Science.gov

Sample records for 316l austenitic steel

  1. Mechanical and Electrochemical Characterization of Super-Solidus Sintered Austenitic Stainless Steel (316L)

    NASA Astrophysics Data System (ADS)

    Muthuchamy, A.; Raja Annamalai, A.; Ranka, Rishabh

    2016-08-01

    The present study compares the mechanical and electrochemical behaviour of austenitic (AISI 316L) stainless steel compacted at various pressures (200, 400 and 600 MPa) and conventionally sintered at super-solidus temperature of 1,400°C. The electrochemical behaviour was investigated in 0.1 N H2SO4 solution by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The shrinkage decreased and densification has been increased with increasing pressure. The mechanical and electrochemical behaviour with pressure has been correlated with densification response and microstructure (pore type, volume and morphology). Highest densification (~92% theoretical) achieved at 600 MPa (compaction pressure) and 1,400°C (sintering temperature) resulted in excellent combination of tensile strength and ductility (456 ± 40 MPa, 25 ± 1.1%), while showing excellent corrosion resistance (0.1 mmpy or 4.7 mpy).

  2. Effect of Laser Peening without Coating on 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sathyajith, S.; kalainathan, S.

    2015-02-01

    Laser Peening without Coating (LPwC) is an innovative surface modification technique used for the in-suit preventive maintenance of nuclear reactor components using frequency doubled (green) laser. The advantage of LPwC is that the laser required for this technique is in milli joule range and the processes can perform in aqueous environment. This paper discussed the effect of LPwC on 316L austenitic stainless steel using low energy Nd: YAG laser with various laser pulse density. The base specimen and laser peened specimen were subjected to surface residual stress, surface morphology, micro hardness and potentiodynamic polarization studies. The laser peened surface exhibit significant improvement in surface compressive residual stress. The depth profile of micro hardness revealed higher strain hardening on laser peened specimens. Though corrosion potential reported an anodic shift,current density is found to be increased after LPwC for the specimen peened with higher pulse density.

  3. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    NASA Astrophysics Data System (ADS)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  4. Effect of Austenitic and Austeno-Ferritic Electrodes on 2205 Duplex and 316L Austenitic Stainless Steel Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Verma, Jagesvar; Taiwade, Ravindra V.

    2016-09-01

    This study addresses the effect of different types of austenitic and austeno-ferritic electrodes (E309L, E309LMo and E2209) on the relationship between weldability, microstructure, mechanical properties and corrosion resistance of shielded metal arc welded duplex/austenitic (2205/316L) stainless steel dissimilar joints using the combined techniques of optical, scanning electron microscope, energy-dispersive spectrometer and electrochemical. The results indicated that the change in electrode composition led to microstructural variations in the welds with the development of different complex phases such as vermicular ferrite, lathy ferrite, widmanstatten and intragranular austenite. Mechanical properties of welded joints were diverged based on compositions and solidification modes; it was observed that ferritic mode solidified weld dominated property wise. However, the pitting corrosion resistance of all welds showed different behavior in chloride solution; moreover, weld with E2209 was superior, whereas E309L exhibited lower resistance. Higher degree of sensitization was observed in E2209 weld, while lesser in E309L weld. Optimum ferrite content was achieved in all welds.

  5. Crack growth behavior of warm-rolled 316L austenitic stainless steel in high-temperature hydrogenated water

    NASA Astrophysics Data System (ADS)

    Choi, Kyoung Joon; Yoo, Seung Chang; Jin, Hyung-Ha; Kwon, Junhyun; Choi, Min-Jae; Hwang, Seong Sik; Kim, Ji Hyun

    2016-08-01

    To investigate the effects of warm rolling on the crack growth of 316L austenitic stainless steel, the crack growth rate was measured and the oxide structure was characterized in high-temperature hydrogenated water. The warm-rolled specimens showed a higher crack growth rate compared to the as-received specimens because the slip bands and dislocations produced during warm rolling served as paths for corrosion and cracking. The crack growth rate increased with the dissolved hydrogen concentration. This may be attributed to the decrease in performance and stability of the protective oxide layer formed on the surface of stainless steel in high-temperature water.

  6. Electron Backscatter Diffraction Analysis of Joints Between AISI 316L Austenitic/UNS S32750 Dual-Phase Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shamanian, Morteza; Mohammadnezhad, Mahyar; Amini, Mahdi; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-01

    Stainless steels are among the most economical and highly practicable materials widely used in industrial areas due to their mechanical and corrosion resistances. In this study, a dissimilar weld joint consisting of an AISI 316L austenitic stainless steel (ASS) and a UNS S32750 dual-phase stainless steel was obtained under optimized welding conditions by gas tungsten arc welding technique using AWS A5.4:ER2594 filler metal. The effect of welding on the evolution of the microstructure, crystallographic texture, and micro-hardness distribution was also studied. The weld metal (WM) was found to be dual-phased; the microstructure is obtained by a fully ferritic solidification mode followed by austenite precipitation at both ferrite boundaries and ferrite grains through solid-state transformation. It is found that welding process can affect the ferrite content and grain growth phenomenon. The strong textures were found in the base metals for both steels. The AISI 316L ASS texture is composed of strong cube component. In the UNS S32750 dual-phase stainless steel, an important difference between the two phases can be seen in the texture evolution. Austenite phase is composed of a major cube component, whereas the ferrite texture mainly contains a major rotated cube component. The texture of the ferrite is stronger than that of austenite. In the WM, Kurdjumov-Sachs crystallographic orientation relationship is found in the solidification microstructure. The analysis of the Kernel average misorientation distribution shows that the residual strain is more concentrated in the austenite phase than in the other phase. The welding resulted in a significant hardness increase in the WM compared to initial ASS.

  7. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-05-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  8. Microstructural Variations Across a Dissimilar 316L Austenitic: 9Cr Reduced Activation Ferritic Martensitic Steel Weld Joint

    NASA Astrophysics Data System (ADS)

    Thomas Paul, V.; Karthikeyan, T.; Dasgupta, Arup; Sudha, C.; Hajra, R. N.; Albert, S. K.; Saroja, S.; Jayakumar, T.

    2016-03-01

    This paper discuss the microstructural variations across a dissimilar weld joint between SS316 and 9Cr-RAFM steel and its modifications on post weld heat treatments (PWHT). Detailed characterization showed a mixed microstructure of austenite and martensite in the weld which is in agreement with the phases predicted using Schaeffler diagram based on composition measurements. The presence of very low volume fraction of δ-ferrite in SS316L has been identified employing state of the art electron back-scattered diffraction technique. PWHT of the ferritic steel did not reduce the hardness in the weld metal. Thermal exposure at 973 K (700 °C) showed a progressive reduction in hardness of weld joint with duration of treatment except in austenitic base metal. However, diffusion annealing at 1073 K (800 °C) for 100 hours resulted in an unexpected increase in hardness of weld metal, which is a manifestation of the dilution effects and enrichment of Ni on the transformation characteristics of the weld zone. Migration of carbon from ferritic steel aided the precipitation of fine carbides in the austenitic base metal on annealing at 973 K (700 °C); but enhanced diffusion at 1073 K (880 °C) resulted in coarsening of carbides and thereby reduction of hardness.

  9. Corrosion resistance of multilayer hybrid sol-gel coatings deposited on the AISI 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Caballero, Y. T.; Rondón, E. A.; Rueda, L.; Hernández Barrios, C. A.; Coy, A.; Viejo, F.

    2016-02-01

    In the present work multilayer hybrid sol-gel coatings were synthesized on the AISI 316L austenitic stainless steel employed in the fabrication of orthopaedic implants. Hybrid sols were obtained from a mixture of inorganic precursor, TEOS, and organic, GPTMS, using ethanol as solvent, and acetic acid as catalyst. The characterization of the sols was performed using pH measurements, rheological tests and infrared spectroscopy (FTIR) for different ageing times. On the other hand, the coatings were characterized by scanning electron microscopy (SEM), while the corrosion resistance was evaluated using anodic potentiodynamic polarization in SBF solution at 37±2°C. The results confirmed that sol-gel synthesis employing TEOS-GPTMS systems produces uniform and homogeneous coatings, which enhanced the corrosion resistance with regard to the parent alloy. Moreover, corrosion performance was retained after applying more than one layer (multilayer coatings).

  10. Effect of relative humidity in high temperature oxidation of ceria nanoparticles coating on 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Giraldez Pizarro, Luis Miguel

    A solution of 20 wt. % colloidal dispersion of Cerium Oxide (CeO2) in 2.5% of acetic acid, was used for depositing a coating film on an austenitic stainless steel 316L. Cerium compounds have been distinguished as potential corrosion inhibitors in coatings over several alloys. The oxidation behavior of the cerium oxide coating on 316L austenitic stainless steel alloy was evaluated in dry and humid environments, the weight changes (W/A) was monitored as a function of time using a custom built Thermogravimetrical Analysis (TGA) instrument at temperatures of 750°C, 800°C and 850°C, and different relative humidity levels (0%, 10% and 20%) respectively. The parabolic oxidation rate and activation energy is calculated experimentally for each relative humidity level. A measurement of the effective diameter size of the ceria nanoparticles was performed using a Light Scattering technique. A characterization of the film morphology and thickness before the oxidation was executed using Atomic Force Microscopy (AFM). Microstructure and chemical composition of the oxidized coated substrates were analyzed using Scanning Electronic Microscopy (SEM) with energy dispersive spectroscopy (EDS). X-Ray Diffractometer (XRD) was used to characterize oxides formed in the surface upon isothermal treatment. A comparison of activation energy values obtained to identify the influence of relative humidity in the oxidation process at high temperature was conducted. Cerium oxides coating may prevent crevice corrosion and increase pitting resistance of 316L relative to the uncoated substrate at high temperatures and different levels of relative humidity acting as a protective oxidation barrier. The calculated parabolic rate constants, kp, at the experimental temperatures tend to increase as a function of humidity levels. The activation energy tends to increase proportionally to higher level of humidity exposures. At 0% relative humidity a value of 319.29 KJ/mol of activation energy is being

  11. Microstructure of Au-ion irradiated 316L and FeNiCr austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Jublot-Leclerc, S.; Li, X.; Legras, L.; Lescoat, M.-L.; Fortuna, F.; Gentils, A.

    2016-11-01

    Thin foils of 316L were irradiated in situ in a Transmission Electron Microscope with 4 MeV Au ions at 450 °C and 550 °C. Similar irradiations were performed at 450 °C in FeNiCr. The void and dislocation microstructure of 316L is found to depend strongly on temperature. At 450 °C, a dense network of dislocation lines is observed in situ to grow from black dot defects by absorption of other black dots and interstitial clusters whilst no Frank loops are detected. At 550 °C, no such network is observed but large Frank loops and perfect loops whose sudden appearance is concomitant with a strong increase in void density as a result of a strong coupling between voids and dislocations. Moreover, differences in both alloys microstructure show the major role played by the minor constituents of 316L, increasing the stacking fault formation energy, and possibly leading to significant differences in swelling behaviour.

  12. Influence of flowing sodium on creep deformation and rupture behaviour of 316L(N) austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Laha, K.; Mathew, M. D.; Vijayaraghavan, S.; Shanmugavel, M.; Rajan, K. K.; Jayakumar, T.

    2012-08-01

    The influence of flowing sodium on creep deformation and rupture behaviour of AISI 316L(N) austenitic stainless steel has been investigated at 873 K over a stress range of 235-305 MPa. The results were compared with those obtained from testing in air environment. The steady state creep rates of the material were not influenced appreciably by the testing environments. The time to onset of tertiary stage of creep deformation was delayed in sodium environment. The creep-rupture lives of the material increased in sodium environment, which became more pronounced at lower applied stresses. The increase in rupture life of the material in flowing sodium was accompanied by an increase in rupture ductility. The creep damage on specimen surface as well as inside the specimen was less in specimen tested in sodium. SEM fractographic investigation revealed predominantly transgranular dimple failure for the specimen tested in sodium, whereas predominantly intergranular creep failure was observed in the air tested specimens. Almost no oxidation was observed in the specimens creep tested in the sodium environment. Absence of oxidation and less creep damage cavitation extended the secondary state in liquid sodium tests and lead to increase in creep rupture life and ductility of the material as compared to in air.

  13. TEM study of the nucleation of bubbles induced by He implantation in 316L industrial austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Jublot-Leclerc, S.; Lescoat, M.-L.; Fortuna, F.; Legras, L.; Li, X.; Gentils, A.

    2015-11-01

    10 keV He ions were implanted in-situ in a TEM into thin foils of 316L industrial austenitic stainless steel at temperatures ranging from 200 to 550 °C. As a result, overpressurized nanometric bubbles are created with density and size depending strongly on both the temperature and fluence of implantation. An investigation on their nucleation and growth is reported through a rigorous statistical analysis whose procedure, including the consideration of free surface effects, is detailed. In the parameter range considered, the results show that an increase of fluence promotes both the nucleation and growth of the bubbles whilst an increase of temperature enhances the growth of the bubbles at the expense of their nucleation. The confrontation of resulting activation energies with existing models for bubble nucleation enables the identification of the underlying mechanisms. In spite of slight differences resulting from different conditions of implantation among which the He concentration, He production rate and He/dpa ratio, it appears that the dominating mechanisms are the same as those obtained in metals in previous studies, which, in addition to corroborating literature results, shows the suitability of in-situ TEM experiments to simulate the production of helium in nuclear materials.

  14. Effect of Oxygen Content Upon the Microstructural and Mechanical Properties of Type 316L Austenitic Stainless Steel Manufactured by Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Cooper, Adam J.; Cooper, Norman I.; Dhers, Jean; Sherry, Andrew H.

    2016-09-01

    Although hot isostatic pressing (HIP) has been shown to demonstrate significant advances over more conventional manufacture routes, it is important to appreciate and quantify the detrimental effects of oxygen involvement during the HIP manufacture process on the microstructural and material properties of the resulting component. This paper quantifies the effects of oxygen content on the microstructure and Charpy impact properties of HIP'd austenitic stainless steel, through combination of detailed metallographic examination and mechanical testing on HIP'd Type 316L steel containing different concentrations (100 to 190 ppm) of oxygen. Micron-scale pores were visible in the microstructure of the HIP'd materials postmetallographic preparation, which result from the removal of nonmetallic oxide inclusions during metallographic preparation. The area fraction of the resulting pores is shown to correlate with the oxygen concentration which influences the Charpy impact toughness over the temperature range of 77 K to 573 K (-196 °C to 300 °C), and demonstrates the influence of oxygen involved during the HIP manufacture process on Charpy toughness. The same test procedures and microstructural analyses were performed on commercially available forged 316L. This showed comparatively fewer inclusions and exhibited higher Charpy impact toughness over the tested temperature range.

  15. Cultures and co-cultures of human blood mononuclear cells and endothelial cells for the biocompatibility assessment of surface modified AISI 316L austenitic stainless steel.

    PubMed

    Stio, Maria; Martinesi, Maria; Treves, Cristina; Borgioli, Francesca

    2016-12-01

    Samples of AISI 316L austenitic stainless steel were subjected either to grinding and polishing procedure, or to grinding and then low temperature glow-discharge nitriding treatment, or to grinding, nitriding and subsequently coating with collagen-I. Nitrided samples, even if only ground, show a higher corrosion resistance in PBS solution, in comparison with ground and polished AISI 316L. Biocompatibility was evaluated in vitro by incubating the samples with either peripheral blood mononuclear cells (PBMC) or human umbilical vein endothelial cells (HUVEC), tested separately or in co-culture. HUVEC-PBMC co-culture and co-incubation of HUVEC with PBMC culture medium, after the previous incubation of PBMC with metallic samples, allowed to determine whether the incubation of PBMC with the different samples might affect HUVEC behaviour. Many biological parameters were considered: cell proliferation, release of cytokines, matrix metalloproteinases (MMPs) and sICAM-1, gelatinolytic activity of MMPs, and ICAM-1 protein expression. Nitriding treatment, with or without collagen coating of the samples, is able to ameliorate some of the biological parameters taken into account. The obtained results point out that biocompatibility may be successfully tested in vitro, using cultures of normal human cells, as blood and endothelial cells, but more than one cell line should be used, separately or in co-culture, and different parameters should be determined, in particular those correlated with inflammatory phenomena. PMID:27612806

  16. A Microstructural Study on the Observed Differences in Charpy Impact Behavior Between Hot Isostatically Pressed and Forged 304L and 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Cooper, Adam J.; Cooper, Norman I.; Bell, Andrew; Dhers, Jean; Sherry, Andrew H.

    2015-11-01

    With near-net shape technology becoming a more desirable route toward component manufacture due to its ability to reduce machining time and associated costs, it is important to demonstrate that components fabricated via Hot Isostatic Pressing (HIP) are able to perform to similar standards as those set by equivalent forged materials. This paper describes the results of a series of Charpy tests from HIP'd and forged 304L and 316L austenitic stainless steel, and assesses the differences in toughness values observed. The pre-test and post-test microstructures were examined to develop an understanding of the underlying reasons for the differences observed. The as-received microstructure of HIP'd material was found to contain micro-pores, which was not observed in the forged material. In tested specimens, martensite was detectable within close proximity to the fracture surface of Charpy specimens tested at 77 K (-196 °C), and not detected in locations remote from the fracture surface, nor was martensite observed in specimens tested at ambient temperatures. The results suggest that the observed changes in the Charpy toughness are most likely to arise due to differences in as-received microstructures of HIP'd vs forged stainless steel.

  17. Effect of Welding Current and Time on the Microstructure, Mechanical Characterizations, and Fracture Studies of Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kianersi, Danial; Mostafaei, Amir; Mohammadi, Javad

    2014-09-01

    This article aims at investigating the effect of welding parameters, namely, welding current and welding time, on resistance spot welding (RSW) of the AISI 316L austenitic stainless steel sheets. The influence of welding current and welding time on the weld properties including the weld nugget diameter or fusion zone, tensile-shear load-bearing capacity of welded materials, failure modes, energy absorption, and microstructure of welded nuggets was precisely considered. Microstructural studies and mechanical properties showed that the region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. Electron microscopic studies indicated different types of delta ferrite in welded nuggets including skeletal, acicular, and lathy delta ferrite morphologies as a result of nonequilibrium phases, which can be attributed to a fast cooling rate in the RSW process. These morphologies were explained based on Shaeffler, WRC-1992, and pseudo-binary phase diagrams. The optimum microstructure and mechanical properties were achieved with 8-kA welding current and 4-cycle welding time in which maximum tensile-shear load-bearing capacity or peak load of the welded materials was obtained at 8070 N, and the failure mode took place as button pullout with tearing from the base metal. Finally, fracture surface studies indicated that elongated dimples appeared on the surface as a result of ductile fracture in the sample welded in the optimum welding condition.

  18. The effect of CO2 laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro.

    PubMed

    Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded

  19. Microstructural origins of radiation-induced changes in mechanical properties of 316 L and 304 L austenitic stainless steels irradiated with mixed spectra of high-energy protons and spallation neutrons

    NASA Astrophysics Data System (ADS)

    Sencer, B. H.; Bond, G. M.; Hamilton, M. L.; Garner, F. A.; Maloy, S. A.; Sommer, W. F.

    2001-07-01

    A number of candidate alloys were exposed to a particle flux and spectrum at Los Alamos Neutron Science Center (LANSCE) that closely match the mixed high-energy proton/neutron spectra expected in accelerator production of tritium (APT) window and blanket applications. Austenitic stainless steels 316 L and 304 L are two of these candidate alloys possessing attractive strength and corrosion resistance for APT applications. This paper describes the dose dependence of the irradiation-induced microstructural evolution of SS 316 L and 304 L in the temperature range 30-60°C and consequent changes in mechanical properties. It was observed that the microstructural evolution during irradiation was essentially identical in the two alloys, a behavior mirrored in their changes in mechanical properties. With one expection, it was possible to correlate all changes in mechanical properties with visible microstructural features. A late-term second abrupt decrease in uniform elongation was not associated with visible microstructure, but is postulated to be a consequence of large levels of retained hydrogen measured in the specimens. In spite of large amounts of both helium and hydrogen retained, approaching 1 at.% at the highest exposures, no visible cavities were formed, indicating that the gas atoms were either in solution or in subresolvable clusters.

  20. Fatigue life assessment of 316L stainless steel and DIN-1.4914 martensitic steel before and after TEXTOR exposure

    NASA Astrophysics Data System (ADS)

    Shakib, J. I.; Ullmaier, H.; Little, E. A.; Schmitz, W.; Faulkner, R. G.; Chung, T. E.

    1992-09-01

    The effects of plasma exposure in the TEXTOR tokomak on elevated temperature fatigue lifetime and failure micromechanisms of 316L austenitic stainless steel and DIN 1.4914 martensitic steel (NET reference heats) have been evaluated. Fatigue tests were carried out in vacuum in the temperature range 150°-450°C and compared with data from reference specimens.Plasma-induced surface modifications lead to significant deterioration in fatigue life of 316L steel, whereas the lifetime of 1.4914 steel is unaffected. Fatigue in the 1.4914 steel is surface-initiated only at high stresses. At low stress amplitudes internal fatigue initiation at inclusions was observed.

  1. Laser surface modification of 316 L stainless steel with bioactive hydroxyapatite.

    PubMed

    Balla, Vamsi Krishna; Das, Mitun; Bose, Sreyashree; Ram, G D Janaki; Manna, Indranil

    2013-12-01

    Laser-engineered net shaping (LENS™), a commercial additive manufacturing process, was used to modify the surfaces of 316 L stainless steel with bioactive hydroxyapatite (HAP). The modified surfaces were characterized in terms of their microstructure, hardness and apatite forming ability. The results showed that with increase in laser energy input from 32 J/mm(2) to 59 J/mm(2) the thickness of the modified surface increased from 222±12 μm to 355±6 μm, while the average surface hardness decreased marginally from 403±18 HV0.3 to 372±8 HV0.3. Microstructural studies showed that the modified surface consisted of austenite dendrites with HAP and some reaction products primarily occurring in the inter-dendritic regions. Finally, the surface-modified 316 L samples immersed in simulated body fluids showed significantly higher apatite precipitation compared to unmodified 316 L samples.

  2. Formation of Expanded Austenite on a Cold-Sprayed AISI 316L Coating by Low-Temperature Plasma Nitriding

    NASA Astrophysics Data System (ADS)

    Adachi, Shinichiro; Ueda, Nobuhiro

    2015-12-01

    Low-temperature plasma nitriding at temperatures below 450 °C is commonly applied to austenitic stainless steels to enhance wear resistance, while maintaining corrosion resistance, by forming expanded austenite (known as the S-phase). In this work, low-temperature plasma nitriding of cold-sprayed AISI 316L coatings was examined. A cold-spray technique was developed to produce metal coatings with less oxidation. However, the cold-sprayed AISI 316L coating obtained by use of nitrogen gas as propellant contained many interconnected pores and cracks, and was, consequently, unsuitable as an anticorrosive coating. Therefore, laser post-treatment was used to modify the coating and increase its density to similar to that of bulk steel. The anticorrosive performance of this coating on a carbon steel substrate in NaCl solution was substantially improved. Subsequent low-temperature plasma nitriding enhanced the wear resistance by two orders of magnitude. It is concluded that cold-sprayed AISI 316L coatings treated by laser post-treatment and subsequent low-temperature plasma nitriding could be used as protective coatings under severe wear and corrosion conditions.

  3. Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications

    NASA Astrophysics Data System (ADS)

    Forcey, K. S.; Ross, D. K.; Simpson, J. C. B.; Evans, D. S.

    1988-12-01

    Equations are given which describe the permeation rate, diffusivity and solubility of hydrogen over the range 250-600°C at pressures up to 10 5Pa for the 316L stainless and modified 1.4914 martensitic candidate steels proposed for the construction of the Next European Torus (NET). For heat-treated 316L steel, the permeation rates measured agreed well with previous work and did not vary significantly from specimen to specimen or from batch to batch. Measurements of the permeation rate of hydrogen and deuterium through the modified 1.4914 steel, believed to be the first made, show that the martensitic steel is significantly more permeable than the austenitic steel, by an order of magnitude at 250°C and a factor of five at 600°C. This difference could make it necessary to use permeation barriers on critical components made from the martensitic steel in order to reduce the tritium permeation rate to acceptable levels.

  4. Localized corrosion of 316L stainless steel with SiO2-CaO films obtained by means of sol-gel treatment.

    PubMed

    Vallet-Regí, M; Izquierdo-Barba, I; Gil, F J

    2003-11-01

    Sol-gel films on austenitic stainless steel (AISI 316L) polished wafer were prepared from sono-sols obtained from tetraethylorthosilane and hydrated calcium nitrate. However, pitting was observed in different places on the stainless steel surfaces. The corrosion resistance was evaluated by the polarization resistance in simulated body fluid environment at 37 degrees C. The critical current density, the passive current density, the corrosion potential, and the critical pitting potential were studied. The austenitic stainless steel 316L treated presents important electrochemical corrosion and consequently its application as endosseous implants is not possible. PMID:14566812

  5. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.

    PubMed

    Kang, Suk Hoon; Kim, Tae Kyu; Jang, Jinsung; Oh, Kyu Hwan

    2015-06-01

    In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy - electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy - analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.

  6. Result of International Round Robin Test on Young's Modulus Measurement of 304L and 316L Steels at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Ogata, T.; Nyilas, A.; Walsh, R. P.; Millet, M. F.; Shindo, Y.; Fujii, H.; Ishio, K.; Nakajima, H.; Mitterbacher, H.; Toplosky, V. J.; Ohmiya, S.; Takano, K.; Gigante, P.

    2006-03-01

    Ogata et al. reported in 1996 results of international Round Robin tests on mechanical property measurement of several metals at cryogenic temperatures. Following the report, the standard deviation of Young's modulus of 316L steel is much larger than those of yield and tensile strengths, that is, 4.6 % of the mean value for Young's modulus, while 1.4 % and 1.6 % of the mean values for yield and for tensile strengths, respectively. Therefore, an international Round Robin test on Young's modulus of two austenitic stainless steels at cryogenic temperatures under the participation often institutes from four nations has been initiated within these two years. As a result, the ratios of standard deviation to the mean values are 4.2 % for 304L and 3.6 % for 316L. Such a drop in the standard deviation is attributable to the decrease in the number of institute owing to the application of single extensometer or direct strain gage technique.

  7. Corrosion protection performance of porous strontium hydroxyapatite coating on polypyrrole coated 316L stainless steel.

    PubMed

    Gopi, D; Ramya, S; Rajeswari, D; Kavitha, L

    2013-07-01

    Polypyrrole/strontium hydroxyapatite bilayer coatings were achieved on 316L stainless steel (316L SS) by the electropolymerisation of pyrrole from sodium salicylate solution followed by the electrodeposition of porous strontium hydroxyapatite. The formation and the morphology of the bilayer coatings were characterised by Fourier transform infrared spectroscopy (FT-IR) and high resolution scanning electron microscopy (HRSEM), respectively. The corrosion resistance of the coated 316L SS specimens was investigated in Ringer's solution by electrochemical techniques and the results were substantiated with inductively coupled plasma atomic emission spectrometry (ICP-AES). The passive film underneath the polypyrrole layer is effective in protecting 316L SS against corrosion in Ringer's solution. Moreover, we believe that the top porous strontium hydroxyapatite layer can provide potential bioactivity to the 316L SS.

  8. Corrosion protection performance of porous strontium hydroxyapatite coating on polypyrrole coated 316L stainless steel.

    PubMed

    Gopi, D; Ramya, S; Rajeswari, D; Kavitha, L

    2013-07-01

    Polypyrrole/strontium hydroxyapatite bilayer coatings were achieved on 316L stainless steel (316L SS) by the electropolymerisation of pyrrole from sodium salicylate solution followed by the electrodeposition of porous strontium hydroxyapatite. The formation and the morphology of the bilayer coatings were characterised by Fourier transform infrared spectroscopy (FT-IR) and high resolution scanning electron microscopy (HRSEM), respectively. The corrosion resistance of the coated 316L SS specimens was investigated in Ringer's solution by electrochemical techniques and the results were substantiated with inductively coupled plasma atomic emission spectrometry (ICP-AES). The passive film underneath the polypyrrole layer is effective in protecting 316L SS against corrosion in Ringer's solution. Moreover, we believe that the top porous strontium hydroxyapatite layer can provide potential bioactivity to the 316L SS. PMID:23475060

  9. SCC crack growth rate of cold worked 316L stainless steel in PWR environment

    NASA Astrophysics Data System (ADS)

    Du, Donghai; Chen, Kai; Yu, Lun; lu, Hui; Zhang, Lefu; Shi, Xiuqiang; Xu, Xuelian

    2015-01-01

    Many component failures in nuclear power plants were found to be caused by stress corrosion cracking (SCC) of cold worked austenitic steels. Some of the pressure boundary component materials are even cold worked up to 35% plastic deformation, leaving high residual stress and inducing high growth rate of corrosion crack. Controlling water chemistry is one of the best counter measure to mitigate this problem. In this work, the effects of temperature (200 up to 325 °C) and dissolved oxygen (0 up to 2000 μg/L) on SCC crack growth rates of cold worked austenitic stainless steel type 316L have been tested by using direct current potential drop (DCPD) method. The results showed that temperature affected SCC crack growth rates more significantly in oxygenated water than in deaerated water. In argon deaerated water, the crack growth rate exhibited a peak at about 250 °C, which needs further verification. At 325 °C, the SCC crack growth rate increased rapidly with the increase of dissolved oxygen concentration within the range from 0 up to 200 μg/L, while when dissolved oxygen was above 200 μg/L, the crack growth rate followed a shallower dependence on dissolved oxygen concentration.

  10. Electrochemical properties of 316L stainless steel with culturing L929 fibroblasts

    PubMed Central

    Hiromoto, Sachiko; Hanawa, Takao

    2005-01-01

    Potentiodynamic polarization and impedance tests were carried out on 316L stainless steel with culturing murine fibroblast L929 cells to elucidate the corrosion behaviour of 316L steel with L929 cells and to understand the electrochemical interface between 316L steel and cells, respectively. Potential step test was carried out on 316L steel with type I collagen coating and culturing L929 cells to compare the effects of collagen and L929 cells. The open-circuit potential of 316L steel slightly shifted in a negative manner and passive current density increased with cells, indicating a decrease in the protective ability of passive oxide film. The pitting potential decreased with cells, indicating a decrease in the pitting corrosion resistance. In addition, a decrease in diffusivity at the interface was indicated from the decrease in the cathodic current density and the increase in the diffusion resistance parameter in the impedance test. The anodic peak current in the potential step test decreased with cells and collagen. Consequently, the corrosion resistance of 316L steel decreases with L929 cells. In addition, collagen coating would provide an environment for anodic reaction similar to that with culturing cells. PMID:16849246

  11. Effects of tritium on corrosion of welded type 316L stainless steel

    SciTech Connect

    Bellanger, G.

    1995-01-01

    An attempt was undertaken to investigate the localized corrosion susceptibility of tritiated oxidized weldments of Type 316L austenitic stainless steel made by the tungsten inert gas process. For this, the distribution of tritium at the surface was determined using a scintillation spectrophotometer. Depending on the values, the amounts of tritium are high enough to degrade the oxide. The polarization curves show a corrosion potential lower than that of a nontritiated weld. This means that tritiated welds have a less {open_quotes}noble{close_quotes}behavior. It is observed by voltammetry that the reduction of corrosion products always occurs during the cathodic scans, meaning less passivity for tritiated welds. Using electro-chemical impedance spectroscopy, the values of electron and ionic diffusion within the passive oxide were deduced. The tritiated oxide layer is thinner, and a higher concentration of electron carriers is observed; this indicates a less insulating oxide. The difference in electron carriers may come from ionization and breakdowns of the oxide layer by tritium and the energy released. The scanning electron microscopy (SEM) examinations show a complex microstructure of the tritiated surface that could be attributed both to the welding process and a severe degradation by tritium and energy released from the decay. It is well known that the ferrite is formed in the austenite during welding; this currently leads to corrosion of ferrite/austenite surface borders. This corrosion may be facilitated by the presence of tritium trapped at these surface borders, and the microcracks would nucleate leading to no cohesion of austenite. This mechanism is difficult to verify by SEM for stainless steel highly degraded by tritium and the energy released, but the visual examinations would appear to well support the results obtained by electrochemical methods, where the oxide is damaged. 28 refs., 15 figs., 3 tabs.

  12. Cross-sectional transmission electron microscopy of ultra-fine wires of AISI 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, H. S.; Wei, R. C.; Huang, C. Y.; Yang, J. R.

    2006-01-01

    Starting with 190?µm diameter wire of 316L stainless steel, ultra-thin wire just 8?µm in diameter has been made and characterized. There was no intermediate heat treatment used in the process of drawing, and the amount of true stain was about 6.3. A specimen preparation method for the cross-sectional transmission electron microscopy (TEM) of ultra-fine wires of 316L stainless steel has been developed. The ultra-fine wire was sandwiched between silicon chips and the bonded assembly then sliced to produce longitudinal and transverse sections of the wire in a form suitable for further processing into electron transparent samples. TEM reveals that the heavily deformed wire consists of nanoscale fine elongated structures along the drawing direction. The diffraction patterns indicate that a substantial amount of austenite has transformed into martensite. The TEM dark field images show nanosized patches of martensite distributed among the debris of austenite along the drawing direction. The evidence strongly suggests that severe deformation leads to mechanical stabilization of austenite against the growth of martensite.

  13. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; Liu, Leifeng; Wikman, Stefan; Cui, Daqing; Shen, Zhijian

    2016-03-01

    A feasibility study was performed to fabricate ITER In-Vessel components by Selective Laser Melting (SLM) supported by Fusion for Energy (F4E). Almost fully dense 316L stainless steel (SS316L) components were prepared from gas-atomized powder and with optimized SLM processing parameters. Tensile tests and Charpy-V tests were carried out at 22 °C and 250 °C and the results showed that SLM SS316L fulfill the RCC-MR code. Microstructure characterization reveals the presence of hierarchical macro-, micro- and nano-structures in as-built samples that were very different from SS316L microstructures prepared by other established methods. The formation of a characteristic intragranular cellular segregation network microstructure appears to contribute to the increase of yield strength without losing ductility. Silicon oxide nano-inclusions were formed during the SLM process that generated a micro-hardness fluctuation in the building direction. The combined influence of a cellular microstructure and the nano-inclusions constraints the size of ductile dimples to nano-scale. The crack propagation is hindered by a pinning effect that improves the defect-tolerance of the SLM SS316L. This work proves that it was possible to manufacture SS316L with properties suitable for ITER First Wall panels. Further studies on irradiation properties of SLM SS316L and manufacturing of larger real-size components are needed.

  14. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    PubMed

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.

  15. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    PubMed

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures. PMID:27612756

  16. Effect of the La alloying addition on the antibacterial capability of 316L stainless steel.

    PubMed

    Yuan, J P; Li, W; Wang, C

    2013-01-01

    316L stainless steel is widely used for fashion jewelry but it can carry a large number of bacteria and cause the potential risk of infection since it has no antimicrobial ability. In this paper, La is used as an alloying addition. The antibacterial capability, corrosion resistance and processability of the La-modified 316L are investigated by microscopic observation, thin-film adhering quantitative bacteriostasis, electrochemical measurement and mechanical test. The investigations reveal that the La-containing 316L exhibits the Hormesis effect against Staphylococcus aureus ATCC 25923 and Escherichia coli DH5α, 0.05 wt.% La stimulates their growth, as La increases, the modified 316L exhibits the improved antibacterial effect. The more amount of La is added, the better antibacterial ability is achieved, and 0.42 wt.% La shows excellent antibacterial efficacy. No more than 0.11 wt.% La addition improves slightly the corrosion resistance in artificial sweat and has no observable impact on the processability of 316L, while a larger La content degrades them. Therefore, the addition of La alone in 316L is difficult to obtain the optimal combination of corrosion resistance, antibacterial capability and processability. In spite of that, 0.15 wt.% La around is inferred to be the trade-off for the best overall performance.

  17. Spinodal decomposition in AISI 316L stainless steel via high-speed laser remelting

    NASA Astrophysics Data System (ADS)

    Chikarakara, Evans; Naher, Sumsun; Brabazon, Dermot

    2014-05-01

    A 1.5 kW CO2 pulsed laser was used to melt the surface of AISI 316L stainless steel with a view to enhancing the surface properties for engineering applications. A 90 μm laser beam spot size focused onto the surface was used to provide high irradiances (up to 23.56 MW/cm2) with low residence times (as low as 50 μs) in order to induce rapid surface melting and solidification. Variations in microstructure at different points within the laser treated region were investigated. From this processing refined lamellar and nodular microstructures were produced. These sets of unique microstructures were produced within the remelted region when the highest energy densities were selected in conjunction with the lowest residence times. The transformation from the typical austenitic structure to much finer unique lamellar and nodular structures was attributed to the high thermal gradients achieved using these selected laser processing parameters. These structures resulted in unique characteristics including elimination of cracks and a reduction of inclusions within the treated region. Grain structure reorientation between the bulk alloy and laser-treated region occurred due to the induced thermal gradients. This present article reports on microstructure forms resulting from the high-speed laser surface remelting and corresponding underlying kinetics.

  18. Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Trelewicz, Jason R.; Halada, Gary P.; Donaldson, Olivia K.; Manogharan, Guha

    2016-03-01

    Additive manufacturing (AM) of metal alloys to produce complex part designs via powder bed fusion methods such as laser melting promises to be a transformative technology for advanced materials processing. However, effective implementation of AM processes requires a clear understanding of the processing-structure-properties-performance relationships in fabricated components. In this study, we report on the formation of micro and nanoscale structures in 316L stainless steel samples printed by laser AM and their implications for general corrosion resistance. A variety of techniques including x-ray diffraction, optical, scanning and transmission electron microscopy, x-ray fluorescence, and energy dispersive x-ray spectroscopy were employed to characterize the microstructure and chemistry of the laser additively manufactured 316L stainless steel, which are compared with wrought 316L coupons via electrochemical polarization. Apparent segregation of Mo has been found to contribute to a loss of passivity and an increased anodic current density. While porosity will also likely impact the environmental performance (e.g., facilitating crevice corrosion) of AM alloys, this work demonstrates the critical influence of microstructure and heterogeneous solute distributions on the corrosion resistance of laser additively manufactured 316L stainless steel.

  19. [Corrosion of stainless steel 201, 304 and 316L in the simulated sewage pipes reactor].

    PubMed

    Bao, Guo-Dong; Zuo, Jian-E; Wang, Ya-Jiao; Gan, Li-Li

    2014-08-01

    The corrosion behavior of stainless steel 201, 304 and 316L which would be used as sewer in-situ rehabilitation materials was studied in the simulated sewage pipes reactor. The corrosion potential and corrosion rate of these three materials were studied by potentiodynamic method on the 7th, 14th, 21st, 56th day under two different conditions which were full immersion condition or batch immersion condition with a 2-day cycle. The electrode process was studied by Electrochemical Impedance Spectroscopy (EIS) on the 56th day. The microstructure and composition of the corrosion pitting were analyzed by Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometer (EDS) on the 56th day. The results showed that 304 and 316L had much better corrosion resistance than 201 under both conditions. 304 and 316L had much smaller corrosion rate than 201 under both conditions. The corrosion resistance of all three kinds of stainless steel under the batch immersion condition was much better than those under the full immersion condition. The corrosion rate of all three kinds of stainless steel under the batch immersion condition was much smaller than those under the full immersion condition. Point pitting corrosion was formed on the surfaces of 304 and 316L. In comparison, a large area of corrosion was formed in the surface of 201.

  20. Pitting corrosion behavior of 316L stainless steels in tropical seawater

    SciTech Connect

    Zaragoza-Ayala, A.E.; Acuna, N.; Solis, W.; Aldana, J.; Festy, D.

    1996-10-01

    The open circuit potential (OCP) and the pitting potential of 316L stainless steel (SS) have been determined as a function of the immersion time in tropical seawater. An increase in the noble direction of the OCP for short exposures was observed. After certain time occasional fall and rise of the OCP values was observed. Pitting potentials measurements shows that a relatively small increase in the seawater temperature can increase the susceptibility to localized corrosion of this alloy. Little or no effect of the exposure time on the pitting potential was observed. SEM observation shows that the steel surface was colonized by bacteria an microalgae which forms an heterogeneous biofilm on the steel surface which probably have an influence on the corrosion behavior of 316 L SS in seawater.

  1. Dynamic recrystallization in friction surfaced austenitic stainless steel coatings

    SciTech Connect

    Puli, Ramesh Janaki Ram, G.D.

    2012-12-15

    Friction surfacing involves complex thermo-mechanical phenomena. In this study, the nature of dynamic recrystallization in friction surfaced austenitic stainless steel AISI 316L coatings was investigated using electron backscattered diffraction and transmission electron microscopy. The results show that the alloy 316L undergoes discontinuous dynamic recrystallization under conditions of moderate Zener-Hollomon parameter during friction surfacing. - Highlights: Black-Right-Pointing-Pointer Dynamic recrystallization in alloy 316L friction surfaced coatings is examined. Black-Right-Pointing-Pointer Friction surfacing leads to discontinuous dynamic recrystallization in alloy 316L. Black-Right-Pointing-Pointer Strain rates in friction surfacing exceed 400 s{sup -1}. Black-Right-Pointing-Pointer Estimated grain size matches well with experimental observations in 316L coatings.

  2. Corrosive Metabolic Activity of Desulfovibrio sp. on 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Arkan, Simge; Ilhan-Sungur, Esra; Cansever, Nurhan

    2016-10-01

    The present study investigated the effects of chemical parameters (SO4 2-, PO4 3-, Cl-, pH) and the contents of extracellular polymeric substances (EPS) regarding the growth of Desulfovibrio sp. on the microbiologically induced corrosion of 316L stainless steel (SS). The experiments were carried out in laboratory-scaled test and control systems. 316L SS coupons were exposed to Desulfovibrio sp. culture over 720 h. The test coupons were removed at specific sampling times for enumeration of Desulfovibrio sp., determination of the corrosion rate by the weight loss measurement method and also for analysis of carbohydrate and protein in the EPS. The chemical parameters of the culture were also established. Biofilm/film formation and corrosion products on the 316L SS surfaces were investigated by scanning electron microscopy and energy-dispersive x-ray spectrometry analyses in the laboratory-scaled systems. It was found that Desulfovibrio sp. led to the corrosion of 316L SS. Both the amount of extracellular protein and chemical parameters (SO4 2- and PO4 3-) of the culture caused an increase in the corrosion of metal. There was a significantly positive relationship between the sessile and planktonic Desulfovibrio sp. counts (p < 0.01). It was detected that the growth phases of the sessile and planktonic Desulfovibrio sp. were different from each other and the growth phases of the sessile Desulfovibrio sp. vary depending on the subspecies of Desulfovibrio sp. and the type of metal when compared with the other published studies.

  3. Structure and Long-Term Stability of Alkylphosphonic Acid Monolayers on SS316L Stainless Steel.

    PubMed

    Kosian, Medea; Smulders, Maarten M J; Zuilhof, Han

    2016-02-01

    Surface modification of stainless steel (SS316L) to improve surface properties or durability is an important avenue of research, as SS316L is widely used in industry and science. We studied, therefore, the formation and stability of a series of organic monolayers on SS316L under industrially relevant conditions. These included acidic (pH 3), basic (pH 11), neutral (Milli-Q water), and physiological conditions [10 mM phosphate-buffered saline (PBS)], as well as dry heating (120 °C). SS316L was modified with alkylphosphonic acids of chain length (CH2)n with n varying between 3 and 18. While alkylphosphonic acids of all chain lengths formed self-assembled monolayers with hydrophobic properties, only monolayers of chain lengths 12-18 formed ordered monolayers, as evidenced by static water contact angle (SCA), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and infrared reflection absorption spectroscopy (IRRAS). A long-term stability study revealed the excellent stability of monolayers with chain lengths 12-18 for up to 30 days in acid, neutral, and physiological solutions, and for up to 7 days under dry heating. Under strong basic conditions a partial breakdown of the monolayer was observed, especially for the shorter chain lengths. Finally, the effect of multivalent surface attachment on monolayer stability was explored by means of a series of divalent bisphosphonic acids. PMID:26771302

  4. Effect of laser shot peening without coating on the surface properties and corrosion behavior of 316L steel

    NASA Astrophysics Data System (ADS)

    Kalainathan, S.; Sathyajith, S.; Swaroop, S.

    2012-12-01

    This paper discusses the results of laser peening without coating on low carbon austenitic stainless steel 316L. Unlike typical experiments on laser peening without coating (LPwC) performed with frequency doubled (green) laser and underwater irradiation, the present study reports LPwC with infrared radiation using thin layer of water as confinement medium. The dependence of laser pulse density on properties such as surface roughness, surface residual stress, microhardness, and corrosion behavior of LPwC specimen were investigated. The magnitude of surface compressive residual stress on laser peened specimen showed appreciable improvement compared to unpeened base material. Microhardness of the specimen improved by 30-40% after LPwC. However, the potentiodynamic polarization study indicated that though there is an enhancement of corrosion potential (Ecorr), the corrosion current density (Icorr) increased with increase in laser pulse density.

  5. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  6. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents.

    PubMed

    Bayram, Cem; Mizrak, Alpay Koray; Aktürk, Selçuk; Kurşaklioğlu, Hurkan; Iyisoy, Atila; Ifran, Ahmet; Denkbaş, Emir Baki

    2010-10-01

    316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p < 0.05) with respect to SS 316L and control groups in each test. PMID:20844318

  7. Re-weldability of neutron irradiated Type 304 and 316L stainless steels

    NASA Astrophysics Data System (ADS)

    Morishima, Y.; Koshiishi, M.; Kashiwakura, K.; Hashimoto, T.; Kawano, S.

    2004-08-01

    Weldability of irradiated stainless steel (SS) has been studied to develop the technical guideline regarding the repair-welding of reactor internals. Type 304 and 316L SSs were irradiated at ambient temperature in the US Advanced Test Reactor. The multi-pass bead-on-plate TIG (GTA) and YAG laser welding with heat input levels less than 1 MJ/m were performed on specimens containing helium up to 18 appm. In this paper, results of cross-sectional micrograph observations of the heat affected zone were considered in light of helium bubble properties. The tendency for weld crack formation of irradiated Type 316L SS was compared with that of irradiated Type 304 SS.

  8. Damage mechanism at different transpassive potentials of solution-annealed 316 and 316l stainless steels

    NASA Astrophysics Data System (ADS)

    Morshed Behbahani, K.; Pakshir, M.; Abbasi, Z.; Najafisayar, P.

    2015-01-01

    Electrochemical impedance spectroscopy (EIS), anodic polarization and scanning electron microscopy techniques were used to investigate the damage mechanism in the transpassive potential region of AISI 316 and AISI 316L solution-annealed stainless steels (SS) with different degrees of sensitization. Depending on the DC potential applied during EIS tests, the AC responses in the transpassive region included three different regions: the first one associated with anodic dissolution of the passive layer, the second one contributed to the dissolution at the area near grain boundaries, and the last one attributed to pitting corrosion. In addition, the fitting results to experimental data showed that as the DC bias during the EIS test increases the charge transfer resistance ( R ct) decreases. Moreover, the R ct values decreased as the sensitization temperature increases but the AISI 316L SS samples exhibited a higher resistance to intergranular corrosion than 316 SS samples.

  9. Improving endothelialization on 316L stainless steel through wettability controllable coating by sol-gel technology

    NASA Astrophysics Data System (ADS)

    Wang, Mingqi; Wang, Yao; Chen, Yijie; Gu, Hongchen

    2013-03-01

    Rapid endothelialization by surface coverage is considered as a way to increase blood compatibility of the vascular stent and reduce smooth muscle cell (SMC) mediated restenosis. Coatings on 316L stainless steels with different wettabilities and similar topographies were obtained through sol-gel process by regulating the proportions of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES). Adhesion and proliferation of vascular endothelial cells (EC) and SMC on these substrates have been evaluated by cell numbers, cell morphology, and expression of cytoskeletal protein. Results showed that EC and SMC responded differently to the coated surfaces. Enhanced endothelialization of bare 316L was found at the moderately hydrophilic coating (contact angle 45.3°) which exhibited effective inhibition of SMC and negligible influence on EC. These results are expected to lay foundation for the solution of the vascular restenosis which was mainly derived from the hyperplasia of SMC.

  10. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K. S.; Mathew, M. D.; Bhaduri, A. K.

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  11. Hydrothermal calcium modification of 316L stainless steel and its apatite forming ability in simulated body fluid.

    PubMed

    Valanezahad, Alireza; Ishikawa, Kunio; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki

    2011-01-01

    To understand the feasibility of calcium (Ca) modification of type 316L stainless steel (316L SS) surface using hydrothermal treatment, 316L SS plates were treated hydrothermally in calcium chloride (CaCl(2)) solution. X-ray photoelectron spectroscopic analysis revealed that the surface of 316L SS plate was modified with Ca after hydrothermal treatment at 200°C. And the immobilized Ca increased with CaCl(2) concentration. However no Ca-modification was occurred for 316L SS plates treated at 100°C. When Ca-modified 316L SS plate was immersed in simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma, low crystalline apatite was precipitated on its surface whereas no precipitate was observed on non Ca-modified 316L SS. The results obtained in the present study indicated that hydrothermal treatment at 200°C in CaCl(2) solution is useful for Ca-modification of 316L SS, and Ca-modification plays important role for apatite precipitation in SBF.

  12. Improved corrosion resistance of 316L stainless steel by nanocrystalline and electrochemical nitridation in artificial saliva solution

    NASA Astrophysics Data System (ADS)

    Lv, Jinlong; Liang, Tongxiang

    2015-12-01

    The fluoride ion in artificial saliva significantly changed semiconductor characteristic of the passive film formed on the surface of 316L stainless steels. The electrochemical results showed that nanocrystalline α‧-martensite improved corrosion resistance of the stainless steel in a typical artificial saliva compared with coarse grained stainless steel. Moreover, comparing with nitrided coarse grained stainless steel, corrosion resistance of the nitrided nanocrystalline stainless steel was also improved significantly, even in artificial saliva solution containing fluoride ion. The present study showed that the cryogenic cold rolling and electrochemical nitridation improved corrosion resistance of 316L stainless steel for the dental application.

  13. Laser-driven shock waves to improve the corrosion properties of 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Peyre, Patrice; Berthe, Laurent; Fabbro, Remy; Carboni, Christelle; Bartnicki, Eric; Beranger, Gerard; Lemaitre, Christian

    1999-06-01

    Different laser pulses ranging between 0.6 and 10 ns were used to generate up to 10 GPa amplitude shock waves in an aluminum-coated 316L stainless steel with application to modify its surface behavior, especially its pitting corrosion behavior in NaCl 30g/l medium. Laser shock waves (LSW) characterizations (Hugoniot limits, Shock wave attenuations) were carried out with a VISAR system and compared with 1D simulations using Shylac Lagrangian code. Treated surfaces were analyzed through chemical spectroscopies (GDS, XPS), metallurgical characterizations (deformation bands, twins...) and residual stress measurements. Laser-induced surface modifications were also compared with the classical effects of a shot-peening at high coverage rate. Lastly, rest potential recordings, anodic polarization tests and statistical treatments of the pitting potentials were carried out to estimate the influence of a laser peening on the pitting corrosion resistance of a passive 316L alloy. It was clearly demonstrated that LSW could improve the corrosion behavior of 316L by pure mechanical effects such as compressive residual stresses which tend to reduce the nocivity of surface inclusions.

  14. Diffusion Bonding Behavior and Characterization of Joints Made Between 316L Stainless Steel Alloy and AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Elthalabawy, Waled Mohamed

    The 316L austenitic stainless steel and AZ31 magnesium alloy have physical and mechanical properties which makes these alloys suitable in a number of high technology based industries such as the aerospace and automotive sectors. However, for these alloys to be used in engineering applications, components must be fabricated and joined successfully. The differences in the physical and metallurgical properties between these two alloys prevents the use of conventional fusion welding processes commonly employed in aerospace and transport industry. Therefore, alternative techniques need to be developed and diffusion bonding technology is a process that has considerable potential to join these two dissimilar alloys. In this research work both solid-state and transient liquid phase (TLP) bonding processes were applied. The solid-state bonding of 316L steel to AZ31 magnesium alloy was possible at a bonding temperature of 550°C for 120 minutes using a pressure of 1.3 MPa. The interface characterization of the joint showed a thin intermetallic zone rich in Fe-Al was responsible for providing a metallurgical bond. However, low joint shear strengths were recorded and this was attributed to the poor surface to surface contact. The macro-deformation of the AZ31 alloy prevented the use of higher bonding pressures and longer bonding times. In order to overcome these problems, the TLP bonding process was implemented using pure Cu and Ni foils as interlayers which produced a eutectic phase at the bonding temperature. This research identified the bonding mechanism through microstructural and differential scanning calorimetry investigations. The microstructural characterization of the TLP joints identified intermetallics which became concentrated along the 316L steel/AZ31 bond interface due to the "pushing effect" of the solid/liquid interface during isothermal solidification stage of bonding. The size and concentration of the intermetallics had a noticeable effect on the final joint

  15. Fabrication of antibacterial and hydrophilic electroless Ni-B coating on 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Bülbül, Ferhat; Bülbül, Leman Elif

    2016-01-01

    Biomaterial-associated bacterial infection is one of the most common complications with medical vehicles and implants made of stainless steel. A surface coating treatment like electroless Ni-B deposition, a new candidate to be used in a broad range of engineering applications owing to many advantages such as low cost, thickness uniformity, good wear resistance, may improve the antibacterial activity and physical properties of biomedical devices made of stainless steel. In this study, the antibacterial property of the electroless Ni-B film coated on AISI 316L (UNS S31603) stainless steel is basically investigated. Inhibition halo diameter measurement after incubation at 37 °C and 24 h demonstrates the existence of antimicrobial activity of the electroless Ni-B coating deposited on 316L stainless steel over the Escherichia coli test bacteria. The results of X-ray diffraction, scanning electron microscopy, atomic force microscopy and microhardness measurement studies confirms that the coating deposited on the substrate has an uniform amorphous and a harder structure. Besides, the wettability property of the uncoated substrate and the coating was measured as the contact angle of water. The water contact angle reduced about from 97.7 to 69.25°.

  16. Dissolution of a 316L stainless steel vessel by a pool of molten aluminum

    SciTech Connect

    Tutu, N.K.; Finfrock, C.C.; Lara, J.D.; Schwarz, C.E.; Greene, G.A.

    1993-01-01

    Two experiments to study the dissolution of a torospherical stainless steel vessel by an isothermal pool of molten aluminum have been performed. The test vessels consisted of 24 inch diameter 316L stainless steel ``ASME Flanged and Dished Heads.`` The nominal values of the average melt temperatures for the two tests were: 977{degree}C and 1007{degree}C. The measurements of the dissolution depth as a function of the position along the vessel surface showed the dissolution to be spatially highly non-uniform. Large variations in the dissolution depth with respect to the azimuthal coordinate were also observed. The maximum value of the measured time averaged dissolution rate was found to be 5.05 mm/hr, and this occurred near the edge of the molten pool. The concentration measurements indicated that the molten pool was highly stratified with respect to the concentration of stainless steel in the melt (molten aluminum-stainless steel solution).

  17. 316L stainless steel tubes corrosion influenced by SRB in sea water

    SciTech Connect

    Yoffe, P.

    1997-08-01

    A tube made from SS316L was attacked by stagnated sea water. The typical onion form of the pits were obscured in welded and unwelded sectors of the tube. Iron sulfides FeS{sub 1{minus}x} and FeS{sub 2} (in pyrite form) were observed on effected surface of the tube, in addition to iron chloride and oxide/hydroxide. Theoretical investigation was based on cluster model of alloy and thermodynamic/kinetic characterization of possible reactions. It was concluded that microbially influenced sulfidizing played an accelerating role in the failure that exhibited the typical characteristics for stagnated sea water effect to chromium-nickel stainless steel.

  18. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment

    PubMed Central

    Ruiz, A.; Timke, T.; van de Sande, A.; Heftrich, T.; Novotny, R.; Austin, T.

    2016-01-01

    This article presents corrosion data and microstructural analysis data of austenitic stainless steels AISI 316L and AISI 347H exposed to supercritical water (25 MPa, 550 °C) with 2000 ppb of dissolved oxygen. The corrosion tests lasted a total of 1200 h but were interrupted at 600 h to allow measurements to be made. The microstructural data have been collected in the grain interior and at grain boundaries of the bulk of the materials and at the superficial oxide layer developed during the corrosion exposure. PMID:27158647

  19. Liquid Metal Corrosion of 316L Stainless Steel, 410 Stainless Steel, and 1015 Carbon Steel in a Molten Zinc Bath

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Bright, Mark A.; Liu, Xingbo; Barbero, Ever

    2007-11-01

    Corrosion tests of 1015 low-carbon steel and two stainless steels (410 and 316L) were conducted in a pure zinc bath (99.98 wt pct Zn) in order to better understand the reaction mechanisms that occur during the degradation of submerged hardware at industrial general (batch) galvanizing operations. Through this testing, it was found that, in general, 316L stainless steel showed the best dissolution resistance among these three alloys, while 1015 carbon steel provided a lower solubility than 410 stainless steel. Investigating the failure mechanisms, both metallurgical composition and lattice structure played important roles in the molten metal corrosion behaviors of these alloys. High contents of nickel combined with the influence of chromium improved the resistance to molten zinc corrosion. Moreover, a face-centered-cubic (fcc) structure was more corrosion resistant than body-centered-cubic (bcc) possibly due to the compactness of the atomic structure. Analogously, the body-centered-tetragonal (bct) martensite lattice structure possessed enhanced susceptibility to zinc corrosion as a result of the greater atomic spacing and high strain energy. Finally, an increased bath temperature played an important role in molten metal corrosion by accelerating the dissolution process and changing the nature of intermetallic layers.

  20. Simulations of spall experiments in 316L stainless steel conducted with square and triangular waves

    NASA Astrophysics Data System (ADS)

    Seaman, Lynn; Gray, G. T.(Rusty), III

    2005-07-01

    Triangular stress waves are more like those from applications (laser, explosives, nuclear) but laboratory experiments for studying spall damage generally provide square-topped waves. Gray et al (2003) performed four impact experiments in 316L stainless steel, two with square waves and two with triangular, achieving void damage in all but the lower-stress (6.6 GPa) triangular-wave sample. Simulations with the nucleation-and-growth model DFRACT exhibit fair correspondence with the damage in those tests showing damage, but also indicate damage in the triangular-wave test showing no damage. We are examining mechanisms which may delay the initiation of void damage or otherwise alter the expected damage processes in the model. Reference: G.T. (Rusty) Gray III, N. K. Bourne, B.L. Henrie, and J.C.F. Millet, Influence of Shock-Wave Profile Shape (Triangular ``Taylor-Wave'' versus Square-Topped) on the Spallation Response of 316L Stainless Steel, J. Phys. IV France 110 (2003), page 773-778,

  1. Corrosion of type 316L stainless steel in a mercury thermal convection loop

    SciTech Connect

    DiStefano, J.R.; Manneschmidt, E.T.; Pawel, S.J.

    1999-04-01

    Two thermal convection loops fabricated from 316L stainless steel containing mercury (Hg) and Hg with 1000 wppm gallium (Ga), respectively, were operated continuously for about 5000 h. In each case, the maximum loop temperature was constant at about 305 degrees C and the minimum temperature was constant at about 242 degrees C. Coupons in the hot leg of the Hg-loop developed a posous surface layer substantially depleted of nickel and chromium, which resulted in a transformation to ferrite. The coupon exposed at the top of the hot leg in the Hg-loop experienced the maximum degradation, exhibiting a surface layer extending an average of 9-10 mu m after almost 5000 h. Analysis of the corrosion rate data as a function of temperature (position) in the Hg-loop suggests wetting by the mer cury occurred only above about 255 degrees C and that the rate limiting step in the corrosion process above 255 degrees C is solute diffusion through the saturated liquid boundary layer adjacent to the corroding surface. The latter factor suggests that the corrosion of 316L stainless steel in a mercury loop may be velocity dependent. No wetting and no corrosion were observed on the coupons and wall specimens removed from the Hg/Ga loop after 5000 h of operation.

  2. The effect of surface roughness on the fretting corrosion of 316L stainless steel biomaterial surfaces

    NASA Astrophysics Data System (ADS)

    Shenoy, Aarti

    The medical device industry is still seeking answers to the mechanically-assisted corrosion (MAC) problem, which becomes increasingly important due to modularity in design. MAC manifests in various forms, some of which are fretting corrosion, crevice corrosion and stress corrosion. Several studies have been conducted to understand the causes and the factors that affect fretting corrosion. Some of the factors are the applied load, surface potential, oxide film characteristics and solution chemistry near the interface. Surface properties such as surface roughness determine the topography of the surface and the nature of asperity-asperity contact, which is a factor that would determine the mechanically assisted corrosion behavior of the interface, like the stem-neck and head-neck taper junctions in modular hip replacement devices. This study aims to understand the correlation between surface roughness of 316L stainless steel samples and fretting corrosion behavior using a variable load pin-on-disc test. It was found that the smoother surfaces are associated with lower fretting currents. However, smoother surfaces also created the conditions for fretting initiated crevice corrosion to occur more readily. Fretting corrosion regimes and the severity are thus dependent upon the surface roughness. A possible explanation could be due to the inverse relationship between the interasperity distance parameter, Delta, and fretting currents. The coefficient of friction between the two surfaces in contact however remained unaffected by surface roughness, but decreased with increasing load. Smoother surfaces, while lowering fretting corrosion reactions can enhance crevice corrosion reactions in 316L stainless steel interfaces.

  3. Strain rate dependence of impact properties of sintered 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Lee, Woei-Shyan; Lin, Chi-Feng; Liu, Tsung-Ju

    2006-12-01

    This paper uses a material testing system (MTS) and a compressive split-Hopkinson bar to investigate the impact behaviour of sintered 316L stainless steel at strain rates ranging from 10 -3 s -1 to 7.5 × 10 3 s -1. It is found that the true stress, the rate of work hardening and the strain rate sensitivity vary significantly as the strain rate increases. The flow behaviour of the sintered 316L stainless steel can be accurately predicted using a constitutive law based on Gurson's yield criterion and the flow rule proposed by Khan, Huang and Liang (KHL). Microstructural observations reveal that the degree of localized grain deformation increases, but the pore density and the grain size decrease, with increasing strain rate. Adiabatic shear bands associated with cracking are developed at strain rates higher than 5.6 × 10 3 s -1. The fracture surfaces exhibit ductile dimples. The depth and density of these dimples decrease with increasing strain rate.

