25 MPa and reactor inlet/outlet temperatures 290 deg C/520 deg C. While benefits include better coolant thermal conductivity, increase in efficiency and simpler overall design, many material related questions need to be solved such as oxidation and radiation resistance with simultaneous need to maintain creep strength. This calls for the development of in-situ monitoring methods for the material/environment combination in question. In the present paper, in-situ electrical and electrochemical measurements during oxidation of AISI 316L(NG) and its pure metal constituents (Fe,Cr and Ni) in ultra-supercritical water (500-700 deg C, 30 MPa) have been reproducibly obtained. The oxidation kinetics was followed using the contact electric resistance (CER) and contact electric impedance (CEI) techniques. First attempts have been made to correlate properties of the resulting oxides with the corresponding weight gain data. In addition, impedance spectra of the Ni-Ni contact during oxidation have been reproducibly measured at 500 and 600 deg C. They could be quantitatively interpreted using general considerations of the corrosion process and the Mixed-Conduction Model for oxide films. Preliminary estimates of the diffusion coefficients of principal ionic and electronic current carriers have been obtained and their relevance with respect to available data on Ni oxidation is discussed. (authors)

  8. Effects of Ag and Cu ions on the microbial corrosion of 316L stainless steel in the presence of Desulfovibrio sp.

    PubMed

    Unsal, Tuba; Ilhan-Sungur, Esra; Arkan, Simge; Cansever, Nurhan

    2016-08-01

    The utilization of Ag and Cu ions to prevent both microbial corrosion and biofilm formation has recently increased. The emphasis of this study lies on the effects of Ag and Cu ions on the microbial corrosion of 316L stainless steel (SS) induced by Desulfovibrio sp. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to analyze the corrosion behavior. The biofilm formation, corrosion products and Ag and Cu ions on the surfaces were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) and elemental mapping. Through circuit modeling, EIS results were used to interpret the physicoelectric interactions between the electrode, biofilm and culture interfaces. EIS results indicated that the metabolic activity of Desulfovibrio sp. accelerated the corrosion rate of SS in both conditions with and without ions. However, due to the retardation in the growth of Desulfovibrio sp. in the presence of Ag and Cu ions, significant decrease in corrosion rate was observed in the culture with the ions. In addition, SEM and EIS analyses revealed that the presence of the ions leads to the formation on the SS of a biofilm with different structure and morphology. Elemental analysis with EDS detected mainly sulfide- and phosphorous-based corrosion products on the surfaces. PMID:27105168

  9. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Lu, Zhanpeng; Xiao, Qian; Ru, Xiangkun; Han, Guangdong; Chen, Zhen; Zhou, Bangxin; Shoji, Tetsuo

    2016-04-01

    Stress corrosion cracking behaviors of one-directionally cold rolled 316L stainless steel specimens in T-L and L-T orientations were investigated in hydrogenated and deaerated PWR primary water environments at 310 °C. Transgranular cracking was observed during the in situ pre-cracking procedure and the crack growth rate was almost not affected by the specimen orientation. Locally intergranular stress corrosion cracks were found on the fracture surfaces of specimens in the hydrogenated PWR water. Extensive intergranular stress corrosion cracks were found on the fracture surfaces of specimens in deaerated PWR water. More extensive cracks were found in specimen T-L orientation with a higher crack growth rate than that in the specimen L-T orientation with a lower crack growth rate. Crack branching phenomenon found in specimen L-T orientation in deaerated PWR water was synergistically affected by the applied stress direction as well as the preferential oxidation path along the elongated grain boundaries, and the latter was dominant.

  10. The electroplated Pd-Co alloy film on 316 L stainless steel and the corrosion resistance in boiling acetic acid and formic acid mixture with stirring

    NASA Astrophysics Data System (ADS)

    Li, Sirui; Zuo, Yu; Tang, Yuming; Zhao, Xuhui

    2014-12-01

    Pd-Co alloy films were deposited on 316 L stainless steel by electroplating. Scanning electronic microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, weight loss test and polarization test were used to determine the properties of the Pd-Co alloy films. The Pd-Co films show fine grain size, low porosity and obviously high micro-hardness. The Co content in the film can be controlled in a large range from 21.9 at.% to 57.42 at.%. Pd is rich on the Pd-Co film surface, which is benefit to increase the corrosion resistance. In boiling 90% acetic acid plus 10% formic acid mixture with 0.005 M Br- under stirring, the Pd-Co plated stainless steel samples exhibit evidently better corrosion resistance in contrast to Pd plated samples. The good corrosion resistance of the Pd-Co alloy film is explained by the better compactness, the lower porosity, and the obviously higher micro-hardness of the alloy films, which increases the resistance to erosion and retards the development of micro-pores in the film.

  11. Influences of deposition strategies and oblique angle on properties of AISI316L stainless steel oblique thin-walled part by direct laser fabrication

    NASA Astrophysics Data System (ADS)

    Wang, Xinlin; Deng, Dewei; Qi, Meng; Zhang, Hongchao

    2016-06-01

    Direct laser fabrication (DLF) developed from laser cladding and rapid prototyping technique has been widely used to fabricate thin-walled parts exhibiting more functions without expending weight and size. Oblique thin-walled parts accompanied with inhomogeneous mechanical properties are common in application. In the present study, a series of AISI316L stainless steel oblique thin-walled parts are successfully produced by DLF, in addition, deposition strategies, microstructure, and mechanical property of the oblique thin-walled parts are investigated. The results show that parallel deposition way is more valuable to fabricate oblique thin-walled part than oblique deposition way, because of the more remarkable properties. The hardness of high side initially increases until the distance to the substrate reaches about 25 mm, and then decreases with the increase of the deposition height. Oblique angle has a positive effect on the tensile property but a negative effect on microstructure, hardness and elongation due to the more tempering time. The maximum average ultimate tensile strength (UTS) and elongation are presented 744.3 MPa and 13.5% when the angle between tensile loading direction and horizontal direction is 45° and 90°, respectively.

  12. Controlled electrophoretic deposition of HAp/β-TCP composite coatings on piranha treated 316L SS for enhanced mechanical and biological properties

    NASA Astrophysics Data System (ADS)

    Prem Ananth, K.; Nathanael, A. Joseph; Jose, Sujin P.; Oh, Tae Hwan; Mangalaraj, D.; Ballamurugan, A. M.

    2015-10-01

    Hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) bioactive materials have been used as individual coatings on steel implants employed in the fields of orthopedics and dentistry due to their excellent properties, which foster effective healing of the repair site. However, slow dissolution of HAp and fairly little fast dissolution of β-TCP present a major obstacle for such applications and this leads to the focus on the investigation of a mixture of HAp and β-TCP composite that forms biphasic calcium phosphate (BCP). The BCP coatings were achieved by thickness controlled electrophoretic deposition on piranha treated 316L SS. This method is well controlled and the anticipated dissolution rate could be attained with faster formation of new bone at the implant site, when compared to the individual HAp or β-TCP coating. The structural, functional, morphological and elemental composition of the coatings were characterized by using various analytical techniques. The BCP coating has been shown to have a role in obstructing the corrosion to a greater extent when in contact with SBF solution. The BCP coating also shows excellent in vitro and mechanical properties and osteoblasts cellular tests revealed that the coating was more effective in improving biocompatibility. This makes it an ideal candidate material for hard tissue replacement.

  13. Cosintering of Powder Injection Molding Parts Made from Ultrafine WC-Co and 316L Stainless Steel Powders for Fabrication of Novel Composite Structures

    NASA Astrophysics Data System (ADS)

    Simchi, A.; Petzoldt, F.

    2010-01-01

    Sintering response and phase formation during sintering of WC-Co/316L stainless steel composites produced by assembling of powder injection molding (PIM) parts were studied. It is shown that during cosintering a significant mismatch strain (>4 pct) is developed in the temperature range of 1080 °C to 1350 °C. This mismatch strain induces biaxial stresses at the interface, leading to interface delamination. Experimental results revealed that sintering at a heating rate of 20 K/min could be used to decrease the mismatch strain to <2 pct. Meanwhile, WC is decomposed at the contact area and the diffusion of C and Co into the iron lattice results in the formation of a liquid and MC and M6C carbides at 1220 °C. Spreading of the liquid accelerates the reaction, affecting the dimensional stability of the PIM parts. To prevent the reaction, surface oxidation of the cemented carbide followed by hydrogen reduction during sintering was examined. Although the amount of mismatch strain increased, formation of a metallic interface consisting of a W-Co alloy (45 to 50 at. pct Co) and a Co-rich iron alloy (18 at. pct Co) prevented the decomposition of WC and melt formation. It is also shown that the deposition of a thin Ni layer after thermal debinding decreases the mismatch stresses through melt formation, although interlayer diffusion causes pore-band formation close to the steel part.

  14. The effect of synthetic scrubber solution chemistry on the corrosion behavior of type 316L stainless steel and Titanium Grade 2

    SciTech Connect

    Koch, G.H.; Beavers, J.A.; Whitman, L.

    1983-01-01

    A laboratory study was performed to investigate the effects of major solution variables of synthetic scrubber environments on the corrosion behavior of Type 316L Stainless Steel and Titanium Grade 2. The synthetic solution was calcium-based and contained magnesium, sodium, sulfate, chloride and fluoride. In solution preparation, it was found that the amount of sulfuric acid needed to achieve pH 1 was dependent on the chloride concentration. However, when the pH was adjusted to 1 prior to adding halides, the pH was found to decrease with increasing chloride concentration, whereas an increase in pH with increasing chloride concentration was observed when the initial pH was 4. When the pH was held constant, the corrosion rates of both the stainless steel and titanium decreased considerably with increasing chloride concentration above 30,000 ppm chloride. However, when the acid concentration was held constant, the corrosion rates of both alloys increased with increasing chloride concentration. Finally, corrosion rates decreased dramatically with increasing pH. An explanation of these observations is presented in terms of common ion effects and hydrogen ion activity.

  15. Measurement methods for surface oxides on SUS 316L in simulated light water reactor coolant environments using synchrotron XRD and XRF

    NASA Astrophysics Data System (ADS)

    Watanabe, Masashi; Yonezawa, Toshio; Shobu, Takahisa; Shoji, Tetsuo

    2013-03-01

    Synchrotron X-ray diffraction (XRD) and X-ray fluorescent (XRF) measurement techniques have been used for non-destructive characterization of surface oxide films on Type 316L austenitic stainless steels that were exposed to simulated primary water environments of pressurized water reactors (PWR) and boiling water reactors (BWR). The layer structures of the surface spinel oxides were revealed ex situ after oxidation by measurements made as a function of depth. The layer structure of spinel oxides formed in simulated PWR primary water should normally be different from that formed in simulated BWR water. After oxidation in the simulated BWR environment, the spinel oxide was observed to contain NiFe2O4 at shallow depths, and FeCr2O4 and Fe3O4 at deeper depths. By contrast, after oxidation in the simulated PWR primary water environment, a Fe3O4 type spinel was observed near the surface and FeCr2O4 type spinel near the interface with the metal substrate. Furthermore, by in situ measurements during oxidation in the simulated BWR environment, it was also demonstrated that the ratio between spinel and hematite Fe2O3 can be changed depending on the water condition such as BWR normal water chemistry or BWR hydrogen water chemistry.

  16. Spectroscopic and microscopic investigation of the corrosion of 316/316L stainless steel by lead-bismuth eutectic (LBE) at elevated temperatures: importance of surface preparation

    NASA Astrophysics Data System (ADS)

    Johnson, Allen L.; Parsons, Denise; Manzerova, Julia; Perry, Dale L.; Koury, Dan; Hosterman, Brian; Farley, John W.

    2004-07-01

    The corrosion of steel by lead-bismuth eutectic (LBE) is an important issue in proposed nuclear transmutation schemes. Russian scientists at the IPPE exposed steel samples to oxygen-controlled LBE at temperatures up to 823 K and exposure times up to 3000 h. We have characterized these post-exposure steel samples and unexposed controls, using scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX) and X-ray photoelectron spectroscopy (XPS). Previous researchers have investigated the corrosion by LBE of steel of varying composition. In the present work, we compared two samples having the same composition (standard nuclear grade 316/316L) but different surface preparation: a cold-rolled sample was compared with an annealed sample. The cold-rolled sample had an order of magnitude less corrosion (i.e., both lower oxidation and less weight change) than the annealed sample. Sputter depth profiling of the exposed annealed sample and cold-rolled sample showed a marked difference in oxide layer composition between the annealed and cold-rolled samples. The annealed sample showed a complex oxide structure (iron oxide over chromium/iron oxide mixtures) of tens of microns thickness, while the cold-rolled sample was covered with a rather simple, primarily chromium oxide layer of ˜1 μm thickness.

  17. Influence of LBE long term exposure and simultaneous fast neutron irradiation on the mechanical properties of T91 and 316L

    NASA Astrophysics Data System (ADS)

    Stergar, E.; Eremin, S. G.; Gavrilov, S.; Lambrecht, M.; Makarov, O.; Iakovlev, V.

    2016-05-01

    The LEXUR-II-LBE irradiation campaign was conducted from 2011 to 2012 and was aimed to investigate the combined influence of irradiation and LBE environment. In this irradiation campaign tensile test samples, pressurized tubes and corrosion samples were irradiated in LBE filled capsules. To separate the effect of exposure to LBE and neutron irradiation a parallel furnace experiment where the samples were exposed to LBE at the irradiation temperature for the corresponding time was conducted. Here we report results of the first extracted capsule which was irradiated about 6 months and dismantled after a cooling phase to decrease activity. The results of SSRT tests for irradiated T91 show that the exposure to LBE at 350 °C for a long time leads to the appearance of liquid metal embrittlement without any pre-treatment which is usually necessary to promote LME. Irradiation increases the effect of LME on the ductility of T91. In contrast to the findings for T91 the gained results also show that tensile tests on irradiated austenitic stainless steel 316L show no influence of LBE environment on the tensile properties.

  18. A Microstructural Study on the Observed Differences in Charpy Impact Behavior Between Hot Isostatically Pressed and Forged 304L and 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Cooper, Adam J.; Cooper, Norman I.; Bell, Andrew; Dhers, Jean; Sherry, Andrew H.

    2015-11-01

    With near-net shape technology becoming a more desirable route toward component manufacture due to its ability to reduce machining time and associated costs, it is important to demonstrate that components fabricated via Hot Isostatic Pressing (HIP) are able to perform to similar standards as those set by equivalent forged materials. This paper describes the results of a series of Charpy tests from HIP'd and forged 304L and 316L austenitic stainless steel, and assesses the differences in toughness values observed. The pre-test and post-test microstructures were examined to develop an understanding of the underlying reasons for the differences observed. The as-received microstructure of HIP'd material was found to contain micro-pores, which was not observed in the forged material. In tested specimens, martensite was detectable within close proximity to the fracture surface of Charpy specimens tested at 77 K (-196 °C), and not detected in locations remote from the fracture surface, nor was martensite observed in specimens tested at ambient temperatures. The results suggest that the observed changes in the Charpy toughness are most likely to arise due to differences in as-received microstructures of HIP'd vs forged stainless steel.

  19. Effect of ferrite transformation on the tensile and stress corrosion properties of type 316 L stainless steel weld metal thermally aged at 873 K

    NASA Astrophysics Data System (ADS)

    Shaikh, H.; Khatak, H. S.; Seshadri, S. K.; Gnanamoorthy, J. B.; Rodriguez, P.

    1995-07-01

    This article deals with the effect of the microstructural changes, due to transformation of delta ferrite, on the associated variations that take place in the tensile and stress corrosion properties of type 316 L stainless steel weld deposits when subjected to postweld heat treatment at 873 K for prolonged periods (up to 2000 hours). On aging for short durations (up to 20 hours), carbide/ carbonitride was the dominant transformation product, whereas sigma phase was dominant at longer aging times. The changes in the tensile and stress corrosion behavior of the aged weld metal have been attributed to the two competitive processes of matrix softening and hardening. Yield strength (YS) was found to depend predominantly on matrix softening only, while sig-nificant changes in the ultimate tensile strength (UTS) and the work-hardening exponent, n, occurred due to matrix hardening. Ductility and stress corrosion properties were considerably affected by both factors. Fractographic observations on the weld metal tested for stress-corrosion cracking (SCC) indicated a combination of transgranular cracking of the austenite and interface cracking.

  20. Coating process and early stage adhesion evaluation of poly(2-hydroxy-ethyl-methacrylate) hydrogel coating of 316L steel surface for stent applications.

    PubMed

    Indolfi, Laura; Causa, Filippo; Netti, Paolo Antonio

    2009-07-01

    In this study, a spray-coating method has been set up with the aim to control the coating of poly(2-hydroxy-ethyl-methacrylate) (pHEMA), an hydrophilic polymeric hydrogel, onto the complex surface of a 316L steel stent for percutaneous coronary intervention (PCI). By varying process parameters, tuneable thicknesses, from 5 to 20 microm, have been obtained with uniform and homogeneous surface without crack or bridges. Surface characteristics of pHEMA coating onto metal surface have been investigated through FTIR-ATR, contact angle measurement, SEM, EDS and AFM. Moreover, results from Single-Lap-Joint and Pull-Off adhesion tests as well as calorimetric analysis of glass transition temperature suggested that pHEMA deposition is firmly adhered on metallic surface. The pHEMA coating evaluation of roughness, wettability together with its morphological and chemical stability after three cycles of expansion-crimping along with preliminary results after 6 months demonstrates the suitability of the coating for surgical implantation of stent. PMID:19267260

  1. Degradation of SS316L bipolar plates in simulated fuel cell environment: Corrosion rate, barrier film formation kinetics and contact resistance

    NASA Astrophysics Data System (ADS)

    Papadias, Dionissios D.; Ahluwalia, Rajesh K.; Thomson, Jeffery K.; Meyer, Harry M.; Brady, Michael P.; Wang, Heli; Turner, John A.; Mukundan, Rangachary; Borup, Rod

    2015-01-01

    A potentiostatic polarization method is used to evaluate the corrosion behavior of SS316L in simulated anode and cathode environments of polymer electrolyte fuel cells. A passive barrier oxide film is observed to form and reach steady state within ∼10 h of polarization, after which time the total ion release rates are low and nearly constant at ∼0.4 μg cm-2 h-1 for all potentials investigated. The equilibrium film thickness, however, is a function of the applied potential. The main ionic species dissolved in the liquid are predominately Fe followed by Ni, that account for >90% of the steady-state corrosion current. The dissolution rate of Cr is low but increases systematically at potentials higher than 0.8 V. The experimental ion release rates can be correlated with a point defect model using a single set of parameters over a broad range of potentials (0.2-1 V) on the cathode side. The interfacial contact resistance measured after 48 h of polarization is observed to increase with increase in applied potential and can be empirically correlated with applied load and oxide film thickness. The oxide film is substantially thicker at 1.5 V possibly because of alteration in film composition to Fe-rich as indicated by XPS data.

  2. Influences of pH value, temperature, chloride ions and sulfide ions on the corrosion behaviors of 316L stainless steel in the simulated cathodic environment of proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Li, D. G.; Wang, J. D.; Chen, D. R.; Liang, P.

    2014-12-01

    316L stainless steel is in the passive state in a simulated cathodic environment, and the passivity of 316L SS is enhanced with increasing pH value, decreasing temperature, decreasing chloride ions and sulfide ions concentrations. Mott-Schottky plots show that the passive films appear a p-n heterojunction, and the donor and acceptor densities reach 1022 cm-3, showing a highly defective character of the passive film. The donor and acceptor densities increase with increasing temperature, increasing chloride ions and sulfide ions concentrations, while they decreased with increasing pH value. The decreased passivity and the increased doping density may be beneficial to the conductivity of the passive film, but they adversely affect the protectiveness of the passive film toward corrosion.

  3. Effects of Mo content on microstructure and corrosion resistance of arc ion plated Ti-Mo-N films on 316L stainless steel as bipolar plates for polymer exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Kim, Kwang Ho; Shao, Zhigang; Wang, Feifei; Zhao, Shuang; Suo, Ni

    2014-05-01

    Bipolar plates are one of the most important components in PEMFC stack and have multiple functions, such as separators and current collectors, distributing reactions uniformly, and etc. Stainless steel is ideal candidate for bipolar plates owing to good thermal and electrical conductivity, good mechanical properties etc. However, stainless steel plate still cannot resist the corrosion of working condition. In this work, ternary Ti-Mo-N film was fabricated on 316L stainless steel (SS316L) as a surface modification layer to enhance the corrosion resistance. Effects of Mo content on the microstructure and corrosion resistance of Ti-Mo-N films are systematically investigated by altering sputtering current of the Mo target. XRD results reveal that the preferred orientation changes from [111] to [220] direction as Mo content in the film increases. The synthesized Ti-Mo-N films form a substitutional solid solution of (Ti, Mo)N where larger Mo atoms replace Ti in TiN crystal lattice. The TiN-coated SS316L sample shows the best corrosion resistance. While Mo content in the Ti-Mo-N films increases, the corrosion resistance gradually degrades. Compared with the uncoated samples, all the Ti-Mo-N film coated samples show enhanced corrosion resistance in simulated PEMFC working condition.

