Science.gov

Sample records for 316lng stainless steel

  1. Articles comprising ferritic stainless steels

    DOEpatents

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  2. Sensitization of stainless steel

    NASA Technical Reports Server (NTRS)

    Nagy, James P.

    1990-01-01

    The objective of this experiment is to determine the corrosion rates of 18-8 stainless steels that have been sensitized at various temperatures and to show the application of phase diagrams. The laboratory instructor will assign each student a temperature, ranging from 550 C to 1050 C, to which the sample will be heated. Further details of the experimental procedure are detailed.

  3. Brazing titanium to stainless steel

    NASA Technical Reports Server (NTRS)

    Batista, R. I.

    1980-01-01

    Titanium and stainless-steel members are usually joined mechanically for lack of any other effective method. New approach using different brazing alloy and plating steel member with nickel resolves problem. Process must be carried out in inert atmosphere.

  4. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  5. Welding tritium exposed stainless steel

    SciTech Connect

    Kanne, W.R. Jr.

    1994-11-01

    Stainless steels that are exposed to tritium become unweldable by conventional methods due to buildup of decay helium within the metal matrix. With longer service lives expected for tritium containment systems, methods for welding on tritium exposed material will become important for repair or modification of the systems. Solid-state resistance welding and low-penetration overlay welding have been shown to mitigate helium embrittlement cracking in tritium exposed 304 stainless steel. These processes can also be used on stainless steel containing helium from neutron irradiation, such as occurs in nuclear reactors.

  6. Chromium-Makes stainless steel stainless

    USGS Publications Warehouse

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  7. Preformed posterior stainless steel crowns: an update.

    PubMed

    Croll, T P

    1999-02-01

    For almost 50 years, dentists have used stainless steel crowns for primary and permanent posterior teeth. No other type of restoration offers the convenience, low cost, durability, and reliability of such crowns when interim full-coronal coverage is required. Preformed stainless steel crowns have improved over the years. Better luting cements have been developed and different methods of crown manipulation have evolved. This article reviews stainless steel crown procedures for primary and permanent posterior teeth. Step-by-step placement of a primary molar stainless steel crown is documented and permanent molar stainless steel crown restoration is described. A method for repairing a worn-through crown also is reviewed.

  8. Development of New Stainless Steel

    SciTech Connect

    Robert F. Buck

    2005-08-30

    A new family of innovative martensitic stainless steels, 521-A, 521-B, and 521-C has been developed by Advanced Steel Technology, LLC (Trafford, PA) as high strength fastener (bolt) materials for use at moderate temperatures in turbine engines, including steam turbines, gas turbines, and aircraft engines. The primary objective of the development program was to create a martensitic stainless steel with high strength at moderate temperatures, and which could replace the expensive nickel-based superalloy IN 718 in some fasteners applications. A secondary objective was to replace conventional 12Cr steels such as AISI 422 used as blades, buckets and shafts that operate at intermediate temperatures in turbine engines with stronger steel. The composition of the new alloys was specifically designed to produce excellent mechanical properties while integrating heat treatment steps into production to reduce energy consumption during manufacturing. As a result, production costs and energy consumption during production of rolled bar products is significantly lower than conventional materials. Successful commercialization of the new alloys would permit the installed cost of certain turbine engines to be reduced without sacrificing high availability or operational flexibility, thereby enhancing the global competitiveness of U.S. turbine engine manufacturers. Moreover, the domestic specialty steel industry would also benefit through increased productivity and reduced operating costs, while increasing their share of the international market for turbine engine fasteners, blades, buckets and shafts.

  9. Nano-composite stainless steel

    DOEpatents

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  10. Nickel: makes stainless steel strong

    USGS Publications Warehouse

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  11. Welding Metallurgy and Weldability of Stainless Steels

    NASA Astrophysics Data System (ADS)

    Lippold, John C.; Kotecki, Damian J.

    2005-03-01

    Welding Metallurgy and Weldability of Stainless Steels, the first book in over twenty years to address welding metallurgy and weldability issues associated with stainless steel, offers the most up-to-date and comprehensive treatment of these topics currently available. The authors emphasize fundamental metallurgical principles governing microstructure evolution and property development of stainless steels, including martensistic, ferric, austenitic, duplex, and precipitation hardening grades. They present a logical and well-organized look at the history, evolution, and primary uses of each stainless steel, including detailed descriptions of the associated weldability issues.

  12. 60 Years of duplex stainless steel applications

    SciTech Connect

    Olsson, J.; Liljas, M.

    1994-12-31

    In this paper the history of wrought duplex stainless steel development and applications is described. Ferritic-austenitic stainless steels were introduced only a few decades after stainless steels were developed. The paper gives details from the first duplex stainless steels in the 1930`s to the super duplex stainless steel development during the 1980`s. During the years much effort has been devoted to production and welding metallurgy as well as corrosion research of the duplex stainless steels. Therefore, duplex stainless steels are to-day established in a wide product range. Numerous important applications are exemplified. In most cases the selection of a duplex steel has been a result of the combination high strength excellent corrosion resistance. In the pulp and paper industry the most interesting use is as vessel material in digesters. For chemical process industry, the duplex steels are currently used in heat exchangers. The largest application of duplex steels exists in the oil and gas/offshore industry. Hundreds of kms of pipelines are installed and are still being installed. An increased use of duplex steels is foreseen in areas where the strength is of prime importance.

  13. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOEpatents

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  14. Interaction between stainless steel and plutonium metal

    SciTech Connect

    Dunwoody, John T; Mason, Richard E; Freibert, Franz J; Willson, Stephen P; Veirs, Douglas K; Worl, Laura A; Archuleta, Alonso; Conger, Donald J

    2010-01-01

    Long-term storage of excess plutonium is of great concern in the U.S. as well as abroad. The current accepted configuration involves intimate contact between the stored material and an iron-bearing container such as stainless steel. While many safety scenario studies have been conducted and used in the acceptance of stainless steel containers, little information is available on the physical interaction at elevated temperatures between certain forms of stored material and the container itself. The bulk of the safety studies has focused on the ability of a package to keep the primary stainless steel containment below the plutonium-iron eutectic temperature of approximately 410 C. However, the interactions of plutonium metal with stainless steel have been of continuing interest. This paper reports on a scoping study investigating the interaction between stainless steel and plutonium metal in a pseudo diffusion couple at temperatures above the eutectic melt-point.

  15. The comparison of frictional resistance in titanium, self-ligating stainless steel, and stainless steel brackets using stainless steel and TMA archwires: An in vitro study

    PubMed Central

    Khalid, Syed Altaf; Kumar, Vadivel; Jayaram, Prithviraj

    2012-01-01

    Aim: The aim of the study was to compare the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and titanium molybdenum alloy (TMA) archwires. Materials and Methods: We compared the frictional resistance in 0.018 slot and 0.022 slot of the three brackets – titanium, self-ligating stainless steel, and conventional stainless steel – using stainless steel archwires and TMA archwires. An in vitro study of simulated canine retraction was undertaken to evaluate the difference in frictional resistance between titanium, self-ligating stainless steel, and stainless steel brackets, using stainless steel and TMA archwires. Results and Conclusion: We compared the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and TMA archwires, with the help of Instron Universal Testing Machine. One-way analysis of variance (ANOVA), Student's “t” test, and post hoc multiple range test at level of <0.05 showed statistically significant difference in the mean values of all groups. Results demonstrated that the titanium, self-ligating stainless steel, and stainless steel brackets of 0.018-inch and 0.022-inch slot had no significant variations in frictional résistance. The self-ligating bracket with TMA archwires showed relatively less frictional resistance compared with the other groups. The titanium bracket with TMA archwires showed relatively less frictional resistance compared with the stainless steel brackets. PMID:23066253

  16. Tritiated Water Interaction with Stainless Steel

    SciTech Connect

    Glen R. Longhurst

    2007-05-01

    Experiments conducted to study tritium permeation of stainless steel at ambient and elevated temperatures revealed that HT converts relatively quickly to HTO. Further, the HTO partial pressure contributes essentially equally with elemental tritium gas in driving permeation through the stainless steel. Such permeation appears to be due to dissociation of the water molecule on the hot stainless steel surface. There is an equilibrium concentration of HTO vapor above adsorbed gas on the walls of the experimental apparatus evident from freezing transients. The uptake process of tritium from the carrier gas involves both surface adsorption and isotopic exchange with surface bound water.

  17. Respiratory status of stainless steel and mild steel welders.

    PubMed

    Kalliomäki, P L; Kalliomäki, K; Korhonen, O; Nordman, H; Rahkonen, E; Vaaranen, V

    1982-01-01

    Eighty-three full-time stainless steel and 29 mild steel welders from one shipyard were examined clinically, and their lung function was measured. The stainless steel welders had used both tungsten inert-gas (low-fume concentration) and manual metal-arc (MMA) (high-fume concentration) welding methods. The individual exposure of the welders was estimated based on the time spent doing MMA welding, the amount of retained contaminants in the lungs (magnetopulmography), and urinary chromium excretion. The results suggest that there is a greater prevalence of small airway disease among shipyard mild steel MMA welders than among stainless steel welders. Among the stainless steel welders the impairment of lung function parameters was associated with the MMA welding method. The type of welding, then, is important when the health hazards of welders are studied, and welders cannot be regarded as a single, homogeneous group. PMID:7100838

  18. Stainless steel to titanium bimetallic transitions

    NASA Astrophysics Data System (ADS)

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    2015-12-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented. Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.