  4. Partially degradable friction-welded pure iron-stainless steel 316L bone pin.

    PubMed

    Nasution, A K; Murni, N S; Sing, N B; Idris, M H; Hermawan, H

    2015-01-01

    This article describes the development of a partially degradable metal bone pin, proposed to minimize the occurrence of bone refracture by avoiding the creation of holes in the bone after pin removal procedure. The pin was made by friction welding and composed of two parts: the degradable part that remains in the bone and the nondegradable part that will be removed as usual. Rods of stainless steel 316L (nondegradable) and pure iron (degradable) were friction welded at the optimum parameters: forging pressure = 33.2 kPa, friction time = 25 s, burn-off length = 15 mm, and heat input = 4.58 J/s. The optimum tensile strength and elongation was registered at 666 MPa and 13%, respectively. A spiral defect formation was identified as the cause for the ductile fracture of the weld joint. A 40-µm wide intermetallic zone was identified along the fusion line having a distinct composition of Cr, Ni, and Mo. The corrosion rate of the pin gradually decreased from the undeformed zone of pure iron to the undeformed zone of stainless steel 316L. All metallurgical zones of the pin showed no toxic effect toward normal human osteoblast cells, confirming the ppb level of released Cr and Ni detected in the cell media were tolerable.

  5. Material Corrosion and Plate-Out Test of Types 304L and 316L Stainless Steel

    SciTech Connect

    Zapp, P.E.

    2001-02-06

    Corrosion and plate-out tests were performed on 304L and 316L stainless steel in pretreated Envelope B and Envelope C solutions. Flat coupons of the two stainless steels were exposed to 100 degrees C liquid and to 74 degrees C and 88 degrees C vapor above the solutions for 61 days. No significant corrosion was observed either by weight-loss measurements or by microscopic examination. Most coupons had small weight gains due to plate-out of solids, which remained to some extent even after 24-hour immersion in 1 N nitric acid at room temperature. Plate-out was more significant in the Envelope B coupons, with film thickness from less than 0.001 in. to 0.003-inches.

  6. Inhalation toxicity of 316L stainless steel powder in relation to bioaccessibility.

    PubMed

    Stockmann-Juvala, H; Hedberg, Y; Dhinsa, N K; Griffiths, D R; Brooks, P N; Zitting, A; Wallinder, I Odnevall; Santonen, T

    2013-11-01

    The Globally Harmonized System for Classification and Labelling of Chemicals (GHS) considers metallic alloys, such as nickel (Ni)-containing stainless steel (SS), as mixtures of substances, without considering that alloys behave differently compared to their constituent metals. This study presents an approach using metal release, explained by surface compositional data, for the prediction of inhalation toxicity of SS AISI 316L. The release of Ni into synthetic biological fluids is >1000-fold lower from the SS powder than from Ni metal, due to the chromium(III)-rich surface oxide of SS. Thus, it was hypothesized that the inhalation toxicity of SS is significantly lower than what could be predicted based on Ni metal content. A 28-day inhalation study with rats exposed to SS 316L powder (<4 µm, mass median aerodynamic diameter 2.5-3.0 µm) at concentrations up to 1.0 mg/L showed accumulation of metal particles in the lung lobes, but no signs of inflammation, although Ni metal caused lung toxicity in a similar published study at significantly lower concentrations. It was concluded that the bioaccessible (released) fraction, rather than the elemental nominal composition, predicts the toxicity of SS powder. The study provides a basis for an approach for future validation, standardization and risk assessment of metal alloys.

  7. Rapid heating tensile tests of hydrogen-charged high-energy-rate-forged 316L stainless steel

    SciTech Connect

    Mosley, W.C.

    1989-05-19

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. Proper design of the equipment will require an understanding of how tritium and its decay product helium affect mechanical properties. This memorandum describes results of rapid heating tensile testing of hydrogen-charged specimens of high-energy-rate-forged (HERF) 316L stainless steel. These results provide a data base for comparison with uncharged and tritium-charged-and-aged specimens to distinguish the effects of hydrogen and helium. Details of the experimental equipment and procedures and results for uncharged specimens were reported previously. 3 refs., 10 figs.

  8. Stress corrosion cracking and corrosion fatigue on 316L stainless steel in boric acid concentrated media at 320 C

    SciTech Connect

    Herms, E.; Olive, J.M.; Puiggali, M.; Boursier, J.M.

    1999-07-01

    Stress Corrosion Cracking (SCC) and Corrosion-Fatigue (CF) tests were performed in autoclave at 320 C in concentrated boric acid chlorinated media in presence of oxygen or hydrogen on type 316L austenitic stainless steel. Crack Growth Rates (CGR) are higher in non deaerated solutions for both SCC and CF than in hydrogenated solutions. CGR are relatively similar in CF and in SCC, excepted for high load ratio in CF where CGR are higher than in SCC. Detailed analysis of the fracture surface shows some distinct features between SCC and CF. Intergranular and transgranular mode of fracture are observed on SCC and CF. Fracture modes depend on the chemistry of solution in SCC and on frequency in CF. Traces of slip bands and crack front marking associated with oxide scale present on fracture surfaces exist in SCC and CF. Fatigue striations appear for low load ratio and high frequency. Secondary intergranular and transgranular cracking is observed only on SCC fracture surfaces and ligament morphology can be different in SCC relative to FC.

  9. Roughness Reduction in AISI 316L Stainless Steel after Surface Mechanical Attrition Treatment (SMAT)

    NASA Astrophysics Data System (ADS)

    Arifvianto, B.; Suyitno, Suyitno; Mahardika, M.

    2011-12-01

    Surface mechanical attrition treatment (SMAT) enhances the strength of metals by generating nanocrystallites at the surface layer. During the treatment, multiple impacts of milling balls are subjected to the treated surface. Consequently, the structure and roughness of the treated surface are also modified. In this paper, the effect of SMAT on the surface structure and roughness of an initially rough AISI 316L stainless steel is investigated. The SMAT was conducted for 0-20 minutes. The surface morphology, roughness, and volume loss due to the SMAT were studied. The result shows a decreasing roughness by the SMAT. An apparently deformed structure is also observed after 15 minutes of the treatment. However, no significant change in the volume loss is reported due to this treatment. Deformation by the multiple impacts is proposed to be the mechanism of the roughness reduction instead of microcutting by the milling balls during the SMAT.

  10. Cytocompatibility and mechanical properties of novel porous 316 L stainless steel.

    PubMed

    Kato, Komei; Yamamoto, Akiko; Ochiai, Shojiro; Wada, Masahiro; Daigo, Yuzo; Kita, Koichi; Omori, Kenichi

    2013-07-01

    Novel 316 L stainless steel (SS) foam with 85% porosity and an open pore diameter of 70-440 μm was developed for hard tissue application. The foam sheet with a 200-μm diameter had superior cell proliferation and penetration as identified through in vitro experiments. Calcification of human osteosarcoma cells in the SS foam was observed. Multi-layered foam preparation is a potential alternative technique that satisfies multi-functional requirements such as cell penetration and binding strength to the solid metal. In tensile tests, Young's modulus and the strength of the SS foam were 4.0 GPa and 11.2 MPa respectively, which is comparable with human cancellous bone. PMID:23623090

  11. Anticoagulant surface of 316 L stainless steel modified by surface-initiated atom transfer radical polymerization.

    PubMed

    Guo, Weihua; Zhu, Jian; Cheng, Zhenping; Zhang, Zhengbiao; Zhu, Xiulin

    2011-05-01

    Polished 316 L stainless steel (SS) was first treated with air plasma to enhance surface hydrophilicity and was subsequently allowed to react with 2-(4-chlorosulfonylphenyl)ethyltrimethoxysilane to introduce an atom transfer radical polymerization (ATRP) initiator. Accordingly, the surface-initiated atom transfer radical polymerization of polyethylene glycol methacrylate (PEGMA) was carried out on the surface of the modified SS. The grafting progress was monitored by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy. The polymer thickness as a function different polymerization times was characterized using a step profiler. The anticoagulative properties of the PEGMA modified SS surface were investigated. The results showed enhanced anticoagulative to acid-citrate-dextrose (ACD) blood after grafting PEGMA on the SS surface. PMID:21528878

  12. Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel.

    PubMed

    Thanh, Dinh Thi Mai; Nam, Pham Thi; Phuong, Nguyen Thu; Que, Le Xuan; Anh, Nguyen Van; Hoang, Thai; Lam, Tran Dai

    2013-05-01

    Hydroxyapatite (HAp) coatings were prepared on 316L stainless steel (316LSS) substrates by electrochemical deposition in the solutions containing Ca(NO3)2·4H2O and NH4H2PO4 at different electrolyte concentrations. Along with the effect of precursor concentration, the influence of temperature and H2O2 content on the morphology, structure and composition of the coating was thoroughly discussed with the help of X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectra. The in vitro tests in simulated body fluids (SBF) were carried out and then the morphological and structural changes were estimated by SEM and electrochemical techniques (open circuit potential, polarization curves, Nyquist and Bode spectra measurements). Being simple and cost-effective, this method is advantageous for producing HAp implant materials with good properties/characteristics, aiming towards in vivo biomedical applications.

  13. Relative Defect Density Measurements of Laser Shock Peened 316L Stainless Steel Using Positron Annihilation Spectroscopy

    SciTech Connect

    Marcus A. Gagliardi; Bulent H. Sencer; A. W. Hunt; Stuart A. Maloy; George T. Gray III

    2011-12-01

    The surface of an annealed 316L stainless steel coupon was laser shock peened and Vickers hardness measurements were subsequently taken of its surface. This Vickers hardness data was compared with measurements taken using the technique of positron annihilation Doppler broadening spectroscopy. When compared, a correlation was found between the Vickers hardness data measurements and those made using Doppler broadening spectroscopy. Although materials with a high defect density can cause the S-parameter measurements to saturate, variations in the Sparameter measurements suggest that through further research the Doppler broadening technique could be used as a viable alternative to measuring a material's hardness. In turn, this technique, could be useful in industrial settings where surface hardness and surface defects are used to predict lifetime of components.

  14. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings

    PubMed Central

    Jones, John Eric; Chen, Meng; Yu, Qingsong

    2015-01-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20–25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH3/O2 plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O-and N-contents on the surfaces were substantially increased after NH3/O2 plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH3/O2 plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electro-chemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. PMID:24500866

  15. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings.

    PubMed

    Eric Jones, John; Chen, Meng; Yu, Qingsong

    2014-10-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20-25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH₃/O₂ plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O- and N-contents on the surfaces were substantially increased after NH₃/O₂ plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH₃/O₂ plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream.

  16. Effect of Mercury Velocity on Corrosion of Type 316L Stainless Steel in a Thermal Convection Loop

    SciTech Connect

    Pawel, SJ

    2001-03-23

    Two 316L thermal convection loops (TCLs) containing several types of 316L specimens circulated mercury continuously for 2000 h at a maximum temperature of 300 C. Each TCL was fitted with a venturi-shaped reduced section near the top of the hot leg for the purpose of locally increasing the Hg velocity. Results suggest that an increase in velocity from about 1.2 m/min (bulk flow) to about 5 mmin (reduced section) had no significant impact on compatibility of 316L with Hg. In addition, various surface treatments such as gold-plating, chemical etching, polishing, and steam cleaning resulted in little or no influence on compatibility of 316L with Hg when compared to nominal mill-annealed/surface-ground material. A sensitizing heat treatment also had little/no effect on compatibility of 316L with Hg for the bulk specimen, although intergranular attack was observed around the specimen holes in each case. It was determined that carburization of the hole area had occurred as a result of the specimen fabrication process potentially rendering the specimens susceptible to corrosion by Hg at these locations. To avoid sensitization-related compatibility issues for SNS components, selection of low carbon grades of stainless steel and control of the fabrication process is recommended.

  17. Effect of Heat Treatment on Low Temperature Toughness of Reduced Pressure Electron Beam Weld Metal of Type 316L Stainless Steel

    SciTech Connect

    Nakagawa, H.; Fujii, H.; Tamura, M.

    2006-03-31

    Austenitic stainless steels are considered to be the candidate materials for liquid hydrogen vessels and the related equipments, and those welding parts that require high toughness at cryogenic temperature. The authors have found that the weld metal of Type 316L stainless steel processed by reduced pressure electron beam (RPEB) welding has high toughness at cryogenic temperature, which is considered to be due to the single-pass welding process without reheating effect accompanied by multi-pass welding process.In this work, the effect of heat treatment on low temperature toughness of the RPEB weld metal of Type 316L was investigated by Charpy impact test at 77K. The absorbed energy decreased with higher temperature and longer holding time of heat treatment. The remarkable drop in the absorbed energy was found with heat treatment at 1073K for 2 hours, which is as low as that of conventional multi-pass weld metal such as tungsten inert gas welding. The observations of fracture surface and microstructure revealed that the decrease in the absorbed energy with heat treatment resulted from the precipitation of intermetallic compounds near delta-ferrite phase.

  18. Helium 3 precipitation in AISI 316L stainless steel induced by radioactive decay of tritium: Microstructural study of helium bubble precipitation

    NASA Astrophysics Data System (ADS)

    Brass, A. M.; Chanfreau, A.; Chene, J.

    1994-10-01

    This article deals with the study of the influence of thermomechanical heat treatments, aging conditions (temperature and time), and helium concentration on helium bubble precipitation in a 316L austenitic steel. Helium was generated by the radioactive decay of tritium (tritium trick). Helium bubbles impede the grain growth in 316L steel aged at 1373 K and also the recrystal-lization reaction at this temperature if cold working is performed prior to aging. Transmission electron microscopy (TEM) observations indicated a weak helium precipitation at 1073 and 1223 K, presumably due to the presence of trapping sites for tritium, and no bubble growth after aging up to 100 hours. Precipitation sites are mainly dislocations in the matrix at 1073 K and grain boundaries and individual dislocations in the matrix at 1223 K. The large bubble size (50 nm) observed at 1373 K, even for short aging times (0.083 hour), can partly be attributed to bubble dragging by dislocations toward the grain boundaries. Cold deformation prior to aging leads to a larger bubble size due to growth enhancement during recrystallization. Decreasing the helium content leads to a smaller helium bubble size and density. Tritium trapping at helium bubbles may favor helium 3 accumulation on defects such as grain boundaries, as observed by tritium autoradiography.

  19. Effect of Heat Treatment on Low Temperature Toughness of Reduced Pressure Electron Beam Weld Metal of Type 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Nakagawa, H.; Fujii, H.; Tamura, M.

    2006-03-01

    Austenitic stainless steels are considered to be the candidate materials for liquid hydrogen vessels and the related equipments, and those welding parts that require high toughness at cryogenic temperature. The authors have found that the weld metal of Type 316L stainless steel processed by reduced pressure electron beam (RPEB) welding has high toughness at cryogenic temperature, which is considered to be due to the single-pass welding process without reheating effect accompanied by multi-pass welding process. In this work, the effect of heat treatment on low temperature toughness of the RPEB weld metal of Type 316L was investigated by Charpy impact test at 77K. The absorbed energy decreased with higher temperature and longer holding time of heat treatment. The remarkable drop in the absorbed energy was found with heat treatment at 1073K for 2 hours, which is as low as that of conventional multi-pass weld metal such as tungsten inert gas welding. The observations of fracture surface and microstructure revealed that the decrease in the absorbed energy with heat treatment resulted from the precipitation of intermetallic compounds near delta-ferrite phase.

  20. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite.

    PubMed

    Ataollahi Oshkour, Azim; Pramanik, Sumit; Mehrali, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan

    2015-09-01

    This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application.

  1. Effect of grain refinement and electrochemical nitridation on corrosion resistance of the 316L stainless steel for bipolar plates in PEMFCs environment

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Tongxiang, Liang; Hongyun, Luo

    2015-10-01

    The stain-induced nanocrystalline α'-martensite was obtained by cryogenic cold rolling at liquid-nitrogen temperature for 316L stainless steel. The electrochemical results showed nanocrystalline 316L stainless steel deteriorated its corrosion resistance in a typical proton exchange membrane fuel cell environment compared with coarse grained one. However, comparing with electrochemically nitrided coarse grained stainless steel, electrochemically nitrided nanocrystalline stainless steel improved significantly corrosion resistance in the same environment, which was supported further by Mott-Shottky analysis. X-ray photoelectron spectroscopy analysis revealed that the nanocrystalline promoted the enrichment of nitrogen and chromium and inhibited form of NH3 on the surface, which could significantly improve the corrosion resistance of the 316L stainless steel. The present study showed that the electrochemically nitrided 316L stainless steel was more suitable for the bipolar plates in proton exchange membrane fuel cell environment than the untreated one, especially for nanocrystalline stainless steel.

  2. Characterization of irradiated AISI 316L stainless steel disks removed from the Spallation Neutron Source

    SciTech Connect

    Vevera, Bradley J; Hyres, James W; McClintock, David A; Riemer, Bernie

    2014-01-01

    Irradiated AISI 316L stainless steel disks were removed from the Spallation Neutron Source (SNS) for post-irradiation examination (PIE) to assess mechanical property changes due to radiation damage and erosion of the target vessel. Topics reviewed include high-resolution photography of the disk specimens, cleaning to remove mercury (Hg) residue and surface oxides, profile mapping of cavitation pits using high frequency ultrasonic testing (UT), high-resolution surface replication, and machining of test specimens using wire electrical discharge machining (EDM), tensile testing, Rockwell Superficial hardness testing, Vickers microhardness testing, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The effectiveness of the cleaning procedure was evident in the pre- and post-cleaning photography and permitted accurate placement of the test specimens on the disks. Due to the limited amount of material available and the unique geometry of the disks, machine fixturing and test specimen design were critical aspects of this work. Multiple designs were considered and refined during mock-up test runs on unirradiated disks. The techniques used to successfully machine and test the various specimens will be presented along with a summary of important findings from the laboratory examinations.

  3. Reduced graphene oxide growth on 316L stainless steel for medical applications

    NASA Astrophysics Data System (ADS)

    Cardenas, L.; MacLeod, J.; Lipton-Duffin, J.; Seifu, D. G.; Popescu, F.; Siaj, M.; Mantovani, D.; Rosei, F.

    2014-07-01

    We report a new method for the growth of reduced graphene oxide (rGO) on the 316L alloy of stainless steel (SS) and its relevance for biomedical applications. We demonstrate that electrochemical etching increases the concentration of metallic species on the surface and enables the growth of rGO. This result is supported through a combination of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), density functional theory (DFT) calculations and static water contact angle measurements. Raman spectroscopy identifies the G and D bands for oxidized species of graphene at 1595 cm-1 and 1350 cm-1, respectively, and gives an ID/IG ratio of 1.2, indicating a moderate degree of oxidation. XPS shows -OH and -COOH groups in the rGO stoichiometry and static contact angle measurements confirm the wettability of rGO. SEM and AFM measurements were performed on different substrates before and after coronene treatment to confirm rGO growth. Cell viability studies reveal that these rGO coatings do not have toxic effects on mammalian cells, making this material suitable for biomedical and biotechnological applications.

  4. Reduced graphene oxide growth on 316L stainless steel for medical applications.

    PubMed

    Cardenas, L; MacLeod, J; Lipton-Duffin, J; Seifu, D G; Popescu, F; Siaj, M; Mantovani, D; Rosei, F

    2014-08-01

    We report a new method for the growth of reduced graphene oxide (rGO) on the 316L alloy of stainless steel (SS) and its relevance for biomedical applications. We demonstrate that electrochemical etching increases the concentration of metallic species on the surface and enables the growth of rGO. This result is supported through a combination of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), density functional theory (DFT) calculations and static water contact angle measurements. Raman spectroscopy identifies the G and D bands for oxidized species of graphene at 1595 cm(-1) and 1350 cm(-1), respectively, and gives an ID/IG ratio of 1.2, indicating a moderate degree of oxidation. XPS shows -OH and -COOH groups in the rGO stoichiometry and static contact angle measurements confirm the wettability of rGO. SEM and AFM measurements were performed on different substrates before and after coronene treatment to confirm rGO growth. Cell viability studies reveal that these rGO coatings do not have toxic effects on mammalian cells, making this material suitable for biomedical and biotechnological applications.

  5. Electrophoretic deposition of bioactive glass coating on 316L stainless steel and electrochemical behavior study

    NASA Astrophysics Data System (ADS)

    Mehdipour, Mehrad; Afshar, Abdollah; Mohebali, Milad

    2012-10-01

    In this research, submicron bioactive glass (BG) particles were synthesized by a sol-gel process and were then coated on a 316L stainless steel substrate using an electrophoretic deposition (EPD) technique. Stable suspension of bioactive glass powders in ethanol solvent was prepared by addition of triethanol amine (TEA), which increased zeta potential from 16.5 ± 1.6 to 20.3 ± 1.4 (mv). Thickness, structure and electrochemical behavior of the coating were characterized. SEM studies showed that increasing EPD voltage leads to a coating with more agglomerated particles, augmented porosity and micro cracks. The results of Fourier transformed infrared (FTIR) spectroscopy revealed the adsorption of TEA via methyl and amid groups on bioactive glass particles. Presence of bioactive glass coating reduced corrosion current density (icorr) and shifted corrosion potential (Ecorr) toward more noble values in artificial saliva at room temperature. Percent porosity of the coating measured by potentiodynamic polarization technique increased as EPD voltage was raised. The results of impedance spectroscopic studies demonstrated that the coating acts as a barrier layer in artificial saliva.

  6. Corrosion Resistance of Ti-O Film Modified 316L Stainless Steel Coronary Stents In Vitro

    NASA Astrophysics Data System (ADS)

    Liu, Hengquan; Leng, Yongxiang; Huang, Nan

    2012-03-01

    This article dealt with improving corrosion resistance of stent modified using Ti-O film. Ti-O films of various thicknesses were grown on the surface of 316L stainless steel (SS) stents by metal vacuum arc source deposition technology, and the phase composition, the thickness and the adhesion between films and substance were investigated by micro-x-ray diffraction (Micro-XRD), surface profilometer, and scanning electron microscopy (SEM) separately. The corrosion resistance of modified stent was assessed by polarization test in phosphate buffered solution (37 ± 1 °C). The result shows that the Ti-O films were very smooth and uniform. There were not any cracks and delaminations after dilation by angioplasty, the adhesion between Ti-O film and stent is satisfactory. The open circuit potential (OCP) of the Ti-O film modified stents was higher than that of the bare stents; it shows that the electrochemical stability of modified stents was more than bare stents. The polarization test result indicates that the passivation stability and anti-breakdown performance of Ti-O film stents had better than bare stents, and no pitting was observed on the surface of both modified stents, but the local film striations were found on the stent surface of the thicker film, which indicated that the Ti-O film stents with certain thickness has good corrosion resistance.

  7. Microbiological test results using three urine pretreatment regimes with 316L stainless steel

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    1993-01-01

    Three urine pretreatments, (1) Oxone (Dupont) and sulfuric acid, (2) sodium hypochlorite and sulfuric acid, (3) and ozone, were studied for their ability to reduce microbial levels in urine and minimize surface attachment to 316L stainless steel coupons. Urine samples inoculated with Bacillus insolitus and a filamentous mold, organisms previously recovered from the vapor compression distillation subsystem of NASA Space Station Freedom water recovery test were tested in glass corrosion cells containing base or weld metal coupons. Microbial levels, changes in pH, color, turbidity, and odor of the fluid were monitored over the course of the 21-day test. Specimen surfaces were examined by scanning electron microscopy at completion of the test for microbial attachment. Ozonated urine samples were less turbid and had lower microbial levels than controls or samples receiving other pretreatments. Base metal coupons receiving pretreatment were relatively free of attached bacteria. However, well-developed biofilms were found in the heat-affected regions of welded coupons receiving Oxone and hypochlorite pretreatments. Few bacteria were observed in the same regions of the ozone pretreatment sample.

  8. Structural analysis and intergranular corrosion tests of AISI 316L steel.

    PubMed

    Stonawská, Z; Svoboda, M; Sozańska, M; Krístková, M; Sojka, J; Dagbert, C; Hyspecká, L

    2006-10-01

    Pure AISI 316L steel is investigated after solution heat treatment (1050 degrees C/H(2)O) and structural sensitization (650 degrees C). Two quite different intergranular corrosion tests are used to determine the degree of structural sensitization due to the precipitation of secondary phases along the grain boundaries (mainly the M(23)C(6) and sigma-phase): the oxalic acid etch test and the electrochemical potentio-kinetic reactivation test. Generally, the dissolution of chromium-rich carbides (M(23)C(6)) is provoked by oxalic acid etch tests, whereas the chromium-depleted zones, in the vicinity of chromium-rich carbides (M(23)C(6)), are attacked by electrochemical potentio-kinetic reactivation tests. Both intergranular corrosion tests are used to determine the maximum degree of structural sensitization. Thus structural analysis by carbon replicas reveals the Laves phase, and both the M(23)C(6) and (Cr,Mo)(x)(Fe,Ni)(y) phases. The results of intergranular corrosion tests are related to the findings of the structural analysis.

  9. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel.

    PubMed

    Blanda, Giuseppe; Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia; Piazza, Salvatore; Sunseri, Carmelo; Inguanta, Rosalinda

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO4·H2O; HA, Ca10(PO4)6(OH)2) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO3)2·4H2O and NH4H2PO4 by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50°C for all deposition times, while at 25°C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. PMID:27127032

  10. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.

    PubMed

    Tang, Yee-Chin; Katsuma, Shoji; Fujimoto, Shinji; Hiromoto, Sachiko

    2006-11-01

    The electrochemical corrosion behaviour of Type 304 and 316L stainless steels was studied in Hanks' solution, Eagle's minimum essential medium (MEM), serum containing medium (MEM with 10% of fetal bovine serum) without cells, and serum containing medium with cells over a 1-week period. Polarization resistance measurements indicated that the stainless steels were resistant to Hanks' and MEM solutions. Type 304 was more susceptible to pitting corrosion than Type 316L in Hanks' and MEM solutions. The uniform corrosion resistance of stainless steels, determined by R(p), was lower in culturing medium than in Hanks' and MEM. The low corrosion resistance was due to surface passive film with less protective to reveal high anodic dissolution rate. When cells were present, the initial corrosion resistance was low, but gradually increased after 3 days, consistent with the trend of cell coverage. The presence of cells was found to suppress the cathodic reaction, that is, oxygen reduction, and increase the uniform corrosion resistance as a consequence. On the other hand, both Type 304 and 316L stainless steels became more susceptible to pitting corrosion when they were covered with cells.

  11. Evaluation of the Effect of Dynamic Sodium on the Low Cycle Fatigue Properties of 316L(N) Stainless Steel Base and Weld Joints

    NASA Astrophysics Data System (ADS)

    Ganesan, V.; Kannan, R.; Mariappan, K.; Sukumaran, G.; Sandhya, R.; Rao, K. Bhanu Sankara

    2012-06-01

    Low cycle fatigue (LCF) tests on 316L(N) austenitic stainless steel base and weld joints were at 823 K and 873 K at a constant strain rate of 3 × 10 -3 s -1 with strain ranges varying from {±}0.4% to {±}1.0% in a servo-hydraulic fatigue test system under flowing sodium environment. The cyclic stress response exhibited a similar trend as that in air comprising of an initial rapid hardening, followed by a slight softening stage before saturation. The fatigue lives are significantly improved in sodium environment when compared to identical testing conditions in air environment. The lack of oxidation in sodium environment is attributed to the delayed crack initiation, reduced crack propagation rate and consequent increase in fatigue life. Comparison of the data evaluated in sodium with RCC-MR design code, derived on the basis of data obtained from air shows that the design based on air tests is conservative.

  12. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.

    2015-09-01

    For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.

  13. Effect of forming technique BixSiyOz coatings obtained by sol- gel and supported on 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Bautista Ruiz, J.; Olaya Flórez, J.; Aperador, W.

    2016-02-01

    BixSiyOz type coatings via sol-gel synthesized from bismuth nitrate pentahydrate, and tetraethyl orthosilicate as precursors; glacial acetic acid and 2-ethoxyethanol as solvents, and ethanolamine as complexing. The coatings were supported on AISI 316L stainless steel substrate through dip-coating and spin-coating techniques. The study showed that the spin-coating technique is efficient than dip-coating because it allows more dense and homogeneous films.

  14. CORROSION STUDY FOR THE EFFLUENT TREATMENT FACILITY CHROME (VI) REDUCTANT SOLUTION USING 304 AND 316L STAINLESS STEEL

    SciTech Connect

    DUNCAN JB; WYRAS RB

    2007-10-08

    This report documents the laboratory testing and analyses as directed under the test plan, RPP PLAN-34065, and documented in laboratory notebooks HNF 2742 and HNF-N-473-1. The purpose of this study was to evaluate and compare the electrochemical corrosion and pitting susceptibility of the 304 and 316L stainless steel in the acidified reducing solution that will be contained in either the secondary waste receiving tank or concentrate tank.

  15. A mechanism for the enhanced attachment and proliferation of fibroblasts on anodized 316L stainless steel with nano-pit arrays.

    PubMed

    Ni, Siyu; Sun, Linlin; Ercan, Batur; Liu, Luting; Ziemer, Katherine; Webster, Thomas J

    2014-08-01

    In this study, 316L stainless steel with tunable nanometer pit sizes (0, 25, 50, and 60 nm) were fabricated by an anodization procedure in an ethylene glycol electrolyte solution containing 5 vol % perchloric acid. The surface morphology and elemental composition of the 316L stainless steel were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The nano-pit arrays on all of the 316L stainless steel samples were in a regular arrangement. The surface properties of the 316L stainless steel nano-pit surface showed improved wettability properties as compared with the untreated 316L stainless steel, as demonstrated by the lower contact angles which dropped from 83.0° to 28.6 to 45.4°. The anodized 316L stainless steel surfaces with 50 nm and 60 nm diameter pits were also more rough at the nanoscale. According to MTT assays, compared with unanodized (that is, nano-smooth) surfaces, the 50 and 60 nm diameter nano-pit surfaces dramatically enhanced initial human dermal fibroblast attachment and growth for up to 3 days in culture. Mechanistically, this study also provided the first evidence of greater select protein adsorption (specifically, vitronectin and fibronectin which have been shown to enhance fibroblast adhesion) on the anodized 316L stainless steel compared with unanodized stainless steel. Such nano-pit surfaces can be designed to support fibroblast growth and, thus, improve the use of 316L stainless steel for various implant applications (such as for enhanced skin healing for amputee devices and for percutaneous implants).

  16. Re-weldability tests of irradiated 316L(N) stainless steel using laser welding technique

    NASA Astrophysics Data System (ADS)

    Yamada, Hirokazu; Kawamura, Hiroshi; Tsuchiya, Kunihiko; Kalinin, George; Kohno, Wataru; Morishima, Yasuo

    2002-12-01

    SS316L(N)-IG is the candidate material for the in-vessel and ex-vessel components of fusion reactors such as ITER (International Thermonuclear Experimental Reactor). This paper describes a study on re-weldability of un-irradiated and/or irradiated SS316L(N)-IG and the effect of helium generation on the mechanical properties of the weld joint. The laser welding process is used for re-welding of the water cooling branch pipeline repairs. It is clarified that re-welding of SS316L(N)-IG irradiated up to about 0.2 dpa (3.3 appm He) can be carried out without a serious deterioration of tensile properties due to helium accumulation. Therefore, repair of the ITER blanket cooling pipes can be performed by the laser welding process.

  17. Nanohardness, corrosion and protein adsorption properties of CuAlO2 films deposited on 316L stainless steel for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chang, Shih-Hang; Chen, Jian-Zhang; Hsiao, Sou-Hui; Lin, Guan-Wei

    2014-01-01

    This study preliminarily assesses the biomedical applications of CuAlO2 coatings according to nanoindentation, electrochemical, and protein adsorption tests. Nanoindentation results revealed that the surface hardness of 316L stainless steel increased markedly after coating with CuAlO2 films. Electrochemical tests of corrosion potential, breakdown potential, and corrosion current density showed that the corrosion resistance properties of 316L stainless steel are considerably improved by CuAlO2 coatings. Bicinchoninic acid (BCA) protein assay results revealed that the protein adsorption behavior of 316L stainless steel did not exhibit notable differences with or without CuAlO2 coatings. A CuAlO2 coating of 100 nm thickness improved the surface nanohardness and corrosion resistance ability of 316L stainless steel. CuAlO2 is a potential candidate for biomaterial coating applications, particularly for surface modification of fine, delicate implants.

  18. Preliminary histological study of connective tissue response to Zinalco and stainless steel 316L implants after 120 days.

    PubMed

    Piña, C; Torres, C K; Guzmán, J

    1998-02-01

    Circular plates of Zinalco alloy (80 wt% Zn, 1.5 wt% Cu, 18.5 wt% Al) and stainless steel (SS) 316L were implanted in 12 female Wistar rats subcutaneously and intramuscularly to compare organism response, 120 days after implantation. The tissues surrounding the implants were analysed employing hematoxilin and eosin (H-E) and Gallego's trichromic techniques (GTT). Findings indicate that the reaction to Zinalco alloy was similar to the reaction to SS 316L. The Zn, Al and Cu concentrations in blood were measured, without evidence of any alteration due to implants. The presence and distribution of Zn, Al and Cu components of Zinalco alloy were detected in tissues by energy dispersive X-ray microanalysis.

  19. Creep deformation and fracture behavior of types 316 and 316L(N) stainless steels and their weld metals

    NASA Astrophysics Data System (ADS)

    Sasikala, G.; Mannan, S. L.; Mathew, M. D.; Rao, K. Bhanu

    2000-04-01

    The creep properties of a nuclear-grade type 316(L) stainless steel (SS) alloyed with nitrogen (316L(N) SS) and its weld metal were studied at 873 and 923 K in the range of applied stresses from 100 to 335 MPa. The results were compared with those obtained on a nuclear-grade type 316 SS, which is lean in nitrogen. The creep rupture lives of the weld metals were found to be lower than those of the respective base metals by a factor of 5 to 10. Both the base and weld metals of 316L(N) SS exhibited better resistance to creep deformation compared to their 316 SS counterparts at identical test conditions. A power-law relationship between the minimum creep rate and applied stress was found to be obeyed for both the base and weld metals. Both the weld metals generally exhibited lower rupture elongation than the respective base metals; however, at 873 K, the 316 SS base and weld metals had similar rupture elongation at identical applied stresses. Comparison of the rupture lives of the two steels to the ASME curves for the expected minimum stress to rupture for 316 SS base and weld metals showed that, for 316L(N) SS, the specifications for maximum allowable stresses based on data for 316 SS could prove overconservative. The influence of nitrogen on the creep deformation and fracture behavior, especially in terms of its modifying the precipitation kinetics, is discussed in light of the microstructural observations. In welds containing δ ferrite, the kinetics of its transformation and the nature of the transformation products control the deformation and fracture behavior. The influence of nitrogen on the δ ferrite transformation behavior and coarsening kinetics is also discussed, on the basis of extensive characterization by metallographic techniques.

  20. Repassivation behavior of 316L stainless steel in borate buffer solution: Kinetics analysis of anodic dissolution and film formation

    NASA Astrophysics Data System (ADS)

    Xu, Haisong; Sun, Dongbai; Yu, Hongying

    2015-12-01

    The repassivation behavior of metals or alloys after oxide film damage determines the development of local corrosion and corrosion resistance. In this work, the repassivation kinetics of 316L stainless steel (316L SS) are investigated in borate buffer solution (pH 9.1) by using the abrading electrode technique. The current densities flowing from bare 316L SS surface are measured by potentiostatic method and analyzed to characterize repassivation kinetics. The initial stages of current decay (t < 500 ms) are discussed according to a film growth model, which describes the initial current transient should be divided into substrate dissolution current and passive film formation current based on Avrami kinetics. Then the two independent components are analyzed individually. The film formation rate and the thickness of film are compared in different applied potential. It is shown that anodic dissolution dominates the repassivation for a short time during the early times, and a higher applied potential will promote the anodic dissolution of metal. The film growth rate increases slightly with increasing in potential. Correspondingly, increase in applied potential from 0 VSCE to 0.8 VSCE results in thicker monolayer, which covers the whole bare surface at the time of θ = 1. The electric field strengths through the thin passive film could reach 3.97 × 106 V cm-1.

  1. Study of the surface roughness evolution in fatigued 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Ye

    life. Scanning Whitelight Interferometric Microscope (SWLI) was applied to quantitatively study the surface roughness evolution of polycrystalline 316L stainless steel fatigue specimen. We demonstrated that the surface roughness increased with fatigue cycles during the entire fatigue process. In addition, we discovered that surface roughness increases at early fatigue stage were contributed by slip band formation while surface roughness increases at later-stage fatigue were due to the out-of-plane displacement of adjacent grains. Crack initiation and development has also been identified.

  2. Compatibility of martensitic/austenitic steel welds with liquid lead bismuth eutectic environment

    NASA Astrophysics Data System (ADS)

    Van den Bosch, J.; Almazouzi, A.

    2009-04-01

    The high-chromium ferritic/martensitic steel T91 and the austenitic stainless steel 316L are to be used in contact with liquid lead-bismuth eutectic (LBE), under high irradiation doses. Both tungsten inert gas (TIG) and electron beam (EB) T91/316L welds have been examined by means of metallography, scanning electron microscopy (SEM-EDX), Vickers hardness measurements and tensile testing both in inert gas and in LBE. Although the T91/316L TIG weld has very good mechanical properties when tested in air, its properties decline sharply when tested in LBE. This degradation in mechanical properties is attributed to the liquid metal embrittlement of the 309 buttering used in TIG welding of T91/316L welds. In contrast to mixed T91/316L TIG welding, the mixed T91/316L EB weld was performed without buttering. The mechanical behaviour of the T91/316L EB weld was very good in air after post weld heat treatment but deteriorated when tested in LBE.

  3. Ion-nitriding of austenitic stainless steels

    SciTech Connect

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-12-31

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors.

  4. Comparative study of mechanical properties of 316L stainless steel between traditional production methods and selective laser melting

    NASA Astrophysics Data System (ADS)

    Lackey, Alton Dale

    Additive manufacturing, also known as 3D printing, is a technology which has recently seen expanding use, as well as expansion of the materials and methods able to be used. This thesis looks at the comparison of mechanical properties of 316L stainless steel manufactured by both traditional methods and selective laser melting found by tensile testing. The traditional method used here involved cold rolled 316L steel being machined to the desired part geometry. Selective laser melting used additive manufacturing to produce the parts from powdered 316L stainless steel, doing so in two different build orientations, flat and on edge with regards to the build plate. Solid test specimens, as well as specimens containing a circular stress concentration in the center of the parts, were manufactured and tensile tested. The tensile tests of the specimens were used to find the mechanical properties of the material; including yield strength, ultimate tensile strength (UTS), and Young's modulus of elasticity; where statistical analyses were performed to determine if the different manufacturing processes caused significant differences in the mechanical properties of the material. These analysis consisting of f-tests, to test for variance, and t-test, testing for significant difference of means. Through this study it was found that there were statistically significant differences existing between the mechanical properties of selective laser melting, and its orientations, and cold roll forming of production of parts. Even with a statistical difference, it was found that the results were reasonably close between flat oriented SLM parts and purchased parts. So it can be concluded that, with regards to strength, SLM methods produce parts similar to traditional production methods.

  5. Development of corrosion-resistant improved Al-doped austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Kondo, Keietsu; Miwa, Yukio; Okubo, Nariaki; Kaji, Yoshiyuki; Tsukada, Takashi

    2011-10-01

    Aluminum-doped type 316L SS (316L/Al) has been developed for the purpose of suppressing the degradation of corrosion resistance induced by irradiation in austenitic stainless steels (SSs). The electrochemical corrosion properties of this material were estimated after Ni-ion irradiation at a temperature range from 330 °C to 550 °C. When irradiated at 550 °C up to 12 dpa, 316L/Al showed high corrosion resistance in the vicinity of grain boundaries (GBs) and in grains, while severe GB etching and local corrosion in grains were observed in irradiated 316L and 316 SS. It is supposed that aluminum enrichment was enhanced by high-temperature irradiation at GBs and in grains, to compensate for lost corrosion resistance induced by chromium depletion.

  6. Improving the Adhesion Resistance of the Boride Coatings to AISI 316L Steel Substrate by Diffusion Annealing

    NASA Astrophysics Data System (ADS)

    Campos-Silva, I.; Bernabé-Molina, S.; Bravo-Bárcenas, D.; Martínez-Trinidad, J.; Rodríguez-Castro, G.; Meneses-Amador, A.

    2016-07-01

    In this study, new results about the practical adhesion resistance of boride coating/substrate system formed at the surface of AISI 316 L steel and improved by means of a diffusion annealing process are presented. First, the boriding of AISI 316 L steel was performed by the powder-pack method at 1173 K with different exposure times (4-8 h). The diffusion annealing process was conducted on the borided steels at 1273 K with 2 h of exposure using a diluent atmosphere of boron powder mixture. The mechanical behavior of the boride coating/substrate system developed by both treatments was established using Vickers and Berkovich tests along the depth of the boride coatings, respectively. Finally, for the entire set of experimental conditions, the scratch tests were performed with a continuously increasing normal force, in which the practical adhesion resistance of the boride coating/substrate system was represented by the critical load. The failure mechanisms developed over the surface of the scratch tracks were analyzed; the FeB-Fe2B/substrate system exhibited an adhesive mode, while the Fe2B/substrate system obtained by the diffusion annealing process showed predominantly a cohesive failure mode.

  7. Improving the Adhesion Resistance of the Boride Coatings to AISI 316L Steel Substrate by Diffusion Annealing

    NASA Astrophysics Data System (ADS)

    Campos-Silva, I.; Bernabé-Molina, S.; Bravo-Bárcenas, D.; Martínez-Trinidad, J.; Rodríguez-Castro, G.; Meneses-Amador, A.

    2016-09-01

    In this study, new results about the practical adhesion resistance of boride coating/substrate system formed at the surface of AISI 316 L steel and improved by means of a diffusion annealing process are presented. First, the boriding of AISI 316 L steel was performed by the powder-pack method at 1173 K with different exposure times (4-8 h). The diffusion annealing process was conducted on the borided steels at 1273 K with 2 h of exposure using a diluent atmosphere of boron powder mixture. The mechanical behavior of the boride coating/substrate system developed by both treatments was established using Vickers and Berkovich tests along the depth of the boride coatings, respectively. Finally, for the entire set of experimental conditions, the scratch tests were performed with a continuously increasing normal force, in which the practical adhesion resistance of the boride coating/substrate system was represented by the critical load. The failure mechanisms developed over the surface of the scratch tracks were analyzed; the FeB-Fe2B/substrate system exhibited an adhesive mode, while the Fe2B/substrate system obtained by the diffusion annealing process showed predominantly a cohesive failure mode.

  8. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    NASA Astrophysics Data System (ADS)

    Al-Hamarneh, Ibrahim; Pedrow, Patrick; Eskhan, Asma; Abu-Lail, Nehal

    2012-10-01

    Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O2 gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kVRMS) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O2 plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  9. Surface modification of 316L stainless steel with magnetron sputtered TiN/VN nanoscale multilayers for bio implant applications.

    PubMed

    Subramanian, B; Ananthakumar, R; Kobayashi, Akira; Jayachandran, M

    2012-02-01

    Nanoscale multilayered TiN/VN coatings were developed by reactive dc magnetron sputtering on 316L stainless steel substrates. The coatings showed a polycrystalline cubic structure with (111) preferential growth. XPS analysis indicated the presence of peaks corresponding to Ti2p, V2p, N1s, O1s, and C1s. Raman spectra exhibited the characteristic peaks in the acoustic range of 160-320 cm(-1) and in the optic range between 480 and 695 cm(-1). Columnar structure of the coatings was observed from TEM analysis. The number of adherent platelets on the surface of the TiN/VN multilayer, VN, TiN single layer coating exhibit fewer aggregation and pseudopodium than on substrates. The wear resistance of the multilayer coatings increases obviously as a result of their high hardness. Tafel plots in simulated bodily fluid showed lower corrosion rate for the TiN/VN nanoscale multilayer coatings compared to single layer and bare 316L SS substrate.

  10. Evaluation of in-pile and out-of-pile stress relaxation in 316L stainless steel under uniaxial loading

    NASA Astrophysics Data System (ADS)

    Kaji, Yoshiyuki; Miwa, Yukio; Tsukada, Takashi; Kikuchi, Masahiko; Kita, Satoshi; Yonekawa, Minoru; Nakano, Junichi; Tsuji, Hirokazu; Nakajima, Hajime

    2002-12-01

    Stress relaxation of tensile type specimens under fast neutron irradiation at 288 °C has been studied for 316L stainless steel (SS) in the Japan Materials Testing Reactor. In-pile stress-relaxation tests were carried out at fast neutron fluence levels of 1.3×10 24, 5.5×10 24 and 1.5×10 25 n/m 2 ( E>1 MeV). These tests were carried out at the applied total strain levels of 0.06%, 0.1%, 0.3% and 0.75%. In order to evaluate the thermal stress-relaxation behavior and to distinguish it from the irradiation induced stress-relaxation behavior, out-of-pile stress-relaxation tests were also performed at 288 °C in air using an electric furnace. This paper describes results of in-pile and out-of-pile stress-relaxation tests on 316L SS tensile specimens. These results are compared with the literature data by Foster et al. [J. Nucl. Mater. 252 (1998) 89] which were mainly obtained from bend beam specimens. Moreover, these experimental results are compared with analytical results obtained using Nagakawa's model [J. Nucl. Mater. 212-215 (1994) 541].

  11. Effects of dissolved oxygen on electrochemical and semiconductor properties of 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Feng, Zhicao; Cheng, Xuequn; Dong, Chaofang; Xu, Lin; Li, Xiaogang

    2010-12-01

    The effects of dissolved oxygen on the electrochemical behavior and semiconductor properties of passive film formed on 316L SS in three solutions with different dissolved oxygen were studied by using polarization curve, Mott-Schottky analysis and the point defect model (PDM). The results show that higher dissolved oxygen accelerates both anodic and cathodic process. Based on Mott-Schottky analysis and PDM, the key parameters for passive film, donor density Nd, flat-band potential Efb and diffusivity of defects D0 were calculated. The results display that Nd(1-7 × 10 27 m -3) and D0(1-18 × 10 -16 cm 2/s) increase and Efb value reduces with the dissolved oxygen in solution.

  12. Effect of Zr, Nb and Ti addition on injection molded 316L stainless steel for bio-applications: Mechanical, electrochemical and biocompatibility properties.

    PubMed

    Gulsoy, H Ozkan; Pazarlioglu, Serdar; Gulsoy, Nagihan; Gundede, Busra; Mutlu, Ozal

    2015-11-01

    The research investigated the effect of Zr, Nb and Ti additions on mechanical, electrochemical properties and biocompatibility of injection molded 316L stainless steel. Addition of elemental powder is promoted to get high performance of sintered 316L stainless steels. The amount of additive powder plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders used with the elemental Zr, Nb and Ti powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperatures. The debinded samples were sintered at 1350°C for 60 min. Mechanical, electrochemical property and biocompatibility of the sintered samples were performed mechanical, electrochemical, SBF immersion tests and cell culture experiments. Results of study showed that sintered 316L and 316L with additives samples exhibited high corrosion properties and biocompatibility in a physiological environment. PMID:26275484

  13. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro.

    PubMed

    Li, Menghua; Yin, Tieying; Wang, Yazhou; Du, Feifei; Zou, Xingzheng; Gregersen, Hans; Wang, Guixue

    2014-10-01

    Adverse effects of nickel ions being released into the living organism have resulted in development of high nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also improves steel properties. The cell cytocompatibility, blood compatibility and cell response of high nitrogen nickel-free austenitic stainless steel were studied in vitro. The mechanical properties and microstructure of this stainless steel were compared to the currently used 316L stainless steel. It was shown that the new steel material had comparable basic mechanical properties to 316L stainless steel and preserved the single austenite organization. The cell toxicity test showed no significant toxic side effects for MC3T3-E1 cells compared to nitinol alloy. Cell adhesion testing showed that the number of MC3T3-E1 cells was more than that on nitinol alloy and the cells grew in good condition. The hemolysis rate was lower than the national standard of 5% without influence on platelets. The total intracellular protein content and ALP activity and quantification of mineralization showed good cell response. We conclude that the high nitrogen nickel-free austenitic stainless steel is a promising new biomedical material for coronary stent development. PMID:25175259

  14. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro.

    PubMed

    Li, Menghua; Yin, Tieying; Wang, Yazhou; Du, Feifei; Zou, Xingzheng; Gregersen, Hans; Wang, Guixue

    2014-10-01

    Adverse effects of nickel ions being released into the living organism have resulted in development of high nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also improves steel properties. The cell cytocompatibility, blood compatibility and cell response of high nitrogen nickel-free austenitic stainless steel were studied in vitro. The mechanical properties and microstructure of this stainless steel were compared to the currently used 316L stainless steel. It was shown that the new steel material had comparable basic mechanical properties to 316L stainless steel and preserved the single austenite organization. The cell toxicity test showed no significant toxic side effects for MC3T3-E1 cells compared to nitinol alloy. Cell adhesion testing showed that the number of MC3T3-E1 cells was more than that on nitinol alloy and the cells grew in good condition. The hemolysis rate was lower than the national standard of 5% without influence on platelets. The total intracellular protein content and ALP activity and quantification of mineralization showed good cell response. We conclude that the high nitrogen nickel-free austenitic stainless steel is a promising new biomedical material for coronary stent development.

  15. Performance Optimization of Cold Rolled Type 316L Stainless Steel by Sand Blasting and Surface Linishing Treatment

    NASA Astrophysics Data System (ADS)

    Krawczyk, B.; Heine, B.; Engelberg, D. L.

    2016-03-01

    Sand blasting followed by a surface linishing treatment was applied to optimize the near-surface microstructure of cold rolled type 316L stainless steel. The introduction of cold rolling led to the formation of α-martensite. Specimens with large thickness reductions (40, 53%) were more susceptible to localized corrosion. The application of sand blasting produced a near-surface deformation layer containing compressive residual stresses with significantly increased surface roughness, resulting in reduced corrosion resistance. The most resistant microstructure was obtained with the application of a final linishing treatment after sand blasting. This treatment produced microstructures with compressive near-surface residual stresses, reduced surface roughness, and increased resistance to localized corrosion.

  16. CORROSION STUDY FOR THE EFFLUENT TREATMENT FACILITY (ETF) CHROME (VI) REDUCTANT SOLUTION USING 304 & 316L STAINLESS STEEL

    SciTech Connect

    DUNCAN, J.B.

    2007-06-27

    The Effluent Treatment Facility has developed a method to regenerate spent resin from the groundwater pump and treat intercepting chrome(VI) plumes (RPP-RPT-32207, Laboratory Study on Regeneration of Spent DOWEX 21K 16-20 Mesh Ion Exchange Resin). Subsequent laboratory studies have shown that the chrome(VI) may be reduced to chrome(III) by titrating with sodium metabisulfite to an oxidation reduction potential (ORP) of +280 mV at a pH of 2. This test plan describes the use of cyclic potentiodynamic polarization and linear polarization techniques to ascertain the electrochemical corrosion and pitting propensity of the 304 and 316L stainless steel in the acidified reducing the solution that will be contained in either the secondary waste receiver tank or concentrate tank.

  17. Laser surface alloying of 316L stainless steel coated with a bioactive hydroxyapatite-titanium oxide composite.

    PubMed

    Ghaith, El-Sayed; Hodgson, Simon; Sharp, Martin

    2015-02-01

    Laser surface alloying is a powerful technique for improving the mechanical and chemical properties of engineering components. In this study, laser surface irradiation process employed in the surface modification off 316L stainless steel substrate using hydroxyapatite-titanium oxide to provide a composite ceramic layer for the suitability of applying this technology to improve the biocompatibility of medical alloys and implants. Fusion of the metal surface incorporating hydroxyapatite-titania ceramic particles using a 30 W Nd:YAG laser at different laser powers, 40, 50 and 70% power and a scan speed of 40 mm s(-1) was observed to adopt the optimum condition of ceramic deposition. Coatings were evaluated in terms of microstructure, surface morphology, composition biocompatibility using XRD, ATR-FTIR, SEM and EDS. Evaluation of the in vitro bioactivity by soaking the treated metal in SBF for 10 days showed the deposition of biomimetic apatite.

  18. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel.

    PubMed

    Bagherifard, Sara; Hickey, Daniel J; de Luca, Alba C; Malheiro, Vera N; Markaki, Athina E; Guagliano, Mario; Webster, Thomas J

    2015-12-01

    Substrate grain structure and topography play major roles in mediating cell and bacteria activities. Severe plastic deformation techniques, known as efficient metal-forming and grain refining processes, provide the treated material with novel mechanical properties and can be adopted to modify nanoscale surface characteristics, possibly affecting interactions with the biological environment. This in vitro study evaluates the capability of severe shot peening, based on severe plastic deformation, to modulate the interactions of nanocrystallized metallic biomaterials with cells and bacteria. The treated 316L stainless steel surfaces were first investigated in terms of surface topography, grain size, hardness, wettability and residual stresses. The effects of the induced surface modifications were then separately studied in terms of cell morphology, adhesion and proliferation of primary human osteoblasts (bone forming cells) as well as the adhesion of multiple bacteria strains, specifically Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and ampicillin-resistant Escherichia coli. The results indicated a significant enhancement in surface work hardening and compressive residual stresses, maintenance of osteoblast adhesion and proliferation as well as a remarkable decrease in the adhesion and growth of gram-positive bacteria (S. aureus and S. epidermidis) compared to non-treated and conventionally shot peened samples. Impressively, the decrease in bacteria adhesion and growth was achieved without the use of antibiotics, for which bacteria can develop a resistance towards anyway. By slightly grinding the surface of severe shot peened samples to remove differences in nanoscale surface roughness, the effects of varying substrate grain size were separated from those of varying surface roughness. The expression of vinculin focal adhesions from osteoblasts was found to be singularly and inversely related to grain size, whereas the attachment of gram

  19. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel.

    PubMed

    Bagherifard, Sara; Hickey, Daniel J; de Luca, Alba C; Malheiro, Vera N; Markaki, Athina E; Guagliano, Mario; Webster, Thomas J

    2015-12-01

    Substrate grain structure and topography play major roles in mediating cell and bacteria activities. Severe plastic deformation techniques, known as efficient metal-forming and grain refining processes, provide the treated material with novel mechanical properties and can be adopted to modify nanoscale surface characteristics, possibly affecting interactions with the biological environment. This in vitro study evaluates the capability of severe shot peening, based on severe plastic deformation, to modulate the interactions of nanocrystallized metallic biomaterials with cells and bacteria. The treated 316L stainless steel surfaces were first investigated in terms of surface topography, grain size, hardness, wettability and residual stresses. The effects of the induced surface modifications were then separately studied in terms of cell morphology, adhesion and proliferation of primary human osteoblasts (bone forming cells) as well as the adhesion of multiple bacteria strains, specifically Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and ampicillin-resistant Escherichia coli. The results indicated a significant enhancement in surface work hardening and compressive residual stresses, maintenance of osteoblast adhesion and proliferation as well as a remarkable decrease in the adhesion and growth of gram-positive bacteria (S. aureus and S. epidermidis) compared to non-treated and conventionally shot peened samples. Impressively, the decrease in bacteria adhesion and growth was achieved without the use of antibiotics, for which bacteria can develop a resistance towards anyway. By slightly grinding the surface of severe shot peened samples to remove differences in nanoscale surface roughness, the effects of varying substrate grain size were separated from those of varying surface roughness. The expression of vinculin focal adhesions from osteoblasts was found to be singularly and inversely related to grain size, whereas the attachment of gram

  20. Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment

    NASA Astrophysics Data System (ADS)

    Zhang, Litao; Wang, Jianqiu

    2014-03-01

    Stress corrosion crack growth tests of a cold worked nuclear grade 316L stainless steel were conducted in simulated pressurized water reactor (PWR) primary water environment containing various dissolved oxygen (DO) contents but no dissolved hydrogen. The crack growth rate (CGR) increased with increasing DO content in the simulated PWR primary water. The fracture surface exhibited typical intergranular stress corrosion cracking (IGSCC) characteristics.

  1. Radiation-induced stress relaxation in high temperature water of type 316L stainless steel evaluated by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Ishiyama, Y.; Rogge, R. B.; Obata, M.

    2011-01-01

    Weld beads on plate specimens made of type 316L stainless steel were neutron-irradiated up to about 2.5 × 10 25 n/m 2 ( E > 1 MeV) at 561 K in the Japan Material Testing Reactor (JMTR). Residual stresses of the specimens were measured by the neutron diffraction method, and the radiation-induced stress relaxation was evaluated. The values of σ x residual stress (transverse to the weld bead) and σ y residual stress (longitudinal to the weld bead) decreased with increasing neutron dose. The tendency of the stress relaxation was almost the same as previously published data, which were obtained for type 304 stainless steel. From this result, it was considered that there was no steel type dependence on radiation-induced stress relaxation. The neutron irradiation dose dependence of the stress relaxation was examined using an equation derived from the irradiation creep equation. The coefficient of the stress relaxation equation was obtained, and the value was 1.4 (×10 -6/MPa/dpa). This value was smaller than that of nickel alloy.

  2. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate

    NASA Astrophysics Data System (ADS)

    Latifi, Afrooz; Imani, Mohammad; Khorasani, Mohammad Taghi; Daliri Joupari, Morteza

    2014-11-01

    Stainless steel 316L is one of the most widely used materials for fabricating of biomedical devices hence, improving its surface properties is still of great interest and challenging in biomaterial sciences. Plasma oxidation, in comparison to the conventional chemical or mechanical methods, is one of the most efficient methods recently used for surface treatment of biomaterials. Here, stainless steel specimens were surface oxidized by radio-frequency plasma irradiation operating at 34 MHz under pure oxygen atmosphere. Surface chemical composition of the samples was significantly changed after plasma oxidation by appearance of the chromium and iron oxides on the plasma-oxidized surface. A wettable surface, possessing high surface energy (83.19 mN m-1), was observed after plasma oxidation. Upon completion of the surface modification process, silicone rubber was spray coated on the plasma-treated stainless steel surface. Morphology of the silicone rubber coating was investigated by scanning electron microscopy (SEM). A uniform coating was formed on the oxidized surface with no delamination at polymer-metal interface. Pull-off tests showed the lowest adhesion strength of coating to substrate (0.12 MPa) for untreated specimens and the highest (0.89 MPa) for plasma-oxidized ones.

  3. Biofilm initiation and growth of Pseudomonas aeruginosa on 316L stainless steel in low gravity in orbital space flight

    NASA Astrophysics Data System (ADS)

    Todd, Paul; Pierson, Duane L.; Allen, Britt; Silverstein, JoAnn

    The formation of biofilms by water microorganisms such as Pseudomonas aeruginosa in spacecraft water systems has been a matter of concern for long-duration space flight. Crewed spacecraft plumbing includes internal surfaces made of 316L stainless steel. Experiments were therefore undertaken to compare the ability of P. aeruginosa to grow in suspension, attach to stainless steel and to grow on stainless steel in low gravity on the space shuttle. Four categories of cultures were studied during two space shuttle flights (STS-69 and STS-77). Cultures on the ground were held in static horizontal or vertical cylindrical containers or were tumbled on a clinostat and activated under conditions identical to those for the flown cultures. The containers used on the ground and in flight were BioServe Space Technologies’ Fluid Processing Apparatus (FPA), an open-ended test tube with rubber septa that allows robotic addition of bacteria to culture media to initiate experiments and the addition of fixative to conclude experiments. Planktonic growth was monitored by spectrophotometry, and biofilms were characterized quantitatively by epifluorescence and scanning electron microscopy. In these experiments it was found that: (1) Planktonic growth in flown cultures was more extensive than in static cultures, as seen repeatedly in the history of space microbiology, and closely resembled the growth of tumbled cultures. (2) Conversely, the attachment of cells in flown cultures was as much as 8 times that in tumbled cultures but not significantly different from that in static horizontal and vertical cultures, consistent with the notion that flowing fluid reduces microbial attachment. (3) The final surface coverage in 8 days was the same for flown and static cultures but less by a factor of 15 in tumbled cultures, where coverage declined during the preceding 4 days. It is concluded that cell attachment to 316L stainless steel in the low gravity of orbital space flight is similar to that

  4. On the corrosion resistance of AISI 316L-type stainless steel coated with manganese and annealed with flow of oxygen

    NASA Astrophysics Data System (ADS)

    Savaloni, Hadi; Agha-Taheri, Ensieh; Abdi, Fateme

    2016-06-01

    AISI 316L-type stainless steel was coated with 300-nm-thick Mn thin films and post-annealed at 673 K with a constant flow of oxygen (250 cm3/min). The films crystallographic and morphological structures were analyzed using X-ray diffraction (XRD) and atomic force microscopy (AFM) before corrosion test and scanning electron microscopy (SEM) after corrosion test. Corrosion behavior of the samples in 0.3, 0.5 and 0.6 M NaCl solutions was investigated by means of potentiodynamic and electrochemical impedance spectroscopy (EIS) techniques. Results showed that the corrosion inhibition of annealed Mn/SS316L in all NaCl solutions with different concentrations is higher than that of bare SS316L. A correlation is achieved between the structural variation of the films with the potentiodynamic and EIS corrosion results.

  5. Surface modification of investment cast-316L implants: microstructure effects.

    PubMed

    El-Hadad, Shimaa; Khalifa, Waleed; Nofal, Adel

    2015-03-01

    Artificial femur stem of 316L stainless steel was fabricated by investment casting using vacuum induction melting. Different surface treatments: mechanical polishing, thermal oxidation and immersion in alkaline solution were applied. Thicker hydroxyapatite (HAP) layer was formed in the furnace-oxidized samples as compared to the mechanically polished ones. The alkaline treatment enhanced the precipitation of HAP on the samples. It was also observed that the HAP precipitation responded differently to the different phases of the microstructure. The austenite phase was observed to have more homogeneous and smoother layer of HAP. In addition, the growth of HAP was sometimes favored on the austenite phase rather than on ferrite phase.

  6. Effect of thermal treatment on the corrosion resistance of Type 316L stainless steel exposed in supercritical water

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Zheng, W.; Guzonas, D. A.; Cook, W. G.; Kish, J. R.