  4. Annual Book of ASTM Standards, Part 23: Water; Atmospheric Analysis.

    ERIC Educational Resources Information Center

    American Society for Testing and Materials, Philadelphia, PA.

    Standards for water and atmospheric analysis are compiled in this segment, Part 23, of the American Society for Testing and Materials (ASTM) annual book of standards. It contains all current formally approved ASTM standard and tentative test methods, definitions, recommended practices, proposed methods, classifications, and specifications. One…

  5. Understanding the corrosion behavior of chromia-forming 316L stainless steel in dual oxidizing-reducing environment representative of SOFC interconnect

    SciTech Connect

    Ziomek-Moroz, Margaret; Cramer, Stephen D.; Holcomb, Gordon R.; Covino, Bernard S., Jr.; Matthes, Steven A.; Bullard, Sophie J.; Dunning, John S.; Alman, David E.; Singh, P.

    2003-11-01

    A and B site doped LaCrO3-based electronically conducting Perovskite ceramic materials have been extensively used as interconnects in solid oxide fule cells (SOFC) operating at 800° to 1000°C as the Perovskites offer good electrical conductivity, chemical compatibility with the adjacent components of the fuel cell, chemical stability in reducing and oxidizing atmospheres, and thermal expansion coefficients that match other cell components. However, requirements for good mechanical properties, electrical and thermal conductivities, and low cost make metallic interconnects more promising. Significant progress in reducing the operating temperature of SOFC from ~1000°C to ~750°C is expected to permit the use of metallic materials with substantial cost reduction. Among the commercially available metallic materials, Cr2O3 (chromia) scale-forming iron base alloys appear to be the most promising candidates since they can fulfill the technical and economical requirements. These alloys, however, remain prone to reactions with oxygen and water vapor at fuel cell operating conditions and formation of gaseous chromium oxides and oxyhydroxides. To study the degradation processes and corrosion mechanisms of commercial chromia scale-forming alloys under SOFC interconnect exposure conditions, 316L was selected for this research because of the availability of the materials. The dual environment to which the interconnect material was exposed consisted of dry air (simulates the cathode side environment) and a mixture of H2 and 3% H2O (simulates the anode side environment). Post-corrosion surface evaluation involved the use of optical and scanning electron microscopy, as well as energy dispersive X-ray analyses.

  6. A Comparative Evaluation of the Effect of Low Cycle Fatigue and Creep-Fatigue Interaction on Surface Morphology and Tensile Properties of 316L(N) Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Bhaduri, A. K.; Laha, Kinkar

    2016-04-01

    In the present work, the deformation and damage evolution in 316L(N) stainless steel during low cycle fatigue (LCF) and creep-fatigue interaction (CFI) loadings have been compared by evaluating the residual tensile properties. Towards this, LCF and CFI experiments were carried out at constant strain amplitude of ±0.6 pct, strain rate of 3 × 10-3 s-1 and temperature of 873 K (600 °C). During CFI tests, 30 minutes hold period was introduced at peak tensile strain. Experiments were interrupted up to various levels of fatigue life viz. 5, 10, 30, 50, and 60 pct of the total fatigue life ( N f) under both LCF and CFI conditions. The specimens subjected to interrupted fatigue loadings were subsequently monotonically strained at the same strain rate and temperature up to fracture. Optical and scanning electron microscopy and profilometry were conducted on the untested and tested samples to elucidate the damage evolution during the fatigue cycling under both LCF and CFI conditions. The yield strength (YS) increased sharply with the progress of fatigue damage and attained saturation within 10 pct of N f under LCF condition. On the contrary, under CFI loading condition, the YS continuously increased up to 50 pct of N f, with a sharp increase of YS up to 5 pct of N f followed by a more gradual increase up to 50 pct of N f. The difference in the evolution of remnant tensile properties was correlated with the synergistic effects of the underlying deformation and damage processes such as cyclic hardening/softening, oxidation, and creep. The evolution of tensile properties with prior fatigue damage has been correlated with the change in surface roughness and other surface features estimated by surface replica technique and fractography.

  7. Effect of bicarbonate ion additives on pitting corrosion of type 316L stainless steel in aqueous 0.5 M sodium chloride solution

    SciTech Connect

    Park, J.J.; Pyun, S.I.; Lee, W.J.; Kim, H.P.

    1999-04-01

    The effect of bicarbonate ions (HCO{sub 3}{sup {minus}}) on pitting corrosion of type 316L stainless steel (SS, UNS S3 1603) was investigated in aqueous 0.5 M sodium chloride (NaCl) solution using potentiodynamic polarization, the abrading electrode technique, alternating current (AC) impedance spectroscopy combined with x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Addition of HCO{sub 3}{sup {minus}} ions to NaCl solutions extended the passive potential region in width and, at the same time, raised the pitting potential in value on the potentiodynamic polarization curve. Potentiostatic current transients obtained from the moment just after interrupting the abrading action showed the repassivation rate of propagating pits increased and that the pit growth rate decreased with increasing HCO{sub 3}{sup {minus}} ion concentration. Over the whole applied potential, the oxide film resistance was higher in the presence of HCO{sub 3}{sup {minus}} ions. The pit number density decreased with increasing HCO{sub 3}{sup {minus}} ion concentration. Moreover, addition of HCO{sub 3}{sup {minus}} ions to NaCl solutions retarded lateral pit growth, while promoting downward pit growth from the surface. The bare surface of the specimen repassivated preferentially along the pit mouth and walls, compared to the pit bottom, as a result of formation of a surface film with a high content of protective mixed ferrous-chromous carbonate ([Fe,Cr]CO{sub 3}) that formed from preferential adsorption of HCO{sub 3}{sup {minus}} ions.

  8. ASTM standards in radiological decontamination and decommissioning

    SciTech Connect

    Meservey, R.H.

    1994-12-31

    The American Society for Testing and Materials (ASTM) Subcommittee E10.03 was formed following a steering committee meeting held in April 1980. The meeting was initiated as a result of labor union concern for the safety of workers on decommissioning projects. Of particular concern at that time was the need for proper training of the workers and a means of tracking worker radiation-exposure records as they traveled to various decommissioning job sites. The steering committee concluded not only that worker protection standards were necessary for decommissioning activities but also that all phases of a decommissioning project could benefit from the appropriate guides or standards. These would provide worker protection, technical guidance, and consistency for decommissioning work. It recommended that Subcommittee E10.03 be formed and dedicated to the preparation of guides and standards that would support all phases of nuclear facility decontamination and decommissioning. Subcommittee E10.03 has met regularly on a semiannual basis since that time.

  9. ASTM assessment standards garner nods, some warnings from information vendors

    SciTech Connect

    Prickett, D.S. )

    1993-08-01

    The American Society for Testing of Materials ASTM; (Philadelphia) early this year adopted standards for Phase I real estate site assessments. Many in the real estate, banking and lending communities have welcomed the standards as a partial solution to uncertainties associated with environmental due diligence requirements under CERCLA. Some, however, view the standards as minimum criteria for exercising due diligence, rather than a panacea for potential CERCLA liability problems. The author discusses the new standards with a descriptive statement prepared by ASTM, two essentially favorable views on the ASTM criteria and a cautionary statement about use of the standards in practice.

  10. Standards activity for contamination control at ASTM and IEST

    NASA Astrophysics Data System (ADS)

    Sanders, Jack T.

    2014-09-01

    The paper will discuss recent work at ASTM and IEST to update existing standards and introduce new standards. Committee work on standards of interest to contamination control engineers will be discussed. IEST-STD-CC1246E was released in the last year, and changes from revision D will be highlighted. A new ASTM Standard Practice for Spacecraft Hardware Thermal Vacuum Bakeout will also be emphasized.

  11. Corrosion behavior of austenitic steels 1.4970, 316L and 1.4571 in flowing LBE at 450 and 550 °C with 10-7 mass% dissolved oxygen

    NASA Astrophysics Data System (ADS)

    Tsisar, Valentyn; Schroer, Carsten; Wedemeyer, Olaf; Skrypnik, Aleksandr; Konys, Jürgen

    2014-11-01

    Corrosion behavior of austenitic steels 1.4571, 1.4970 and 316L was investigated in flowing oxygen-controlled LBE (2 m/s, 10-7 mass% O) at 450 and 550 °C for up to 8766 and 2011 h, respectively. The corrosion modes and material loss were analyzed qualitatively and quantitatively. Steels underwent both oxidation accompanied by formation of a thin (⩽0.5 μm) Cr-based oxide film and selective leaching of Ni and Cr that resulted in formation of a layer-type ferrite zone and deeper local damages with pit-type appearance both penetrated by Bi and Pb. The corrosion loss increases with time and temperature providing that the oxygen content is constant (10-7 mass%). Detailed quantitative analyses of corrosion loss showed that at 450 °C metal recession of steels ranged from 4 to 27 μm after 8766 h. Maximum depth of local attack reached 114, 183 and 210 μm for 1.4571, 1.4970 and 316L steels, respectively. At 550 °C metal recession ranged from 23 to 60 μm after 2011 h that correlates well with thickness of ferrite layer formed. The maximum depth of local attack reached 587, 207 and 158 μm for 1.4571, 1.4970 and 316L steels, respectively. The effect of composition, surface state and bulk micro-structure on the corrosion response of steels is discussed. The results are compared with those obtained in LBE with higher oxygen concentration, i.e., 10-6 mass% O.

  12. Standard radiographic examination for soundness of welds in steel by comparison to graded ASTM E 390 reference radiographs. ASTM standard

    SciTech Connect

    1998-09-01

    This radiograph is under the jurisdiction of ASTM Committee E-7 on Nondestructive Testing and is the direct responsibility of Subcommittee E07.02 on Reference Radiological Images. Current edition approved May 10, 1998 and published September 1998.

  13. Distribution of soluble and precipitated iron and chromium products generated by anodic dissolution of 316L stainless steel and alloy C-22: final report

    SciTech Connect

    Estill, J; Farmer, J; Gordon, S; King, K; Logotetta, L; Silberman, D

    1999-08-11

    At near neutral pH and at applied potentials above the threshold potential for localized breakdown of the passive film, virtually all of the dissolved chromium appeared to be in the hexavalent oxidation state (Cr(VI)). In acidic environments, such as crevice solutions formed during the crevice corrosion of 316L and C-22 samples in 4 M NaCl, virtually all of the dissolved chromium appeared to be in the trivalent oxidation state (Cr(III)). These general observations appear to be consistent with the Pourbaix diagram for chromium (Pourbaix 1974), pp. 307-321. At high pH and high anodic polarization (pH {approximately} 8 and 800 mV vs. SHE), the predominate species is believed to be the soluble chromate anion (CrO{sub 4}{sup 2{minus}}). At the same pH, but lower polarization (pH {approximately} 8 and 0 mV vs. SHE), the predominate species are believed to be precipitates such as trivalent Cr(OH){sub 3} {center_dot} n(H{sub 2}O) and hexavalent Cr{sub 2}O{sub 3}. In acidified environments such as those found in crevices (pH < 3), soluble Cr{sup 3+} is expected to form over a wide range of potential extending from 400 mV vs. SHE to approximately 1200 mV vs. SHE. Again, this is consistent with the observations from the creviced samples. In earlier studies by the principal investigator, it has been found that low-level chromium contamination in ground water is usually in the hexavalent oxidation state (Farmer et al. 1996). In general, dissolved iron measured during the crevice experiments appears to be Fe(II) in acidic media and Fe(III) in near-neutral and alkaline solutions (table 3). In the case of cyclic polarization measurements, the dissolved iron measured at the end of some cyclic polarization measurements with C-22 appeared to be in the Fe(III) state. This is probably due to the high electrochemical potential at which these species were generated during the potential scan. Note that the reversal potential was approximately 1200 mV vs. Ag/AgCl during these scans. These

  14. Microstructural origins of radiation-induced changes in mechanical properties of 316 L and 304 L austenitic stainless steels irradiated with mixed spectra of high-energy protons and spallation neutrons

    NASA Astrophysics Data System (ADS)

    Sencer, B. H.; Bond, G. M.; Hamilton, M. L.; Garner, F. A.; Maloy, S. A.; Sommer, W. F.

    2001-07-01

    A number of candidate alloys were exposed to a particle flux and spectrum at Los Alamos Neutron Science Center (LANSCE) that closely match the mixed high-energy proton/neutron spectra expected in accelerator production of tritium (APT) window and blanket applications. Austenitic stainless steels 316 L and 304 L are two of these candidate alloys possessing attractive strength and corrosion resistance for APT applications. This paper describes the dose dependence of the irradiation-induced microstructural evolution of SS 316 L and 304 L in the temperature range 30-60°C and consequent changes in mechanical properties. It was observed that the microstructural evolution during irradiation was essentially identical in the two alloys, a behavior mirrored in their changes in mechanical properties. With one expection, it was possible to correlate all changes in mechanical properties with visible microstructural features. A late-term second abrupt decrease in uniform elongation was not associated with visible microstructure, but is postulated to be a consequence of large levels of retained hydrogen measured in the specimens. In spite of large amounts of both helium and hydrogen retained, approaching 1 at.% at the highest exposures, no visible cavities were formed, indicating that the gas atoms were either in solution or in subresolvable clusters.

  15. ASTM standards help corporate real estate executives manage environmental information

    SciTech Connect

    Bennett, M.J.; McCarter, B.J. )

    1993-09-01

    The American Society for Testing of Materials (ASTM; Philadelphia) new environmental due diligence standards assist executives in supporting environmental risk management procedures. ASTM standards help clarify environmental due diligence procedures for real estate transactions. These standards are being accepted by firms nationwide. The transaction screen and the Phase I environmental site assessment comprise the ASTM standards, and incorporate reviews of government environmental databases. The transaction screen, often called a pre-Phase I or Phase Zero, is an information-gathering process consisting of a questionnaire completed by a knowledgeable party, a nontechnical site inspection and a review of government environmental records. A limited historical investigation of fire insurance maps or contact with the local fire marshal, who typically maintains records of leaking USTs, is included. Emphasis on information review helps corporate real estate executives maintain organized information gathering an analysis systems.

  16. ASTM Standards for Reactor Dosimetry and Pressure Vessel Surveillance

    SciTech Connect

    GRIFFIN, PATRICK J.

    1999-09-14

    The ASTM standards provide guidance and instruction on how to field and interpret reactor dosimetry. They provide a roadmap towards understanding the current ''state-of-the-art'' in reactor dosimetry, as reflected by the technical community. The consensus basis to the ASTM standards assures the user of an unbiased presentation of technical procedures and interpretations of the measurements. Some insight into the types of standards and the way in which they are organized can assist one in using them in an expeditious manner. Two example are presented to help orient new users to the breadth and interrelationship between the ASTM nuclear metrology standards. One example involves the testing of a new ''widget'' to verify the radiation hardness. The second example involves quantifying the radiation damage at a pressure vessel critical weld location through surveillance dosimetry and calculation.

  17. Standard specification for glass fiber felt thermal insulation. ASTM standard

    SciTech Connect

    Not Available

    1997-01-01

    This specification is under the jurisdiction of ASTM Committee C-16 on Thermal Insulation and is the direct responsibility of Subcommittee C16.23 on Blanket and Loose Fill Insulation. Current edition approved Dec. 10, 1996. Published January 1997. Originally published as C 1086-87. Last previous edition was C 1086-90a.

  18. Standard classification of coals by rank. ASTM standard

    SciTech Connect

    1998-11-01

    This classification is under the jurisdiction of ASTM Committee D-5 on Coal and Coke and is the direct responsibility of Subcommittee D05.18 on Classification of Coals. The current edition was approved on Sep. 10, 1998. It was published in November 1998. It was originally published as D 388-34T. The last previous edition D 388-98.

  19. Standard specification for nickel alloy forgings. ASTM standard

    SciTech Connect

    1998-03-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt and Their Alloys. Current edition approved Dec. 10, 1997. Published March 1998. Originally published as B 564-72. Last previous edition B 564-97.

  20. Standard classification for rubber compounding materials -- ground coal. ASTM standard

    SciTech Connect

    1993-05-01

    This classification is under the jurisdiction of ASTM Committee D-11 Rubber and is the direct responsibility of Subcommittee D11.20 on Compounding Materials and Procedures. The current edition was approved on Mar. 15, 1993. It was published in May 1993. It was reapproved 1998.

  1. Standard specification for nickel-molybdenum alloy rod. ASTM standard

    SciTech Connect

    1998-02-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt and Their Alloys. Current edition approved Apr. 10, 1997 and published February 1998. Originally published as B 335-58T. Last previous edition was B 335-95.

  2. Standard specification for nuclear grade zirconium oxide pellets. ASTM standard

    SciTech Connect

    1998-05-01

    This specification is under the jurisdiction of ASTM Committee C-26 on Nuclear Fuel Cycle and is the direct responsibility of Subcommittee C26.03 on Neutron Absorber Materials Specifications. Current edition approved May 10, 1997. Published May 1998. Originally published as C 1066-86. Last previous edition C 1066-92.

  3. Standard specification for UNS N08367 welded tube. ASTM standard

    SciTech Connect

    1998-02-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt and Their Alloys. Current edition approved Oct. 10, 1997 and published February 1998. Originally published as B 676-80. Last previous edition was B 676-96.

  4. Standard specification for castings, nickel and nickel alloy. ASTM standard

    SciTech Connect

    1998-11-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.18 on Castings. Current edition approved Sep. 10, 1998. Published November 1998. Originally published as B 332-58T. Redesignated as A 494 in 1963. Last previous edition A 494/A 494M-94.

  5. Nickel-chromium-iron-molybdenum-copper alloy rod. ASTM standard

    SciTech Connect

    1998-02-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt and Their Alloys. Current edition approved Oct. 10, 1997. Published February 1998. Originally published as B581-73. Last previous edition B581-93.

  6. Standard specification for nuclear grade hafnium oxide pellets. ASTM standard

    SciTech Connect

    1998-05-01

    This specification is under the jurisdiction of ASTM Committee C-26 on Nuclear Fuel Cycle and is the direct responsibility of Subcommittee C26.03 on Neutron Absorber Materials Specifications. Current edition approved May 10, 1997. Published May 1998. Originally published as C 1076-87. Last previous edition C 1076-92.

  7. HACCP: Integrating Science and Management through ASTM Standards

    EPA Science Inventory

    From a technical perspective, hazard analysis-critical control point (HACCP) evaluation may be considered a risk management tool suited to a wide range of applications. As one outcome of a symposium convened by American Society for Testing and Materials (ASTM) in August, 2005, th...

  8. Standard specification for carbon and alloy steel nuts. ASTM standard

    SciTech Connect

    1998-07-01

    This specification is under the jurisdiction of ASTM Committee F-16 on Fasteners and is the responsibility of Subcommittee F16.02 on Steel Bolts, Nuts, Rivets, and Washers. Current edition approved Dec. 10, 1997. Published July 1998. Originally published as A 563-66. Last previous edition A 563-96.

  9. A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Simonelli, Marco; Tuck, Chris; Aboulkhair, Nesma T.; Maskery, Ian; Ashcroft, Ian; Wildman, Ricky D.; Hague, Richard

    2015-09-01

    The creation of an object by selective laser melting (SLM) occurs by melting contiguous areas of a powder bed according to a corresponding digital model. It is therefore clear that the success of this metal Additive Manufacturing (AM) technology relies on the comprehension of the events that take place during the melting and solidification of the powder bed. This study was designed to understand the generation of the laser spatter that is commonly observed during SLM and the potential effects that the spatter has on the processing of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V. With the exception of Ti-6Al-4V, the characterization of the laser spatter revealed the presence of surface oxides enriched in the most volatile alloying elements of the materials. The study will discuss the implication of this finding on the material quality of the built parts.

  10. Effect of Post-Weld Heat Treatment on Mechanical and Electrochemical Properties of Gas Metal Arc-Welded 316L (X2CrNiMo 17-13-2) Stainless Steel

    NASA Astrophysics Data System (ADS)

    Muhammad, F.; Ahmad, A.; Farooq, A.; Haider, W.

    2016-08-01

    In the present research work, corrosion behavior of post-weld heat-treated (PWHT) AISI 316L (X2CrNiMo 17-13-2) specimens joined by gas metal arc welding is compared with as-welded samples by using potentiodynamic polarization technique. Welded samples were PWHT at 1323 K for 480 s and quenched. Mechanical properties, corrosion behavior and microstructures of as-welded and PWHT specimens were investigated. Microstructural studies have shown grain size refinement after PWHT. Ultimate tensile strength and yield strength were found maximum for PWHT samples. Bend test have shown that PWHT imparted ductility in welded sample. Fractographic analysis has evidenced ductile behavior for samples. Potentiodynamic polarization test was carried out in a solution composed of 1 M H2SO4 and 1 N NaCl. Corrosion rate of weld region was 127.6 mpy, but after PWHT, it was decreased to 13.12 mpy.

  11. Measurement of hydrogen permeation through SUS 316L for pressures from 0.8 to 2.0 bar and thicknesses from 1 to 3 mm at 800°C

    NASA Astrophysics Data System (ADS)

    Lee, S. K.; Noh, S. J.; In, S. R.