  19. Development of a carburizing stainless steel alloy

    SciTech Connect

    Wert, D.E. )

    1994-06-01

    A new carburizing stainless steel alloy that resists corrosion, heat, and fatigue has been developed for bearing and gear applications. Pyrowear 675 Stainless alloy is vacuum induction melted and vacuum arc remelted (VIM/VAR) for aircraft-quality cleanliness. Test results show that it has corrosion resistance similar to that of AISI Type 440-C stainless, and its rolling fatigue resistance is superior to that of AISI M50 (UNS K88165). In contrast to alloy gear steels and Type 440C, Pyrowear 675 maintains case hardness of HRC 60 at operating temperatures up to 200 C (400 F). Impact and fracture toughness are superior to that of other stainless bearing steels, which typically are relatively brittle and can break under severe service. Toughness is also comparable or superior to conventional noncorrosion-resistant carburizing bearing steels, such as SAE Types 8620 and 9310.

  20. Hydrogen compatibility handbook for stainless steels

    SciTech Connect

    Caskey, G.R. Jr.

    1983-06-01

    This handbook compiles data on the effects of hydrogen on the mechanical properties of stainless steels and discusses this data within the context of current understanding of hydrogen compatibility of metals. All of the tabulated data derives from continuing studies of hydrogen effects on materials that have been conducted at the Savannah River Laboratory over the past fifteen years. Supplementary data from other sources are included in the discussion. Austenitic, ferritic, martensitic, and precipitation hardenable stainless steels have been studied. Damage caused by helium generated from decay of tritium is a distinctive effect that occurs in addition to the hydrogen isotopes protium and deuterium. The handbook defines the scope of our current knowledge of hydrogen effects in stainless steels and serves as a guide to selection of stainless steels for service in hydrogen.

  1. Precise carbon control of fabricated stainless steel

    DOEpatents

    Nilsen, R.J.

    1975-12-01

    A process is described for controlling the carbon content of fabricated stainless steel components including the steps of heat treating the component in hydrogen atmospheres of varying dewpoints and carbon potentials.

  2. Stainless Steel to Titanium Bimetallic Transitions

    SciTech Connect

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  3. Forming "dynamic" membranes on stainless steel

    NASA Technical Reports Server (NTRS)

    Brandon, C. A.; Gaddis, J. L.

    1979-01-01

    "Dynamic" zirconium polyacrylic membrane is formed directly on stainless steel substrate without excessive corrosion of steel. Membrane is potentially useful in removal of contaminated chemicals from solution through reversed osmosis. Application includes use in filtration and desalination equipment, and in textile industry for separation of dyes from aqueous solvents.

  4. High Mn austenitic stainless steel

    DOEpatents

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  5. Ion-nitriding of austenitic stainless steels

    SciTech Connect

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-12-31

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors.

  6. Superplastic forming of stainless steel automotive components

    SciTech Connect

    Bridges, B.; Elmer, J.; Carol, L.

    1997-02-06

    Exhaust emission standards are governmentally controlled standards, which are increasingly stringent, forcing alternate strategies to meet these standards. One approach to improve the efficiency of the exhaust emission equipment is to decrease the time required to get the catalytic converter to optimum operating temperature. To accomplish this, automotive manufacturers are using double wall stainless steel exhaust manifolds to reduce heat loss of the exhaust gases to the converter. The current method to manufacture double wall stainless steel exhaust components is to use a low-cost alloy with good forming properties and extensively form, cut, assemble, and weld the pieces. Superplastic forming (SPF) technology along with alloy improvements has potential at making this process more cost effective. Lockheed Martin Energy Systems (LMES), Lawrence Livermore National Laboratory (LLNL) and USCAR Low Emission Partnership (LEP) worked under a Cooperative Research And Development Agreement (CRADA) to evaluate material properties, SPF behavior, and welding behavior of duplex stainless steel alloy for automotive component manufacturing. Battelle Pacific Northwest National Laboratory (PNNL) has a separate CRADA with the LEP to use SPF technology to manufacture a double wall stainless steel exhaust component. As a team these CRADAs developed and demonstrated a technical plan to accomplish making double wall stainless steel exhaust manifolds.

  7. Aging degradation of cast stainless steel

    SciTech Connect

    Chopra, O.K.; Chung, H.M.

    1985-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450/sup 0/C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the ..cap alpha..' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 450/sup 0/C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 450/sup 0/C. 18 refs., 13 figs.

  8. Casting Stainless-Steel Models Around Pressure Tubes

    NASA Technical Reports Server (NTRS)

    Vasquez, Peter; Micol, John R.

    1992-01-01

    Survivability of thin-wall stainless-steel tubing increased to nearly 100 percent. Improves state of art in pressure-model castings and reduces cost associated with machining complete model from stainless-steel blank.

  9. 79 FR 60188 - Nonmetallic Thermal Insulation for Austenitic Stainless Steel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2014-10-06

    ... COMMISSION Nonmetallic Thermal Insulation for Austenitic Stainless Steel AGENCY: Nuclear Regulatory... of the NRC considers acceptable when selecting and using nonmetallic thermal insulation in the..., ``Nonmetallic Thermal Insulation for Austenitic Stainless Steel,'' is temporarily identified by its task...

  10. Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.

    2003-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.

  11. Stainless Steel Microstructure and Mechanical Properties Evaluation

    SciTech Connect

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  12. Friction Drilling of Stainless Steels Pipes

    SciTech Connect

    Fernandez, A.; Lopez de Lacalle, L. N.; Lamikiz, A.

    2011-01-17

    This work describes the experimental study of the friction drilling process in stainless steel by means of an optimization of the machining conditions. For such purpose austenitic stainless steel with different thicknesses were analyzed through controlled tests at different rotation speeds and feed rates. On one hand, the torque and the thrust force were computed and monitorized. On the other hand, the dimensional tolerances of the holes were evaluated, mainly the accuracy of the hole diameter and the burr thickness at different depths. Another topic of interest inherent to this special technique is the temperature level reached during the friction process which is crucial when it comes to development of microstructural transformations.

  13. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  14. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  15. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  16. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  17. Stainless steel 4003 in the transportation industry

    SciTech Connect

    Kovacs, H.; Stoeckl, M.

    1998-12-31

    The world today sees a dramatic increase in the number of people and the quantities of articles and products which are to be transported. This results in an ever-increasing demand in the steels used in the transportation industry. Key factors are environmental regulations, safety, and life expectancy and product cost in determining which types steel to use. Especially the ferritic 12% chromium stainless steels has seen a significant development and usage in recent years. Compared to typical carbon steels high strength/low alloy steels and structural steels the 12% chromium steels offers improvement in corrosion and wear resistance and weldability outlining advantages in light weight construction and an overall saving. The paper presents the chemical composition and mechanical properties of grade 4003 which is increasingly used worldwide in areas of public transportation, rail transportation, mining industry and sugar industry, among others. The impact of corrosion and abrasion of this stainless steel versus the standard carbon grades and cost efficiency are discussed.

  18. Stabilizing stainless steel components for cryogenic service

    NASA Technical Reports Server (NTRS)

    Holden, C. F.

    1967-01-01

    Warpage and creep in stainless steel valve components are decreased by a procedure in which components are machined to a semifinish and then cold soaked in a bath of cryogenic liquid. After the treatment they are returned to ambient temperature and machine finished to the final drawing dimensions.

  19. Proof Testing Of Stainless-Steel Bolts

    NASA Technical Reports Server (NTRS)

    Hsieh, Cheng H.; Hendrickson, James A.; Bamford, Robert M.

    1992-01-01

    Report describes study of development of method for nondestructive proof testing of bolts made of A286 stainless steel. Based on concept that the higher load bolt survives, the smaller the largest flaw and, therefore, the longer its fatigue life after test. Calculations and experiments increase confidence in nondestructive proof tests.

  20. Austenitic stainless steels for cryogenic service

    SciTech Connect

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  1. Materials data handbooks on stainless steels

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1973-01-01

    Two handbooks which summarize latest available data have been published. Two types of stainless steels, alloy A-286 and Type 301, are described. Each handbook is divided into twelve chapters. Scope of information presented includes physical- and mechanical-property data at cryogenic, ambient, and elevated temperatures.

  2. Materials data handbook: Stainless steel type 301

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for stainless steel type 301 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.

  3. Tensile-property characterization of thermally aged cast stainless steels

    SciTech Connect

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  4. Phase Transformation in Cast Superaustenitic Stainless Steels

    SciTech Connect

    Lee Phillips, Nathaniel Steven

    2006-01-01

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  5. Microleakage of cements for stainless steel crowns.

    PubMed

    Shiflett, K; White, S N

    1997-01-01

    Microleakage is related to recurrent decay, inflammation of vital pulps, and reinfection of previously treated root canals. The purpose of this investigation was to compare the abilities of new adhesive cements and conventional nonadhesive controls to prevent microleakage under stainless steel crowns on primary anterior teeth. Standardized preparations were made, and stainless steel crowns were adapted. Specimens were assigned randomly to cement groups: zinc phosphate (ZP), polycarboxylate (PC), glass-ionomer (GI), resin-modified glass-ionomer (RMGI), RMGI with a dentin bonding agent (RMGI + DBA), adhesive composite resin (ACR) and zinc oxide eugenol (ZOE). Specimens were stored in water, aged artificially, stained, embedded, and sectioned, and the microleakage was measured. Group means and standard errors were calculated. ANOVA discerned differences among groups (P < 0.0001), and Turkey's multiple comparisons testing (P < 0.05) ranked the groups from least to most microleakage as follows: [RMGI + DBA, RMGI, ACR, GI], [ZP], and [PC, ZOE]. The adhesive cements significantly reduced microleakage.