    2015-09-01

    There are still unknown aspects about the growth mechanism of oxide scales formed on candidate stainless steel fuel cladding materials during exposure in supercritical water (SCW) under the conditions relevant to the Canadian supercritical water-cooled reactor (SCWR). The tendency for intermetallic precipitates to form within the grains and on grain boundaries during prolonged exposure at high temperatures represents an unknown factor to corrosion resistance, since they tend to bind alloyed Cr. The objective of this study was to better understand the extent to which intermetallic precipitates affects the mode and extent of corrosion in SCW. Type 316L stainless steel, used as a model Fe-Cr-Ni-Mo alloy, was exposed to 25 MPa SCW at 550 °C for 500 h in a static autoclave for this purpose. Mechanically-abraded samples were tested in the mill-annealed (MA) and a thermally-treated (TT) condition. The thermal treatment was conducted at 815 °C for 1000 h to precipitate the carbide (M23C6), chi (χ), laves (η) and sigma (σ) phases. It was found that although relatively large intermetallic precipitates formed at the scale/alloy interface locally affected the oxide scale formation, their discontinuous formation did not affect the short-term overall apparent corrosion resistance.

  7. MC3T3-E1 cell response to stainless steel 316L with different surface treatments.

    PubMed

    Zhang, Hongyu; Han, Jianmin; Sun, Yulong; Huang, Yongling; Zhou, Ming

    2015-11-01

    In the present study, stainless steel 316L samples with polishing, aluminum oxide blasting, and hydroxyapatite (HA) coating were prepared and characterized through a scanning electron microscope (SEM), optical interferometer (surface roughness, Sq), contact angle, surface composition and phase composition analyses. Osteoblast-like MC3T3-E1 cell adhesion on the samples was investigated by cell morphology using a SEM (4h, 1d, 3d, 7d), and cell proliferation was assessed by MTT method at 1d, 3d, and 7d. In addition, adsorption of bovine serum albumin on the samples was evaluated at 1h. The polished sample was smooth (Sq: 1.8nm), and the blasted and HA coated samples were much rougher (Sq: 3.2μm and 7.8μm). Within 1d of incubation, the HA coated samples showed the best cell morphology (e.g., flattened shape and complete spread), but there was no significant difference after 3d and 7d of incubation for all the samples. The absorbance value for the HA coated samples was the highest after 1d and 3d of incubation, indicating better cell viability. However, it reduced to the lowest value at 7d. Protein adsorption on the HA coated samples was the highest at 1h. The results indicate that rough stainless steel surface improves cell adhesion and morphology, and HA coating contributes to superior cell adhesion, but inhibits cell proliferation.

  8. Effects of a Hydrogen Gas Environment on Fatigue Crack Growth of a Stable Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kawamoto, Kyohei; Oda, Yasuji; Noguchi, Hiroshi; Higashida, Kenji

    In order to clarify the effects of a hydrogen gas environment on the fatigue crack growth characteristics of stable austenitic stainless steels, bending fatigue tests were carried out in a hydrogen gas, in a nitrogen gas at 1.0 MPa and in air on a SUS316L using the Japanese Industrial Standards (type 316L). Also, in order to discuss the difference in the hydrogen sensitivity between austenitic stainless steels, the fatigue tests were also carried out on a SUS304 using the Japanese Industrial Standards (type 304) metastable austenitic stainless steel as a material for comparison. The main results obtained are as follows. Hydrogen gas accelerates the fatigue crack growth rate of type 316L. The degree of the fatigue crack growth acceleration is low compared to that in type 304. The fracture surfaces of both the materials practically consist of two parts; the faceted area seemed to be brittle and the remaining area occupying a greater part of the fracture surface and seemed to be ductile. The faceted area does not significantly contribute to the fatigue crack growth rate in both austenitic stainless steels. The slip-off mechanism seems to be valid not only in air and in nitrogen, but also in hydrogen. Also, the main cause of the fatigue crack growth acceleration of both materials occurs by variation of the slip behaviour. The difference in the degree of the acceleration, which in type 316L is lower than in type 304, seems to be caused by the difference in the stability of the γ phase.

  9. Investigation of corrosion of welded joints of austenitic and duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Topolska, S.

    2016-08-01

    Investigation of corrosion resistance of materials is one of the most important tests that allow determining their functional properties. Among these tests the special group consist electrochemical investigations, which let to accelerate the course of the process. These investigations allow rapidly estimating corrosion processes occurring in metal elements under the influence of the analysed environment. In the paper are presented results of investigations of the resistance to pitting corrosion of the steel of next grades: austenitic 316L and duplex 2205. It was also analysed the corrosion resistance of welded joints of these grades of steel. The investigations were conducted in two different corrosion environments: in the neutral one (3.5 % sodium chloride) and in the aggressive one (0.1 M sulphuric acid VI). The obtained results indicate different resistance of analysed grades of steel and their welded joints in relation to the corrosion environment. The austenitic 316L steel characterizes by the higher resistance to the pitting corrosion in the aggressive environment then the duplex 2205 steel. In the paper are presented results of potentiodynamic tests. They showed that all the specimens are less resistant to pitting corrosion in the environment of sulphuric acid (VI) than in the sodium chloride one. The 2205 steel has higher corrosion resistance than the 316L stainless steel in 3.5% NaCl. On the other hand, in 0.1 M H2SO4, the 316L steel has a higher corrosion resistance than the 2205 one. The weld has a similar, very good resistance to pitting corrosion like both steels.

  10. An EBSD investigation on flow localization and microstructure evolution of 316L stainless steel for Gen IV reactor applications

    NASA Astrophysics Data System (ADS)

    Wu, Xianglin; Pan, Xiao; Mabon, James C.; Li, Meimei; Stubbins, James F.

    2007-09-01

    Type 316L stainless steel has been selected as a candidate structural material in a series of current accelerator driven systems and Generation IV reactor conceptual designs. The material is sensitive to irradiation damage in the temperature range of 150-400 °C: even low levels of irradiation exposure, as small as 0.1 dpa, can cause severe loss of ductility during tensile loading. This process, where the plastic flow becomes highly localized resulting in extremely low overall ductility, is referred as flow localization. The process controlling this confined flow is related to the difference between the yield and ultimate tensile strengths such that large irradiation-induced increases in the yield strength result in very limited plastic flow leading to necking after very small levels of uniform elongation. In this study, the microstructural evolution controlling flow localization is examined. It is found that twinning is an important deformation mechanism at lower temperatures since it promotes the strain hardening process. At higher temperatures, twinning becomes energetically impossible since the activation of twinning is determined by the critical twinning stress, which increases rapidly with temperature. Mechanical twinning and dislocation-based planar slip are competing mechanisms for plastic deformation.

  11. Electrochemical and In Vitro Behavior of Nanostructure Sol-Gel Coated 316L Stainless Steel Incorporated with Rosemary Extract

    NASA Astrophysics Data System (ADS)

    Motalebi, Abolfazl; Nasr-Esfahani, Mojtaba

    2013-06-01

    The corrosion resistance of AISI 316L stainless steel for biomedical applications, was significantly enhanced by means of hybrid organic-inorganic sol-gel thin films deposited by spin-coating. Thin films of less than 100 nm with different hybrid characters were obtained by incorporating rosemary extract as green corrosion inhibitor. The morphology, composition, and adhesion of hybrid sol-gel coatings have been examined by SEM, EDX, and pull-off test, respectively. Addition of high additive concentrations (0.1%) did not disorganize the sol-gel network. Direct pull-off test recorded a mean coating-substrate bonding strength larger than 21.2 MPa for the hybrid sol-gel coating. The effect of rosemary extract, with various added concentrations from 0.012 to 0.1%, on the anticorrosion properties of sol-gel films have been characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in simulated body fluid (SBF) solution and has been compared to the bare metal. Rosemary extract additions (0.05%) have significantly increased the corrosion protection of the sol-gel thin film to higher than 90%. The in vitro bioactivity of prepared films indicates that hydroxyapatite nuclei can form and grow on the surface of the doped sol-gel thin films. The present study shows that due to their excellent anticorrosion properties, bioactivity and bonding strength to substrate, doped sol-gel thin films are practical hybrid films in biomedical applications.

  12. Influence of the 316 L stainless steel interface on the stability and barrier properties of plasma fluorocarbon films.

    PubMed

    Lewis, François; Cloutier, Maxime; Chevallier, Pascale; Turgeon, Stéphane; Pireaux, Jean-Jacques; Tatoulian, Michael; Mantovani, Diego

    2011-07-01

    Coatings are known to be one of the more suited strategies to tailor the interface between medical devices and the surrounding cells and tissues once implanted. The development of coatings and the optimization of their adhesion and stability are of major importance. In this work, the influence of plasma etching of the substrate on a plasma fluorocarbon ultrathin coating has been investigated with the aim of improving the stability and the corrosion properties of coated medical devices. The 316 L stainless steel interface was subjected to two different etching sequences prior to the plasma deposition. These plasma etchings, with H(2) and C(2)F(6) as gas precursors, modified the chemical composition and the thickness of the oxide layer and influenced the subsequent polymerization. The coating properties were evaluated using flat substrates submitted to deformation, aging into aqueous medium and corrosion tests. X-ray photoelectron spectroscopy (XPS), time of flight-secondary ion mass spectrometry (ToF-SIMS), ellipsometry, and atomic force microscopy (AFM) were performed to determine the effects of the deformation and the aging on the chemistry and morphology of the coated samples. Analyses showed that plasma etchings were essential to promote reproducible polymerization and film growth. However, the oxide layer thinning due to the etching lowered the corrosion resistance of the substrate and affected the stability of the interface. Still, the deformed samples did not exhibited adhesion and cohesion failure before and after the aging.

  13. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.

    PubMed

    Huang, Qiaoling; Yang, Yun; Hu, Ronggang; Lin, Changjian; Sun, Lan; Vogler, Erwin A

    2015-01-01

    Superhydrophilic and superhydrophobic TiO2 nanotube (TNT) arrays were fabricated on 316L stainless steel (SS) to improve corrosion resistance and hemocompatibility of SS. Vertically-aligned superhydrophilic amorphous TNTs were fabricated on SS by electrochemical anodization of Ti films deposited on SS. Calcination was carried out to induce anatase phase (superhydrophilic), and fluorosilanization was used to convert superhydrophilicity to superhydrophobicity. The morphology, structure and surface wettability of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and contact angle goniometry. The effects of surface wettability on corrosion resistance and platelet adhesion were investigated. The results showed that crystalline phase (anatase vs. amorphous) and wettability strongly affected corrosion resistance and platelet adhesion. The superhydrophilic amorphous TNTs failed to protect SS from corrosion whereas superhydrophobic amorphous TNTs slightly improved corrosion resistance of SS. Both superhydrophilic and superhydrophobic anatase TNTs significantly improved corrosion resistance of SS. The superhydrophilic amorphous TNTs minimized platelet adhesion and activation whereas superhydrophilic anatase TNTs activated the formation of fibrin network. On the contrary, both superhydrophobic TNTs (superhydrophobic amorphous TNTs and superhydrophobic anatase TNTs) reduced platelet adhesion significantly and improved corrosion resistance regardless of crystalline phase. Superhydrophobic anatase TNTs coating on SS surface offers the opportunity for the application of SS as a promising permanent biomaterial in blood contacting biomedical devices, where both reducing platelets adhesion/activation and improving corrosion resistance can be effectively combined. PMID:25481855

  14. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.

    PubMed

    Huang, Qiaoling; Yang, Yun; Hu, Ronggang; Lin, Changjian; Sun, Lan; Vogler, Erwin A

    2015-01-01

    Superhydrophilic and superhydrophobic TiO2 nanotube (TNT) arrays were fabricated on 316L stainless steel (SS) to improve corrosion resistance and hemocompatibility of SS. Vertically-aligned superhydrophilic amorphous TNTs were fabricated on SS by electrochemical anodization of Ti films deposited on SS. Calcination was carried out to induce anatase phase (superhydrophilic), and fluorosilanization was used to convert superhydrophilicity to superhydrophobicity. The morphology, structure and surface wettability of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and contact angle goniometry. The effects of surface wettability on corrosion resistance and platelet adhesion were investigated. The results showed that crystalline phase (anatase vs. amorphous) and wettability strongly affected corrosion resistance and platelet adhesion. The superhydrophilic amorphous TNTs failed to protect SS from corrosion whereas superhydrophobic amorphous TNTs slightly improved corrosion resistance of SS. Both superhydrophilic and superhydrophobic anatase TNTs significantly improved corrosion resistance of SS. The superhydrophilic amorphous TNTs minimized platelet adhesion and activation whereas superhydrophilic anatase TNTs activated the formation of fibrin network. On the contrary, both superhydrophobic TNTs (superhydrophobic amorphous TNTs and superhydrophobic anatase TNTs) reduced platelet adhesion significantly and improved corrosion resistance regardless of crystalline phase. Superhydrophobic anatase TNTs coating on SS surface offers the opportunity for the application of SS as a promising permanent biomaterial in blood contacting biomedical devices, where both reducing platelets adhesion/activation and improving corrosion resistance can be effectively combined.

  15. Residual stress in nano-structured stainless steel (AISI 316L) prompted by Xe+ ion bombardment at different impinging angles

    NASA Astrophysics Data System (ADS)

    Cucatti, S.; Droppa, R.; Figueroa, C. A.; Klaus, M.; Genzel, Ch.; Alvarez, F.

    2016-10-01

    The effect of low energy (<1 keV) xenon (Xe+) ion bombardment on the residual stress of polycrystalline iron alloy (AISI 316L steel) is reported. The results take into account the influence of the ion incident angle maintaining constant all other bombarding parameters (i.e., ion energy and current density, temperature, and doses). The bombarded surface topography shows that ions prompt the formation of nanometric regular patterns on the surface crystalline grains and stressing the structure. The paper focalizes on the study of the surface residual stress state stemming from the ion bombardment studied by means of the "sin2 ψ" and "Universal Plot" methods. The analysis shows the absence of shear stress in the affected material region and the presence of compressive in-plane residual biaxial stress (˜200 MPa) expanding up to ˜1 μm depth for all the studied samples. Samples under oblique bombardment present higher compressive stress values in the direction of the projected ion beam on the bombarded surface. The absolute value of the biaxial surface stress difference (σ11-σ22) increases on ion impinging angles, a phenomenon associated with the momentum transfer by the ions. The highest stress level was measured for ion impinging angles of 45° ( σ 11 = -380 ± 10 MPa and σ 22 = -320 ± 10 MPa). The different stresses obtained in the studied samples do not affect significantly the formation of characteristic surface patterns.

  16. Study on cerium-doped nano-TiO2 coatings for corrosion protection of 316 L stainless steel

    NASA Astrophysics Data System (ADS)

    Li, Suning; Wang, Qian; Chen, Tao; Zhou, Zhihua; Wang, Ying; Fu, Jiajun

    2012-04-01

    Many methods have been reported on improving the photogenerated cathodic protection of nano-TiO2 coatings for metals. In this work, nano-TiO2 coatings doped with cerium nitrate have been developed by sol-gel method for corrosion protection of 316 L stainless steel. Surface morphology, structure, and properties of the prepared coatings were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The corrosion protection performance of the prepared coatings was evaluated in 3 wt% NaCl solution by using electrochemical techniques in the presence and absence of simulated sunlight illumination. The results indicated that the 1.2% Ce-TiO2 coating with three layers exhibited an excellent photogenerated cathodic protection under illumination attributed to the higher separation efficiency of electron-hole pairs and higher photoelectric conversion efficiency. The results also showed that after doping with an appropriate concentration of cerium nitrate, the anti-corrosion performance of the TiO2 coating was improved even without irradiation due to the self-healing property of cerium ions.

  17. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility.

    PubMed

    Yang, Zhilu; Wang, Jin; Luo, Rifang; Maitz, Manfred F; Jing, Fengjuan; Sun, Hong; Huang, Nan

    2010-03-01

    For an improved hemocompatibility of 316L stainless steel (SS), we develop a facile and effective approach to fabricating a pulsed-plasma polymeric allylamine (P-PPAm) film that possesses a high cross-linking degree and a high density of amine groups, which is used for subsequent bonding of heparin. The P-PPAm film as a stent coating shows good resistance to the deformation behavior of compression and expansion of a stent. Using deionized water as an aging medium, it is demonstrated that the heparin-immobilized P-PPAm (Hep-P-PPAm) surface has a good retention of heparin. The systematic in vitro hemocompatibility evaluation reveals lower platelet adhesion, platelet activation and fibrinogen activation on the Hep-P-PPAm surface, and the activated partial thromboplastin time prolongs for about 15 s compared with 316L SS. The P-PPAm surface significantly promotes adhesion and proliferation of endothelial cells (ECs). For the Hep-P-PPAm, although EC adhesion and proliferation is slightly suppressed initially, after cultivation for 3 days, the growth behavior of ECs is remarkably improved over 316L SS. In vivo results indicate that the Hep-P-PPAm surface successfully restrain thrombus formation by growing a homogeneous and intact shuttle-like endothelium on its surface. The Hep-P-PPAm modified 316L SS shows a promising application for vascular devices.

  18. A Study on the Effects of the Use of Gas or Water Atomized AISI 316L Steel Powder on the Corrosion Resistance of Laser Deposited Material

    NASA Astrophysics Data System (ADS)

    Tobar, M. J.; Amado, J. M.; Montero, J.; Yáñez, A.

    Water atomized and gas atomized powders are commonly used in 3D laser manufacturing. Both types of AISI 316L stainless steel powders are available which differ in their manganese content. This is due to specific procedures related to the two different atomization process. The amount of manganese in the laser processed part might have important implications in its corrosion resistance. It could lead to the formation of manganese sulfides (MnS) which are known to be initiation sites for pitting corrosion. In this work, corrosion performance of laser deposited 316L steel using gas and atomized powders is compared by means of potentiodynamic polarization tests in 0.35%wt. NaCL solution. Worse performance of the gas atomized samples is observed as with respect to the water atomized ones in terms of polarization resistance, corrosion rate and pitting susceptibility.

  19. The structural and bio-corrosion barrier performance of Mg-substituted fluorapatite coating on 316L stainless steel human body implant

    NASA Astrophysics Data System (ADS)

    Sharifnabi, A.; Fathi, M. H.; Eftekhari Yekta, B.; Hossainalipour, M.

    2014-01-01

    In this study, Mg-substituted fluorapatite coatings were deposited on medical grade AISI 316L stainless steel via sol-gel dip coating method. Phase composition, crystallite size and degree of crystallinity of the obtained coatings were evaluated by X-ray diffraction (XRD) analysis. Fourier transform infrared (FTIR) spectroscopy was also used to evaluate functional groups of the obtained coatings. The surface morphology and cross-section of the final coatings were studied using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy was used to determine elemental chemical composition of the obtained coatings. In order to determine and compare the corrosion behavior of uncoated and Mg-substituted fluorapatite coated 316L stainless steel, electrochemical potentiodynamic polarization tests were performed in physiological solutions at 37 ± 1 °C. Moreover, the released metallic ions from uncoated and coated substrates were measured by inductively coupled plasma-optical emission spectrometry (ICP-OES) within 2 months of immersing in Ringer's solution at 36.5 ± 1 °C as an indication of biocompatibility. The results showed that fluoride and magnesium were successfully incorporated into apatite lattice structure and the prepared coatings were nanostructured with crystallinity of about 70%. Obtained coatings were totally crack-free and uniform and led to decrease in corrosion current densities of 316L stainless steel in physiological solutions. In addition, coated sample released much less ions such as Fe, Cr and Ni in physiological media. Therefore, it was concluded that Mg-substituted fluorapatite coatings could improve the corrosion resistance and biocompatibility of 316L stainless steel human body implants.

  20. Comparative MRI compatibility of 316 L stainless steel alloy and nickel-titanium alloy stents.

    PubMed

    Holton, Andrea; Walsh, Edward; Anayiotos, Andreas; Pohost, Gerald; Venugopalan, Ramakrishna

    2002-01-01

    The initial success of coronary stenting is leading to a proliferation in peripheral stenting. A significant portion of the stents used in a clinical setting are made of 316 low carbon stainless steel (SS). Other alloys that have been used for stent manufacture include tantalum, MP35N, and nickel-titanium (NiTi). The ferromagnetic properties of SS cause the production of artifacts in magnetic resonance imaging (MRI). The NiTi alloys, in addition to being known for their shape memory or superelastic properties, have been shown to exhibit reduced interference in MRI. Thus, the objective of this study was to determine the comparative MRI compatibility of SS and NiTi stents. Both gradient echo and spin-echo images were obtained at 1.5 and 4.1 T field strengths. The imaging of stents of identical geometry but differing compositions permitted the quantification of artifacts produced due to device composition by normalizing the radio frequency shielding effects. These images were analyzed for magnitude and spatial extent of signal loss within the lumen and outside the stent. B1 mapping was used to quantify the attenuation throughout the image. The SS stent caused significant signal loss and did not allow for visibility of the lumen. However, the NiTi stent caused only minor artifacting and even allowed for visualization of the signal from within the lumen. In addition, adjustments to the flip angle of standard imaging protocols were shown to improve the quality of signal from within the lumen. PMID:12549230

  1. Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Zhao, Jinlong; Xu, Dake; Shahzad, M. Babar; Kang, Qiang; Sun, Ying; Sun, Ziqing; Zhang, Shuyuan; Ren, Ling; Yang, Chunguang; Yang, Ke

    2016-11-01

    The resistance for pitting corrosion, passive film stability and antibacterial performance of 316L-Cu SS passivated by nitric acid solution containing certain concentration of copper sulfate, were studied by electrochemical cyclic polarization, electrochemical impedance spectroscopy (EIS) and co-culture with bacteria. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Cu2+ ions release from 316L-Cu SS surface. XPS analysis proved that the enrichment of CuO, Cr2O3 and Cr(OH)3 on the surface of specimen could simultaneously guarantee a better corrosion resistance and stable antibacterial properties. The biocompatibility evaluation determined by RTCA assay also indicated that the 316L-Cu SS after antibacterial passivation was completely biocompatible.

  2. Effect of Surface Condition and Heat Treatment on Corrosion of Type 316L Stainless Steel in a Mercury Thermal Convection Loop

    SciTech Connect

    Pawel, S J

    2001-09-25

    Two thermal convection loops (TCLs) fabricated from 316L stainless steel and containing mercury and a variety of 316L coupons representing variable surface conditions and heat treatments have been operated continuously for 2000 h. Surface conditions included surface ground, polished, gold-coated, chemically etched, bombarded with Fe to simulate radiation damage, and oxidized. Heat treatments included solution treated, welded, and sensitized. In addition, a nitrogen doped 316L material, termed 316LN, was also examined in the solution treated condition. Duplicate TCLs were operated in this experiment--both were operated with a 305 C peak temperature, a 65 C temperature gradient, and mercury velocity of 1.2 m/min--but only one included a 36 h soak in Hg at 310 C just prior to operation to encourage wetting. Results indicate that the soak in Hg at 310 C had no lasting effect on wetting or compatibility with Hg. Further, based on examination of post-test wetting and coupon weight loss, only the gold-coated surfaces revealed significant interaction with Hg. In areas wetted significantly by Hg, the extreme surface of the stainless steel (ca 10 {micro}m) was depleted in Ni and Cr compared to the bulk composition.

  3. Effect of Surface Condition and Heat Treatment on Corrosion of Type 316L Stainless Steel in a Mercury Thermal Convection Loop

    SciTech Connect

    Pawel, S.J.

    2000-10-17

    Two thermal convection loops (TCLs) fabricated from 316L stainless steel and containing mercury and a variety of 316L coupons representing variable surface conditions and heat treatments have been operated continuously for 2000 h. Surface conditions included surface ground, polished, gold-coated, chemically etched, bombarded with Fe to simulate radiation damage, and oxidized. Heat treatments included solution treated, welded, and sensitized. In addition, a nitrogen doped 316L material, termed 316LN, was also examined in the solution treated condition. Duplicate TCLs were operated in this experiment--both were operated with a 305 C peak temperature, a 65 C temperature gradient, and mercury velocity of 1.2 m/min--but only one included a 36 h soak in Hg at 310 C just prior to operation to encourage wetting. Results indicate that the soak in Hg at 310 C had no lasting effect on wetting or compatibility with Hg. Further, based on examination of post-test wetting and coupon weight loss, only the gold-coated surfaces revealed significant interaction with Hg. In areas wetted significantly by Hg, the extreme surface of the stainless steel (ca 10 {micro}m) was depleted in Ni and Cr compared to the bulk composition.

  4. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels.

  5. Multilayered Zr-C/a-C film on stainless steel 316L as bipolar plates for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Bi, Feifei; Peng, Linfa; Yi, Peiyun; Lai, Xinmin

    2016-05-01

    A multilayered zirconium-carbon/amorphous carbon (Zr-C/a-C) coating is synthesized by magnetron sputtering in order to improve the corrosion resistance and interfacial conductivity of stainless steel 316L (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). Zr-C/a-C film contains an outmost pure amorphous carbon layer and a sub zirconium containing carbon layer. Interfacial contact resistance (ICR) between carbon paper and coated SS316L decreases to 3.63 mΩ cm2 at 1.4 MPa. Potentiodynamic polarization results reveal that the corrosion potential of Zr-C/a-C coated sample is more positive than pure a-C coated sample and the current density is only 0.49 μA cm-2 at the cathode applied potential 0.6 V. Electrochemical impendence spectroscopy also indicates that multilayered Zr-C/a-C film coated SS316L has much higher charge transfer resistance than the bare sample. After potentiostatic polarization, ICR values are 3.92 mΩ cm2 and 3.82 mΩ cm2 in the simulated PEMFCs cathode and anode environment, respectively. Moreover, XPS analysis of the coated samples before and after potential holding tests shows little difference, which disclose the chemical stability of multilayered Zr-C/a-C film. Therefore, the multilayered Zr-C/a-C coating exhibits excellent performance in various aspects and is preferred for the application of stainless steel bipolar plates.

  6. High-Temperature Oxidation Resistance of a Nanoceria Spray-Coated 316L Stainless Steel Under Short-Term Air Exposure

    NASA Astrophysics Data System (ADS)

    Lopez, Hugo F.; Mendoza, Humberto; Church, Ben

    2013-10-01

    Nanoceria coatings using a spray method were implemented on a 316L stainless steel (SS). Coated and uncoated coupons were exposed to dry air at 1073 K to 1273 K (800 °C to 1000 °C) for short time periods (up to 24 hours) and in situ measurements of oxidation were carried out using a highly sensitive thermogravimetric balance. From the experimental outcome, activation energies were determined in both, coated and uncoated 316 SS coupons. The estimated exhibited activation energies for oxidation in the coated and uncoated conditions were 174 and 356 kJ/mol, respectively. In addition, the developed scales were significantly different. In the coated steel, the dominant oxide was an oxide spinel (Fe, Mn)3O4 and the presence of Fe2O3 was sharply reduced, particularly at 1273 K (1000 °C). In contrast, no spinel was found in the uncoated 316L SS, and Fe2O3 was always present in the scale at all the investigated oxidation temperatures. The coated steels developed a highly adherent fine-grained scale structure. Apparently, the nanoceria particles enhanced nucleation of the newly formed scale while restricting coarsening. Coarse grain structures were found in the uncoated steels with scale growth occurring at grain ledges. Moreover, the oxidation rates for the coated 316L SS were at least an order of magnitude lower than those exhibited by the steel in the uncoated condition. The reduction in oxidation rates is attributed to a shift in the oxidation mechanism from outward cation diffusion to inward oxygen diffusion.

  7. A study of Ta xC 1 -x coatings deposited on biomedical 316L stainless steel by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ding, M. H.; Wang, B. L.; Li, L.; Zheng, Y. F.

    2010-11-01

    In this paper, Ta xC 1 -x coatings were deposited on 316L stainless steel (316L SS) by radio-frequency (RF) magnetron sputtering at various substrate temperatures ( Ts) in order to improve its corrosion resistance and hemocompatibility. XRD results indicated that Ts could significantly change the microstructure of Ta xC 1 -x coatings. When Ts was <150 °C, the Ta xC 1 -x coatings were in amorphous condition, whereas when Ts was ≥150 °C, TaC phase was formed, exhibiting in the form of particulates with the crystallite sizes of about 15-25 nm ( Ts = 300 °C). Atomic force microscope (AFM) results showed that with the increase of Ts, the root-mean-square (RMS) values of the Ta xC 1 -x coatings decreased. The nano-indentation experiments indicated that the Ta xC 1 -x coating deposited at 300 °C had a higher hardness and modulus. The scratch test results demonstrated that Ta xC 1 -x coatings deposited above 150 °C exhibited good adhesion performance. Tribology tests results demonstrated that Ta xC 1 -x coatings exhibited excellent wear resistance. The results of potentiodynamic polarization showed that the corrosion resistance of the 316L SS was improved significantly because of the deposited Ta xC 1 -x coatings. The platelet adhesion test results indicated that the Ta xC 1 -x coatings deposited at Ts of 150 °C and 300 °C possessed better hemocompatibility than the coating deposited at Ts of 25 °C. Additionally, the hemocompatibility of the Ta xC 1 -x coating on the 316L SS was found to be influenced by its surface roughness, hydrophilicity and the surface energy.

  8. Evaluation of the soft tissue biocompatibility of MgCa0.8 and surgical steel 316L in vivo: a comparative study in rabbits

    PubMed Central

    2010-01-01

    Background Recent studies have shown the potential suitability of magnesium alloys as biodegradable implants. The aim of the present study was to compare the soft tissue biocompatibility of MgCa0.8 and commonly used surgical steel in vivo. Methods A biodegradable magnesium calcium alloy (MgCa0.8) and surgical steel (S316L), as a control, were investigated. Screws of identical geometrical conformation were implanted into the tibiae of 40 rabbits for a postoperative follow up of two, four, six and eight weeks. The tibialis cranialis muscle was in direct vicinity of the screw head and thus embedded in paraffin and histologically and immunohistochemically assessed. Haematoxylin and eosin staining was performed to identify macrophages, giant cells and heterophil granulocytes as well as the extent of tissue fibrosis and necrosis. Mouse anti-CD79α and rat anti-CD3 monoclonal primary antibodies were used for B- and T-lymphocyte detection. Evaluation of all sections was performed by applying a semi-quantitative score. Results Clinically, both implant materials were tolerated well. Histology revealed that a layer of fibrous tissue had formed between implant and overlying muscle in MgCa0.8 and S316L, which was demarcated by a layer of synoviocyte-like cells at its interface to the implant. In MgCa0.8 implants cavities were detected within the fibrous tissue, which were surrounded by the same kind of cell type. The thickness of the fibrous layer and the amount of tissue necrosis and cellular infiltrations gradually decreased in S316L. In contrast, a decrease could only be noted in the first weeks of implantation in MgCa0.8, whereas parameters were increasing again at the end of the observation period. B-lymphocytes were found more often in MgCa0.8 indicating humoral immunity and the presence of soluble antigens. Conversely, S316L displayed a higher quantity of T-lymphocytes. Conclusions Moderate inflammation was detected in both implant materials and resolved to a minimum

  9. Tritium and decay helium effects on the fracture toughness properties of types 316L, 304L and 21Cr-6Ni-9Mn stainless steels

    SciTech Connect

    Morgan, M.J.; Tosten, M.H

    1994-10-01

    J-integral fracture mechanics techniques and electron microscopy observations were used to investigate the effects of tritium and its radioactive decay product, {sup 3}He, on Types 316L, 304L and 21Cr-6Ni-9Mn stainless steels. Tritium-exposed-and-aged steels had lower fracture-toughness values and shallower sloped crack-growth-resistance curves than unexposed steels. Both fracture-toughness parameters decreased with increasing concentrations of {sup 3}He. The fracture-toughness reductions were accompanied by a change in fracture mode from microvoid-nucleation-and-growth processes in control samples to grain-and-twin-boundary fracture in tritium-charged-and-aged samples. Type 316L stainless steel had the highest fracture-toughness values and Type 21Cr-6Ni-9Mn had the lowest. Samples containing {sup 3}He but degassed of tritium had fracture toughness properties that were similar to uncharged samples. The results indicate that helium bubbles enhance the embrittlement effects of hydrogen by affecting the deformation properties and by increasing localized hydrogen concentrations through trapping effects.

  10. Infrared Brazing of Ti50Ni50 Shape Memory Alloy and 316L Stainless Steel with Two Sliver-Based Fillers

    NASA Astrophysics Data System (ADS)

    Shiue, Ren-Kae; Chen, Chia-Pin; Wu, Shyi-Kaan

    2015-06-01

    Dissimilar infrared brazing Ti50Ni50 and AISI 316L stainless steel using two silver-based fillers, Cusil-ABA and Ticusil, was evaluated. The shear strength of the Ticusil brazed joint is higher than that of the Cusil-ABA brazed one due to the formation of better fillet. The maximum shear strength of 237 MPa is obtained for the Ticusil joint brazed at 1223 K (950 °C) for 60 seconds. The presence of interfacial Ti-Fe-(Cu) layer is detrimental to the shear strength of all joints.

  11. Effect of Heat Treatment on the Microstructure and Mechanical Properties of Stainless Steel 316L Coatings Produced by Cold Spray for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    AL-Mangour, Bandar; Vo, Phuong; Mongrain, Rosaire; Irissou, Eric; Yue, Stephen

    2014-04-01

    In this study, the effects of heat treatment on the microstructure and mechanical properties of cold sprayed stainless steel 316L coatings using N2 and He as propellant gases were investigated. Powder and coating characterizations, including coating microhardness, coating porosity, and XRD phase analysis were performed. It was found that heat treatment reduced porosity, improved inter-particle bonding, and increased ductility. XRD results confirmed that no phase transformation occurred during deposition. Significant increase in UTS and ductility was observed for the annealed specimens obtained with nitrogen propellant, whereas little changes were observed for the helium propellant produced specimen.

  12. Laser surface texturing of 316L stainless steel in air and water: A method for increasing hydrophilicity via direct creation of microstructures

    NASA Astrophysics Data System (ADS)

    Razi, Sepehr; Madanipour, Khosro; Mollabashi, Mahmoud

    2016-06-01

    Laser processing of materials in water contact is sometimes employed for improving the machining, cutting or welding quality. Here, we demonstrate surface patterning of stainless steel grade 316L by nano-second laser processing in air and water. Suitable adjustments of laser parameters offer a variety of surface patterns on the treated targets. Furthermore alterations of different surface features such as surface chemistry and wettability are investigated in various processing circumstances. More than surface morphology, remarkable differences are observed in the surface oxygen content and wettability of the samples treated in air and water at the same laser processing conditions. Mechanisms of the changes are discussed extensively.

  13. Development of nanostructured SUS316L-2%TiC with superior tensile properties

    NASA Astrophysics Data System (ADS)

    Sakamoto, T.; Kurishita, H.; Matsuo, S.; Arakawa, H.; Takahashi, S.; Tsuchida, M.; Kobayashi, S.; Nakai, K.; Terasawa, M.; Yamasaki, T.; Kawai, M.

    2015-11-01

    Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below Md (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90-270 nm, accompanied by TiC precipitates with 20-50 nm in grain interior and 70-110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6-21%, respectively, depending on the heat treatment temperature after rolling at -196 °C.

  14. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants.

    PubMed

    Sutha, S; Kavitha, K; Karunakaran, G; Rajendran, V

    2013-10-01

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58-1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant.

  15. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants.

    PubMed

    Sutha, S; Kavitha, K; Karunakaran, G; Rajendran, V

    2013-10-01

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58-1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. PMID:23910313

  16. Structural, electrical and magnetic measurements on oxide layers grown on 316L exposed to liquid lead-bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Hosemann, Peter; Hofer, Christian; Hlawacek, Gregor; Li, Ning; Maloy, Stuart A.; Teichert, Christian

    2012-02-01

    Fast reactors and spallation neutron sources may use lead-bismuth eutectic (LBE) as a coolant. Its physical, chemical, and irradiation properties make it a safe coolant compared to Na cooled designs. However, LBE is a corrosive medium for most steels and container materials. The present study was performed to evaluate the corrosion behavior of the austenitic steel 316L (in two different delivery states). Detailed atomic force microscopy, magnetic force microscopy, conductive atomic force microscopy, and scanning transmission electron microscopy analyses have been performed on the oxide layers to get a better understanding of the corrosion and oxidation mechanisms of austenitic and ferritic/martensitic stainless steel exposed to LBE. The oxide scale formed on the annealed 316L material consisted of multiple layers with different compositions, structures, and properties. The innermost oxide layer maintained the grain structure of what used to be the bulk steel material and shows two phases, while the outermost oxide layer possessed a columnar grain structure.

  17. High Mn austenitic stainless steel

    DOEpatents

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  18. Influence of Explosive-Driven Shock Prestraining on the Microstructural Evolution and Shear Localization of 304 and 316L Stainless Steels

    SciTech Connect

    Xue Qing; Cerreta, Ellen K.; Gray, George T. III

    2006-07-28

    Initiation and development of adiabatic shear bands in explosively pre-shocked 304 and 316L stainless steels was investigated to quantify the influence of shock prestraining on the onset of shear localization. Forced shear tests on hat-shaped specimens were conducted using a compressive split-Hopkinson pressure bar. The shear localized behavior under the forced shear condition in these preshocked materials was examined. Shear-band initiation was found to be very sensitive to the preshocked microstructures, especially to the strong interactions among defects such as deformation twin networks. The microstructures of shear bands were characterized using transmission electron microscopy(TEM). Dynamic and quasi-static recovery was verified to be a dominant mechanism in the formation of the ultra fine substructures within the shear bands generated in these preshocked steels.

  19. Hardness analysis of welded joints of austenitic and duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Topolska, S.

    2016-08-01

    Stainless steels are widely used in the modern world. The continuous increase in the use of stainless steels is caused by getting greater requirements relating the corrosion resistance of all types of devices. The main property of these steels is the ability to overlap a passive layer of an oxide on their surface. This layer causes that they become resistant to oxidation. One of types of corrosion-resistant steels is ferritic-austenitic steel of the duplex type, which has good strength properties. It is easily formable and weldable as well as resistant to erosion and abrasive wear. It has a low susceptibility to stress-corrosion cracking, to stress corrosion, to intercrystalline one, to pitting one and to crevice one. For these reasons they are used, among others, in the construction of devices and facilities designed for chemicals transportation and for petroleum and natural gas extraction. The paper presents the results which shows that the particular specimens of the ][joint representing both heat affected zones (from the side of the 2205 steel and the 316L one) and the weld are characterized by higher hardness values than in the case of the same specimens for the 2Y joint. Probably this is caused by machining of edges of the sections of metal sheets before the welding process, which came to better mixing of native materials and the filler metal. After submerged arc welding the 2205 steel still retains the diphase, austenitic-ferritic structure and the 316L steel retains the austenitic structure with sparse bands of ferrite σ.

  20. Reactive Wetting of an Iron-Base Superalloy MSA2020 and 316L Stainless Steel by Molten Zinc-Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Liu, Xingbo; Bright, Mark A.; Hemrick, James G.; Sikka, Vinod; Barbero, Ever

    2008-06-01

    The reactive wetting behaviors of MSA2020, an Fe-based superalloy, and 316L stainless steel in contact with a molten Zn-Al alloy were investigated by the sessile drop method. This investigation led to the following findings. (1) 316L not only suffered considerable wetting, but also reacted with the molten Zn-Al alloy at a higher rate than MSA2020. (2) The contact angle of MSA2020 wet by the molten Zn-Al alloy dropped to an acute angle when the temperature was increased to 500 °C. (3) The surface reaction was found to initiate even though the liquid droplet and substrate were observed as nonwetting (contact angle larger than 90 deg). (4) The reaction mechanisms were identified in three stages. Initially, the Al diffused into the substrate to form an Fe-aluminide layer, which acted as the reaction front. Next, the reaction front penetrated the substrate through inward diffusion of Al. Finally, Zn-rich zones formed behind the reaction front as a result of Al depletion. (5) The alloying constituents (W, Mo, and Cr) in MSA2020 stably segregating on the surface reduced the wettability by molten Zn-Al by covering the reactive sites on the solid-liquid interface.

  1. Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cells

    NASA Astrophysics Data System (ADS)

    Alishahi, M.; Mahboubi, F.; Mousavi Khoie, S. M.; Aparicio, M.; Hübner, R.; Soldera, F.; Gago, R.

    2016-08-01

    Insufficient corrosion resistance and surface conductivity are two main issues that plague large-scale application of stainless steel (SS) bipolar plates in proton exchange membrane fuel cells (PEMFCs). This study explores the use of nanocrystalline Ta/TaN multilayer coatings to improve the electrical and electrochemical performance of polished 316L SS bipolar plates. The multilayer coatings have been deposited by (reactive) magnetron sputtering and characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. The electrochemical behavior of bare and coated substrates has been evaluated in simulated PEMFC working environments by potentiodynamic and potentiostatic polarization tests at ambient temperature and 80 °C. The results show that the Ta/TaN multilayer coating increases the polarization resistance of 316L SS by about 30 and 104 times at ambient and elevated temperatures, respectively. The interfacial contact resistance (ICR) shows a low value of 12 mΩ × cm2 before the potentiostatic test. This ICR is significantly lower than for the bare substrate and remains mostly unchanged after potentiostatic polarization for 14 h. In addition, the high contact angle (92°) with water for coated substrates indicates a hydrophobic character, which can improve the water management within the cell in PEMFC stacks.

  2. Ion beam nitriding of single and polycrystalline austenitic stainless steel

    SciTech Connect

    Abrasonis, G.; Riviere, J.P.; Templier, C.; Declemy, A.; Pranevicius, L.; Milhet, X.

    2005-04-15

    Polycrystalline and single crystalline [orientations (001) and (011)] AISI 316L austenitic stainless steel was implanted at 400 deg. C with 1.2 keV nitrogen ions using a high current density of 0.5 mA cm{sup -2}. The nitrogen distribution profiles were determined using nuclear reaction analysis (NRA). The structure of nitrided polycrystalline stainless steel samples was analyzed using glancing incidence and symmetric x-ray diffraction (XRD) while the structure of the nitrided single crystalline stainless steel samples was analyzed using x-ray diffraction mapping of the reciprocal space. For identical treatment conditions, it is observed that the nitrogen penetration depth is larger for the polycrystalline samples than for the single crystalline ones. The nitrogen penetration depth depends on the orientation, the <001> being more preferential for nitrogen diffusion than <011>. In both type of samples, XRD analysis shows the presence of the phase usually called 'expanded' austenite or {gamma}{sub N} phase. The lattice expansion depends on the crystallographic plane family, the (001) planes showing an anomalously large expansion. The reciprocal lattice maps of the nitrided single crystalline stainless steel demonstrate that during nitriding lattice rotation takes place simultaneously with lattice expansion. The analysis of the results based on the presence of stacking faults, residual compressive stress induced by the lattice expansion, and nitrogen concentration gradient indicates that the average lattice parameter increases with the nitrided layer depth. A possible explanation of the anomalous expansion of the (001) planes is presented, which is based on the combination of faster nitriding rate in the (001) oriented grains and the role of stacking faults and compressive stress.

  3. Hydrogen Environment Embrittlement on Austenitic Stainless Steels from Room Temperature to Low Temperatures

    NASA Astrophysics Data System (ADS)

    Ogata, Toshio

    2015-12-01

    Hydrogen environment embrittlement (HEE) on austenitic stainless steels SUS304, 304L, and 316L in the high pressure hydrogen gas was evaluated from ambient temperature to 20 K using a very simple mechanical properties testing procedure. In the method, the high- pressure hydrogen environment is produced just inside the hole in the specimen and the specimen is cooled in a cooled-alcohol dewar and a cryostat with a GM refrigerator. The effect of HEE was observed in tensile properties, especially at lower temperatures, and fatigue properties at higher stress level but almost no effect around the stress level of yield strength where almost no strain-induced martensite was produced. So, no effect of HEE on austenitic stainless steels unless the amount of the ferrite phase is small.

  4. Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy

    SciTech Connect

    Liu, Z.H. Zhang, D.Q. Sing, S.L. Chua, C.K. Loh, L.E.

    2014-08-15

    Multi-material processing in selective laser melting using a novel approach, by the separation of two different materials within a single dispensing coating system was investigated. 316L stainless steel and UNS C18400 Cu alloy multi-material samples were produced using selective laser melting and their interfacial characteristics were analyzed using focused ion beam, scanning electron microscopy, energy dispersive spectroscopy and electron back scattered diffraction techniques. A substantial amount of Fe and Cu element diffusion was observed at the bond interface suggesting good metallurgical bonding. Quantitative evidence of good bonding at the interface was also obtained from the tensile tests where the fracture was initiated at the copper region. Nevertheless, the tensile strength of steel/Cu SLM parts was evaluated to be 310 ± 18 MPa and the variation in microhardness values was found to be gradual along the bonding interface from the steel region (256 ± 7 HV{sub 0.1}) to the copper region (72 ± 3 HV{sub 0.1}). - Highlights: • Multi-material processing was successfully implemented and demonstrated in SLM. • Bi-metallic laminates of steel/Cu were successfully produced with the SLM process. • A substantial amount of Fe and Cu diffusion was observed at the bond interface. • Good metallurgical bonding was obtained at the interface of the steel/Cu laminates. • Highly refined microstructure was obtained due to rapid solidification in SLM.

  5. Corrosion behavior of TiN, TiAlN, TiAlSiN-coated 316L stainless steel in simulated proton exchange membrane fuel cell environment

    NASA Astrophysics Data System (ADS)

    Nam, Nguyen Dang; Vaka, Mahesh; Tran Hung, Nguyen

    2014-12-01

    To gain high hardness, good thermal stability and corrosion resistance, multicomponent TiAlSiN coating has been developed using different deposition methods. In this study, the influence of Al and Si on the electrochemical properties of TiN-coated 316L stainless steel as bipolar plate (BP) materials has been investigated in simulated proton exchange membrane fuel cell environment. The deposited TiN, TiAlN and TiAlSiN possess high hardness of 23.9, 31.7, 35.0 GPa, respectively. The coating performance of the TiN coating is enhanced by Al and Si addition due to lower corrosion current density and higher Rcoating and Rct values. This result could be attributed to the formation of crystalline-refined TiN(200), which improves the surface roughness, surface resistance, corrosion performance, and decreased passive current density.

  6. Electropolishing of Re-melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design

    NASA Astrophysics Data System (ADS)

    Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A.

    2016-07-01

    This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (`green') electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness ( Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.

  7. Influence of cold plastic deformation on critical pitting potential of AISI 316 L and 304 L steels in an artificial physiological solution simulating the aggressiveness of the human body.

    PubMed

    Cigada, A; Mazza, B; Pedeferri, P; Sinigaglia, D

    1977-07-01

    The effect of cold working on critical pitting potential of AISI 316 L and 304 L steels in a buffered physiological solution has been studied. In particular, the importance of deformation degree, orientation of the specimen surface to the deformation direction, and cold working temperature in lowering the critical pitting potential is shown. PMID:873942

  8. 79 FR 60188 - Nonmetallic Thermal Insulation for Austenitic Stainless Steel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2014-10-06

    ... COMMISSION Nonmetallic Thermal Insulation for Austenitic Stainless Steel AGENCY: Nuclear Regulatory... of the NRC considers acceptable when selecting and using nonmetallic thermal insulation in the..., ``Nonmetallic Thermal Insulation for Austenitic Stainless Steel,'' is temporarily identified by its task...

  9. The tensile properties of AISI 316L and OPTIFER in various conditions irradiated in a spallation environment

    NASA Astrophysics Data System (ADS)

    Chen, J.; Rödig, M.; Carsughi, F.; Dai, Y.; Bauer, G. S.; Ullmaier, H.

    2005-08-01

    Tensile specimens, prepared from AISI 316L austenitic stainless steel in three conditions (solution-annealed, cold-worked and electron-beam welded) and from OPTIFER martensitic stainless steel in tempered condition, were irradiated in the Swiss spallation neutron source (SINQ) at 90-400 °C to displacement doses from 3 dpa to 11 dpa. The mechanical properties were measured by tensile testing at room temperature and 250 °C, respectively, and subsequent metallographic analysis was employed. The tensile results indicated that the strength of AISI 316L-SA is quite similar or a little higher than in 316L-EBW but elongation of SA 316L is somewhat larger than EBW for both unirradiated and irradiated samples. The cold-worked specimens revealed much higher strength but almost zero strain-to-necking after irradiation. The results from OPTIFER samples showed that irradiation hardening increases with dose, which is accompanied by a dramatic reduction of uniform elongation beginning at very low dose. The metallographic analysis showed that the samples of AISI 316L-EBW failed in the welded zone.

  10. Microstructure and Mechanical Properties of Ultrafine-Grained Austenitic Oxide Dispersion Strengthened Steel

    NASA Astrophysics Data System (ADS)

    Mao, Xiaodong; Kang, Suk Hoon; Kim, Tae Kyu; Kim, Seul Cham; Oh, Kyu Hwan; Jang, Jinsung

    2016-11-01

    316L stainless steel based austenitic oxide dispersion strengthened (AODS) steel was fabricated by mechanical alloying (MA) and hot isostatic pressing (HIP). The AODS sample exhibited an ultrafine-grained (UFG) structure with a bimodal grain size distribution (large grains of about 1200 nm and fine grains of about 260 nm). Two groups of oxide particles were observed; fine Y2Ti2O7 of about 7.7 nm and coarse Cr2O3 particles of about 200 nm in diameter. Tensile tests of the hot-rolled AODS steel samples showed yield strength of up to 890 MPa at room temperature, which is nearly four times higher than that of conventional 316L stainless steel. Micro-indentation and hardness tests indicated even higher yield strength of up to 1200 MPa, which shows a good agreement with the calculated value by combining of the grain refinement strengthening by the Hall-Petch relation and the dispersion strengthening by the Orowan mechanism. The lower strength from tensile tests should be attributed to the formation of micro-cracks at the interfaces between coarse Cr2O3 particles and the matrix. Coarse Cr2O3 particles were also frequently observed inside the fracture surface dimples of the creep ruptured sample at 923 K (650 °C) and 140 MPa. It is thus suggested that the yield strength and elongation could be further improved by controlling the coarse Cr2O3 particles.

  11. Microstructure and Mechanical Properties of Ultrafine-Grained Austenitic Oxide Dispersion Strengthened Steel

    NASA Astrophysics Data System (ADS)

    Mao, Xiaodong; Kang, Suk Hoon; Kim, Tae Kyu; Kim, Seul Cham; Oh, Kyu Hwan; Jang, Jinsung

    2016-06-01

    316L stainless steel based austenitic oxide dispersion strengthened (AODS) steel was fabricated by mechanical alloying (MA) and hot isostatic pressing (HIP). The AODS sample exhibited an ultrafine-grained (UFG) structure with a bimodal grain size distribution (large grains of about 1200 nm and fine grains of about 260 nm). Two groups of oxide particles were observed; fine Y2Ti2O7 of about 7.7 nm and coarse Cr2O3 particles of about 200 nm in diameter. Tensile tests of the hot-rolled AODS steel samples showed yield strength of up to 890 MPa at room temperature, which is nearly four times higher than that of conventional 316L stainless steel. Micro-indentation and hardness tests indicated even higher yield strength of up to 1200 MPa, which shows a good agreement with the calculated value by combining of the grain refinement strengthening by the Hall-Petch relation and the dispersion strengthening by the Orowan mechanism. The lower strength from tensile tests should be attributed to the formation of micro-cracks at the interfaces between coarse Cr2O3 particles and the matrix. Coarse Cr2O3 particles were also frequently observed inside the fracture surface dimples of the creep ruptured sample at 923 K (650 °C) and 140 MPa. It is thus suggested that the yield strength and elongation could be further improved by controlling the coarse Cr2O3 particles.

  12. SU-E-T-548: Modeling of Breast IORT Using the Xoft 50 KV Brachytherapy Source and 316L Steel Rigid Shield

    SciTech Connect

    Burnside, W

    2015-06-15

    Purpose: Xoft provides a set of 316L Stainless Steel Rigid Shields to be used with their 50 kV X-ray source for Breast IORT treatments. Modeling the different shield sizes in MCNP provides information to help make clinical decisions for selecting the appropriate shield size. Methods: The Xoft Axxent 50 kV Electronic Brachytherapy System has several applications in radiation therapy, one of which is treating cancer of the breast intraoperatively by placing the miniaturized X-ray tube inside an applicator balloon that is expanded to fill the lumpectomy bed immediately following tumor removal. The ribs, lung, and muscular chest wall are all regions at risk to receive undesired dose during the treatment. A Xoft 316L Stainless Steel Rigid Shield can be placed between the intracostal muscles of the chest wall and the remaining breast tissue near the balloon to attenuate the beam and protect these organs. These shields are provided in 5 different sizes, and the effects on dose to the surrounding tissues vary with shield size. MCNP was used to model this environment and tally dose rate to certain regions of interest. Results: The average rib dose rate calculated using 0cm (i.e., no shield), 3cm, and 5cm diameter shields were 26.89, 15.43, and 8.91 Gy/hr respectively. The maximum dose rates within the rib reached 94.74 Gy/hr, 53.56 Gy/hr, and 31.44 Gy/hr for the 0cm, 3cm, and 5cm cases respectively. The shadowing effect caused by the steel shields was seen in the 3-D meshes and line profiles. Conclusion: This model predicts a higher dose rate to the underlying rib region with the 3cm shield compared to the 5cm shield; it may be useful to select the largest possible diameter when choosing a shield size for a particular IORT patient. The ability to attenuate the beam to reduce rib dose was also confirmed. Research sponsored by Xoft Inc, a subsidiary of iCAD.

  13. TEM studies of plasma nitrided austenitic stainless steel.

    PubMed

    Stróz, D; Psoda, M

    2010-03-01

    Cross-sectional transmission electron microscopy and X-ray phase analysis were used to study the structure of a layer formed during nitriding the AISI 316L stainless steel at temperature 440 degrees C. It was found that the applied treatment led to the formation of 6-microm-thick layer of the S-phase. There is no evidence of CrN precipitation. The X-ray diffraction experiments proved that the occurred austenite lattice expansion - due to nitrogen atoms - depended on the crystallographic direction. The cross-sectional transmission electron microscopy studies showed that the layer consisted of a single cubic phase that contained a lot of defects such as dislocations, stacking faults, slip bands and twins. The high-resolution electron microscopy observations were applied to study the defect formation due to the nitriding process. It was shown that the presence of great number of stacking faults leads to formation of nanotwins. Weak, forbidden {100} reflections were still another characteristic feature of the S-phase. These were not detected in the X-ray spectra of the phase. Basing on the high-resolution electron microscopy studies it can be suggested that the short-range ordering of the nitrogen atoms in the octahedral sites inside the f.c.c. matrix lattice takes place and gives rise to appearance of these spots. It is suggested that the cubic lattice undergoes not only expansion but also slight rombohedral distortion that explains differences in the lattice expansion for different crystallographic directions.

  14. The effect of synthetic scrubber solution chemistry on the corrosion behavior of type 316L stainless steel and Titanium Grade 2

    SciTech Connect

    Koch, G.H.; Beavers, J.A.; Whitman, L.

    1983-01-01

    A laboratory study was performed to investigate the effects of major solution variables of synthetic scrubber environments on the corrosion behavior of Type 316L Stainless Steel and Titanium Grade 2. The synthetic solution was calcium-based and contained magnesium, sodium, sulfate, chloride and fluoride. In solution preparation, it was found that the amount of sulfuric acid needed to achieve pH 1 was dependent on the chloride concentration. However, when the pH was adjusted to 1 prior to adding halides, the pH was found to decrease with increasing chloride concentration, whereas an increase in pH with increasing chloride concentration was observed when the initial pH was 4. When the pH was held constant, the corrosion rates of both the stainless steel and titanium decreased considerably with increasing chloride concentration above 30,000 ppm chloride. However, when the acid concentration was held constant, the corrosion rates of both alloys increased with increasing chloride concentration. Finally, corrosion rates decreased dramatically with increasing pH. An explanation of these observations is presented in terms of common ion effects and hydrogen ion activity.

  15. Austenitic stainless steels for cryogenic service

    SciTech Connect

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  16. Effects of Ag and Cu ions on the microbial corrosion of 316L stainless steel in the presence of Desulfovibrio sp.

    PubMed

    Unsal, Tuba; Ilhan-Sungur, Esra; Arkan, Simge; Cansever, Nurhan

    2016-08-01

    The utilization of Ag and Cu ions to prevent both microbial corrosion and biofilm formation has recently increased. The emphasis of this study lies on the effects of Ag and Cu ions on the microbial corrosion of 316L stainless steel (SS) induced by Desulfovibrio sp. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to analyze the corrosion behavior. The biofilm formation, corrosion products and Ag and Cu ions on the surfaces were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) and elemental mapping. Through circuit modeling, EIS results were used to interpret the physicoelectric interactions between the electrode, biofilm and culture interfaces. EIS results indicated that the metabolic activity of Desulfovibrio sp. accelerated the corrosion rate of SS in both conditions with and without ions. However, due to the retardation in the growth of Desulfovibrio sp. in the presence of Ag and Cu ions, significant decrease in corrosion rate was observed in the culture with the ions. In addition, SEM and EIS analyses revealed that the presence of the ions leads to the formation on the SS of a biofilm with different structure and morphology. Elemental analysis with EDS detected mainly sulfide- and phosphorous-based corrosion products on the surfaces. PMID:27105168

  17. Comparison between Palm Oil Derivative and Commercial Thermo-Plastic Binder System on the Properties of the Stainless Steel 316L Sintered Parts

    NASA Astrophysics Data System (ADS)

    Ibrahim, R.; Azmirruddin, M.; Wei, G. C.; Fong, L. K.; Abdullah, N. I.; Omar, K.; Muhamad, M.; Muhamad, S.

    2010-03-01

    Binder system is one of the most important criteria for the powder injection molding (PIM) process. Failure in the selection of the binder system will affect on the final properties of the sintered parts. The objectives of this studied is to develop a novel binder system based on the local natural resources and environmental friendly binder system from palm oil derivative which is easily available and cheap in our country of Malaysia. The novel binder that has been developed will be replaced the commercial thermo-plastic binder system or as an alternative binder system. The results show that the physical and mechanical properties of the final sintered parts fulfill the Metal Powder Industries Federation (MPIF) standard 35 for PIM parts. The biocompatibility test using cell osteosarcoma (MG63) and vero fibroblastic also shows that the cell was successfully growth on the sintered stainless steel 316L parts indicate that the novel binder was not toxic. Therefore, the novel binder system based on palm oil derivative that has been developed as a binder system fulfills the important criteria for the binder system in PIM process.

  18. Effects of Ag and Cu ions on the microbial corrosion of 316L stainless steel in the presence of Desulfovibrio sp.

    PubMed

    Unsal, Tuba; Ilhan-Sungur, Esra; Arkan, Simge; Cansever, Nurhan

    2016-08-01

    The utilization of Ag and Cu ions to prevent both microbial corrosion and biofilm formation has recently increased. The emphasis of this study lies on the effects of Ag and Cu ions on the microbial corrosion of 316L stainless steel (SS) induced by Desulfovibrio sp. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to analyze the corrosion behavior. The biofilm formation, corrosion products and Ag and Cu ions on the surfaces were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) and elemental mapping. Through circuit modeling, EIS results were used to interpret the physicoelectric interactions between the electrode, biofilm and culture interfaces. EIS results indicated that the metabolic activity of Desulfovibrio sp. accelerated the corrosion rate of SS in both conditions with and without ions. However, due to the retardation in the growth of Desulfovibrio sp. in the presence of Ag and Cu ions, significant decrease in corrosion rate was observed in the culture with the ions. In addition, SEM and EIS analyses revealed that the presence of the ions leads to the formation on the SS of a biofilm with different structure and morphology. Elemental analysis with EDS detected mainly sulfide- and phosphorous-based corrosion products on the surfaces.

  19. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Lu, Zhanpeng; Xiao, Qian; Ru, Xiangkun; Han, Guangdong; Chen, Zhen; Zhou, Bangxin; Shoji, Tetsuo

    2016-04-01

    Stress corrosion cracking behaviors of one-directionally cold rolled 316L stainless steel specimens in T-L and L-T orientations were investigated in hydrogenated and deaerated PWR primary water environments at 310 °C. Transgranular cracking was observed during the in situ pre-cracking procedure and the crack growth rate was almost not affected by the specimen orientation. Locally intergranular stress corrosion cracks were found on the fracture surfaces of specimens in the hydrogenated PWR water. Extensive intergranular stress corrosion cracks were found on the fracture surfaces of specimens in deaerated PWR water. More extensive cracks were found in specimen T-L orientation with a higher crack growth rate than that in the specimen L-T orientation with a lower crack growth rate. Crack branching phenomenon found in specimen L-T orientation in deaerated PWR water was synergistically affected by the applied stress direction as well as the preferential oxidation path along the elongated grain boundaries, and the latter was dominant.

  20. Influences of deposition strategies and oblique angle on properties of AISI316L stainless steel oblique thin-walled part by direct laser fabrication

    NASA Astrophysics Data System (ADS)

    Wang, Xinlin; Deng, Dewei; Qi, Meng; Zhang, Hongchao

    2016-06-01

    Direct laser fabrication (DLF) developed from laser cladding and rapid prototyping technique has been widely used to fabricate thin-walled parts exhibiting more functions without expending weight and size. Oblique thin-walled parts accompanied with inhomogeneous mechanical properties are common in application. In the present study, a series of AISI316L stainless steel oblique thin-walled parts are successfully produced by DLF, in addition, deposition strategies, microstructure, and mechanical property of the oblique thin-walled parts are investigated. The results show that parallel deposition way is more valuable to fabricate oblique thin-walled part than oblique deposition way, because of the more remarkable properties. The hardness of high side initially increases until the distance to the substrate reaches about 25 mm, and then decreases with the increase of the deposition height. Oblique angle has a positive effect on the tensile property but a negative effect on microstructure, hardness and elongation due to the more tempering time. The maximum average ultimate tensile strength (UTS) and elongation are presented 744.3 MPa and 13.5% when the angle between tensile loading direction and horizontal direction is 45° and 90°, respectively.

  1. Comparative study of the native oxide on 316L stainless steel by XPS and ToF-SIMS

    SciTech Connect

    Tardio, Sabrina Abel, Marie-Laure; Castle, James E.; Watts, John F.; Carr, Robert H.

    2015-09-15

    The very thin native oxide film on stainless steel, of the order of 2 nm, is known to be readily modified by immersion in aqueous media. In this paper, X-ray photoelectron spectroscopy (XPS) and time of flight secondary ions mass spectrometry are employed to investigate the nature of the air-formed film and modification after water emersion. The film is described in terms of oxide, hydroxide, and water content. The preferential dissolution of iron is shown to occur on immersion. It is shown that a water absorbed layer and a hydroxide layer are present above the oxide-like passive film. The concentrations of water and hydroxide appear to be higher in the case of exposure to water. A secure method for the peak fitting of Fe2p and Cr2p XPS spectra of such films on their metallic substrates is described. The importance of XPS survey spectra is underlined and the feasibility of C{sub 60}{sup +} SIMS depth profiling of a thin oxide layer is shown.