    2012-07-01

    A detailed understanding of the permeation of hydrogen isotopes through structural materials is an important issue concerning the reliability, safety, fuelling and environmental impact of fusion power reactors. The permeation of hydrogen through SUS 316L stainless steel, which will be used in various parts of fusion power reactors, was investigated at an elevated temperature of 800 °C. From experiments at different hydrogen feed pressures of 0.8, 1.0, 1.5, and 2.0 bar with a 3-mm-thick membrane coupon, the hydrogen pressure exponent was determined, and the rate-limiting step for the permeation was determined to be bulk diffusion. From experiments using membranes of various thicknesses of 1, 2, and 3 mm at 1 bar, the effect of the membrane thickness on the hydrogen permeation was studied and discussed in relation to the bulk diffusion process. The results and the discussions for the hydrogen permeation experiments are presented here.

  12. Development of ASTM standards in support of advanced ceramics development

    SciTech Connect

    Brinkman, C.R.; Quinn, G.D.; McClung, R.W.

    1993-01-01

    The ASTM Committee C-28 on Advanced Ceramics was organized in 1986 when it became apparent that ceramics were being considered for extensive use in such applications as heat engines in the automotive and aerospace industries. It was determined that these standards should be written for the production, inspection, testing, data analysis, reliability, and probabilistic design for utilization of advanced ceramics. Advanced ceramics include both monolithic and composite materials. The ASTM Committee C-28 is organized into five subcommittees as follows: Properties and performance, design and evaluation, characterization and processing, ceramic composites, and nomenclature. A summary overview is given of work performed to date and ongoing efforts in developing standards by these various subcommittees.

  13. Verification of the ASTM G-124 Purge Equation

    NASA Technical Reports Server (NTRS)

    Robbins, Katherine E.; Davis, Samuel Eddie

    2009-01-01

    ASTM G-124 seeks to evaluate combustion characteristics of metals in high-purity (greater than 99%) oxygen atmospheres. ASTM G-124 provides the following equation to determine the minimum number of purges required to reach this level of purity in a test chamber: n = -4/log10(Pa/Ph), where "n" is the total number of purge cycles required, Ph is the absolute pressure used for the purge on each cycle and Pa is the atmospheric pressure or the vent pressure. The origin of this equation is not known and has been the source of frequent questions as to its accuracy and reliability. This paper shows the derivation of the G-124 purge equation, and experimentally explores the equation to determine if it accurately predicts the number of cycles required.

  14. Corrosion potential for aluminum alloys measured by ASTM G 69

    SciTech Connect

    Burleigh, T.D. ); Bovard, F.S. ); Rennick, R.C.

    1993-08-01

    ASTM G 69, [open quotes]Standard Practice for Measurement of Corrosion Potentials of Aluminum Alloys[close quotes], is a useful method to discern the temper of a given aluminum alloy. Corrosion potentials (E[sub corr]) often can be used to differentiate between different alloys since copper or zinc in solid solution will cause significant differences in E[sub corr]. Measured E[sub corr] of various aluminum alloys and other non-aluminum metals were listed.

  15. An Automated Safe-to-Mate (ASTM) Tester

    NASA Technical Reports Server (NTRS)

    Nguyen, Phuc; Scott, Michelle; Leung, Alan; Lin, Michael; Johnson, Thomas

    2013-01-01

    Safe-to-mate testing is a common hardware safety practice where impedance measurements are made on unpowered hardware to verify isolation, continuity, or impedance between pins of an interface connector. A computer-based instrumentation solution has been developed to resolve issues. The ASTM is connected to the circuit under test, and can then quickly, safely, and reliably safe-to-mate the entire connector, or even multiple connectors, at the same time.

  16. ASTM International Workshop on Standards & Measurements for Tissue Engineering Scaffolds

    PubMed Central

    Simon, Carl G.; Yaszemski, Michael J.; Ratcliffe, Anthony; Tomlins, Paul; Luginbuehl, Reto; Tesk, John A.

    2016-01-01

    The “Workshop on Standards & Measurements for Tissue Engineering Scaffolds” was held on May 21, 2013 in Indianapolis, IN and was sponsored by the ASTM International (ASTM). The purpose of the workshop was to identify the highest priority items for future standards work for scaffolds used in the development and manufacture of tissue engineered medical products (TEMPs). Eighteen speakers and 78 attendees met to assess current scaffold standards and to prioritize needs for future standards. A key finding was that the ASTM TEMPs subcommittees (F04.41-46) have many active “guide” documents for educational purposes, but that few standard “test methods” or “practices” have been published. Overwhelmingly, the most clearly identified need was standards for measuring the structure of scaffolds, followed by standards for biological characterization, including in vitro testing, animal models and cell-material interactions. The third most pressing need was to develop standards for assessing the mechanical properties of scaffolds. Additional needs included standards for assessing scaffold degradation, clinical outcomes with scaffolds, effects of sterilization on scaffolds, scaffold composition and drug release from scaffolds. Discussions also highlighted the need for additional scaffold reference materials and the need to use them for measurement traceability. Finally, dialogue emphasized the needs to promote the use of standards in scaffold fabrication, characterization, and commercialization and to assess the use and impact of standards in the TEMPs community. Many scaffold standard needs have been identified and focus should now turn to generating these standards to support the use of scaffolds in TEMPs. PMID:25220952

  17. Recommendations for fluorescence instrument qualification: the new ASTM Standard Guide.

    PubMed

    DeRose, Paul C; Resch-Genger, Ute

    2010-03-01

    Aimed at improving quality assurance and quantitation for modern fluorescence techniques, ASTM International (ASTM) is about to release a Standard Guide for Fluorescence, reviewed here. The guide's main focus is on steady state fluorometry, for which available standards and instrument characterization procedures are discussed along with their purpose, suitability, and general instructions for use. These include the most relevant instrument properties needing qualification, such as linearity and spectral responsivity of the detection system, spectral irradiance reaching the sample, wavelength accuracy, sensitivity or limit of detection for an analyte, and day-to-day performance verification. With proper consideration of method-inherent requirements and limitations, many of these procedures and standards can be adapted to other fluorescence techniques. In addition, procedures for the determination of other relevant fluorometric quantities including fluorescence quantum yields and fluorescence lifetimes are briefly introduced. The guide is a clear and concise reference geared for users of fluorescence instrumentation at all levels of experience and is intended to aid in the ongoing standardization of fluorescence measurements. PMID:20136134

  18. Measuring the Real Fracture Toughness of Ceramics: ASTM C 1421

    NASA Astrophysics Data System (ADS)

    Salem, Jonathan; Quinn, George; Jenkins, Michael

    ASTM C 1421 "Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature" is a high-quality, technicallyrigorous, full-consensus standard that may have finally answered the question, "What is the 'real' fracture toughness of ceramics?" This document was eight years in the actual standardization process (although an estimated two decades of preparation work may have preceded the actual standardization process). Three different types of notch/crack geometries are employed in flexure beams: single edge precracked beam (SEPB); chevron-notched beam (CNB), and surface crack in flexure (SCF). Extensive experimental, analytical, and numerical evaluations were conducted in order to mitigate interferences that frequently lower the accuracy of fracture toughness test results. Several round robins (e.g. Versailles Advanced Materials and Standards {VAMAS}) verified and validated the choice of dimensions and test parameters included in the standard. In addition, the standard reference material NIST SRM 2100 was developed and can be used in concert with ASTM C 1421 to validate a fracture toughness test setup or test protocol.

  19. Standard practice for handling densified articles of aluminum oxide reinforced with silicon carbide whiskers. ASTM standard

    SciTech Connect

    1998-06-01

    This practice is under the jurisdiction of ASTM Committee E-34 on Occupational Health and Safety and is the direct responsibility of Subcommittee E34.70 on Single Crystal Ceramic Whiskers. Current edition approved Apr. 10, 1998. Published June 1998. Originally published as E 1435-91. Last previous edition E 1435-91. Copyright American Society for Testing and Materials (ASTM), 100 Barr Harbor Drive, West Conshohocken, PA, 19428, USA. This document is available from NTIS under license from ASTM.

  20. Standard test method for vinyl chloride in workplace atmospheres (charcoal tube method). ASTM standard

    SciTech Connect

    1998-07-01

    This test method is under the jurisdiction of ASTM Committee D-22 on Sampling and Analysis of Atmospheres and is the direct responsibility of Subcommittee D22.04 on Workplace Atmospheres. Current edition approved May 10, 1998. Published July 1998. Originally published as D 4766-88. Last previous edition D 4766-88(1993). Copyright American Society for Testing and Materials (ASTM), 100 Barr Harbor Drive, West Conshohocken, PA, 19428, USA. This document is available from NTIS under license from ASTM.

  1. Discussion on FRP design properties based on flexural tests (ASTM D-790) and tensile tests (ASTM D-638)

    SciTech Connect

    Clark, J.M.

    1996-11-01

    Tensile and flexural test results on the same laminate can have significant difference with the reported flexural strength being up to 100% greater than the tensile strength using the standard ASTM reporting methods. Taken at face value, these results can lead to nonconservative designs. The flexural test method is much simpler and less expensive, but must be used with a clear understanding of how they were computed and with sound engineering judgment since the flexural strength is calculated with linear bending theory at failure loads that are usually in the nonlinear range. This is significant since the general accepted design practice is to use linear theory in the design of FRP equipment. Manufacturers reporting this value should thus have a clear understanding of the difference between the reported results for flexural strength and the required design strength. This paper shows how to determine the proper design value from a flexural test which results in safe designs of FRP equipment and shows that the reported flexural strength from the ASTM D-790 method should not be used in design of FRP equipment.

  2. Interpreting the ASTM 'content standard for digital geospatial metadata'

    USGS Publications Warehouse

    Nebert, Douglas D.

    1996-01-01

    ASTM and the Federal Geographic Data Committee have developed a content standard for spatial metadata to facilitate documentation, discovery, and retrieval of digital spatial data using vendor-independent terminology. Spatial metadata elements are identifiable quality and content characteristics of a data set that can be tied to a geographic location or area. Several Office of Management and Budget Circulars and initiatives have been issued that specify improved cataloguing of and accessibility to federal data holdings. An Executive Order further requires the use of the metadata content standard to document digital spatial data sets. Collection and reporting of spatial metadata for field investigations performed for the federal government is an anticipated requirement. This paper provides an overview of the draft spatial metadata content standard and a description of how the standard could be applied to investigations collecting spatially-referenced field data.

  3. Biocompatibility of metal injection molded versus wrought ASTM F562 (MP35N) and ASTM F1537 (CCM) cobalt alloys.

    PubMed

    Chen, Hao; Sago, Alan; West, Shari; Farina, Jeff; Eckert, John; Broadley, Mark

    2011-01-01

    We present a comparative analysis between biocompatibility test results of wrought and Metal Injection Molded (MIM) ASTM F562-02 UNS R30035 (MP35N) and F1537 UNS R31538 (CCM) alloy samples that have undergone the same generic orthopedic implant's mechanical, chemical surface pre-treatment, and a designed pre-testing sample preparation method. Because the biocompatibility properties resulting from this new MIM cobalt alloy process are not well understood, we conducted tests to evaluate cytotoxicity (in vitro), hemolysis (in vitro), toxicity effects (in vivo), tissue irritation level (in vivo), and pyrogenicity count (in vitro) on such samples. We show that our developed MIM MP35N and CCM materials and treatment processes are biocompatible, and that both the MIM and wrought samples, although somewhat different in microstructure and surface, do not show significant differences in biocompatibility. PMID:21537059

  4. 47 CFR 95.1509 - ASTM E2213-03 DSRC Standard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....C. 552(a) and 1 CFR part 51. Copies may be inspected at the Federal Communications Commission, 445... Roadside and Vehicle Systems—5 GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control... 19428-2959. Copies may also be obtained from ASTM via the Internet at http://www.astm.org....

  5. 47 CFR 95.1509 - ASTM E2213-03 DSRC Standard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....C. 552(a) and 1 CFR part 51. Copies may be inspected at the Federal Communications Commission, 445... Roadside and Vehicle Systems—5 GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control... 19428-2959. Copies may also be obtained from ASTM via the Internet at http://www.astm.org....

  6. 47 CFR 95.1509 - ASTM E2213-03 DSRC Standard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....C. 552(a) and 1 CFR part 51. Copies may be inspected at the Federal Communications Commission, 445... Roadside and Vehicle Systems—5 GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control... 19428-2959. Copies may also be obtained from ASTM via the Internet at http://www.astm.org....

  7. 47 CFR 95.1509 - ASTM E2213-03 DSRC Standard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false ASTM E2213-03 DSRC Standard. 95.1509 Section 95.1509 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Dedicated Short-Range Communications Service On-Board Units (DSRCS-OBUs) § 95.1509 ASTM E2213-03 DSRC Standard....

  8. 47 CFR 95.1509 - ASTM E2213-03 DSRC Standard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....C. 552(a) and 1 CFR part 51. Copies may be inspected at the Federal Communications Commission, 445... Roadside and Vehicle Systems—5 GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control... 19428-2959. Copies may also be obtained from ASTM via the Internet at http://www.astm.org....

  9. Modeling and production of 240Am by deuteron-induced activation of a 240Pu target

    NASA Astrophysics Data System (ADS)

    Finn, Erin C.; McNamara, Bruce; Greenwood, Larry; Wittman, Richard; Soderquist, Charles; Woods, Vincent; VanDevender, Brent; Metz, Lori; Friese, Judah

    2015-04-01

    A novel reaction pathway for production of 240Am is reported. Models of reaction cross-sections in EMPIRE II suggest that deuteron-induced activation of a 240Pu target produces maximum yields of 240Am from 11.5 MeV incident deuterons. This activation had not been previously reported in the literature. A 240Pu target was activated under the modeled optimum conditions to produce 240Am. The modeled cross-section for the 240Pu(d, 2n)240Am reaction is on the order of 20-30 mbarn, but the experimentally estimated value is 5.6 ± 0.2 mbarn. We discuss reasons for the discrepancy as well as production of other Am isotopes that contaminate the final product.

  10. Modeling and production of 240Am by deuteron-induced activation of a 240Pu target

    SciTech Connect

    Finn, Erin C.; McNamara, Bruce K.; Greenwood, Lawrence R.; Wittman, Richard S.; Soderquist, Chuck Z.; Woods, Vincent T.; VanDevender, Brent A.; Metz, Lori A.; Friese, Judah I.

    2015-02-01

    A novel reaction pathway for production of 240Am is reported. Models of reaction cross-sections in EMPIRE II suggests that deuteron-induced activation of a 240Pu target produces maximum yields of 240Am from 11.5 MeV incident deuterons. This activation had not been previously reported in the literature. A 240Pu target was activated under the modeled optimum conditions to produce 240Am. The modeled cross-section for the 240Pu(d, 2n)240Am reaction is on the order of 20-30 mbarn, but the experimentally estimated value is 5.3 ± 0.2 mbarn. We discuss reasons for the discrepancy as well as production of other Am isotopes that contaminate the final product.

  11. Laser induced damage in optical materials: 8th ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1977-05-01

    The Eighth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was hosted by the National Bureau of Standards in Boulder, Colorado, from 13 to 15 July 1976. The Symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Energy Research and Development Administration, and the Office of Naval Research. About 160 scientists attended the Symposium, including representatives of the United Kingdom, France, Canada, and Brazil. The Symposium was divided into five half-day sessions concerning Bulk Material Properties and Thermal Behavior, Mirrors and Surfaces, Thin Film Properties, Thin Film Damage, and Scaling Laws and Fundamental Mechanisms. As in previous years, the emphasis of the papers presented at the Symposium was directed toward new frontiers and new developments. Particular emphasis was given to new materials for use at 10.6 microm in mirror substrates, windo s, and coatings. New techniques in film deposition and advances in diamond-turning of optics were described. The scaling of damage thresholds with pulse duration, focal area, and wavelength were discussed. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons of the Symposium. The Ninth Annual Symposium is scheduled for 4-6 October 1977 at the National Bureau of Standards, Boulder, Colorado. PMID:20168679

  12. Laser-induced damage in optical materials: sixteenth ASTM symposium.

    PubMed

    Bennett, H E; Guenther, A H; Milam, D; Newnam, B E

    1987-03-01

    The Sixteenth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, CO, 15-17 Oct. 1984. The Symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy, the Office of Naval Research, and the Air Force Office of Scientific Research. Approximately 180 scientists attended the Symposium, including representatives from England, France, The Netherlands, Scotland, and West Germany. The Symposium was divided into sessions concerning Materials and Measurements, Mirrors and Surfaces, Thin Films, and Fundamental Mechanisms. As in previous years, the emphasis of the papers presented at the Symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high-power apparatus. The wavelength range of prime interest was from 10.6,microm to the UV region. Highlights included surface characterization, thin-film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. Harold E. Bennett of the U.S. Naval Weapons Center, Arthur H. Guenther of the U.S. Air Force Weapons Laboratory, David Milam of the Lawrence Livermore National Laboratory, and Brian E. Newnam of the Los Alamos National Laboratory were cochairmen of the Symposium. PMID:20454228

  13. Laser induced damage in optical materials: ninth ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1978-08-01

    The Ninth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 4-6 October 1977. The symposium was under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy (formerly ERDA), and the Office of Naval Research. About 185 scientists attended, including representatives of the United Kingdom, France, Canada, Australia, Union of South Africa, and the Soviet Union. The Symposium was divided into sessions concerning Laser Windows and Materials, Mirrors and Surfaces, Thin Films, Laser Glass and Glass Lasers, and Fundamental Mechanisms. As in previous years, the emphasis of the papers was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the uv region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength were also discussed. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The Tenth Annual Symposium is scheduled for 12-14 September 1978 at the National Bureau of Standards, Boulder, Colorado. PMID:20203792

  14. Development of an ASTM Graphite Oxidation Test Method

    SciTech Connect

    Contescu, Cristian I; Baker, Frederick S; Burchell, Timothy D

    2006-01-01

    Oxidation behavior of graphite is of practical interest because of extended use of graphite materials in nuclear reactors. High temperature gas-cooled reactors are expected to become the nuclear reactors of the next generation. The most critical factor in their safe operation is an air-ingress accident, in which case the graphite materials in the moderator and reflector would come in contact with oxygen at a high temperature. Many results on graphite oxidation have been obtained from TGA measurements using commercial instruments, with sample sizes of a few hundred milligrams. They have demonstrated that graphite oxidation is in kinetic control regime at low temperatures, but becomes diffusion-limited at high temperatures. These effects are better understood from measurement results with large size samples, on which the shape and structural factors that control diffusion can be more clearly evidenced. An ASTM test for characterization of oxidation resistance of machined carbon and graphite materials is being developed with ORNL participation. The test recommends the use of large machined samples (~ 20 grams) in a dry air flow system. We will report on recent results and progress in this direction.

  15. Model of ASTM Flammability Test in Microgravity: Iron Rods

    NASA Technical Reports Server (NTRS)

    Steinberg, Theodore A; Stoltzfus, Joel M.; Fries, Joseph (Technical Monitor)

    2000-01-01

    There is extensive qualitative results from burning metallic materials in a NASA/ASTM flammability test system in normal gravity. However, this data was shown to be inconclusive for applications involving oxygen-enriched atmospheres under microgravity conditions by conducting tests using the 2.2-second Lewis Research Center (LeRC) Drop Tower. Data from neither type of test has been reduced to fundamental kinetic and dynamic systems parameters. This paper reports the initial model analysis for burning iron rods under microgravity conditions using data obtained at the LERC tower and modeling the burning system after ignition. Under the conditions of the test the burning mass regresses up the rod to be detached upon deceleration at the end of the drop. The model describes the burning system as a semi-batch, well-mixed reactor with product accumulation only. This model is consistent with the 2.0-second duration of the test. Transient temperature and pressure measurements are made on the chamber volume. The rod solid-liquid interface melting rate is obtained from film records. The model consists of a set of 17 non-linear, first-order differential equations which are solved using MATLAB. This analysis confirms that a first-order rate, in oxygen concentration, is consistent for the iron-oxygen kinetic reaction. An apparent activation energy of 246.8 kJ/mol is consistent for this model.

  16. Fracture Toughness of Advanced Structural Ceramics: Applying ASTM C1421

    DOE PAGESBeta

    Swab, Jeffrey J.; Tice, Jason; Wereszczak, Andrew A.; Kraft, Reuben H.

    2014-11-03

    The three methods of determining the quasi-static Mode I fracture toughness (KIc) (surface crack in flexure – SC, single-edge precracked beam – PB, and chevron notched beam – VB) found in ASTM C1421 were applied to a variety of advanced ceramic materials. All three methods produced valid and comparable KIc values for the Al2O3, SiC, Si3N4 and SiAlON ceramics examined. However, not all methods could successfully be applied to B4C, ZrO2 and WC ceramics due to a variety of material factors. The coarse-grained microstructure of one B4C hindered the ability to observe and measure the precracks generated in the SCmore » and PB methods while the transformation toughening in the ZrO2 prevented the formation of the SC and PB precracks and thus made it impossible to use either method on this ceramic. The high strength and elastic modulus of the WC made it impossible to achieve stable crack growth using the VB method because the specimen stored a tremendous amount of energy prior to fracture. Even though these methods have passed the rigors of the standardization process there are still some issues to be resolved when the methods are applied to certain classes of ceramics. We recommend that at least two of these methods be employed to determine the KIc, especially when a new or unfamiliar ceramic is being evaluated.« less

  17. 77 FR 10358 - Acceptance of ASTM F963-11 as a Mandatory Consumer Product Safety Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... ASTM F963-11 standard titled, Standard Consumer Safety Specifications for Toy Safety. Pursuant to... 110-314, made the provisions of ASTM F963-07, Standard Consumer Safety Specifications for Toy Safety... toy chests). The requirements of ASTM F963-08 became effective on August 16, 2009, except for...