  6. Tritium Depth Profiles in 316 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Torikai, Yuji; Murata, Daiju; Penzhorn, Ralf-Dieter; Akaishi, Kenya; Watanabe, Kuniaki; Matsuyama, Masao

    To investigate the behavior of hydrogen uptake and release by 316 stainless steel (SS316), as-received and finely polished stainless steel specimens were exposed at 573 K to tritium gas diluted with hydrogen. Then tritium concentration in the exposed specimens was measured as a function of depth using a chemical etching method. All the tritium concentration profiles showed a sharp drop in the range of 10 μm from the top surface up to the bulk. The amount of tritium absorbed into the polished specimens was three times larger than that into the as-received specimen. However, the polishing effects disappeared by exposing to the air for a long time.

  7. Weldability of Additive Manufactured Stainless Steel

    NASA Astrophysics Data System (ADS)

    Matilainen, Ville-Pekka; Pekkarinen, Joonas; Salminen, Antti

    Part size in additive manufacturing is limited by the size of building area of AM equipment. Occasionally, larger constructions that AM machines are able to produce, are needed, and this creates demand for welding AM parts together. However there is very little information on welding of additive manufactured stainless steels. The aim of this study was to investigate the weldability aspects of AM material. In this study, comparison of the bead on plate welds between AM parts and sheet metal parts is done. Used material was 316L stainless steel, AM and sheet metal, and parts were welded with laser welding. Weld quality was evaluated visually from macroscopic images. Results show that there are certain differences in the welds in AM parts compared to the welds in sheet metal parts. Differences were found in penetration depths and in type of welding defects. Nevertheless, this study presents that laser welding is suitable process for welding AM parts.

  8. Instabilities in stabilized austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Ayer, Raghavan; Klein, C. F.; Marzinsky, C. N.

    1992-09-01

    The effect of aging on the precipitation of grain boundary phases in three austenitic stainless steels (AISI 347, 347AP, and an experimental steel stabilized with hafnium) was investigated. Aging was performed both on bulk steels as well as on samples which were subjected to a thermal treatment to simulate the coarse grain region of the heat affected zone (HAZ) during welding. Aging of the bulk steels at 866 K for 8000 hours resulted in the precipitation of Cr23C6 carbides, σ, and Fe2Nb phases; the propensity for precipitation was least for the hafnium-stabilized steel. Weld simulation of the HAZ resulted in dissolution of the phases present in the as-received 347 and 347AP steels, leading to grain coarsening. Subsequent aging caused extensive grain boundary Cr23C6 carbides and inhomogeneous matrix precipitation. In addition, steel 347AP formed a precipitate free zone (PFZ) along the grain boundaries. The steel containing hafnium showed the best microstructural stability to aging and welding.

  9. Softened-Stainless-Steel O-Rings

    NASA Technical Reports Server (NTRS)

    Marquis, G. A.; Waters, William I.

    1993-01-01

    In fabrication of O-ring of new type, tube of 304 stainless steel bent around mandril into circle and welded closed into ring. Ring annealed in furnace to make it soft and highly ductile. In this condition, used as crushable, deformable O-ring seal. O-ring replacements used in variety of atmospheres and temperatures, relatively inexpensive, fabricated with minimum amount of work, amenable to one-of-a-kind production, reusable, and environmentally benign.

  10. Pitting corrosion resistant austenite stainless steel

    DOEpatents

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  11. Properties of cryogenically worked metals. [stainless steels

    NASA Technical Reports Server (NTRS)

    Schwartzberg, F. R.; Kiefer, T. F.

    1975-01-01

    A program was conducted to determine whether the mechanical properties of cryogenically worked 17-7PH stainless steel are suitable for service from ambient to cryogenic temperatures. It was determined that the stress corrosion resistance of the cryo-worked material is quite adequate for structural service. The tensile properties and fracture toughness at room temperature were comparable to titanium alloy 6Al-4V. However, at cryogenic temperatures, the properties were not sufficient to recommend consideration for structural service.

  12. Cast Stainless Steel Ferrite and Grain Structure

    SciTech Connect

    Ruud, Clayton O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Mathews, Royce; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    In-service inspection requirements dictate that piping welds in the primary pressure boundary of light-water reactors be subject to a volumetric examination based on the rules contained within the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section XI. The purpose of the inspection is the reliable detection and accurate sizing of service-induced degradation and/or material flaws introduced during fabrication. The volumetric inspection is usually carried out using ultrasonic testing (UT) methods. However, the varied metallurgical macrostructures and microstructures of cast austenitic stainless steel piping and fittings, including statically cast stainless steel and centrifugally cast stainless steel (CCSS), introduce significant variations in the propagation and attenuation of ultrasonic energy. These variations complicate interpretation of the UT responses and may compromise the reliability of UT inspection. A review of the literature indicated that a correlation may exist between the microstructure and the delta ferrite content of the casting alloy. This paper discusses the results of a recent study where the goal was to determine if a correlation existed between measured and/or calculated ferrite content and grain structure in CCSS pipe.

  13. Impact Testing of Stainless Steel Materials

    SciTech Connect

    R. K. Blandford; D. K. Morton; T. E. Rahl; S. D. Snow

    2005-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates (10 to 200 per second) during accidental drop events. Mechanical characteristics of these materials under dynamic (impact) loads in the strain rate range of concern are not well documented. The goal of the work presented in this paper was to improve understanding of moderate strain rate phenomena on these materials. Utilizing a drop-weight impact test machine and relatively large test specimens (1/2-inch thick), initial test efforts focused on the tensile behavior of specific stainless steel materials during impact loading. Impact tests of 304L and 316L stainless steel test specimens at two different strain rates, 25 per second (304L and 316L material) and 50 per second (304L material) were performed for comparison to their quasi-static tensile test properties. Elevated strain rate stress-strain curves for the two materials were determined using the impact test machine and a “total impact energy” approach. This approach considered the deformation energy required to strain the specimens at a given strain rate. The material data developed was then utilized in analytical simulations to validate the final elevated stress-strain curves. The procedures used during testing and the results obtained are described in this paper.

  14. SRS stainless steel beneficial reuse program

    SciTech Connect

    Boettinger, W.L.

    1997-02-01

    The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other types of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.

  15. Antimicrobial Cu-bearing stainless steel scaffolds.

    PubMed

    Wang, Qiang; Ren, Ling; Li, Xiaopeng; Zhang, Shuyuan; Sercombe, Timothy B; Yang, Ke

    2016-11-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels. PMID:27524049

  16. Decontaminating and Melt Recycling Tritium Contaminated Stainless Steel

    SciTech Connect

    Clark, E.A.

    1995-04-03

    The Westinghouse Savannah River Company, Idaho National Engineering Laboratory, and several university and industrial partners are evaluating recycling radioactively contaminated stainless steel. The goal of this program is to recycle contaminated stainless steel scrap from US Department of Energy national defense facilities. There is a large quantity of stainless steel at the DOE Savannah River Site from retired heavy water moderated Nuclear material production reactors (for example heat exchangers and process water piping), that will be used in pilot studies of potential recycle processes. These parts are contaminated by fission products, activated species, and tritium generated by neutron irradiation of the primary reactor coolant, which is heavy (deuterated) water. This report reviews current understanding of tritium contamination of stainless steel and previous studies of decontaminating tritium exposed stainless steel. It also outlines stainless steel refining methods, and proposes recommendations based on this review.

  17. Weldment for austenitic stainless steel and method

    DOEpatents

    Bagnall, Christopher; McBride, Marvin A.

    1985-01-01

    For making defect-free welds for joining two austenitic stainless steel mers, using gas tungsten-arc welding, a thin foil-like iron member is placed between the two steel members to be joined, prior to making the weld, with the foil-like iron member having a higher melting point than the stainless steel members. When the weld is formed, there results a weld nugget comprising melted and then solidified portions of the joined members with small portions of the foil-like iron member projecting into the solidified weld nugget. The portions of the weld nugget proximate the small portions of the foil-like iron member which project into the weld nugget are relatively rich in iron. This causes these iron-rich nugget portions to display substantial delta ferrite during solidification of the weld nugget which eliminates weld defects which could otherwise occur. This is especially useful for joining austenitic steel members which, when just below the solidus temperature, include at most only a very minor proportion of delta ferrite.

  18. CO disintegration of stainless steel fiber-reinforced refractory castables

    SciTech Connect

    Martin, C.; Brown, J.J. Jr.

    1986-07-01

    The effects of stainless steel fiber additions on the resistance of refractory castables to CO and steam were investigated. A series of high and intermediate alumina calcium aluminate-bonded castables was prepared containing several commercial stainless steel fibers. Compressive strength and abrasion resistance of the castables following exposure to high pressure carbon monoxide and steam at 500/sup 0/C were comparable to those of samples without stainless steel fibers. The addition of stainless steel fibers to refractory castables did not change the CO resistance of the castables unless they were fired in air before CO exposure. Airfiring creates oxide layer so the fibers which ultimately causes castable disintegration.

  19. Stainless Steel Leaches Nickel and Chromium into Foods During Cooking

    PubMed Central

    Kamerud, Kristin L.; Hobbie, Kevin A.; Anderson, Kim A.