  2. Corrosion-erosion test of SS316L grain boundary engineering material (GBEM) in lead bismuth flowing loop

    NASA Astrophysics Data System (ADS)

    Saito, Shigeru; Kikuchi, Kenji; Hamaguchi, Dai; Tezuka, Masao; Miyagi, Masanori; Kokawa, Hiroyuki; Watanabe, Seiichi

    2012-12-01

    To evaluate the lifetime of structural materials utilized in a spallation neutron source, corrosion tests in lead-bismuth eutectic (LBE) have been done at JAEA. Austenitic steels are preferable as the structural material for ADS. However, previous studies have revealed that austenitic steel SS316 shows severe corrosion-erosion in LBE because of LBE penetration through grain boundaries and separation of grains. So it was considered that GBE (grain-boundary engineered) materials may be effective to improve the corrosion resistance of austenitic steels in LBE. In this study, the results of corrosion tests on austenitic steel SS316L-BM (base metal) and SS316L-GBEM (grain-boundary-engineered material) under flowing LBE conditions will be reported. The corrosion test was performed using the JAEA lead-bismuth material corrosion loop (JLBL-1). The experimental conditions were as follows: The high and low temperature parts of the loop were 450 °C and 350 °C, respectively. The flow velocity at the test specimens was about 0.7 m/s. The oxygen concentration in LBE was not controlled and was estimated to have been very low. After the 3600 h of operation, macroscopic, SEM, and SIM observations and EDX analysis were carried out. The results showed that the corrosion depth and LBE penetration through the grain boundaries of the 316SS-GBEM were smaller than those of the 316SS-BM.

  3. Effects of Mo content on microstructure and corrosion resistance of arc ion plated Ti-Mo-N films on 316L stainless steel as bipolar plates for polymer exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Kim, Kwang Ho; Shao, Zhigang; Wang, Feifei; Zhao, Shuang; Suo, Ni

    2014-05-01

    Bipolar plates are one of the most important components in PEMFC stack and have multiple functions, such as separators and current collectors, distributing reactions uniformly, and etc. Stainless steel is ideal candidate for bipolar plates owing to good thermal and electrical conductivity, good mechanical properties etc. However, stainless steel plate still cannot resist the corrosion of working condition. In this work, ternary Ti-Mo-N film was fabricated on 316L stainless steel (SS316L) as a surface modification layer to enhance the corrosion resistance. Effects of Mo content on the microstructure and corrosion resistance of Ti-Mo-N films are systematically investigated by altering sputtering current of the Mo target. XRD results reveal that the preferred orientation changes from [111] to [220] direction as Mo content in the film increases. The synthesized Ti-Mo-N films form a substitutional solid solution of (Ti, Mo)N where larger Mo atoms replace Ti in TiN crystal lattice. The TiN-coated SS316L sample shows the best corrosion resistance. While Mo content in the Ti-Mo-N films increases, the corrosion resistance gradually degrades. Compared with the uncoated samples, all the Ti-Mo-N film coated samples show enhanced corrosion resistance in simulated PEMFC working condition.

  4. Cast alumina forming austenitic stainless steels

    DOEpatents

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  5. Effect of bicarbonate ion additives on pitting corrosion of type 316L stainless steel in aqueous 0.5 M sodium chloride solution

    SciTech Connect

    Park, J.J.; Pyun, S.I.; Lee, W.J.; Kim, H.P.

    1999-04-01

    The effect of bicarbonate ions (HCO{sub 3}{sup {minus}}) on pitting corrosion of type 316L stainless steel (SS, UNS S3 1603) was investigated in aqueous 0.5 M sodium chloride (NaCl) solution using potentiodynamic polarization, the abrading electrode technique, alternating current (AC) impedance spectroscopy combined with x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Addition of HCO{sub 3}{sup {minus}} ions to NaCl solutions extended the passive potential region in width and, at the same time, raised the pitting potential in value on the potentiodynamic polarization curve. Potentiostatic current transients obtained from the moment just after interrupting the abrading action showed the repassivation rate of propagating pits increased and that the pit growth rate decreased with increasing HCO{sub 3}{sup {minus}} ion concentration. Over the whole applied potential, the oxide film resistance was higher in the presence of HCO{sub 3}{sup {minus}} ions. The pit number density decreased with increasing HCO{sub 3}{sup {minus}} ion concentration. Moreover, addition of HCO{sub 3}{sup {minus}} ions to NaCl solutions retarded lateral pit growth, while promoting downward pit growth from the surface. The bare surface of the specimen repassivated preferentially along the pit mouth and walls, compared to the pit bottom, as a result of formation of a surface film with a high content of protective mixed ferrous-chromous carbonate ([Fe,Cr]CO{sub 3}) that formed from preferential adsorption of HCO{sub 3}{sup {minus}} ions.

  6. A Comparative Evaluation of the Effect of Low Cycle Fatigue and Creep-Fatigue Interaction on Surface Morphology and Tensile Properties of 316L(N) Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Bhaduri, A. K.; Laha, Kinkar

    2016-04-01

    In the present work, the deformation and damage evolution in 316L(N) stainless steel during low cycle fatigue (LCF) and creep-fatigue interaction (CFI) loadings have been compared by evaluating the residual tensile properties. Towards this, LCF and CFI experiments were carried out at constant strain amplitude of ±0.6 pct, strain rate of 3 × 10-3 s-1 and temperature of 873 K (600 °C). During CFI tests, 30 minutes hold period was introduced at peak tensile strain. Experiments were interrupted up to various levels of fatigue life viz. 5, 10, 30, 50, and 60 pct of the total fatigue life ( N f) under both LCF and CFI conditions. The specimens subjected to interrupted fatigue loadings were subsequently monotonically strained at the same strain rate and temperature up to fracture. Optical and scanning electron microscopy and profilometry were conducted on the untested and tested samples to elucidate the damage evolution during the fatigue cycling under both LCF and CFI conditions. The yield strength (YS) increased sharply with the progress of fatigue damage and attained saturation within 10 pct of N f under LCF condition. On the contrary, under CFI loading condition, the YS continuously increased up to 50 pct of N f, with a sharp increase of YS up to 5 pct of N f followed by a more gradual increase up to 50 pct of N f. The difference in the evolution of remnant tensile properties was correlated with the synergistic effects of the underlying deformation and damage processes such as cyclic hardening/softening, oxidation, and creep. The evolution of tensile properties with prior fatigue damage has been correlated with the change in surface roughness and other surface features estimated by surface replica technique and fractography.

  7. The Tribological Performance of Surface Treated Ti6A14V as Sliding Against Si3N4 Ball and 316L Stainless Steel Cylinder

    NASA Astrophysics Data System (ADS)

    Kao, W. H.; Su, Y. L.; Horng, J. H.; Huang, H. C.

    2016-10-01

    Closed field unbalanced magnetron sputtering was used to deposit diamond-like carbon (Ti-C:H) coatings on Ti6Al4V alloy and gas nitrided Ti6Al4V alloy. Four different specimens were prepared, namely untreated Ti6Al4V alloy (Ti6Al4V), gas nitrided Ti6Al4V alloy (N-Ti6Al4V), Ti-C:H-coated Ti6Al4V alloy (Ti-C:H/Ti6Al4V) and Ti-C:H-coated gas nitrided Ti6Al4V alloy (Ti-C:H/N-Ti6Al4V). The tribological properties of the four specimens were evaluated using a reciprocating wear tester sliding against a Si3N4 ball (point contact mode) and 316L stainless steel cylinder (line contact mode). The wear tests were performed in a 0.89 wt.% NaCl solution. The results showed that the nitriding treatment increased the surface roughness and hardness of the Ti6Al4V alloy and improved the wear resistance as a result. In addition, the Ti-C:H coating also improved the tribological performance of Ti6Al4V. For example, compared to the untreated Ti6Al4V sample, the Ti-C:H coating reduced the wear depth and friction coefficient by 340 times and 10 times, respectively, in the point contact wear mode, and 151 times and 9 times, respectively, in the line contact wear mode. It is thus inferred that diamond-like carbon coatings are of significant benefit in extending the service life of artificial biomedical implants.

  8. Pitting corrosion resistant austenite stainless steel

    DOEpatents

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  9. Response of austenitic steels to radiation damage

    SciTech Connect

    Rowcliffe, A.F.; Grossbeck, M.L.

    1983-01-01

    Austenitic stainless steels are prominent contenders as first wall and blanket structural materials for early fusion power reactors. Properties affecting the performance of this class of alloys in the fusion irradiation environment, such as swelling, tensile elongation, irradiation creep, fatigue, and crack growth, have been identified. These properties and the effects of neutron irradiation on them are discussed in this paper. Emphasis is placed on the present status of understanding of irradiation effects.

  10. Influences of pH value, temperature, chloride ions and sulfide ions on the corrosion behaviors of 316L stainless steel in the simulated cathodic environment of proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Li, D. G.; Wang, J. D.; Chen, D. R.; Liang, P.

    2014-12-01

    316L stainless steel is in the passive state in a simulated cathodic environment, and the passivity of 316L SS is enhanced with increasing pH value, decreasing temperature, decreasing chloride ions and sulfide ions concentrations. Mott-Schottky plots show that the passive films appear a p-n heterojunction, and the donor and acceptor densities reach 1022 cm-3, showing a highly defective character of the passive film. The donor and acceptor densities increase with increasing temperature, increasing chloride ions and sulfide ions concentrations, while they decreased with increasing pH value. The decreased passivity and the increased doping density may be beneficial to the conductivity of the passive film, but they adversely affect the protectiveness of the passive film toward corrosion.

  11. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons

    NASA Astrophysics Data System (ADS)

    Chimi, Yasuhiro; Kitsunai, Yuji; Kasahara, Shigeki; Chatani, Kazuhiro; Koshiishi, Masato; Nishiyama, Yutaka

    2016-07-01

    To elucidate the mechanism of irradiation-assisted stress corrosion cracking (IASCC) in high-temperature water for neutron-irradiated austenitic stainless steels (SSs), the locally deformed structures, the oxide films formed on the deformed areas, and their correlation were investigated. Tensile specimens made of irradiated 316L SSs were strained 0.1%-2% at room temperature or at 563 K, and the surface structures and crystal misorientation among grains were evaluated. The strained specimens were immersed in high-temperature water, and the microstructures of the oxide films on the locally deformed areas were observed. The appearance of visible step structures on the specimens' surface depended on the neutron dose and the applied strain. The surface oxides were observed to be prone to increase in thickness around grain boundaries (GBs) with increasing neutron dose and increasing local strain at the GBs. No penetrative oxidation was observed along GBs or along surface steps.

  12. Re-weldability tests of irradiated austenitic stainless steel by a TIG welding method

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi; Kalinin, George

    2000-12-01

    Austenitic stainless steel (SS) is widely used for the in-vessel and ex-vessel components of fusion reactors. In particular, SS316L(N)-IG (IG-ITER Grade) is used for the vacuum vessel (VV), pipe lines, blanket modules, branch pipe lines connecting the module coolant system with the manifold and for the other structures of ITER. One of the most important requirements for the VV and the water cooling branch pipelines is the possibility to repair different defects by welding. Those components which may require re-welding should be studied carefully. The SS re-weldability issue has a large impact on the design of in-vessel components, in particular, the design and efficiency of radiation shielding by the modules. Moreover, re-welded components should operate for the lifetime of the reactor. This paper deals with the study of re-weldability of un-irradiated and/or irradiated SS316L(N)-IG and the effect of helium generation on the mechanical properties of the weld joint. Tungsten inert gas (TIG) welding was used for re-welding of the SS.

  13. Instabilities in stabilized austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Ayer, Raghavan; Klein, C. F.; Marzinsky, C. N.

    1992-09-01

    The effect of aging on the precipitation of grain boundary phases in three austenitic stainless steels (AISI 347, 347AP, and an experimental steel stabilized with hafnium) was investigated. Aging was performed both on bulk steels as well as on samples which were subjected to a thermal treatment to simulate the coarse grain region of the heat affected zone (HAZ) during welding. Aging of the bulk steels at 866 K for 8000 hours resulted in the precipitation of Cr23C6 carbides, σ, and Fe2Nb phases; the propensity for precipitation was least for the hafnium-stabilized steel. Weld simulation of the HAZ resulted in dissolution of the phases present in the as-received 347 and 347AP steels, leading to grain coarsening. Subsequent aging caused extensive grain boundary Cr23C6 carbides and inhomogeneous matrix precipitation. In addition, steel 347AP formed a precipitate free zone (PFZ) along the grain boundaries. The steel containing hafnium showed the best microstructural stability to aging and welding.

  14. Weldment for austenitic stainless steel and method

    DOEpatents

    Bagnall, Christopher; McBride, Marvin A.

    1985-01-01

    For making defect-free welds for joining two austenitic stainless steel mers, using gas tungsten-arc welding, a thin foil-like iron member is placed between the two steel members to be joined, prior to making the weld, with the foil-like iron member having a higher melting point than the stainless steel members. When the weld is formed, there results a weld nugget comprising melted and then solidified portions of the joined members with small portions of the foil-like iron member projecting into the solidified weld nugget. The portions of the weld nugget proximate the small portions of the foil-like iron member which project into the weld nugget are relatively rich in iron. This causes these iron-rich nugget portions to display substantial delta ferrite during solidification of the weld nugget which eliminates weld defects which could otherwise occur. This is especially useful for joining austenitic steel members which, when just below the solidus temperature, include at most only a very minor proportion of delta ferrite.

  15. Microstructural studies of advanced austenitic steels

    SciTech Connect

    Todd, J. A.; Ren, Jyh-Ching

    1989-11-15

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  16. Wear behavior of austenite containing plate steels

    NASA Astrophysics Data System (ADS)

    Hensley, Christina E.

    As a follow up to Wolfram's Master of Science thesis, samples from the prior work were further investigated. Samples from four steel alloys were selected for investigation, namely AR400F, 9260, Hadfield, and 301 Stainless steels. AR400F is martensitic while the Hadfield and 301 stainless steels are austenitic. The 9260 exhibited a variety of hardness levels and retained austenite contents, achieved by heat treatments, including quench and tempering (Q&T) and quench and partitioning (Q&P). Samples worn by three wear tests, namely Dry Sand/Rubber Wheel (DSRW), impeller tumbler impact abrasion, and Bond abrasion, were examined by optical profilometry. The wear behaviors observed in topography maps were compared to the same in scanning electron microscopy micrographs and both were used to characterize the wear surfaces. Optical profilometry showed that the scratching abrasion present on the wear surface transitioned to gouging abrasion as impact conditions increased (i.e. from DSRW to impeller to Bond abrasion). Optical profilometry roughness measurements were also compared to sample hardness as well as normalized volume loss (NVL) results for each of the three wear tests. The steels displayed a relationship between roughness measurements and observed wear rates for all three categories of wear testing. Nanoindentation was used to investigate local hardness changes adjacent to the wear surface. DSRW samples generally did not exhibit significant work hardening. The austenitic materials exhibited significant hardening under the high impact conditions of the Bond abrasion wear test. Hardening in the Q&P materials was less pronounced. The Q&T microstructures also demonstrated some hardening. Scratch testing was performed on samples at three different loads, as a more systematic approach to determining the scratching abrasion behavior. Wear rates and scratch hardness were calculated from scratch testing results. Certain similarities between wear behavior in scratch testing

  17. Temperature effect on the corrosion mechanism of austenitic and martensitic steels in lead-bismuth

    NASA Astrophysics Data System (ADS)

    Benamati, G.; Fazio, C.; Piankova, H.; Rusanov, A.

    2002-02-01

    Compatibility tests on the austenitic AISI 316L and the martensitic MANET II steels in stagnant PbBi were performed at 573, 673 and 823 K with exposures up to 5000 h. The change of the corrosion mechanism with increasing temperature has been evaluated. The results showed that at 573 and 673 K a thin oxide layer growth on the surface of both steels. By increasing the temperature to 823 K both types of steels were attacked by the liquid metal and dissolution of the steel alloying elements has been observed. The herein-reported experimental activities were performed in collaboration with the IPPE of Obninsk, where preliminary dynamic tests were performed in the experimental facility CU-2. The Russian ferritic-martensitic steel EP823 has been exposed to flowing PbBi at 623, 723 and 823 K for 700 h. After 700 h of testing, the surface of the EP823 samples showed for the three temperatures a compact oxide layer.

  18. Impact Toughness Properties of Nickel- and Manganese-Free High Nitrogen Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Mohammadzadeh, Mina

    2016-10-01

    A large amount of manganese (>10 wt pct) in nickel-free high nitrogen austenitic stainless steels (Ni-free HNASSs) can induce toxicity. In order to develop Ni-free HNASSs with low or no manganese, it is necessary to investigate their mechanical properties for biomedical applications. This work aims to study the Charpy V-notch (CVN) impact toughness properties of a Ni- and Mn-free Fe-22.7Cr-2.4Mo-1.2N HNASS plate in the temperature range of 103 K to 423 K (-170 °C to 150 °C). The results show that unlike conventional AISI 316L austenitic stainless steel, the Ni- and Mn-free HNASS exhibits a sharp ductile-to-brittle transition (DBT). The intergranular brittle fracture associated with some plasticity and deformation bands is observed on the fracture surface at 298 K (25 °C). Electron backscattered diffraction (EBSD) analysis of the impact-tested sample in the longitudinal direction indicates that deformation bands are parallel to {111} slip planes. By decreasing the temperature to 273 K, 263 K, and 103 K (0 °C, -10 °C, and -70 °C), entirely intergranular brittle fracture occurs on the fracture surface. The fracture mode changes from brittle fracture to ductile as the temperature increases to 423 K (150 °C). The decrease in impact toughness is discussed on the basis of temperature sensitivity of plastic flow and planarity of deformation mechanism.

  19. Influence of liquid lead and lead-bismuth eutectic on tensile, fatigue and creep properties of ferritic/martensitic and austenitic steels for transmutation systems

    NASA Astrophysics Data System (ADS)

    Gorse, D.; Auger, T.; Vogt, J.-B.; Serre, I.; Weisenburger, A.; Gessi, A.; Agostini, P.; Fazio, C.; Hojna, A.; Di Gabriele, F.; Van Den Bosch, J.; Coen, G.; Almazouzi, A.; Serrano, M.

    2011-08-01

    In this paper, the tensile, fatigue and creep properties of the Ferritic/Martensitic (F/M) steel T91 and of the Austenitic Stainless (AS) Steel 316L in lead-bismuth eutectic (LBE) or lead, obtained in the different organizations participating to the EUROTRANS-DEMETRA project are reviewed. The results show a remarkable consistency, referring to the variety of metallurgical and surface state conditions studied. Liquid Metal Embrittlement (LME) effects are shown, remarkable on heat-treated hardened T91 and also on corroded T91 after long-term exposure to low oxygen containing Liquid Metal (LM), but hardly visible on passive or oxidized smooth T91 specimens. For T91, the ductility trough was estimated, starting just above the melting point of the embrittler ( TM,E = 123.5 °C for LBE, 327 °C for lead) with the ductility recovery found at 425 °C. LME effects are weaker on 316L AS steel. Liquid Metal Assisted Creep (LMAC) effects are reported for the T91/LBE system at 550 °C, and for the T91/lead system at 525 °C. Today, if the study of the LME effects on T91 and 316L in LBE or lead can be considered well documented, in contrast, complementary investigations are necessary in order to quantify the LMAC effects in these systems, and determine rigorously the threshold creep conditions.

  20. Hydrogen Absorption into Austenitic Stainless Steels Under High-Pressure Gaseous Hydrogen and Cathodic Charge in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Enomoto, Masato; Cheng, Lin; Mizuno, Hiroyuki; Watanabe, Yoshinori; Omura, Tomohiko; Sakai, Jun'ichi; Yokoyama, Ken'ichi; Suzuki, Hiroshi; Okuma, Ryuji

    2014-12-01

    Type 316L and Type 304 austenitic stainless steels, both deformed and non-deformed, were hydrogen charged cathodically in an aqueous solution as well as by exposure to high-pressure gaseous hydrogen in an attempt to identify suitable conditions of cathodic charge for simulating hydrogen absorption from gaseous hydrogen environments. Thermal desorption analysis (TDA) was conducted, and the amount of absorbed hydrogen and the spectrum shape were compared between the two charging methods. Simulations were performed by means of the McNabb-Foster model to analyze the spectrum shape and peak temperature, and understand the effects of deformation on the spectra. It was revealed that the spectrum shape and peak temperature were dependent directly upon the initial distribution of hydrogen within the specimen, which varied widely according to the hydrogen charge condition. Deformation also had a marked effect on the amount of absorbed hydrogen in Type 304 steel due to the strain-induced martensitic transformation.

  1. Effect of Specimen Diameter on Tensile Properties of Austenitic Stainless Steels in Liquid Hydrogen and Gaseous Helium at 20K

    NASA Astrophysics Data System (ADS)

    Fujii, H.; Ohmiya, S.; Shibata, K.; Ogata, T.

    2006-03-01

    Tensile tests using round bar type specimens of 3, 5 and 7 mm in diameter were conducted at 20K in liquid hydrogen and also in gaseous helium at the same temperature for three major austenitic stainless steels, JIS SUS304L, 316L and 316LN, extensively used for cryogenic applications including liquid hydrogen transportation and storage vessels. Stress-strain curves were considerably different between circumstances and also specimen diameter, resulting in differences of strength and ductility. In liquid hydrogen, serrated deformation appeared after considerable work hardening and more active in specimens with larger diameter. Meanwhile serrated deformation was observed from the early stage of plastic deformation in gaseous helium at 20 K and serration was more frequent in specimens with smaller diameter. The serrated deformation behaviors were numerically simulated for 304L steel with taking thermal properties such as thermal conductivity, specific heat, heat transfer from specimens to cryogenic media into account, and some agreement with the experiments was obtained.

  2. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  3. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, Philip J.; Braski, David N.; Rowcliffe, Arthur F.

    1989-01-01

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  4. Electrochemical behavior of the 316L steel type in a marine culture of microalgae (Porphyridium purpureum) under the 12/12 h photoperiod and effect of different working electrode exposure conditions on the biofilm-metal interface.

    PubMed

    Djemai-Zoghlache, Yamina; Isambert, Arsène; Belhaneche-Bensemra, Naima

    2011-12-01

    The industrial crops of microalgae use processes calling upon the presence of parts of metal nature such as steel 316L type. The goal of this study is to test the electrochemical behavior of this material in a marine culture of microalgae. Porphyridium purpureum was used under a photoperiod of alternation darkness/light 12/12 h, in order to apprehend the problems of biocorrosion involved in the biofouling. The evolution of the free potential of corrosion, according to the position of the samples and for different surface roughness, observations of the surface quality under the electron microscope with sweeping were carried out. The results showed that, overall, the strain P. purpureum does not have a corrosive effect on the 316L. The free potential of corrosion lies between -0.307 and -0.005 V(SCE). The adhesion of the cells seems stronger on the interface air/solid of the half-plunged sample with surface grit polished 1,000, confirmed by the presence of biofilm on the air part. The photoperiod acts on the evolution of the generated free potential of corrosion of the one 24-h period oscillation. Furthermore, the samples plunged horizontally lead to a stabilizing effect on the potential of free corrosion.

  5. Fine structure analysis of biocompatible ceramic materials based hydroxyapatite and metallic biomaterials 316L

    NASA Astrophysics Data System (ADS)

    Anghelina, F. V.; Ungureanu, D. N.; Bratu, V.; Popescu, I. N.; Rusanescu, C. O.

    2013-11-01

    The aim of this paper was to obtain and characterize (surface morphology and fine structure) two types of materials: Ca10(PO4)6(OH)2 hydroxyapatite powder (HAp) as biocompatible ceramic materials and AISI 316L austenitic stainless steels as metallic biomaterials, which are the components of the metal-ceramic composites used for medical implants in reconstructive surgery and prosthetic treatment. The HAp was synthesized by coprecipitation method, heat treated at 200 °C, 800 °C and 1200 °C for 4 h, analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The stainless steel 316L type was made by casting, annealing and machined with a low speed (100 mm/s) in order to obtain a smooth surface and after that has been studied from residual stresses point of view in three polishing regimes conditions: at low speed polishing (150 rpm), at high speed polishing (1500 rpm) and high speed-vibration contact polishing (1500 rpm) using wide angle X-ray diffractions (WAXD). The chemical compositions of AISI 316 steel samples were measured using a Foundry Master Spectrometer equipped with CCD detector for spectral lines and the sparking spots of AISI 316L samples were analyzed using SEM. By XRD the phases of HAp powders have been identified and also the degree of crystallinity and average size of crystallites, and with SEM, we studied the morphology of the HAp. It has been found from XRD analysis that we obtained HAp with a high degree of crystallinity at 800 °C and 1200 °C, no presence of impurity and from SEM analysis we noticed the influence of heat treatment on the ceramic particles morphology. From the study of residual stress profiles of 316L samples were observed that it differs substantially for different machining regimes and from the SEM analysis of sparking spots we revealed the rough surfaces of stainless steel rods necessary for a better adhesion of HAp on it.

  6. Improved Austenitic Steels for Power Plant Applications

    SciTech Connect

    Alman, David E.; Dunning, John S.; Schrems, Karol K.; Rawers, James C.; Wilson, Rick D.; Hawk, Jeffrey A.; Petty, Arthur V., Jr.

    2002-08-06

    Using alloy design principles, an austenitic alloy, with base composition of Fe-16Cr-16Ni-2Mn-1Mo (in weight percent, wt%), was formulated to which up to 5 wt% Si and/or Al were added specifically to improve the oxidation resistance. Cyclic oxidation tests were carried out in air at 700 and 800 C for 1000 hours. For comparison, Fe-18Cr-8Ni type-304 stainless steel alloys was also tested. The results showed that at 700 C, all the alloys were twice as oxidation resistant as the type-304 alloy (i.e., the experimental alloys showed weight gains about half that of type-304). Surprisingly, at 800 C, alloys that contained both Al and Si additions were less oxidation resistant than the type-304 alloy. However, alloys containing only Si additions were significantly more oxidation resistant than the type 304 alloys (i.e., showed weight gains 4 times less than the type-304 alloy). Further, alloys with only Si additions pre-oxidized at 800 C, showed zero weight gain in subsequent testing for 1000 hours at 700 C. This implies the potential for producing in-situ protective coating for these alloys. Preliminary exposure tests (1%H2S at 700 C for 360 hrs) indicated that the Si-modified alloys are more sulfidation resistant than type-304 alloy. The mechanical properties of the alloys, modified with carbide forming elements, were also evaluated; and at 600, 700 and 800 C the yield stresses of the carbide modified alloys were twice that of type-304 stainless steel. In this temperature range, the tensile properties of these alloys were comparable to literature values for type-347 stainless steel. It should be emphasized that the microstructures of the carbide forming alloys were not optimized with respect to grain size, carbide size and/or carbide distribution. Also, presented are initial results of vari-strain weld tests used to determine parameters for joining these alloys.

  7. Post-irradiation annealing effects of austenitic stainless steels in IASCC

    SciTech Connect

    Katsura, Ryoei; Ishiyama, Yoshihide; Yokota, Norikatu; Kato, Takahiko; Nakata, Kiyotomo; Fukuya, Kouji; Sakamoto, Hiroshi; Asano, Kyoichi

    1998-12-31

    Post-irradiation annealing effects on the thermal sensitization and IASCC recovery for highly irradiated types 304 and 316L stainless steels were investigated using EPR and SSR tests. Irradiated type 316L stainless steel (neutron fluence: 8 x 10{sup 25} n/m{sup 2}, E > 1 MeV) was not sensitized and IGSCC susceptibility significantly was reduced to 7--0% at 400--700 C (x1h) from 23% at as-irradiated condition. Irradiated type 304 stainless steel (neutron fluence: 1.2 x 10{sup 26} n/m{sup 2}, E > 1MeV) was more easily sensitized than unirradiated material and IGSCC susceptibility was reduced to 62--45% at 400--500 C from 95% at the as-irradiated condition. These results on types 304 and 316L stainless steels indicated that the thermal healing technic enhanced IASCC recovery.

  8. Effect of cold work on low-temperature sensitization behaviour of austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Kain, V.; Chandra, K.; Adhe, K. N.; De, P. K.

    2004-09-01

    The effects of cold work and low-temperature sensitization heat treatment of non-sensitized austenitic stainless steels have been investigated and related to the cracking in nuclear power reactors. Types 304, 304L and 304LN developed martensite after 15% cold working. Heat treatment of these cold worked steels at 500 °C led to sensitization of grain boundaries and the matrix and a desensitization effect was seen in 11 days due to fast diffusion rate of chromium in martensite. Types 316L and 316LN did not develop martensite upon cold rolling due to its chemical composition suppressing the martensite transformation (due to deformation) temperature, hence these were not sensitized at 500 °C. The sensitization of the martensite phase was always accompanied by a hump in the reactivation current peak in the double loop electrochemical potentiokinetic reactivation test, thus providing a test to detect such sensitization. It was shown that bending does not produce martensite and therefore, is a better method to simulate weld heat affected zone. Bending and heating at 500 °C for 11 days led to fresh precipitation due to increased retained strain and desensitization of 304LN due to faster diffusion rate of chromium along dislocations. The as received or solution annealed 304 and 304LN with 0.15% nitrogen showed increased sensitization after heat treatment at 500 °C, indicating the presence of carbides/nitrides.

  9. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel

    SciTech Connect

    Martinavicius, A.; Abrasonis, G.; Moeller, W.

    2011-10-01

    The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasing ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.

  10. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Martinavičius, A.; Abrasonis, G.; Möller, W.

    2011-10-01

    The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm-2), ion energy (0.5-1.2 keV), and temperature (370-430 °C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasing ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.

  11. A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Simonelli, Marco; Tuck, Chris; Aboulkhair, Nesma T.; Maskery, Ian; Ashcroft, Ian; Wildman, Ricky D.; Hague, Richard

    2015-09-01

    The creation of an object by selective laser melting (SLM) occurs by melting contiguous areas of a powder bed according to a corresponding digital model. It is therefore clear that the success of this metal Additive Manufacturing (AM) technology relies on the comprehension of the events that take place during the melting and solidification of the powder bed. This study was designed to understand the generation of the laser spatter that is commonly observed during SLM and the potential effects that the spatter has on the processing of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V. With the exception of Ti-6Al-4V, the characterization of the laser spatter revealed the presence of surface oxides enriched in the most volatile alloying elements of the materials. The study will discuss the implication of this finding on the material quality of the built parts.

  12. Weldable, age hardenable, austenitic stainless steel

    DOEpatents

    Brooks, J.A.; Krenzer, R.W.

    1975-07-22

    An age hardenable, austenitic stainless steel having superior weldability properties as well as resistance to degradation of properties in a hydrogen atmosphere is described. It has a composition of from about 24.0 to about 34.0 weight percent (w/o) nickel, from about 13.5 to about 16.0 w/o chromium, from about 1.9 to about 2.3 w/o titanium, from about 1.0 to about 1.5 w/ o molybdenum, from about 0.01 to about 0.05 w/o carbon, from about 0 to about 0.25 w/o manganese, from about 0 to about 0.01 w/o phosphorous and preferably about 0.005 w/o maximum, from about 0 to about 0.010 w/o sulfur and preferably about 0.005 w/o maximum, from about 0 to about 0.25 w/o silicon, from about 0.1 to about 0.35 w/o aluminum, from about 0.10 to about 0.50 w/o vanadium, from about 0 to about 0.0015 w/o boron, and the balance essentially iron. (auth)

  13. Weldability of neutron irradiated austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Asano, Kyoichi; Nishimura, Seiji; Saito, Yoshiaki; Sakamoto, Hiroshi; Yamada, Yuji; Kato, Takahiko; Hashimoto, Tsuneyuki

    1999-01-01

    Degradation of weldability in neutron irradiated austenitic stainless steel is an important issue to be addressed in the planning of proactive maintenance of light water reactor core internals. In this work, samples selected from reactor internal components which had been irradiated to fluence from 8.5 × 10 22 to 1.4 × 10 26 n/m 2 ( E > 1 MeV) corresponding to helium content from 0.11 to 103 appm, respectively, were subjected to tungsten inert gas arc (TIG) welding with heat input ranged 0.6-16 kJ/cm. The weld defects were characterized by penetrant test and cross-sectional metallography. The integrity of the weld was better when there were less helium and at lower heat input. Tensile properties of weld joint containing 0.6 appm of helium fulfilled the requirement for unirradiated base metal. Repeated thermal cycles were found to be very hazardous. The results showed the combination of material helium content and weld heat input where materials can be welded with little concern to invite cracking. Also, the importance of using properly selected welding procedures to minimize thermal cycling was recognized.

  14. Austenitic stainless steel for high temperature applications

    DOEpatents

    Johnson, Gerald D.; Powell, Roger W.

    1985-01-01

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; 0.01-0.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; 0.03 maximum, As; 0.01 maximum, O; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P+wt. % B+wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  15. A study of the neutron irradiation effects on the susceptibility to embrittlement of A316L and T91 steels in lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Sapundjiev, D.; Al Mazouzi, A.; Van Dyck, S.

    2006-09-01

    The effects of neutron irradiation on the susceptibility to liquid metal embrittlement of two primary selected materials for MYRRHA project an accelerator driven system (ADS), was investigated by means of slow strain rate tests (SSRT). The latter were carried out at 200 °C in nitrogen and in liquid Pb-Bi at a strain rate of 5 × 10 -6 s -1. The small tensile specimens were irradiated at the BR-2 reactor in the MISTRAL irradiation rig at 200 °C for 3 reactor cycles to reach a dose of about 1.50 dpa. The SSR tests were carried out under poor and under dissolved oxygen conditions (˜1.5 × 10 -12 wt% dissolved oxygen) which at this temperature will favour formation of iron and chromium oxides. Although both materials differ in structure (fcc for A316L against bcc for T91), their flow behaviour in contact with liquid lead bismuth eutectic before and after irradiation is very similar. Under these testing conditions none of them was found susceptible to liquid metal embrittlement (LME).

  16. Understanding the corrosion behavior of chromia-forming 316L stainless steel in dual oxidizing-reducing environment representative of SOFC interconnect

    SciTech Connect

    Ziomek-Moroz, Margaret; Cramer, Stephen D.; Holcomb, Gordon R.; Covino, Bernard S., Jr.; Matthes, Steven A.; Bullard, Sophie J.; Dunning, John S.; Alman, David E.; Singh, P.

    2003-11-01

    A and B site doped LaCrO3-based electronically conducting Perovskite ceramic materials have been extensively used as interconnects in solid oxide fule cells (SOFC) operating at 800° to 1000°C as the Perovskites offer good electrical conductivity, chemical compatibility with the adjacent components of the fuel cell, chemical stability in reducing and oxidizing atmospheres, and thermal expansion coefficients that match other cell components. However, requirements for good mechanical properties, electrical and thermal conductivities, and low cost make metallic interconnects more promising. Significant progress in reducing the operating temperature of SOFC from ~1000°C to ~750°C is expected to permit the use of metallic materials with substantial cost reduction. Among the commercially available metallic materials, Cr2O3 (chromia) scale-forming iron base alloys appear to be the most promising candidates since they can fulfill the technical and economical requirements. These alloys, however, remain prone to reactions with oxygen and water vapor at fuel cell operating conditions and formation of gaseous chromium oxides and oxyhydroxides. To study the degradation processes and corrosion mechanisms of commercial chromia scale-forming alloys under SOFC interconnect exposure conditions, 316L was selected for this research because of the availability of the materials. The dual environment to which the interconnect material was exposed consisted of dry air (simulates the cathode side environment) and a mixture of H2 and 3% H2O (simulates the anode side environment). Post-corrosion surface evaluation involved the use of optical and scanning electron microscopy, as well as energy dispersive X-ray analyses.

  17. Computational design of precipitation strengthened austenitic heat-resistant steels

    NASA Astrophysics Data System (ADS)

    Lu, Qi; Xu, Wei; van der Zwaag, Sybrand

    2013-09-01

    A new genetic alloy design approach based on thermodynamic and kinetic principles is presented to calculate the optimal composition of MX carbonitrides precipitation strengthened austenitic heat-resistant steels. Taking the coarsening of the MX carbonitrides as the process controlling the life time for steels in high temperature use, the high temperature strength is calculated as a function of steel chemistry, service temperature and time. New steel compositions for different service conditions are found yielding optimal combinations of strength and stability of the strengthening precipitation for specific applications such as fire-resistant steels (short-time property guarantee) and creep-resistant steels (long-time property guarantee). Using the same modelling approach, the high temperature strength and lifetime of existing commercial austenitic creep-resistant steels were also calculated and a good qualitative agreement with reported experimental results was obtained. According to the evaluation parameter employed, the newly defined steel compositions may have higher and more stable precipitation strengthening factors than existing high-temperature precipitate-strengthened austenite steels.

  18. Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic-Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Huang, Qiuliang; De Cooman, Bruno C.; Biermann, Horst; Mola, Javad

    2016-05-01

    The influence of martensite fraction ( f α') on the stabilization of austenite was studied by quench interruption below M s temperature of an Fe-13Cr-0.31C (mass pct) stainless steel. The interval between the quench interruption temperature and the secondary martensite start temperature, denoted as θ, was used to quantify the extent of austenite stabilization. In experiments with and without a reheating step subsequent to quench interruption, the variation of θ with f α' showed a transition after transformation of almost half of the austenite. This trend was observed regardless of the solution annealing temperature which influenced the martensite start temperature. The transition in θ was ascribed to a change in the type of martensite nucleation sites from austenite grain and twin boundaries at low f α' to the faults near austenite-martensite (A-M) boundaries at high f α'. At low temperatures, the local carbon enrichment of such boundaries was responsible for the enhanced stabilization at high f α'. At high temperatures, relevant to the quenching and partitioning processing, on the other hand, the pronounced stabilization at high f α' was attributed to the uniform partitioning of the carbon stored at A-M boundaries into the austenite. Reduction in the fault density of austenite served as an auxiliary stabilization mechanism at high temperatures.

  19. Austenite recrystallization and carbonitride precipitation in niobium microalloyed steels

    SciTech Connect

    Speer, J.G.; Hansen, S.S. )

    1989-01-01

    The response of austenite to thermomechanical treatment is investigated in two series of niobium microalloyed steels. Optical and electron metallographic techniques were used to follow the austenite recystallizaiton and carbonitride precipitation reactions in these steels. The first series of steels contained a constant level of 0.05Nb, with carbon levels varying from 0.008 to 0.25 pct. It was found that a lower carbon concentration results in faster austenite recrystallization due to a smaller carbonitride supersaturation which leads to a reduced precipitate nucleation rate. The second series of steels was designed with a constant carbonitride supersaturation by simultaneously varying the Nb and C concentrations while maintaining a constant solubility product. In these steels, the recrystallization kinetics increase as the volume fraction of Nb(C,N) is reduced and/or as the precipitate coarsening rate is increased. The volume fraction of carbonitrides increases as the Nb:(C + 12/14 N) ratio approaches the stoichiometric ratio of approximately 8:1. An experiment to determine whether Nb atoms dissolved in the austenite could exert a significant solute-drag effect on the recrystallization reaction indicated that 0.20Nb in solution could reduce the rate of recrystallization compared to a Nb-free C-Mn steel.

  20. Improved corrosion resistance and interfacial contact resistance of 316L stainless-steel for proton exchange membrane fuel cell bipolar plates by chromizing surface treatment

    NASA Astrophysics Data System (ADS)

    Lee, S. B.; Cho, K. H.; Lee, W. G.; Jang, H.

    The electrochemical performance and electrical contact resistance of chromized 316 stainless-steel (SS) are investigated under simulated operating condition in a proton-exchange membrane fuel cell (PEMFC). The corrosion resistance of the chromized stainless steel is assessed by potentiodynamic and potentiostatic tests and the interfacial contact resistance (ICR) is examined by measuring the electrical contact resistance as a function of the compaction force. The results show that the chromizing surface treatment improves the corrosion resistance of the stainless steel due to the high-chromium concentration in the diffuse coating layer. On the other hand, the excess Chromium content on the surface increases the contact resistance of the steel plate to a level that is excessively high for commercial applications. This study examines the root cause of the high-contact resistance after chromizing and reports the optimum process to improve the corrosion resistance without sacrificing the ICR by obtaining a chrome carbide on the outer layer.

  1. Austenitic stainless steel patterning by plasma assisted diffusion treatments

    NASA Astrophysics Data System (ADS)

    Czerwiec, T.; Marcos, G.; Thiriet, T.; Guo, Y.; Belmonte, T.

    2009-09-01

    The new concept of surface texturing or surface patterning on austenitic stainless steel by plasma assisted diffusion treatment is presented in this paper. It allows the creation of uniform micro or nano relief with regularly shaped asperities or depressions. Plasma assisted diffusion treatments are based on the diffusion of nitrogen and/or carbon in a metallic material at moderate to elevated temperatures. Below 420°C, a plasma assisted nitriding treatment of austenitic stainless steel produces a phase usually called expanded austenite. Expanded austenite is a metastable nitrogen supersaturated solid solution with a disordered fcc structure and a distorted lattice. The nitrided layer with the expanded austenite is highly enriched in nitrogen (from 10 to 35 at%) and submitted to high compressive residual stresses. From mechanical consideration, it is shown that the only possible deformation occurs in the direction perpendicular to the surface. Such an expansion of the layer from the initial surface of the substrate to the gas phase is used here for surface patterning of stainless steel parts. The surface patterning is performed by using masks (TEM grid) and multi-dipolar plasmas.

  2. Synergistic Computational and Microstructural Design of Next- Generation High-Temperature Austenitic Stainless Steels

    SciTech Connect

    Karaman, Ibrahim; Arroyave, Raymundo

    2015-07-31

    The purpose of this project was to: 1) study deformation twinning, its evolution, thermal stability, and the contribution on mechanical response of the new advanced stainless steels, especially at elevated temperatures; 2) study alumina-scale formation on the surface, as an alternative for conventional chromium oxide, that shows better oxidation resistance, through alloy design; and 3) design new generation of high temperature stainless steels that form alumina scale and have thermally stable nano-twins. The work involved few baseline alloys for investigating the twin formation under tensile loading, thermal stability of these twins, and the role of deformation twins on the mechanical response of the alloys. These baseline alloys included Hadfield Steel (Fe-13Mn-1C), 316, 316L and 316N stainless steels. Another baseline alloy was studied for alumina-scale formation investigations. Hadfield steel showed twinning but undesired second phases formed at higher temperatures. 316N stainless steel did not show signs of deformation twinning. Conventional 316 stainless steel demonstrated extensive deformation twinning at room temperature. Investigations on this alloy, both in single crystalline and polycrystalline forms, showed that deformation twins evolve in a hierarchical manner, consisting of micron–sized bundles of nano-twins. The width of nano-twins stays almost constant as the extent of strain increases, but the width and number of the bundles increase with increasing strain. A systematic thermomechanical cycling study showed that the twins were stable at temperatures as high as 900°C, after the dislocations are annealed out. Using such cycles, volume fraction of the thermally stable deformation twins were increased up to 40% in 316 stainless steel. Using computational thermodynamics and kinetics calculations, we designed two generations of advanced austenitic stainless steels. In the first generation, Alloy 1, which had been proposed as an alumina

  3. 80 FR 29350 - Nonmetallic Thermal Insulation for Austenitic Stainless Steel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2015-05-21

    ... Doc No: 2015-12292] NUCLEAR REGULATORY COMMISSION [NRC-2014-0209] Nonmetallic Thermal Insulation for..., ``Nonmetallic Thermal Insulation for Austenitic Stainless Steel.'' The RG describes methods and procedures that... using nonmetallic thermal insulation to minimize any contamination that could promote stress-...

  4. Electron Backscatter Diffraction and Transmission Kikuchi Diffraction Analysis of an Austenitic Stainless Steel Subjected to Surface Mechanical Attrition Treatment and Plasma Nitriding.

    PubMed

    Proust, Gwénaëlle; Retraint, Delphine; Chemkhi, Mahdi; Roos, Arjen; Demangel, Clemence

    2015-08-01

    Austenitic 316L stainless steel can be used for orthopedic implants due to its biocompatibility and high corrosion resistance. Its range of applications in this field could be broadened by improving its wear and friction properties. Surface properties can be modified through surface hardening treatments. The effects of such treatments on the microstructure of the alloy were investigated here. Surface Mechanical Attrition Treatment (SMAT) is a surface treatment that enhances mechanical properties of the material surface by creating a thin nanocrystalline layer. After SMAT, some specimens underwent a plasma nitriding process to further enhance their surface properties. Using electron backscatter diffraction, transmission Kikuchi diffraction, energy dispersive spectroscopy, and transmission electron microscopy, the microstructural evolution of the stainless steel after these different surface treatments was characterized. Microstructural features investigated include thickness of the nanocrystalline layer, size of the grains within the nanocrystalline layer, and depth of diffusion of nitrogen atoms within the material. PMID:26139391

  5. Electron Backscatter Diffraction and Transmission Kikuchi Diffraction Analysis of an Austenitic Stainless Steel Subjected to Surface Mechanical Attrition Treatment and Plasma Nitriding.

    PubMed

    Proust, Gwénaëlle; Retraint, Delphine; Chemkhi, Mahdi; Roos, Arjen; Demangel, Clemence

    2015-08-01

    Austenitic 316L stainless steel can be used for orthopedic implants due to its biocompatibility and high corrosion resistance. Its range of applications in this field could be broadened by improving its wear and friction properties. Surface properties can be modified through surface hardening treatments. The effects of such treatments on the microstructure of the alloy were investigated here. Surface Mechanical Attrition Treatment (SMAT) is a surface treatment that enhances mechanical properties of the material surface by creating a thin nanocrystalline layer. After SMAT, some specimens underwent a plasma nitriding process to further enhance their surface properties. Using electron backscatter diffraction, transmission Kikuchi diffraction, energy dispersive spectroscopy, and transmission electron microscopy, the microstructural evolution of the stainless steel after these different surface treatments was characterized. Microstructural features investigated include thickness of the nanocrystalline layer, size of the grains within the nanocrystalline layer, and depth of diffusion of nitrogen atoms within the material.

  6. Effect of retained austenite and solute carbon on the mechanical properties in TRIP steels

    NASA Astrophysics Data System (ADS)

    Seong, B. S.; Shin, E. J.; Han, Y. S.; Lee, C. H.; Kim, Y. J.; Kim, S. J.

    2004-07-01

    The mechanical properties of transformation induced plasticity (TRIP) steels are strongly affected by the amount of retained austenite and the solute carbon in austenite. In this study, the Rietveld method using neutron diffraction patterns was introduced for determining the weight fraction of retained austenite and the solute carbon content. C-Si-Mn TRIP steels with different austempering temperatures were used. The retained austenite and the carbon content in the austenite of these steel sheets were quantitatively analyzed by neutron diffractions, and their effects on the mechanical properties of the steels were evaluated.

  7. Accurate modelling of anisotropic effects in austenitic stainless steel welds

    SciTech Connect

    Nowers, O. D.; Duxbury, D. J.; Drinkwater, B. W.

    2014-02-18

    The ultrasonic inspection of austenitic steel welds is challenging due to the formation of highly anisotropic and heterogeneous structures post-welding. This is due to the intrinsic crystallographic structure of austenitic steel, driving the formation of dendritic grain structures on cooling. The anisotropy is manifested as both a ‘steering’ of the ultrasonic beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the quantitative effects and relative impacts of these phenomena are not well-understood. A semi-analytical simulation framework has been developed to allow the study of anisotropic effects in austenitic stainless steel welds. Frequency-dependent scatterers are allocated to a weld-region to approximate the coarse grain-structures observed within austenitic welds and imaged using a simulated array. The simulated A-scans are compared against an equivalent experimental setup demonstrating excellent agreement of the Signal to Noise (S/N) ratio. Comparison of images of the simulated and experimental data generated using the Total Focusing Method (TFM) indicate a prominent layered effect in the simulated data. A superior grain allocation routine is required to improve upon this.

  8. An alternative to the crystallographic reconstruction of austenite in steels

    SciTech Connect

    Bernier, Nicolas; Bracke, Lieven; Malet, Loïc; Godet, Stéphane

    2014-03-01

    An alternative crystallographic austenite reconstruction programme written in Matlab is developed by combining the best features of the existing models: the orientation relationship refinement, the local pixel-by-pixel analysis and the nuclei identification and spreading strategy. This programme can be directly applied to experimental electron backscatter diffraction mappings. Its applicability is demonstrated on both quenching and partitioning and as-quenched lath-martensite steels. - Highlights: • An alternative crystallographic austenite reconstruction program is developed. • The method combines a local analysis and a nuclei identification/spreading strategy. • The validity of the calculated orientation relationship is verified on a Q and P steel. • The accuracy of the reconstructed microtexture is investigated on a martensite steel.

  9. Phase control of austenitic chrome-nickel steel

    SciTech Connect

    Korkh, M. K. Davidov, D. I. Korkh, J. V. Rigmant, M. B. Nichipuruk, A. P. Kazantseva, N. V.

    2015-10-27

    The paper presents the results of the comparative study of the possibilities of different structural and magnetic methods for detection and visualization of the strain-induced martensitic phase in low carbon austenitic chromium-nickel steel. Results of TEM, SEM, optical microscopy, atomic and magnetic force microscopy, and magnetic measurements are presented. Amount of the magnetic strain-induced martensite was estimated. We pioneered magnetic force microscopic images of the single domain cluster distribution of the strain-induced martensite in austenite-ferrite materials.

  10. Oxidation resistant high creep strength austenitic stainless steel

    DOEpatents

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  11. Measurement of ultrasonic scattering attenuation in austenitic stainless steel welds: realistic input data for NDT numerical modeling.

    PubMed

    Ploix, Marie-Aude; Guy, Philippe; Chassignole, Bertrand; Moysan, Joseph; Corneloup, Gilles; El Guerjouma, Rachid

    2014-09-01

    Multipass welds made of 316L stainless steel are specific welds of the primary circuit of pressurized water reactors in nuclear power plants. Because of their strong heterogeneous and anisotropic nature due to grain growth during solidification, ultrasonic waves may be greatly deviated, split and attenuated. Thus, ultrasonic assessment of the structural integrity of such welds is quite complicated. Numerical codes exist that simulate ultrasonic propagation through such structures, but they require precise and realistic input data, as attenuation coefficients. This paper presents rigorous measurements of attenuation in austenitic weld as a function of grain orientation. In fact attenuation is here mainly caused by grain scattering. Measurements are based on the decomposition of experimental beams into plane-wave angular spectra and on the modeling of the ultrasonic propagation through the material. For this, the transmission coefficients are calculated for any incident plane wave on an anisotropic plate. Two different hypotheses on the welded material are tested: first it is considered as monoclinic, and then as triclinic. Results are analyzed, and validated through comparison to theoretical predictions of related literature. They underline the great importance of well-describing the anisotropic structure of austenitic welds for UT modeling issues.

  12. Intermetallic strengthened alumina-forming austenitic steels for energy applications

    NASA Astrophysics Data System (ADS)

    Hu, Bin

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, materials required are strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe 2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. This research starts with microstructural and microchemical analyses of these intermetallic strengthened alumina-forming austenitic steels in a scanning electron microscope. The microchemistry of precipitates, as determined by energy-dispersive x-ray spectroscopy and transmission electron microscope, is also studied. Different thermo-mechanical treatments were carried out to these stainless steels in an attempt to further improve their mechanical properties. The microstructural and microchemical analyses were again performed after the thermo-mechanical processing. Synchrotron X-ray diffraction was used to measure the lattice parameters of these steels after different thermo-mechanical treatments. Tensile tests at both room and elevated temperatures were performed to study mechanical behaviors of this novel alloy system; the deformation mechanisms were studied by strain rate jump tests at elevated temperatures. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these alumina-forming austenitic steels after creep tests. Experiments were carried out to study the effects of boron and carbon additions in the aged alumina-forming austenitic steels.

  13. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi{sub 5-x}Al{sub x} (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  14. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi[sub 5-x]Al[sub x] (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  15. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld metal.

  16. Modeling of Austenite Grain Growth During Austenitization in a Low Alloy Steel

    NASA Astrophysics Data System (ADS)

    Dong, Dingqian; Chen, Fei; Cui, Zhenshan

    2016-01-01

    The main purpose of this work is to develop a pragmatic model to predict austenite grain growth in a nuclear reactor pressure vessel steel. Austenite grain growth kinetics has been investigated under different heating conditions, involving heating temperature, holding time, as well as heating rate. Based on the experimental results, the mathematical model was established by regression analysis. The model predictions present a good agreement with the experimental data. Meanwhile, grain boundary precipitates and pinning effects on grain growth were studied by transmission electron microscopy. It is found that with the increasing of the temperature, the second-phase particles tend to be dissolved and the pinning effects become smaller, which results in a rapid growth of certain large grains with favorable orientation. The results from this study provide the basis for the establishment of large-sized ingot heating specification for SA508-III steel.

  17. Steel powder with a metastable austenite structure

    SciTech Connect

    Antsiferov, V.N.; Maslennikov, N.; Shatsov, A.A.

    1994-09-01

    The effect of technological parameters of fabrication on wear resistance and phase transformations in the surface layer of a chromium-nickel steel is studied. A statistical model is proposed for prediction of the content inhomogeneity of the steel. Enhanced abrasive wear resistance is attained by appropriate transformations in the surface layer.

  18. Grain Boundary Strengthening in High Mn Austenitic Steels

    NASA Astrophysics Data System (ADS)

    Kang, Jee-Hyun; Duan, Shanghong; Kim, Sung-Joon; Bleck, Wolfgang

    2016-05-01

    The Hall-Petch relationship is investigated to find the yield strengths of two high Mn austenitic steels. The Hall-Petch coefficient is found to depend on the overall C concentration and cooling rate, which suggests that the C concentration at the grain boundaries is an important factor. The pile-up model suggests that C raises the stress for the dislocation emission, while the ledge model predicts that C increases the density of ledges which act as dislocation sources.

  19. Manganese-stabilized austenitic stainless steels for fusion applications

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-01-01

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  20. Manganese-stabilized austenitic stainless steels for fusion applications

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-08-07

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  1. Corrosion of austenitic and martensitic stainless steels in flowing 17Li83Pb alloy

    NASA Astrophysics Data System (ADS)

    Broc, M.; Flament, T.; Fauvet, P.; Sannier, J.

    1988-07-01

    With regard to the behaviour of 316 L stainless steel at 400°C in flowing anisothermal 17Li83Pb the mass transfer suffered by this steel appears to be quite important without noticeable influence of constant or cyclic stress. Evaluation made from solution-annealed specimens leads to a corrosion rate of approximately 30 μm yr -1 at steady state to which a depth of 25 μm has to be added to take into account the initial period phenomena. On the other hand, with semi-stagnant 17Li83Pb at 400° C, the mass transfer of 316 L steel appears to be lower and more acceptable after a 3000-h exposure; but long-time kinetics data have to be achieved in order to see if that better behaviour is persistent and does not correspond to a longer incubation period. As for the martensitic steels their corrosion rate at 450°C in the thermal convection loop TULIP is constant up to 3000 h and five times lower than that observed for 316 L steel in the same conditions.

  2. Researches upon the cavitation erosion behaviour of austenite steels

    NASA Astrophysics Data System (ADS)

    Bordeasu, I.; Popoviciu, M. O.; Mitelea, I.; Salcianu, L. C.; Bordeasu, D.; Duma, S. T.; Iosif, A.

    2016-02-01

    Paper analyzes the cavitation erosion behavior of two stainless steels with 100% austenitic structure but differing by the chemical composition and the values of mechanical properties. The research is based on the MDE(t) and MDER(t) characteristic curves. We studied supplementary the aspect of the eroded areas by other to different means: observations with performing optical microscopes and roughness measurements. The tests were done in the T2 vibratory facility in the Cavitation Laboratory of the Timisoara Polytechnic University. The principal purpose of the study is the identification of the elements influencing significantly the cavitation erosion resistance. It was established the effect of the principal chemical components (determining the proportion of the structural components in conformity the Schaffler diagram) upon the cavitation erosion resistance. The results of the researches present the influence of the proportion of unstable austenite upon cavitation erosion resistance. The stainless steel with the great proportion of unstable austenite has the best behavior. The obtained conclusion are important for the metallurgists which realizes the stainless steels used for manufacturing the runners of hydraulic machineries (turbines and pumps) with increased resistance to cavitation attack.

  3. Thermo-mechanical processing of austenitic steel to mitigate surface related degradation

    NASA Astrophysics Data System (ADS)

    Idell, Yaakov Jonathan

    Thermo-mechanical processing plays an important role in materials property optimization through microstructure modification, required by demanding modern materials applications. Due to the critical role of austenitic stainless steels, such as 316L, as structural components in harsh environments, e.g. in nuclear power plants, improved degradation resistance is desirable. A novel two-dimensional plane strain machining process has shown promise achieving significant grain size refinement through severe plastic deformation (SPD) and imparting large strains in the surface and subsurface regions of the substrate in various metals and alloys. The deformation process creates a heavily deformed 20 -- 30 micron thick nanocrystalline surface layer with increased hardness and minimal martensite formation. Post-deformation processing annealing treatments have been applied to assess stability of the refined scale microstructures and the potential for obtaining grain boundary engineered microstructures with increased fraction of low-energy grain boundaries and altered grain boundary network structure. Varying the deformation and heat treatment process parameters, allows for development of a full understanding of the nanocrystalline layer and cross-section of the surface substrate created. Micro-characterization was performed using hardness measurements, magnetometry, x-ray diffraction, scanning and transmission electron microscopy to assess property and microstructural changes. This study provides a fundamental understanding of two-dimensional plane strain machining as a thermo-mechanical processing technique, which may in the future deliver capabilities for creating grain boundary engineered surface modified components, typified by a combination of grain refinement with improved grain boundary network interconnectivity attributes suitable for use in harsh environments, such as those in commercial nuclear power plants where improved resistance to irradiation stress corrosion

  4. Stress corrosion cracking behavior of irradiated model austenitic stainless steel alloys.

    SciTech Connect

    Chung, H. M.; Karlsen, T. M.; Ruther, W. E.; Shack, W. J.; Strain, R. V.

    1999-07-16

    Slow-strain-rate tensile tests (SSRTs) and posttest fractographic analyses by scanning electron microscopy were conducted on 16 austenitic stainless steel (SS) alloys that were irradiated at 289 C in He. After irradiation to {approx}0.3 x 10{sup 21} n{center_dot}cm{sup {minus}2} and {approx}0.9 x 10{sup 21} n{center_dot}cm{sup {minus}2} (E >1 MeV), significant heat-to-heat variations in the degree of intergranular and transgranular stress corrosion cracking (IGSCC and TGSCC) were observed. Following irradiation to a fluence of {approx}0.3 x 10{sup 21} n{center_dot}cm{sup {minus}2}, a high-purity laboratory heat of Type 316L SS (Si {approx} 0.024 wt%) exhibited the highest susceptibility to IGSCC. The other 15 alloys exhibited negligible susceptibility to IGSCC at this low fluence. The percentage of TGSCC on the fracture surfaces of SSRT specimens of the 16 alloys at {approx}0.3 x 10{sup 21} n{center_dot}cm{sup {minus}2} (E > 1 MeV) could be correlated well with N and Si concentrations; all alloys that contained <0.01 wt.% N and <1.0 wt. % Si were susceptible, whereas all alloys that contained >0.01 wt.% N or >1.0 wt.% Si were relatively resistant. High concentrations of Cr were beneficial. Alloys that contain <15.5 wt.% Cr exhibited greater percentages of TGSCC and IGSCC than those alloys with {approx}18 wt.% Cr, whereas an alloy that contains >21 wt.% Cr exhibited less susceptibility than the lower-Cr alloys under similar conditions.

  5. Irradiation-assisted stress corrosion cracking of model austenitic stainless steel.

    SciTech Connect

    Chung, H. M.; Ruther, W. E.; Strain, R. V.; Shack, W. J.; Karlsen, T. M.

    1999-10-26

    Slow-strain-rate tensile (SSRT) tests were conducted on model austenitic stainless steel (SS) alloys that were irradiated at 289 C in He. After irradiation to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup 2} and {approx} 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV), significant heat-to-heat variations in the degree of intergranular and transgranular stress corrosion cracking (IGSCC and TGSCC) were observed. At {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2}, a high-purity heat of Type 316L SS that contains a very low concentration of Si exhibited the highest susceptibility to IGSCC. In unirradiated state, Types 304 and 304L SS did not exhibit a systematic effect of Si content on alloy strength. However, at {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2}, yield and maximum strengths decreased significantly as Si content was increased to >0.9 wt.%. Among alloys that contain low concentrations of C and N, ductility and resistance to TGSCC and IGSCC were significantly greater for alloys with >0.9 wt.% Si than for alloys with <0.47 wt.% Si. Initial data at {approx}0.9 x 10{sup 21} n {center_dot} cm{sup -2} were also consistent with the beneficial effect of high Si content. This indicates that to delay onset of and reduce susceptibility to irradiation-assisted stress corrosion cracking (IASCC), at least at low fluence levels, it is helpful to ensure a certain minimum concentration of Si. High concentrations of Cr were also beneficial; alloys that contain <15.5 wt.% Cr exhibited greater susceptibility to IASCC than alloys with {approx}18 wt.% Cr, whereas an alloy that contains >21 wt.% Cr exhibited less susceptibility than the lower-Cr alloys under similar conditions.

  6. Microstructure and Elemental Distribution in a Cast Austenitic Steel

    SciTech Connect

    Kenik, Edward A; Busby, Jeremy T; Hoelzer, David T; Rowcliffe, Arthur Frederick; Vitek, John Michael

    2007-01-01

    Casting of austenitic stainless steels offers the possibility of directly producing large and/or complex structures, such as the first wall shield module or the diverter cassette for the International Tokomak Experimental Reactor. However, the resulting mechanical properties and the corrosion resistance of such cast components can be inferior compared to conventionally forged components because of the larger grain size, lower dislocation density and extensive segregation inherent in the cast material. This study examines the microstructural and compositional heterogeneities of a large casting of 316N stainless steel, as well as the possibility of improving the homogeneity and mechanical properties of such a cast material.