  18. Standard specification for steel, sheet, carbon, for pressure vessels. ASTM standard

    SciTech Connect

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.19 on Sheet Steel and Strip. Current edition approved Jun. 10, 1998. Published September 1998. Originally published as A 414-71. Last previous edition A 414/A 414M-97. Copyright American Society for Testing and Materials (ASTM), 100 Barr Harbor Drive, West Conshohocken, PA, 19428, USA. This document is available from NTIS under license from ASTM.

  19. Laser induced damage in optical materials: tenth ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1979-07-01

    The tenth annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 12-14 September 1978. The symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy, and the Office of Naval Research. About 175 scientists attended, including representatives of the United Kingdom, France, Canada, Japan, West Germany, and the Soviet Union. The symposium was divided into sessions concerning the measurement of absorption characteristics, bulk material properties, mirrors and surfaces, thin film damage, coating materials and design, and breakdown phenomena. As in previous years, the emphasis of the papers presented was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was also discussed. In commemoration of the tenth symposium in this series, a number of comprehensive review papers were presented to assess the state of the art in various facets of laser induced damage in optical materials. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The eleventh annual symposium is scheduled for 30-31 October 1979 at the National Bureau of Standards, Boulder, Colorado. PMID:20212622

  20. Laser induced damage in optical materials: eleventh ASTM symposium.

    PubMed

    Bennett, H E; Glass, A J; Guenther, A H; Newnam, B

    1980-07-15

    The eleventh Symposium on Optical Materials for High-Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 30-31 October 1979. The symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Projects Agency, the Department of Energy, and the Office of Naval Research. About 150 scientists attended the symposium, including representatives of the United Kingdom, France, Canada, Japan, West Germany, and Denmark. The symposium was divided into sessions concerning transparent optical materials and the measurement of their properties, mirrors and surfaces, thin film characteristics, thin film damage, considerations for high-power systems, and finally theory and breakdown. As in previous years, the emphasis of the papers presented at the symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high-power apparatus. The wavelength range of prime interest was from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was discussed in detail. Harold E. Bennett of the Naval Weapons Center, Alexander J. Glass of the Lawrence Livermore Laboratory, Arthur H. Guenther of the Air Force Weapons Laboratory, and Brian E. Newnam of the Los Alamos Scientific Laboratory were cochairpersons. The twelfth annual symposium is scheduled for 30 September-1 October 1980 at the National Bureau of Standards, Boulder, Colorado. PMID:20234423

  1. Laser induced damage in optical materials: twelfth ASTM symposium.

    PubMed

    Bennett, H E; Glass, A J; Guenther, A H; Newnam, B

    1981-09-01

    The twelfth annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 30 Sept.-l Oct., 1980. The symposium was held under the auspices of ASTM Committee F-l, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Projects Agency, the Department of Energy, the Office of Naval Research, and the Air Force Office of Scientific research. Over 150 scientists attended the symposium, including representatives of the United Kingdom, France, Japan, and West Germany. The symposium was divided into sessions concerning materials and measurements, mirrors and surfaces, thin films, and finally fundamental mechanisms. As in previous years, the emphasis of the papers presented at the symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high power systems. The wavelength range of prime interest was from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was discussed in detail. Harold E. Bennett of the Naval Weapons Center, Alexander J. Glass of the Lawrence Livermore National Laboratory, Arthur H. Guenther of the Air Force Weapons Laboratory, and Brian E. Newnam of the Los Alamos National Laboratory were cochairmen of the symposium. The thirteenth annual symposium is scheduled for 17-18 Nov. 1981 at the National Bureau of Standards, Boulder, Colorado. PMID:20333088

  2. Fracture Toughness of Advanced Structural Ceramics: Applying ASTM C1421

    SciTech Connect

    Swab, Jeffrey J.; Tice, Jason; Wereszczak, Andrew A.; Kraft, Reuben H.

    2014-11-03

    The three methods of determining the quasi-static Mode I fracture toughness (KIc) (surface crack in flexure – SC, single-edge precracked beam – PB, and chevron notched beam – VB) found in ASTM C1421 were applied to a variety of advanced ceramic materials. All three methods produced valid and comparable KIc values for the Al2O3, SiC, Si3N4 and SiAlON ceramics examined. However, not all methods could successfully be applied to B4C, ZrO2 and WC ceramics due to a variety of material factors. The coarse-grained microstructure of one B4C hindered the ability to observe and measure the precracks generated in the SC and PB methods while the transformation toughening in the ZrO2 prevented the formation of the SC and PB precracks and thus made it impossible to use either method on this ceramic. The high strength and elastic modulus of the WC made it impossible to achieve stable crack growth using the VB method because the specimen stored a tremendous amount of energy prior to fracture. Even though these methods have passed the rigors of the standardization process there are still some issues to be resolved when the methods are applied to certain classes of ceramics. We recommend that at least two of these methods be employed to determine the KIc, especially when a new or unfamiliar ceramic is being evaluated.

  3. Guide to ASTM test methods for the analysis of coal and coke

    SciTech Connect

    R.A. Kishore Nadkarni

    2008-07-01

    The guide includes brief descriptions of all 56 ASTM test methods that cover the physical, chemical, and spectroscopic analytical techniques to qualitatively and quantitatively identify over 40 chemical and physical properties of coal, coke, their products, and by-products.

  4. Proceedings of the ASTM 8th international symposium zirconium in the nuclear industry

    SciTech Connect

    Van Swam, L.F.P.; Eucken, C.M.

    1989-01-01

    This book contains the proceedings of the ASTM 8th international symposium on zirconium in the nuclear industry. Topics covered include: Behavior of pressure tubes, Corrosion, Nodular corrosion, Basic metallurgy, and Creep and growth.

  5. Guide for measurement of ionizing dose-rate burnout of semiconductor devices. ASTM standard

    SciTech Connect

    1998-07-01

    This guide is under the jurisdiction of ASTM Committee F-1 on Electronics and is the direct responsibility of Subcommittee F01.11 on Quality and Hardness Assurance. Current edition approved May 10, 1998 and published July 1998.

  6. Standard specification for centrifugally cast austenitic steel pipe for high-temperature service. ASTM standard

    SciTech Connect

    1993-12-01

    This document is available from NTIS under license from ASTM. This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.18 on Castings. Current edition approved Oct. 25, 1993. Published December 1993. Originally published as A 451-61T. Last previous edition was A 451-92. Reapproved 1997.

  7. Comparison of attrition test methods: ASTM standard fluidized bed vs jet cup

    SciTech Connect

    Zhao, R.; Goodwin, J.G. Jr.; Jothimurugesan, K.; Spivey, J.J.; Gangwal, S.K.

    2000-05-01

    Attrition resistance is one of the key design parameters for catalysts used in fluidized-bed and slurry phase types of reactors. The ASTM fluidized-bed test has been one of the most commonly used attrition resistance evaluation methods; however, it requires the use of 50 g samples--a large amount for catalyst development studies. Recently a test using the jet cup requiring only 5 g samples has been proposed. In the present study, two series of spray-dried iron catalysts were evaluated using both the ASTM fluidized-bed test and a test based on the jet cup to determine this comparability. It is shown that the two tests give comparable results. This paper, by reporting a comparison of the jet-cup test with the ASTM standard, provides a basis for utilizing the more efficient jet cup with confidence in catalyst attrition studies.

  8. Field data on testing of natural gas vehicle (NGV) containers using proposed ASTM standard test method for examination of gas-filled filament-wound pressure vessels using acoustic emission (ASTM-E070403-95/1)

    SciTech Connect

    Fultineer, R.D. Jr.; Mitchell, J.R.

    1999-07-01

    There are many composite wrapped pressure vessels in service. These containers are most widely used for gas storage in natural gas vehicles (NGV). A standard has been developed for the testing of these vessels by the subcommittee ASTM E07.04.03 Acoustic Emission (AE) applications. The AE test method is supported by both field test data and laboratory destructive testing. The test method describes a global volumetric testing technique which is offered as an alternative to the current practice of visual inspection.

  9. An evaluation of efforts by nuclear power plants to use ASTM D3803-89

    SciTech Connect

    Freeman, W.P.

    1995-02-01

    The number of nuclear power plants are now using ASTM D3803-89, {open_quotes}Standard Test Method for Nuclear-Grade Activated Carbon{close_quotes} for routine surveillance testing of adsorbents. In order to judge the impact of this change, we have gathered radioiodine removal test results from our data base on a system-by-system basis (i.e. control room, technical support center, and spent fuel pool) and compared test results obtained for the same kind of systems using the new and older test methods. Included in this comparison are systems with and without humidity control. Results are discussed from the standpoint of what to expect if a change to testing using ASTM D3803-89 is contemplated, especially regarding test results in light existing acceptance criteria. Additionally, the results are discussed from the standpoint of the sensitivity of the ASTM test method to detect when the performance of the carbon in air cleaning systems has been compromised (compared to the older methods). Finally, we offer some suggestions for how other plants might upgrade their carbon testing to incorporate testing to ASTM D3803-89.

  10. 78 FR 64248 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... Section 6(b) of the Act on November 10, 2004 (69 FR 65226). The last notification was filed with the... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--ASTM... National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''),...

  11. ASTM D1076 CATEGORY 4 LATEX AND QUANTIFYING GUAYULE (NRG) AND HEVEA (NR) LATEX PROTEIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Guayule latex is commercially available as a low protein natural rubber latex (Yulex®) which does not contain any protein that can be detected by the ASTM D6499 antigenic protein standard developed to quantify Hevea natural rubber latex (NRL) antigenic protein. In this paper, we discuss how best to...

  12. Total chemically bound nitrogen in water by pyrolysis and chemiluminescence detection. ASTM standard

    SciTech Connect

    1992-02-01

    This test method is under the jurisdiction of ASTM Committee on Water and is the direct responsibility of Subcommittee D19.06 on Methods for Analysis for Organic Substances in Water. Current edition approved Sept. 15, 1991. Published February 1992.

  13. Standard specification for nickel-chromium-iron-molybdenum-copper alloy plate, sheet, and strip. ASTM standard

    SciTech Connect

    1998-02-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt and Their Alloys. Current edition approved Apr. 10, 1997 and published February 1998. Originally published as B 582-73. Last previous edition was B 582-92.

  14. Standard specification for nonoriented electrical steel, fully processed types (metric). ASTM standard

    SciTech Connect

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee A-6 on Magnetic Properties and is the direct responsibility of Subcommittee A06.02 on Materials Specifications. Current edition approved Apr. 10, 1998 and published September 1998. Originally published as A 677M-83. Last previous edition was A 677M-96.

  15. Standard specification for castings, zirconium-base, corrosion resistant, for general application. ASTM standard

    SciTech Connect

    1998-02-01

    This specification is under the jurisdiction of ASTM Committee B-10 on Reactive and Refractory Metals and Alloys and is the direct responsibility of Subcommittee B10.05 on Castings. Current edition approved Oct. 10, 1997 and published February 1998. Originally published as B 752-85. Last previous edition was B 752-91(1995).

  16. Standard specification for nuclear-grade aluminum oxide powder. ASTM standard

    SciTech Connect

    1998-05-01

    This specification is under the jurisdiction of ASTM Committee C-26 on Nuclear Fuel Cycle and is the direct responsibility of Subcommittee C26.03 on Neutron Absorber Materials Specifications. Current edition approved May 10, 1997. Published May 1998. Originally published as C 1031-84. Last previous edition C 1031-90.

  17. Standard specification for tantalum and tantalum alloy plate, sheet, and strip. ASTM standard

    SciTech Connect

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee B-10 on Reactive and Refractory Metals and Alloys and is the direct responsibility of Subcommittee B10.03 on Niobium and Tantalum. Current edition approved May 10, 1998 and published September 1998. Originally published as B 708-82. Last previous edition was B 708-92.

  18. Standard specification for high-strength low-alloy structural steel. ASTM standard

    SciTech Connect

    1998-12-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.02 on Structural Steel for Bridges, Buildings, Rolling Stock, and Ships. Current edition approved Sep. 10, 1998. Published December 1998.

  19. Standard specification for forged carbon and alloy steel flanges for low-temperature service. ASTM standard

    SciTech Connect

    1998-10-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.22 on Steel Forgings and Wrought Fittings for Piping Applications and Bolting Materials for Piping and Special Purpose Applications. Current edition approved Mar. 10, 1998 and published October 1998.

  20. Standard specification for nickel-molybdenum alloy plate, sheet, and strip. ASTM standard

    SciTech Connect

    1998-11-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt and Their Alloys. Current edition approved Oct. 10, 1998 and published November 1998. Originally published as B 333-58T. Last previous edition was B 333-95a.

  1. Standard specification for alloy/steel bolting materials for low-temperature service. ASTM standard

    SciTech Connect

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.22 on Steel Forgings and Wrought Fittings for Piping Applications and Bolting Materials for Piping and Special Purpose Applications. Current edition approved Sep. 10, 1997 and published September 1998.

  2. Standard specification for cobalt-chromium-nickel-molybdenum-tungsten alloy (UNS R31233) rod. ASTM standard

    SciTech Connect

    1998-02-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt and Their Alloys. Current edition approved Apr. 10, 1997 and published February 1998. Originally published as B 815-91. Last previous edition was B 815-91.

  3. Standard specification for alloy-steel bolting materials for special applications. ASTM standard

    SciTech Connect

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.22 on Steel Forgings and Wrought Fittings for Piping Applications and Bolting Materials for Piping and Special Purpose Applications. Current edition approved Mar. 10, 1998 and published September 1998.

  4. Standard specification for thermoplastic gas pressure pipe, tubing, and fittings. ASTM standard

    SciTech Connect

    1998-10-01

    This specification is under the jurisdiction of ASTM Committee F-17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.60 on Gas. The current edition was approved May 10, 1998 and published October 1998. It was originally published as D 2513-66. The last previous edition was D 2513-97.

  5. Standard specification for non-oriented electrical steel fully processed types. ASTM standard

    SciTech Connect

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee A-6 on Magnetic Properties and is the direct responsibility of Subcommittee A06.02 on Materials Specifications. Current edition approved Apr. 10, 1998 and published September 1998. Originally published as A 677-73. Last previous edition A 677-96.

  6. Standard specification for zirconium and zirconium alloy sheet, strip, and plate for nuclear application. ASTM standard

    SciTech Connect

    1998-04-01

    This specification is under the jurisdiction of ASTM Committee B-10 on Reactive and Refractory Metals and Alloys and is the direct responsibility of Subcommittee B10.02 on Zirconium and Hafnium. Current edition approved Oct. 10, 1997. Published April 1998. Originally published as B 352-60T. Last previous edition B 352-92.

  7. Fracture Toughness Properties of Savannah River Site Storage Tank ASTM A285 Low Carbon Steel

    SciTech Connect

    Subramanian, K.H.

    2002-05-22

    A materials test program was developed to measure mechanical properties of ASTM A285 Grade B low carbon steel for application to structural and flaw stability analysis of storage tanks at the Department of Energy (DOE) Savannah River Site (SRS). Under this plan, fracture toughness and tensile testing are being performed at conditions that are representative of storage tank

  8. Standard specification for tantalum and tantalum alloy rod and wire. ASTM standard

    SciTech Connect

    1998-10-01

    This specification is under the jurisdiction of ASTM Committee B-10 on Reactive and Refractory Metals and Alloys and is the direct responsibility of Subcommittee B10.03 on Niobium and Tantalum. Current edition approved Apr. 10, 1998 and published October 1998. Originally published as B 365-61T. Last previous edition was B 365-92.

  9. Standard specification for steel strand, uncoated seven-wire for prestressed concrete. ASTM standard

    SciTech Connect

    1998-12-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.05 on Steel Reinforcement. Current edition approved May 10, 1998. Published December 1998. Originally published as A 416-57T. Last previous edition A 416-97.

  10. Standard specification for spray-applied rigid cellular polyurethane thermal insulation. ASTM standard

    SciTech Connect

    Not Available

    1996-11-01

    DoD adopted. This practice is under the jurisdiction of ASTM Committee C-16 on Thermal Insulation and is the direct responsibility of Subcommittee C16.22 on Organic and Nonhomogeneous Inorganic Thermal Insulations. Current edition approved Sep. 10, 1996. Published November 1996. Originally published as C 1029-85. Last previous edition was C 1029-90.

  11. Applications of ASTM Standard E 1457 - The high temperature crack growth standard

    SciTech Connect

    Saxena, A. )

    1993-03-01

    The ASTM Committee on Fracture Testing has developed Standard E 1457, 'Method for the Measurement of Creep Crack Growth Rates in Metals'. This Standard gives attention to the effect of elevated-temperature service life, and is pertinent to such materials as the high temperature Al alloys being contemplated for the High Speed Civil Transport and the NASP structure's intermetallics. 8 refs.

  12. Standard specification for tantalum and tantalum alloy seamless and welded tubes. ASTM standard

    SciTech Connect

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee B-10 on Reactive and Refractory Metals and Alloys and is the direct responsibility of Subcommittee B10.03 on Niobium and Tantalum. Current edition approved Apr. 10, 1998 and published September 1998. Originally published as B 521-70. Last previous edition was B 521-92.

  13. Standard specification for alloy steel forgings for nonmagnetic retaining rings for generators. ASTM standard

    SciTech Connect

    1998-08-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.06 on Steel Forgings and Billets. Current edition approved Nov. 10, 1997 and published August 1998. Originally published as A 289-46. Last previous edition was A 289-94.

  14. Standard specification for nickel-molybdenum alloy plate, sheet, and strip. ASTM standard

    SciTech Connect

    1998-02-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt and Their Alloys. Current edition approved Apr. 10, 1997. Published February 1998. Originally published as B 333-58T. Last previous edition B 333-95a.

  15. Standard descriptive nomenclature of constituents of aggregates for radiation-shielding concrete. ASTM standard

    SciTech Connect

    1992-05-01

    This nomenclature is under the jurisdiction of ASTM Committee C-9 on Concrete and Concrete Aggregates and is the direct responsibility of Subcommittee C09.41 on Concrete for Radiation Shielding. Current edition approved Mar. 15, 1992 and published May 1992. Originally published as C 638-73. Last previous edition was C 638-84(1990). It was reapproved 1997.

  16. Standard specification for anchor bolts, steel, 36, 55, and 105-ksi yield strength. ASTM standard

    SciTech Connect

    1998-07-01

    This specification is under the jurisdiction of ASTM Committee F-16 on Fasteners and is the direct responsibility of Subcommittee F16.02 on Steel Bolts, Nuts, Rivets, and Washers. Current edition approved Dec. 10, 1997 and published July 1998. Originally published as F 1554-94. Last previous edition was F 1554-94.

  17. Standard specification for zirconium and zirconium alloy strip, sheet, and plate. ASTM standard

    SciTech Connect

    1998-05-01

    This specification is under the jurisdiction of ASTM Committee B-10 on Reactive and Refractory Metals and is the direct responsibility of Subcommittee B10.02 on Zirconium and Hafnium. Current edition approved Apr. 10, 1997. Published May 1998. Originally published as B 551-71. Last previous edition B 551-92.

  18. Standard practice for conducting moist SO{sub 2} tests. ASTM standard

    SciTech Connect

    1998-11-01

    This practice is under the jurisdiction of ASTM Committee G-1 on Corrosion of Metals and is the direct responsibility of Subcommittee G01.05 on Laboratory Corrosion Tests. Current edition approved Apr. 10, 1998 and published November 1998. Originally published as G 87-97. Last previous edition was G 87-97.

  19. Standard specification for general requirements for steel plates for pressure vessels. ASTM standard

    SciTech Connect

    1998-11-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.11 on Steel Plates for Boilers and Pressure Vessels. Current edition approved Sep. 10, 1997. Published November 1998. Originally published as A 20-50T. Last previous edition A 20/A 20M-97a.

  20. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    PubMed

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability. PMID:23434738

  1. Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.

    1984-01-01

    A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.

  2. Standard practice for use of scrap tires in civil engineering applications. ASTM standard

    SciTech Connect

    1998-08-01

    This practice is under the jurisdiction of ASTM Committee D-34 on Biotechnology and is the direct responsibility of Subcommittee D34.06 on Recovery and Reuse. The current edition was approved on Jun. 10, 1998. It was published in August 1998.