    2014-01-01

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel saucepan; cooking times of 2 to 20 hours, ten consecutive cooking cycles, and four commercial tomato sauces. After a simulated cooking process, samples were analyzed by ICP-MS for Ni and Cr. After six hours of cooking, Ni and Cr concentrations in tomato sauce increased up to 26- and 7-fold respectively, depending on the grade of stainless steel. Longer cooking durations resulted in additional increases in metal leaching, where Ni concentrations increased 34 fold and Cr increased approximately 35 fold from sauces cooked without stainless steel. Cooking with new stainless steel resulted in the largest increases. Metal leaching decreases with sequential cooking cycles and stabilized after the sixth cooking cycle, though significant metal contributions to foods were still observed. The tenth cooking cycle, resulted in an average of 88 μg of Ni and 86 μg of Cr leached per 126 g serving of tomato sauce. Stainless steel cookware can be an overlooked source of nickel and chromium, where the contribution is dependent on stainless steel grade, cooking time, and cookware usage. PMID:23984718

  20. Stainless steel leaches nickel and chromium into foods during cooking.

    PubMed

    Kamerud, Kristin L; Hobbie, Kevin A; Anderson, Kim A

    2013-10-01

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel saucepan, cooking times of 2-20 h, 10 consecutive cooking cycles, and four commercial tomato sauces. After a simulated cooking process, samples were analyzed by ICP-MS for Ni and Cr. After 6 h of cooking, Ni and Cr concentrations in tomato sauce increased up to 26- and 7-fold, respectively, depending on the grade of stainless steel. Longer cooking durations resulted in additional increases in metal leaching, where Ni concentrations increased 34-fold and Cr increased approximately 35-fold from sauces cooked without stainless steel. Cooking with new stainless steel resulted in the largest increases. Metal leaching decreases with sequential cooking cycles and stabilized after the sixth cooking cycle, although significant metal contributions to foods were still observed. The tenth cooking cycle resulted in an average of 88 μg of Ni and 86 μg of Cr leached per 126 g serving of tomato sauce. Stainless steel cookware can be an overlooked source of nickel and chromium, where the contribution is dependent on stainless steel grade, cooking time, and cookware usage.

  1. Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings

    NASA Technical Reports Server (NTRS)

    Tobin, Eric J.; Hafley, R. (Technical Monitor)

    2002-01-01

    The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.

  2. 3. INTERIOR VIEW OF SMOKEHOUSE UNIT; NOTE STAINLESS STEEL NOZZLES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR VIEW OF SMOKEHOUSE UNIT; NOTE STAINLESS STEEL NOZZLES THAT INTRODUCED SMOKE INTO UNIT; FLOOR IS UNPAINTED STEEL - Rath Packing Company, Smokehouse-Hog Chilling Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  3. Gas Atomization of Stainless Steel - Slow Motion

    SciTech Connect

    2011-01-01

    Stainless steel liquid atomized by supersonic argon gas into a spray of droplets at ~1800ºC. Atomization of metal requires high pressure gas and specialized chambers for cooling and collecting the powders without contamination. The critical step for morphological control is the impingement of the gas on the melt stream. The video is a black and white high speed video of a liquid metal stream being atomized by high pressure gas. This material was atomized at the Ames Laboratory's Materials Preparation Center http://www.mpc.ameslab.gov

  4. Formability Limits of a SPIFed Stainless Steel

    NASA Astrophysics Data System (ADS)

    Radu, Crina; Thibaud, Sebastian

    2011-05-01

    Single point incremental forming (SPIF) is a new cheep, flexible solution for manufacturing rapid prototypes and products with shorts series. Besides, it has been experimentally proven by different researchers that SPIF assures a higher formability than conventional sheet forming processes, enlarging thus its applicability. The aim of this paper is to examine the forming limits of a stainless steel when it is processed by SPIF. Since sheet thickness has an important role in this process, the analysis is performed for three different thicknesses of metal sheet: 0.8, 1 and 1.2 mm respectively.

  5. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gold or stainless steel cusp. 872.3350 Section 872.3350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp....

  6. New Method For Joining Stainless Steel to Titanium

    NASA Technical Reports Server (NTRS)

    Emanuel, W. H.

    1982-01-01

    In new process, edge of stainless-steel sheet is perforated, and joined to titanium by resistance seam welding. Titanium flows into perforations, forming a strong interlocking joint. Process creates a quasi-metallurgical bond between the thin sheets of stainless steel and titanium.

  7. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stainless steel suture. 878.4495 Section 878.4495 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture....

  8. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Stainless steel suture. 878.4495 Section 878.4495 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture....

  9. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Stainless steel suture. 878.4495 Section 878.4495 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture....

  10. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Stainless steel suture. 878.4495 Section 878.4495 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture....

  11. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Stainless steel suture. 878.4495 Section 878.4495 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture....

  12. 78 FR 21417 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ..., Washington, DC, and by publishing the notice in the Federal Register on October 22, 2012 (77 FR 64545). The... COMMISSION Drawn Stainless Steel Sinks From China Determinations On the basis of the record \\1\\ developed in... drawn stainless steel sinks from China, provided for in subheading 7324.10.00 of the Harmonized...

  13. 77 FR 23752 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... the notice in the Federal Register of March 7, 2012 (77 FR 13631). The conference was held in... COMMISSION Drawn Stainless Steel Sinks From China Determinations On the basis of the record \\1\\ developed in... (April 2012), entitled Drawn Stainless Steel Sinks from China: Investigation Nos. 701-TA-489 and...

  14. 6. DETAIL VIEW OF SPIN FORM FURNACE FOR STAINLESS STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL VIEW OF SPIN FORM FURNACE FOR STAINLESS STEEL FABRICATION. STAINLESS STEEL WAS MACHINED IN SIDE A OF THE BUILDING, BEGINNING IN 1957. (4/24/78) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  15. THE CLEANING OF 303 STAINLESS STEEL

    SciTech Connect

    Shen, T H

    2004-04-20

    The sulfur found on the surfaces of stainless steel 303 (SS303) after nitric acid passivation originated from the MnS inclusions in the steel. The nitric acid attacked and dissolved these MnS inclusions, and redeposited micron-sized elemental sulfur particles back to the surface. To develop an alternative passivation procedure for SS303, citric and phosphoric acids have been evaluated. The experimental results show neither acid causes a significant amount of sulfur deposit. Thus, these two acids can be used as alternatives to nitric acid passivation for NIF applications. For SS303 previously passivated by nitric acid, NaOH soak can be used as a remedial cleaning process to effectively remove the sulfur deposits.

  16. Evaluation of the stress corrosion behavior of selected stainless steels

    SciTech Connect

    Dorning, R.E. II

    1983-11-05

    The objective of this investigation was to determine the stress corrosion behavior of selected stainless steels in several fluorinating environments. The possibility of stress corrosion cracking or pitting which could substantially reduce the serviceability of the stainless steels was the primary concern. Laboratory testing indicated that stress corrosion cracking or other forms of localized attack of the austenitic stainless steels tested (304, 304-L, 316, and 316-L) would not occur in the dry gas environments investigated. AISI 316 and 316-L stainless steels exhibited no significant corrosion in any of the test environments. Stressed 304 and 304-L stainless steels exhibited increased general corrosion and pitting when moisture was added to the fluorinating environment. 3 refs., 1 fig., 3 tabs.

  17. Citric Acid Passivation of Stainless Steel

    NASA Technical Reports Server (NTRS)

    Yasensky, David; Reali, John; Larson, Chris; Carl, Chad

    2009-01-01

    Passivation is a process for cleaning and providing corrosion protection for stainless steel. Currently, on Kennedy Space Center (KSC), only parts passivated with nitric acid are acceptable for use. KSC disposes of approximately 125gal of concentrated nitric acid per year, and receives many parts from vendors who must also dispose of used nitric acid. Unfortunately, nitric acid presents health and environmental hazards. As a result, several recent industry studies have examined citric acid as an alternative. Implementing a citric acid-based passivation procedure would improve the health and environmental safety aspects of passivation process. However although there is a lack of published studies that conclusively prove citric acid is a technically sound passivation agent. In 2007, NASA's KSC Materials Advisory Working Group requested the evaluation of citric acid in place of nitric acid for passivation of parts at KSC. United Space Alliance Materials & Processes engineers have developed a three-phase test plan to evaluate citric acid as an alternative to nitric acid on three stainless steels commonly used at KSC: UNS S30400, S41000, and S17400. Phases 1 and 2 will produce an optimized citric acid treatment based on results from atmospheric exposure at NASA's Beach Corrosion Facility. Phase 3 will compare the optimized solution(s) with nitric acid treatments. If the results indicate that citric acid passivates as well or better than nitric acid, NASA intends to approve this method for parts used at the Kennedy Space Center.

  18. Cast alumina forming austenitic stainless steels

    DOEpatents

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  19. Co-Doped Polypyrrole Coatings for Stainless Steel Protection

    NASA Astrophysics Data System (ADS)

    Prissanaroon, W.; Brack, N.; Pigram, P. J.; Liesegang, J.