  7. Compatibility Assessment of Advanced Stainless Steels in Sodium

    SciTech Connect

    Pawel, Steven J

    2012-01-01

    Type 316L stainless steel capsules containing commercially pure sodium and miniature tensile specimens of HT-UPS (austenitic, 14Cr-16Ni), NF-616 (ferritic/martensitic, 9Cr-2W-0.5Mo), or 316L (austenitic, 17Cr-10Ni-2Mo) stainless steel were exposed at 600 or 700 C for 100 and 400 h as a screening test for compatibility. Using weight change, tensile testing, and metallographic analysis, HT-UPS and 316L were found to be largely immune to changes resulting from sodium exposure, but NF-616 was found susceptible to substantial decarburization at 700 C. Subsequently, two thermal convection loops (TCLs) constructed of 316L and loaded with commercially pure sodium and miniature tensile specimens of HT-UPS and 316L were operated for 2000 h each one between 500 and 650 C, the other between 565 and 725 C at a flow rate of about 1.5 cm/s. Changes in specimen appearance, weight, and tensile properties were observed to be very minor in all cases, and there was no metallographic evidence of microstructure changes, composition gradients, or mass transfer resulting from prolonged exposure in a TCL. Thus, it appears that HT-UPS and 316L stainless steels are similarly compatible with commercially pure sodium under these exposure conditions.

  8. Austenite Static Recrystallization Kinetics in Microalloyed B Steels

    NASA Astrophysics Data System (ADS)

    Larrañaga-Otegui, Ane; Pereda, Beatriz; Jorge-Badiola, Denis; Gutiérrez, Isabel

    2016-06-01

    Boron is added to steels to increase hardenability, substituting of more expensive elements. Moreover, B acts as a recrystallization delaying element when it is in solid solution. However, B can interact with N and/or C to form nitrides and carbides at high temperatures, limiting its effect on both phase transformation and recrystallization. On the other hand, other elements like Nb and Ti are added due to the retarding effect that they exert on the austenite softening processes, which results in pancaked austenite grains and refined room microstructures. In B steels, Nb and Ti are also used to prevent B precipitation. However, the complex interaction between these elements and its effect on the austenite microstructure evolution during hot working has not been investigated in detail. The present work is focused on the effect the B exerts on recrystallization when added to microalloyed steels. Although B on its own leads to retarded static recrystallization kinetics, when Nb is added a large delay in the static recrystallization times is observed in the 1273 K to 1373 K (1000 °C to 1100 °C) temperature range. The effect is larger than that predicted by a model developed for Nb-microalloyed steels, which is attributed to a synergistic effect of both elements. However, this effect is not so prominent for Nb-Ti-B steels. The complex effect of the composition on recrystallization kinetics is explained as a competition between the solute drag and precipitation pinning phenomena. The effect of the microalloying elements is quantified, and a new model for the predictions of recrystallization kinetics that accounts for the B and Nb+B synergetic effects is proposed.

  9. Irradiation-assisted stress corrosion cracking behavior of austenitic stainless steels applicable to LWR core internals.

    SciTech Connect

    Chung, H. M.; Shack, W. J.; Energy Technology

    2006-01-31

    This report summarizes work performed at Argonne National Laboratory on irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels that were irradiated in the Halden reactor in simulation of irradiation-induced degradation of boiling water reactor (BWR) core internal components. Slow-strain-rate tensile tests in BWR-like oxidizing water were conducted on 27 austenitic stainless steel alloys that were irradiated at 288 C in helium to 0.4, 1.3, and 3.0 dpa. Fractographic analysis was conducted to determine the fracture surface morphology. Microchemical analysis by Auger electron spectroscopy was performed on BWR neutron absorber tubes to characterize grain-boundary segregation of important elements under BWR conditions. At 0.4 and 1.4 dpa, transgranular fracture was mixed with intergranular fracture. At 3 dpa, transgranular cracking was negligible, and fracture surface was either dominantly intergranular, as in field-cracked core internals, or dominantly ductile or mixed. This behavior indicates that percent intergranular stress corrosion cracking determined at {approx}3 dpa is a good measure of IASCC susceptibility. At {approx}1.4 dpa, a beneficial effect of a high concentration of Si (0.8-1.5 wt.%) was observed. At {approx}3 dpa, however, such effect was obscured by a deleterious effect of S. Excellent resistance to IASCC was observed up to {approx}3 dpa for eight heats of Types 304, 316, and 348 steel that contain very low concentrations of S. Susceptibility of Types 304 and 316 steels that contain >0.003 wt.% S increased drastically. This indicates that a sulfur related critical phenomenon plays an important role in IASCC. A sulfur content of <0.002 wt.% is the primary material factor necessary to ensure good resistance to IASCC. However, for Types 304L and 316L steel and their high-purity counterparts, a sulfur content of <0.002 wt.% alone is not a sufficient condition to ensure good resistance to IASCC. This is in distinct contrast to

  10. Development of Cast Alumina-Forming Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; Walker, L. R.; Meyer, H. M., III; Leonard, D. N.

    2016-09-01

    Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800-850°C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.

  11. Reducing tool wear when machining austenitic stainless steels

    SciTech Connect

    Magee, J.H.; Kosa, T.

    1998-07-01

    Austenitic stainless steels are considered more difficult to machine than carbon steels due to their high work hardening rate, large spread between yield and ultimate tensile strength, high toughness and ductility, and low thermal conductivity. These characteristics can result in a built-up edge or excessive tool wear during machining, especially when the cutting speed is too high. The practical solution is to lower the cutting speed until tool life reaches an acceptable level. However, lower machining speed negatively impacts productivity. Thus, in order to overcome tool wear at relatively high machining speeds for these alloys, on-going research is being performed to improve cutting fluids, develop more wear-resistant tools, and to modify stainless steels to make them less likely to cause tool wear. This paper discusses compositional modifications to the two most commonly machined austenitic stainless steels (Type 303 and 304) which reduced their susceptibility to tool wear, and allowed these grades to be machined at higher cutting speeds.

  12. Dissolution and oxidation behaviour of various austenitic steels and Ni rich alloys in lead-bismuth eutectic at 520 °C

    NASA Astrophysics Data System (ADS)

    Roy, Marion; Martinelli, Laure; Ginestar, Kevin; Favergeon, Jérôme; Moulin, Gérard

    2016-01-01

    Ten austenitic steels and Ni rich alloys were tested in static lead-bismuth eutectic (LBE) at 520 °C in order to obtain a selection of austenitic steels having promising corrosion behaviour in LBE. A test of 1850 h was carried out with a dissolved oxygen concentration between 10-9 and 5 10-4 g kg-1. The combination of thermodynamic of the studied system and literature results leads to the determination of an expression of the dissolved oxygen content in LBE as a function of temperature: RT(K)ln[O](wt%) = -57584/T(K) -55.876T(K) + 254546 (R is the gas constant in J mol-1 K-1). This relation can be considered as a threshold of oxygen content above which only oxidation is observed on the AISI 316L and AISI 304L austenitic alloys in static LBE between 400 °C and 600 °C. The oxygen content during the test leads to both dissolution and oxidation of the samples during the first 190 h and leads to pure oxidation for the rest of the test. Results of mixed oxidation and dissolution test showed that only four types of corrosion behaviour were observed: usual austenitic steels and Ni rich alloys behaviour including the reference alloy 17Cr-12Ni-2.5Mo (AISI 316LN), the 20Cr-31Ni alloy one, the Si containing alloy one and the Al containing alloy one. According to the proposed criteria of oxidation and dissolution kinetics, silicon rich alloys and aluminum rich alloy presented a promising corrosion behaviour.

  13. Serrated flow behavior in AL6XN austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Meng, L. J.; Sun, J.; Xing, H.; Pang, G. W.

    2009-10-01

    Serrated flow behavior of the AL6XN austenitic stainless steel has been investigated at different temperatures and strain rates. The results show the serrated flow, peak/plateau in flow stress and negative strain rate sensitivity appearing in tensile deformation of the AL6XN steel at 773-973 K and 3.3 × 10 -5-3.3 × 10 -3 s -1 (excluding 873 K, 3.3 × 10 -5 s -1), suggesting the occurrence of dynamic strain aging (DSA). The activation energy for type-A and -(A + B) serrations was calculated to be 304 kJ/mol and diffusion of substitutional solutes, such as chromium and molybdenum is considered as the mechanism of serrated flow. TEM observations further revealed a typical planar slip mode in the regime of DSA of the deformed AL6XN steel.

  14. Effects of Retained Austenite Stability and Volume Fraction on Deformation Behaviors of TRIP Steels

    SciTech Connect

    Choi, Kyoo Sil; Soulami, Ayoub; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2010-10-02

    In this paper, the separate effects of austenite stability and its volume fraction on the deformation behaviors of transformation-induced plasticity (TRIP) steels are investigated based on the microstructure-based finite element modeling method. The effects of austenite stability on the strength, ductility and formability of TRIP steels are first examined based on the microstructure of a commercial TRIP 800 steel. Then, the separate effects of the austenite volume fraction on the overall deformation behaviors of TRIP steels are examined based on the various representative volume elements (RVEs). The computational results suggest that the higher austenite stability is helpful to increase the ductility and formability, but not the UTS. However, the increase of austenite volume fraction alone is not helpful in improving the performance of TRIP steels. This may indicate that various other material factors should also be concurrently adjusted during thermo-mechanical manufacturing process in a way to increase the performance of TRIP steels, which needs further investigation.

  15. Strain aging of austenitic Hadfield manganese steel

    SciTech Connect

    Owen, W.S.; Grujicic, M.

    1998-12-11

    Strain aging of Hadfield steel is discussed in terms of the interstitial octahedron, local-order model, which defines order as the probability that a C atom in an octahedral cluster of metal atoms has n (an integer between 0 and 6) Mn nearest neighbors. Equilibrium order is assessed by a Monte Carlo procedure using pair exchange energies derived from an established thermodynamic database and a Boltzmann distribution function. The disorder produced by the passage of a slip dislocation, the resulting change in free energy and, consequently, the stress opposing dislocation motion are calculated both for a single isolated dislocation and for a sequence of dislocations moving on the same slip plane. The model is extended to analyze aging effects involving diffusion of carbon before or during deformation. It is assumed that, during aging, atoms on the metal sublattice are frozen on sites determined either by the high-temperature equilibrium anneal or by prior deformation. Only diffusion of carbon is allowed. The fully aged condition at selected aging temperatures is simulated using a Monte Carlo procedure to assess local order when the free energy of the system is minimum (para-equilibrium). It is shown that the increase in strength on aging is a direct result of the relatively small thermal energy at the aging temperature favoring an increase in the number of Mn-C atom pairs. The predictions of the model are supported by the results of static aging experiments and the model provides a complete phenomenological description of dynamic strain aging in Hadfield steel.

  16. Characterization of blasted austenitic stainless steel and its corrosion resistance

    NASA Astrophysics Data System (ADS)

    Otsubo, F.; Kishitake, K.; Akiyama, T.; Terasaki, T.

    2003-12-01

    It is known that the corrosion resistance of stainless steel is deteriorated by blasting, but the reason for this deterioration is not clear. A blasted austenitic stainless steel plate (JIS-SUS304) has been characterized with comparison to the scraped and non-blasted specimens. The surface roughness of the blasted specimen is larger than that of materials finished with #180 paper. A martensite phase is formed in the surface layer of both blasted and scraped specimens. Compressive residual stress is generated in the blasted specimen and the maximum residual stress is formed at 50 100 µm from the surface. The corrosion potentials of the blasted specimen and subsequently solution treated specimen are lower than that of the non-blasted specimen. The passivation current densities of the blasted specimens are higher those of the non-blasted specimen. The blasted specimen and the subsequently solution treated specimen exhibit rust in 5% sodium chloride (NaCl) solution, while the non-blasted specimen and ground specimen do not rust in the solution. It is concluded that the deterioration of corrosion resistance of austenitic stainless steel through blasting is caused by the roughed morphology of the surface.

  17. Three phase crystallography and solute distribution analysis during residual austenite decomposition in tempered nanocrystalline bainitic steels

    SciTech Connect

    Caballero, F.G.; Yen, Hung-Wei; Miller, M.K.; Cornide, J.; Chang, Hsiao-Tzu; Garcia-Mateo, C.; Yang, Jer-Ren

    2014-02-15

    Interphase carbide precipitation due to austenite decomposition was investigated by high resolution transmission electron microscopy and atom probe tomography in tempered nanostructured bainitic steels. Results showed that cementite (θ) forms by a paraequilibrium transformation mechanism at the bainitic ferrite–austenite interface with a simultaneous three phase crystallographic orientation relationship. - Highlights: • Interphase carbide precipitation due to austenite decomposition • Tempered nanostructured bainitic steels • High resolution transmission electron microscopy and atom probe tomography • Paraequilibrium θ with three phase crystallographic orientation relationship.

  18. Microstructures of laser deposited 304L austenitic stainless steel

    SciTech Connect

    BROOKS,JOHN A.; HEADLEY,THOMAS J.; ROBINO,CHARLES V.

    2000-05-22

    Laser deposits fabricated from two different compositions of 304L stainless steel powder were characterized to determine the nature of the solidification and solid state transformations. One of the goals of this work was to determine to what extent novel microstructure consisting of single-phase austenite could be achieved with the thermal conditions of the LENS [Laser Engineered Net Shape] process. Although ferrite-free deposits were not obtained, structures with very low ferrite content were achieved. It appeared that, with slight changes in alloy composition, this goal could be met via two different solidification and transformation mechanisms.

  19. Effects of Laser Peening Treatment on High Cycle Fatigue and Crack Propagation Behaviors in Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Masaki, Kiyotaka; Ochi, Yasuo; Matsumura, Takashi; Ikarashi, Takaaki; Sano, Yuji

    Laser peening without protective coating (LPwC) treatment is one of surface enhancement techniques using an impact wave of high pressure plasma induced by laser pulse irradiation. High compressive residual stress was induced by the LPwC treatment on the surface of low-carbon type austenitic stainless steel SUS316L. The affected depth reached about 1mm from the surface. High cycle fatigue tests with four-points rotating bending loading were carried out to confirm the effects of the LPwC treatment on fatigue strength and surface fatigue crack propagation behaviors. The fatigue strength was remarkably improved by the LPwC treatment over the whole regime of fatigue life up to 108 cycles. Specimens with a pre-crack from a small artificial hole due to fatigue loading were used for the quantitative study on the effect of the LPwC treatment. The fracture mechanics investigation on the pre-cracked specimens showed that the LPwC treatment restrained the further propagation of the pre-crack if the stress intensity factor range ΔK on the crack tip was less than 7.6 MPa√m. Surface cracks preferentially propagated into the depth direction as predicted through ΔK analysis on the crack by taking account of the compressive residual stresses due to the LPwC treatment.

  20. Development of Alumina-Forming Austenitic Stainless Steels

    SciTech Connect

    Brady, Michael P; Yamamoto, Yukinori; Bei, Hongbin; Santella, Michael L; Maziasz, Philip J

    2009-01-01

    This paper presents the results of the continued development of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys, which exhibit a unique combination of excellent oxidation resistance via protective alumina (Al2O3) scale formation and high-temperature creep strength through the formation of stable nano-scale MC carbides and intermetallic precipitates. Efforts in fiscal year 2009 focused on the characterization and understanding of long-term oxidation resistance and tensile properties as a function of alloy composition and microstructure. Computational thermodynamic calculations of the austenitic matrix phase composition and the volume fraction of MC, B2-NiAl, and Fe2(Mo,Nb) base Laves phase precipitates were used to interpret oxidation behavior. Of particular interest was the enrichment of Cr in the austenitic matrix phase by additions of Nb, which aided the establishment and maintenance of alumina. Higher levels of Nb additions also increased the volume fraction of B2-NiAl precipitates, which served as an Al reservoir during long-term oxidation. Ageing studies of AFA alloys were conducted at 750 C for times up to 2000 h. Ageing resulted in near doubling of yield strength at room temperature after only 50 h at 750 C, with little further increase in yield strength out to 2000 h of ageing. Elongation was reduced on ageing; however, levels of 15-25% were retained at room temperature after 2000 h of total ageing.

  1. Corrosion resistance of kolsterised austenitic 304 stainless steel

    SciTech Connect

    Abudaia, F. B. Khalil, E. O. Esehiri, A. F. Daw, K. E.

    2015-03-30

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe{sub 2}C{sub 5}. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  2. Retained austenite thermal stability in a nanostructured bainitic steel

    SciTech Connect

    Avishan, Behzad; Garcia-Mateo, Carlos; Yazdani, Sasan; Caballero, Francisca G.

    2013-07-15

    The unique microstructure of nanostructured bainite consists of very slender bainitic ferrite plates and high carbon retained austenite films. As a consequence, the reported properties are opening a wide range of different commercial uses. However, bainitic transformation follows the T{sub 0} criteria, i.e. the incomplete reaction phenomena, which means that the microstructure is not thermodynamically stable because the bainitic transformation stops well before austenite reaches an equilibrium carbon level. This article aims to study the different microstructural changes taking place when nanostructured bainite is destabilized by austempering for times well in excess of that strictly necessary to end the transformation. Results indicate that while bainitic ferrite seems unaware of the extended heat treatment, retained austenite exhibits a more receptive behavior to it. - Highlights: • Nanostructured bainitic steel is not thermodynamically stable. • Extensive austempering in these microstructures has not been reported before. • Precipitation of cementite particles is unavoidable at longer austempering times. • TEM, FEG-SEM and XRD analysis were used for microstructural characterization.

  3. Heavy hydrogen isotopes penetration through austenitic and martensitic steels

    NASA Astrophysics Data System (ADS)

    Dolinski, Yu.; Lyasota, I.; Shestakov, A.; Repritsev, Yu.; Zouev, Yu.

    2000-12-01

    Experimental results are presented of deuterium and tritium permeability through samples of nickel, austenitic steel (16Cr-15Ni-3Mo-Ti), and martensitic steel DIN 1.4914 (MANET) exposed to a gaseous phase. Experiments were carried out at the RFNC-VNHTF installation, which has the capability of measuring the permeability of hydrogen isotopes by mass spectrometry over a temperature range of 293-1000 K, hydrogen isotope pressure ranges of 50-1000 Pa. Sample disks (30 and 40 mm diam.) can be assembled in the test chamber by electron-beam welding or mounted (30-mm diam. disks) on gaskets. Diffusion and permeability dependencies on temperature and pressure are determined and corresponding activation energies are presented.

  4. Strength of nanostructured austenitic steel 316LN at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Czarkowski, P.; Krawczynska, A. T.; Brynk, T.; Nowacki, M.; Lewandowska, M.; Kurzydłowski, K. J.

    2014-12-01

    The aim of this work was to investigate the effect of nano-refinement on the properties of austenitic steel. The material with the initial grain size of 40-50pm was subjected to hydrostatic extrusion at a room temperature to the total accumulated strain exceeding 1. The microstructure developed was investigated by Transmission Electron Microscopy (TEM) and Focus Ion Beam (FIB). The strength of the extruded samples was tested at 293K, 77K and 4.2K by means of cryostat for static tensile tests. The results show that the hydrostatically extruded steel 316LN has excellent strength in cryogenic conditions, which make this material interesting for applications in cryogenic devices.

  5. Precipitation and cavity formation in austenitic stainless steels during irradiation

    SciTech Connect

    Lee, E.H.; Rowcliffe, A.F.; Mansur, L.K.

    1981-01-01

    Microstructural evolution in austenitic stainless steels subjected to displacement damage at high temperature is strongly influenced by the interactions between helium atoms and second phase particles. Cavity nucleation occurs by the trapping of helium at partially coherent particle-matrix interfaces. The recent precipitate point defect collector theory describes the more rapid growth of precipitate-attached cavities compared to matrix cavities where the precipitate-matrix interface collects point defects to augment the normal point deflect flux to the cavitry. Data are presented which support these ideas. It is shown that during nickel ion irradiation of a titanium-modified stainless steel at 675/sup 0/C the rate of injection of helium has a strong effect on the total swelling and also on the nature and distribution of precipitate phases.

  6. In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Xu, Guang; Zhang, Yu-long; Hu, Hai-jiang; Zhou, Lin-xin; Xue, Zheng-liang

    2013-11-01

    In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel were conducted on a high-temperature laser scanning confocal microscope during continuous heating and subsequent isothermal holding at 850, 1000, and 1100°C for 30 min. A grain growth model was proposed based on experimental results. It is indicated that the austenite grain size increases with austenitizing temperature and holding time. When the austenitizing temperature is above 1100°C, the austenite grains grow rapidly, and abnormal austenite grains occur. In addition, the effect of heating rate on austenite grain growth was investigated, and the relation between austenite grains and bainite morphology after bainitic transformations was also discussed.

  7. Austenite Formation in a Cold-Rolled Semi-austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Celada Casero, Carola; San Martín, David

    2014-04-01

    The progress of the martensite ( α') to austenite ( γ) phase transformation has been thoroughly investigated at different temperatures during the continuous heating of a cold-rolled precipitation hardening metastable stainless steel at a heating rate of 0.1 K/s. Heat-treated samples have been characterized using different experimental complementary techniques: high-resolution dilatometry, magnetization, and thermoelectric power (TEP) measurements, micro-hardness-Vickers testing, optical/scanning electron microscopy, and tensile testing. The two-step transformation behavior observed is thought to be related to the presence of a pronounced chemical banding in the initial microstructure. This banding has been characterized using electron probe microanalysis. Unexpectedly, dilatometry measurements seem unable to locate the end of the transformation accurately, as this technique does not detect the second step of this transformation (last 20 pct of it). It is shown that once the starting ( A S) and finishing ( A F) transformation temperatures have been estimated by magnetization measurements, the evolution of the volume fractions of austenite and martensite can be evaluated by TEP or micro-hardness measurement quite reliably as compared to magnetization measurements. The mechanical response of the material after being heated to temperatures close to A S, A F, and ( A F - A S)/2 is also discussed.

  8. Austenite Grain Growth and the Surface Quality of Continuously Cast Steel

    NASA Astrophysics Data System (ADS)

    Dippenaar, Rian; Bernhard, Christian; Schider, Siegfried; Wieser, Gerhard

    2014-04-01

    Austenite grain growth does not only play an important role in determining the mechanical properties of steel, but certain surface defects encountered in the continuous casting industry have also been attributed to the formation of large austenite grains. Earlier research has seen innovative experimentation, the development of metallographic techniques to determine austenite grain size and the building of mathematical models to simulate the conditions pertaining to austenite grain growth during the continuous casting of steel. Oscillation marks and depressions in the meniscus region of the continuously casting mold lead to retarded cooling of the strand surface, which in turn results in the formation of coarse austenite grains, but little is known about the mechanism and rate of formation of these large austenite grains. Relevant earlier research will be briefly reviewed to put into context our recent in situ observations of the delta-ferrite to austenite phase transition. We have confirmed earlier evidence that very large delta-ferrite grains are formed very quickly in the single-phase region and that these large delta-ferrite grains are transformed to large austenite grains at low cooling rates. At the higher cooling rates relevant to the early stages of the solidification of steel in a continuously cast mold, delta-ferrite transforms to austenite by an apparently massive type of transformation mechanism. Large austenite grains then form very quickly from this massive type of microstructure and on further cooling, austenite transforms to thin ferrite allotriomorphs on austenite grain boundaries, followed by Widmanstätten plate growth, with almost no regard to the cooling rate. This observation is important because it is now well established that the presence of a thin ferrite film on austenite grain boundaries is the main cause of reduction in hot ductility. Moreover, this reduction in ductility is exacerbated by the presence of large austenite grains.

  9. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    SciTech Connect

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.

  10. Stress Corrosion Cracking—Crevice Interaction in Austenitic Stainless Steels Characterized By Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Leinonen, H.; Schildt, T.; Hänninen, H.

    2011-02-01

    Stress corrosion cracking (SCC) susceptibility of austenitic EN1.4301 (AISI 304) and EN1.4404 (AISI 316L) stainless steels was studied using the constant load method and polymer (PTFE) crevice former in order to study the effects of crevice on SCC susceptibility. The uniaxial active loading tests were performed in 50 pct CaCl2 at 373 K (100 °C) and in 0.1 M NaCl at 353 K (80 °C) under open-circuit corrosion potential (OCP) and electrochemical polarization. Pitting, crevice, and SCC corrosion were characterized and identified by acoustic emission (AE) analysis using ∆ t filtering and the linear locationing technique. The correlation of AE parameters including amplitude, duration, rise time, counts, and energy were used to identify the different types of corrosion. The stages of crevice corrosion and SCC induced by constant active load/crevice former were monitored by AE. In the early phase of the tests, some low amplitude AE activity was detected. In the steady-state phase, the AE activity was low, and toward the end of the test, it increased with the increasing amplitude of the impulses. AE allowed a good correlation between AE signals and corrosion damage. Although crevice corrosion and SCC induced AE signals overlapped slightly, a good correlation between them and microscopical characterization and stress-strain data was found. Especially, the activity of AE signals increased in the early and final stages of the SCC experiment under constant active load conditions corresponding to the changes in the measured steady-state creep strain rate of the specimen. The results of the constant active load/crevice former test indicate that a crevice can initiate SCC even in the mild chloride solution at low temperatures. Based on the mechanistic model of SCC, the rate determining step in SCC is thought to be the generation of vacancies by selective dissolution, which is supported by the low activity phase of AE during the steady-state creep strain rate region.

  11. Tailoring plasticity of austenitic stainless steels for nuclear applications: Review of mechanisms controlling plasticity of austenitic steels below 400 °C

    NASA Astrophysics Data System (ADS)

    Meric de Bellefon, G.; van Duysen, J. C.

    2016-07-01

    AISI 304 and 316 austenitic stainless steels were invented in the early 1900s and are still trusted by materials and mechanical engineers in numerous sectors because of their good combination of strength, ductility, and corrosion resistance, and thanks to decades of experience and data. This article is part of an effort focusing on tailoring the plasticity of both types of steels to nuclear applications. It provides a synthetic and comprehensive review of the plasticity mechanisms in austenitic steels during tensile tests below 400 °C. In particular, formation of twins, extended stacking faults, and martensite, as well as irradiation effects and grain rotation are discussed in details.

  12. Tailoring plasticity of austenitic stainless steels for nuclear applications: Review of mechanisms controlling plasticity of austenitic steels below 400 °C

    NASA Astrophysics Data System (ADS)

    Meric de Bellefon, G.; van Duysen, J. C.

    2016-07-01

    AISI 304 and 316 austenitic stainless steels were invented in the early 1900s and are still trusted by materials and mechanical engineers in numerous sectors because of their good combination of strength, ductility, and corrosion resistance, and thanks to decades of experience and data. This article is part of an effort focusing on tailoring the plasticity of both types of steels to nuclear applications. It provides a synthetic and comprehensive review of the plasticity mechanisms in austenitic steels during tensile tests below 400 °C. In particular, formation of twins, extended stacking faults, and martensite, as well as irradiation effects and grain rotation are discussed in details.

  13. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures

    NASA Technical Reports Server (NTRS)

    Lee, Jason S.; Ray, Richard I.; Lowe, Kristine L.; Jones-Meehan, Joanne; Little, Brenda J.

    2003-01-01

    Glycol/seawater mixtures containing > 50% glycol inhibit corrosion of 316L stainless steel and do not support bacterial growth. The results indicate bacteria are able to use low concentrations of glycol (10%) as a growth medium, but bacterial growth decreased with increasing glycol concentration. Pitting potential, determined by anodic polarization, was used to evaluate susceptibility of 316L SS to corrosion in seawater-contaminated glycol. Mixture containing a minimum concentration of 50% propylene glycol-based coolant inhibited pitting corrosion. A slightly higher minimum concentration (55%) was needed for corrosion protection in ethylene glycol mixtures.

  14. Modified Monkman-Grant relationship for austenitic stainless steel foils

    NASA Astrophysics Data System (ADS)

    Osman Ali, Hassan; Tamin, Mohd Nasir

    2013-02-01

    Characteristics of creep deformation for austenitic stainless steel foils are examined using the modified Monkman-Grant equation. A series of creep tests are conducted on AISI 347 steel foils at 700 °C and different stress levels ranging from 54 to 221 MPa. Results showed that at lower stress levels below 110 MPa, the creep life parameters ɛ, ɛr, tr can be expressed using the modified Monkman-Grant equation with exponent m'= 0.513. This indicates significant deviation of the creep behavior from the first order reaction kinetics theory for creep (m' = 1.0). The true tertiary creep damage in AISI 347 steel foil begins after 65.9% of the creep life of the foil has elapsed at stress levels above 150 MPa. At this high stress levels, Monkman-Grant ductility factor λ' saturates to a value of 1.3 with dislocation-controlled deformation mechanisms operating. At low stress levels, λ' increases drastically (λ'=190 at 54 MPa) when slow diffusion-controlled creep is dominant.

  15. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  16. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing

    PubMed Central

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  17. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  18. Resistance of superhydrophobic and oleophobic surfaces to varied temperature applications on 316L SS

    NASA Astrophysics Data System (ADS)

    Shams, Hamza; Basit, Kanza; Saleem, Sajid; Siddiqui, Bilal A.

    316L SS also called Marine Stainless Steel is an important material for structural and marine applications. When superhydrophobic and oleophobic coatings are applied on 316L SS it shows significant resistance to wear and corrosion. This paper aims to validate the coatings manufacturer's information on optimal temperature range and test the viability of coating against multiple oil based cleaning agents. 316L SS was coated with multiple superhydrophic and oleohobic coatings and observed under SEM for validity of adhesion and thickness and then scanned under FFM to validate the tribological information. The samples were then dipped into multiple cleaning agents maintained at the range of operating temperatures specified by the manufacturer. Coating was observed for deterioration over a fixed time intervals through SEM and FFM. A comparison was drawn to validate the most critical cleaning agent and the most critical temperature at which the coating fails to leave the base substrate exposed to the environment.

  19. Texture evolution of cold rolled and reversion annealed metastable austenitic CrMnNi steels

    NASA Astrophysics Data System (ADS)

    Weidner, A.; Fischer, K.; Segel, C.; Schreiber, G.; Biermann, H.

    2015-04-01

    A thermo-mechanical process consisting of cold rolling and subsequent reversion annealing was applied to high-alloy metastable austenitic CrMnNi steels with different nickel contents. As a result of the reversion annealing ultrafine grained material with a grain size in the range between 500 nm up to 4 μm were obtained improving the strength behavior of the material. The evolution of the texture of both the cold rolled states and the reversion-annealed states was studied either by X-ray diffraction or by EBSD measurements. The nickel content has a significant influence on the austenite stability and consequently also on the amount of the martensitic phase transformation. However, the developed textures in both steel variants with different austenite stability revealed the same behavior. In both investigated steels the texture of the reverted austenite is a pronounced Bs-type texture as developed also for the deformed austenite

  20. Strain oxidation cracking of austenitic stainless steels at 610 C

    SciTech Connect

    Calvar, M. Le; Scott, P.M.; Magnin, T.; Rieux, P.

    1998-02-01

    Strain oxidation cracking of both forged and welded austenitic stainless steels (SS) was studied. Creep and slow strain rate tests (SSRT) were performed in vacuum, air, and a gas furnace environment (air + carbon dioxide [CO{sub 2}] + water [H{sub 2}O]). Results showed cracking was environmentally dependent. Almost no cracking was observed in vacuum, whereas intergranular cracking was observed with increasing severity in passing from an air to a gas furnace environment. The most severe cracking was associated with formation of a less protective film formed in the gas furnace environment (air: haematite-like M{sub 2}O{sub 3} oxide; gas furnace environment: spinel M{sub 3}O{sub 4} oxide). Cracking depended strongly on the carbon content and the sensitization susceptibility of the material: the higher the carbon content, the more susceptible the alloy. This cracking was believed to be similar to other oxidation-induced cracking phenomena.

  1. Directional solidification studies of ternary austenitic stainless steels

    SciTech Connect

    Carder, K.H.

    1986-01-01

    The transformation of ferrite to austenite during the solidification of stainless steel welds and the subsequent tendencies toward microcracking are topics of considerable ''renewed'' interest. This revival of interest is due mainly to the use of high energy joining processes such as electron beam and laser welding into commercial practice. The rapid rates of solidification and cooling encountered in utilizing these processes have a significant effect on the amount of delta ferrite retained in the microstructure at room temperature. The present study is aimed at obtaining a correlation between solidification rates and microstructure. A directional solidification apparatus with controlled heat flows was designed and developed. This apparatus was used to determine the effect of velocity on the mode of solidification and the amount of ferrite retained in the microstructure at room temperature.

  2. The impact of transmutant helium on weldability of austenitic steel

    NASA Astrophysics Data System (ADS)

    Fabritsiev, S. A.; Pokrovsky, A. S.; Brovko, V. A.

    1996-10-01

    The results of the investigation of 0.05-0.15 dpa neutron irradiation impact on the Cr16Ni11Mo3Ti austenitic steel weldability are presented. Samples were irradiated to doses of 10 20 n/cm 2 and 3 × 10 20 n/cm 2 ( E > 0.1 MeV) in the RBT-10 reactor, thus providing helium accumulation of 1 appm and 2.5 appm, respectively. Flat samples, 1 mm in thickness, were welded by an automatic device for argon arc welding in a hot chamber. Low-cycle fatigue (LCF) testing in bending was used to assess impact of helium on the degradation of welded joint properties. LCF tests showed that the transmutant helium accumulation resulted in a decrease in the number of cycles to failure at Ttest = 20°C and 350°C. It is concluded that repeated welding will present in the repair of ITER materials.

  3. Fatigue crack growth in metastable austenitic stainless steels

    SciTech Connect

    Mei, Z.; Chang, G.; Morris, J.W. Jr.

    1988-06-01

    The research reported here is an investigation of the influence of the mechanically induced martensitic transformation on the fatigue crack growth rate in 304-type steels. The alloys 304L and 304LN were used to test the influence of composition, the testing temperatures 298 K and 77 K were used to study the influence of test temperature, and various load ratios (R) were used to determine the influence of the load ratio. It was found that decreasing the mechanical stability of the austenite by changing composition or lowering temperature decreases the fatigue crack growth rate. The R-ratio effect is more subtle. The fatigue crack growth rate increases with increasing R-ratio, even though this change increases the martensite transformation. Transformation-induced crack closure can explain the results in the threshold regime, but cannot explain the R-ratio effect at higher cyclic stress intensities. 26 refs., 6 figs.

  4. Austenite Formation Kinetics During Rapid Heating in a Microalloyed Steel

    SciTech Connect

    BURNETT,M.E.; DYKHUIZEN,RONALD C.; KELLEY,J. BRUCE; PUSKAR,JOSEPH D.; ROBINO,CHARLES V.

    1999-09-07

    The model parameters for the normalized 1054V1 material were compared to parameters previously generated for 1026 steel, and the transformation behavior was relatively consistent. Validation of the model predictions by heating into the austenite plus undissolved ferrite phase field and rapidly quenching resulted in reasonable predictions when compared to the measured volume fractions from optical metallography. The hot rolled 1054V1 material, which had a much coarser grain size and a non-equilibrium volume fraction of pearlite, had significantly different model parameters and the on heating transformation behavior of this material was less predictable with the established model. The differences in behavior is consistent with conventional wisdom that normalized micro-structure produce a more consistent response to processing, and it reinforces the need for additional work in this area.

  5. Formability analysis of austenitic stainless steel-304 under warm conditions

    NASA Astrophysics Data System (ADS)

    Lade, Jayahari; Singh, Swadesh Kumar; Banoth, Balu Naik; Gupta, Amit Kumar

    2013-12-01

    A warm deep drawing process of austenitic stainless steel-304 (ASS-304) of circular blanks with coupled ther mal analysis is studied in this article. 65 mm blanks were deep drawn at different temperatures and thickness distribution is experimentally measured after cutting the drawn component into two halves. The process is simulated using explicit fin ite element code LS-DYNA. A Barlat 3 parameter model is used in the simulation, as the material is anisotropic up to 30 0°C. Material properties for the simulation are determined at different temperatures using a 5 T UTM coupled with a furn ace. In this analysis constant punch speed and variable blank holder force (BHF) is applied to draw cups without wrinkle.

  6. Long-term corrosion of austenitic steels in flowing LBE at 400 °C and 10-7 mass% dissolved oxygen in comparison with 450 and 550 °C

    NASA Astrophysics Data System (ADS)

    Tsisar, Valentyn; Schroer, Carsten; Wedemeyer, Olaf; Skrypnik, Aleksandr; Konys, Jürgen

    2016-01-01

    Long-term corrosion tests for up to ˜13,194 h on 1.4970 (15-15 Ti), 316L and 1.4571 austenitic steels were carried out at 400 °C in flowing LBE (2 m/s) with 10-7 mass% dissolved oxygen. The steels show general slight oxidation (Cr-based oxide film) along with local, pit-type solution-based corrosion attack. The incubation time for pit-type attack is ˜4500 h. After ˜13,194 h, the maximum pit depth observed was ˜14, 23 and 57 μm for 1.4970, 316L and 1.4571, respectively, that corresponds to local corrosion rates of ˜6, 10 and 26 μm/year. At 450 °C and 550 °C, the corrosion rates are ranged in between ˜120-220 μm/year and ˜500-3000 μm/year, respectively. Corrosion appearances and mechanisms are discussed.

  7. Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Bojack, A.; Zhao, L.; Morris, P. F.; Sietsma, J.

    2016-05-01

    The influence of austenitization treatment of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) on austenite formation during reheating and on the fraction of austenite retained after tempering treatment is measured and analyzed. The results show the formation of austenite in two stages. This is probably due to inhomogeneous distribution of the austenite-stabilizing elements Ni and Mn, resulting from their slow diffusion from martensite into austenite and carbide and nitride dissolution during the second, higher temperature, stage. A better homogenization of the material causes an increase in the transformation temperatures for the martensite-to-austenite transformation and a lower retained austenite fraction with less variability after tempering. Furthermore, the martensite-to-austenite transformation was found to be incomplete at the target temperature of 1223 K (950 °C), which is influenced by the previous austenitization treatment and the heating rate. The activation energy for martensite-to-austenite transformation was determined by a modified Kissinger equation to be approximately 400 and 500 kJ/mol for the first and the second stages of transformation, respectively. Both values are much higher than the activation energy found during isothermal treatment in a previous study and are believed to be effective activation energies comprising the activation energies of both mechanisms involved, i.e., nucleation and growth.

  8. HYDROGEN-ASSISTED FRACTURE IN FORGED TYPE 304L AUSTENITIC STAINLESS STEEL

    SciTech Connect

    Switzner, Nathan; Neidt, Ted; Hollenbeck, John; Knutson, J.; Everhart, Wes; Hanlin, R.; Bergen, R.; Balch, D. K.

    2012-09-06

    Austenitic stainless steels generally have good resistance to hydrogen-assisted fracture; however, structural designs for high-pressure gaseous hydrogen are constrained by the low strength of this class of material. Forging is used to increase the low strength of austenitic stainless steels, thus improving the efficiency of structural designs. Hydrogen-assisted racture, however, depends on microstructural details associated with manufacturing. In this study, hydrogen-assisted fracture of forged type 304L austenitic stainless steel is investigated. Microstructural variation in multi-step forged 304L was achieved by forging at different rates and temperatures, and by process annealing. High internal hydrogen content in forged type 304L austenitic stainless steel is achieved by thermal precharging in gaseous hydrogen and results in as much as 50% reduction of tensile ductility.

  9. Precipitation in AISI 316L(N) during creep tests at 550 and 600 °C up to 10 years

    NASA Astrophysics Data System (ADS)

    Padilha, A. F.; Escriba, D. M.; Materna-Morris, E.; Rieth, M.; Klimenkov, M.

    2007-05-01

    The precipitation behaviour in the gauge lengths and in the heads of initially solution annealed type 316L(N) austenitic stainless steel specimens tested in creep at 550 and 600 °C for periods of up to 85 000 h has been studied using several metallographic techniques. Three phases were detected: M 23C 6, Laves, and sigma phase. The volume fraction of the precipitated sigma phase was significantly higher than that of carbides and the Laves phase. M 23C 6 carbide precipitation occurred very rapidly and was followed by the sigma and Laves phases formation in the delta ferrite islands. Sigma and Laves phases precipitated at grain boundaries after longer times. Two different mechanisms of sigma phase precipitation have been proposed, one for delta ferrite decomposition and another for grain boundary precipitation. Small quantities of the Laves phase were detected in delta ferrite, at grain boundaries and inside the grains.

  10. Nickel-free austenitic stainless steels of exceptional strength and corrosion resistance

    SciTech Connect

    Speidel, M.O.; Magdowski, R.; Uggowitzer, P.J.

    1996-11-01

    Both the price of nickel and the allergic reaction that it can cause to human beings make it desirable to develop and use nickel-free austenitic stainless steels. The steels should be austenitic so as to avoid ferro-magnetism, a condition which has to be fulfilled for a number of requirements, including its use as implants in the human body, for wrist watch cases and many others. The paper presents the development of a nickel-free steel containing 11 percent manganese, 17 percent chromium, 4 percent molybdenum, and 0.9 percent nitrogen. This austenitic stainless steel has exceptional strength and corrosion resistance. These properties could result in numerous applications of the steel. A limitation, however, is that the steel is not weldable.

  11. Stress corrosion cracking of austenitic stainless steel core internal welds.

    SciTech Connect

    Chung, H. M.; Park, J.-H.; Ruther, W. E.; Sanecki, J. E.; Strain, R. V.; Zaluzec, N. J.

    1999-04-14

    Microstructural analyses by several advanced metallographic techniques were conducted on austenitic stainless steel mockup and core shroud welds that had cracked in boiling water reactors. Contrary to previous beliefs, heat-affected zones of the cracked Type 304L, as well as 304 SS core shroud welds and mockup shielded-metal-arc welds, were free of grain-boundary carbides, which shows that core shroud failure cannot be explained by classical intergranular stress corrosion cracking. Neither martensite nor delta-ferrite films were present on the grain boundaries. However, as a result of exposure to welding fumes, the heat-affected zones of the core shroud welds were significantly contaminated by oxygen and fluorine, which migrate to grain boundaries. Significant oxygen contamination seems to promote fluorine contamination and suppress thermal sensitization. Results of slow-strain-rate tensile tests also indicate that fluorine exacerbates the susceptibility of irradiated steels to intergranular stress corrosion cracking. These observations, combined with previous reports on the strong influence of weld flux, indicate that oxygen and fluorine contamination and fluorine-catalyzed stress corrosion play a major role in cracking of core shroud welds.

  12. Tensile fracture of coarse-Grained cast austenitic manganese steels

    NASA Astrophysics Data System (ADS)

    Rittel, D.; Roman, I.

    1988-09-01

    Tensile fracture of coarse-grained (0.25 to 1 mm) cast austenitic manganese (Hadfield) steels has been investigated. Numerous surface discontinuities nucleate in coarse slip bands, on the heavily deformed surface of tensile specimens. These discontinuities do not propagate radially and final fracture results from central specimen cracking at higher strains. On the microscopic scale, bulk voids nucleate during the entire plastic deformation and they do not coalesce by shear localization (e.g., void-sheet) mechanism. Close voids coalesce by internal necking, whereas distant voids are bridged by means of small voids which nucleate at later stages of the plastic deformation. The high toughness of Hadfield steels is due to their high strain-hardening capacity which stabilizes the plastic deformation, and avoids shear localization and loss of load-bearing capacity. The observed dependence of measured mechanical properties on the specimen’s geometry results from the development of a surface layer which charac-terizes the deformation of this coarse-grained material.

  13. Hot compression deformation behavior of AISI 321 austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Haj, Mehdi; Mansouri, Hojjatollah; Vafaei, Reza; Ebrahimi, Golam Reza; Kanani, Ali

    2013-06-01

    The hot compression behavior of AISI 321 austenitic stainless steel was studied at the temperatures of 950-1100°C and the strain rates of 0.01-1 s-1 using a Baehr DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation ( Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950°C and the strain rate of 0.01 s-1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950°C, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti.

  14. Plastic Localization Phenomena in a Mn-Alloyed Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Scavino, G.; D'Aiuto, F.; Matteis, P.; Russo Spena, P.; Firrao, D.

    2010-03-01

    A 0.5 wt pct C, 22 wt pct Mn austenitic steel, recently proposed for fabricating automotive body structures by cold sheet forming, exhibits plastic localizations (PLs) during uniaxial tensile tests, yet showing a favorable overall strength and ductility. No localization happens during biaxial Erichsen cupping tests. Full-thickness tensile and Erichsen specimens, cut from as-produced steel sheets, were polished and tested at different strain rates. During the tensile tests, the PL phenomena consist first of macroscopic deformation bands traveling along the tensile axis, and then of a series of successive stationary deformation bands, each adjacent to the preceding ones; both types of bands involve the full specimen width and yield a macroscopically observable surface relief. No comparable surface relief was observed during the standard Erichsen tests. Because the stress state is known to influence PL phenomena, reduced-width Erichsen tests were performed on polished sheet specimens, in order to explore the transition from biaxial to uniaxial loading; surface relief lines were observed on a 20-mm-wide specimen, but not on wider ones.

  15. Structure and Mechanical Properties of Nitrogen Austenitic Steel after Ultrasonic Forging

    NASA Astrophysics Data System (ADS)

    Narkevich, N. A.; Tolmachev, A. I.; Vlasov, I. V.; Surikova, N. S.

    2016-03-01

    Electron microscopy and X-ray diffraction have been used to investigate a nitrogen 07Kh17AG18 steel with an austenitic structure after the surface deformation treatment—ultrasonic forging. During ultrasonic forging, an austenitic structure transforms into a new structure with an elevated concentration of deformation-induced stacking faults, a lot of deformation microtwins, ɛ-martensite crystals. The austenite lattice parameter is found to be decreased in the surface layer. After ultrasonic forging, nitrided steel exhibits enhanced strength properties with retained high plasticity.

  16. Austenite layer and precipitation in high Co-Ni maraging steel.

    PubMed

    Wang, Chenchong; Zhang, Chi; Yang, Zhigang

    2014-12-01

    In high Co-Ni maraging steel, austenite has a great effect on the fracture toughness of the steel and the precipitated carbides are the main strengthening phase. In this study, both austenite layers and precipitation were observed and their formation theory was analyzed by Thermo-Calc simulation and several reported results. TEM and HRTEM observation results showed that the thickness of the austenite layers was about 5-10 nm and the length of the needle-like precipitated carbides was less than 10nm. The carbides maintained coherent or semi-coherent relation with the matrix.

  17. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    NASA Technical Reports Server (NTRS)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  18. Effect of Austenitizing Heat Treatment on the Microstructure and Hardness of Martensitic Stainless Steel AISI 420

    NASA Astrophysics Data System (ADS)

    Barlow, L. D.; Du Toit, M.

    2012-07-01

    The effect of austenitizing on the microstructure and hardness of two martensitic stainless steels was examined with the aim of supplying heat-treatment guidelines to the user that will ensure a martensitic structure with minimal retained austenite, evenly dispersed carbides and a hardness of between 610 and 740 HV (Vickers hardness) after quenching and tempering. The steels examined during the course of this examination conform in composition to medium-carbon AISI 420 martensitic stainless steel, except for the addition of 0.13% vanadium and 0.62% molybdenum to one of the alloys. Steel samples were austenitized at temperatures between 1000 and 1200 °C, followed by oil quenching. The as-quenched microstructures were found to range from almost fully martensitic structures to martensite with up to 35% retained austenite after quenching, with varying amounts of carbides. Optical and scanning electron microscopy was used to characterize the microstructures, and X-ray diffraction was employed to identify the carbide present in the as-quenched structures and to quantify the retained austenite contents. Hardness tests were performed to determine the effect of heat treatment on mechanical properties. As-quenched hardness values ranged from 700 to 270 HV, depending on the amount of retained austenite. Thermodynamic predictions (using the CALPHAD™ model) were employed to explain these microstructures based on the solubility of the carbide particles at various austenitizing temperatures.

  19. Effect of Post-Weld Heat Treatment on Mechanical and Electrochemical Properties of Gas Metal Arc-Welded 316L (X2CrNiMo 17-13-2) Stainless Steel

    NASA Astrophysics Data System (ADS)

    Muhammad, F.; Ahmad, A.; Farooq, A.; Haider, W.

    2016-08-01

    In the present research work, corrosion behavior of post-weld heat-treated (PWHT) AISI 316L (X2CrNiMo 17-13-2) specimens joined by gas metal arc welding is compared with as-welded samples by using potentiodynamic polarization technique. Welded samples were PWHT at 1323 K for 480 s and quenched. Mechanical properties, corrosion behavior and microstructures of as-welded and PWHT specimens were investigated. Microstructural studies have shown grain size refinement after PWHT. Ultimate tensile strength and yield strength were found maximum for PWHT samples. Bend test have shown that PWHT imparted ductility in welded sample. Fractographic analysis has evidenced ductile behavior for samples. Potentiodynamic polarization test was carried out in a solution composed of 1 M H2SO4 and 1 N NaCl. Corrosion rate of weld region was 127.6 mpy, but after PWHT, it was decreased to 13.12 mpy.

  20. Effect of Post-Weld Heat Treatment on Mechanical and Electrochemical Properties of Gas Metal Arc-Welded 316L (X2CrNiMo 17-13-2) Stainless Steel

    NASA Astrophysics Data System (ADS)

    Muhammad, F.; Ahmad, A.; Farooq, A.; Haider, W.

    2016-10-01

    In the present research work, corrosion behavior of post-weld heat-treated (PWHT) AISI 316L (X2CrNiMo 17-13-2) specimens joined by gas metal arc welding is compared with as-welded samples by using potentiodynamic polarization technique. Welded samples were PWHT at 1323 K for 480 s and quenched. Mechanical properties, corrosion behavior and microstructures of as-welded and PWHT specimens were investigated. Microstructural studies have shown grain size refinement after PWHT. Ultimate tensile strength and yield strength were found maximum for PWHT samples. Bend test have shown that PWHT imparted ductility in welded sample. Fractographic analysis has evidenced ductile behavior for samples. Potentiodynamic polarization test was carried out in a solution composed of 1 M H2SO4 and 1 N NaCl. Corrosion rate of weld region was 127.6 mpy, but after PWHT, it was decreased to 13.12 mpy.

  1. Upset Resistance Welding of Carbon Steel to Austenitic Stainless Steel Narrow Rods

    NASA Astrophysics Data System (ADS)

    Ozlati, Ashkaan; Movahedi, Mojtaba; Mohammadkamal, Helia

    2016-09-01

    Effects of welding current (at the range of 2-4 kA) on the microstructure and mechanical properties of upset resistance welds of AISI-1035 carbon steel to AISI-304L austenitic stainless steel rods were investigated. The results showed that the joint strength first increased by raising the welding current up to 3 kA and then decreased beyond it. Increasing trend was related to more plastic deformation, accelerated diffusion, reduction of defects and formation of mechanical locks at the joint interface. For currents more than 3 kA, decrease in the joint strength was mainly caused by formation of hot spots. Using the optimum welding current of 3 kA, tensile strength of the joint reached to ~76% of the carbon steel base metal strength. Microstructural observations and microhardness results confirmed that there was no hard phase, i.e., martensite or bainite, at the weld zone. Moreover, a fully austenitic transition layer related to carbon diffusion from carbon steel was observed at the weld interface.

  2. Active wear and failure mechanisms of TiN-coated high speed steel and TiN-coated cemented carbide tools when machining powder metallurgically made stainless steels

    SciTech Connect

    Jiang, L.; Haenninen, H.; Paro, J.; Kauppinen, V.

    1996-09-01

    In this study, active wear and failure mechanisms of both TiN-coated high speed steel and TiN-coated cemented carbide tools when machining stainless steels made by powder metallurgy in low and high cutting speed ranges, respectively, have been investigated. Abrasive wear mechanisms, fatigue-induced failure, and adhesive and diffusion wear mechanisms mainly affected the tool life of TiN-coated high speed steel tools at cutting speeds below 35 m/min, between 35 and 45 m/min, and over 45 m/min, respectively. Additionally, fatigue-induced failure was active at cutting speeds over 45 m/min in the low cutting speed range when machining powder metallurgically made duplex stainless steel 2205 and austenitic stainless steel 316L. In the high cutting speed range, from 100 to 250 m/min, fatigue-induced failure together with diffusion wear mechanism, affected the tool life of TiN-coated cemented carbide tools when machining both 316L and 2205 stainless steels. It was noticed that the tool life of TiN-coated high speed steel tools used in the low cutting speed range when machining 2205 steel was longer than that when machining 316L steel, whereas the tool life of TiN-coated cemented carbide tools used in the high cutting speed range when machining 316L steel was longer than that when machining 2205 steel.

  3. Fundamental study of the austenite formation and decomposition in low-silicon, aluminum added TRIP steels

    NASA Astrophysics Data System (ADS)

    Garcia-Gonzalez, Jose Enrique

    2005-11-01

    TRIP (Transformation Induced Plasticity) steels are under development for automotive applications that require high strength and excellent formability. Conventional TRIP steels consist of a multiphase microstructure comprised of a ferrite matrix with a dispersion of bainite and metastable retained austenite. The high ductility exhibited by these steels results from the transformation of the metastable retained austenite to martensite during straining. In conventional TRIP steel processing, the multiphase microstructure is obtained by controlled cooling from the alpha + gamma region to an isothermal holding temperature. During this holding, bainite forms and carbon is rejected out into the austenite, which lowers the Ms temperature and stabilizes the austenite to room temperature. In this research project, a fundamental study of a low-Si, Mo-Nb added cold rolled TRIP steel with and without Al additions was conducted. In this study, the recrystallization of cold-rolled ferrite, the formation of austenite during intercritical annealing and the characteristics of the decomposition of the intercritically annealed austenite by controlled cooling rates were systematically assessed. Of special interest were: (i) the effect of the initial hot band microstructure, (ii) the formation of epitaxial ferrite during cooling from the intercritical annealing temperature to the isothermal holding temperature, (iii) the influence of the intercritically annealed austenite on the formation of bainite during the isothermal holding temperature, and (iv) the influence of the processing variables on the type, amount, composition and stability of the retained austenite. During this research study, techniques such as OM, SEM, EBSD, TEM, XRD and Magnetometry were used to fully characterize the microstructures. Furthermore, a Gleeble 3500 unit at US Steel Laboratories was used for dilatometry studies and to simulate different CGL processing routes, from which specimens were obtained to evaluate

  4. Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.

    2015-07-01

    This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.

  5. Nickel-free stainless steel avoids neointima formation following coronary stent implantation

    NASA Astrophysics Data System (ADS)

    Fujiu, Katsuhito; Manabe, Ichiro; Sasaki, Makoto; Inoue, Motoki; Iwata, Hiroshi; Hasumi, Eriko; Komuro, Issei; Katada, Yasuyuki; Taguchi, Tetsushi; Nagai, Ryozo

    2012-12-01

    SUS316L stainless steel and cobalt-chromium and platinum-chromium alloys are widely used platforms for coronary stents. These alloys also contain nickel (Ni), which reportedly induces allergic reactions in some subjects and is known to have various cellular effects. The effects of Ni on neointima formation after stent implantation remain unknown, however. We developed coronary stents made of Ni-free high-nitrogen austenitic stainless steel prepared using a N2-gas pressurized electroslag remelting (P-ESR) process. Neointima formation and inflammatory responses following stent implantation in porcine coronary arteries were then compared between the Ni-free and SUS316L stainless steel stents. We found significantly less neointima formation and inflammation in arteries implanted with Ni-free stents, as compared to SUS316L stents. Notably, Ni2+ was eluted into the medium from SUS316L but not from Ni-free stainless steel. Mechanistically, Ni2+ increased levels of hypoxia inducible factor protein-1α (HIF-1α) and its target genes in cultured smooth muscle cells. HIF-1α and their target gene levels were also increased in the vascular wall at SUS316L stent sites but not at Ni-free stent sites. The Ni-free stainless steel coronary stent reduces neointima formation, in part by avoiding activation of inflammatory processes via the Ni-HIF pathway. The Ni-free-stainless steel stent is a promising new coronary stent platform.

  6. Role of nanocrystalline cerium oxide coatings on austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Zhang, Haiying

    Protective nanocrystalline cerium oxide coating has been applied to ASTM grade 304L and 304 austenitic stainless steels to improve its oxidation resistance at elevated temperatures. Experimentally, the selected alloy was exposed to 800°C/1000°C under dry air conditions. Weight changes (DeltaW/A) were monitored as a function of time and the results were compared with uncoated alloys tested under similar conditions. It was found that the oxidation resistances of 304L and 304 stainless steels were significantly improved. A comparison of the oxidation rates indicated that the nanocrystalline cerium oxide coating reduced the rate of oxidation by more than two orders of magnitude. Nevertheless, a comprehensive understanding of the mechanisms responsible for the reduction in the oxidation rate is not clear. Consequently, this work is aimed at investigating the mechanisms involved during scale growth in the presence or absence of nanocrystalline coatings. For this purpose, density functional theory was carried out in order to predict oxygen and iron diffusion microscopic activation energies and reveal the intrinsic characteristics of nanocrystalline coatings. A numerical simulation of corrosion process has also been conducted to predict the corrosion rates of alloys with and without coatings. Hence, the results from simulations are compared with the experimental outcome, and possible explanations are given to account for the reduction in the exhibited oxidation rates. The simulation results will provide a highly valuable tool for the realization of functional nanostructures and architectures "by design", particularly in the development of novel coatings, and a new approach of life assessment.

  7. Dislocation loop evolution under ion irradiation in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Etienne, A.; Hernández-Mayoral, M.; Genevois, C.; Radiguet, B.; Pareige, P.

    2010-05-01

    A solution annealed 304 and a cold worked 316 austenitic stainless steels were irradiated from 0.36 to 5 dpa at 350 °C using 160 keV Fe ions. Irradiated microstructures were characterized by transmission electron microscopy (TEM). Observations after irradiation revealed the presence of a high number density of Frank loops. Size and number density of Frank loops have been measured. Results are in good agreement with those observed in the literature and show that ion irradiation is able to simulate dislocation loop microstructure obtained after neutron irradiation. Experimental results and data from literature were compared with predictions from the cluster dynamic model, MFVIC (Mean Field Vacancy and Interstitial Clustering). It is able to reproduce dislocation loop population for neutron irradiation. Effects of dose rate and temperature on the loop number density are simulated by the model. Calculations for ion irradiations show that simulation results are consistent with experimental observations. However, results also show the model limitations due to the lack of accurate parameters.

  8. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    NASA Astrophysics Data System (ADS)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 °C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  9. Dissimilar Friction Stir Welding Between UNS S31603 Austenitic Stainless Steel and UNS S32750 Superduplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Theodoro, Maria Claudia; Pereira, Victor Ferrinho; Mei, Paulo Roberto; Ramirez, Antonio Jose

    2015-02-01

    In order to verify the viability of dissimilar UNS S31603 austenitic and UNS S32750 superduplex stainless steels joined by friction stir welding, 6-mm-thick plates were welded using a PCBN-WRe tool. The welded joints were performed in position control mode at rotational speeds of 100 to 300 rpm and a feed rate of 100 mm/min. The joints performed with 150 and 200 rpm showed good appearance and no defects. The metallographic analysis of both joints showed no internal defects and that the material flow pattern is visible only in the stirred zone (SZ) of the superduplex steel. On the SZ top, these patterns are made of regions of different phases (ferrite and austenite), and on the bottom and central part of the SZ, these patterns are formed by alternated regions of different grain sizes. The ferrite grains in the superduplex steel are larger than those in the austenitic ones along the SZ and thermo-mechanically affected zone, explained by the difference between austenite and ferrite recrystallization kinetics. The amount of ferrite islands present on the austenitic steel base metal decreased near the SZ interface, caused by the dissolving of the ferrite in austenitic matrix. No other phases were found in both joints. The best weld parameters were found to be 200 rpm rotation speed, 100 mm/min feed rate, and tool position control.

  10. Copper modified austenitic stainless steel alloys with improved high temperature creep resistance

    DOEpatents

    Swindeman, R.W.; Maziasz, P.J.

    1987-04-28

    An improved austenitic stainless steel that incorporates copper into a base Fe-Ni-Cr alloy having minor alloying substituents of Mo, Mn, Si, T, Nb, V, C, N, P, B which exhibits significant improvement in high temperature creep resistance over previous steels. 3 figs.

  11. General and Localized corrosion of Austenitic and Borated Stainless Steels in Simulated Concentrated Ground Waters

    SciTech Connect

    D. Fix; J. Estill; L. Wong; R. Rebak

    2004-05-28

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water.

  12. General and Localized Corrosion of Austenitic And Borated Stainless Steels in Simulated Concentrated Ground Waters

    SciTech Connect

    Estill, J C; Rebak, R B; Fix, D V; Wong, L L

    2004-03-11

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water.

  13. Retained Austenite in SAE 52100 Steel Post Magnetic Processing and Heat Treatment

    SciTech Connect

    Pappas, Nathaniel R; Watkins, Thomas R; Cavin, Odis Burl; Jaramillo, Roger A; Ludtka, Gerard Michael

    2007-01-01

    Steel is an iron-carbon alloy that contains up to 2% carbon by weight. Understanding which phases of iron and carbon form as a function of temperature and percent carbon is important in order to process/manufacture steel with desired properties. Austenite is the face center cubic (fcc) phase of iron that exists between 912 and 1394 C. When hot steel is rapidly quenched in a medium (typically oil or water), austenite transforms into martensite. The goal of the study is to determine the effect of applying a magnetic field on the amount of retained austenite present at room temperature after quenching. Samples of SAE 52100 steel were heat treated then subjected to a magnetic field of varying strength and time, while samples of SAE 1045 steel were heat treated then subjected to a magnetic field of varying strength for a fixed time while being tempered. X-ray diffraction was used to collect quantitative data corresponding to the amount of each phase present post processing. The percentage of retained austenite was then calculated using the American Society of Testing and Materials standard for determining the amount of retained austenite for randomly oriented samples and was plotted as a function of magnetic field intensity, magnetic field apply time, and magnetic field wait time after quenching to determine what relationships exist with the amount of retained austenite present. In the SAE 52100 steel samples, stronger field strengths resulted in lower percentages of retained austenite for fixed apply times. The results were inconclusive when applying a fixed magnetic field strength for varying amounts of time. When applying a magnetic field after waiting a specific amount of time after quenching, the analyses indicate that shorter wait times result in less retained austenite. The SAE 1045 results were inconclusive. The samples showed no retained austenite regardless of magnetic field strength, indicating that tempering removed the retained austenite. It is apparent

  14. Corrosion performance of duplex and austenitic stainless steels in simulated SO{sub 2} absorber environments

    SciTech Connect

    Agrawal, A.K.; Koch, G.H.; Ross, R.W.