  3. Standard test method for resistance of concrete to rapid freezing and thawing. ASTM standard

    SciTech Connect

    1998-06-01

    This test method is under the jurisdiction of ASTM Committee C-9 on Concrete and Concrete Aggregates and is the direct responsibility of Subcommittee C09.67 on Resistance of Concrete to Its Environment. Current edition approved Jun. 10, 1997 and published June 1998. Originally published as C 666-71. Last previous edition was C 666-92.

  4. Standard specification for fibrous glass duct lining insulation (thermal and sound absorbing material). ASTM standard

    SciTech Connect

    1998-06-01

    This specification is under the jurisdiction of ASTM Committee C-16 on Thermal Insulation and is the direct responsibility of Subcommittee C16.23 on Blanket and Loose Fill Insulation. Current edition approved Jan. 10, 1998 and published June 1998. It was originally published as C 1071-86. The last previous edition was C 1071-91.

  5. Manual sampling of coal from tops of railroad cars. ASTM standard

    SciTech Connect

    1989-08-01

    This practice is under the jurisdiction of ASTM Committee D-5 on Coal and Coke and is the direct responsibility of Subcommittee D05.23 on Coal Sampling. The current edition was approved July 24, 1989 and published in August 1989.

  6. PROPOSED ASTM METHOD FOR THE DETERMINATION OF ASBESTOS IN AIR BY TEM AND INFORMATION ON INTERFERING FIBERS

    EPA Science Inventory

    The draft of the ASTM Test Method for air entitled: "Airborne Asbestos Concentration in Ambient and Indoor Atmospheres as Determined by Transmission Electron Microscopy Direct Transfer (TEM)" (ASTM Z7077Z) is an adaptation of the International Standard, ISO 10312. It is currently...

  7. Overview of ASTM standard activities in support of advanced structural ceramics development

    SciTech Connect

    Brinkman, C.R.; Quinn, G.D.; McClung, R.W.

    1995-07-01

    An overview is presented of the activities of ASTM Committee C-28 on Advanced Ceramics. This activity originated in 1986 when it became apparent that advanced ceramics were being considered for extensive use in applications such as advanced heat engines, heat exchangers, combustors, etc. in aerospace and energy conservation activities. These applications require optimum material behavior with physical and mechanical property reproducibility, component reliability, and well defined methods of data treatment and material analysis for both monolithic and composite ceramic materials. As new materials are introduced into the market place, these issues are best dealt with via standard methods. Therefore, a progress report is given describing activities of the five standard writing subcommittees who support the ASTM Committee C-28 effort. Accomplishments to date are given, as well as likely future activities, including a brief summary of joint cooperative efforts with international standard formulating organizations.

  8. Results of ASTM round robin testing for mode 1 interlaminar fracture toughness of composite materials

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin; Martin, Roderick H.

    1992-01-01

    The results are summarized of several interlaboratory 'round robin' test programs for measuring the mode 1 interlaminar fracture toughness of advanced fiber reinforced composite materials. Double Cantilever Beam (DCB) tests were conducted by participants in ASTM committee D30 on High Modulus Fibers and their Composites and by representatives of the European Group on Fracture (EGF) and the Japanese Industrial Standards Group (JIS). DCB tests were performed on three AS4 carbon fiber reinforced composite materials: AS4/3501-6 with a brittle epoxy matrix; AS4/BP907 with a tough epoxy matrix; and AS4/PEEK with a tough thermoplastic matrix. Difficulties encountered in manufacturing panels, as well as conducting the tests are discussed. Critical issues that developed during the course of the testing are highlighted. Results of the round robin testing used to determine the precision of the ASTM DCB test standard are summarized.

  9. Standard specification for pressure vessel plates, alloy steel, chromium-molybdenum. ASTM standard

    SciTech Connect

    1993-03-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.11 on Steel for Boilers and Pressure Vessels. Current edition approved Dec. 15, 1992 and published March 1993. Originally published as A 387-55T. Last previous edition was A 387/A 387M-90a. It was reapproved 1997.

  10. Standard specification for high-strength low-alloy columbium-vanadium structural steel. ASTM standard

    SciTech Connect

    1998-05-01

    DoD adopted. This guide is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.02 on Structural Steel for Bridges, Buildings, Rolling Stock, and Ships. Current edition approved Dec. 10, 1997. Published May 1998. Originally published as A 572-66. Last previous edition A 572/A 572M-97b.

  11. Proposed annex to the ASTM Standard Guide E1676-95, bioaccumulation testing utilizing Eisenia foetida

    SciTech Connect

    Roper, J.; Simmers, J.; Lee, C.; Tatem, H.

    1995-12-31

    A detailed description of the method developed at the Waterways Experiment Station (WES) to determine sediment toxicity utilizing the earthworm, Eisenia foetida. This method has been used successfully in evaluating the target contaminants; metals, PAHs, and PCBs. This procedure is currently a proposed annex to the ASTM Standard Guide E1676-95: Conducting a Laboratory Soil Toxicity Test With The Lumbricid Earthworm, Eisenia foetida.

  12. ASTM international workshop on standards and measurements for tissue engineering scaffolds.

    PubMed

    Simon, Carl G; Yaszemski, Michael J; Ratcliffe, Anthony; Tomlins, Paul; Luginbuehl, Reto; Tesk, John A

    2015-07-01

    The "Workshop on Standards & Measurements for Tissue Engineering Scaffolds" was held on May 21, 2013 in Indianapolis, IN, and was sponsored by the ASTM International (ASTM). The purpose of the workshop was to identify the highest priority items for future standards work for scaffolds used in the development and manufacture of tissue engineered medical products (TEMPs). Eighteen speakers and 78 attendees met to assess current scaffold standards and to prioritize needs for future standards. A key finding was that the ASTM TEMPs subcommittees (F04.41-46) have many active "guide" documents for educational purposes, but few standard "test methods" or "practices." Overwhelmingly, the most clearly identified need was standards for measuring the structure of scaffolds, followed by standards for biological characterization, including in vitro testing, animal models and cell-material interactions. The third most pressing need was to develop standards for assessing the mechanical properties of scaffolds. Additional needs included standards for assessing scaffold degradation, clinical outcomes with scaffolds, effects of sterilization on scaffolds, scaffold composition, and drug release from scaffolds. Discussions highlighted the need for additional scaffold reference materials and the need to use them for measurement traceability. Workshop participants emphasized the need to promote the use of standards in scaffold fabrication, characterization, and commercialization. Finally, participants noted that standards would be more broadly accepted if their impact in the TEMPs community could be quantified. Many scaffold standard needs have been identified and focus is turning to generating these standards to support the use of scaffolds in TEMPs. PMID:25220952

  13. Development of an ASTM standard guide on performing vulnerability assessments for nuclear facilities

    SciTech Connect

    Wilkey, D.D.

    1995-09-01

    This paper describes an effort undertaken by subcommittee C26.12 (Safeguards) of the American Society for Testing and Materials (ASTM) to develop a standard guide for performing vulnerability assessments (VAs). VAs are performed to determine the effectiveness of safeguards and security systems for both domestic and international nuclear facilities. These assessments address a range of threats, including theft of nuclear material and sabotage, and use an array of methods. The approach to performing and documenting VAs is varied and is largely dependent upon the tools used to perform them. This diversity can lead to tools being misused, making validation of VAs more difficult. The development of a standard guide for performing VAs would, if generally accepted, alleviate these concerns. ASTM provides a forum for developing guides that includes a high level of peer review to assure that the result is acceptable to all potential users. Additionally, the ASTM is widely recognized for setting standards, and endorsement by the Society may increase the likelihood of acceptance by the nuclear community. The goal of this work is to develop a guide that is independent of the tools being used to perform the VA and applicable to the spectrum of threats described above.

  14. Development of an ASTM standard guide on performing vulnerability assessment for nuclear facilities

    SciTech Connect

    Wilkey, D.D.

    1995-12-31

    This paper describes an effort undertaken by subcommittee C26.12 (Safeguards) of the American Society for Testing and Materials (ASTM) to develop a standard guide for performing vulnerability assessments (VAs). VAs are performed to determine the effectiveness of safeguards and security systems for both domestic and international nuclear facilities. These assessments address a range of threats, including theft of nuclear material and sabotage, and use an array of methods. The approach to performing and documenting VAs is varied and is largely dependent upon the tools used to perform them. Ibis diversity can lead to tools being misused, making validation of VAs more difficult. The development of a standard guide for performing VAs would, if generally accepted, alleviate these concerns. ASTM provides a forum for developing guides that includes a high level of peer review to assure that the result is acceptable to all potential users. Additionally, the ASTM is widely recognized for setting standards, and endorsement by the Society may increase the likelihood of acceptance by the nuclear community. The goal of this work is to develop a guide that is independent of the tools being used to perform the VA and applicable to the spectrum of threats described above.

  15. CCR+: Metadata Based Extended Personal Health Record Data Model Interoperable with the ASTM CCR Standard

    PubMed Central

    Park, Yu Rang; Yoon, Young Jo; Jang, Tae Hun; Seo, Hwa Jeong

    2014-01-01

    Objectives Extension of the standard model while retaining compliance with it is a challenging issue because there is currently no method for semantically or syntactically verifying an extended data model. A metadata-based extended model, named CCR+, was designed and implemented to achieve interoperability between standard and extended models. Methods Furthermore, a multilayered validation method was devised to validate the standard and extended models. The American Society for Testing and Materials (ASTM) Community Care Record (CCR) standard was selected to evaluate the CCR+ model; two CCR and one CCR+ XML files were evaluated. Results In total, 188 metadata were extracted from the ASTM CCR standard; these metadata are semantically interconnected and registered in the metadata registry. An extended-data-model-specific validation file was generated from these metadata. This file can be used in a smartphone application (Health Avatar CCR+) as a part of a multilayered validation. The new CCR+ model was successfully evaluated via a patient-centric exchange scenario involving multiple hospitals, with the results supporting both syntactic and semantic interoperability between the standard CCR and extended, CCR+, model. Conclusions A feasible method for delivering an extended model that complies with the standard model is presented herein. There is a great need to extend static standard models such as the ASTM CCR in various domains: the methods presented here represent an important reference for achieving interoperability between standard and extended models. PMID:24627817

  16. Comparative results of autogenous ignition temperature measurements by ASTM G 72 and pressurized scanning calorimetry in gaseous oxygen

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.; Lowrie, R.

    1986-01-01

    The autogenous ignition temperature of four materials was determined by ASTM (G 72) and pressurized differential scanning calorimetry at 0.68-, 3.4-, and 6.8-MPa oxygen pressure. All four materials were found to ignite at lower temperatures in the ASTM method. The four materials evaluated in this program were Neoprene, Vespel SP-21, Fluorel E-2160, and nylon 6/6.

  17. ASTM Photovoltaic Performance Standards: Their Use at the National Renewable Energy Lab

    SciTech Connect

    Emery, K.

    2007-07-01

    The performance of photovoltaic devices is typically rated in terms of their peak power with respect to a specific spectrum, total irradiance and temperature. The PV Cell and Module Performance Laboratory at the National Renewable Energy Laboratory in Golden, Colo., has been measuring the performance of cells and modules for the U.S. terrestrial PV community since 1980. NREL typically calibrates 200 cells and modules per month. The laboratory follows the procedures described in ASTM International standards for calibrating its primary reference cells (E 1125), spectral responsivity measurements (E 1021), secondary reference cells (E 948), secondary modules (E 1036), concentrator modules (E 2527), and multi-junction cells and modules (E 2236).

  18. Fatigue-crack propagation behavior of ASTM A27 cast steel in simulated Hanford groundwater

    SciTech Connect

    James, L.A.

    1986-09-01

    Fatigue-crack propagation (FCP) tests were conducted on specimens of cast ASTM A27 steel in simulated Hanford ground-water at 150/sup 0/C and 250C/sup 0/C. Fatigue loadings were employed as the most feasible means of accelerating the environmentally assisted cracking (EAC) process. A tentative threshold for EAC was established, and an example calculation was used to show how such a threshold can be related to allowable stress levels and flaw sizes to assure that EAC will not occur.

  19. The development of ASTM standards for metallographic preparation practices of thermally sprayed coatings

    SciTech Connect

    Blann, G.A.; Diaz, D.J.

    1994-12-31

    The primary objective of metallographic examinations of thermally sprayed coatings is to reveal the constituents and structure of the coatings and substrates by means of the microscope after proper metallographic preparation is performed. Because of the diversity of coating types and the personal element, the standardization of metallographic preparation of thermally sprayed coatings is essential. An ASTM subcommittee was formed with the support of the ASM Thermal Spray Committee to provide the laboratories involved in coating characterization with guidelines that will provide consistent metallographic procedures that produce an accurate evaluation of the wide range of thermally sprayed coatings. The methods used to establish this standard will be discussed in this paper.

  20. Friction and wear testing source book: Selected references from ASTM standards and ASM handbooks

    SciTech Connect

    1997-12-31

    A collection of key standards and reference articles about friction, lubrication, and wear makes this a valuable reference book to answer questions about wear mechanisms and testing, and how different measurement methods compare to each other. The focus is on test methods, with supporting material on analysis of wear-related failures. Selected information is reprinted from ASTM Standards, Volumes 2.05, 3.02, 5.02, 5.03 and 13.01, and ASM Handbooks, Volumes 8 (Mechanical Testing), 11 (Failure Analysis and Prevention) and 18 (Friction, Lubrication, and Wear Technology).

  1. Impact of ASTM Standard E722 update on radiation damage metrics.

    SciTech Connect

    DePriest, Kendall Russell

    2014-06-01

    The impact of recent changes to the ASTM Standard E722 is investigated. The methodological changes in the production of the displacement kerma factors for silicon has significant impact for some energy regions of the 1-MeV(Si) equivalent fluence response function. When evaluating the integral over all neutrons energies in various spectra important to the SNL electronics testing community, the change in the response results in an increase in the total 1-MeV(Si) equivalent fluence of 2 7%. Response functions have been produced and are available for users of both the NuGET and MCNP codes.

  2. Crevice corrosion of Alloy 625 in chlorinated ASTM artificial ocean water

    SciTech Connect

    Lillard, R.S.; Jurinski, M.P.; Scully, J.R. . Center for Electrochemical Science and Engineering)

    1994-04-01

    Factors controlling the initiation and propagation of crevice corrosion on alloy 625 (UNS N06625) in ocean water of ambient temperature were explored within the contexts of the Oldfield-Sutton model for critical crevice corrosion solution (CCS) development and the ohmic criterion for crevice corrosion initiation. Data supported an earlier claim that a critical potential drop must be exceeded to initiate crevice corrosion. Steady-state crevice corrosion propagation was found to be under ohmic control. Chlorine decreased the time required for initiation and possibly raised propagation rates in ASTM artificial ocean water. Addition of molybdate (MoO[sub 4][sup 2[minus

  3. Application of ASTM E-1559 Apparatus to Study H2O Desorption

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael; Perry, Radford, III; Meadows, George A.

    2015-01-01

    The NASA James Webb Space Telescope project identified a need to measure water vapor desorption from cryogenic surfaces in order to validate predictions of spacecraft design performance. A review of available scientific literature indicated no such measurements had been reported below 131 K. Contamination control personnel at NASA Goddard Space Flight Center recognized the possibility they readily possessed the means to collect these measurements at lower temperatures using an existing apparatus commonly employed for making outgassing observations. This presentation will relate how the ASTM E-1559 Molekit apparatus was used without physical modification to measure water vapor sublimation down to 120 K and compare this data to existing equilibrium vapor pressure models.

  4. Permeation of 70% isopropyl alcohol through surgical gloves: comparison of the standard methods ASTM F739 and EN 374.

    PubMed

    Mäkelä, Erja A; Vainiotalo, Sinikka; Peltonen, Kimmo

    2003-06-01

    Standard test methods ASTM F739 and EN 374 were compared by assessing the permeation of 70% isopropyl alcohol (2-propanol) through seven brands of surgical gloves. The two standards differ in the flow rates of the collection medium and in the chemical permeation rate at which the breakthrough time (BTT) is detected, the EN detection level being 10 times higher than the permeation rate used by ASTM. In a departure from the EN standard method, a 4 h testing time was used instead of 8 h. All of the tested gloves were from the same manufacturer and were made from either natural rubber (NR) (six brands) or chloroprene rubber (CR) (one brand). Two of the NR glove brands were double layered. For the thin NR gloves (0.22, 0.28 and 0.27 mm) the permeation rates were higher throughout the tests with a flow rate of 474 ml/min (EN) of the collection medium (nitrogen) compared with the permeation rates obtained with a flow rate of 52 ml/min (ASTM). These resulted in BTTs of 4.6, 6.5 and 7.6 min (EN) and 4.8, 6.5 and 9.1 min (ASTM), respectively. No statistical difference could be observed between the BTT values obtained with the two standard methods for any of the thin gloves. Thus, although the ASTM standard has a lower criterion for the detection of permeation, it does not necessarily produce shorter BTTs. For the better barriers the methods yielded more equivalent permeation rate curves and thus the EN BTTs were longer than the ASTM BTTs: the EN results were 21, 80, 122 and >240 min compared with the ASTM results of 12, 32, 38 and 103 min for glove thicknesses of 0.37 (NR), 0.22 + 0.22 (double layered NR), 0.31 + 0.29 (double layered NR) and 0.19 mm (CR), respectively. PMID:12765871

  5. Relation between the national handbook of recommended methods for water data acquisition and ASTM standards

    USGS Publications Warehouse

    Glysson, G. Douglas; Skinner, John V.

    1991-01-01

    In the late 1950's, intense demands for water and growing concerns about declines in the quality of water generated the need for more water-resources data. About thirty Federal agencies, hundreds of State, county and local agencies, and many private organizations had been collecting water data. However, because of differences in procedures and equipment, many of the data bases were incompatible. In 1964, as a step toward establishing more uniformity, the Bureau of the Budget (now the Office of Management and Budget, OMB) issued 'Circular A-67' which presented guidelines for collecting water data and also served as a catalyst for creating the Office of Water Data Coordination (OWDC) within the U.S. Geological Survey. This paper discusses past, present, and future aspects of the relation between methods in the National Handbook and standards published by ASTM (American Society for Testing and Materials) Committee D-19 on Water's Subcommittee D-19.07 on Sediment, Geomorphology, and Open Channel Flow. The discussion also covers historical aspects of standards - development work jointly conducted by OWDC and ASTM.

  6. Effect of casting parameters on the microstructure of ASTM F-75 alloy

    SciTech Connect

    Mancha, H.; Castro, M.; Mendez, M.; Mendez, J.; Cepeda, F.

    1996-10-01

    Hip replacement implants fabricated from the ASTM F-75 alloy sometimes fail in a sudden catastrophic way. In general, fractures start at microstructural defects subjected to stress-corrosion under chemical attack by body fluids. In this paper the results of a study on the effect of casting parameters on the microstructure of ASTM F-75 alloy are presented. The pre-heating mold and the liquid temperatures were varied between 900 and 1,000 C, and 1,410 and 1,470 C, respectively. The best static strength and ductility were obtained when shrinkage microporosity and the M{sub 23}C{sub 6} eutectic carbides precipitation at grain boundaries were minimized by increasing the pre-heating mold temperature up to 1,000 C and keeping intermediate pouring temperatures at 1,455 C. Under these casting conditions, however, the solidification rates are low leading to large grain sizes which reduce the strength of the material under dynamic loading conditions. The volume fraction of the M{sub 23}C{sub 6} blocky carbides, appears to have a small variation with casting conditions, however, their size and space distributions seem to be very important to determine the mechanical properties of the as-cast alloys.

  7. Methods of Calculation of Resistance to Polarization (Corrosion Rate) Using ASTM G 59

    SciTech Connect

    Wong, L L; King, K J; Martin, S I; Rebak, R B

    2006-02-05

    The corrosion rate of a metal (alloy) can be measured using: (1) Immersion tests or weight loss such as in ASTM G 1 and G 31 or (2) Electrochemical techniques such as in ASTM G 59. In the polarization resistance (PR) or linear polarization method (G 59), the resistance to polarization (Rp) of a metal is measured in the electrolyte of interest in the vicinity of the corrosion potential (E{sub corr}). This polarization resistance can be mathematically converted into corrosion rates (CR). A plot of E vs. I in the vicinity of E{sub corr} is generated by increasing the potential at a fixed rate of 0.1667 mV/s and measuring the output current. The polarization resistance (Rp) is defined as the slope of a potential (E) (Y axis) vs. Current (I) (X axis) plot in the vicinity of the corrosion potential (E{sub corr}). When the potential is ramped and the current is measured, E is the independent variable and I is the dependent variable. In a proper mathematical plot, E should be represented in the X axis and I in the Y axis. However, in the conventions of the corrosion community, E is always plotted in the Y axis and I in the X axis. Therefore, how this plot of Delta E/Delta I is analyzed is a matter of current debate.

  8. Na and Li ion diffusion in modified ASTM C 1260 test by Magnetic Resonance Imaging (MRI)

    SciTech Connect

    Feng, X. Balcom, B.J.; Thomas, M.D.A.; Bremner, T.W.