    Polypyrrole (PPy) films have been successfully electrodeposited on stainless steel substrates in aqueous solution. In this work, three systems of electrolytes were studied: oxalic acid, dodecylbenzenesulfonic acid (DBSA) and a mixture of oxalic acid and DBSA. A combination of XPS and TOF-SIMS revealed the formation of an iron oxalate layer at the interface between the oxalic acid-doped PPy (PPy(Ox)) and stainless steel and a thin layer of DBSA was observed at the interface between DBSA-doped PPy (PPy(DBSA)) and stainless steel. Similar to the PPy(Ox) system, an iron oxalate was also present at the co-doped PPy/stainless steel interface. Cyclic voltammetry indicated that an iron oxalate layer initially formed at the surface of the stainless steel when the co-doping system was used. The adhesion strength and corrosion performance of the PPy coating on stainless steel were evaluated by lap shear tests and an anodic potentiodynamic polarization technique, respectively. The co-doped PPy-coated stainless steel exhibited the best adhesion and a significant shift of corrosion potential to the positive direction. This finding opens the possibility for the co-doped PPy coating to be deployed as a strongly adherent corrosion inhibitor by using a simple one-step electropolymerization process.

  20. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  1. Stainless Steel Round Robin Test: Centrifugally cast stainless steel screening phase

    SciTech Connect

    Bates, D.J.; Doctor, S.R.; Heasler, P.G.; Burck, E.

    1987-10-01

    This report presents the results of the Centrifugally Cast Stainless Steel Round Robin Test (CCSSRRT). The CCSSRRT is the first phase of an effort to investigate and improve the capability and reliability of NDE inspections of light water reactor piping systems. This phase was a screening test to identify the most promising procedures presently available for CCSS. The next phase will be an in-depth program to evaluate the capability and reliability of inservice inspections (ISI) for piping. In the CCSSRRT, 15 centrifugally cast stainless steel pipe sections containing welds and laboratory-grown thermal fatigue cracks in both columnar and equiaxed base material were used. These pipe specimens were inspected by a total of 18 teams from Europe and the United States using a variety of NDE techniques, mostly ultrasonic (UT). The inspections were carried out at the team's facilities and included inspections from both sides of the weld and inspections restricted to one side of the weld. The results of the CCSSRRT make it apparent that a more detailed study on the capability and reliability of procedures to inspect stainless steel materials is needed to better understand the specific material and flaw properties and how they affect the outcome of an inspection.

  2. A mortality study among mild steel and stainless steel welders.

    PubMed

    Moulin, J J; Wild, P; Haguenoer, J M; Faucon, D; De Gaudemaris, R; Mur, J M; Mereau, M; Gary, Y; Toamain, J P; Birembaut, Y

    1993-03-01

    A mortality study was carried out in conjunction with the European mortality study among welders coordinated by the International Agency for Research on Cancer (IARC). The study was aimed at assessing risks for lung cancer in relation to exposure to asbestos, welding fumes containing chromium and nickel, and tobacco smoke. The study included a cohort of 2721 welders and an internal comparison group of 6683 manual workers employed in 13 factories in France. The mortality of the two cohorts was studied from 1975 to 1988 by the historical prospective method. Job histories of welders were traced including welding processes used, metals welded, and proportion of worktime spent in welding. Data on smoking habits were collected from medical records. The observed number of deaths were compared with those expected (standardised mortality ratio (SMR)) based on national rates with adjustments for age, sex, and calendar time. The smoking habits of 87% of the whole study population were known. The distribution of welders and controls according to smoking was not statistically different. The overall mortality was slightly higher for welders (SMR = 1.02, 95% confidence interval (95% CI) 0.89-1.18) than for controls (SMR = 0.91, 95% CI 0.84-0.99). For lung cancer, the SMR was 1.24 (95% CI 0.75-1.94) for welders, whereas the corresponding value was lower for controls (SMR = 0.94, 95% CI 0.68-1.26). The SMR for lung cancer was 1.59 among non-shipyard mild steel welders (95% CI 0.73-3.02). This contrasted with the results for all stainless steel welders (SMR = 0.92, 95% CI 0.19-2.69), and for stainless steel welders predominantly exposed to chromium VI (SMR = 1.03, 95% CI 0.12-3.71). Moreover, SMRs for lung cancer for mild steel welders tended to increase with duration of exposure and time since first exposure, leading to significant excesses for duration > or = 20 years and latency > or = 20 years. Such a pattern was not found for stainless steel welders.

  3. A mortality study among mild steel and stainless steel welders.

    PubMed Central

    Moulin, J J; Wild, P; Haguenoer, J M; Faucon, D; De Gaudemaris, R; Mur, J M; Mereau, M; Gary, Y; Toamain, J P; Birembaut, Y

    1993-01-01

    A mortality study was carried out in conjunction with the European mortality study among welders coordinated by the International Agency for Research on Cancer (IARC). The study was aimed at assessing risks for lung cancer in relation to exposure to asbestos, welding fumes containing chromium and nickel, and tobacco smoke. The study included a cohort of 2721 welders and an internal comparison group of 6683 manual workers employed in 13 factories in France. The mortality of the two cohorts was studied from 1975 to 1988 by the historical prospective method. Job histories of welders were traced including welding processes used, metals welded, and proportion of worktime spent in welding. Data on smoking habits were collected from medical records. The observed number of deaths were compared with those expected (standardised mortality ratio (SMR)) based on national rates with adjustments for age, sex, and calendar time. The smoking habits of 87% of the whole study population were known. The distribution of welders and controls according to smoking was not statistically different. The overall mortality was slightly higher for welders (SMR = 1.02, 95% confidence interval (95% CI) 0.89-1.18) than for controls (SMR = 0.91, 95% CI 0.84-0.99). For lung cancer, the SMR was 1.24 (95% CI 0.75-1.94) for welders, whereas the corresponding value was lower for controls (SMR = 0.94, 95% CI 0.68-1.26). The SMR for lung cancer was 1.59 among non-shipyard mild steel welders (95% CI 0.73-3.02). This contrasted with the results for all stainless steel welders (SMR = 0.92, 95% CI 0.19-2.69), and for stainless steel welders predominantly exposed to chromium VI (SMR = 1.03, 95% CI 0.12-3.71). Moreover, SMRs for lung cancer for mild steel welders tended to increase with duration of exposure and time since first exposure, leading to significant excesses for duration > or = 20 years and latency > or = 20 years. Such a pattern was not found for stainless steel welders. PMID:8457490

  4. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi{sub 5-x}Al{sub x} (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  5. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi[sub 5-x]Al[sub x] (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  6. A preliminary ferritic-martensitic stainless steel constitution diagram

    SciTech Connect

    Balmforth, M.C.; Lippold, J.C.

    1998-01-01

    This paper describes preliminary research to develop a constitution diagram that will more accurately predict the microstructure of ferritic and martensitic stainless steel weld deposits. A button melting technique was used to produce a wide range of compositions using mixtures of conventional ferritic and martensitic stainless steels, including types 403, 409, 410, 430, 439 and 444. These samples were prepared metallographically, and the vol-% ferrite and martensite was determined quantitatively. In addition, the hardness and ferrite number (FN) were measured. Using this data, a preliminary constitution diagram is proposed that provides a more accurate method for predicting the microstructures of arc welds in ferritic and martensitic stainless steels.

  7. Automatic welding of stainless steel tubing

    NASA Technical Reports Server (NTRS)

    Clautice, W. E.

    1978-01-01

    The use of automatic welding for making girth welds in stainless steel tubing was investigated as well as the reduction in fabrication costs resulting from the elimination of radiographic inspection. Test methodology, materials, and techniques are discussed, and data sheets for individual tests are included. Process variables studied include welding amperes, revolutions per minute, and shielding gas flow. Strip chart recordings, as a definitive method of insuring weld quality, are studied. Test results, determined by both radiographic and visual inspection, are presented and indicate that once optimum welding procedures for specific sizes of tubing are established, and the welding machine operations are certified, then the automatic tube welding process produces good quality welds repeatedly, with a high degree of reliability. Revised specifications for welding tubing using the automatic process and weld visual inspection requirements at the Kennedy Space Center are enumerated.

  8. Magnetic characterisation of duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Mészáros, I.

    2006-02-01

    Heat treatment-induced microstructural processes were studied by different non-destructive magnetic and mechanical material testing methods in the present work. A commercial SAF 2507 type superduplex stainless steel was investigated. This alloy contains about 40% metastable ferrite which can decompose to a sigma phase and secondary austenite due to heat treatment. All the mechanical, corrosion resistance and magnetic properties are strongly influenced by this microstructural changes. This study had two aims: to understand better the kinetics of the ferrite decomposition process and to study the application possibilities of the applied magnetic measurements. This paper presents an application possibility of the nonlinear harmonics analysis measurement and demonstrates the possibility to find a quantitative correlation between measured harmonics and mechanical properties obtained from destructive tests.

  9. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  10. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, Philip J.; Braski, David N.; Rowcliffe, Arthur F.

    1989-01-01

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  11. Automatic Welding of Stainless Steel Tubing

    NASA Technical Reports Server (NTRS)

    Clautice, W. E.

    1978-01-01

    To determine if the use of automatic welding would allow reduction of the radiographic inspection requirement, and thereby reduce fabrication costs, a series of welding tests were performed. In these tests an automatic welder was used on stainless steel tubing of 1/2, 3/4, and 1/2 inch diameter size. The optimum parameters were investigated to determine how much variation from optimum in machine settings could be tolerate and still result in a good quality weld. The process variables studied were the welding amperes, the revolutions per minute as a function of the circumferential weld travel speed, and the shielding gas flow. The investigation showed that the close control of process variables in conjunction with a thorough visual inspection of welds can be relied upon as an acceptable quality assurance procedure, thus permitting the radiographic inspection to be reduced by a large percentage when using the automatic process.

  12. Wear evaluation of high interstitial stainless steel

    SciTech Connect

    Rawers, J.C.; Tylczak, J.H.