    1996-08-01

    The new generation of FGD systems are planned to operate in a near closed-loop mode to minimize waste discharge in order to meet the 1990 US Clean Air Act Amendments. Because of this closed-loop operation, the chloride concentration in the SO{sub 2} absorbers could build up as high as 100,000 ppm. Some duplex and 4--6% Mo containing stainless steels are candidate materials of construction for these absorbers. The corrosion behavior of some candidate alloys (Alloy 2205, Type 317LMN and 6% Mo stainless steels) has been investigated in simulated SO{sub 2} absorber environments. In addition to these alloys, Type 316L stainless steel and the nickel-base alloy C-276 were tested as reference alloys. Both welded and unwelded coupons of the alloys were exposed to calcium chloride brines having chloride concentrations of 10,000, 20,000, 30,000, 50,000, and 100,000 ppm at temperatures of 55 and 80 C. Alloy C-276 experienced only very light uniform attack with corrosion rates of less than 1.0 mpy. All the other alloys experienced significant corrosion attack under the scale deposits, some pitting of the base metal, and considerable localized attack in the heat affected zones adjacent to the welds. The overall performance of the alloys in the order of decreasing corrosion resistance was as follows: Alloy C-276 > 6% Mo stainless steel > Alloy 2205 > Type 317LMN > Type 316L. The temperature was a more significant variable in promoting corrosion of the alloys than was chloride concentration in the range investigated.

  15. Relative Humidity and the Susceptibility of Austenitic Stainless Steel to Stress Corrosion Cracking in an impure Plutonium Oxide Environment

    SciTech Connect

    Zapp, P.; Duffey, J.; Lam, P.; Dunn, K.

    2010-05-05

    Laboratory tests to investigate the corrosivity of moist plutonium oxide/chloride salt mixtures on 304L and 316L stainless steel coupons showed that corrosion occurred in selected samples. The tests exposed flat coupons for pitting evaluation and 'teardrop' stressed coupons for stress corrosion cracking (SCC) evaluation at room temperature to various mixtures of PuO{sub 2} and chloride-bearing salts for periods up to 500 days. The exposures were conducted in sealed containers in which the oxide-salt mixtures were loaded with about 0.6 wt % water from a humidified helium atmosphere. Observations of corrosion ranged from superficial staining to pitting and SCC. The extent of corrosion depended on the total salt concentration, the composition of the salt and the moisture present in the test environment. The most significant corrosion was found in coupons that were exposed to 98 wt % PuO{sub 2}, 2 wt % chloride salt mixtures that contained calcium chloride and 0.6 wt% water. SCC was observed in two 304L stainless steel teardrop coupons exposed in solid contact to a mixture of 98 wt % PuO{sub 2}, 0.9 wt % NaCl, 0.9 wt % KCl, and 0.2 wt % CaCl{sub 2}. The cracking was associated with the heat-affected zone of an autogenous weld that ran across the center of the coupon. Cracking was not observed in coupons exposed to the headspace gas above the solid mixture, or in coupons exposed to other mixtures with either no CaCl{sub 2} or 0.92 wt% CaCl{sub 2}. SCC was present where the 0.6 wt % water content exceeded the value needed to fully hydrate the available CaCl{sub 2}, but was absent where the water content was insufficient. These results reveal the significance of the relative humidity in the austenitic stainless steels environment to their susceptibility to corrosion. The relative humidity in the test environment was controlled by the water loading and the concentration of the hydrating salts such as CaCl{sub 2}. For each salt or salt mixture there is a threshold relative

  16. Mechanical properties of steels with a microstructure of bainite/martensite and austenite islands

    NASA Astrophysics Data System (ADS)

    Syammach, Sami M.

    Advanced high strength steels (AHSS) are continually being developed in order to reduce weight and improve safety for automotive applications. There is need for economic steels with improved strength and ductility combinations. These demands have led to research and development of third generation AHSS. Third generation AHSS include steel grades with a bainitic and tempered martensitic matrix with retained austenite islands. These steels may provide improved mechanical properties compared to first generation AHSS and should be more economical than second generation AHSS. There is a need to investigate these newer types of steels to determine their strength and formability properties. Understanding these bainitic and tempered martensitic steels is important because they likely can be produced using currently available production systems. If viable, these steels could be a positive step in the evolution of AHSS. The present work investigates the effect of the microstructure on the mechanical properties of steels with a microstructure of bainite, martensite, and retained austenite, so called TRIP aided bainitic ferrite (TBF) steels. The first step in this project was creating the desired microstructure. To create a microstructure of bainite, martensite, and austenite an interrupted austempering heat treatment was used. Varying the heat treatment times and temperatures produced microstructures of varying amounts of bainite, martensite, and austenite. Mechanical properties such as strength, ductility, strain hardening, and hole-expansion ratios were then evaluated for each heat treatment. Correlations between mechanical properties and microstructure were then evaluated. It was found that samples after each of the heat treatments exhibited strengths between 1050 MPa and 1350 MPa with total elongations varying from 8 pct to 16 pct. By increasing the bainite and austenite volume fraction the strength of the steel was found to decrease, but the ductility increased. Larger

  17. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness

    NASA Astrophysics Data System (ADS)

    Margolin, B.; Sorokin, A.; Shvetsova, V.; Minkin, A.; Potapova, V.; Smirnov, V.

    2016-11-01

    The radiation swelling effect on the fracture properties of irradiated austenitic steels under static loading has been studied and analyzed from the mechanical and physical viewpoints. Experimental data on the stress-strain curves, fracture strain, fracture toughness and fracture mechanisms have been represented for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various swelling. Some phenomena in mechanical behaviour of irradiated austenitic steels have been revealed and explained as follows: a sharp decrease of fracture toughness with swelling growth; untypical large increase of fracture toughness with decrease of the test temperature; some increase of fracture toughness after preliminary cyclic loading. Role of channel deformation and channel fracture has been clarified in the properties of irradiated austenitic steel and different tendencies to channel deformation have been shown and explained for the same austenitic steel irradiated at different temperatures and neutron doses.

  18. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    DOEpatents

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  19. Residual stresses in biaxially fatigued austenitic stainless steel sample of cruciform geometry

    NASA Astrophysics Data System (ADS)

    Taran, Yu V.; Balagurov, A. M.; Schreiber, J.; Evans, A.; Venter, A. M.

    2012-02-01

    A specifically designed cruciform-shaped austenitic stainless steel AISI 321 sample was subjected to ex-situ biaxial tension-compression cycling to establish ferromagnetic martensitic phase conversion under the action of plastic deformation. The time-of-flight neutron diffraction technique was employed for in-plane residual stress determination in this sample for both the austenitic and martensitic phases. The 2D data enabled determination of macro-, micro-, hydro- and deviatoric contributions to the total phase stresses.

  20. Residual stresses in biaxially fatigued austenitic stainless steel sample of cruciform geometry

    NASA Astrophysics Data System (ADS)

    Taran, Yu. V.; Balagurov, A. M.; Schreiber, J.; Evans, A.; Venter, A. M.

    2011-03-01

    A specifically designed cruciform-shaped austenitic stainless steel AISI 321 sample was subjected to ex-situ biaxial tension-compression cycling to establish ferromagnetic martensitic phase conversion under the action of plastic deformation. The time-of-flight neutron diffraction technique was employed for in-plane residual stress determination in this sample for both the austenitic and martensitic phases. The 2D data enabled determination of the macro-, micro-, hydro- and deviatoric contributions to the total phase stresses.

  1. Formation and Growth Kinetics of Reverted Austenite During Tempering of a High Co-Ni Steel

    NASA Astrophysics Data System (ADS)

    Gruber, Marina; Ressel, Gerald; Méndez Martín, Francisca; Ploberger, Sarah; Marsoner, Stefan; Ebner, Reinhold

    2016-09-01

    It is well known that high Co-Ni steels exhibit excellent toughness. Since the good toughness in these steels is supposed to be related to thin layers of austenite between martensite crystals, this work presents an experimental study corroborated with diffusional calculations to characterize the evolution of reverted austenite. Atom probe measurements were conducted for analyzing the element distribution in austenite and martensite during tempering. These results were correlated with crystallographic information, which was obtained by using transmission electron microscopy investigations. Additionally, the experimental findings were compared with kinetic calculations with DICTRA™. The investigations reveal that reverted austenite formation during tempering is connected with a redistribution of Ni, Co, Cr, and Mo atoms. The austenite undergoes a Ni and Cr enrichment and a Co depletion, while in the neighboring martensite, a zone of Ni and Cr depletion and Co enrichment is formed. The changes in the chemical composition of austenite during tempering affect the stability of the austenite against phase transformation to martensite during plastic deformation and have thus decisive influence on the toughness of the material.

  2. Grain refinement of a nickel and manganese free austenitic stainless steel produced by pressurized solution nitriding

    SciTech Connect

    Mohammadzadeh, Roghayeh Akbari, Alireza

    2014-07-01

    Prolonged exposure at high temperatures during solution nitriding induces grain coarsening which deteriorates the mechanical properties of high nitrogen austenitic stainless steels. In this study, grain refinement of nickel and manganese free Fe–22.75Cr–2.42Mo–1.17N high nitrogen austenitic stainless steel plates was investigated via a two-stage heat treatment procedure. Initially, the coarse-grained austenitic stainless steel samples were subjected to an isothermal heating at 700 °C to be decomposed into the ferrite + Cr{sub 2}N eutectoid structure and then re-austenitized at 1200 °C followed by water quenching. Microstructure and hardness of samples were characterized using X-ray diffraction, optical and scanning electron microscopy, and micro-hardness testing. The results showed that the as-solution-nitrided steel decomposes non-uniformly to the colonies of ferrite and Cr{sub 2}N nitrides with strip like morphology after isothermal heat treatment at 700 °C. Additionally, the complete dissolution of the Cr{sub 2}N precipitates located in the sample edges during re-austenitizing requires longer times than 1 h. In order to avoid this problem an intermediate nitrogen homogenizing heat treatment cycle at 1200 °C for 10 h was applied before grain refinement process. As a result, the initial austenite was uniformly decomposed during the first stage, and a fine grained austenitic structure with average grain size of about 20 μm was successfully obtained by re-austenitizing for 10 min. - Highlights: • Successful grain refinement of Fe–22.75Cr–2.42Mo–1.17N steel by heat treatment • Using the γ → α + Cr{sub 2}N reaction for grain refinement of a Ni and Mn free HNASS • Obtaining a single phase austenitic structure with average grain size of ∼ 20 μm • Incomplete dissolution of Cr{sub 2}N during re-austenitizing at 1200 °C for long times • Reducing re-austenitizing time by homogenizing treatment before grain refinement.

  3. The Effect of the Initial Microstructure on Recrystallization and Austenite Formation in a DP600 Steel

    NASA Astrophysics Data System (ADS)

    Kulakov, M.; Poole, W. J.; Militzer, M.

    2013-08-01

    The effects of initial microstructure and thermal cycle on recrystallization, austenite formation, and their interaction were studied for intercritical annealing of a low-carbon steel that is suitable for industrial production of DP600 grade. The initial microstructures included 50 pct cold-rolled ferrite-pearlite, ferrite-bainite-pearlite and martensite. The latter two materials recrystallized at similar rates, while slower recrystallization was observed for ferrite-pearlite. If heating to an intercritical temperature was sufficiently slow, then recrystallization was completed before austenite formation, otherwise austenite formed in a partially recrystallized microstructure. The same trends as for recrystallization were found for the effect of initial microstructure on kinetics of austenite formation. The recrystallization-austenite formation interaction accelerated austenization in all the three starting microstructures by providing additional nucleation sites and enhancing growth rates, and drastically altered morphology and distribution of austenite. In particular, for ferrite-bainite-pearlite and martensite, the recrystallization-austenite formation interaction resulted in substantial microstructural refinement. Recrystallization and austenite formation from a fully recrystallized state were successfully modeled using the Johnson-Mehl-Avrami-Kolmogorov approach.

  4. Processing and characterization of a hipped oxide dispersion strengthened austenitic steel

    NASA Astrophysics Data System (ADS)

    Zhou, Zhangjian; Yang, Shuo; Chen, Wanhua; Liao, Lu; Xu, Yingli

    2012-09-01

    An oxide dispersion strengthened (ODS) austenitic steel with a nominal chemical composition of Fe-18Cr-8Ni-1Mo-0.5Ti-0.35Y2O3 (in wt.%) was prepared by mechanical alloying (MA) combined with hot isostatic pressing (HIP). The morphology of MA powders was observed by SEM. The microstructure of the HIPed ODS austenitic steels and chemical composition of the oxide particles were examined by TEM combined with an energy dispersive spectrometry. The oxide dispersion particles with sizes less than 20 nm were determined to be complex Y-Ti-Si-O oxides. The tensile test showed that the fabricated ODS austenitic steel had very high strength and good ductility. The ultimate tensile strength was around 1000 MPa with a total elongation of 33.5% at room temperature, while at temperature of 700 °C, the ultimate tensile strength still reached around 500 MPa.

  5. An On-Heating Dilation Conversional Model for Austenite Formation in Hypoeutectoid Steels

    NASA Astrophysics Data System (ADS)

    Lee, Seok-Jae; Clarke, Kester D.; van Tyne, Chester J.

    2010-09-01

    Dilatometry is often used to study solid-state phase transformations. While most steel transformation studies focus on the decomposition of austenite, this article presents an on-heating dilation conversional model to determine phase fraction based on measured volume changes during the formation of austenite in ferrite-pearlite hypoeutectoid steels. The effect of alloying elements on the transformation strain is incorporated into the model. Comparison of the conversional model predictions to measured transformation temperature ( A c3) shows excellent agreement. The pearlite decomposition finish temperature ( A pf ) predicted by the conversional model more closely matches experimental results when compared to standard lever rule calculations. Results show that including the effects of substitutional alloying elements (in addition to carbon) improves phase fraction predictions. The conversional model can be used to quantitatively predict intercritical austenite fraction with application to modeling, induction heating, intercritical annealing, and more complex heat treatments for hypoeutectoid steels.

  6. Magnetism induced by electrochemical nitriding on an austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Watanabe, Takashi; Sagara, Akio; Hishinuma, Yoshimitsu; Takayama, Sadatsugu; Tanaka, Teruya; Sano, Saburo

    2015-04-01

    The surface of a Fe-Ni-Cr Alloy (SUS316L) plate was electrochemically nitrided in molten LiF-KF salt including Li3N at 873K. The crystal structure changed from fcc structure to bct structure with nitrogen introduction. The Nitrogen diffusion layers were predominately formed at nitrogen concentration of 23 at%. The nitriding process drastically also changed its magnetic property from non-magnetic to ferromagnetic. The magnetic field of 20 kOe saturated the magnetic moment with its magnetization of 81 emu/g at 10K. The anisotropic magnetization is ascertained. Based on CrN formation and Cr extraction from the original Fe-Ni-Cr system, the induced ferromagnetism was discussed.

  7. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide

    SciTech Connect

    Tan, Lizhen; Anderson, Mark; Taylor, D; Allen, Todd R.

    2011-01-01

    Supercritical carbon dioxide (S-CO{sub 2}) is a potential coolant for advanced nuclear reactors. The corrosion behavior of austenitic steels (alloys 800H and AL-6XN) and ferritic-martensitic (FM) steels (F91 and HCM12A) exposed to S-CO{sub 2} at 650 C and 20.7 MPa is presented in this work. Oxidation was identified as the primary corrosion phenomenon. Alloy 800H had oxidation resistance superior to AL-6XN. The FM steels were less corrosion resistant than the austenitic steels, which developed thick oxide scales that tended to exfoliate. Detailed microstructure characterization suggests the effect of alloying elements such as Al, Mo, Cr, and Ni on the oxidation of the steels.

  8. Development of high-strength, high-corrosion resistant austenitic stainless steel for sour gas service

    SciTech Connect

    Nakayama, T.; Fujiwara, K.; Torii, Y.; Inoue, T.

    1988-01-01

    An austenitic stainless steel for sour gas service has been developed. The new steel has been shown to offer high strength, i.e., 0.2% PS exceeding 42kgf/mm/sup 2/ (414MPa) under solution-annealed conditions, along with excellent resistance to sulphide stress corrosion cracking, pitting corrosion, and crevice corrosion, in comparison with conventional martensitic stainless steel such as CA-6NM, duplex stainless steel such as ASTM A790 UNS S31803, and austenitic stainless steels such as Type 316. Its higher resistance to corrosion cracking, etc., then Type 316 was thought to be attributable to the higher contents of Cr, Mo, and N, which help to form more stable passive film in a shorter time.

  9. Studies on Stress Corrosion Cracking of Super 304H Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Prabha, B.; Sundaramoorthy, P.; Suresh, S.; Manimozhi, S.; Ravishankar, B.

    2009-12-01

    Stress corrosion cracking (SCC) is a common mode of failure encountered in boiler components especially in austenitic stainless steel tubes at high temperature and in chloride-rich water environment. Recently, a new type of austenitic stainless steels called Super304H stainless steel, containing 3% copper is being adopted for super critical boiler applications. The SCC behavior of this Super 304H stainless steel has not been widely reported in the literature. Many researchers have studied the SCC behavior of steels as per various standards. Among them, the ASTM standard G36 has been widely used for evaluation of SCC behavior of stainless steels. In this present work, the SCC behavior of austenitic Fe-Cr-Mn-Cu-N stainless steel, subjected to chloride environments at varying strain conditions as per ASTM standard G36 has been studied. The environments employed boiling solution of 45 wt.% of MgCl2 at 155 °C, for various strain conditions. The study reveals that the crack width increases with increase in strain level in Super 304H stainless steels.

  10. On the measurement of austenite in supermartensitic stainless steel by X-ray diffraction

    SciTech Connect

    Tolchard, Julian Richard; Sømme, Astri; Solberg, Jan Ketil; Solheim, Karl Gunnar

    2015-01-15

    Sections of a 13Cr supermartensitic stainless steel were investigated to determine the optimum sample preparation for measurement of the austenite content by X-ray diffraction. The surface of several samples was mechanically ground or polished using media of grit sizes in the range 1–120 μm. The strained surface layer was afterwards removed stepwise by electropolishing, and the austenite content measured at each step. It was found that any level of mechanical grinding or polishing results in a reduction of the measured austenite fraction relative to the true bulk value, and that coarser grinding media impart greater damage and greater reduction in the measured austenite content. The results thus highlight the importance of the electropolishing step in preparation of such samples, but suggest that the American Society for Testing and Materials standard E975-03 substantially overestimates the amount of material which needs to be removed to recover the true “bulk” content. - Highlights: • Quantitative Rietveld analysis of austenite/martensite ratio in supermartensitic stainless steels • Critical evaluation of sample preparation for residual austenite measurements by X-ray diffraction • Highlighting of the importance of electropolishing as a final preparation step.

  11. Influence of reverted austenite on the texture and magnetic properties of 350 maraging steel

    NASA Astrophysics Data System (ADS)

    Abreu, Hamilton F. G.; Silva, Jean J.; Silva, Manoel R.; Gomes da Silva, Marcelo J.

    2015-11-01

    The aging temperature to improve magnetic properties in Maraging-350 steel (Mar-350) is limited by the onset of austenite reversion. The traditional process of cooling after aging is to remove the piece from the oven and then to air cool it. The purpose of this research was to characterize the reverted austenite and to investigate the effect of cooling below the martensite start temperature (Ms) on the magnetic properties. The Mar350 samples aged at temperatures above 550 °C, and subsequently cooled in liquid nitrogen presented less austenite than samples cooled in air, resulting in higher magnetization saturation and a lower coercive force. A combination of optical microscopy (OM), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) techniques were used to characterize the presence of reverted austenite. The crystallographic texture of both martensite and reverted austenite were analyzed. The texture of the reverted austenite coincides with the texture of the parent austenite indicating that a phenomenon of texture memory is present.

  12. Austenite decomposition during continuous cooling of an HSLA-80 plate steel

    SciTech Connect

    Thomspon, S.W.; Colvin, D.J.; Krauss, G.

    1996-06-01

    Decomposition of fine-grained austenite (10-{micro}m grain size) during continuous cooling of an HSLA-80 plate steel (containing 0.05C, 0.50Mn, 1.12Cu, 0.88Ni, 0.71Cr, and 0.20Mo) was evaluated by dilatometric measurements, light microscopy, scanning electron microscopy, transmission electron microscopy, and microhardness testing. Between 750 C and 600 C, austenite transforms primarily to polygonal ferrite over a wide range of cooling rates, and Widmanstaetten ferrite sideplates frequently evolve from these crystals. Carbon-enriched islands of austenite transform to a complex mixture of granular ferrite, acicular ferrite, and martensite (all with some degree of retained austenite) at cooling rates greater than approximately 5 C/s. Granular and acicular ferrite form at temperatures slightly below those at which polygonal and Widmanstaetten ferrite form. At cooling rates less than approximately 5 C/s, regions of carbon-enriched austenite transform to a complex mixture of upper bainite, lower bainite, and martensite (plus retained austenite) at temperatures which are over 100 C lower than those at which polygonal and Widmanstaetten ferrite form. Interphase precipitates of copper form only in association with polygonal and Widmanstaetten ferrite. Kinetic and microstructural differences between Widmanstaetten ferrite, acicular ferrite, and bainite (both upper and lower) suggest different origins and/or mechanisms of formation for these morphologically similar austenite transformation products.

  13. Characterization of the Carbon and Retained Austenite Distributions in Martensitic Medium Carbon, Low Alloy, Steel

    SciTech Connect

    Sherman, D. H.; Cross, Steven M; Kim, Sangho; Grandjean, F.; Long, G. J.; Miller, Michael K

    2007-01-01

    The retained austenite content and carbon distribution in martensite were determined as a function of cooling rate and temper temperature in steel that contained 1.31 at. pct C, 3.2 at. pct Si, and 3.2 at. pct non-iron metallic elements. Mossbauer spectroscopy, transmission electron microscopy (TEM), transmission synchrotron X-ray diffraction (XRD), and atom probe tomography were used for the microstructural analyses. The retained austenite content was an inverse, linear function of cooling rate between 25 and 560 K/s. The elevated Si content of 3.2 at. pct did not shift the start of austenite decomposition to higher tempering temperatures relative to SAE 4130 steel. The minimum tempering temperature for complete austenite decomposition was significantly higher (>650 C) than for SAE 4130 steel ({approx}300 C). The tempering temperatures for the precipitation of transition carbides and cementite were significantly higher (>400 C) than for carbon steels (100 C to 200 C and 200 C to 350 C), respectively. Approximately 90 pct of the carbon atoms were trapped in Cottrell atmospheres in the vicinity of the dislocation cores in dislocation tangles in the martensite matrix after cooling at 560 K/s and aging at 22 C. The 3.2 at. pct Si content increased the upper temperature limit for stable carbon clusters to above 215 C. Significant autotempering occurred during cooling at 25 K/s. The proportion of total carbon that segregated to the interlath austenite films decreased from 34 to 8 pct as the cooling rate increased from 25 to 560 K/s. Developing a model for the transfer of carbon from martensite to austenite during quenching should provide a means for calculating the retained austenite. The maximum carbon content in the austenite films was 6 to 7 at. pct, both in specimens cooled at 560 K/s and at 25 K/s. Approximately 6 to 7 at. pct carbon was sufficient to arrest the transformation of austenite to martensite. The chemical potential of carbon is the same in martensite

  14. Characterization of the Carbon and Retained Austenite Distributions in Martensitic Medium Carbon, High Silicon Steel

    NASA Astrophysics Data System (ADS)

    Sherman, Donald H.; Cross, Steven M.; Kim, Sangho; Grandjean, Fernande; Long, Gary J.; Miller, Michael K.

    2007-08-01

    The retained austenite content and carbon distribution in martensite were determined as a function of cooling rate and temper temperature in steel that contained 1.31 at. pct C, 3.2 at. pct Si, and 3.2 at. pct noniron metallic elements. Mössbauer spectroscopy, transmission electron microscopy (TEM), transmission synchrotron X-ray diffraction (XRD), and atom probe tomography were used for the microstructural analyses. The retained austenite content was an inverse, linear function of cooling rate between 25 and 560 K/s. The elevated Si content of 3.2 at. pct did not shift the start of austenite decomposition to higher tempering temperatures relative to SAE 4130 steel. The minimum tempering temperature for complete austenite decomposition was significantly higher (>650 °C) than for SAE 4130 steel (˜300 °C). The tempering temperatures for the precipitation of transition carbides and cementite were significantly higher (>400 °C) than for carbon steels (100 °C to 200 °C and 200 °C to 350 °C), respectively. Approximately 90 pct of the carbon atoms were trapped in Cottrell atmospheres in the vicinity of the dislocation cores in dislocation tangles in the martensite matrix after cooling at 560 K/s and aging at 22 °C. The 3.2 at. pct Si content increased the upper temperature limit for stable carbon clusters to above 215 °C. Significant autotempering occurred during cooling at 25 K/s. The proportion of total carbon that segregated to the interlath austenite films decreased from 34 to 8 pct as the cooling rate increased from 25 to 560 K/s. Developing a model for the transfer of carbon from martensite to austenite during quenching should provide a means for calculating the retained austenite. The maximum carbon content in the austenite films was 6 to 7 at. pct, both in specimens cooled at 560 K/s and at 25 K/s. Approximately 6 to 7 at. pct carbon was sufficient to arrest the transformation of austenite to martensite. The chemical potential of carbon is the same in

  15. Evaluation of the stress corrosion behavior of selected stainless steels

    SciTech Connect

    Dorning, R.E. II

    1983-11-05

    The objective of this investigation was to determine the stress corrosion behavior of selected stainless steels in several fluorinating environments. The possibility of stress corrosion cracking or pitting which could substantially reduce the serviceability of the stainless steels was the primary concern. Laboratory testing indicated that stress corrosion cracking or other forms of localized attack of the austenitic stainless steels tested (304, 304-L, 316, and 316-L) would not occur in the dry gas environments investigated. AISI 316 and 316-L stainless steels exhibited no significant corrosion in any of the test environments. Stressed 304 and 304-L stainless steels exhibited increased general corrosion and pitting when moisture was added to the fluorinating environment. 3 refs., 1 fig., 3 tabs.

  16. Solidification behavior and microstructural analysis of austenitic stainless steel laser welds

    SciTech Connect

    David, S.A.; Vitek, J.M.

    1981-01-01

    Solidification behavior of austenitic stainless steel laser welds has been investigated with a high-power laser system. The welds were made at speeds ranging from 13 to 60 mm/s. The welds sowed a wide variety of microstructural features. The ferrite content in the 13-mm/s weld varied from less than 1% at the root of the weld to about 10% at the crown. The duplex structure at the crown of the weld was much finer than the one observed in conventional weld metal. However, the welds made at 25 and 60 mm/s contained an austenitic structure with less than 1% ferrite throughout the weld. Microstructural analysis of these welds used optical microscopy, transmission electron microscopy, and analytical electron microscopy. The austenitic stainless steel welds were free of any cracking, and the results are explained in terms of the rapid solidification conditions during laser welding.

  17. The Synthesis and Electrochemical Behavior of High-Nitrogen Nickel-Free Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sun, Shicheng; Wei, Sufeng; Wang, Guoyong; Jiang, Zhonghao; Lian, Jianshe; Ji, Changtao

    2014-11-01

    A new smelting method to synthesize high-nitrogen nickel-free austenitic stainless steel was suggested. The synthesized steel completely consists of austenite and represents more brilliant anti-corrosion ability both in salt solution and sulfuric acid solution. The brilliant anti-corrosion ability is retained even after severe cold-rolling deformation, which ensures its workability in practice. The potentiodynamic polarization curves, electrochemical impedance spectroscopy, and passivating treatment were used to characterize its corrosion properties and uncover its corrosion mechanism in salt solution. X-ray photoelectron spectroscopy was used to clarify the mechanism of passivation. The results demonstrate that the steel has a more uniform and thicker passive film than traditional stainless steel due to the cooperation of nitrogen and chromium.

  18. The Synthesis and Electrochemical Behavior of High-Nitrogen Nickel-Free Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sun, Shicheng; Wei, Sufeng; Wang, Guoyong; Jiang, Zhonghao; Lian, Jianshe; Ji, Changtao

    2014-09-01

    A new smelting method to synthesize high-nitrogen nickel-free austenitic stainless steel was suggested. The synthesized steel completely consists of austenite and represents more brilliant anti-corrosion ability both in salt solution and sulfuric acid solution. The brilliant anti-corrosion ability is retained even after severe cold-rolling deformation, which ensures its workability in practice. The potentiodynamic polarization curves, electrochemical impedance spectroscopy, and passivating treatment were used to characterize its corrosion properties and uncover its corrosion mechanism in salt solution. X-ray photoelectron spectroscopy was used to clarify the mechanism of passivation. The results demonstrate that the steel has a more uniform and thicker passive film than traditional stainless steel due to the cooperation of nitrogen and chromium.

  19. Estimation of fatigue strain-life curves for austenitic stainless steels in light water reactor environments.

    SciTech Connect

    Chopra, O. K.; Smith, J. L.

    1998-02-12

    The ASME Boiler and Pressure Vessel Code design fatigue curves for structural materials do not explicitly address the effects of reactor coolant environments on fatigue life. Recent test data indicate a significant decrease in fatigue lives of austenitic stainless steels (SSs) in light water reactor (LWR) environments. Unlike those of carbon and low-alloy steels, environmental effects on fatigue lives of SSs are more pronounced in low-dissolved-oxygen (low-DO) water than in high-DO water, This paper summarizes available fatigue strain vs. life data on the effects of various material and loading variables such as steel type, DO level, strain range, and strain rate on the fatigue lives of wrought and cast austenitic SSs. Statistical models for estimating the fatigue lives of these steels in LWR environments have been updated with a larger data base. The significance of the effect of environment on the current Code design curve has been evaluated.

  20. The effect of hydrogen on strain hardening and fracture mechanism of high-nitrogen austenitic steel

    NASA Astrophysics Data System (ADS)

    Maier, G. G.; Astafurova, E. G.; Melnikov, E. V.; Moskvina, V. A.; Vojtsik, V. F.; Galchenko, N. K.; Zakharov, G. N.

    2016-07-01

    High-nitrogen austenitic steels are perspective materials for an electron-beam welding and for producing of wear-resistant coatings, which can be used for application in aggressive atmospheres. The tensile behavior and fracture mechanism of high-nitrogen austenitic steel Fe-20Cr-22Mn-1.5V-0.2C-0.6N (in wt.%) after electrochemical hydrogen charging for 2, 10 and 40 hours have been investigated. Hydrogenation of steel provides a loss of yield strength, uniform elongation and tensile strength. The degradation of tensile properties becomes stronger with increase in charging duration - it occurs more intensive in specimens hydrogenated for 40 hours as compared to ones charged for 2-10 hours. Fracture analysis reveals a hydrogen-induced formation of brittle surface layers up to 6 μm thick after 40 hours of saturation. Hydrogenation changes fracture mode of steel from mixed intergranular-transgranular to mainly transgranular one.

  1. Cast heat-resistant austenitic steel with improved temperature creep properties and balanced alloying element additions and methodology for development of the same

    DOEpatents

    Pankiw, Roman I; Muralidharan, Govindrarajan; Sikka, Vinod Kumar; Maziasz, Philip J

    2012-11-27

    The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The new austenitic steel compositions retain desirable phases, such as austenite, M.sub.23C.sub.6, and MC in its microstructure to higher temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.

  2. Acoustic Emission Technique for Characterizing Deformation and Fatigue Crack Growth in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Mukhopadhyay, C. K.; Jayakumar, T.

    2003-03-01

    Acoustic emission (AE) during tensile deformation and fatigue crack growth (FCG) of austenitic stainless steels has been studied. In AISI type 316 stainless steel (SS), AE has been used to detect micro plastic yielding occurring during macroscopic plastic deformation. In AISI type 304 SS, relation of AE with stress intensity factor and plastic zone size has been studied. In AISI type 316 SS, fatigue crack growth has been characterised using acoustic emission.

  3. Upset welded 304L and 316L vessels for storage tests

    SciTech Connect

    Kanne, W.R. Jr.

    1996-04-01

    Two sets of vessels for tritium storage tests were fabricated using upset welding. A solid-state resistance upset weld was used to join the two halves of each vessel at the girth. The vessels differ from production reservoirs in design, material, and fabrication process. One set was made from forged 304L stainless steel and the other from forged 316L stainless steel. Six vessels of each type were loaded with a tritium mix in November 1995 and placed in storage at 71 C. This memo describes and documents the fabrication of the twelve vessels.

  4. Microconstituents of the Modified Surface Layer of Austenitic Steel With Nanofibres of Aluminium Oxyhydroxide

    NASA Astrophysics Data System (ADS)

    Kuznetsov, M. A.; Zernin, E. A.; Danilov, V. I.; Zhuravkov, S. P.; Dementyev, S. V.

    2016-08-01

    In the paper the authors provide the results of experimental study of the effect caused by introduction of nanostructured fibres of aluminium oxyhydroxide into the surface layer of austenitic steel upon its microconstituents. The authors show that, due to introduction of given fibres dendrite size is reduced and equilibrium structure is formed.

  5. High-Temperature Performance of Cast CF8C-Plus Austenitic Stainless Steel

    SciTech Connect

    Maziasz, Philip J; Pint, Bruce A

    2011-01-01

    Covers and casings of small to medium size gas turbines can be made from cast austenitic stainless steels, including grades such as CF8C, CF3M, or CF10M. Oak Ridge National Laboratory and Caterpillar have developed a new cast austenitic stainless steel, CF8C-Plus, which is a fully austenitic stainless steel, based on additions of Mn and N to the standard Nb-stabilized CF8C steel grade. The Mn addition improves castability, as well as increases the alloy solubility for N, and both Mn and N synergistically act to boost mechanical properties. CF8C-Plus steel has outstanding creep-resistance at 600-900 C, which compares well with Ni-based superalloys such as alloys X, 625, 617, and 230. CF8C-Plus also has very good fatigue and thermal fatigue resistance. It is used in the as-cast condition, with no additional heat-treatments. While commercial success for CF8C-Plus has been mainly for diesel exhaust components, this steel can also be considered for gas turbine and microturbine casings. The purposes of this paper are to demonstrate some of the mechanical properties, to update the long-term creep-rupture data, and to present new data on the high-temperature oxidation behavior of these materials, particularly in the presence of water vapor.

  6. Biological behaviour of human umbilical artery smooth muscle cell grown on nickel-free and nickel-containing stainless steel for stent implantation

    PubMed Central

    Li, Liming; An, Liwen; Zhou, Xiaohang; Pan, Shuang; Meng, Xin; Ren, Yibin; Yang, Ke; Guan, Yifu

    2016-01-01

    To evaluate the clinical potential of high nitrogen nickel-free austenitic stainless steel (HNNF SS), we have compared the cellular and molecular responses of human umbilical artery smooth muscle cells (HUASMCs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel). CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apoptosis, and cell cycle), and quantitative real-time PCR (qRT-PCR) was used to analyze the gene expression profiles of HUASMCs exposed to HNNF SS and 316L SS, respectively. CCK-8 analysis demonstrated that HUASMCs cultured on HNNF SS proliferated more slowly than those on 316L SS. Flow cytometric analysis revealed that HNNF SS could activate more cellular apoptosis. The qRT-PCR results showed that the genes regulating cell apoptosis and autophagy were up-regulated on HNNF SS. Thus, HNNF SS could reduce the HUASMC proliferation in comparison to 316L SS. The findings furnish valuable information for developing new biomedical materials for stent implantation. PMID:26727026

  7. Biological behaviour of human umbilical artery smooth muscle cell grown on nickel-free and nickel-containing stainless steel for stent implantation

    NASA Astrophysics Data System (ADS)

    Li, Liming; An, Liwen; Zhou, Xiaohang; Pan, Shuang; Meng, Xin; Ren, Yibin; Yang, Ke; Guan, Yifu

    2016-01-01

    To evaluate the clinical potential of high nitrogen nickel-free austenitic stainless steel (HNNF SS), we have compared the cellular and molecular responses of human umbilical artery smooth muscle cells (HUASMCs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel). CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apoptosis, and cell cycle), and quantitative real-time PCR (qRT-PCR) was used to analyze the gene expression profiles of HUASMCs exposed to HNNF SS and 316L SS, respectively. CCK-8 analysis demonstrated that HUASMCs cultured on HNNF SS proliferated more slowly than those on 316L SS. Flow cytometric analysis revealed that HNNF SS could activate more cellular apoptosis. The qRT-PCR results showed that the genes regulating cell apoptosis and autophagy were up-regulated on HNNF SS. Thus, HNNF SS could reduce the HUASMC proliferation in comparison to 316L SS. The findings furnish valuable information for developing new biomedical materials for stent implantation.

  8. The effect of chemical composition and austenite conditioning on the transformation behavior of microalloyed steels

    SciTech Connect

    Mousavi Anijdan, S.H.; Rezaeian, Ahmad; Yue, Steve

    2012-01-15

    In this investigation, by using continuous cooling torsion (CCT) testing, the transformation behavior of four microalloyed steels under two circumstances of austenite conditioning and non-conditioning was studied. A full scale hot-rolling schedule containing a 13-pass deformation was employed for the conditioning of the austenite. The CCT tests were then employed till temperature of {approx} 540 Degree-Sign C and the flow curves obtained from this process were analyzed. The initial and final microstructures of the steels were studied by optical and electron microscopes. Results show that alloying elements would decrease the transformation temperature. This effect intensifies with the gradual increase of Mo, Nb and Cu as alloying elements added to the microalloyed steels. As well, austenite conditioning increased the transformation start temperature due mainly to the promotion of polygonal ferrite formation that resulted from a pancaked austenite. The final microstructures also show that CCT alone would decrease the amount of bainite by inducing ferrite transformation in the two phase region. In addition, after the transformation begins, the deformation might result in the occurrence of dynamic recrystallization in the ferrite region. This could lead to two different ferrite grain sizes at the end of the CCT. Moreover, the Nb bearing steels show no sign of decreasing the strength level after the transformation begins in the non-conditioned situation and their microstructure is a mix of polygonal ferrite and bainite indicating an absence of probable dynamic recrystallization in this condition. In the conditioned cases, however, these steels show a rapid decrease of the strength level and their final microstructures insinuate that ferrite could have undergone a dynamic recrystallization due to deformation. Consequently, no bainite was seen in the austenite conditioned Nb bearing steels. The pancaking of austenite in the latest cases produced fully polygonal ferrite

  9. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels

    NASA Astrophysics Data System (ADS)

    Timokhina, I. B.; Hodgson, P. D.; Pereloma, E. V.

    2004-08-01

    Two Fe-0.2C-1.55Mn-1.5Si (in wt pct) steels, with and without the addition of 0.039Nb (in wt pct), were studied using laboratory rolling-mill simulations of controlled thermomechanical processing. The microstructures of all samples were characterized by optical metallography, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The microstructural behavior of phases under applied strain was studied using a heat-tinting technique. Despite the similarity in the microstructures of the two steels (equal amounts of polygonal ferrite, carbide-free bainite, and retained austenite), the mechanical properties were different. The mechanical properties of these transformation-induced-plasticity (TRIP) steels depended not only on the individual behavior of all these phases, but also on the interaction between the phases during deformation. The polygonal ferrite and bainite of the C-Mn-Si steel contributed to the elongation more than these phases in the C-Mn-Si-Nb-steel. The stability of retained austenite depends on its location within the microstructure, the morphology of the bainite, and its interaction with other phases during straining. Granular bainite was the bainite morphology that provided the optimum stability of the retained austenite.

  10. Crack growth rates and fracture toughness of irradiated austenitic stainless steels in BWR environments.

    SciTech Connect

    Chopra, O. K.; Shack, W. J.

    2008-01-21

    In light water reactors, austenitic stainless steels (SSs) are used extensively as structural alloys in reactor core internal components because of their high strength, ductility, and fracture toughness. However, exposure to high levels of neutron irradiation for extended periods degrades the fracture properties of these steels by changing the material microstructure (e.g., radiation hardening) and microchemistry (e.g., radiation-induced segregation). Experimental data are presented on the fracture toughness and crack growth rates (CGRs) of wrought and cast austenitic SSs, including weld heat-affected-zone materials, that were irradiated to fluence levels as high as {approx} 2x 10{sup 21} n/cm{sup 2} (E > 1 MeV) ({approx} 3 dpa) in a light water reactor at 288-300 C. The results are compared with the data available in the literature. The effects of material composition, irradiation dose, and water chemistry on CGRs under cyclic and stress corrosion cracking conditions were determined. A superposition model was used to represent the cyclic CGRs of austenitic SSs. The effects of neutron irradiation on the fracture toughness of these steels, as well as the effects of material and irradiation conditions and test temperature, have been evaluated. A fracture toughness trend curve that bounds the existing data has been defined. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components have also been evaluated.

  11. Effect of bainite transformation and retained austenite on mechanical properties of austempered spheroidal graphite cast steel

    NASA Astrophysics Data System (ADS)

    Takahashi, Toshio; Abe, Toshihiko; Tada, Shuji

    1996-06-01

    Austempered ductile iron (ADI) has excellent mechanical properties, but its Young's modulus is low. Austempered spheroidal graphite cast steel (AGS) has been developed in order to obtain a new material with superior mechanical properties to ADI. Its carbon content (approximately 1.0 pct) is almost one-third that of a standard ADI; thus, the volume of graphite is also less. Young's modulus of AGS is 195 to 200 GPa and is comparable to that of steel. Austempered spheroidal graphite cast steel has an approximately 200 MPa higher tensile strength than ADI and twice the Charpy absorbed energy of ADI. The impact properties and the elongation are enhanced with increasing volume fraction of carbon-enriched retained austenite. At the austempering temperature of 650 K, the volume fraction of austenite is approximately 40 pct for 120 minutes in the 2.4 pct Si alloy, although it decreases rapidly in the 1.4 pct Si alloy. The X-ray diffraction analysis shows that appropriate quantity of silicon retards the decomposition of the carbon-enriched retained austenite. For austempering at 570 K, the amount of the carbon-enriched austenite decreases and the ferrite is supersaturated with carbon, resulting in high tensile strength but low toughness.

  12. Effect of bainite transformation and retained austenite on mechanical properties of austempered spheroidal graphite cast steel

    SciTech Connect

    Takahashi, Toshio; Abe, Toshihiko; Tada, Shuji

    1996-06-01

    Austempered ductile iron (ADI) has excellent mechanical properties, but its Young`s modulus is low. Austempered spheroidal graphite cast steel (AGS) has been developed in order to obtain a new material with superior mechanical properties to ADI. Its carbon content (approximately 1.0 pct) is almost one-third that of a standard ADI; thus, the volume of graphite is also less. Young`s modulus of AGS is 195 to 200 GPa and is comparable to that of steel. Austempered spheroidal graphite cast steel has an approximately 200 MPa higher tensile strength than ADI and twice the Charpy absorbed energy of ADI. The impact properties and the elongation are enhanced with increasing volume fraction of carbon-enriched retained austenite. At the austempering temperature of 650 K, the volume fraction of austenite is approximately 40 pct for 120 minutes in the 2.4 pct Si alloy, although it decreases rapidly in the 1.4 pct Si alloy. The X-ray diffraction analysis shows that appropriate quantity of silicon retards the decomposition of the carbon-enriched retained austenite. For austempering at 570 K, the amount of the carbon-enriched austenite decreases and the ferrite is supersaturated with carbon, resulting in high tensile strength but low toughness.

  13. Size-dependent characteristics of ultra-fine oxygen-enriched nanoparticles in austenitic steels

    NASA Astrophysics Data System (ADS)

    Miao, Yinbin; Mo, Kun; Zhou, Zhangjian; Liu, Xiang; Lan, Kuan-Che; Zhang, Guangming; Miller, Michael K.; Powers, Kathy A.; Stubbins, James F.

    2016-11-01

    Here, a coordinated investigation of the elemental composition and morphology of ultra-fine-scale nanoparticles as a function of size within a variety of austenitic oxide dispersion-strengthened (ODS) steels is reported. Atom probe tomography was utilized to evaluate the elemental composition of these nanoparticles. Meanwhile, the crystal structures and orientation relationships were determined by high-resolution transmission electron microscopy. The nanoparticles with sufficient size (>4 nm) to maintain a Y2Ti2-xO7-2x stoichiometry were found to have a pyrochlore structure, whereas smaller YxTiyOz nanoparticles lacked a well-defined structure. The size-dependent characteristics of the nanoparticles in austenitic ODS steels differ from those in ferritic/martensitic ODS steels.

  14. Thermodynamic Calculation Study on Effect of Manganese on Stability of Austenite in High Nitrogen Stainless Steels

    NASA Astrophysics Data System (ADS)

    Wang, Qingchuan; Zhang, Bingchun; Yang, Ke

    2016-07-01

    A series of high nitrogen steels were studied by using thermodynamic calculations to investigate the effect of manganese on the stability of austenite. Surprisingly, it was found that the austenite stabilizing ability of manganese was strongly weakened by chromium, but it was strengthened by molybdenum. In addition, with an increase of manganese content, the ferrite stabilizing ability of chromium significantly increased, but that of molybdenum decreased. Therefore, strong interactions exist between manganese and the other alloying elements, which should be the main reason for the difference among different constituent diagrams.

  15. Large-strain cyclic response and martensitic transformation of austenitic stainless steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Hamasaki, H.; Nakano, T.; Ishimaru, E.; Yoshida, F.

    2016-08-01

    Cyclic tension-compression tests were carried out for austenitic stainless steel (SUS304) at elevated temperatures. The significant Bauschinger effect was found in the obtained stress-strain curve. In addition, stagnation of deformation induced martensitic transformation was observed just after stress reversal until the equivalent stress reached the maximum value in the course of experiment. The constitutive model for SUS304 at room temperature was developed, in which homogenized stress of SUS304 was expressed by the weighed summation of stresses of austenite and martensite phases. The calculated stress-strain curves and predicted martensite volume fraction were well correlated with those experimental results.

  16. The Change of Austenitic Stainless Steel Elements Content in the Inner Parts of VVER-440 Reactor during Operation

    NASA Astrophysics Data System (ADS)

    Smutný, Vladimír; Hep, Jaroslav; Novosad, Petr

    2009-08-01

    Neutron activation induces the element transmutation in materials surrounding the reactor active core. The objective of the present paper is to calculate and evaluate the change of austenitic stainless steel 08Ch18N10T elements content through neutron induced activation, in inner parts of VVER-440 - in the baffle and in the barrel. Particularly the content changes of Mn in austenitic stainless steel. The neutron flux density and then the neutron activation of austenitic stainless steel elements in parts at the core are calculated. Neutron activation represents a measure of austenitic stainless steel elements transmutation. The power distribution is determined as an average value of several cycles power distribution in the middle of a cycle for the NPP Dukovany. The power distribution is calculated with the code MOBY-DICK [1]. The neutron flux density is calculated with the code TORT [2]. The neutron activation of austenitic stainless steel elements in the baffle and in the barrel is calculated with the system EASY-2007 containing the code FISPACT-2007 [3]. The calculation of the changing austenitic stainless steel elements content is performed depending on the moment of the supposed end of reactor operation - 40 years. There is also necessary monitoring and benchmarking of steel element content change, because the neutron flux calculation, particularly in thermal region, shows a considerable uncertainty, e.g. [4]. The motivation for this work is the study focused to stress corrosion cracking of austenitic stainless steels induced by radiation inside PWR and BWR, e.g. [5]. The paper could be a suggestion to estimation of austenitic stainless steel corrosion damage induced by neutrons in inner parts of VVER-440 reactor.

  17. Effect of manganese and nitrogen on the solidification mode in austenitic stainless steel welds

    NASA Astrophysics Data System (ADS)

    Suutala, N.

    1982-12-01

    The macrostructures and microstructures of thirty different austenitic stainless welds alloyed with manganese and Jor nitrogen are analyzed. Comparison of the results with those obtained from normal welds of the AISIJAWS 300 series indicates that the solidification mode and Ferrite Number can be predicted adequately using chromium and nickel equivalents. The solidification mode in the normal and nitrogen-alloyed welds can be best described by the equivalents developed by Hammar and Svensson and the Ferrite Number by the conventional Schaeffler-DeLong diagram. Both of these descriptions are invalid at high manganese content values (5 to 8 pct), however, in which case Hull’s equivalents give a better correlation between the composition and the solidification mode or Ferrite Number. The complicated role of manganese and the austenite-favoring effect of nitrogen in austenitic stainless steels are discussed.

  18. Corrosion of austenitic stainless steels and nickel-base alloys in supercritical water and novel control methods

    SciTech Connect

    Tan, Lizhen; Allen, Todd R.; Yang, Ying

    2012-01-01

    This chapter contains sections titled: (1) Introduction; (2) Thermodynamics of Alloy Oxidation; (3) Corrosion of Austenitic Stainless Steels and Ni-Base Alloys in SCW; (4) Novel Corrosion Control Methods; (5) Factors Influencing Corrosion; (6) Summary; and (7) References.

  19. Evaluation of the fabricability of advanced iron aluminide-clad austenitic stainless steel tubing

    SciTech Connect

    Mohn, W.R.; Topolski, M.J.

    1993-07-01

    Researchers at Babcock & Wilcox Alliance Research Center have investigated methods to produce bimetallic tubing consisting of iron aluminide-clad austenitic stainless steel for practical use in fossil fueled energy equipment. In the course of this work, the compatibility of iron aluminide with four candidate austenitic stainless steel substrates was first evaluated using diffusion couples. Based on these results, a combination of iron aluminide and 304 stainless steel was selected for further development. Two composite billets of this combination were then prepared and extruded in separate trails at 2200F and 2000F. Both extrusions yielded 2-inch OD clad tubes, each approximately 18 feet long. Results of the evaluation show that the tube extruded at 2000F had a sound, integrally bonded clad layer throughout its entire length. However, the tube extruded at 2200F exhibited regions of disbonding between the clad layer and the substrate. In supplement to this work, an assessment of the technical and economic merits of iron aluminide-clad austenitic stainless steel components in power generation systems was conducted by B&W Fossil Power Division. Future activities should include an investigation of lower extrusion processing temperatures to optimize the fabrication of high quality iron-aluminide clad tubing.

  20. Effect of Internal Hydrogen on Delayed Cracking of Metastable Low-Nickel Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Papula, Suvi; Talonen, Juho; Todoshchenko, Olga; Hänninen, Hannu

    2014-10-01

    Metastable austenitic stainless steels, especially manganese-alloyed low-nickel grades, may be susceptible to delayed cracking after forming processes. Even a few wppm of hydrogen present in austenitic stainless steels as an inevitable impurity is sufficient to cause cracking if high enough fraction of strain-induced α'-martensite and high residual tensile stresses are present. The role of internal hydrogen content in delayed cracking of several metastable austenitic stainless steels having different alloying chemistries was investigated by means of Swift cup tests, both in as-supplied state and after annealing at 673 K (400 °C). Hydrogen content of the test materials in each state was analyzed with three different methods: inert gas fusion, thermal analysis, and thermal desorption spectroscopy. Internal hydrogen content in as-supplied state was higher in the studied manganese-alloyed low-nickel grades, which contributed to susceptibility of unstable grades to delayed cracking. Annealing of the stainless steels reduced their hydrogen content by 1 to 3 wppm and markedly lowered the risk of delayed cracking. Limiting drawing ratio was improved from 1.4 to 1.7 in grade 204Cu, from 1.7 to 2.0 in grade 201 and from 1.8 to 2.12 in grade 301. The threshold levels of α'-martensite and residual stress for delayed cracking at different hydrogen contents were defined for the test materials.

  1. The critical analysis of austenitic manganese steel T130Mn135 used for castings in the mining industry

    NASA Astrophysics Data System (ADS)

    Josan, A.; Pinca Bretotean, C.; Putan, V.

    2016-02-01

    This paper presents the critical analysis of making technology of austenitic manganese steel T130Mn135, used for castings of the type Mills hammer at a Romanian foundry. Are analyzed 11 charges of steel for castings and is determined the diagram of the heat treatment. After the applying of the heat treatment results a single-phase structure, consisting of homogeneous austenite. For all the 11 charges is presented the variation of chemical composition.

  2. Prediction and Validation of the Austenite Phase Fraction upon Intercritical Annealing of Medium Mn Steels

    NASA Astrophysics Data System (ADS)

    Farahani, Hussein; Xu, Wei; van der Zwaag, Sybrand

    2015-11-01

    In this research, the effects of Mn and Si concentration and that of the isothermal intercritical holding temperature on the austenite-to-ferrite ( γ → α) and the martensite-to-austenite ( α' → γ) phase transformations are studied for a series of Fe-C-Mn-Si steels with up to 7 wt pct Mn. The model is based on the local equilibrium (LE) concept. The model predictions are compared to experimental observations. It is found that the austenite volume fraction at the end of intercritical annealing depends significantly on the initial microstructure. For Mn concentrations between 3 and 7 wt pct, the LE model is qualitatively correct. However, at higher Mn levels the discrepancy between the predicted austenite fractions and the experimental values increases, in particular for the α' → γ transformation. Intragrain nucleation is held responsible for the higher austenite fractions observed experimentally. Silicon is found have a much smaller effect on the kinetics of the intercritical annealing than Mn.

  3. RESULTS OF CHARACTERIZATION TESTS OF THE SURFACES OF A COMMERCIALLY CARBURIZED AUSTENITIC STAINLESS STEEL

    SciTech Connect

    Farrell, K

    2004-01-07

    A commercial surface carburization treatment that shows promise for hardening the surfaces of the stainless steel target vessel of the Spallation Neutron Source against cavitation erosion and pitting caused by the action of pulsed pressure waves in the liquid mercury target has been investigated. To verify promotional claims for the treatment and to uncover any factors that might be of concern for the integrity of a carburized target vessel, some characterization tests of the nature of the surface layers of carburized austenitic 316LN stainless steel were conducted. The findings support most of the claims. The carburized layer is about 35 {micro}m thick. Its indentation hardness is about five times larger than that of the substrate steel and declines rapidly with depth into the layer. The surface is distorted by the treatment, and the austenite lattice is enlarged. The corrosion resistance of the carburized layer in an acid medium is greater than that for untreated austenite. The layer is not brittle; it is plastically deformable and is quite resistant to cracking during straining. Contrary to the provider's assertations, the maximum carbon content of the layer is much less than 6-7 wt% carbon, and the carbon is not simply contained in supersaturated solid solution; some of it is present in a previously unreported iron carbide phase located at the very surface. Large variations were found in the thickness of the layer, and they signify that controls may be needed to ensure a uniform thickness for treatment of the SNS target vessel. Inclusion stringers and {delta}-ferrite phase embraced in the treated layer are less resistant to chemical attack than the treated austenite. From a cavitation pitting perspective under SNS bombardment, such non-austenitic phases may provide preferential sites for pitting. The shallow depth of the hardened layer will require use of protection measures to avoid mishandling damage to the layer during assembly and installation of a target

  4. Effect of Strain-Induced Age Hardening on Yield Strength Improvement in Ferrite-Austenite Duplex Lightweight Steels

    NASA Astrophysics Data System (ADS)

    Song, Hyejin; Lee, Seok Gyu; Sohn, Seok Su; Kwak, Jai-Hyun; Lee, Sunghak

    2016-11-01

    Ferrite-austenite lightweight steels showing TRansformation-induced plasticity were developed by varying the aging temperature with or without prestraining, and their effects on tensile properties were investigated in relation with microstructural evolution of carbide formation. The aged steels contained austenite, pearlite, and martensite in the ferrite matrix, and the austenite volume fraction decreased with the increasing aging temperature because some austenite grains decomposed to pearlites. This austenite decomposition to pearlite was favorable for the improvement of yield strength, but negatively influenced overall tensile properties. The prestraining promoted the austenite decomposition by a diffusion-controlled phase transformation, and changed the morphology of the cementite from a long lamellar shape to a densely agglomerated particle shape. In order to obtain the large increase in yield strength as well as excellent combination of strength and ductility, the strain-induced aging treatment, i.e., prestraining followed by aging, is important like in the prestrained and 673 K (400 °C)-aged steel. This large increase in yield strength, in spite of a reduction of elongation (65 to 43 pct), was basically attributed to an appropriate amount of decomposition of austenite to pearlite ( e.g., 4 vol pct), while having sufficient austenite to martensite transformation ( e.g., 14.5 vol pct martensite).

  5. Mechanism and estimation of fatigue crack initiation in austenitic stainless steels in LWR environments.

    SciTech Connect

    Chopra, O. K.; Energy Technology

    2002-08-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This report provides an overview of fatigue crack initiation in austenitic stainless steels in LWR coolant environments. The existing fatigue {var_epsilon}-N data have been evaluated to establish the effects of key material, loading, and environmental parameters (such as steel type, strain range, strain rate, temperature, dissolved-oxygen level in water, and flow rate) on the fatigue lives of these steels. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves for austenitic stainless steels as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are presented. The influence of reactor environments on the mechanism of fatigue crack initiation in these steels is also discussed.

  6. A creep model for austenitic stainless steels incorporating cavitation and wedge cracking

    NASA Astrophysics Data System (ADS)

    Mahesh, S.; Alur, K. C.; Mathew, M. D.

    2011-01-01

    A model of damage evolution in austenitic stainless steels under creep loading at elevated temperatures is proposed. The initial microstructure is idealized as a space-tiling aggregate of identical rhombic dodecahedral grains, which undergo power-law creep deformation. Damage evolution in the form of cavitation and wedge cracking on grain-boundary facets is considered. Both diffusion- and deformation-driven grain-boundary cavity growth are treated. Cavity and wedge-crack length evolution are derived from an energy balance argument that combines and extends the models of Cottrell (1961 Trans. AIME 212 191-203), Williams (1967 Phil. Mag. 15 1289-91) and Evans (1971 Phil Mag. 23 1101-12). The time to rupture predicted by the model is in good agreement with published experimental data for a type 316 austenitic stainless steel under uniaxial creep loading. Deformation and damage evolution at the microscale predicted by the present model are also discussed.

  7. Ultrasonic inspection of austenitic stainless steel welds with artificially produced stress corrosion cracks

    SciTech Connect

    Dugan, Sandra; Wagner, Sabine

    2014-02-18

    Austenitic stainless steel welds and nickel alloy welds, which are widely used in nuclear power plants, present major challenges for ultrasonic inspection due to the grain structure in the weld. Large grains in combination with the elastic anisotropy of the material lead to increased scattering and affect sound wave propagation in the weld. This results in a reduced signal-to-noise ratio, and complicates the interpretation of signals and the localization of defects. Mechanized ultrasonic inspection was applied to study austenitic stainless steel test blocks with different types of flaws, including inter-granular stress corrosion cracks (IGSCC). The results show that cracks located in the heat affected zone of the weld are easily detected when inspection from both sides of the weld is possible. In cases of limited accessibility, when ultrasonic inspection can be carried out only from one side of a weld, it may be difficult to distinguish between signals from scattering in the weld and signals from cracks.

  8. Corrosion properties of S-phase layers formed on medical grade austenitic stainless steel.

    PubMed

    Buhagiar, Joseph; Dong, Hanshan

    2012-02-01

    The corrosion properties of S-phase surface layers formed in AISI 316LVM (ASTM F138) and High-N (ASTM F1586) medical grade austenitic stainless steels by plasma surface alloying with nitrogen (at 430°C), carbon (at 500°C) and both carbon and nitrogen (at 430°C) has been investigated. The corrosion behaviour of the S-phase layers in Ringer's solutions was evaluated using potentiodynamic and immersion corrosion tests. The corrosion damage was evaluated using microscopy, hardness testing, inductive coupled plasma mass spectroscopy and X-ray diffraction. The experimental results have demonstrated that low-temperature nitriding, carburising and carbonitriding can improve the localised corrosion resistance of both industrial and medical grade austenitic stainless steels as long as the threshold sensitisation temperature is not reached. Carburising at 500°C has proved to be the best hardening treatment with the least effect on the corrosion resistance of the parent alloy.

  9. Weak ferromagnetism in `non-magnetic' austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Crangle, John; Fogarty, A.; Taylor, M. J.

    1992-06-01

    The magnetization and susceptability of the non-magnetic stainless steels AISI 304 and AISI 316 have been measured at low temperatures using a SQUID magnetometer. A small but stable ferromagnetic component is always present. Field cooling shows the effects of exchange anisotropy. Another stainless steel AISI 321 is non-magnetic at room temperature but it transforms irreversibly to a partially ferromagnetic state when it is cooled below 280 K.

  10. Effects of Ti-C:H coating and plasma nitriding treatment on tribological, electrochemical, and biocompatibility properties of AISI 316L.

    PubMed

    Kao, W H; Su, Y L; Horng, J H; Zhang, K X

    2016-08-01

    Ti-C:H coatings were deposited on original, nitrided, and polished-nitrided AISI 316L stainless steel substrates using a closed field unbalanced magnetron sputtering system. Sliding friction wear tests were performed in 0.89 wt.% NaCl solution under a load of 30 N against AISI 316L stainless steel, Si3N4, and Ti6Al4V balls, respectively. The electrochemical properties of the various specimens were investigated by means of corrosion tests performed in 0.89 wt.% NaCl solution at room temperature. Finally, the biocompatibility properties of the specimens were investigated by performing cell culturing experiments using purified mouse leukemic monocyte macrophage cells (Raw264.7). In general, the results showed that plasma nitriding followed by Ti-C:H coating deposition provides an effective means of improving the wear resistance, anti-corrosion properties, and biocompatibility performance of AISI 316L stainless steel.

  11. Stress Induce Martensitic Transformations in Hydrogen Embrittlement of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Rozenak, Paul

    2013-04-01

    In austenitic type stainless steels, hydrogen concentration gradients formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses, and martensitic phases α'-BCC and ɛ-HCP developed. The basic relationship between the X-ray diffraction peak broadening and the hydrogen gradients, formed during charging and aging at room temperature in such austenitic stainless steels, were analyzed. The results demonstrate that the impact of stresses must be considered in the discussion of phase transformations due to hydrogenation. Austenitic stainless steels based on iron-nickel-chromium, have relatively low stacking fault energy γSFE and undergo: quenching to low temperatures, plastic deformation, sensitization heat treatments, high pressure (≥3-5 × 109 Pa) by hydrogen or other gases, electrochemical charging (when the sample is cathode) and when is irradiation by various ions the samples in vacuum. All the above mentioned induce formation of ɛ and α' in the face-centered cubic (FCC) austenite γ matrix. The highest stresses cause formation of mainly α' phase and ɛ-martensite, and both are involved in plastic deformation processes and promoting crack propagation at the surface. In 310 steel, the crack propagation is based on deformation processes following ɛ-martensitic formation only. Formations of ɛ- and α'-martensites were noted along the fracture surfaces and ahead of the crack tip. The cracks propagated through the ɛ-martensitic plates, which formed along the active slip planes, while α' phase was always found in the high-stress region on the ends of the ligaments from both sides of the crack surfaces undergoing propagation.