    2008-12-15

    In the current study, MRI was applied to investigate lithium and sodium ion diffusion in cement paste and mortars containing inert sand and borosilicate glass. Paste and mortars were treated by complying with ASTM C 1260. Lithium and sodium distribution profiles were collected at different ages after different treatments. Results revealed that sodium ions had a greater diffusion rate than lithium ions, suggesting that Na reaches the aggregate particle surface before Li. Results also showed that Na and Li ions had a competitive diffusion process in mortars; soaking in a solution with higher [Li] favored Li diffusion but hindered Na diffusion. In mortars containing glass, a substantial amount of Li was consumed by the formation of ASR products. When [Li] in soaking solution was reduced to 0.37 N, a distinctive Na distribution profile was observed, indicating the free-state Na ions were continuously transformed to solid reaction products by ASR. Hence, in the modified ASTM C 1260 test, [Li] in the storage solution should be controlled at 0.74 N, in order to completely prevent the consumption of Na ions and thus stop ASR.

  9. Low-energy photon spectroscopy data in support of ASTM method development

    SciTech Connect

    Dry, D. E.; Boone, S.

    2002-01-01

    The Isotope and Nuclear Chemistry (C-INC) Radioassay Facility at Los Alamos National Laboratory (LANL) has been in operation since 1948 to measure fission-product and actinide activities from the U.S. weapons testing program. Since the cessation of testing in 1992, the facility has remained in continuous operation by analyzing samples for environmental, bioassay and research projects. In addition to the many gamma spectroscopy systems, two independent planar germanium detectors are employed for measurement of x-rays and low-energy gsunma rays. 'These counters were used to collect data of select isotopes to support the development of a new ASTM standard, 'Standard Practice for High-Resolution Low-Energy Photon Spectrometry of Water'. This standard is being developed by ASTM Subcommittee D19.04 as a tool for measurement of low-energy gamma-rays and x-rays fiom approximately 4 keV to 150 keV. This work describes empirical counting results obtained fkom traceable sources covering the energy range of interest. Specifically, the isotopes used were 5%i, 55Fe, Am, I, Cd, and 57C0 which provide a range of 5.9 to 136 keV. Mixed nuclide sources were also counted for the purpose of providing data for coincidence summing effects. All data is presented in hardcopy and accompanying electronic form.

  10. Cavitation erosion - corrosion behaviour of ASTM A27 runner steel in natural river water

    NASA Astrophysics Data System (ADS)

    Tôn-Thât, L.

    2014-03-01

    Cavitation erosion is still one of the most important degradation modes in hydraulic turbine runners. Part of researches in this field focuses on finding new materials, coatings and surface treatments to improve the resistance properties of runners to this phenomenon. However, only few studies are focused on the deleterious effect of the environment. Actually, in some cases a synergistic effect between cavitation erosion mechanisms and corrosion kinetics can establish and increase erosion rate. In the present study, the cavitation erosion-corrosion behaviour of ASTM A27 steel in natural river water is investigated. This paper state the approach which has been used to enlighten the synergy between both phenomena. For this, a 20 kHz vibratory test according ASTM G32 standard is coupled to an electrochemical cell to be able to follow the different corrosion parameters during the tests to get evidence of the damaging mechanism. Moreover, mass losses have been followed during the exposure time. The classical degradation parameters (cumulative weight loss and erosion rate) are determined. Furthermore, a particular effort has been implemented to determine the evolution of surface damages in terms of pitting, surface cracking, material removal and surface corrosion. For this, scanning electron microscopy has been used to link the microstructure to the material removal mechanisms.

  11. Improved ASTM G72 Test Method for Ensuring Adequate Fuel-to-Oxidizer Ratios

    NASA Technical Reports Server (NTRS)

    Juarez, Alfredo; Harper, Susana A.

    2016-01-01

    The ASTM G72/G72M-15 Standard Test Method for Autogenous Ignition Temperature of Liquids and Solids in a High-Pressure Oxygen-Enriched Environment is currently used to evaluate materials for the ignition susceptibility driven by exposure to external heat in an enriched oxygen environment. Testing performed on highly volatile liquids such as cleaning solvents has proven problematic due to inconsistent test results (non-ignitions). Non-ignition results can be misinterpreted as favorable oxygen compatibility, although they are more likely associated with inadequate fuel-to-oxidizer ratios. Forced evaporation during purging and inadequate sample size were identified as two potential causes for inadequate available sample material during testing. In an effort to maintain adequate fuel-to-oxidizer ratios within the reaction vessel during test, several parameters were considered, including sample size, pretest sample chilling, pretest purging, and test pressure. Tests on a variety of solvents exhibiting a range of volatilities are presented in this paper. A proposed improvement to the standard test protocol as a result of this evaluation is also presented. Execution of the final proposed improved test protocol outlines an incremental step method of determining optimal conditions using increased sample sizes while considering test system safety limits. The proposed improved test method increases confidence in results obtained by utilizing the ASTM G72 autogenous ignition temperature test method and can aid in the oxygen compatibility assessment of highly volatile liquids and other conditions that may lead to false non-ignition results.

  12. Standard test method for airborne asbestos concentration in ambient and indoor atmospheres as determined by transmission electron microscopy direct transfer (TEM). ASTM standard

    SciTech Connect

    1998-10-01

    This test method is under the jurisdiction of ASTM Committee D-22 on Sampling and Analysis of Atmospheres and is the direct responsibility of Subcommittee D22.07 on Asbestos. Current edition approved Jul. 10, 1998. Published October 1998. Copyright American Society for Testing and Materials (ASTM), 100 Barr Harbor Drive, West Conshohocken, PA, 19428, USA. This document is available from NTIS under license from ASTM.

  13. Summary: Update to ASTM guide E 1523 to charge control and charge referencing techniques in x-ray photoelectron spectroscopy

    SciTech Connect

    Baer, D.R.

    2005-05-01

    An updated version of the American Society for Testing and Materials (ASTM) guide E 1523 to the methods to charge control and charge referencing techniques in x-ray photoelectron spectroscopy has been released by ASTM [Annual Book of ASTM Standards Surface Analysis (American Society for Testing and Materials, West Conshohocken, PA, 2004), Vol. 03.06]. The guide is meant to acquaint x-ray photoelectron spectroscopy (XPS) users with the various charge control and charge referencing techniques that are and have been used in the acquisition and interpretation of XPS data from surfaces of insulating specimens. The current guide has been expanded to include new references as well as recommendations for reporting information on charge control and charge referencing. The previous version of the document had been published in 1997 [D. R. Baer and K. D. Bomben, J. Vac. Sci. Technol. A 16, 754 (1998)].

  14. Rapid electrochemical screening of engine coolants. Correlation of electrochemical potentiometric measurements with ASTM D 1384 glassware corrosion test

    SciTech Connect

    Doucet, G.P.; Jackson, J.M.; Kriegel, O.A.; Passwater, D.K.; Prieto, N.E.

    1999-08-01

    Engine coolants are typically subjected to comprehensive performance evaluations that involve multiple laboratory and field tests. These tests can take several weeks to conduct and can be expensive. The tests can involve everything from preliminary chemical screening to long term fleet tests. An important test conducted at the beginning of coolant formula development to screen the corrosion performance of engine coolants is described in ASTM D 1384. If the coolant formula passes the test, it is then subjected to more rigorous testing. Conducting the test described in ASTM D 1384 takes two weeks, and determining the coolant corrosion performance under several test parameters can takes resources and time that users seldom have. Therefore, it is very desirable to have tests that can be used for rapid screening and quality assurance of coolants. The purpose of this study was to conduct electrochemical tests that can ultimately be used for quick initial screening of engine coolants. The specific intent of the electrochemical tests is to use ASTM D 1384 as a model and to attempt to duplicate its results. Implementation of the electrochemical tests could accelerate the process of selecting promising coolant formulas and reduce coolant evaluation time and cost. Various electrochemical tests were conducted to determine the corrosion performance of several engine coolant formulas. The test results were compared to those obtained from the ASTM D 1384 test. These tests were conducted on the same metal specimens and under similar conditions as those used in the ASTM D 1384 test. The electrochemical tests included the determination of open circuit potential (OCP) for the various metal specimens, anodic and cathodic polarization curves for the various metal specimens, corrosion rate for metal specimens involved in a galvanic triad, and critical pitting potential (CPP) for aluminum (pitting of aluminum engine components and cooling systems is a cause for concern). The details for

  15. White Paper Summary of 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding

    SciTech Connect

    Sindelar, R.; Louthan, M.; PNNL, B.

    2015-05-29

    This white paper recommends that ASTM International develop standards to address the potential impact of hydrides on the long term performance of irradiated zirconium alloys. The need for such standards was apparent during the 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding and Assembly Components, sponsored by ASTM International Committee C26.13 and held on June 10-12, 2014, in Jackson, Wyoming. The potentially adverse impacts of hydrogen and hydrides on the long term performance of irradiated zirconium-alloy cladding on used fuel were shown to depend on multiple factors such as alloy chemistry and processing, irradiation and post irradiation history, residual and applied stresses and stress states, and the service environment. These factors determine the hydrogen content and hydride morphology in the alloy, which, in turn, influence the response of the alloy to the thermo-mechanical conditions imposed (and anticipated) during storage, transport and disposal of used nuclear fuel. Workshop presentations and discussions showed that although hydrogen/hydride induced degradation of zirconium alloys may be of concern, the potential for occurrence and the extent of anticipated degradation vary throughout the nuclear industry because of the variations in hydrogen content, hydride morphology, alloy chemistry and irradiation conditions. The tools and techniques used to characterize hydrides and hydride morphologies and their impacts on material performance also vary. Such variations make site-to-site comparisons of test results and observations difficult. There is no consensus that a single material or system characteristic (e.g., reactor type, burnup, hydrogen content, end-of life stress, alloy type, drying temperature, etc.) is an effective predictor of material response during long term storage or of performance after long term storage. Multi-variable correlations made for one alloy may not represent the behavior of another alloy exposed to

  16. Comparison of combustion characteristics of ASTM A-1, propane, and natural-gas fuels in an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.

    1973-01-01

    The performance of an annular turbojet combustor using natural-gas fuel is compared with that obtained using ASTM A-1 and propane fuels. Propane gas was used to simulate operation with vaporized kerosene fuels. The results obtained at severe operating conditions and altitude relight conditions show that natural gas is inferior to both ASTM A-1 and propane fuels. Combustion efficiencies were significantly lower and combustor pressures for relight were higher with natural-gas fuel than with the other fuels. The inferior performance of natural gas is shown to be caused by the chemical stability of the methane molecule.

  17. Annual book of ASTM standards. Part 17. Refractories, glass, and other ceramic materials; manufactured carbon and graphite products

    SciTech Connect

    Not Available

    1980-01-01

    The standards are assembled in each part in alphanumeric sequence of their ASTM designation numbers. Each part has two tables of contents: a list of the standards in alphanumeric sequence of their ASTM designations; and a list of the standards classified according to subject. A subject index of the standards and tentatives in each part appears at the back of each volume. This part contains standards concerning refractories; glass and glass products; ceramic whitewares; porcelain enamel and related ceramic-metal systems; ceramics for electronics; manufactured carbon and graphite products; and general methods of testing.

  18. Designing cathodic protection systems for marine structures and vehicles. ASTM special technical publication 1370

    SciTech Connect

    Hack, H.P.

    1999-07-01

    Cathodic protection is an important method of protecting structures and ships from the corrosive effects of seawater. Poor designs can be far more costly to implement than optimal designs, Improper design can cause overprotection, with resulting paint blistering and accelerated corrosion of some alloys, underprotection, with resultant structure corrosion, or stray current corrosion of nearby structures. The first ASTM symposium specifically aimed at cathodic protection in seawater was intended to compile all the criteria and philosophy for designing both sacrificial and impressed current cathodic protection systems for structures and vehicles in seawater. The papers which are included in this STP are significant in that they summarize the major seawater cathodic protection system design philosophies. Papers have been processed separately for inclusion on the database.

  19. Dynamic Fracture Initiation Toughness of ASTM A533, Grade B Steel Plate

    SciTech Connect

    Graham, S.M.; Link, R.E.

    1999-05-01

    The dynamic fracture toughness of an ASTM A533, Grade B steel plate was determined at several temperatures in the ductile-brittle transition region. Crack-tip loading rates ranged from approximately 10(sup3) to 10(sup5) MPa m/s. The fracture toughness was shown to decrease with increased loading rate. The dynamic fracture toughness was compared with results from previous investigations, and it was shown that the decrease in toughness due to increased loading rate at the highest test temperature was not as severe as reported in previous investigations. It was also shown that the reference temperature. T(sub0) was better index of the fracture toughness vs. temperature relationship than the nil-ductility temperature, RT(subNDT), for this material.

  20. Hydrogen embrittlement: Prevention and control; ASTM Special Technical Publication, No. 962

    SciTech Connect

    Raymond, L.

    1988-01-01

    The control and prevention of hydrogen embrittlement in metals are discussed, with a focus on test methods, in reviews and reports presented at the ASTM national symposium held in Los Angeles in May 1985. Sections are devoted to current standards and projections, hydrogen in steel and Ti, relative susceptibility, hydrogen in welding, case histories of prevention and control, and ongoing research. Topics addressed include electrochemical aspects, accelerated acceptance testing methods, the barnacle electrode method, the disk pressure test, a bent-beam test for H2S stress corrosion cracking, diffusible hydrogen testing by gas chromatography, surface films for embrittlement prevention, the effects of strain on hydrogen entry and transport in ferrous alloys, and the temperature dependence of fatigue crack propagation in Nb-H alloys.

  1. The chemistry modifications to ASTM A707 for offshore structural integrity

    SciTech Connect

    Walsh, M.A.; Price, S.

    1997-12-31

    The development of low alloy steels for offshore applications has generally led to the selection of increasingly leaner chemistries which are tailored to meet specific design requirements. Low carbon, low alloy, copper bearing steels based on the ASTM A707 grade system have attractive considerable interest for applications combining high strength and toughness with good weldability. Forgemasters Steel and Engineering has been intimately involved in the development of A707 variants which has led to contracts for the production of forged components for the Auger and Mars platforms. A thorough review of structure property relationships with regard to the role of copper precipitation during aging, has been undertaken. Comparisons have been drawn with conventional low carbon, low alloy steels where similar properties are achieved with tempered bainitic microstructures.

  2. Ramberg-Osgood strain-hardening characterization on an ASTM A302-B steel

    SciTech Connect

    James, L.A.

    1995-11-01

    Many elastic-plastic fracture mechanisms analysis procedures require knowledge of the true stress versus true strain response of the material being analyzed. The most common strain-hardening relationship employed is of the form first proposed by Ramberg and Osgood. Here, the Ramberg-Osgood strain-hardening exponents and coefficients are characterized for an unirradiated ASTM A302-B steel over a wide range of temperatures from {minus}129 to 260 C. The strain-hardening exponent increases only slightly with temperature over this range, while the coefficient decreases with increasing temperature. Tensile specimens irradiated to 0.002, 0.029, and 0.046 dpa exhibited significant increases in the strain-hardening exponent with increasing neutron irradiation level.

  3. Comparisons of ASTM standards cited in the NRC standard review plan, NUREG-0800 and related documents

    SciTech Connect

    Ankrum, A.R.; Bohlander, K.L.; Gilbert, E.R.; Pawlowski, R.A.; Spiesman, J.B.

    1995-10-01

    This report provides the results of comparisons of the cited and latest versions of ASTM standards cited in the NRC Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants (NUREG 0800) and related documents. The comparisons were performed by Battelle Pacific Northwest Laboratories in support of the NRC`s Standard Review Plan Update and Development Program. Significant changes to the standards, from the cited version to the latest version, are described and discussed in a tabular format for each standard. Recommendations for updating each citation in the Standard Review Plan are presented. Technical considerations and suggested changes are included for related regulatory documents (i.e., Regulatory Guides and the Code of Federal Regulations) citing the standard. The results and recommendations presented in this document have not been subjected to NRC staff review.

  4. Microstructure and embrittlement of the fine-grained heat-affected zone of ASTM4130 steel

    NASA Astrophysics Data System (ADS)

    Li, Li-Ying; Wang, Yong; Han, Tao; Li, Chao-Wen

    2011-08-01

    The mechanical properties and microstructure features of the fine-grained heat-affected zone (FGHAZ) of ASTM4130 steel was investigated by optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), and welding thermal simulation test. It is found that serious embrittlement occurs in the FGHAZ with an 81.37% decrease of toughness, compared with that of the base metal. Microstructure analysis reveals that the FGHAZ is mainly composed of acicular, equiaxed ferrite, granular ferrite, martensite, and martensite-austenite (M-A) constituent. The FGHAZ embrittlement is mainly induced by granular ferrite because of carbides located at its boundaries and sub-boundaries. Meanwhile, the existence of martensite and M-A constituent, which distribute in a discontinuous network, is also detrimental to the mechanical properties.

  5. Development of ASTM standards in support of advanced ceramics -- continuing efforts

    SciTech Connect

    Brinkman, C.R.

    1998-02-01

    An update is presented of the activities of the American Society for Testing and Materials (ASTM) Committee C-28 on Advanced Ceramics. Since its inception in 1986, this committee, which has five standard producing subcommittees, has written and published over 32 consensus standards. These standards are concerned with mechanical testing of monolithic and composite ceramics, nondestructive examination, statistical analysis and design, powder characterization, quantitative microscopy, fractography, and terminology. These standards ensure optimum material behavior with physical and mechanical property reproducibility, component reliability, and well-defined methods of data treatment and material analysis for both monolithic and composite materials. Committee C-28 continues to sponsor technical symposia and to cooperate in the development of international standards. An update of recent and current activities as well as possible new areas of standardization work will be presented.

  6. Effect of crack curvature on stress intensity factors for ASTM standard compact tension specimens

    NASA Technical Reports Server (NTRS)

    Alam, J.; Mendelson, A.

    1983-01-01

    The stress intensity factors (SIF) are calculated using the method of lines for the compact tension specimen in tensile and shear loading for curved crack fronts. For the purely elastic case, it was found that as the crack front curvature increases, the SIF value at the center of the specimen decreases while increasing at the surface. For the higher values of crack front curvatures, the maximum value of the SIF occurs at an interior point located adjacent to the surface. A thickness average SIF was computed for parabolically applied shear loading. These results were used to assess the requirements of ASTM standards E399-71 and E399-81 on the shape of crack fronts. The SIF is assumed to reflect the average stress environment near the crack edge.

  7. Stress analysis of the cracked lap shear specimens: An ASTM round robin

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1986-01-01

    This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

  8. Standard specification for coextruded poly (vinyl chloride) (pvc) non-pressure plastic pipe having reprocessed-recycled content. ASTM standard

    SciTech Connect

    1998-10-01

    This specification is under the jurisdiction of ASTM Committee F-17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.25 on Vinyl Based Pipe. Current edition approved Oct. 10, 1997 and published October 1998. Originally published as F 1760-96. Last previous edition was F 1760-96.

  9. Standard specification for ferritic ductile iron pressure-retaining castings for use at elevated temperatures. ASTM standard

    SciTech Connect

    1998-10-01

    This specification is under the jurisdiction of ASTM Committee A-4 on Iron Castings and is the direct responsibility of Subcommittee A04.02 on Malleable and Ductile Iron Castings. Current edition approved Jul. 10, 1998. Published October 1998. Originally published as A 395-55T. Last previous edition was A 395-88(1993).

  10. Analysis of the Second ASTM Round-Robin Program on Opening-Load Measurement using the adjusted compliance ratio technique

    SciTech Connect

    Donald, J.K.; Phillips, E.P.

    1999-07-01

    The results of the Second Round-Robin on Opening-Load Measurement established the basis for a recent addition to ASTM E 647--``Recommended Practice for Determination of Fatigue Crack Opening Load from Compliance''. The technique involves characterizing the deviation in linearity of a load-displacement curve and reporting, as a minimum, the opening load corresponding to a 2% slope offset. The opening load and associated {Delta}K{sub eff} values reported showed significant scatter although this scatter was reduced when the data were subjected to a rigorous accept/reject criterion. Refinements in the method of handling data with high noise have further reduced scatter compared with the original analysis. Since each participant provided digitized load-displacement curves, the data from 17 test samples (10 participants) were reanalyzed using the adjusted compliance ratio (ACR) technique to evaluate {Delta}K{sub eff}. A comparison between the two methods shows that the ACR technique gives a higher mean value of {Delta}K{sub eff} than does the ASTM procedure. The ACR technique also shows a stronger correlation with crack growth rate data than does the ASTM procedure, with a slope comparable to that of a typical fatigue crack growth rate test. However, the mean value of {Delta}K{sub eff} based on the ASTM procedure shows better agreement with high stress ratio closure free data than does the ACR technique. This seemingly contradictory result can be partially explained in terms of second-order effects not normally considered significant.

  11. Standard specification for aluminum and aluminum-alloy seamless condenser and heat-exchanger tubes with integral fins. ASTM standard

    SciTech Connect

    1995-07-01

    This specification is under the jurisdiction of ASTM Committee B-7 on Light Metals and Alloys and is the direct responsibility of Subcommittee B07.03 on Aluminum Alloy Wrought Products. Current edition approved May 15, 1995. Published July 1995. Originally published as B 404-63T. Last previous edition B 404-92a.