    2008-07-01

    A new series of high nitrogen-carbon manganese stainless steel alloys are studied for their wear resistance. High nitrogen and carbon concentrations were obtained by melting elemental iron-chromium-manganese (several with minor alloy additions of nickel, silicon, and molybdenum) in a nitrogen atmosphere and adding elemental graphite. The improvement in material properties (hardness and strength) with increasing nitrogen and carbon interstitial concentration was consistent with previously reported improvements in similar material properties alloyed with nitrogen only. Wear tests included: scratch, pin-on-disk, sand-rubber-wheel, impeller, and jet erosion. Additions of interstitial nitrogen and carbon as well as interstitial nitrogen and carbide precipitates were found to greatly improve material properties. In general, with increasing nitrogen and carbon concentrations, strength, hardness, and wear resistance increased.

  13. Stainless steel anodes for alkaline water electrolysis and methods of making

    SciTech Connect

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  14. Bacterial adhesion on ion-implanted stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Q.; Liu, Y.; Wang, C.; Wang, S.; Peng, N.; Jeynes, C.

    2007-08-01

    Stainless steel disks were implanted with N +, O + and SiF 3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF 3+-implanted stainless steel performed much better than N +-implanted steel, O +-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions.

  15. Phase Transformations in Cast Duplex Stainless Steels

    SciTech Connect

    Kim, Yoon-Jun

    2004-01-01

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as σ and χ can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (σ + χ) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, σ was stabilized with increasing Cr addition and χ by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by

  16. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  17. Ultrasonics permits brazing complex stainless steel assembly without flux

    NASA Technical Reports Server (NTRS)

    Baker, W. H.

    1967-01-01

    Ultrasonic vibration of an assembly of stainless steel instrumentation tubes ensures brazing without flux. Vibration with an ultrasonic transducer permits the brazing material to flow down each tube in contact with a seal plug installed in a pressure vessel wall.

  18. Compressive Strength of Stainless-Steel Sandwiches at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Mathauser, Eldon E.; Pride, Richard A.

    1959-01-01

    Experimental results are presented from crippling tests of stainless-steel sandwich specimens in the temperature range from 80 F to 1,200 F. The specimens included resistance-welded 17-7 PH stainless-steel sandwiches with single-corrugated cores, type 301 stainless-steel sandwiches with double-corrugated cores, and brazed 17-7 PH stainless-steel sandwiches with honeycomb cores. The experimental strengths are compared with predicted buckling and crippling strengths. The crippling strengths were predicted from the calculated maximum strength of the individual plate elements of the sandwiches and from a correlation procedure which gives the elevated-temperature crippling strength when the experimental room-temperature crippling strengths are known. Photographs of some of the tested specimens are included to show the modes of failure.

  19. 27. STAINLESS STEEL FERMENTING CASKS MADE BY ZERO MANG OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. STAINLESS STEEL FERMENTING CASKS MADE BY ZERO MANG OF WASHINGTON, MISSOURI. VIEW LOOKING NORTH TOWARD VAULT OF THE TWELVE APOSTLES - Stone Hill Winery, 401 West Twelfth Street, Hermann, Gasconade County, MO

  20. Eddy sensors for small diameter stainless steel tubes.

    SciTech Connect

    Skinner, Jack L.; Morales, Alfredo Martin; Grant, J. Brian; Korellis, Henry James; LaFord, Marianne Elizabeth; Van Blarigan, Benjamin; Andersen, Lisa E.

    2011-08-01

    The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

  1. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    NASA Technical Reports Server (NTRS)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  2. Surface modified stainless steels for PEM fuel cell bipolar plates

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  3. Liquid Metal Corrosion of 316L Stainless Steel, 410 Stainless Steel, and 1015 Carbon Steel in a Molten Zinc Bath

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Bright, Mark A.; Liu, Xingbo; Barbero, Ever

    2007-11-01

    Corrosion tests of 1015 low-carbon steel and two stainless steels (410 and 316L) were conducted in a pure zinc bath (99.98 wt pct Zn) in order to better understand the reaction mechanisms that occur during the degradation of submerged hardware at industrial general (batch) galvanizing operations. Through this testing, it was found that, in general, 316L stainless steel showed the best dissolution resistance among these three alloys, while 1015 carbon steel provided a lower solubility than 410 stainless steel. Investigating the failure mechanisms, both metallurgical composition and lattice structure played important roles in the molten metal corrosion behaviors of these alloys. High contents of nickel combined with the influence of chromium improved the resistance to molten zinc corrosion. Moreover, a face-centered-cubic (fcc) structure was more corrosion resistant than body-centered-cubic (bcc) possibly due to the compactness of the atomic structure. Analogously, the body-centered-tetragonal (bct) martensite lattice structure possessed enhanced susceptibility to zinc corrosion as a result of the greater atomic spacing and high strain energy. Finally, an increased bath temperature played an important role in molten metal corrosion by accelerating the dissolution process and changing the nature of intermetallic layers.

  4. Measurement of intergranular attack in stainless steel using ultrasonic energy

    DOEpatents

    Mott, Gerry; Attaar, Mustan; Rishel, Rick D.

    1989-08-08

    Ultrasonic test methods are used to measure the depth of intergranular attack (IGA) in a stainless steel specimen. The ultrasonic test methods include a pitch-catch surface wave technique and a through-wall pulse-echo technique. When used in combination, these techniques can establish the extent of IGA on both the front and back surfaces of a stainless steel specimen from measurements made on only one surface.

  5. Procedure for flaw detection in cast stainless steel

    DOEpatents

    Kupperman, David S.

    1988-01-01

    A method of ultrasonic flaw detection in cast stainless steel components incorporating the steps of determining the nature of the microstructure of the cast stainless steel at the site of the flaw detection measurements by ultrasonic elements independent of the component thickness at the site; choosing from a plurality of flaw detection techniques, one such technique appropriate to the nature of the microstructure as determined and detecting flaws by use of the chosen technique.

  6. Decomposition of energetic chemicals contaminated with iron or stainless steel.

    PubMed

    Chervin, Sima; Bodman, Glenn T; Barnhart, Richard W

    2006-03-17

    Contamination of chemicals or reaction mixtures with iron or stainless steel is likely to take place during chemical processing. If energetic and thermally unstable chemicals are involved in a manufacturing process, contamination with iron or stainless steel can impact the decomposition characteristics of these chemicals and, subsequently, the safety of the processes, and should be investigated. The goal of this project was to undertake a systematic approach to study the impact of iron or stainless steel contamination on the decomposition characteristics of different chemical classes. Differential scanning calorimetry (DSC) was used to study the decomposition reaction by testing each chemical pure, and in mixtures with iron and stainless steel. The following classes of energetic chemicals were investigated: nitrobenzenes, tetrazoles, hydrazines, hydroxylamines and oximes, sulfonic acid derivatives and monomers. The following non-energetic groups were investigated for contributing effects: halogens, hydroxyls, amines, amides, nitriles, sulfonic acid esters, carbonyl halides and salts of hydrochloric acid. Based on the results obtained, conclusions were drawn regarding the sensitivity of the decomposition reaction to contamination with iron and stainless steel for the chemical classes listed above. It was demonstrated that the most sensitive classes are hydrazines and hydroxylamines/oximes. Contamination of these chemicals with iron or stainless steel not only destabilizes them, leading to decomposition at significantly lower temperatures, but also sometimes causes increased severity of the decomposition. The sensitivity of nitrobenzenes to contamination with iron or stainless steel depended upon the presence of other contributing groups: the presence of such groups as acid chlorides or chlorine/fluorine significantly increased the effect of contamination on decomposition characteristics of nitrobenzenes. The decomposition of sulfonic acid derivatives and tetrazoles

  7. Weak ferromagnetism in `non-magnetic' austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Crangle, John; Fogarty, A.; Taylor, M. J.

    1992-06-01

    The magnetization and susceptability of the non-magnetic stainless steels AISI 304 and AISI 316 have been measured at low temperatures using a SQUID magnetometer. A small but stable ferromagnetic component is always present. Field cooling shows the effects of exchange anisotropy. Another stainless steel AISI 321 is non-magnetic at room temperature but it transforms irreversibly to a partially ferromagnetic state when it is cooled below 280 K.

  8. X-ray attenuation properties of stainless steel (u)

    SciTech Connect

    Wang, Lily L; Berry, Phillip C

    2009-01-01

    Stainless steel vessels are used to enclose solid materials for studying x-ray radiolysis that involves gas release from the materials. Commercially available stainless steel components are easily adapted to form a static or a dynamic condition to monitor the gas evolved from the solid materials during and after the x-ray irradiation. Experimental data published on the x-ray attenuation properties of stainless steel, however, are very scarce, especially over a wide range of x-ray energies. The objective of this work was to obtain experimental data that will be used to determine how a poly-energetic x-ray beam is attenuated by the stainless steel container wall. The data will also be used in conjunction with MCNP (Monte Carlos Nuclear Particle) modeling to develop an accurate method for determining energy absorbed in known solid samples contained in stainless steel vessels. In this study, experiments to measure the attenuation properties of stainless steel were performed for a range of bremsstrahlung x-ray beams with a maximum energy ranging from 150 keV to 10 MeV. Bremsstrahlung x-ray beams of these energies are commonly used in radiography of engineering and weapon components. The weapon surveillance community has a great interest in understanding how the x-rays in radiography affect short-term and long-term properties of weapon materials.

  9. Fabrication of stainless steel clad tubing. [gas pressure bonding

    NASA Technical Reports Server (NTRS)

    Kovach, C. W.