  12. Stress Induce Martensitic Transformations in Hydrogen Embrittlement of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Rozenak, Paul

    2014-01-01

    In austenitic type stainless steels, hydrogen concentration gradients formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses, and martensitic phases α'-BCC and ɛ-HCP developed. The basic relationship between the X-ray diffraction peak broadening and the hydrogen gradients, formed during charging and aging at room temperature in such austenitic stainless steels, were analyzed. The results demonstrate that the impact of stresses must be considered in the discussion of phase transformations due to hydrogenation. Austenitic stainless steels based on iron-nickel-chromium, have relatively low stacking fault energy γSFE and undergo: quenching to low temperatures, plastic deformation, sensitization heat treatments, high pressure (≥3-5 × 109 Pa) by hydrogen or other gases, electrochemical charging (when the sample is cathode) and when is irradiation by various ions the samples in vacuum. All the above mentioned induce formation of ɛ and α' in the face-centered cubic (FCC) austenite γ matrix. The highest stresses cause formation of mainly α' phase and ɛ-martensite, and both are involved in plastic deformation processes and promoting crack propagation at the surface. In 310 steel, the crack propagation is based on deformation processes following ɛ-martensitic formation only. Formations of ɛ- and α'-martensites were noted along the fracture surfaces and ahead of the crack tip. The cracks propagated through the ɛ-martensitic plates, which formed along the active slip planes, while α' phase was always found in the high-stress region on the ends of the ligaments from both sides of the crack surfaces undergoing propagation.

  13. Elucidating the Effect of Alloying Elements on the Behavior of Austenitic Stainless Steels at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2016-09-01

    The effect of carbon and molybdenum on elevated temperature behavior of austenitic stainless steels was studied. It was revealed that carbon does not alter the overall grain coarsening behavior but molybdenum significantly retards the growth of grains toward higher temperatures and slower kinetics and effectively increases the grain growth activation energy due to an interaction energy between Mo and grain boundaries. These observations were based on especial activation energy plots, which facilitate the interpretation of results.

  14. An improved method to identify grain boundary creep cavitation in 316H austenitic stainless steel.

    PubMed

    Chen, B; Flewitt, P E J; Smith, D J; Jones, C P

    2011-04-01

    Inter-granular creep cavitation damage has been observed in an ex-service 316H austenitic stainless steel thick section weldment. Focused ion beam cross-section milling combined with ion channelling contrast imaging is used to identify the cavitation damage, which is usually associated with the grain boundary carbide precipitates in this material. The results demonstrate that this technique can identify, in particular, the early stage of grain boundary creep cavitation unambiguously in materials with complex phase constituents. PMID:21396524

  15. Formation of a submicrocrystalline structure in metastable austenitic steels during severe plastic deformation and subsequent heating

    NASA Astrophysics Data System (ADS)

    Mal'tseva, L. A.; Mal'tseva, T. V.; Yurovskikh, A. S.; Raab, G. I.; Sharapova, V. A.; Vakhonina, K. D.

    2016-03-01

    The structure and the mechanical properties of metastable austenitic steels after severe plastic deformation by four or six passes of equal-channel angular pressing (ECAP) at a temperature of 400°C are studied. It is shown that ECAP results in strain hardening mainly due to the formation of a submicrocrystalline structure, which is retained after subsequent heating to 500°C.

  16. Magnetic-field-induced grain elongation in a medium carbon steel during its austenitic decomposition

    SciTech Connect

    Zhang, Y.D.; Esling, C.; Muller, J.; He, C.S.; Zhao, X.; Zuo, L.

    2005-11-21

    A 12-T magnetic field was applied during the austenitic decomposition in a medium plain carbon steel at a slow cooling rate. The magnetic field applied promotes proeutectoid ferrite grains to grow along the field direction and results in an elongated grain microstructure. The grain elongation is the result of the opposing contributions from the atomic dipolar interaction energy of Fe atoms and the interfacial energy.

  17. EBSD characterization of a hot worked 304 austenitic stainless steel under strain reversal.

    PubMed

    Jorge-Badiola, D; Iza-Mendia, A; Gutiérrez, I

    2009-07-01

    Monotonic and strain reversal hot torsion tests were performed on a 304 austenitic stainless steel, this led to changes in microstructures depending on the strain path. electron backscatter diffraction was used as the tool for characterizing the microstructures. It was possible to find some intragranular microstructural changes due to the reversal of the strain by means of several local and global misorientation-related parameters. Sigma3 boundaries also showed sensitivity to strain reversal. PMID:19566625

  18. Variation of carbon concentration in proeutectoid ferrite during austenitization in hypoeutectoid steel

    SciTech Connect

    Jung, Minsu; Cho, Wontae; Park, Jihye; Jung, Jae-Gil; Lee, Young-Kook

    2014-08-15

    The variation of the C concentration in proeutectoid ferrite (α{sub PF}) during austenitization in hypoeutectoid steels was quantitatively investigated using the massive transformation start temperature (T{sub m}) of α{sub PF} to austenite (γ) measured by high-temperature confocal laser scanning microscopy and hardness of α{sub PF}. The C concentration in α{sub PF} at T{sub m} in hypoeutectoid steels increased with increasing total C concentration up to approximately 0.2 wt.% during heating. The hardness of α{sub PF} with isothermal holding time at 775 °C in S20C steel revealed C enrichment in α{sub PF} at the early stage of isothermal holding and its reduction with further holding. These results explain the redistribution of the C in α{sub PF} during austenitization as follows: free C atoms released from cementite during pearlite decomposition diffuse excessively into neighboring α{sub PF} as well as pearlitic ferrite. The supersaturated C concentration in α{sub PF} is reduced during the long-range diffusive transformation of α{sub PF} to γ. However, some of the excess C atoms still remain in α{sub PF} until α{sub PF} starts to massively transform to γ. - Highlights: • Massive transformation of αPF to γ in hypoeutectoid steels was observed using CLSM. • C content in αPF during austenitization was analyzed by measured Tm and hardness. • Tm decreases and C content in αPF at Tm increases with increasing total C. • C atoms released from θ during formation of P to γ diffuse excessively into αPF. • Supersaturated C content in αPF is reduced during transformation of αPF to γ.

  19. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    DOEpatents

    Leitnaker, James M.

    1981-01-01

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 0.015-0.030 times the volume percent ferrite present in the alloy. The formation of chi phase upon aging is controlled by controlling the Mo content.

  20. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    DOEpatents

    Leitnaker, J.M.

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 0.015 to 0.030 times the volume percent ferrite present in the alloy. The formation of chi phase upon aging is controlled by controlling the Mo content.

  1. The microstructural dependence of wear resistance in austenite containing plate steels

    NASA Astrophysics Data System (ADS)

    Wolfram, Preston Charles

    The purpose of this project was to examine the microstructural dependence of wear resistance of various plate steels, with interests in exploring the influence of retained austenite (RA). Materials resistant to abrasive wear are desirable in the industrial areas of agriculture, earth moving, excavation, mining, mineral processing, and transportation. Abrasive wear contributes to significant financial cost associated with wear to the industry. The motivation for the current study was to determine whether it would be beneficial from a wear resistance perspective to produce plate steels with increased amounts of retained austenite. This thesis investigates this motivation through a material matrix containing AR400F, Abrasive (0.21 wt pct C, 1.26 wt pct Mn, 0.21 wt pct Si, 0.15 wt pct Ni, 0.18 wt pct Mo), Armor (0.46 wt pct C, 0.54 wt pct Mn, 0.36 wt pct Si, 1.74 wt pct Ni, 0.31 wt pct Mo), 9260, 301SS, Hadfield, and SAE 4325 steels. The Abrasive, Armor and 9260 steels were heat treated using different methods such as quench and temper, isothermal bainitic hold, and quench and partitioning (Q&P). These heat treatments yielded various microstructures and the test matrix allowed for investigation of steels with similar hardness and varying levels of RA. The wear test methods used consisted of dry sand rubber wheel (DSRW), impeller-tumbler impact-abrasion (impeller), and Bond abrasion wear testing. DSRW and impeller wear resistance was found to increase with hardness and retained austenite levels at certain hardness levels. Some Q&P samples exhibited similar or less wear than the Hadfield steels in DSRW and impeller tests. Scanning electron microscopy investigation of wear surfaces revealed different wear mechanisms for the different wear test methods ranging from micro-plowing, to micro-cutting and to fragmentation.

  2. Effect of material heat treatment on fatigue crack initiation in austenitic stainless steels in LWR environments.

    SciTech Connect

    Chopra, O. K.; Alexandreanu, B.; Shack, W. J.; Energy Technology

    2005-07-31

    The ASME Boiler and Pressure Vessel Code provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify design curves for applicable structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. The existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. Under certain environmental and loading conditions, fatigue lives of austenitic stainless steels (SSs) can be a factor of 20 lower in water than in air. This report presents experimental data on the effect of heat treatment on fatigue crack initiation in austenitic Type 304 SS in LWR coolant environments. A detailed metallographic examination of fatigue test specimens was performed to characterize the crack morphology and fracture morphology. The key material, loading, and environmental parameters and their effect on the fatigue life of these steels are also described. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves for austenitic SSs as a function of material, loading, and environmental parameters. Two methods for incorporating the effects of LWR coolant environments into the ASME Code fatigue evaluations are presented.

  3. A simplified LBB evaluation procedure for austenitic and ferritic steel piping

    SciTech Connect

    Gamble, R.M.; Wichman, K.R.

    1997-04-01

    The NRC previously has approved application of LBB analysis as a means to demonstrate that the probability of pipe rupture was extremely low so that dynamic loads associated with postulated pipe break could be excluded from the design basis (1). The purpose of this work was to: (1) define simplified procedures that can be used by the NRC to compute allowable lengths for circumferential throughwall cracks and assess margin against pipe fracture, and (2) verify the accuracy of the simplified procedures by comparison with available experimental data for piping having circumferential throughwall flaws. The development of the procedures was performed using techniques similar to those employed to develop ASME Code flaw evaluation procedures. The procedures described in this report are applicable to pipe and pipe fittings with: (1) wrought austenitic steel (Ni-Cr-Fe alloy) having a specified minimum yield strength less than 45 ksi, and gas metal-arc, submerged arc and shielded metal-arc austentic welds, and (2) seamless or welded wrought carbon steel having a minimum yield strength not greater than 40 ksi, and associated weld materials. The procedures can be used for cast austenitic steel when adequate information is available to place the cast material toughness into one of the categories identified later in this report for austenitic wrought and weld materials.

  4. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels

    PubMed Central

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-01-01

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations. PMID:27739481

  5. Development of a robust modeling tool for radiation-induced segregation in austenitic stainless steels

    SciTech Connect

    Yang, Ying; Field, Kevin G; Allen, Todd R.; Busby, Jeremy T

    2015-09-01

    Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels in Light Water Reactor (LWR) components has been linked to changes in grain boundary composition due to irradiation induced segregation (RIS). This work developed a robust RIS modeling tool to account for thermodynamics and kinetics of the atom and defect transportation under combined thermal and radiation conditions. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. Both cross and non-cross phenomenological diffusion coefficients in the flux equations were considered and correlated to tracer diffusion coefficients through Manning’s relation. The preferential atomvacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. Detailed analysis on the diffusion fluxes near and at grain boundaries of irradiated austenitic stainless steels suggested the dominant diffusion mechanism for chromium and iron is via vacancy, while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly influenced by the composition gradient formed from the transient state, leading to the oscillatory behavior of alloy compositions in this region. This work confirms that both vacancy and interstitial diffusion, and segregation itself, have important roles in determining the microchemistry of Fe, Cr, and Ni at irradiated grain boundaries in austenitic stainless steels.

  6. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels

    NASA Astrophysics Data System (ADS)

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-10-01

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations.

  7. Characterization of the sodium corrosion behavior of commercial austenitic steels

    SciTech Connect

    Shiels, S.A.; Bagnall, C.; Keeton, A.R.; Witkowski, R.E.; Anantatmula, R.P.

    1980-01-01

    During the course of an on-going evaluation of austenitic alloys for potential liquid metal fast breeder reactor (LMFBR) fuel pin cladding application, a series of commercial alloys was selected for study. The data obtained led to the recognition of an underlying pattern of behavior and enabled the prediction of surface chemistry changes. The changes in surface topographical development from alloy to alloy are shown and the important role played by the element molybdenum in this development is indicated. The presentation also illustrates how a total damage equation was evolved to encompass all aspects of weight loss and metal/sodium interactions: wall thinning ferrite layer formation and intergranular attack. The total damage equation represents a significant departure from the classical description of sodium corrosion in which weight loss is simply translated into wall thinning.

  8. Migration and accumulation at dislocations of transmutation helium in austenitic steels upon neutron irradiation

    NASA Astrophysics Data System (ADS)

    Kozlov, A. V.; Portnykh, I. A.

    2016-04-01

    The model of the migration and accumulation at dislocations of transmutation helium and the formation of helium-vacancy pore nuclei in austenitic steels upon neutron irradiation has been proposed. As illustrations of its application, the dependences of the characteristics of pore nuclei on the temperature of neutron irradiation have been calculated. The results of the calculations have been compared with the experimental data in the literature on measuring the characteristics of radiation-induced porosity that arises upon the irradiation of shells of fuel elements of a 16Cr-19Ni-2Mo-2Mn-Si-Ti-Nb-V-B steel in a fast BN600 neutron reactor at different temperatures.

  9. Precipitation of Nanosized MX at Coherent Cu-Rich Phases in Super304H Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Ou, Ping; Xing, Hui; Sun, Jian

    2015-01-01

    The present investigation of transmission electron microscopy reports the precipitation of nanosized and cubical-shaped incoherent Nb-rich MX at the coherent Cu-rich phases in the austenitic matrix of the Super304H steel. In addition, the nanosized Nb-rich MX phases were often observed to precipitate on dislocations during creep. It is concluded that the dense incoherent Nb-rich MX and coherent Cu-rich precipitates with a nanosized diameter contribute excellent creep resistance in the steel.

  10. Hydrogen isotope transfer in austenitic steels and high-nickel alloy during in-core irradiation

    SciTech Connect

    Polosukhin, B.G.; Sulimov, E.M.; Zyrianov, A.P.; Kalinin, G.M.

    1995-10-01

    The transfer of protium and deuterium in austenitic chromium-nickel steels and in a high-nickel alloy was studied in a specially designed facility. The transfer parameters of protium and deuterium were found to change greatly during in-core irradiation, and the effects of irradiation increased as the temperature decreased. Thus, at temperature T<673K, the relative increase in the permeability of hydrogen isotopes under irradiation can be orders of magnitude higher in these steels. Other radiation effects were also observed, in addition to the changes from the initial values in the effects of protium and deuterium isotopic transfer. 4 refs., 3 figs., 2 tabs.

  11. Development of Advanced 9Cr Ferritic-Martensitic Steels and Austenitic Stainless Steels for Sodium-Cooled Fast Reactor

    SciTech Connect

    Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori

    2013-01-01

    Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for the advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.

  12. Effect of prior cold work on creep properties of a titanium modified austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Parameswaran, P.; Nandagopal, M.; Panneer Selvi, S.; Laha, K.; Mathew, M. D.

    2013-07-01

    Prior cold worked (PCW) titanium-modified 14Cr-15Ni austenitic stainless steel (SS) is used as a core-structural material in fast breeder reactor because of its superior creep strength and resistance to void swelling. In this study, the influence of PCW in the range of 16-24% on creep properties of IFAC-1 SS, a titanium modified 14Cr-15Ni austenitic SS, at 923 K and 973 K has been investigated. It was found that PCW has no appreciable effect on the creep deformation rate of the steel at both the test temperatures; creep rupture life increased with PCW at 923 K and remained rather unaffected at 973 K. The dislocation structure along with precipitation in the PCW steel was found to change appreciably depending on creep testing conditions. A well-defined dislocation substructure was observed on creep testing at 923 K; a well-annealed microstructure with evidences of recrystallization was observed on creep testing at 973 K. Creep rupture life of the steel increased with the increase in PCW at 923 K. This has been attributed to the partial retention of prior cold work induced dislocations which facilitated the extensive precipitation of secondary Ti(C,N) particles on the stable dislocation substructure. Creep rupture life of the steel did not vary with PCW at 973 K due to softening by recrystallization and absence of secondary Ti(C,N).

  13. Electrochemical and in vitro bioactivity of polypyrrole/ceramic nanocomposite coatings on 316L SS bio-implants.

    PubMed

    Madhan Kumar, A; Nagarajan, S; Ramakrishna, Suresh; Sudhagar, P; Kang, Yong Soo; Kim, Hyongbum; Gasem, Zuhair M; Rajendran, N

    2014-10-01

    The present investigation describes the versatile fabrication and characterization of a novel composite coating that consists of polypyrrole (PPy) and Nb2O5 nanoparticles. Integration of the two materials is achieved by electrochemical deposition on 316L stainless steel (SS) from an aqueous solution of oxalic acid containing pyrrole and Nb2O5 nanoparticles. Fourier transform infrared spectral (FTIR) and X-ray diffraction (XRD) studies revealed that the existence of Nb2O5 nanoparticles in PPy matrix with hexagonal structure. Surface morphological analysis showed that the presence of Nb2O5 nanoparticles strongly influenced the surface nature of the nanocomposite coated 316L SS. Micro hardness results revealed the enhanced mechanical properties of PPy nanocomposite coated 316L SS due to the addition of Nb2O5 nanoparticles. The electrochemical studies were carried out using cyclic polarization and electrochemical impedance spectroscopy (EIS) measurements. In order to evaluate the biocompatibility, contact angle measurements and in vitro characterization were performed in simulated body fluid (SBF) and on MG63 osteoblast cells. The results showed that the nanocomposite coatings exhibit superior biocompatibility and enhanced corrosion protection performance over 316L SS than pure PPy coatings.

  14. Effect of thermal exposure in helium on mechanical properties and microstructure of 316L and P91

    NASA Astrophysics Data System (ADS)

    Kunzova, Klara; Berka, Jan; Siegl, Jan; Hausild, Petr

    2016-04-01

    In this paper, the effects of high temperature exposure in air as well as in impure He on mechanical properties of 316L and P91 steels were investigated. The experimental programme was part of material design of new experimental facility - high temperature helium loop. Some of the specimens were exposed in air at 750 °C for up to 1000 h. Another set of specimens were exposed in impure helium containing 1 ppmv CO2, 2 ppmv O2, 35 ppmv CH4, 250 ppmv CO and 400 ppmv H2 at 750 °C for up to 1000 h. Metalographical analysis, tensile tests, fracture toughness and hardness tests of exposed and non-exposed specimens were carried out. After the exposure both in air and He, the ultimate tensile strength of P91 decreased significantly more than that of 316L. After the exposure in He, the fracture toughness of 316L was reduced to 60% while fracture toughness of P91 showed no significant changes. The hardness of P91 decreased with exposure time in air. The measurement of the hardness of 316L was very scattered the most probably due to the heterogeneities in microstructure, the trend was not possible to evaluate.

  15. A novel silica nanotube reinforced ionic incorporated hydroxyapatite composite coating on polypyrrole coated 316L SS for implant application.

    PubMed

    Prem Ananth, K; Joseph Nathanael, A; Jose, Sujin P; Oh, Tae Hwan; Mangalaraj, D

    2016-02-01

    An attempt has been made to deposit a novel smart ion (Sr, Zn, Mg) substituted hydroxyapatite (I-HAp) and silica nanotube (SiNTs) composite coatings on polypyrrole (PPy) coated surgical grade 316L stainless steel (316L SS) to improve its biocompatibility and corrosion resistance. The I-HAp/SiNTS/PPy bilayer coating on 316L SS was prepared by electrophoretic deposition technique. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies were carried out. These results confirmed the significant improvement of the corrosion resistance of the 316L SS alloy by the I-HAp/SiNTs/PPy bilayer composite coating. The adhesion strength and hardness test confirmed the anticipated mechanical properties of the composite. A low contact angle value revealed the hydrophilic nature. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used for the leach out analysis of the samples. Added to this, the bioactivity of the composite was analyzed by observing the apatite formation in the SBF solution for 7, 14, 21 and 28days of incubation. An enhancement of in vitro osteoblast attachment and cell viability was observed, which could lead to the optimistic orthopedic and dental applications.

  16. Effects of Heat Treatments on Microstructure Changes in The Interface of Cu/SS316L Joint Materials

    SciTech Connect

    Xu, Q.; Yoshiie, T.; Edwards, Danny J.

    2000-09-01

    In both joints iron and chromium diffused from the stainless steel into the copper alloy, producing a narrow zone of about a 15 ?m containing FeCr precipitates and small voids. Failure in some bending tests occurred by a crack propagating through this zone in a direction parallel to the interface, indicating that the formation of these precipitates may not be conducive to good joint properties. The results of annealing experiments showed that temperatures # 673 K did not change the initial microstructure or composition of CuAl25/SS316L and CuNiBe/SS316L joints. Although there are no data from annealing experiments longer than 100 hours, it is expected that the microstructure and composition of CuAl25/SS316L and CuNiBe/SS316L are stable under the thermal operating conditions of fusion reactors. However, irradiation may lead to significant changes because of radiation-enhanced segregation, precipitation or dissolution near and at the interface that could alter the properties. In addition, the preexisting voids near the interface of the joints may coarsen under irradiation and enhance the sensitivity of joints to failure. Given the uncertainties in the response to irradiation, neutron irradiation experiments should be performed at appropriate temperatures to investigate the response of the different materials.

  17. Pitting corrosion of low-Cr austenitic stainless steels

    SciTech Connect

    Bullard, Sophie J.; Covino, Bernard S. Jr.

    1996-01-01

    The Albany Research Center has investigated the pitting corrosion resistance of experimental low-Cr stainless steels and several commercial stainless steels in chloride-containing aqueous and atmospheric environments. Previous research had shown the experimental alloys to be as corrosion resistant as commercial stainless steels in chloride-free acid environments. The alloys studied were Fe-8Cr-16Ni-5.5Si-1Cu-(0-1)Mo, 304 SS, and 316 SS. These alloys were examined by immersion and electrochemical tests in 3.5 wt. pct. NaCl and 6 wt.pct.FeCl{sub 3}. Results of these tests showed that the addition of one weight percent Mo improved the pitting resistance of the low-Cr alloy and that the Mo-containing experimental alloy was as resistant to pitting as the commercial alloys. Electrochemical tests did, however, show the experimental alloys to be slightly less resistant to pitting than the commercial alloys. Because of these results, the low-Cr alloy with one weight percent Mo and 304 SS were exposed for one year to a marine atmospheric environment on the coast of Oregon. The marine atmospheric corrosion resistance of the low-Cr alloy was found to be comparable to that for type 304 stainless steel.

  18. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    SciTech Connect

    Feng, Kai; Wang, Yibo; Li, Zhuguo; Chu, Paul K.

    2015-08-15

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.

  19. Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Ying; Li, Meimei; Kirk, Marquis A.; Baldo, Peter M.; Lian, Tiangan

    2016-04-01

    The microstructural evolution in ferrite and austenitic in cast austenitic stainless steel (CASS) CF8, as received or thermally aged at 400 °C for 10,000 h, was followed under TEM with in situ irradiation of 1 MeV Kr ions at 300 and 350 °C to a fluence of 1.9 × 1015 ions/cm2 (∼3 dpa) at the IVEM-Tandem Facility. For the unaged CF8, the irradiation-induced dislocation loops appeared at a much lower dose in the austenite than in the ferrite. At the end dose, the austenite formed a well-developed dislocation network microstructure, while the ferrite exhibited an extended dislocation structure as line segments. Compared to the unaged CF8, the aged specimen appeared to have lower rate of damage accumulation. The rate of microstructural evolution under irradiation in the ferrite was significantly lower in the aged specimen than in the unaged. This difference is attributed to the different initial microstructures in the unaged and aged specimens, which implies that thermal aging and irradiation are not independent but interconnected damage processes.

  20. Modelling grain-scattered ultrasound in austenitic stainless-steel welds: A hybrid model

    SciTech Connect

    Nowers, O.; Duxbury, D. J.; Velichko, A.; Drinkwater, B. W.

    2015-03-31

    The ultrasonic inspection of austenitic stainless steel welds can be challenging due to their coarse grain structure, charaterised by preferentially oriented, elongated grains. The anisotropy of the weld is manifested as both a ‘steering’ of the beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the influence of weld properties, such as mean grain size and orientation distribution, on the magnitude of scattered ultrasound is not well understood. A hybrid model has been developed to allow the study of grain-scatter effects in austenitic welds. An efficient 2D Finite Element (FE) method is used to calculate the complete scattering response from a single elliptical austenitic grain of arbitrary length and width as a function of the specific inspection frequency. A grain allocation model of the weld is presented to approximate the characteristic structures observed in austenitic welds and the complete scattering behaviour of each grain calculated. This model is incorporated into a semi-analytical framework for a single-element inspection of a typical weld in immersion. Experimental validation evidence is demonstrated indicating excellent qualitative agreement of SNR as a function of frequency and a minimum SNR difference of 2 dB at a centre frequency of 2.25 MHz. Additionally, an example Monte-Carlo study is presented detailing the variation of SNR as a function of the anisotropy distribution of the weld, and the application of confidence analysis to inform inspection development.

  1. Modelling grain-scattered ultrasound in austenitic stainless-steel welds: A hybrid model

    NASA Astrophysics Data System (ADS)

    Nowers, O.; Duxbury, D. J.; Velichko, A.; Drinkwater, B. W.

    2015-03-01

    The ultrasonic inspection of austenitic stainless steel welds can be challenging due to their coarse grain structure, charaterised by preferentially oriented, elongated grains. The anisotropy of the weld is manifested as both a `steering' of the beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the influence of weld properties, such as mean grain size and orientation distribution, on the magnitude of scattered ultrasound is not well understood. A hybrid model has been developed to allow the study of grain-scatter effects in austenitic welds. An efficient 2D Finite Element (FE) method is used to calculate the complete scattering response from a single elliptical austenitic grain of arbitrary length and width as a function of the specific inspection frequency. A grain allocation model of the weld is presented to approximate the characteristic structures observed in austenitic welds and the complete scattering behaviour of each grain calculated. This model is incorporated into a semi-analytical framework for a single-element inspection of a typical weld in immersion. Experimental validation evidence is demonstrated indicating excellent qualitative agreement of SNR as a function of frequency and a minimum SNR difference of 2 dB at a centre frequency of 2.25 MHz. Additionally, an example Monte-Carlo study is presented detailing the variation of SNR as a function of the anisotropy distribution of the weld, and the application of confidence analysis to inform inspection development.

  2. Improved ductility of a transformation-induced-plasticity steel by nanoscale austenite lamellae

    SciTech Connect

    Shen, Yongfeng; liu, Yandong; Sun, Xin; Wang, Y. D.; Zuo, Liang; Misra, R. D. K.

    2013-07-02

    TRIP (transformation-induced-plasticity) steel with a chemical composition of 0.19C–0.30Si–1.76Mn–1.52Al (weight percentage, wt.%) have been treated by intercritical annealing and austempering process. The microstructures of the obtained samples consist of the ferrite, the bainite and the retained austenite phase. The volume fractions of the bainite and the retained austenite gradually increase with increasing the temperature of the intercritical annealing. Consequently, significantly different mechanical properties have been observed. The sample annealed at 820°C (for 120s) and partitioned at 400°C (for 300s) has the best combination of ultimate tensile strength (UTS, ~682 MPa) and elongation to failure (~70%) with about 26% of bainitic ferrite plates and 17% retained austenite in its microstructure. The retained austenite has a lamella morphology with 100–300 nm in thickness and 2–5 μm in length. On the contrary, the sample annealed at the same temperature without the partitioning process yields much lower UTS and elongation to failure.

  3. Effect of Retained Austenite on the Fracture Toughness of Quenching and Partitioning (Q&P)-Treated Sheet Steels

    NASA Astrophysics Data System (ADS)

    Wu, Riming; Li, Wei; Zhou, Shu; Zhong, Yong; Wang, Li; Jin, Xuejun

    2014-04-01

    Fracture toughness K IC was measured by double edge-notched tension (DENT) specimens with fatigue precracks on quenching and partitioning (Q&P)-treated high-strength (ultimate tensile strength [UTS] superior to 1200 MPa) sheet steels consisting of 4 to 10 vol pct of retained austenite. Crack extension force, G IC, evaluated from the measured K IC, is used to analyze the role of retained austenite in different fracture behavior. Meanwhile, G IC is deduced by a constructed model based on energy absorption by martensite transformation (MT) behavior of retained austenite in Q&P-treated steels. The tendency of the change of two results is in good agreement. The Q&P-treated steel, quenched at 573 K (300 °C), then partitioned at 573 K (300 °C), holding for 60 seconds, has a fracture toughness of 74.1 MPa·m1/2, which is 32 pct higher than quenching and tempering steel (55.9 MPa·m1/2), and 16 pct higher than quenching and austempering (QAT) steel (63.8 MPa·m1/2). MT is found to occur preferentially at the tips of extension cracks on less stable retained austenite, which further improves the toughness of Q&P steels; on the contrary, the MT that occurs at more stable retained austenite has a detrimental effect on toughness.

  4. Phase equilibria in the UO 2-austenitic steel system up to 3000°C

    NASA Astrophysics Data System (ADS)

    Kleykamp, Heiko

    1997-08-01

    The pseudobinary UO 2-austenitic steel system was investigated by DTA up to 1500°C, by isothermal annealing up to 2000°C, by induction heating up to 2850°C and by arc melting up to about 3000°C. The system is characterized by a degenerate eutectic at 1433°C on the steel side and a monotectic at 2830°C and about 1 mol% steel. The maximum solubility of steel in solid U0 2 is 0.6 mol%, that in liquid U0 2 at 3000°C is about 4 mol%. U0 2 and steel form (Fe, Mn, Cr) 2O 3 precipitates between 1300 and 2600°C as U02 becomes hypostoichiometric. Liquid steel is stabilized to higher temperatures above its boiling point at 2790°C by dissolution of uranium and decomposes peritectically to liquid UO 2-χ and gas at estimated 3200°C. The critical data of the single-phase U0 2-steel melt based on the application of the Redlich-Kister model are Tc = 4900°C, Pc = 300 bar and χ c, steel = 0.41.

  5. Weldability of corrosion-resistant high-nitrogen austenitic Kh22AG16N8M-type steels

    NASA Astrophysics Data System (ADS)

    Bannykh, O. A.; Blinov, V. M.; Kostina, M. V.; Blinov, E. V.; Zvereva, T. N.

    2007-10-01

    The influence of thermal treatment on the structures and mechanical properties of welds of corrosion-resistant high-nitrogen austenitic 05Kh22AG16N8M-type steels is studied. In these steels, austenite is found to be highly resistant to discontinuous precipitation and the formation of σ phase and δ ferrite upon cooling regardless of the temperature of heating for quenching (from 900 to 1250°C) and the cooling conditions (water, air, furnace). Welding of these steels can produce high-strength welds with an enhanced impact toughness.

  6. Determining Experimental Parameters for Thermal-Mechanical Forming Simulation considering Martensite Formation in Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Schmid, Philipp; Liewald, Mathias

    2011-08-01

    The forming behavior of metastable austenitic stainless steel is mainly dominated by the temperature-dependent TRIP effect (transformation induced plasticity). Of course, the high dependency of material properties on the temperature level during forming means the temperature must be considered during the FE analysis. The strain-induced formation of α'-martensite from austenite can be represented by using finite element programs utilizing suitable models such as the Haensel-model. This paper discusses the determination of parameters for a completely thermal-mechanical forming simulation in LS-DYNA based on the material model of Haensel. The measurement of the martensite evolution in non-isothermal tensile tests was performed with metastable austenitic stainless steel EN 1.4301 at different rolling directions between 0° and 90 °. This allows an estimation of the influence of the rolling direction to the martensite formation. Of specific importance is the accuracy of the martensite content measured by magnetic induction methods (Feritscope). The observation of different factors, such as stress dependence of the magnetisation, blank thickness and numerous calibration curves discloses a substantial important influence on the parameter determination for the material models. The parameters obtained for use of Haensel model and temperature-dependent friction coefficients are used to simulate forming process of a real component and to validate its implementation in the commercial code LS-DYNA.

  7. Role of microstructure and heat treatments on the desorption kinetics of tritium from austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Chêne, J.; Brass, A.-M.; Trabuc, P.; Gastaldi, O.

    2007-02-01

    The liquid scintillation counting of solid samples (LSC-SS technique) was successfully used to study the role of microstructure and heat treatments on the behavior of residual tritium in several austenitic stainless steels (as-cast remelted tritiated waste, 316LN and 321 steels). The role of desorption annealing in the 100-600 °C range on the residual amount of tritium in tritiated waste was investigated. The residual tritium concentration computed from surface activity measurements is in good agreement with experimental values measured by liquid scintillation counting after full dissolution of the samples. The kinetics of tritium desorption recorded with the LSC-SS technique shows a significant desorption of residual tritium at room temperature, a strong barrier effect of thermal oxide films on the tritium desorption and a dependance of the tritium release on the steels microstructure. Annealing in the 300-600 °C range allows to desorb a large fraction of the residual tritium. However a significant trapping of tritium is evidenced. The influence of trapping phenomena on the concentration of residual tritium and on its dependance with the annealing temperature was investigated with different recrystallized and sensitized microstructures. Trapping is evidenced mainly below 150 °C and concerns a small fraction of the total amount of tritium introduced in austenitic steels. It presumably occurs preferentially on precipitates such as Ti(CN) or on intermetallic phases.

  8. Measurement methods for surface oxides on SUS 316L in simulated light water reactor coolant environments using synchrotron XRD and XRF

    NASA Astrophysics Data System (ADS)

    Watanabe, Masashi; Yonezawa, Toshio; Shobu, Takahisa; Shoji, Tetsuo

    2013-03-01

    Synchrotron X-ray diffraction (XRD) and X-ray fluorescent (XRF) measurement techniques have been used for non-destructive characterization of surface oxide films on Type 316L austenitic stainless steels that were exposed to simulated primary water environments of pressurized water reactors (PWR) and boiling water reactors (BWR). The layer structures of the surface spinel oxides were revealed ex situ after oxidation by measurements made as a function of depth. The layer structure of spinel oxides formed in simulated PWR primary water should normally be different from that formed in simulated BWR water. After oxidation in the simulated BWR environment, the spinel oxide was observed to contain NiFe2O4 at shallow depths, and FeCr2O4 and Fe3O4 at deeper depths. By contrast, after oxidation in the simulated PWR primary water environment, a Fe3O4 type spinel was observed near the surface and FeCr2O4 type spinel near the interface with the metal substrate. Furthermore, by in situ measurements during oxidation in the simulated BWR environment, it was also demonstrated that the ratio between spinel and hematite Fe2O3 can be changed depending on the water condition such as BWR normal water chemistry or BWR hydrogen water chemistry.

  9. Influence of LBE long term exposure and simultaneous fast neutron irradiation on the mechanical properties of T91 and 316L

    NASA Astrophysics Data System (ADS)

    Stergar, E.; Eremin, S. G.; Gavrilov, S.; Lambrecht, M.; Makarov, O.; Iakovlev, V.

    2016-05-01

    The LEXUR-II-LBE irradiation campaign was conducted from 2011 to 2012 and was aimed to investigate the combined influence of irradiation and LBE environment. In this irradiation campaign tensile test samples, pressurized tubes and corrosion samples were irradiated in LBE filled capsules. To separate the effect of exposure to LBE and neutron irradiation a parallel furnace experiment where the samples were exposed to LBE at the irradiation temperature for the corresponding time was conducted. Here we report results of the first extracted capsule which was irradiated about 6 months and dismantled after a cooling phase to decrease activity. The results of SSRT tests for irradiated T91 show that the exposure to LBE at 350 °C for a long time leads to the appearance of liquid metal embrittlement without any pre-treatment which is usually necessary to promote LME. Irradiation increases the effect of LME on the ductility of T91. In contrast to the findings for T91 the gained results also show that tensile tests on irradiated austenitic stainless steel 316L show no influence of LBE environment on the tensile properties.

  10. Surface hardening of austenitic stainless steels via low-temperature colossal supersaturation

    NASA Astrophysics Data System (ADS)

    Cao, Yan

    The Swagelok Company has recently developed a low-temperature (470°C) carburization technology for austenitic stainless steels, that increases the surface hardness from 200 to 1200 HV25 without sacrificing corrosion resistance. In order to investigate the microstructural changes responsible for these outstanding properties, bulk specimens, thin foils, and powder specimens of several different low-temperature carburized 316 stainless steels have been studied. XRD studies revealed that the low-temperature carburization of 316 austenitic stainless steels lead to a colossal supersaturation of interstitial carbon in the austenite. While the equilibrium solubility of carbon is 0.03 at% at the carburization temperature of 470°C, high-precision XRD determination of the lattice parameter after carburization indicated a carbon concentration of >10at% in solid solution---a colossal supersaturation! This astonishing result was confirmed by a completely independent experimental method, X-ray photoelectron spectrometry (XPS). Residual stress measurements indicated that low-temperature carburization caused an enormous compressive residual stress of 2 GPa at the surface. The enormous compressive residual stress and a high density of stacking faults caused broadening and shifting of the austenite peaks in X-ray diffraction scans. Analysis of the underlying thermodynamics and kinetics indicate that the key to colossal supersaturation is to kinetically suppress the formation of M23C6. The colossal supersaturation of carbon in the austenite is the dominant feature responsible for the unusual hardness. Only during the extended (>40h) carburization times, M5C 2 carbide (Hagg carbide), instead of M23C6, was observed to form. In addition, TEM studies indicated the presence of a small amount of a second carbide phase, M7C3. The particles of both carbides have the shape of long needles, containing a high density of planar defects normal to the long axis of the needles. The concept of "low

  11. Characterization of hydrogen-induced crack initiation in metastable austenitic stainless steels during deformation

    NASA Astrophysics Data System (ADS)

    Zhang, L.; An, B.; Fukuyama, S.; Iijima, T.; Yokogawa, K.

    2010-09-01

    Hydrogen-induced crack initiation in hydrogen-charged metastable austenitic stainless steels during deformation at 295 K is characterized by performing a combined tensile and hydrogen release experiment and scanning probe microscopy. Strain-induced martensite (α') not only provides a path for rapid hydrogen diffusion in austenite (γ) but also promotes crack initiation. Hydrogen rapidly diffuses from α' and accumulates at the boundary between the α'-rich and γ-rich zones during deformation due to the high hydrogen diffusivity and low hydrogen solubility in α', resulting in crack initiation at the boundary between the α'-rich and γ-rich zones. The hydrogen-induced crack initially grows along the boundary between the α'-rich and γ-rich zones and then propagates in the α'-rich zone.

  12. Structural transformations in high-nitrogen austenitic steel

    SciTech Connect

    Timofeev, V.N.; Sukhovarov, V.F.; Blinov, V.M.; Poimenov, I.L.

    1988-12-01

    Results are reported from a study of the structure of steel aged after quenching and subsequent rolling at 20, 400, and 1000/degree/C. It is shown that cold and warm rolling with low and moderate degrees of deformation intensifies the reaction which results in the discontinuous precipitation of chromium nitride. With high degrees of deformation, this reaction does not take place, and heterogeneous precipitation of nitrides occurs. Discontinuous and heterogeneous nitride precipitation take place during hot rolling. During subsequent aging, the processes of spheroidization, coalescence, and recrystallization results in the formation of a microduplex structure.

  13. Development of a System to Measure Austenite Grain Size of Plate Steel Using Laser-Based Ultrasonics

    SciTech Connect

    Lim, C. S.; Hong, S. T.; Yi, J. K.; Choi, S. G.; Oh, K. J.; Nagata, Y.; Yamada, H.; Hamada, N.

    2007-03-21

    A measurement system for austenite grain size of plate steel using laser-based ultrasonics has been developed. At first, the relationship between the ultrasonic attenuation coefficients using longitudinal waves and austenite grain size of samples was investigated in the laboratory experiments. According to the experimental results, the ultrasonic attenuation coefficients showed a good correlation with actual austenite grain sizes. For the next step, the system was installed in a hot rolling pilot plant of plate steel, and it was verified that the austenite grain size could be measured even in the environment of a hot rolling pilot plant. In the experiments, it was also confirmed that the fiber delivery system could deliver Nd:YAG laser beam of 810 mJ/pulse and ultrasonic signals could be obtained successfully.

  14. The effects of neutron irradiation on fracture toughness of austenitic stainless steels.

    SciTech Connect

    Chopra, O. K.; Gruber, E. E.; Shack, W. J.

    1999-05-21

    Austenitic stainless steels are used extensively as structural alloys in reactor pressure vessel internal components because of their superior fracture toughness properties. However, exposure to high levels of neutron irradiation for extended periods leads to significant reduction in the fracture resistance of these steels. This paper presents results of fracture toughness J-R curve tests on four heats of Type 304 stainless steel that were irradiated to fluence levels of {approx}0.3 and 0.9 x 10{sup 21} n cm{sup {minus}2} (E >1 MeV) at {approx}288 C in a helium environment in the Halden heavy water boiling reactor. The tests were performed on 1/4-T compact tension specimens in air at 288 C; crack extensions were determined by both DC potential and elastic unloading compliance techniques.

  15. ESD morphology deposition with WZr8 electrode on austenitic stainless steel support

    NASA Astrophysics Data System (ADS)

    Perju, M. C.; Ţugui, C. A.; Nejneru, C.; Axinte, M.; Vizureanu, P.

    2016-06-01

    Stainless steels are used to obtain mechanical parts, working in severe conditions with high dynamic loads in wet, chemically active environments. For this reason, these materials have good corrosion resistance in acidic or basic chemical agents. The main drawback is the relatively low wear and resistance to mechanical stress. This paper proposes a remedy by deposition of the hard thin films of tungsten electrode by spark electro-deposition method (ESD). Tungsten is an alfagen element and causes an increase for the mechanical properties at high and low temperatures for the austenitic stainless steels. Tungsten does not alter the corrosion resistance of stainless steels. The morphology for the obtained layers was analyzed using SEM, in 3D images, and profilographs.

  16. Cast, heat-resistant austenitic stainless steels having reduced alloying element content

    DOEpatents

    Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA

    2010-07-06

    A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).

  17. Cast, heat-resistant austenitic stainless steels having reduced alloying element content

    DOEpatents

    Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA

    2011-08-23

    A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).

  18. Influence of high pressure hydrogen environment on tensile and fatigue properties of stainless steels at low temperatures

    NASA Astrophysics Data System (ADS)

    Ogata, T.

    2012-06-01

    Hydrogen environment embrittlement (HEE) of stainless steels in the environment of high pressure and low temperature hydrogen gas was evaluated using a very simple mechanical properties testing procedure. In the method, the high-pressure hydrogen environment is produced just inside the hole in the specimen. In this work, the effects of HEE on fatigue properties for austenitic stainless steels SUS304L and SUS316L were evaluated at 298 and 190 K. The effects of HEE on the tensile properties of higher strength stainless steels, such as strain-hardened 316, SUS630, and other alloys, SUH660 and Alloy 718 were also examined. The less effect of HEE on fatigue properties of SUS316L and tensile properties of strain-hardened 316 were observed compared with SUS304L and other steels at room temperature and 190 K.

  19. Effect of Austenite Stability on Microstructural Evolution and Tensile Properties in Intercritically Annealed Medium-Mn Lightweight Steels

    NASA Astrophysics Data System (ADS)

    Song, Hyejin; Sohn, Seok Su; Kwak, Jai-Hyun; Lee, Byeong-Joo; Lee, Sunghak

    2016-06-01

    The microstructural evolution with varying intercritical-annealing temperatures of medium-Mn ( α + γ) duplex lightweight steels and its effects on tensile properties were investigated in relation to the stability of austenite. The size and volume fraction of austenite grains increased as the annealing temperature increased from 1123 K to 1173 K (850 °C to 900 °C), which corresponded with the thermodynamic calculation data. When the annealing temperature increased further to 1223 K (950 °C), the size and volume fraction were reduced by the formation of athermal α'-martensite during the cooling because the thermal stability of austenite deteriorated as a result of the decrease in C and Mn contents. In order to obtain the best combination of strength and ductility by a transformation-induced plasticity (TRIP) mechanism, an appropriate mechanical stability of austenite was needed and could be achieved when fine austenite grains (size: 1.4 μm, volume fraction: 0.26) were homogenously distributed in the ferrite matrix, as in the 1123 K (850 °C)—annealed steel. This best combination was attributed to the requirement of sufficient deformation for TRIP and the formation of many deformation bands at ferrite grains in both austenite and ferrite bands. Since this medium-Mn lightweight steel has excellent tensile properties as well as reduced alloying costs and weight savings, it holds promise for new automotive applications.

  20. Copper, Boron, and Cerium Additions in Type 347 Austenitic Steel to Improve Creep Rupture Strength

    NASA Astrophysics Data System (ADS)

    Laha, Kinkar; Kyono, J.; Shinya, Norio

    2012-04-01

    Type 347 austenitic stainless steel (18Cr-12Ni-Nb) was alloyed with copper (3 wt pct), boron (0.01 to 0.06 wt pct), and cerium (0.01 wt pct) with an aim to increase the creep rupture strength of the steel through the improved deformation and cavitation resistance. Short-term creep rupture strength was found to increase with the addition of copper in the 347 steel, but the long-term strength was inferior. Extensive creep cavitation deprived the steel of the beneficial effect of creep deformation resistance induced by nano-size copper particles. Boron and cerium additions in the copper-containing steel increased its creep rupture strength and ductility, which were more for higher boron content. Creep deformation, grain boundary sliding, and creep cavity nucleation and growth in the steel were found to be suppressed by microalloying the copper-containing steel with boron and cerium, and the suppression was more for higher boron content. An auger electron spectroscopic study revealed the segregation of boron instead of sulfur on the cavity surface of the boron- and cerium-microalloyed steel. Cerium acted as a scavenger for soluble sulfur in the steels through the precipitation of cerium sulfide (CeS). This inhibited the segregation of sulfur and facilitated the segregation of boron on cavity surface. Boron segregation on the nucleated cavity surface reduced its growth rate. Microalloying the copper-containing 347 steel with boron and cerium thus enabled to use the full extent of creep deformation resistance rendered by copper nano-size particle by increase in creep rupture strength and ductility.

  1. Microstructural evolution and mechanical properties of a low-carbon quenching and partitioning steel after partial and full austenitization

    NASA Astrophysics Data System (ADS)

    Li, Wan-song; Gao, Hong-ye; Nakashima, Hideharu; Hata, Satoshi; Tian, Wen-huai

    2016-08-01

    In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron microscopy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austenitized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected.

  2. Intergranular Corrosion Behavior of Low-Nickel and 304 Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Bansod, Ankur V.; Patil, Awanikumar P.; Moon, Abhijeet P.; Khobragade, Nilay N.

    2016-09-01

    Intergranular corrosion (IGC) susceptibility for Cr-Mn austenitic stainless steel and 304 austenitic stainless steel (ASS) was estimated using electrochemical techniques. Optical and SEM microscopy studies were carried out to investigate the nature of IGC at 700 °C with increasing time (15, 30, 60, 180, 360, 720, 1440 min) according to ASTM standard 262 A. Quantitative analysis was performed to estimate the degree of sensitization (DOS) using double loop electrochemical potentiokinetic reactivation (DLEPR) and EIS technique. DLEPR results indicated that with the increase in thermal aging duration, DOS becomes more severe for both types of stainless steel. The DOS for Cr-Mn ASS was found to be higher (65.12% for 1440 min) than that of the AISI 304 ASS (23% for 1440 min). The higher degree of sensitization resulted in lowering of electrical charge capacitance resistance. Chronoamperometry studies were carried out at a passive potential of 0.4 V versus SCE and was observed to have a higher anodic dissolution of the passive film of Cr-Mn ASS. EDS studies show the formation of chromium carbide precipitates in the vicinity of the grain boundary. The higher Mn content was also observed for Cr-Mn ASS at the grain boundary.

  3. Intergranular Corrosion Behavior of Low-Nickel and 304 Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Bansod, Ankur V.; Patil, Awanikumar P.; Moon, Abhijeet P.; Khobragade, Nilay N.

    2016-07-01

    Intergranular corrosion (IGC) susceptibility for Cr-Mn austenitic stainless steel and 304 austenitic stainless steel (ASS) was estimated using electrochemical techniques. Optical and SEM microscopy studies were carried out to investigate the nature of IGC at 700 °C with increasing time (15, 30, 60, 180, 360, 720, 1440 min) according to ASTM standard 262 A. Quantitative analysis was performed to estimate the degree of sensitization (DOS) using double loop electrochemical potentiokinetic reactivation (DLEPR) and EIS technique. DLEPR results indicated that with the increase in thermal aging duration, DOS becomes more severe for both types of stainless steel. The DOS for Cr-Mn ASS was found to be higher (65.12% for 1440 min) than that of the AISI 304 ASS (23% for 1440 min). The higher degree of sensitization resulted in lowering of electrical charge capacitance resistance. Chronoamperometry studies were carried out at a passive potential of 0.4 V versus SCE and was observed to have a higher anodic dissolution of the passive film of Cr-Mn ASS. EDS studies show the formation of chromium carbide precipitates in the vicinity of the grain boundary. The higher Mn content was also observed for Cr-Mn ASS at the grain boundary.

  4. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    DOE PAGES

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-02-24

    We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For amore » single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.« less

  5. On the constitutive model of nitrogen-containing austenitic stainless steel 316LN at elevated temperature.

    PubMed

    Zhang, Lei; Feng, Xiao; Wang, Xin; Liu, Changyong

    2014-01-01

    The nitrogen-containing austenitic stainless steel 316LN has been chosen as the material for nuclear main-pipe, which is one of the key parts in 3rd generation nuclear power plants. In this research, a constitutive model of nitrogen-containing austenitic stainless steel is developed. The true stress-true strain curves obtained from isothermal hot compression tests over a wide range of temperatures (900-1250°C) and strain rates (10(-3)-10 s(-1)), were employed to study the dynamic deformational behavior of and recrystallization in 316LN steels. The constitutive model is developed through multiple linear regressions performed on the experimental data and based on an Arrhenius-type equation and Zener-Hollomon theory. The influence of strain was incorporated in the developed constitutive equation by considering the effect of strain on the various material constants. The reliability and accuracy of the model is verified through the comparison of predicted flow stress curves and experimental curves. Possible reasons for deviation are also discussed based on the characteristics of modeling process.

  6. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    SciTech Connect

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-02-24

    We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For a single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.

  7. On the Constitutive Model of Nitrogen-Containing Austenitic Stainless Steel 316LN at Elevated Temperature

    PubMed Central

    Zhang, Lei; Feng, Xiao; Wang, Xin; Liu, Changyong

    2014-01-01

    The nitrogen-containing austenitic stainless steel 316LN has been chosen as the material for nuclear main-pipe, which is one of the key parts in 3rd generation nuclear power plants. In this research, a constitutive model of nitrogen-containing austenitic stainless steel is developed. The true stress-true strain curves obtained from isothermal hot compression tests over a wide range of temperatures (900–1250°C) and strain rates (10−3–10 s−1), were employed to study the dynamic deformational behavior of and recrystallization in 316LN steels. The constitutive model is developed through multiple linear regressions performed on the experimental data and based on an Arrhenius-type equation and Zener-Hollomon theory. The influence of strain was incorporated in the developed constitutive equation by considering the effect of strain on the various material constants. The reliability and accuracy of the model is verified through the comparison of predicted flow stress curves and experimental curves. Possible reasons for deviation are also discussed based on the characteristics of modeling process. PMID:25375345

  8. Strain hardening and plastic instability properties of austenitic stainless steels after proton and neutron irradiation

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Farrell, K.; Lee, E. H.; Hunn, J. D.; Mansur, L. K.

    2001-10-01

    Strain hardening and plastic instability properties were analyzed for EC316LN, HTUPS316, and AL6XN austenitic stainless steels after combined 800 MeV proton and spallation neutron irradiation to doses up to 10.7 dpa. The steels retained good strain-hardening rates after irradiation, which resulted in significant uniform strains. It was found that the instability stress, the stress at the onset of necking, had little dependence on the irradiation dose. Tensile fracture stress and strain were calculated from the stress-strain curve data and were used to estimate fracture toughness using an existing model. The doses to plastic instability and fracture, the accumulated doses at which the yield stress reaches instability stress or fracture stress, were predicted by extrapolation of the yield stress, instability stress, and fracture stress to higher dose. The EC316LN alloy required the highest doses for plastic instability and fracture. Plastic deformation mechanisms are discussed in relation to the strain-hardening properties of the austenitic stainless steels.

  9. Laser etching of austenitic stainless steels for micro-structural evaluation

    NASA Astrophysics Data System (ADS)

    Baghra, Chetan; Kumar, Aniruddha; Sathe, D. B.; Bhatt, R. B.; Behere, P. G.; Afzal, Mohd

    2015-06-01

    Etching is a key step in metallography to reveal microstructure of polished specimen under an optical microscope. A conventional technique for producing micro-structural contrast is chemical etching. As an alternate, laser etching is investigated since it does not involve use of corrosive reagents and it can be carried out without any physical contact with sample. Laser induced etching technique will be beneficial especially in nuclear industry where materials, being radioactive in nature, are handled inside a glove box. In this paper, experimental results of pulsed Nd-YAG laser based etching of few austenitic stainless steels such as SS 304, SS 316 LN and SS alloy D9 which are chosen as structural material for fabrication of various components of upcoming Prototype Fast Breeder Reactor (PFBR) at Kalpakkam India were reported. Laser etching was done by irradiating samples using nanosecond pulsed Nd-YAG laser beam which was transported into glass paneled glove box using optics. Experiments were carried out to understand effect of laser beam parameters such as wavelength, fluence, pulse repetition rate and number of exposures required for etching of austenitic stainless steel samples. Laser etching of PFBR fuel tube and plug welded joint was also carried to evaluate base metal grain size, depth of fusion at welded joint and heat affected zone in the base metal. Experimental results demonstrated that pulsed Nd-YAG laser etching is a fast and effortless technique which can be effectively employed for non-contact remote etching of austenitic stainless steels for micro-structural evaluation.

  10. Ensemble Empirical Mode Decomposition based methodology for ultrasonic testing of coarse grain austenitic stainless steels.

    PubMed

    Sharma, Govind K; Kumar, Anish; Jayakumar, T; Purnachandra Rao, B; Mariyappa, N

    2015-03-01

    A signal processing methodology is proposed in this paper for effective reconstruction of ultrasonic signals in coarse grained high scattering austenitic stainless steel. The proposed methodology is comprised of the Ensemble Empirical Mode Decomposition (EEMD) processing of ultrasonic signals and application of signal minimisation algorithm on selected Intrinsic Mode Functions (IMFs) obtained by EEMD. The methodology is applied to ultrasonic signals obtained from austenitic stainless steel specimens of different grain size, with and without defects. The influence of probe frequency and data length of a signal on EEMD decomposition is also investigated. For a particular sampling rate and probe frequency, the same range of IMFs can be used to reconstruct the ultrasonic signal, irrespective of the grain size in the range of 30-210 μm investigated in this study. This methodology is successfully employed for detection of defects in a 50mm thick coarse grain austenitic stainless steel specimens. Signal to noise ratio improvement of better than 15 dB is observed for the ultrasonic signal obtained from a 25 mm deep flat bottom hole in 200 μm grain size specimen. For ultrasonic signals obtained from defects at different depths, a minimum of 7 dB extra enhancement in SNR is achieved as compared to the sum of selected IMF approach. The application of minimisation algorithm with EEMD processed signal in the proposed methodology proves to be effective for adaptive signal reconstruction with improved signal to noise ratio. This methodology was further employed for successful imaging of defects in a B-scan.

  11. Quantitative metallographic method for determining delta ferrite content in austenitic stainless steels. Final report

    SciTech Connect

    Pressly, G.A.

    1986-01-01

    Delta ferrite is a magnetic form of iron and has a body centered cubic crystal structure. It is often present as a nonequilibrium phase in austenitic stainless steel welds, castings, and wrought materials. The ferrite content of austenitic stainless steel can directly affect its properties, especially weldability and formability. Therefore, it is highly desirable to be able to predict and/or measure the ferrite content accurately. Current magnetic ferrite measuring methods are not applicable when test materials are geometrically small (less than 2.54 mm thick and 6.35 mm wide). Therefore, a standard metallographic test method STM 00107-A was established to determine delta ferrite content in small weldments and base metals of austenitic stainless steel. This standard test method (STM 00107-A) was then performed on several exemplary metallographic specimens to illustrate its capabilities and applications. The results from the exemplary tests were compared and contrasted to metallographic manual point count measurements, Ferritescope measurements, and predicted values calculated from chemical analyses. By utilizing the manual metallographic point count data, an accuracy of +-16% and a precision of +-0.77% were determined for the standard test method. The comparison of Ferritescope data to standard test method revealed that the results obtained by the two methods are close at low (0 to 3%) ferrite contents and Ferritscope results are substantially greater at higher (6 to 10%) ferrite contents. The standard test method data compiled from the exemplary weld specimens was noted to be very similar to the predicted values calculated from chemical analyses. It was also shown that because the standard test method utilizes optics the morphology of the delta ferrite particles can be determined. This type of determination is possible only with metallographic methods.

  12. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Meng, L. J.; Sun, J.; Xing, H.

    2012-08-01

    Creep behaviors of the solution-treated AL6XN austenitic stainless steel have been investigated at 873-1023 K and 120-260 MPa. The results showed that the creep stress exponent and activation energy of the AL6XN steel are 5 and 395.4 kJ/mol, respectively in the power-law breakdown regime. TEM observations revealed that dislocations distributed homogenously in grains. The creep deformation mechanism is mainly attributed to viscous dislocation glide. Precipitates in the steel after creep deformation were additionally analyzed by TEM, and the results showed that there are four different types of precipitates, such as M23C6, M6C, σ phase and Laves phase. The M23C6 carbides were observed at grain boundaries in the steel after creep at 873 K. The M6C, σ phase and Laves phase precipitates were found when the creep temperature increases to 923-1023 K. Although the AL6XN steel exhibited low steady state creep rates, a high volume fraction of brittle precipitates of σ and Laves phases reduced the creep lifetime of the steel at elevated temperatures.

  13. Micromagnetic and Mössbauer spectroscopic investigation of strain-induced martensite in austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Mészáros, L.; Kéldor, M.; Hidasi, B.; Vértes, A.; Czakó-Nagy, I.

    1996-08-01

    Strain-induced martensite in 18/8 austenitic stainless steel was studied. Magnetic measurements and Mössbauer spectroscopic investigations were performed to characterize the amount of α’-martensite due to room-temperature plastic tensile loading. The effects of cold work and annealing heat treatment were explored using magnetic Barkhausen noise, saturation polarization, coercive force, hardness, and conversion electron Mössbauer spectra measurements. The results of the magnetic measurements were compared to results obtained by Mössbauer spectroscopy. The suggested Barkhausen noise measurement technique proved to be a useful quantitative and nondestructive method for determining the ferromagnetic phase ratio of the studied alloy.

  14. Influence of Dissipated Forming Energy on Flow Curves of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Steinheimer, Rainer; Engel, Bernd

    2011-08-01

    Finite element (FE) simulations are widely used to design sheet metal forming processes. Flow curves and forming limit curves of the semi-finished goods are required for these computations. Mostly flow curves are obtained by conversions of stress-strain caracteristics from uniaxial tensile tests. In these calculations, uniform strain and stress within the gauge length is postulated until reaching elongation without necking. This precondition is true only if specimens remain homogenous during the test procedure. Effects from dissipated mechanical energy and heat flow on the results of uniaxial tensile tests were examined with specimen made of austenitic stainless steels with practical experiments and FE simulations.

  15. Transition in Failure Mechanism Under Cyclic Creep in 316LN Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Mathew, M. D.

    2014-06-01

    Cyclic creep behavior of a type 316LN austenitic stainless steel was investigated in the temperature range from 823 K to 923 K (550 °C to 650 °C). A transition from fatigue-dominated to creep-dominated failure mode was observed with an increase in the mean stress. The threshold value of mean stress for the transition was seen to be a strong function of the test temperature. Occurrence of dynamic strain aging proved beneficial owing to a substantial reduction in the strain accumulation during cyclic loading.

  16. Reconstruction of size and depth of simulated defects in austenitic steel plate using pulsed infrared thermography

    NASA Astrophysics Data System (ADS)

    Wysocka-Fotek, Olga; Oliferuk, Wiera; Maj, Michał

    2012-07-01

    In this paper the size and depth (distance from the tested surface) of defects in austenitic steel were estimated using pulse infrared thermography. The thermal contrast calculated from the surface distribution of the temperature is dependent on both these parameters. Thus, two independent experimental methods of defect size and depth determination were proposed. The defect size was estimated on the basis of surface distribution of the time derivative of the temperature, whereas the defect depth was assessed from the dependence of surface thermal contrast vs. cooling time.

  17. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    SciTech Connect

    Zhang, Jianfeng; Xuan, Fu-Zhen

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  18. Metallographic screening of grain boundary engineered type 304 austenitic stainless steel

    SciTech Connect

    Hanning, F. Engelberg, D.L.

    2014-08-15

    An electrochemical etching method for the identification of grain boundary engineered type 304 austenitic stainless steel microstructures is described. The method can be applied for rapid microstructure screening to complement electron backscatter diffraction analysis. A threshold parameter to identify grain boundary engineered microstructure is proposed, and the application of metallographic etching for characterising the degree of grain boundary engineering discussed. - Highlights: • As-received (annealed) and grain boundary engineered microstructures were compared. • Electro-chemical polarisation in nitric acid solutions was carried out. • A metallographic screening method has been developed. • The screening method complements EBSD analysis for microstructure identification.

  19. Reverse-Martensitic Hardening of Austenitic Stainless Steel upon Up-quenching

    NASA Astrophysics Data System (ADS)

    Sato, Kiminori; Guo, Defeng; Li, Xiaohong; Zhang, Xiangyi

    2016-08-01

    Reverse-martensitic transformation utilizing up-quenching was demonstrated for austenitic stainless steel. Up-quenching was done following the stress-induced phase modification to martensite and then enrichment of the body-centered-cubic ferrite. Transmission-electron-microscopy observation and Vickers hardness test revealed that the reverse-martensitic transformation yields quench hardening owing to an introduction of highly-concentrated dislocation. It is furthermore found that Cr precipitation on grain boundaries caused by isothermal aging is largely suppressed in the present approach.