  12. Standard test method for corrosion of low-embrittling cadmium plate by aircraft maintenance chemicals. ASTM standard

    SciTech Connect

    1989-02-01

    This test method is under the jurisdiction of ASTM Committee F-7 on Aerospace and Aircraft and is the direct responsibility of Subcommittee F07.07 on Qualification Testing of Aircraft Cleaning Materials. Current edition approved Nov. 17, 1988. Published February 1989 and reapproved 1998.

  13. Standard specification for UNS N06002, UNS N06230, UNS N12160, and UNS R30556 rod. ASTM standard

    SciTech Connect

    1998-02-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt and Their Alloys. Current edition approved Apr. 10, 1997 and published February 1998. Originally published as B 572-72. Last previous edition was B 572-94.

  14. Standard specification for pressure vessel plates, carbon steel, high strength, for moderate and lower temperature service. ASTM standard

    SciTech Connect

    1998-12-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the responsibility of Subcommittee A01.11 on Steel Plates for Boilers and Pressure Vessels. Current edition approved Sep. 10, 1998. Published December 1998. Originally published as A 612-70. Last previous edition A 612/A 612M-90(1996).

  15. Standard specification for hot isostatically-pressed alloy steel flanges, fittings, valves, and parts for high temperature service. ASTM standard

    SciTech Connect

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.22 on Steel Forgings and Wrought Fittings for Piping Applications and Bolting Materials for Piping and Special Purpose Applications. Current edition approved Mar. 10, 1998 and published September 1998.

  16. Standard specification for nuclear-grade gadolinium oxide (Gd{sub 2}O{sub 3}) powder. ASTM standard

    SciTech Connect

    1998-05-01

    This specification is under the jurisdiction of ASTM Committee C-26 on Nuclear Fuel Cycle and is the direct responsibility of Subcommittee C26.03 on Neutron Absorber Materials Specifications. Current edition approved May 10, 1997. Published May 1998. Originally published as C 888-78 Last previous edition was C 888-90.

  17. Standard specification for continuous grain flow forged carbon and alloy steel crankshafts for medium speed diesel engines. ASTM standard

    SciTech Connect

    1998-08-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.06 on Steel Forgings and Billets. Current edition approved Jan. 10, 1998 and published August 1998.

  18. Standard test method for compressive strength of grouts for preplaced-aggregate concrete in the laboratory. ASTM standard

    SciTech Connect

    1998-10-01

    DoD adopted. This test method is under the jurisdiction of ASTM Committee C-9 on Concrete and Concrete Aggregates and is the direct responsibility of Subcommittee C09.41 on Concrete for Radiation Shielding. Current edition approved Feb. 10, 1986 and published October 1998. Originally published as C 942-81. Last previous edition was C 942-86(1991).

  19. Standard specification for seamless and welded titanium and titanium alloy tubes for condensers and heat exchangers. ASTM standard

    SciTech Connect

    1998-09-01

    DoD adopted. This specification is under the jurisdiction of ASTM Committee B-10 on Reactive and Refractory Metals and Alloys and is the direct responsibility of Subcommittee B10.01 on Titanium. Current edition approved Apr. 10, 1998 and published September 1998. Originally published as B 388-58T. Last previous edition was B 388-95.

  20. Standard specification for steel castings, carbon, low alloy, and stainless steel, heavy-walled for steam turbines. ASTM standard

    SciTech Connect

    1998-08-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.18 on Castings. Current edition approved May 10, 1998. Published August 1998. Originally published as A 356-52T. Last previous edition was A 356-96.

  1. Total carbon and organic carbon in water by ultraviolet, or persulfate oxidation, or both, and infrared detection. ASTM standard

    SciTech Connect

    1994-11-01

    This test method is under the jurisdiction of ASTM Committee D-19 on Water and is the direct responsibility of Subcommittee D19.06 on Methods for Analysis for Organic Substances in Water. Current edition approved Sept. 15, 1994. Published November 1994. Originally published as D4839-88. Last previous edition D4839-88.

  2. Repeatability and Reproducibility of Compression Strength Measurements Conducted According to ASTM E9

    NASA Technical Reports Server (NTRS)

    Luecke, William E.; Ma, Li; Graham, Stephen M.; Adler, Matthew A.

    2010-01-01

    Ten commercial laboratories participated in an interlaboratory study to establish the repeatability and reproducibility of compression strength tests conducted according to ASTM International Standard Test Method E9. The test employed a cylindrical aluminum AA2024-T351 test specimen. Participants measured elastic modulus and 0.2 % offset yield strength, YS(0.2 % offset), using an extensometer attached to the specimen. The repeatability and reproducibility of the yield strength measurement, expressed as coefficient of variations were cv(sub r)= 0.011 and cv(sub R)= 0.020 The reproducibility of the test across the laboratories was among the best that has been reported for uniaxial tests. The reported data indicated that using diametrically opposed extensometers, instead of a single extensometer doubled the precision of the test method. Laboratories that did not lubricate the ends of the specimen measured yield stresses and elastic moduli that were smaller than those measured in laboratories that lubricated the specimen ends. A finite element analysis of the test specimen deformation for frictionless and perfect friction could not explain the discrepancy, however. The modulus measured from stress-strain data were reanalyzed using a technique that finds the optimal fit range, and applies several quality checks to the data. The error in modulus measurements from stress-strain curves generally increased as the fit range decreased to less than 40 % of the stress range.

  3. The optimization of mechanical properties for nuclear transportation casks in ASTM A350 LF5

    SciTech Connect

    Price, S.; Honeyman, G.A.

    1997-12-31

    Transport flasks are required for the movement of spent nuclear fuel. Due to their nature of operation, it is necessary that these flasks are produced from forged steels with exceptional toughness properties. The material specification generally cited for flask manufacture is ASTM A350 Grade LF5 Class 1, a carbon-manganese-nickel alloy. The range of chemical analysis permitted by this specification is very broad and it is the responsibility of the material manufacturer to select a composition within this range which will satisfy all the mechanical properties requirements, and to ensure safe and reliable performance. Forgemasters Steel and Engineering Limited have experience in the manufacture of large high integrity fuel element flask forgings which extend over several decades. This experience and involvement in international standards in US, Europe and Japan has facilitated the development of an optimized analysis with a low carbon content, nickel levels towards the top end of the allowed range, a deliberate aluminum addition to control grain size and strictly controlled residual element levels. The resultant steel has excellent low temperature impact properties which greatly exceed the requirements of the specification. This analysis is now being adopted for the manufacture of all current transport flasks.

  4. Processing and properties of superclean ASTM A508 Cl. 4 forgings

    SciTech Connect

    Hinkel, A.V.; Handerhan, K.J.; Manzo, G.J.; Simkins, G.P.

    1988-12-31

    Steels with improved resistance to temper embrittlement are now being produced using ``superclean`` steelmaking technology. This technology involves the use of scrap control, proper electric arc furnace and ladle refining furnace practices to produce steel with very low Mn, Si, P, S and other residual impurities such as Sn, As and Sb. This technology has been applied on a production basis to modified ASTM A508 Cl- 4 material intended for high temperature pressure vessel forgings. Processing and properties of this superclean material are reviewed. In addition, the cleanliness and mechanical properties are compared to conventionally melted A508 Cl. 4 material. The ``superclean`` A508 Cl. 4 mod. was found to meet all specification requirements. In addition, the superclean material was found to possess superior upper shelf CVN properties, a lower FATT{sub 50} and NDTT, along with superior microcleanliness compared to conventional material. Finally, the superclean material was found to be immune to temper embrittlement based on the short-term embrittlement treatments examined.

  5. Advances in fatigue crack closure measurement and analysis: Second volume. ASTM special technical publication 1343

    SciTech Connect

    McClung, R.C.; Newman, J.C. Jr.

    1999-07-01

    The discovery of the phenomenon of plasticity-induced fatigue crack closure by Elber was truly a landmark event in the study of fatigue crack growth (FCG) and the development of practical engineering methods for fatigue life management. Subsequent research identified other contributing mechanisms for crack closure, including crack surface roughness and oxide debris. Fatigue crack closure is now understood to be an intrinsic feature of crack growth behavior that must be considered to understand or treat many FCG problems, although closure may not be an issue in all problems and does not always provide a complete explanation of crack growth behavior. As the thirtieth anniversary of the Elber discovery approached, the strong, continuing international interest in crack closure prompted the organization of another ASTM symposium. An international audience numbering over sixty-five persons heard thirty papers contributed by authors from twelve different countries, with more than half of the papers originating from outside the United States. This STP volume contains peer-reviewed manuscripts for twenty-seven of those presentations, plus one peer-reviewed paper that could not be presented at the symposium. Topics covered are: Fundamental Studies; Experimental Characterization of Closure; Load History Effects; Surface Roughness Effects; and Closure Effects on Crack Behavior. Separate abstracts were prepared for all 28 papers.

  6. Electrochemical behavior of a magnesium galvanic anode under ASTM test method G 97-89 conditions

    SciTech Connect

    Genesca, J.; Betancourt, L.; Rodriguez, C.

    1996-07-01

    The electrochemical behavior of a magnesium galvanic anode in an aerated 5 g/L calcium sulfate + 0.1 g/L magnesium hydroxide solution was investigated by measuring electrochemical impedance under the conditions of ASTM Test Method G 97-89. Impedance spectra showed the capacitance of a porous layer (C{sub po}) in the high-frequency region, the resistive component (R{sub po}) of the porous layer (R{sub po}) in the frequency range between 100 Hz and 1,000 Hz, and the resistance of charge transfer (R{sub t}) in the low-frequency region. R{sub po} and R{sub t} increased with time, whereas C{sub po} decreased with immersion time. Since the resistance of a film is proportional to its resistivity and thickness, an increase in R{sub po} was interpreted to mean passivation increased with immersion time. This increase in protection with time provided evidence for the existence of a protective layer over the magnesium anode surface. This layer was identified as Mg(OH){sub 2} using x-ray diffraction of corrosion products formed on the magnesium anode.

  7. Corrosion behavior of ASTM A106 and AISI 316SS in KOH and nickel acetate solutions

    SciTech Connect

    Gonzalez, J.J.; Baron, E.; Saldeho, J.

    1999-11-01

    The present work is concerned with the corrosion behavior of ASTM A106 B grade and AISI 316 stainless steel in the presence of three different environments: a mixture or an emulsion formed by oil-KOH-nickel acetate solution, a KOH (40 wt. %) solution and a nickel acetate (14 wt. %) solution, which are representative fluids used during a PDVSA proprietary process for improving heavy crude oils. Corrosion rate measurements and stress corrosion cracking (SCC) behavior were evaluated through weight loss (in the laboratory and in situ measurements), and mechanical testing (constant load and slow strain rate tests). In the emulsion the corrosion rate was almost undetectable for both steels and the evidence suggested that no SCC had taken place. However, the corrosion rate of the carbon steel in 40wt.% KOH solution at 130 C was 2.8 mm/y, showing the presence of pitting corrosion. On the other hand, the stainless steel showed an undetectable corrosion rate. Though SCC was not observed in any of the materials tested in presence of KOH at both 30 and 130 C, a deterioration in the mechanical properties was found for the high temperature case for carbon steel. During nickel acetate solution tests at 130 C, the A 106 steel showed a relatively high corrosion rate (5.9 mm/y) and the formation of pits. For the stainless steel case, acetate solution had no corrosive effect whatsoever. This last environment offered no SCC susceptibility for any material at both temperatures tested.

  8. Roofing research and standards development: Fourth volume. ASTM special technical publication 1349

    SciTech Connect

    Wallace, T.J.; Rossiter, W.J. Jr.

    1999-07-01

    As the roofing industry has stabilized, a broad variety of roof systems have found general acceptance by the building owners, architects, engineers, contractors, and others who select and install roofs. These roof systems include those based on conventional built-up membranes using glass and synthetic reinforcements, synthetic polymeric membranes using elastomers and thermoplastics, polymer-modified membranes, and sprayed polyurethane foam. ASTM Committee D8 on Roofing, Waterproofing, and Bituminous Materials has contributed significantly in many important ways to the roofing community's stabilization including issuing standard specifications to assist consumers in the selection and use of these systems. This is not surprising, as it has always been among the purpose of D8 to provide standards to assist in the selection and use of low-sloped and steep roofing. The Committee's scope includes development of standards associated with application, inspection, maintenance, and analyses. Some of the issues facing the roofing community today--for example, enhanced system durability, better methods of material characterization, environmental impact, recycling of materials and systems, industry conversation to the S.I. system metric--readily fall within D8's scope. The availability of sound standard can contribute to the resolution of many of these issues.

  9. Characterization of Multilayered Multipass Friction Stir Weld on ASTM A572 G50 Steel

    DOE PAGESBeta

    Lim, Yong Chae; Sanderson, Samuel; Mahoney, Murray; Yu, Xinghua; Qiao, Dongxiao; Wang, Yanli; Zhang, Wei; Feng, Zhili

    2014-01-01

    A multilayered multipass friction stir weld (MM-FSW) on ASTM A572 Grade 50 steel was characterized to understand its potential application for thick-section structures. The 15-mm-thick section was fabricated by stacking up three steel plates and then friction stir welding the plates together in a total of 5 passes. The unique butt/lap joint configuration encountered in the multilayer weld was examined to understand the effect of tool rotation direction on the joint quality especially the formation of hooking defect. Charpy V-notch impact toughness tests showed generally higher impact toughness energy for the stir zone than the base metal with a ductilemore » fracture mode. The microhardness value was measured from 195 to 220 HV in the stir zone, while the base metal showed an average value of 170 HV. The microstructure in the stir zone and the adjacent heat affected zone was quantified using Optical and Scanning Electron Microscopy (SEM) including Electron Backscatter Diffraction (EBSD). The increased toughness and hardness were correlated with the refined microstructure in stir zone, resulting from severe plastic deformation and subsequent dynamic recrystallization during friction stir welding.« less

  10. Characterization of Multilayered Multipass Friction Stir Weld on ASTM A572 G50 Steel

    SciTech Connect

    Lim, Yong Chae; Sanderson, Samuel; Mahoney, Murray; Yu, Xinghua; Qiao, Dongxiao; Wang, Yanli; Zhang, Wei; Feng, Zhili

    2014-01-01

    A multilayered multipass friction stir weld (MM-FSW) on ASTM A572 Grade 50 steel was characterized to understand its potential application for thick-section structures. The 15-mm-thick section was fabricated by stacking up three steel plates and then friction stir welding the plates together in a total of 5 passes. The unique butt/lap joint configuration encountered in the multilayer weld was examined to understand the effect of tool rotation direction on the joint quality especially the formation of hooking defect. Charpy V-notch impact toughness tests showed generally higher impact toughness energy for the stir zone than the base metal with a ductile fracture mode. The microhardness value was measured from 195 to 220 HV in the stir zone, while the base metal showed an average value of 170 HV. The microstructure in the stir zone and the adjacent heat affected zone was quantified using Optical and Scanning Electron Microscopy (SEM) including Electron Backscatter Diffraction (EBSD). The increased toughness and hardness were correlated with the refined microstructure in stir zone, resulting from severe plastic deformation and subsequent dynamic recrystallization during friction stir welding.

  11. The Meta-Lax method of stress reduction in welds. [ASTM A36; AISI 4140

    SciTech Connect

    Smith, S.M.

    1992-07-31

    This study is the second phase of ongoing research into the mechanics and feasibility of using the Meta-Lax method of vibratory stress relief in place of thermal methods of stress relief. The first phase of this research revealed results that were similar to, and even superior to those achieved using thermal methods. The testing here was designed to eliminate the effects of interbead tempering by utilizing single pass bead-on-plate welds only. A metallurgical explanation for the success of the Meta-Lax method was not found. No significant structure or chemical changes were noted when used with ASTM A36 or AISI 4140 materials, and the phenomena noted in phase I was apparently due to interbead tempering. The theory of accelerated aging has been proposed and studies exist which observed dislocation motion as a result of vibratory treatment. It is evident that the vibratory stress relief system does not impart sufficient energy to bring about the magnitude of change seen with thermal methods. however the physical improvement is a reality, and vibratory methods should be evaluated further.

  12. Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure

    SciTech Connect

    Martins, Marcelo; E-mail: marcelo.martins@sulzer.com; Casteletti, Luiz Carlos

    2005-09-15

    Duplex and super duplex stainless steels are ferrous alloys with up to 26% chromium, 8% nickel, 5% molybdenum and 0.3% nitrogen, which are largely used in applications in media containing ions from the halogen family, mainly the chloride ion (Cl{sup -}). The emergence of this material aimed at substituting Copper-Nickel alloys (Cupro-Nickel) that despite presenting good corrosion resistance, has mechanical properties quite inferior to steel properties. The metallurgy of duplex and super duplex stainless steel is complex due to high sensitiveness to sigma phase precipitation that becomes apparent, due to the temperatures they are exposed on cooling from solidification as well as from heat treatment processes. The objective of this study was to verify the influence of heat treating temperatures on the microstructure and hardness of ASTM A890/A890M Gr 6A super duplex stainless steel type. Microstructure control is of extreme importance for castings, as the chemical composition and cooling during solidification inevitably provide conditions for precipitation of sigma phase. Higher hardness in these materials is directly associated to high sigma phase concentration in the microstructure, precipitated in the ferrite/austenite interface. While heat treatment temperature during solution treatment increases, the sigma phase content in the microstructure decreases and consequently, the material hardness diminishes. When the sigma phase was completely dissolved by the heat treatment, the material hardness was influenced only due to ferrite and austenite contents in the microstructure.

  13. Standard specification for cobalt-chromium-nickel-molybdenum-tungsten alloy (UNS R31233) plate, sheet and strip. ASTM standard

    SciTech Connect

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt, and Alloys Containing Nickel or Cobalt or Both as Principal Constituents. Current edition approved Apr. 10, 1998 and published September 1998. Originally published as B 818-91. Last previous edition was B 818-93.

  14. Standard specification for seamless ferritic and austenitic alloy-steel boiler, superheater, and heat-exchanger tubes. ASTM standard

    SciTech Connect

    1996-04-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.10 on Tubing. Current edition approved Oct. 10 and Nov. 10, 1995. 1995 and was published April 1996. Originally published as A 213-39T. Last previous edition was A 213/A 213M-94b.

  15. Standard specification for nickel-chromium-molybdenum-tungsten alloy (UNS N06110) rod and bar. ASTM standard

    SciTech Connect

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt, and Alloys Containing Nickel or Cobalt or Both as Principal Constituents. Current edition approved Apr. 10, 1998 and published September 1998. Originally published as B 756-86. Last previous edition was B 756-93.

  16. Standard specification for nickel-iron-chromium-molybdenum alloy (UNS N08320) plate, sheet, and strip. ASTM standard

    SciTech Connect

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt, and Alloys Containing Nickel or Cobalt or Both as Principal Constituents. Current edition approved Apr. 10, 1998 and published September 1998. Originally published as B 620-77. Last previous edition was B 620-93.

  17. Standard specification for nickel-iron-chromium-molybdenum-columbium stabilized alloy (UNS N08700) bar and wire. ASTM standard

    SciTech Connect

    Not Available

    1995-04-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt, and Alloys Containing Nickel or Cobalt or Both as Principal Constituents. Current edition approved Feb. 15, 1995. Published April 1995. Originally published as B 672-74. Last previous edition was B 672-85.

  18. Standard specification for nickel-chromium-molybdenum-tungsten alloys (UNS N06110) plate, sheet, and strip. ASTM standard

    SciTech Connect

    1998-10-01

    This specification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt, and Alloys Containing Nickel or Cobalt or Both as Principal Constituents. Current edition approved Apr. 10, 1998 and published October 1998. Originally published as B 755-86. Last previous edition was B 755-93.

  19. 76 FR 67673 - Welded ASTM A-312 Stainless Steel Pipe From South Korea and Taiwan: Final Results of Expedited...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ...On July 1, 2011, the Department of Commerce (the Department) initiated sunset reviews of the antidumping duty orders on welded ASTM A-312 stainless steel pipe from South Korea and Taiwan, pursuant to section 751(c) of the Tariff Act of 1930, as amended (the Act). The Department has conducted expedited (120-day) sunset reviews for both orders pursuant to section 751(c)(3)(B) of the Act and 19......

  20. A logical extension of the ASTM Standard E96 to determine the dependence of water vapor transmission on relative humidity

    SciTech Connect

    Lackey, J.C.; Marchand, R.G.; Kumaran, M.K.

    1997-11-01

    It is well known that the water vapor transmission properties of hygroscopic building materials depend on the local relative humidities(rh). Traditionally, the ASTM Standard E96 specifies only two conditions of rh. The dry cup method in the standard corresponds to a mean rh of 25% and the wet cup to 75%. This information is not enough to describe the behavior of the material through the entire range of rh. European Standards have already proposed an extension of the existing standard to address this issue. ASTM standard should follow this change. A logical extension of the E96 standard to include the effect of rh on water vapor transmission properties has been proposed and is being discussed by one of the C16 Committee Task Groups. This paper presents the application of the proposed extension to several common building materials. The details include the operating principles of a constant temperature-rh chamber and the effects on the test results, of the vapor resistance offered by still air inside the cup, the surface resistances and buoyancy. The experimental data were used to critically assess the above effects. The data as well as the analyses of the data are expected to provide guidance to refine the existing ASTM Standard.