    1978-01-01

    The feasibility of producing stainless steel clad carbon steel tubing by a gas pressure bonding process was evaluated. Such a tube product could provide substantial chromium savings over monolithic stainless tubing in the event of a serious chromium shortage. The process consists of the initial assembly of three component tubesets from conventionally produced tubing, the formation of a strong metallurgical bond between the three components by gas pressure bonding, and conventional cold draw and anneal processing to final size. The quality of the tubes produced was excellent from the standpoint of bond strength, mechanical, and forming properties. The only significant quality problem encountered was carburization of the stainless clad by the carbon steel core which can be overcome by further refinement through at least three different approaches. The estimated cost of clad tubing produced by this process is greater than that for monolithic stainless tubing, but not so high as to make the process impractical as a chromium conservation method.

  10. NanoComposite Stainless Steel Powder Technologies

    SciTech Connect

    DeHoff, R.; Glasgow, C.

    2012-07-25

    Oak Ridge National Laboratory has been investigating a new class of Fe-based amorphous material stemming from a DARPA, Defense Advanced Research Projects Agency initiative in structural amorphous metals. Further engineering of the original SAM materials such as chemistry modifications and manufacturing processes, has led to the development of a class of Fe based amorphous materials that upon processing, devitrify into a nearly homogeneous distribution of nano sized complex metal carbides and borides. The powder material is produced through the gas atomization process and subsequently utilized by several methods; laser fusing as a coating to existing components or bulk consolidated into new components through various powder metallurgy techniques (vacuum hot pressing, Dynaforge, and hot isostatic pressing). The unique fine scale distribution of microstructural features yields a material with high hardness and wear resistance compared to material produced through conventional processing techniques such as casting while maintaining adequate fracture toughness. Several compositions have been examined including those specifically designed for high hardness and wear resistance and a composition specifically tailored to devitrify into an austenitic matrix (similar to a stainless steel) which poses improved corrosion behavior.

  11. Weldable, age hardenable, austenitic stainless steel

    DOEpatents

    Brooks, J.A.; Krenzer, R.W.

    1975-07-22

    An age hardenable, austenitic stainless steel having superior weldability properties as well as resistance to degradation of properties in a hydrogen atmosphere is described. It has a composition of from about 24.0 to about 34.0 weight percent (w/o) nickel, from about 13.5 to about 16.0 w/o chromium, from about 1.9 to about 2.3 w/o titanium, from about 1.0 to about 1.5 w/ o molybdenum, from about 0.01 to about 0.05 w/o carbon, from about 0 to about 0.25 w/o manganese, from about 0 to about 0.01 w/o phosphorous and preferably about 0.005 w/o maximum, from about 0 to about 0.010 w/o sulfur and preferably about 0.005 w/o maximum, from about 0 to about 0.25 w/o silicon, from about 0.1 to about 0.35 w/o aluminum, from about 0.10 to about 0.50 w/o vanadium, from about 0 to about 0.0015 w/o boron, and the balance essentially iron. (auth)

  12. Corrosion of stainless steel during acetate production

    SciTech Connect

    Qi, J.S.; Lester, G.C.

    1996-07-01

    Corrosion of types 304, 304L, 316, and 316L stainless steel (SS) during the esterification of acetic acid and alcohol or glycol ether was investigated. The catalyst for this reaction, sulfuric acid or para-toluene sulfonic acid (PTSA), was shown to cause more corrosion on reactor equipment than CH{sub 3}COOH under the process conditions commonly practiced in industry. The corrosive action of the catalyst occurred only in the presence of water. Thus, for the batch processes, corrosion occurred mostly during the initial stage of esterification, where water produced by the reaction created an aqueous environment. After water was distilled off, the corrosion rate declined to a negligible value. The corrosion inhibitor copper sulfate, often used in industrial acetate processes, was found to work well for a low-temperature process (< 95 C) such as in production of butyl acetate, but it accelerated corrosion in the glycol ether acetate processes where temperatures were > 108 C. Process conditions that imparted low corrosion rates were determined.

  13. Weldability of neutron irradiated austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Asano, Kyoichi; Nishimura, Seiji; Saito, Yoshiaki; Sakamoto, Hiroshi; Yamada, Yuji; Kato, Takahiko; Hashimoto, Tsuneyuki

    1999-01-01

    Degradation of weldability in neutron irradiated austenitic stainless steel is an important issue to be addressed in the planning of proactive maintenance of light water reactor core internals. In this work, samples selected from reactor internal components which had been irradiated to fluence from 8.5 × 10 22 to 1.4 × 10 26 n/m 2 ( E > 1 MeV) corresponding to helium content from 0.11 to 103 appm, respectively, were subjected to tungsten inert gas arc (TIG) welding with heat input ranged 0.6-16 kJ/cm. The weld defects were characterized by penetrant test and cross-sectional metallography. The integrity of the weld was better when there were less helium and at lower heat input. Tensile properties of weld joint containing 0.6 appm of helium fulfilled the requirement for unirradiated base metal. Repeated thermal cycles were found to be very hazardous. The results showed the combination of material helium content and weld heat input where materials can be welded with little concern to invite cracking. Also, the importance of using properly selected welding procedures to minimize thermal cycling was recognized.

  14. Welding Behavior of Free Machining Stainless Steel

    SciTech Connect

    BROOKS,JOHN A.; ROBINO,CHARLES V.; HEADLEY,THOMAS J.; MICHAEL,JOSEPH R.

    2000-07-24

    The weld solidification and cracking behavior of sulfur bearing free machining austenitic stainless steel was investigated for both gas-tungsten arc (GTA) and pulsed laser beam weld processes. The GTA weld solidification was consistent with those predicted with existing solidification diagrams and the cracking response was controlled primarily by solidification mode. The solidification behavior of the pulsed laser welds was complex, and often contained regions of primary ferrite and primary austenite solidification, although in all cases the welds were found to be completely austenite at room temperature. Electron backscattered diffraction (EBSD) pattern analysis indicated that the nature of the base metal at the time of solidification plays a primary role in initial solidification. The solid state transformation of austenite to ferrite at the fusion zone boundary, and ferrite to austenite on cooling may both be massive in nature. A range of alloy compositions that exhibited good resistance to solidification cracking and was compatible with both welding processes was identified. The compositional range is bounded by laser weldability at lower Cr{sub eq}/Ni{sub eq} ratios and by the GTA weldability at higher ratios. It was found with both processes that the limiting ratios were somewhat dependent upon sulfur content.

  15. Austenitic stainless steel for high temperature applications

    DOEpatents

    Johnson, Gerald D.; Powell, Roger W.

    1985-01-01

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; 0.01-0.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; 0.03 maximum, As; 0.01 maximum, O; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P+wt. % B+wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  16. From flint to stainless steel: observations on surgical instrument composition.

    PubMed Central

    Kirkup, J.

    1993-01-01

    Man's failure to extract deeply embedded thorns and arrowheads, with bare hands and teeth, stimulated 'instrument substitutes' mimicking these appendages. Evidence from primitive communities suggest animal, plant and mineral items were employed, both before and after metal became the standard material of today's armamentarium. Changing surgical instrument composition has mirrored concurrent technology and manufacturing methods both of which are reviewed. Particular significance is accorded flint, bronze, crucible steel, thermal sterilisation, nickel-plate, stainless steel and disposable plastics. The paper is based on an exhibition From Flint to Stainless Steel on display at the College. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8215156

  17. Stainless steel tube-based cell cryopreservation containers.

    PubMed

    Shih, Wei-Hung; Yu, Zong-Yan; Wu, Wei-Te

    2013-12-01

    This study focused on increasing the freezing rate in cell vitrification cryopreservation by using a cryopreservation container possessing rigid mechanical properties and high heat-transfer efficiency. Applying a fast freezing rate in vitrification cryopreservation causes a rapid temperature change in the cryopreservation container and has a substantial impact on mechanical properties; therefore, a highly rigid cryopreservation container that possesses a fast freezing rate must be developed. To produce a highly rigid cryopreservation container possessing superior heat transfer efficiency, this study applies an electrochemical machining (ECM) method to an ANSI 316L stainless steel tube to treat the surface material by polishing and roughening, thereby increasing the freezing rate and reducing the probability of ice crystal formation. The results indicated that the ECM method provided high-quality surface treatment of the stainless steel tube. This method can reduce internal surface roughness in the stainless steel tube, thereby reducing the probability of ice crystal formation, and increase external surface roughness, consequently raising convection heat-transfer efficiency. In addition, by thinning the stainless steel tube, this method reduces heat capacity and thermal resistance, thereby increasing the freezing rate. The freezing rate (3399 ± 197 °C/min) of a stainless steel tube after interior and exterior polishing and exterior etching by applying ECM compared with the freezing rate (1818 ± 54 °C/min) of an original stainless steel tube was increased by 87%, which also exceeds the freezing rate (2015 ± 49 °C/min) of an original quartz tube that has a 20% lower heat capacity. However, the results indicated that increasing heat-transferring surface areas and reducing heat capacities cannot effectively increase the freezing rate of a stainless steel tube if only one method is applied; instead, both techniques must be implemented concurrently to improve the