  20. Evaluation of intragranular misorientation parameters measured by EBSD in a hot worked austenitic stainless steel.

    PubMed

    Jorge-Badiola, D; Iza-Mendia, A; Gutiérrez, I

    2007-12-01

    An extensive characterization of hot deformed austenitic stainless steel was carried out using the electron backscatter diffraction technique. Special emphasis was given to the misorientation parameters related to different length scales. These parameters show a behaviour that is sensitive to the amount of applied strain and also lead to increasing values for both the strain and the scale length. At the same time, the use of different thresholds and scan steps in the evaluation of the parameters were analyzed in order to assess the validity of the results. PMID:18045332

  1. A new view of the ultrasonic behavior of cast austenitic steels

    SciTech Connect

    Beller, L.S.

    1986-01-01

    A three-dimensionally anisotropic model of the cast austenitics is proposed and tested experimentally. The model predicts unique propagation modes and directions, which are observed experimentally in centrifugally cast stainless steel (CCSS) specimens, but which are not predicted by the single- preferred-axis model. It accounts for a large share of the difficulties noted in ultrasonic inspection of these materials by conventional techniques. The model also suggests a technique for significant improvement in signal/noise ratio (SNR) and in apparent attenuation; this technique is demonstrated experimentally to give striking improvements in SNR. In addition, a number of previously anomalous behaviors are explained by this model. 10 refs., 6 figs.

  2. Twinning and martensite in a 304 austenitic stainless steel

    SciTech Connect

    Shen, Yongfeng; Li, Xi; Sun, Xin; Wang, Y. D.; Zuo, Liang

    2012-08-30

    The microstructure characteristics and deformation behavior of 304L stainless steel during tensile deformation at two different strain rates have been investigated by means of interrupted tensile tests, electron-backscatter-diffraction (EBSD) and transmission electron microscopy (TEM) techniques. The volume fractions of transformed martensite and deformation twins at different stages of the deformation process were measured using X-ray diffraction method and TEM observations. It is found that the volume fraction of martensite monotonically increases with increasing strain but decreases with increasing strain rate. On the other hand, the volume fraction of twins increases with increasing strain for strain level less than 57%. Beyond that, the volume fraction of twins decreases with increasing strain. Careful TEM observations show that stacking faults (SFs) and twins preferentially occur before the nucleation of martensite. Meanwhile, both {var_epsilon}-martensite and {alpha}{prime}-martensite are observed in the deformation microstructures, indicating the co-existence of stress induced- transformation and strain-induced-transformation. We also discussed the effects of twinning and martensite transformation on work-hardening as well as the relationship between stacking faults, twinning and martensite transformation.

  3. Verification of cutting zone machinability during drilling of austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Jurko, Jozef

    2008-11-01

    Automated production of, in the sense of, machine production has characteristic features: a reduction of production costs, stimulation of the development of cutting tools, and changes in the construction of machine tools, all of which work against the creation of optimal technological methods, which thrusts the technological process of cutting into a more important position. These trends confirm that the cutting process remains one of the basic manufacturing technologies. A condition of the economic usage of modern, automated programmed drilling machines is the optimal course of the cutting process, i.e. the use of optimal work conditions. A summary of optimal work conditions requires knowledge of the laws of cutting theory and knowledge of the practical conditions of their application. This article presents the results of experiments that concerned the verification of machinability of work pieces of difference types of X12CrNi 18 8 austenitic stainless steel. Steel X12CrNi 18 8 is the chief representative of the austenitic stainless steels, and this steel falls into the category of materials that are difficult to machine. The rapid development of industry is marked by the development and application of new materials with characteristics that broaden their applicable uses. Precise and reliable information on the machinability of a material before it enters the machining process is a necessity, and hypotheses must be tested through verification of actual methods. This article presents conclusions of machinability tests on austenitic stainless steels and describes appropriate parameters for the cutting zone during the process of drilling with the goal of proposing recommendations for this steels, and to integrate current knowledge in this field with drilling and praxis. This article concerns itself with the evaluation of selected domains of machinability in compliance with EN ISO standards. The experiments were performed in laboratory conditions and verified in real

  4. Control of cryogenic intergranular fracture in high-manganese austenitic steels

    SciTech Connect

    Strum, M.J.

    1986-12-01

    The sources of cryogenic intergranular embrittlement in high-Mn austenitic steels and the conditions necessary for its control are examined. It is shown that the high-Mn alloys are inherently susceptible to intergranular embrittlement due to both their low grain boundary cohesion and heterogeneous deformation characteristics. Extrinsic sources of embrittlement which could account for the transition behavior are not observed. An Auger electron spectroscopy (AES) study shows no indication of impurity-segregation-induced embrittlement. No grain boundary precipitation is observed, and austenite stabilization does not ensure ductile fracture. The influence of chemistry modifications on the ductile-to-brittle transition behavior were also examined through additions of N, Cr, and C to binary Fe-31 Mn. Nitrogen additions increase the 77K yield strength at a rate of 2200 MPa per weight percent N, and increase the austenite stability, but also increase the susceptibility of ternary alloys to intergranular fracture. Quaternary Cr additions are effective in increasing the N solubility, and lower the transition temperature. Carbon additions result in complete suppression of intergranular fracture at 77K. Qualitatively significant changes in the deformation heterogeneity with chemistry modifications are not observed. The temper-toughening of Fe-Mn-Cr-N alloys is associated with the grain boundary segregation of boron and the redistribution of N. Both boron and carbon are expected to inhibit intergranular fracture through increases in grain boundary cohesion.

  5. Coarsening and Hardening Behaviors of Cu-Rich Precipitates in Super304H Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Ou, Ping; Xing, Hui; Wang, Xuanli; Sun, Jian; Cui, Zhengqiang; Yang, Changshun

    2015-09-01

    The coarsening and hardening behaviors of Cu-rich precipitates in Super304H austenitic steel aged at 923 K, 973 K, and 1023 K (650 °C, 700 °C, and 750 °C), respectively, have been investigated through measuring the particle size by transmission electron microscopy and microhardness. The results showed the Cu-rich precipitates have a cubic-to-cubic crystallographic relationship and coherent interface with the austenitic matrix during long-time aging, and that the coarsening behavior of the Cu-rich particles can be predicted with the help of the Lifshitz-Slyozov-Wagner theory. The activation energy for coarsening of the Cu-rich precipitates was evaluated to be 212 ± 3 kJ/mol. The coarsening of Cu-rich precipitates is controlled mainly by the volume diffusion of copper atoms in the austenitic matrix. The contributions to the maximum microhardness occurring at different aging temperatures from precipitation strengthening range from about 17 to 25 pct. The strengthening of the Cu-rich precipitates arises mainly from the coherency strain and partially from stacking-fault strengthening.

  6. Capabilities of Ultrasonic Phased Arrays for Far-Side Examinations of Austenitic Stainless Steel Piping Welds

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2006-10-01

    A study was conducted to assess the ability of advanced ultrasonic techniques to detect and accurately determine the size of flaws from the far-side of wrought austenitic piping welds. Far-side inspections of nuclear system austenitic piping welds are currently performed on a “best effort” basis and do not conform to ASME Code Section XI Appendix VIII performance demonstration requirements for near side inspection. For this study, four circumferential welds in 610mm (24inch) diameter, 36mm (1.42inch) thick ASTM A-358, Grade 304 vintage austenitic stainless steel pipe were examined. The welds were fabricated with varied welding parameters; both horizontal and vertical pipe orientations were used, with air and water backing, to simulate field welding conditions. A series of saw cuts, electro-discharge machined (EDM) notches, and implanted fatigue cracks were placed into the heat affected zones of the welds. The saw cuts and notches ranged in depth from 7.5% to 28.4% through-wall. The implanted cracks ranged in depth from 5% through-wall to 64% through-wall. The welds were examined with phased array technology at 2.0 MHz, and compared to conventional ultrasonic techniques as a baseline. The examinations showed that phased-array methods were able to detect and accurately length-size, but not depth size, the notches and flaws through the welds. The ultrasonic results were insensitive to the different welding techniques used in each weld.

  7. Development and Exploratory Scale-Up of Alumina-Forming Austenitic (AFA) Stainless Steels

    SciTech Connect

    Brady, Michael P; Magee, John H; Yamamoto, Yukinori; Maziasz, Philip J; Santella, Michael L; Pint, Bruce A; Bei, Hongbin

    2009-01-01

    This paper presents the results of the continued development of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys, which exhibit a unique combination of excellent oxidation resistance via protective alumina (Al2O3) scale formation and high-temperature creep strength through the formation of stable nano-scale MC carbides and intermetallic precipitates. Efforts in fiscal year 2009 focused on the characterization and understanding of long-term oxidation resistance and tensile properties as a function of alloy composition and microstructure. Computational thermodynamic calculations of the austenitic matrix phase composition and the volume fraction of MC, B2-NiAl, and Fe2(Mo,Nb) base Laves phase precipitates were used to interpret oxidation behavior. Of particular interest was the enrichment of Cr in the austenitic matrix phase by additions of Nb, which aided the establishment and maintenance of alumina. Higher levels of Nb additions also increased the volume fraction of B2-NiAl precipitates, which served as an Al reservoir during long-term oxidation. Ageing studies of AFA alloys were conducted at 750C for times up to 2000 h. Ageing resulted in near doubling of yield strength at room temperature after only 50 h at 750C, with little further increase in yield strength out to 2000 h of ageing. Elongation was reduced on ageing; however, levels of 15-25% were retained at room temperature after 2000 h of total ageing.

  8. High Nb, Ta, and Al creep- and oxidation-resistant austenitic stainless steel

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Yamamoto, Yukinori [Oak Ridge, TN; Liu, Chain-tsuan [Oak Ridge, TN

    2010-07-13

    An austenitic stainless steel HTUPS alloy includes, in weight percent: 15 to 30 Ni; 10 to 15 Cr; 2 to 5 Al; 0.6 to 5 total of at least one of Nb and Ta; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1 W; up to 0.5 Cu; up to 4 Mn; up to 1 Si; 0.05 to 0.15 C; up to 0.15 B; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni wherein said alloy forms an external continuous scale comprising alumina, nanometer scale sized particles distributed throughout the microstructure, said particles comprising at least one composition selected from the group consisting of NbC and TaC, and a stable essentially single phase fcc austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-free and essentially BCC-phase-free.

  9. Development of high-strength, high-corrosion-resistant austenitic stainless steel for sour-gas service

    SciTech Connect

    Nakayama, T. ); Fujiwara, K.; Torii, Y. ); Inoue, T. )

    1989-09-01

    This paper reports the development of an austenitic stainless steel for sour-gas service. The new steel has been shown to offer high strength, i.e., 0.2% PS exceeding 42 kgf/mm{sup 2} (414 MPa) under solution-annealed conditions, along with excellent resistance to sulfide stress corrosion cracking, pitting corrosion, and crevice corrosion, in comparison with conventional martensitic stainless steels such as CA-6NM, duplex stainless steels such as ASTM A790 (UNS S31803), and austenitic stainless steels such as type 316 (UNS S31600). Its higher resistance to corrosion cracking, etc., than type 316 was thought to be attributable to the higher contents of Cr, Mo, and N, which help to form more stable passive film in a shorter time.

  10. In Situ Thermo-magnetic Investigation of the Austenitic Phase During Tempering of a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Bojack, A.; Zhao, L.; Morris, P. F.; Sietsma, J.

    2014-12-01

    The formation of austenite during tempering of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) was investigated using an in situ thermo-magnetic technique to establish the kinetics of the martensite to austenite transformation and the stability of austenite. The austenite fraction was obtained from in situ magnetization measurements. It was found that during heating to the tempering temperature 1 to 2 vol pct of austenite, retained during quenching after the austenitization treatment, decomposed between 623 K and 753 K (350 °C and 480 °C). The activation energy for martensite to austenite transformation was found by JMAK-fitting to be 233 kJ/mol. This value is similar to the activation energy for Ni and Mn diffusion in iron and supports the assumption that partitioning of Ni and Mn to austenite are mainly rate determining for the austenite formation during tempering. This also indicates that the stability of austenite during cooling after tempering depends on these elements. With increasing tempering temperature the thermal stability of austenite is decreasing due to the lower concentrations of austenite-stabilizing elements in the increased fraction of austenite. After cooling from the tempering temperature the retained austenite was further partially decomposed during holding at room temperature. This appears to be related to previous martensite formation during cooling.

  11. In Situ Thermo-magnetic Investigation of the Austenitic Phase During Tempering of a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Bojack, A.; Zhao, L.; Morris, P. F.; Sietsma, J.

    2014-09-01

    The formation of austenite during tempering of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) was investigated using an in situ thermo-magnetic technique to establish the kinetics of the martensite to austenite transformation and the stability of austenite. The austenite fraction was obtained from in situ magnetization measurements. It was found that during heating to the tempering temperature 1 to 2 vol pct of austenite, retained during quenching after the austenitization treatment, decomposed between 623 K and 753 K (350 °C and 480 °C). The activation energy for martensite to austenite transformation was found by JMAK-fitting to be 233 kJ/mol. This value is similar to the activation energy for Ni and Mn diffusion in iron and supports the assumption that partitioning of Ni and Mn to austenite are mainly rate determining for the austenite formation during tempering. This also indicates that the stability of austenite during cooling after tempering depends on these elements. With increasing tempering temperature the thermal stability of austenite is decreasing due to the lower concentrations of austenite-stabilizing elements in the increased fraction of austenite. After cooling from the tempering temperature the retained austenite was further partially decomposed during holding at room temperature. This appears to be related to previous martensite formation during cooling.

  12. Comparison of duplex to austenitic stainless steels for DOT 407 and 412 cargo tanks in liquid chemical service

    SciTech Connect

    Staebler, R.R.

    1998-12-31

    U.S. Highway transportation of liquid chemicals has depended upon austenitic stainless steels (316 and 304) since the 1940`s. This paper will compare these austenitics to the duplex stainless steels (UNS S31803 and S32205 both commonly known as 2205 and UNS S32304 commonly known as 2304) from various aspects such as: composition, mechanical and physical properties; corrosion resistance; design, manufacturing and welding of vessel; heating panel application on the bottom of the vessel; surface finish; DOT Regulations; and cost. Some actual experience with 2205 will be explained.

  13. Characterization of strain-induced martensite phase in austenitic stainless steel using a magnetic minor-loop scaling relation

    SciTech Connect

    Kobayashi, Satoru; Saito, Atsushi; Takahashi, Seiki; Kamada, Yasuhiro; Kikuchi, Hiroaki

    2008-05-05

    We propose a combined magnetic method using a scaling power-law rule and initial permeability in magnetic minor hysteresis loops for characterization of ferromagnetic {alpha}{sup '} martensites in austenitic stainless steel. The scaling power law between the hysteresis loss and remanence is universal, being independent of volume fraction of strain-induced {alpha}{sup '} martensites. A coefficient of the power law largely decreases with volume fraction, while the initial permeability linearly increases, reflecting a change in the morphology and quantity of martensites, respectively. The present method is highly effective for integrity assessment of austenitic stainless steels because of the sensitivity and extremely low measurement field.

  14. Mechanical Properties of High Manganese Austenitic Stainless Steel JK2LB for ITER Central Solenoid Jacket Material

    NASA Astrophysics Data System (ADS)

    Saito, Toru; Kawano, Katsumi; Yamazaki, Toru; Ozeki, Hidemasa; Isono, Takaaki; Hamada, Kazuya; Devred, Arnaud; Vostner, Alexander

    A suite of advanced austenitic stainless steels are used for the ITER TF, CS and PF coil systems.These materials will be exposed to cyclic-stress at cryogenic temperature. Therefore, high manganese austenitic stainless steel JK2LB, which has high tensile strength, high ductility and high resistance to fatigue at 4 K has been chosen for the CS conductor. The cryogenic temperature mechanical property data of this material are very important for the ITER magnet design. This study is focused on mechanical characteristics of JK2LB and its weld joint.

  15. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreased the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.

  16. Microstructural and Texture Development in Two Austenitic Steels with High-Manganese Content

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Basudev; Ray, Ranjit Kumar; Leffers, Torben

    2015-11-01

    Two austenitic steels, Fe-21.3Mn-3.44Si-3.74Al-0.5C and Fe-29.8Mn-2.96Si-2.73Al-0.52C, were subjected to cold rolling with 30 to 80 pct reduction with an increment of 10 pct and subsequently the development of their microstructures and textures were studied. The overall texture after 80 pct cold reduction was Brass type. A weak Copper component {112}<111> was present at the early stage of deformation, which disappeared completely after 60 pct cold reduction. Extensive shear banding took place in both the steels, right from rather low cold rolling levels, which became more prominent at higher amounts of cold rolling. Formation of twin bands, along with cellular dislocation network, was observed in Steel A after 30 pct cold rolling. In case of Steel B, denser twin bands and dislocation cellular network were observed in early stage of deformation. After 80 pct cold reduction, the development of a strong brass-type texture in both the steels could be attributed predominantly to the formation of shear banding, possibly with some partial contribution coming from micro twinning.

  17. Advanced characterizations of austenitic oxide dispersion-strengthened (ODS) steels for high-temperature reactor applications

    NASA Astrophysics Data System (ADS)

    Miao, Yinbin

    Future advanced nuclear systems involve higher operation temperatures, intenser neutron flux, and more aggressive coolants, calling for structural materials with excellent performances in multiple aspects. Embedded with densely and dispersedly distributed oxide nanoparticles that are capable of not only pinning dislocations but also trapping radiation-induced defects, oxide dispersion-strengthened (ODS) steels provide excellence in mechanical strength, creep resistance, and radiation tolerance. In order to develop ODS steels with qualifications required by advanced nuclear applications, it is important to understand the fundamental mechanisms of the enhancement of ODS steels in mechanical properties. In this dissertation, a series of austenitic ODS stainless steels were investigated by coordinated state-of-the-art techniques. A series of different precipitate phases, including multiple Y-Ti-O, Y-Al-O, and Y-Ti-Hf-O complex oxides, were observed to form during mechanical alloying. Small precipitates are likely to have coherent or cubic-on-cubic orientation relationships with the matrix, allowing the dislocation to shear through. The Orowan looping mechanism is the dominant particle-dislocation interaction mode as the temperature is low, whereas the shearing mechanism and the Hirsch mechanism are also observed. Interactions between the particles and the dislocations result in the load-partitioning phenomenon. Smaller particles were found to have the stronger loading-partitioning effect. More importantly, the load-partitioning of large size particles are marginal at elevated temperatures, while the small size particles remain sustaining higher load, explaining the excellent high temperature mechanical performance of ODS steels.

  18. Structure and composition of phases occurring in austenitic stainless steels in thermal and irradiation environments

    SciTech Connect

    Lee, E.H.; Maziasz, P.J.; Rowcliffe, A.F.

    1980-01-01

    Transmission electron diffraction techniques coupled with quantitative x-ray energy dispersive spectroscopy have been used to characterize the phases which develop in austenitic stainless steels during exposure to thermal and to irradiation environments. In AISI 316 and Ti-modified stainless steels some thirteen phases have been identified and characterized in terms of their crystal structure and chemical composition. Irradiation does not produce any completely new phases. However, as a result of radiation-induced segregation principally of Ni and Si, and of enhanced diffusion rates, several major changes in phase relationships occur during irradiation. Firstly, phases characteristic of remote regions of the phase diagram appear unexpectedly and dissolve during postirradiation annealing (radiation-induced phases). Secondly, some phases develop with their compositions significantly altered by the incorporation of Ni or Si (radiation-modified phases).

  19. Microstructural characterization of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint

    SciTech Connect

    Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu Han, En-Hou; Ke, Wei

    2014-11-15

    The microstructure of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint was characterized in this work by optical microscopy, scanning electron microscopy (with electron back scattering diffraction) and micro-hardness testing. Epitaxial growth and competitive growth are evident in the 308L–316L fusion boundary regions. A martensite layer, carbon-depleted zones, and type-II and type-I boundaries are found in the SA508–309L fusion boundary regions, while only martensite and austenite mixed zones are observed in the SA508–308L fusion boundary regions. The microstructure near the fusion boundary and the microstructure transition in the SA508 heat affected zone are quite complex. Both for SA508–309L/308L and 308L–316L, the highest residual strain is located on the outside of the weldment. The residual strain and the grain boundary character distribution change with increasing distance from the fusion boundary in the heat affected zone of 316L. Micro-hardness measurements also reveal non-uniform mechanical properties across the weldment. - Highlights: • The microstructure of SA508 HAZ, especially near the FB, is very complex. • The outside of the dissimilar metal welded joint has the highest residual. • The micro-hardness distributions along the DMWJ are non-uniform.

  20. On the cryogenic magnetic transition and martensitic transformation of the austenite phase of 7MoPLUS duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Lo, K. H.; Lai, J. K. L.

    2010-08-01

    The magnetic behaviour and martensitic transformation at cryogenic temperatures (down to 4 K) of the austenite phase of the duplex stainless steel (DSS), 7MoPLUS, were studied. As regards the prediction of Neel temperature, the empirical expressions for austenitic stainless steels are not applicable to the austenite phase of 7MoPLUS, although the composition of the austenite phase falls within the composition ranges within which the expressions were developed. Regarding the prediction of martensitic point Ms, the applicability of 'old' and recently developed expressions has been examined. The recently developed expressions, which take into account more alloying elements and their interactions, are not suitable for the austenite phase of 7MoPLUS. But for the 'old', simpler expressions, they seem to be valid in the sense that they all predict high stability of the austenite phase. Results obtained from 7MoPLUS were qualitatively the same as those obtained from another DSS, designated as 2205. Reasons for the applicability and inapplicability of these empirical expressions are suggested.

  1. Thick-section Laser and Hybrid Welding of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Kujanpää, Veli

    Austenitic stainless steels are generally known to have very good laser weldability, when ordinary grades of sheets are concerned. But it is not necessarily the case, if special grades of fully austenitic structures with e.g. high molybdenum, or thick-section are used. It is also known that hot cracking susceptibility is strictly controlled by composition and welding parameters. If solidification is primary ferritic, hot cracking resistance is dramatically increased. It is also well known that laser welding needs a careful control of weld edge preparation and air gap between the edges. The dependence on edge quality can be decreased by using filler metal, either cold wire, hot wire or hybrid laser-arc welding. An additional role is high molybdenum contents where micro segregation can cause low local contents in weld which can decrease the corrosion properties, if filler metal is not used. Another feature in laser welding is its incomplete mixing, especially in thick section applications. It causes inhomogeneity, which can make uneven microstructure, as well as uneven mechanical and corrosion properties In this presentation the features of laser welding of thick section austenitic stainless steels are highlighted. Thick section (up to 60 mm) can be made by multi-pass laser or laser hybrid welding. In addition to using filler metal, it requires careful joint figure planning, laser head planning, weld parameter planning, weld filler metal selection, non-destructive and destructive testing and metallography to guarantee high-quality welds in practice. In addition some tests with micro segregation is presented. Also some examples of incomplete mixing is presented.

  2. Acoustic detection of stress-corrosion cracking of nitrogen austenitic steels

    NASA Astrophysics Data System (ADS)

    Filippov, Yu. I.; Sagaradze, V. V.; Zavalishin, V. A.; Pecherkina, N. L.; Kataeva, N. V.; Mushnikova, S. Yu.; Kostin, S. K.; Kalinin, G. Yu.

    2014-06-01

    Structural changes and resistance to the stress-corrosion cracking of the nitrogen-bearing austenitic steels 04Kh20N6G11M2AFB and 09Kh20N6G11M2AFB (with 0.04 and 0.09 wt % C, respectively) after different treatments, including thermomechanical action, quenching from 1200°C, and aging at 700°C for 2 and 10 h, have been studied. It has been shown that aging at 700°C of the air-melted austenitic steel 09Kh20N6G11M2AFB leads to a decrease in the strength of samples with an induced crack upon the cantilever bending in air and in a 3.5% aqueous solution of NaCl as compared to the strength of the steel 04Kh20N6G11M2AFB-EShP with a smaller carbon content after high-temperature mechanical treatment or quenching from 1200°C. The smallest resistance to stress-corrosion cracking is observed in the samples of 09Kh20N6G11M2AFB steel after 10 h of aging, which is accompanied by the most intense acoustic emission and by brittle intergranular fracture. This is explained by the high rate of the anodic dissolution of the metal near chromium-depleted grain boundaries due to the formation of continuous chains of grain-boundary chromium-containing precipitates of carbides and nitrides.

  3. Characterization of damage-induced magnetization for 304 austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Li, Hongmei; Chen, Zhenmao; Li, Yong

    2011-12-01

    Experimental and analytical studies are carried out on features of damages-induced magnetization (natural magnetization) of the 304 austenitic stainless steel. Various tensile plastic deformations are introduced into test pieces with different initial discontinuities. The surface strain distributions and natural magnetic fields are measured during and after the tensile testings. The magnetization distributions inside the material are reconstructed from the measured natural magnetic field signals through inverse analysis. From the experimental and numerical results, it is clarified that at first, the magnetization direction of the material depends on the load direction and damage distribution and the distribution pattern of magnetization reflects the existence of concentrative damages. Second, the relationship between the intensity of damage-induced magnetization and the maximum plastic strain follows a simple formula proposed in this paper. Third, the magnetization intensity is correlated with the volume fraction of the martensitic phase. Finally, the theory of minimum energy is applicable to qualitatively explain the mechanism of the damage-induced magnetization for the 304 austenitic stainless steel.

  4. Corrosion properties of S-phase layers formed on medical grade austenitic stainless steel.

    PubMed

    Buhagiar, Joseph; Dong, Hanshan

    2012-02-01

    The corrosion properties of S-phase surface layers formed in AISI 316LVM (ASTM F138) and High-N (ASTM F1586) medical grade austenitic stainless steels by plasma surface alloying with nitrogen (at 430°C), carbon (at 500°C) and both carbon and nitrogen (at 430°C) has been investigated. The corrosion behaviour of the S-phase layers in Ringer's solutions was evaluated using potentiodynamic and immersion corrosion tests. The corrosion damage was evaluated using microscopy, hardness testing, inductive coupled plasma mass spectroscopy and X-ray diffraction. The experimental results have demonstrated that low-temperature nitriding, carburising and carbonitriding can improve the localised corrosion resistance of both industrial and medical grade austenitic stainless steels as long as the threshold sensitisation temperature is not reached. Carburising at 500°C has proved to be the best hardening treatment with the least effect on the corrosion resistance of the parent alloy. PMID:22160745

  5. Analysis of tensile deformation and failure in austenitic stainless steels: Part II - Irradiation dose dependence

    NASA Astrophysics Data System (ADS)

    Kim, Jin Weon; Byun, Thak Sang

    2010-01-01

    Irradiation effects on the stable and unstable deformation and fracture behavior of austenitic stainless steels (SSs) have been studied in detail based on the equivalent true stress versus true strain curves. An iterative finite element simulation technique was used to obtain the equivalent true stress-true strain data from experimental tensile curves. The simulation result showed that the austenitic stainless steels retained high strain hardening rate during unstable deformation even after significant irradiation. The strain hardening rate was independent of irradiation dose up to the initiation of a localized necking. Similarly, the equivalent fracture stress was nearly independent of dose before the damage (embrittlement) mechanism changed. The fracture strain and tensile fracture energy decreased with dose mostly in the low dose range <˜2 dpa and reached nearly saturation values at higher doses. It was also found that the fracture properties for EC316LN SS were less sensitive to irradiation than those for 316 SS, although their uniform tensile properties showed almost the same dose dependencies. It was confirmed that the dose dependence of tensile fracture properties evaluated by the linear approximation model for nominal stress was accurate enough for practical use without elaborate calculations.

  6. Estimation of Fatigue Damage for AN Austenitic Stainless Steel (SUS304) Using a Pancake Type Coil

    NASA Astrophysics Data System (ADS)

    Oka, M.; Tsuchida, Y.; Nagato, S.; Yakushiji, T.; Enokizono, M.

    2008-02-01

    There are some fatigue damage estimation methods of an austenitic stainless steel that uses martensitic transformation. For instance, those are the remanent magnetization method, the excitation method, and so on. Those two methods are researched also in our laboratory now. In the remanent magnetization method, it is well known that the relationship between fatigue damage and the remanent magnetization is simple, clear, and reproducible. However, this method has the disadvantage to need a special magnetizer. Then, this method cannot be easily used at the job site such as the factory. On the other hand, as the special magnetizer is unnecessary, the excitation method can be easily used at the job site. But, this method has some disadvantages shown as follows. For instance, the output signal of this method is small. And the surface state of the specimen strongly influences the noise component of the output signal. It is well known that the inductance of a pancake type coil put on the metallic specimen changes according to the electromagnetic properties of the metallic specimen. In this paper, the method of evaluation of fatigue damage of an austenitic stainless steel (SUS304) by using a change of an inductance of a pancake type coil is shown. In addition, the fatigue evaluation performance of this method is described.

  7. Scale-bridging analysis on deformation behavior of high-nitrogen austenitic steels.

    PubMed

    Lee, Tae-Ho; Ha, Heon-Young; Hwang, Byoungchul; Kim, Sung-Joon; Shin, Eunjoo; Lee, Jong Wook

    2013-08-01

    Scale-bridging analysis on deformation behavior of high-nitrogen austenitic Fe-18Cr-10Mn-(0.39 and 0.69)N steels was performed by neutron diffraction, electron backscattered diffraction (EBSD), and transmission electron microscopy (TEM). Two important modes of deformation were identified depending on the nitrogen content: deformation twinning in the 0.69 N alloy and strain-induced martensitic transformation in the 0.39 N alloy. The phase fraction and deformation faulting probabilities were evaluated based on analyses of peak shift and asymmetry of neutron diffraction profiles. Semi in situ EBSD measurement was performed to investigate the orientation dependence of deformation microstructure and it showed that the variants of ε martensite as well as twin showed strong orientation dependence with respect to tensile axis. TEM observation showed that deformation twin with a {111} mathematical left angle bracket 112 mathematical right angle bracket crystallographic component was predominant in the 0.69 N alloy whereas two types of strain-induced martensites (ε and α' martensites) were observed in the 0.39 N alloy. It can be concluded that scale-bridging analysis using neutron diffraction, EBSD, and TEM can yield a comprehensive understanding of the deformation mechanism of nitrogen-alloyed austenitic steels.

  8. Irradiation behavior of weldments of austenitic stainless steel made by various welding techniques

    SciTech Connect

    Shiba, Kiyoyuki; Sawai, Tomotsugu; Jitsukawa, Shiro; Hishinuma, Akimichi; Pawel, J.E.

    1996-12-31

    Austenitic stainless steel is one of the candidate materials for nuclear fusion reactor applications. Here, an austenitic stainless steel, 316F, irradiated in the High Flux Isotope Reactor to doses of about 8 to 33 dpa at 400 and 500 C was investigated. Electron beam (EB) welding and metal inert gas (MIG) welding techniques were used to make weldment specimens. Weldment specimens were made from their weld metal or weld joint (including heat affected zone) regions of the weldments. Base metal was also studied for comparison. Microstructures of these specimens were observed by TEM. Tensile tests were carried out at the nominal irradiation temperature in vacuum. Solution annealed 316F showed the large irradiation hardening at 400 C, while the change in yield stress observed at 500 C was not so large. Weldments specimens had the same temperature and dose dependence as the base metal. The differences between EB and MIG after irradiation were small, compared to the differences before irradiation, except for the slight less ductility of MIG weldments. The defect microstructures of weldments were the same as base metal.

  9. The Effects of Austenitizing Conditions on the Microstructure and Wear Resistance of a Centrifugally Cast High-Speed Steel Roll

    NASA Astrophysics Data System (ADS)

    Kang, Minwoo; Lee, Young-Kook

    2016-07-01

    The influences of austenitizing conditions on the microstructure and wear resistance of a centrifugally cast high-speed steel roll were investigated through thermodynamic calculation, microstructural analysis, and high-temperature wear tests. When the austenitizing temperature was between 1323 K and 1423 K (1050 °C and 1150 °C), coarse eutectic M2C plates were decomposed into a mixture of MC and M6C particles. However, at 1473 K (1200 °C), the M2C plates were first replaced by both new austenite grains and MC particles without M6C particles, and then remaining M2C particles were dissolved during the growth of MC particles. The wear resistance of the HSS roll was improved with increasing austenitizing temperature up to 1473 K (1200 °C) because the coarse eutectic M2C plates, which are vulnerable to crack propagation, changed to disconnected hard M6C and MC particles.

  10. TEM microscopical examination of the magnetic domain boundaries in a super duplex austenitic-ferritic stainless steel

    SciTech Connect

    Fourlaris, G.; Gladman, T.; Maylin, M.

    1996-12-31

    It has been demonstrated in an earlier publication that significant improvements in the coercivity, maximum induction and remanence values can be achieved, by using a 2205 type Duplex austenitic-ferritic stainless steel (DSS) instead of the low alloy medium carbon steels currently being used. These improvements are achieved in the as received 2205 material, and after small amounts of cold rolling have been applied, to increase the strength. In addition, the modification of the duplex austenitic-ferritic microstructure, via a heat treatment route, results in a finer austenite `island` dispersion in a ferritic matrix and provides an attractive option for further modification of the magnetic characteristics of the material. However, the 2205 type DSS exhibits {open_quotes}marginal{close_quotes} corrosion protection in a marine environment, so that a study has been undertaken to examine whether the beneficial effects exhibited by the 2205 DSS, are also present in a 2507 type super-DSS.

  11. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    SciTech Connect

    Chen, Y.; Chopra, O. K.; Gruber, Eugene E.; Shack, William J.

    2010-06-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (≤3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC

  12. Assessment of void swelling in austenitic stainless steel PWR core internals.

    SciTech Connect

    Chung, H. M.; Energy Technology

    2006-01-31

    As many pressurized water reactors (PWRs) age and life extension of the aged plants is considered, void swelling behavior of austenitic stainless steel (SS) core internals has become the subject of increasing attention. In this report, the available database on void swelling and density change of austenitic SSs was critically reviewed. Irradiation conditions, test procedures, and microstructural characteristics were carefully examined, and key factors that are important to determine the relevance of the database to PWR conditions were evaluated. Most swelling data were obtained from steels irradiated in fast breeder reactors at temperatures >385 C and at dose rates that are orders of magnitude higher than PWR dose rates. Even for a given irradiation temperature and given steel, the integral effects of dose and dose rate on void swelling should not be separated. It is incorrect to extrapolate swelling data on the basis of 'progressive compounded multiplication' of separate effects of factors such as dose, dose rate, temperature, steel composition, and fabrication procedure. Therefore, the fast reactor data should not be extrapolated to determine credible void swelling behavior for PWR end-of-life (EOL) or life-extension conditions. Although the void swelling data extracted from fast reactor studies is extensive and conclusive, only limited amounts of swelling data and information have been obtained on microstructural characteristics from discharged PWR internals or steels irradiated at temperatures and at dose rates comparable to those of a PWR. Based on this relatively small amount of information, swelling in thin-walled tubes and baffle bolts in a PWR is not considered a concern. As additional data and relevant research becomes available, the newer results should be integrated with existing data, and the worthiness of this conclusion should continue to be scrutinized. PWR baffle reentrant corners are the most likely location to experience high swelling rates, and

  13. Capabilities of Ultrasonic Techniques for Far-Side Examinations of Austenitic Stainless Steel Piping Welds.

    SciTech Connect

    Anderson, Michael T.; Diaz, Aaron A.; Cumblidge, Stephen E.; Doctor, Steven R.

    2007-01-01

    A study was conducted to assess the ability of advanced ultrasonic techniques to detect and accurately length-size flaws from the far-side of wrought austenitic piping welds. Far-side inspections of nuclear system piping welds are currently performed on a “best effort” basis and do not conform to ASME Code Section XI Appendix VIII performance demonstration requirements. For this study, austenitic stainless steel specimens with flaws located on the far-side of full penetration structural welds were used. The welds were fabricated with varied welding parameters to simulate as-built conditions in the components, and were examined with phased array technology at 2.0 MHz, and low-frequency/Synthetic Aperture Focusing Technique (SAFT) methods in the 250-400 kHz regime. These results were compared to conventional ultrasonic techniques as a baseline. The examinations showed that both phased-array and low-frequency/SAFT were able to reliably detect and length-size, but not depth size, notches and implanted fatigue cracks through the welds.

  14. Results of steel corrosion tests in flowing liquid Pb/Bi at 420-600 °C after 2000 h

    NASA Astrophysics Data System (ADS)

    Müller, G.; Heinzel, A.; Konys, J.; Schumacher, G.; Weisenburger, A.; Zimmermann, F.; Engelko, V.; Rusanov, A.; Markov, V.

    2002-02-01

    Corrosion tests were carried out on austenitic AISI 316L and 1.4970 steels and on MANET steel up to 2000 h of exposure to flowing (up to 2 m/s) Pb/Bi. The concentration of oxygen in the liquid alloy was controlled at 10 -6 wt%. Specimens consisted of tube and rod sections in original state and after alloying of Al into the surface. After 2000 h of exposure at 420 and 550 °C the specimen surfaces were covered with an intact oxide layer which provided a good protection against corrosion attack of the liquid Pb/Bi alloy. After the same time corrosion attack at 600 °C was severe at the original AISI 316L steel specimens. The alloyed specimens containing FeAl on the surface of the alloyed layer still maintained an intact oxide layer with good corrosion protection up to 600 °C.

  15. Corrosion sensitization behavior and mechanical properties of liquid-nitrogen-deformed austenitic 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Maldonado, Julio Gerardo

    Plastic deformation of 304 stainless steel at liquid nitrogen temperature ({-}196sp°C) produces an almost complete transformation to strain-induced alphasp'/-martensite which provides the necessary conditions for a pseudo-recrystallization of the microstructure. This "so-called" pseudo-recrystallization results directly from the martensitic reversion (i.e. martensite to austenite reverse transformation) upon the application of heat treatment within the sensitization temperature range. The very fine duplex (alpha/gamma) microstructure which results (after heat treatment-0.1h-670sp°C) is also accompanied by a very extensive and homogeneous precipitation of chromium-rich carbides. The concomitant pseudo-recrystallization and precipitation processes not only have a profound positive effect on the sensitization behavior, but also affect the mechanical properties of the material. This suggests that 304 stainless steel could be thermo-mechanically treated, to in essence, heal itself and simultaneously produce an extremely fine (≈0.1mum) duplex grain structure with intermixed carbides to form a very high strength product. This might have important practical implications since 304 stainless steel is the material of choice in many engineering applications. Electrochemical testing, transmission electron microscopy, scanning electron microscopy, optical microscopy, neutron diffraction, X-ray diffraction, and mechanical testing were some of the techniques employed in this work.

  16. Damage structure of austenitic stainless steel 316LN irradiated at low temperature in HFIR

    SciTech Connect

    Hashimoto, N.; Robertson, J.P.; Grossbeck, M.L.; Rowcliffe, A.F.; Wakai, E.

    1998-03-01

    TEM disk specimens of austenitic stainless steel 316LN irradiated to damage levels of about 3 dpa at irradiation temperatures of either about 90 C or 250 C have been investigated by using transmission electron microscopy. The irradiation at 90 C and 250 C induced a dislocation loop density of 3.5 {times} 10{sup 22} m{sup {minus}3} and 6.5 {times} 10{sup 22} m{sup {minus}3}, a black dot density of 2.2 {times} 10{sup 23} m{sup {minus}3} and 1.6 {times} 10{sup 23} m{sup {minus}3}, respectively, in the steels, and a high density (<1 {times} 10{sup 22} m{sup {minus}3}) of precipitates in matrix. Cavities could be observed in the specimens after the irradiation. It is suggested that the dislocation loops, the black dots, and the precipitates cause irradiation hardening, an increase in the yield strength and a decrease in the uniform elongation, in the 316LN steel irradiated at low temperature.

  17. Development of high manganese high nitrogen low activation austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Bott, A. H.; Pickering, F. B.; Butterworth, G. J.

    1986-11-01

    Elementally-substituted high Mn, high N steels have been studied as potential low-activation replacements for austenitic stainless steels of the types AISI 316, 320, 321 and FV548. The approach to the metallurgical design of the compositions and prediction of the basic properties is outlined. Experimental casts of the proposed alloys were prepared and their microstructural constitution, stability and basic mechanical properties investigated. The stability against martensitic transformations under deformation and refrigeration was examined. Ageing at 400°, 650° and 900 °C following solution treatment at 1150°C resulted in a fine grain boundary precipitation of TaC accompanied by intragranular and, in some cases, limited a and Laves phase precipitation. Proof stress values of 470-610 MPa and tensile strengths of 750-1000 MPa were obtained and a high tensile ductility was observed. Fatigue resistance appeared to be similar to that of the established steels but the creep rupture strength was lower than expected.

  18. Microstructural characterization of dissimilar welds between Incoloy 800H and 321 Austenitic Stainless Steel

    SciTech Connect

    Sayiram, G. Arivazhagan, N.

    2015-04-15

    In this work, the microstructural character of dissimilar welds between Incoloy 800H and 321 Stainless Steel has been discussed. The microscopic examination of the base metals, fusion zones and interfaces was characterized using an optical microscope and scanning electron microscopy. The results revealed precipitates of Ti (C, N) in the austenitic matrix along the grain boundaries of the base metals. Migration of grain boundaries in the Inconel 82 weld metal was very extensive when compared to Inconel 617 weldment. Epitaxial growth was observed in the 617 weldment which increases the strength and ductility of the weld metal. Unmixed zone near the fusion line between 321 Stainless Steel and Inconel 82 weld metal was identified. From the results, it has been concluded that Inconel 617 filler metal is a preferable choice for the joint between Incoloy 800H and 321 Stainless Steel. - Highlights: • Failure mechanisms produced by dissimilar welding of Incoloy 800H to AISI 321SS • Influence of filler wire on microstructure properties • Contemplative comparisons of metallurgical aspects of these weldments • Microstructure and chemical studies including metallography, SEM–EDS • EDS-line scan study at interface.

  19. Fabrication of spectrally selective solar surfaces by the thermal treatment of austenitic stainless steel aisi 321

    SciTech Connect

    Sharma, V.C.

    1981-05-19

    The spectrally selective solar surfaces have been produced after heating the austenitic stainless steel aisi 321 at a firing temperature of 843* K. And for firing times ranging from 10 to 20 minutes. The heating was carried out in a constant temperature oven under normal atmospheric conditions. The optimum values of solar absorptance alpha S and near-normal emittance epsilon S were found to be alpha S 0.92+0.02, epsilon S 0.22 + or - 0.02 respectively. The corresponding values for the unheated steel were 0.50 + or - 0.02 and 0.22 + or - 0.22. Severe temperature treatments like quenching in liquid nitrogen at 77* K. Produced no adverse visible affect on the quality of the selective surfaces. It shows that the thermal coatings so produced are very tough and durable. The value of solar absorptance and near-normal thermal emittance remained unchanged after quenching in liquod nitrogen. The thermal coatings so produced not only offer a technical advantage but also economic advantage over any of the existing techniques for the manufacture of stainless steel solar panels.

  20. Phase Transformations of an Fe-0.85 C-17.9 Mn-7.1 Al Austenitic Steel After Quenching and Annealing

    NASA Astrophysics Data System (ADS)

    Cheng, Wei-Chun

    2014-09-01

    Low-density Mn-Al steels could potentially be substitutes for commercial Ni-Cr stainless steels. However, the development of the Mn-Al stainless steels requires knowledge of the phase transformations that occur during the steel making processes. Phase transformations of an Fe-0.85 C-17.9 Mn-7.1 Al (wt.%) austenitic steel, which include spinodal decomposition, precipitation transformations, and cellular transformations, have been studied after quenching and annealing. The results show that spinodal decomposition occurs prior to the precipitation transformation in the steel after quenching and annealing at temperatures below 1023 K and that coherent fine particles of L12-type carbide precipitate homogeneously in the austenite. The cellular transformation occurs during the transformation of high-temperature austenite into lamellae of austenite, ferrite, and kappa carbide at temperatures below 1048 K. During annealing at temperatures below 923 K, the austenite decomposes into lamellar austenite, ferrite, κ-carbide, and M23C6 carbide grains for another cellular transformation. Last, when annealing at temperatures below 873 K, lamellae of ferrite and κ-carbide appear in the austenite.

  1. Formation of Inclusions in Ti-Stabilized 17Cr Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Yin, Xue; Sun, Yanhui; Yang, Yindong; Bai, Xuefeng; Barati, Mansoor; Mclean, Alex

    2016-04-01

    The behavior and formation mechanisms of inclusions in Ti-stabilized, 17Cr Austenitic Stainless Steel produced by the ingot casting route were investigated through systematic sampling of liquid steel and rolled products. Analysis methods included total oxygen and nitrogen contents, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results indicate that the composition of inclusions was strongly dependent on the types of added alloying agents. During the AOD refining process, after the addition of ferrosilicon alloy and electrolytic manganese, followed by aluminum, the composition of inclusions changed from manganese silicate-rich inclusions to alumina-rich inclusions. After tapping and titanium wire feeding, pure TiN particles and complex inclusions with Al2O3-MgO-TiO x cores containing TiN were found to be the dominant inclusions when [pct Ti] was 0.307 mass pct in the molten steel. These findings were confirmed by thermodynamic calculations which indicated that there was a driving force for TiN inclusions to be formed in the liquid phase due to the high contents of [Ti] and [N] in the molten steel. From the start of casting through to the rolled bar, there was no further change in the composition of inclusions compared to the titanium addition stage. Stringer-shaped TiN inclusions were observed in the rolled bar. These inclusions were elongated along the rolling direction with lengths varying from 17 to 84 µm and could have a detrimental impact on the corrosion resistance as well as the mechanical properties of the stainless steel products.

  2. Effect of Plasma Nitriding Temperatures on Characteristics of Aisi 201 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Gao, Yuxin; Zheng, Shaomei

    2016-10-01

    Samples of AISI 201 austenitic stainless steel were produced by plasma nitriding at 350∘C, 390∘C, 420∘C, 450∘C and 480∘C for 5h. Systematic characterization of the nitrided layer was carried out in terms of micrograph observations, phase identification, chemical composition depth profiling, surface microhardness measurements and electrochemical corrosion tests. The results show that the surface hardness and the layer thickness increased with increasing temperature. XRD indicated that a single S-phase layer was formed during low temperature (≤420∘C), while Cr2N or CrN phase was formed besides S-phase when nitrided at 450∘C and 480∘C. The specimen treated at 390∘C presents a much enhanced corrosion resistance compared to the untreated substrate. The corrosion resistance deteriorated for samples treated above 450∘C due to the formation of chromium nitrides.

  3. Estimation of Fatigue Damage for an Austenitic Stainless Steel (SUS304) Using Magnetic Methods

    SciTech Connect

    Oka, M.; Yakushiji, T.; Tsuchida, Y.; Enokizono, M.

    2007-03-21

    There are some fatigue damage estimation methods of the austenitic stainless steel that uses the martensitic transformation. For instance, they are the remanent magnetization method, the excitation method, and so on. Those two methods are being researched also in our laboratory now. In the remanent magnetization method, it is well known that the relation between fatigue damage and the remanent magnetization is simple, clear, and reproducible. However, this method has the disadvantage to need a special magnetizer. This method cannot be easily used on the site such as the factory. On the other hand, because the special magnetizer is unnecessary, the excitation method can use easily on the site. The output signal of this method is small. In this paper, two fatigue evaluation methods such as the remanent magnetization method and the excitation method are introduced. In addition, we report on the result of comparing the fatigue evaluation performances of two methods.

  4. Estimation of Fatigue Damage for an Austenitic Stainless Steel (SUS304) Using Magnetic Methods

    NASA Astrophysics Data System (ADS)

    Oka, M.; Yakushiji, T.; Tsuchida, Y.; Enokizono, M.

    2007-03-01

    There are some fatigue damage estimation methods of the austenitic stainless steel that uses the martensitic transformation. For instance, they are the remanent magnetization method, the excitation method, and so on. Those two methods are being researched also in our laboratory now. In the remanent magnetization method, it is well known that the relation between fatigue damage and the remanent magnetization is simple, clear, and reproducible. However, this method has the disadvantage to need a special magnetizer. This method cannot be easily used on the site such as the factory. On the other hand, because the special magnetizer is unnecessary, the excitation method can use easily on the site. The output signal of this method is small. In this paper, two fatigue evaluation methods such as the remanent magnetization method and the excitation method are introduced. In addition, we report on the result of comparing the fatigue evaluation performances of two methods.

  5. Noncontact nonlinear resonant ultrasound spectroscopy to evaluate creep damage in an austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Ohtani, T.; Kusanagi, Y.; Ishii, Y.

    2013-01-01

    In this paper, we described an evaluating technique of creep damage in an austenitic stainless steel by the combination with an electromagnetic acoustic transducer (EMAT) and the nonlinear resonant ultrasound spectroscopy (NRUS), which was a resonance-based technique exploiting the significant nonlinear behavior of damaged materials. In NRUS, the resonant frequency of an object is studied as a function of the excitation level. As the excitation level increases, the elastic nonlinearity was manifest by a shift in the resonance frequency. The nonlinearity with NRUS showed a peak at 50 % and a minimum at 70 % of the total creep life. This nonlinearity measurement has a potential to assess creep damage advance and predict the creep remaining life of metals.

  6. Influence of localized plasticity on oxidation behaviour of austenitic stainless steels under primary water reactor

    NASA Astrophysics Data System (ADS)

    Cissé, Sarata; Laffont, Lydia; Lafont, Marie-Christine; Tanguy, Benoit; Andrieu, Eric

    2013-02-01

    The sensitivity of precipitation-strengthened A286 austenitic stainless steel to stress corrosion cracking was studied by means of slow-strain-rate tests. First, alloy cold working by low cycle fatigue (LCF) was investigated. Fatigue tests under plastic strain control were performed at different strain levels (Δɛp/2 = 0.2%, 0.5%, 0.8% and 2%) to establish correlations between stress softening and the deformation microstructure resulting from the LCF tests. Deformed microstructures were identified through TEM investigations. The interaction between oxidation and localized deformation bands was also studied and it resulted that localized deformation bands are not preferential oxide growth channels. The pre-cycling of the alloy did not modify its oxidation behaviour. However, intergranular oxidation in the subsurface under the oxide layer formed after exposure to PWR primary water was shown.

  7. Microstructural observations of HFIR-irratiated austenitic stainless steels including welds from JP9-16

    SciTech Connect

    Sawai, T.; Shiba, K.; Hishinuma, A.

    1996-04-01

    Austenitic stainless steels, including specimens taken from various electron beam (EB) welds, have been irradiated in HFIR Phase II capsules, JP9-16. Fifteen specimens irradiated at 300, 400, and 500{degrees}C up to 17 dpa are so far examined by a transmission electron microscope (TEM). In 300{degrees}C irradiation, cavities were smaller than 2nm and different specimens showed little difference in cavity microstructure. At 400{degrees}C, cavity size was larger, but still very small (<8 nm). At 500{degrees}C, cavity size reached 30 nm in weld metal specimens of JPCA, while cold worked JPCA contained a small (<5 nm) cavities. Inhomogeneous microstructural evolution was clearly observed in weld-metal specimens irradiated at 500{degrees}C.

  8. Effects of low temperature neutron irradiation on deformation behavior of austenitic stainless steels

    SciTech Connect

    Pawel, J.E.; Rowcliffe, A.F.; Alexander, D.J.; Grossbeck, M.L.; Shiba, K.

    1996-04-01

    An austenitic stainless steel, designated 316LN-IG, has been chosen for the first wall/shield (FW/S) structure for the International Thermonuclear Experimental Reactor (ITER). The proposed operational temperature range for the structure (100 to 250{degree}C) is below the temperature regimes for void swelling (400-600{degree}C) and for helium embrittlement (500-700{degree}C). However, the proposed neutron dose is such that large changes in yield strength, deformation mode, and strain hardening capacity could be encountered which could significantly affect fracture properties. Definition of the irradiation regimes in which this phenomenon occurs is essential to the establishment of design rules to protect against various modes of failure.

  9. TEM, XRD and nanoindentation characterization of Xenon ion irradiation damage in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Huang, H. F.; Li, J. J.; Li, D. H.; Liu, R. D.; Lei, G. H.; Huang, Q.; Yan, L.

    2014-11-01

    Cross-sectional and bulk specimens of a 20% cold-worked 316 austenitic stainless steel (CW 316 SS) has been characterized by TEM, XRD and nanoindentation to determine the microstructural evolution and mechanical property changes of 316 SS after irradiation with 7 MeV Xe26+ ions. TEM results reveal the presence of dislocation loops with a number density of approximately 3 × 1022 m-3 and sizes between 3 to 10 nm due to the collapse of vacancy rich cores inside displacement cascades. Peak broadening observed in XRD diffraction patters reveal systematic changes to lattice parameters due to irradiation. The calculated indentation values in irradiated 316 SS were found to be much higher in comparison to the unirradiated specimen, indicating the dose dependent effect of irradiation on hardness. The relationship between irradiation induced microstructural evolution and the changes to the mechanical properties of CW 316 SS are discussed in the context of fluence and irradiation temperature.

  10. Composite model of microstructural evolution in austenitic stainless steel under fast neutron irradiation

    SciTech Connect

    Stoller, R.E.; Odette, G.R.

    1986-01-01

    A rate-theory-based model has been developed which includes the simultaneous evolution of the dislocation and cavity components of the microstructure of irradiated austenitic stainless steels. Previous work has generally focused on developing models for void swelling while neglecting the time dependence of the dislocation structure. These models have broadened our understanding of the physical processes that give rise to swelling, e.g., the role of helium and void formation from critically-sized bubbles. That work has also demonstrated some predictive capability by successful calibration to fit the results of fast reactor swelling data. However, considerable uncertainty about the values of key parameters in these models limits their usefulness as predictive tools. Hence the use of such models to extrapolate fission reactor swelling data to fusion reactor conditions is compromised.

  11. Bauschinger Effect in an Austenitic Steel: Neutron Diffraction and a Multiscale Approach

    NASA Astrophysics Data System (ADS)

    Fajoui, Jamal; Gloaguen, David; Legrand, Vincent; Oum, Guy; Kelleher, Joe; Kockelmann, Winfried

    2016-05-01

    The generation of internal stresses/strains arising from mechanical deformations in single-phase engineering materials was studied. Neutron diffraction measurements were performed to study the evolution of intergranular strains in austenitic steel during sequential loadings. Intergranular strains expand due to incompatibilities between grains and also resulting from single-crystal elastic and plastic anisotropy. A two-level homogenization approach was adopted in order to predict the mechanical state of deformed polycrystals in relation to the microstructure during Bauschinger tests. A mechanical description of the grain was developed through a micro-meso transition based on the Kröner model. The meso-macro transition using a self-consistent approach was applied to deduce the global behavior. Mechanical tests and neutron diffraction measurements were used to validate and assess the model.

  12. AN ULTRASONIC PHASED ARRAY EVALUATION OF CAST AUSTENITIC STAINLESS STEEL PRESSURIZER SURGE LINE PIPING WELDS

    SciTech Connect

    Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Moran, Traci L.; Anderson, Michael T.

    2010-07-22

    A set of circumferentially oriented thermal fatigue cracks (TFCs) were implanted into three cast austenitic stainless steel (CASS) pressurizer (PZR) surge-line specimens (pipe-to-elbow welds) that were fabricated using vintage CASS materials formed in the 1970s, and flaw responses from these cracks were used to evaluate detection and sizing performance of the phased-array (PA) ultrasonic testing (UT) methods applied. Four different custom-made PA probes were employed in this study, operating nominally at 800 kHz, 1.0 MHz, 1.5 MHz, and 2.0 MHz center frequencies. The CASS PZR surge-line specimens were polished and chemically etched to bring out the microstructures of both pipe and elbow segments. Additional studies were conducted and documented to address baseline CASS material noise and observe possible ultrasonic beam redirection phenomena.

  13. Five-parameter grain boundary analysis of a grain boundary-engineered austenitic stainless steel.

    PubMed

    Jones, R; Randle, V; Engelberg, D; Marrow, T J

    2009-03-01

    Two different grain boundary engineering processing routes for type 304 austenitic stainless steel have been compared. The processing routes involve the application of a small level of strain (5%) through either cold rolling or uni-axial tensile straining followed by high-temperature annealing. Electron backscatter diffraction and orientation mapping have been used to measure the proportions of Sigma3(n) boundary types (in coincidence site lattice notation) and degree of random boundary break-up, in order to gain a measure of the success of the two types of grain boundary engineering treatments. The distribution of grain boundary plane crystallography has also been measured and analyzed in detail using the five-parameter stereological method. There were significant differences between the grain boundary population profiles depending on the type of deformation applied. PMID:19250462

  14. Strain-induced martensitic transformation in type 321 austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Ridlova, M.; Hyspecka, L.; Wenger, F.; Ponthiaux, P.; Galland, J.; Kubecka, P.

    2003-10-01

    Strain-induced martensitic transformation in AISI 321 austenitic stainless steel was studied by means of compression, tension and friction tests at room temperature. Compression and tensile tests were done in air and friction tests were realised by using a pin-on-disk apparatus in deionised water. The strain-induced volume fraction of α'-martensite determined by X-ray diffraction analysis was correlated with different imposed pressures and tensile strams. It seems evident that strain induced α'- martensite increases as a function of the normal force and the number of rotations after friction tests; however, the role of sliding rate was negligible. The results were completed by values of friction coefficients. The strain-induced martensite formation is subject to hardening mechanism, which may contribute to cumulative damage of pin-on-disk friction specimens.

  15. Ultrasonic Sound Field Mapping Through Coarse Grained Cast Austenitic Stainless Steel Components

    SciTech Connect

    Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.; Larche, Michael R.; Diaz, Aaron A.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) has been involved with nondestructive examination (NDE) of coarse-grained cast austenitic stainless steel (CASS) components for over 30 years. More recent work has focused on mapping the ultrasonic sound fields generated by low-frequency phased array probes that are typically used for the evaluation of CASS materials for flaw detection and characterization. The casting process results in the formation of large grained material microstructures that are nonhomogeneous and anisotropic. The propagation of ultrasonic energy for examination of these materials results in scattering, partitioning and redirection of these sound fields. The work reported here provides an assessment of sound field formation in these materials and provides recommendations on ultrasonic inspection parameters for flaw detection in CASS components.

  16. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale

    PubMed Central

    Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.

    2016-01-01

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties. PMID:27725722

  17. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale

    NASA Astrophysics Data System (ADS)

    Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.

    2016-10-01

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties.

  18. The Effects of Cold Work on the Microstructure and Mechanical Properties of Intermetallic Strengthened Alumina-Forming Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Hu, B.; Trotter, G.; Baker, Ian; Miller, M. K.; Yao, L.; Chen, S.; Cai, Z.

    2015-08-01

    In order to achieve energy conversion efficiencies of >50 pct for steam turbines/boilers in power generation systems, materials are required that are both strong and corrosion-resistant at >973 K (700 °C), and economically viable. Austenitic steels strengthened with Laves phase, NiAl and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The microstructure and microchemistry of recently developed alumina-forming austenitic stainless steels have been characterized by scanning electron microscopy, transmission electron microscopy, and synchrotron X-ray diffraction. Different thermo-mechanical treatments were performed on these steels to improve their mechanical performance. These reduced the grain size significantly to the nanoscale (~100 nm) and the room temperature yield strength to above 1000 MPa. A solutionizing anneal at 1473 K (1200 °C) was found to be effective for uniformly redistributing the Laves phase precipitates that form upon casting.

  19. Effect of Nitrogen Shielding Gas on Laser Weldability of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Katayama, Seiji; Yoshida, Daisuke; Matsunawa, Akira

    YAG and CO2 laser weldability of Type 304 steel in nitrogen (N2) shielding gas was evaluated by investigating melting characteristics, porosity formation tendency, N content, microstructural characteristics and cracking sensitivity. Melting characteristics of weld beads produced below 4 kW were not so much different between YAG and CO2 laser. Porosity was remarkably reduced in any welds produced with nitrogen gas in comparison with normal welds made with Ar or He gas. This was attributed to the decrease in N content in a keyhole due to the reaction with evaporated Cr vapor as well as the absorption in the keyhole molten surface. The N contents absorbed in Type 304 weld fusion zones were larger under any welding conditions with CO2 laser than with YAG laser. On the other hand, in the case of several CO2 laser weld metals, solidification cracks occurred along the grain boundaries of a fully austenitic phase. Primary solidification of delta-ferrite phase normally took place in Type 304 weld metals, but a primary austenite phase was formed owing to the N enrichment, and micro-segregation of P and S increased along the grain boundaries. Consequently, cracking was induced by enhancement of cracking sensitivity due to a wider BTR. It was concluded that a great effect of nitrogen on the weldability of stainless steel was noted more remarkably in CO2 laser weld fusion zones than in YAG laser ones. It must be attributed to the N plasma formation leading to higher temperatures and consequent generation of more active N during CO2 laser welding.

  20. Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Brady, M. P.; Lu, Z. P.; Liu, C. T.; Takeyama, M.; Maziasz, P. J.; Pint, B. A.

    2007-11-01

    Creep strengthening of Al-modified austenitic stainless steels by MC carbides or Fe2Nb Laves phase was explored. Fe-20Cr-15Ni-(0-8)Al and Fe-15Cr-20Ni-5Al base alloys (at. pct) with small additions of Nb, Mo, W, Ti, V, C, and B were cast, thermally-processed, and aged. On exposure from 650 °C to 800 °C in air and in air with 10 pct water vapor, the alloys exhibited continuous protective Al2O3 scale formation at an Al level of only 5 at. pct (2.4 wt pct). Matrices of the Fe-20Cr-15Ni-5Al base alloys consisted of γ (fcc) + α (bcc) dual phase due to the strong α-Fe stabilizing effect of the Al addition and exhibited poor creep resistance. However, adjustment of composition to the Fe-15Cr-20Ni-5Al base resulted in alloys that were single-phase γ-Fe and still capable of alumina scale formation. Alloys that relied solely on Fe2Nb Laves phase precipitates for strengthening exhibited relatively low creep resistance, while alloys that also contained MC carbide precipitates exhibited creep resistance comparable to that of commercially available heat-resistant austenitic stainless steels. Phase equilibria studies indicated that NbC precipitates in combination with Fe2Nb were of limited benefit to creep resistance due to the solution limit of NbC within the γ-Fe matrix of the alloys studied. However, when combined with other MC-type strengtheners, such as V4C3 or TiC, higher levels of creep resistance were obtained.