  1. Prospects for Adapting Current ASTM Wear and Erosion Tests for Bulk Materials to Thin Films, Coatings, and Surface Treatments

    SciTech Connect

    Blau, Peter Julian

    2007-01-01

    Most of ASTM Committee G2's erosion, wear, and friction test standards were developed for use with bulk materials, yet there is a growing need to evaluate the tribological behavior of films, coatings, and surface treatments (FCSTs), some that affect layers only tens of nanometers to a few micrometers thick. Tribotesting standards for bulk materials can sometimes be modified for use on FCSTs, but the conditions and methods developed for bulk materials may sometimes be too severe or inapplicable. An internet search and literature review indicated that a number of G2 Committee standards are currently being used for FCSTs. Of these, ASTM G99 and G65 seem to be the most popular. When attempting to apply an existing wear standard for bulk materials to FCSTs, two key issues must be addressed: (1) whether changes are needed in the magnitudes of the applied conditions, and (2) whether more precise methods are needed to measure the magnitude of surface damage. Straightforward calculations underscore the limitations for wear measurement of thin layers when evaluated using block-on-ring and pin-on-disk tests. Finally, suggestions are given for modifying selected ASTM G2 standards to enable their use on films, coatings, and surface treatments.

  2. Considerations on the ASTM standards 1789-04 and 1422-05 on the forensic examination of ink.

    PubMed

    Neumann, Cedric; Margot, Pierre

    2010-09-01

    The ASTM standards on Writing Ink Identification (ASTM 1789-04) and on Writing Ink Comparison (ASTM 1422-05) are the most up-to-date guidelines that have been published on the forensic analysis of ink. The aim of these documents is to cover most aspects of the forensic analysis of ink evidence, from the analysis of ink samples, the comparison of the analytical profile of these samples (with the aim to differentiate them or not), through to the interpretation of the result of the examination of these samples in a forensic context. Significant evolutions in the technology available to forensic scientists, in the quality assurance requirements brought onto them, and in the understanding of frameworks to interpret forensic evidence have been made in recent years. This article reviews the two standards in the light of these evolutions and proposes some practical improvements in terms of the standardization of the analyses, the comparison of ink samples, and the interpretation of ink examination. Some of these suggestions have already been included in a DHS funded project aimed at creating a digital ink library for the United States Secret Service. PMID:20487143

  3. ASTM standards for measuring solar reflectance and infrared emittance of construction materials and comparing their steady-state surface temperatures

    SciTech Connect

    Akbari, H.; Levinson, R.; Berdahl, P.

    1996-08-01

    Numerous experiments on individual buildings in California and Florida show that painting roofs white reduces air conditioning load up to 50%, depending on the thermal resistance or amount of insulation under the roof. The savings, of course, are strong functions of the thermal integrity of a building and climate. In earlier work, the authors have estimated the national energy savings potential from reflective roofs and paved surfaces. Achieving this potential, however, is conditional on receiving the necessary Federal, states, and electric utilities support to develop materials with high solar reflectance and design effective implementation programs. An important step in initiating an effective program in this area is to work with the american Society for Testing and Materials (ASTM) and the industry to create test procedures, rating, and labeling for building and paving materials. A subcommittee of ASTM E06, E06.42, on Cool Construction Materials, was formed as the vehicle to develop standard practices for measuring, rating, and labeling cool construction materials. The subcommittee has also undertaken the development of a standard practice for calculating a solar reflectance index (SRI) of horizontal and low-sloped surfaces. SRI is a measure of the relative steady-state temperature of a surface with respect to a standard white surface (SRI = 100) and a standard black surface (SRI = 0) under standard solar and ambient conditions. This paper discusses the technical issues relating to development of these two ASTM standards.

  4. Identification of collected volatile condensable material (CVCM) from ASTM E595 of silicone damper fluid

    NASA Astrophysics Data System (ADS)

    Easton, Myriam P.; Labatete-Goeppinger, Aura C.; Fowler, Jesse D.; Liu, De-Ling

    2014-09-01

    Polydimethylsiloxane damping fluids used for structural deployment mechanisms are not required to be low outgassing. During normal use, these damping fluids are typically encapsulated; however, an unintentional leak may occur which would cause an undesirable contamination at the leak point and form volatile condensable that could reach contamination-sensitive surfaces, degrading the performance of satellites. The collected volatile condensable material (CVCM) at 25 °C from ASTM E595 of a damping fluid, MeSi-300K, was < 0.10%, when the damping fluid was maintained at 125 °C for 24 hours under 10-6 Torr vacuum. MeSi-300K viscosity is 300,000 cSt, which indicates an average molecular weight (MW) of 204,000. This large MW polymer would contain about 2,756 dimethyl siloxane (DMS) units in the chain. These long chains are not expected to be volatile; however, during manufacture, linear chains and cyclic compounds of a smaller number of DMS units produced are volatile. Gas chromatography mass spectrometry (GC-MS) was used to identify the CVCM. Characterization of these materials revealed that the CVCM contained higher MW siloxanes, straight chain and cyclic, in the range of 682 to 1196 (9 to 16 DMS units), whereas CVCM from spacequalified, silicone-based materials have lower MW, 222 to 542 (3 to 7 DMS units). Consequently, contamination from MeSi-300K material would produce greater amounts of higher-MW siloxanes than space-qualified silicones. These higher-MW species would be harder to remove by evaporation and could remain on sensitive surfaces.

  5. ASTM E 1559 method for measuring material outgassing/deposition kinetics has applications to aerospace, electronics, and semiconductor industries

    NASA Technical Reports Server (NTRS)

    Garrett, J. W.; Glassford, A. P. M.; Steakley, J. M.

    1994-01-01

    The American Society for Testing and Materials has published a new standard test method for characterizing time and temperature-dependence of material outgassing kinetics and the deposition kinetics of outgassed species on surfaces at various temperatures. This new ASTM standard, E 1559(1), uses the quartz crystal microbalance (QCM) collection measurement approach. The test method was originally developed under a program sponsored by the United States Air Force Materials Laboratory (AFML) to create a standard test method for obtaining outgassing and deposition kinetics data for spacecraft materials. Standardization by ASTM recognizes that the method has applications beyond aerospace. In particular, the method will provide data of use to the electronics, semiconductor, and high vacuum industries. In ASTM E 1559 the material sample is held in vacuum in a temperature-controlled effusion cell, while its outgassing flux impinges on several QCM's which view the orifice of the effusion cell. Sample isothermal total mass loss (TML) is measured as a function of time from the mass collected on one of the QCM's which is cooled by liquid nitrogen, and the view factor from this QCM to the cell. The amount of outgassed volatile condensable material (VCM) on surfaces at higher temperatures is measured as a function of time during the isothermal outgassing test by controlling the temperatures of the remaining QCM's to selected values. The VCM on surfaces at temperatures in between those of the collector QCM's is determined at the end of the isothermal test by heating the QCM's at a controlled rate and measuring the mass loss from the end of the QCM's as a function of time and temperature. This reevaporation of the deposit collected on the QCM's is referred to as QCM thermogravimetric analysis. Isothermal outgassing and deposition rates can be determined by differentiating the isothermal TML and VCM data, respectively, while the evaporation rates of the species can be obtained as a

  6. Vacuum decay container/closure integrity testing technology. Part 1. ASTM F2338-09 precision and bias studies.

    PubMed

    Wolf, Heinz; Stauffer, Tony; Chen, Shu-Chen Y; Lee, Yoojin; Forster, Ronald; Ludzinski, Miron; Kamat, Madhav; Godorov, Phillip; Guazzo, Dana Morton

    2009-01-01

    ASTM F2338-09 Standard Test Method for Nondestructive Detection of Leaks in Packages by Vacuum Decay Method is applicable for leak-testing rigid and semi-rigid non-lidded trays; trays or cups sealed with porous barrier lidding materials; rigid, nonporous packages; and flexible, nonporous packages. Part 1 of this series describes the precision and bias studies performed in 2008 to expand this method's scope to include rigid, nonporous packages completely or partially filled with liquid. Round robin tests using three VeriPac 325/LV vacuum decay leak testers (Packaging Technologies & Inspection, LLC, Tuckahoe, NY) were performed at three test sites. Test packages were 1-mL glass syringes. Positive controls had laser-drilled holes in the barrel ranging from about 5 to 15 microm in nominal diameter. Two different leak tests methods were performed at each site: a "gas leak test" performed at 250 mbar (absolute) and a "liquid leak test" performed at about 1 mbar (absolute). The gas leak test was used to test empty, air-filled syringes. All defects with holes > or = 5.0 microm and all no-defect controls were correctly identified. The only false negative result was attributed to a single syringe with a < 5.0-microm hole. Tests performed using a calibrated air leak supported a 0.10-cm3 x min(-1) (ccm) sensitivity limit (99/99 lower tolerance limit). The liquid leak test was used to test both empty, air-filled syringes and water-filled syringes. Test results were 100% accurate for all empty and water-filled syringes, both without holes and with holes (5, 10, and 15 microm). Tests performed using calibrated air flow leaks of 0, 0.05, and 0.10 ccm were also 100% accurate; data supported a 0.10-ccm sensitivity limit (99/99 lower tolerance limit). Quantitative differential pressure results strongly correlated to hole size using either liquid or gas vacuum decay leak tests. The higher vacuum liquid leak test gave noticeably higher pressure readings when water was present in the

  7. Evaluation of various generic types of building sealants against ASTM C-920, standard specification for elastomeric joint sealants

    SciTech Connect

    Fiorillo, A.R.

    1996-12-31

    A number of sealant manufacturers suggest that although they supply primers for their sealants, in many cases the primers may not be necessary. They usually suggest running a test on the substrates the sealants are to be used with to determine if the primers are needed. This paper will discuss the results of testing several commercially available polysulfide, silicone and polyurethane sealants against ASTM C-920, Standard Specification for Elastomeric Joint Sealants. Morar, plate glass and anodized aluminum were used as the substrates. Where manufacturers supplied primers, the sealant was tested with and without their primer. Where the manufacturer did not recommend primers, testing was only doe without a primer.

  8. The fatigue-crack propagation behavior of ASTM A533-B steel tested in vacuo at LWR operating temperatures

    SciTech Connect

    James, L.A.

    1987-01-01

    The fatigue-crack propagation (FCP) behavior of ASTM A533-B-1 steel was characterized in vacuo at 288/sup 0/C. Tests were conducted at two stress ratios: R = 0.05 and R = 0.7. Results of these tests were compared with results from previous studies for the same type of steel tested in an air environment, and FCP rates in vacuo were generally lower than those in air. Stress ratio effects in vacuo were not as great as those in air, and both stress ratio effects and environmental effects are discussed from the standpoint of crack closure concepts.

  9. Optimizing surface quality of stainless alloys and using a modified ASTM G 48B procedure for acceptance testing

    SciTech Connect

    Maurer, J.R.

    1999-01-01

    The formation of high-temperature oxide scales and Cr-depleted zones on stainless alloys, such as 6% Mo superaustenitic steels, can significantly reduce their corrosion resistance. Effective methods to remove these layers and restore the surface to an optimized condition are detailed. Also, an acceptance test using a modified ASTM G 48B method at 35 C (95 F) for 72 h with a specimen having a crevice, and special corrosion criteria for failure, are described. Comparison of this test method with one using an uncreviced specimen at lower temperatures and for less time is discussed.

  10. Uptakes of Cs and Sr on San Joaquin soil measured following ASTM method C1733.

    SciTech Connect

    Ebert, W.L.; Petri, E.T.

    2012-04-04

    Series of tests were conducted following ASTM Standard Procedure C1733 to evaluate the repeatability of the test and the effects of several test parameters, including the solution-to-soil mass ratio, test duration, pH, and the concentrations of contaminants in the solution. This standard procedure is recommended for measuring the distribution coefficient (K{sub d}) of a contaminant in a specific soil/groundwater system. One objective of the current tests was to identify experimental conditions that can be used in future interlaboratory studies to determine the reproducibility of the test method. This includes the recommendation of a standard soil, the range of contaminant concentrations and solution matrix, and various test parameters. Quantifying the uncertainty in the distribution coefficient that can be attributed to the test procedure itself allows the differences in measured values to be associated with differences in the natural systems being studied. Tests were conducted to measure the uptake of Cs and Sr dissolved as CsCl and Sr(NO{sub 3}){sub 2} in a dilute NaHCO{sub 3}/SiO{sub 2} solution (representing contaminants in a silicate groundwater) by a NIST standard reference material of San Joaquin soil (SRM 2709a). Tests were run to measure the repeatability of the method and the sensitivity of the test response to the reaction time, the mass of soil used (at a constant soil-to-solution ratio), the solution pH, and the contaminant concentration. All tests were conducted in screw-top Teflon vessels at 30 C in an oven. All solutions were passed through a 0.45-{mu}m pore size cellulose acetate membrane filter and stabilized with nitric acid prior to analysis with inductively-coupled plasma mass spectrometry (ICP-MS). Scoping tests with soil in demineralized water resulted in a solution pH of about 8.0 and the release of small amounts of Sr from the soil. Solutions were made with targeted concentrations of 1 x 10{sup -6} m, 1 x 10{sup -5} m, 2.5 x 10{sup -5} m, 5

  11. Development of ASTM Standard for SiC-SiC Joint Testing Final Scientific/Technical Report

    SciTech Connect

    Jacobsen, George; Back, Christina

    2015-10-30

    As the nuclear industry moves to advanced ceramic based materials for cladding and core structural materials for a variety of advanced reactors, new standards and test methods are required for material development and licensing purposes. For example, General Atomics (GA) is actively developing silicon carbide (SiC) based composite cladding (SiC-SiC) for its Energy Multiplier Module (EM2), a high efficiency gas cooled fast reactor. Through DOE funding via the advanced reactor concept program, GA developed a new test method for the nominal joint strength of an endplug sealed to advanced ceramic tubes, Fig. 1-1, at ambient and elevated temperatures called the endplug pushout (EPPO) test. This test utilizes widely available universal mechanical testers coupled with clam shell heaters, and specimen size is relatively small, making it a viable post irradiation test method. The culmination of this effort was a draft of an ASTM test standard that will be submitted for approval to the ASTM C28 ceramic committee. Once the standard has been vetted by the ceramics test community, an industry wide standard methodology to test joined tubular ceramic components will be available for the entire nuclear materials community.

  12. Moessbauer spectroscopy study on the corrosion resistance of plasma nitrided ASTM F138 stainless steel in chloride solution

    SciTech Connect

    Souza, S.D. de; Olzon-Dionysio, M.; Basso, R.L.O.; Souza, S. de

    2010-10-15

    Plasma nitriding of ASTM F138 stainless steel samples has been carried out using dc glow discharge under 80% H{sub 2}-20% N{sub 2} gas mixture, at 673 K, and 2, 4, and 7 h time intervals, in order to investigate the influence of treatment time on the microstructure and the corrosion resistance properties. The samples were characterized by scanning electron microscopy, glancing angle X-ray diffraction and conversion electron Moessbauer spectroscopy, besides electrochemical tests in NaCl aerated solution. A modified layer of about 6 {mu}m was observed for all the nitrided samples, independent of nitriding time. The X-ray diffraction analysis shows broad {gamma}{sub N} phase peaks, signifying a great degree of nitrogen supersaturation. Besides {gamma}{sub N,} the Moessbauer spectroscopy results indicated the occurrence of {gamma}' and {epsilon} phases, as well as some other less important phases. Corrosion measurements demonstrate that the plasma nitriding time affects the corrosion resistance and the best performance is reached at 4 h treatment. It seems that the {epsilon}/{gamma}' fraction ratio plays an important role on the resistance corrosion. Additionally, the Moessbauer spectroscopy was decisive in this study, since it was able to identify and quantify the iron phases that influence the corrosion resistance of plasma nitrided ASTM F138 samples.

  13. J/sub Ic/ fracture toughness of ferritic DCI (ductile cast iron) alloys: A comparison of two versions of ASTM E 813

    SciTech Connect

    Salzbrenner, R.

    1989-05-01

    The fracture toughness of several ductile cast iron (DCI) alloys has been calculated according to two versions of the ASTM Standard covering the determination of J/sub Ic/. The original version (ASTM E 813-81) had previously been used to establish the relationship between ferritic DCI alloys and the graphite nodule spacing. The J/sub Ic/ values were recalculated by the methods of the revised version of the ASTM Standard (ASME 813-87), and were found to be 5 to 8% higher than those determined by the original standard. A linear regression analysis was used to reaffirm that the fracture toughness is directly related to the graphite nodule size or spacing. 6 refs., 8 figs., 3 tabs.

  14. The history and development of FETAX (ASTM standard guide, E-1439 on conducting the frog embryo teratogenesis Assay-Xenopus)

    USGS Publications Warehouse

    Dumont, J.N.; Bantle, J.A.; Linder, G.

    2003-01-01

    The energy crisis of the 1970's and 1980's prompted the search for alternative sources of fuel. With development of alternate sources of energy, concerns for biological resources potentially adversely impacted by these alternative technologies also heightened. For example, few biological tests were available at the time to study toxic effects of effluents on surface waters likely to serve as receiving streams for energy-production facilities; hence, we began to use Xenopus laevis embryos as test organisms to examine potential toxic effects associated with these effluents upon entering aquatic systems. As studies focused on potential adverse effects on aquatic systems continued, a test procedure was developed that led to the initial standardization of FETAX. Other .than a limited number of aquatic toxicity tests that used fathead minnows and cold-water fishes such as rainbow trout, X. laevis represented the only other aquatic vertebrate test system readily available to evaluate complex effluents. With numerous laboratories collaborating, the test with X. laevis was refined, improved, and developed as ASTM E-1439, Standard Guide for the Conducting Frog Embryo Teratogenesis Assay-Xenopus (FETAX). Collabrative work in the 1990s yielded procedural enhancements, for example, development of standard test solutions and exposure methods to handle volatile organics and hydrophobic compounds. As part of the ASTM process, a collaborative interlaboratory study was performed to determine the repeatability and reliability of FETAX. Parallel to these efforts, methods were also developed to test sediments and soils, and in situ test methods were developed to address "lab-to-field extrapolation errors" that could influence the method's use in ecological risk assessments. Additionally, a metabolic activation system composed of rat liver microsomes was developed which made FETAX more relevant to mammalian studies.

  15. WILL THE MOUSE BIOASSAY FOR ESTIMATING SENSORY IRRITANCY OF AIRBORNE CHEMICALS (ASTM E 981-84) BE USEFUL FOR EVALUATION OF INDOOR AIR CONTAMINANTS

    EPA Science Inventory

    For many toxic inhalants, sensory irritation is the first detectable response. tandardized bioassay, ASTM E 981-84, that quantitates irritancy as a reduction in breathing rate of the mouse during inhalation exposure, has been developed. he validation of this screen for detecting ...

  16. An Experimental Copyright Moratorium: Study of a Proposed Solution to the Copyright Photocopying Problem. Final Report to the American Society for Testing and Materials (ASTM).

    ERIC Educational Resources Information Center

    Heilprin, Laurence B.

    The Committee to Investigate Copyright Problems (CICP), a non-profit organization dedicated to resolving the conflict known as the "copyright photocopying problem" was joined by the American Society for Testing and Materials (ASTM), a large national publisher of technical and scientific standards, in a plan to simulate a long-proposed solution to…

  17. Standard specification for castings of iron-chromium-nickel-molybdenum corrosion-resistant, duplex (austenitic/ferritic) for general application. ASTM standard

    SciTech Connect

    1998-08-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.18 on Castings. Current edition approved Nov. 10, 1997 and published August 1998. Originally published as A 890-88. Last previous edition was A 890/A 890M-94a.

  18. Standard specification for hot-rolled and cold-finished zirconium and zirconium alloy bars, rod, and wire for nuclear application. ASTM standard

    SciTech Connect

    1998-02-01

    This specification is under the jurisdiction of ASTM Committee B-10 on Reactive and Refractory Metals and Alloys and is the direct responsibility of Subcommittee B10.02 on Zirconium and Hafnium. Current edition approved Oct. 10, 1997. Published February 1998. Originally published as B 351-60T. Last previous edition B 351-92.

  19. Standard specification for pressure vessel plates, alloy steel, quenched-and-tempered, chromium-molybdenum, and chromium-molybdenum-vanadium. ASTM standard

    SciTech Connect

    1995-08-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the responsibility of Subcommittee A01.11 on Steel Plates for Boiler and Pressure Vessels. Current edition approved Jun. 15, 1995. Published August 1995. Originally published as A 542-65. Last previous edition A 542/A 542M-93.

  20. Standard specification for common requirements for steel fasteners or fastener materials, or both, intended for use at any temperature from cryogenic to the creep range. ASTM standard

    SciTech Connect

    1998-10-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.22 on Steel Forgings and Wrought Fittings for Piping Applications and Bolting Materials for Piping and Special Purpose Applications. Current edition approved Jul. 10, 1998 and published October 1998.