  18. Stainless steel tube-based cell cryopreservation containers.

    PubMed

    Shih, Wei-Hung; Yu, Zong-Yan; Wu, Wei-Te

    2013-12-01

    This study focused on increasing the freezing rate in cell vitrification cryopreservation by using a cryopreservation container possessing rigid mechanical properties and high heat-transfer efficiency. Applying a fast freezing rate in vitrification cryopreservation causes a rapid temperature change in the cryopreservation container and has a substantial impact on mechanical properties; therefore, a highly rigid cryopreservation container that possesses a fast freezing rate must be developed. To produce a highly rigid cryopreservation container possessing superior heat transfer efficiency, this study applies an electrochemical machining (ECM) method to an ANSI 316L stainless steel tube to treat the surface material by polishing and roughening, thereby increasing the freezing rate and reducing the probability of ice crystal formation. The results indicated that the ECM method provided high-quality surface treatment of the stainless steel tube. This method can reduce internal surface roughness in the stainless steel tube, thereby reducing the probability of ice crystal formation, and increase external surface roughness, consequently raising convection heat-transfer efficiency. In addition, by thinning the stainless steel tube, this method reduces heat capacity and thermal resistance, thereby increasing the freezing rate. The freezing rate (3399 ± 197 °C/min) of a stainless steel tube after interior and exterior polishing and exterior etching by applying ECM compared with the freezing rate (1818 ± 54 °C/min) of an original stainless steel tube was increased by 87%, which also exceeds the freezing rate (2015 ± 49 °C/min) of an original quartz tube that has a 20% lower heat capacity. However, the results indicated that increasing heat-transferring surface areas and reducing heat capacities cannot effectively increase the freezing rate of a stainless steel tube if only one method is applied; instead, both techniques must be implemented concurrently to improve the

  19. 77 FR 28568 - Grant of Authority for Subzone Status; North American Stainless, (Stainless Steel), Ghent, KY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... public comment has been given in the Federal Register (76 FR 66684-66685, 10-27-2011) and the application... Steel), Ghent, KY Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as... authority to establish a special-purpose subzone at the stainless steel mill of North American...

  20. Machinability of a Stainless Steel by Electrochemical Discharge Microdrilling

    NASA Astrophysics Data System (ADS)

    Coteaţǎ, Margareta; Schulze, Hans-Peter; Pop, Nicolae; Beşliu, Irina; Slǎtineanu, Laurenţiu

    2011-05-01

    Due to the chemical elements included in their structure for ensuring an increased resistance to the environment action, the stainless steels are characterized by a low machinability when classical machining methods are applied. For this reason, sometimes non-traditional machining methods are applied, one of these being the electrochemical discharge machining. To obtain microholes and to evaluate the machinability by electrochemical discharge microdrilling, test pieces of stainless steel were used for experimental research. The electrolyte was an aqueous solution of sodium silicate with different densities. A complete factorial plan was designed to highlight the influence of some input variables on the sizes of the considered machinability indexes (electrode tool wear, material removal rate, depth of the machined hole). By mathematically processing of experimental data, empirical functions were established both for stainless steel and carbon steel. Graphical representations were used to obtain more suggestive vision concerning the influence exerted by the considered input variables on the size of the machinability indexes.

  1. Machinability of a Stainless Steel by Electrochemical Discharge Microdrilling

    SciTech Connect

    Coteata, Margareta; Pop, Nicolae; Slatineanu, Laurentiu; Schulze, Hans-Peter; Besliu, Irina

    2011-05-04

    Due to the chemical elements included in their structure for ensuring an increased resistance to the environment action, the stainless steels are characterized by a low machinability when classical machining methods are applied. For this reason, sometimes non-traditional machining methods are applied, one of these being the electrochemical discharge machining. To obtain microholes and to evaluate the machinability by electrochemical discharge microdrilling, test pieces of stainless steel were used for experimental research. The electrolyte was an aqueous solution of sodium silicate with different densities. A complete factorial plan was designed to highlight the influence of some input variables on the sizes of the considered machinability indexes (electrode tool wear, material removal rate, depth of the machined hole). By mathematically processing of experimental data, empirical functions were established both for stainless steel and carbon steel. Graphical representations were used to obtain more suggestive vision concerning the influence exerted by the considered input variables on the size of the machinability indexes.

  2. Antibacterial effect of silver nanofilm modified stainless steel surface

    NASA Astrophysics Data System (ADS)

    Fang, F.; Kennedy, J.; Dhillon, M.; Flint, S.

    2015-03-01

    Bacteria can attach to stainless steel surfaces, resulting in the colonization of the surface known as biofilms. The release of bacteria from biofilms can cause contamination of food such as dairy products in manufacturing plants. This study aimed to modify stainless steel surfaces with silver nanofilms and to examine the antibacterial effectiveness of the modified surface. Ion implantation was applied to produce silver nanofilms on stainless steel surfaces. 35 keV Ag ions were implanted with various fluences of 1 × 1015 to 1 × 1017 ions•cm-2 at room temperature. Representative atomic force microscopy characterizations of the modified stainless steel are presented. Rutherford backscattering spectrometry spectra revealed the implanted atoms were located in the near-surface region. Both unmodified and modified stainless steel coupons were then exposed to two types of bacteria, Pseudomonas fluorescens and Streptococcus thermophilus, to determine the effect of the surface modification on bacterial attachment and biofilm development. The silver modified coupon surface fluoresced red over most of the surface area implying that most bacteria on coupon surface were dead. This study indicates that the silver nanofilm fabricated by the ion implantation method is a promising way of reducing the attachment of bacteria and delay biofilm formation.

  3. Work of adhesion of dairy products on stainless steel surface

    PubMed Central

    Bernardes, Patrícia Campos; Araújo, Emiliane Andrade; dos Santos Pires, Ana Clarissa; Queiroz Fialho Júnior, José Felício; Lelis, Carini Aparecida; de Andrade, Nélio José

    2012-01-01

    The adhesion of the solids presents in food can difficult the process of surface cleaning and promotes the bacterial adhesion process and can trigger health problems. In our study, we used UHT whole milk, chocolate based milk and infant formula to evaluate the adhesion of Enterobacter sakazakii on stainless steel coupons, and we determine the work of adhesion by measuring the contact angle as well as measured the interfacial tension of the samples. In addition we evaluated the hydrophobicity of stainless steel after pre-conditioning with milk samples mentioned. E. sakazakii was able to adhere to stainless steel in large numbers in the presence of dairy products. The chocolate based milk obtained the lower contact angle with stainless steel surface, higher interfacial tension and consequently higher adhesion work. It was verified a tendency of decreasing the interfacial tension as a function of the increasing of protein content. The preconditioning of the stainless steel coupons with milk samples changed the hydrophobic characteristics of the surfaces and became them hydrophilic. Therefore, variations in the composition of the milk products affect parameters important that can influence the procedure of hygiene in surface used in food industry. PMID:24031951

  4. A stainless steel bracket for orthodontic application.

    PubMed

    Oh, Keun-Taek; Choo, Sung-Uk; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2005-06-01

    Aesthetics has become an essential element when choosing orthodontic fixed appliances. Most metallic brackets used in orthodontic therapy are made from stainless steel (SS) with the appropriate physical properties and good corrosion resistance, and are available as types 304, 316 and 17-4 PH SS. However, localized corrosion of these materials can frequently occur in the oral environment. This study was undertaken to evaluate the accuracy of sizing, microstructure, hardness, corrosion resistance, frictional resistance and cytotoxicity of commercially available Mini-diamond (S17400), Archist (S30403) and experimentally manufactured SR-50A (S32050) brackets. The size accuracy of Mini-diamond was the highest at all locations except for the external horizontal width of the tie wing (P < 0.05). Micrographs of the Mini-diamond and Archist showed precipitates in the grains and around their boundaries. SR-50A showed the only austenitic phase and the highest polarization resistance of the tested samples. SR-50A also had the highest corrosion resistance [SR-50A, Mini-diamond and Archist were 0.9 x 10(-3), 3.7 x 10(-3), and 7.4 x 10(-3) mm per year (mpy), respectively], in the artificial saliva. The frictional force of SR-50A decreased over time, but that of Mini-diamond and Archist increased. Therefore, SR-50A is believed to have better frictional properties to orthodontic wire than Mini-diamond and Archist. Cytotoxic results showed that the response index of SR-50A was 0/1 (mild), Mini-diamond 1/1 (mild+), and Archist 1/2 (mild+). SR-50A showed greater biocompatibility than either Mini-diamond or Archist. It is concluded that the SR-50A bracket has good frictional property, corrosion resistance and biocompatibility with a lower probability of allergic reaction, compared with conventionally used SS brackets. PMID:15947222

  5. A stainless steel bracket for orthodontic application.

    PubMed

    Oh, Keun-Taek; Choo, Sung-Uk; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2005-06-01

    Aesthetics has become an essential element when choosing orthodontic fixed appliances. Most metallic brackets used in orthodontic therapy are made from stainless steel (SS) with the appropriate physical properties and good corrosion resistance, and are available as types 304, 316 and 17-4 PH SS. However, localized corrosion of these materials can frequently occur in the oral environment. This study was undertaken to evaluate the accuracy of sizing, microstructure, hardness, corrosion resistance, frictional resistance and cytotoxicity of commercially available Mini-diamond (S17400), Archist (S30403) and experimentally manufactured SR-50A (S32050) brackets. The size accuracy of Mini-diamond was the highest at all locations except for the external horizontal width of the tie wing (P < 0.05). Micrographs of the Mini-diamond and Archist showed precipitates in the grains and around their boundaries. SR-50A showed the only austenitic phase and the highest polarization resistance of the tested samples. SR-50A also had the highest corrosion resistance [SR-50A, Mini-diamond and Archist were 0.9 x 10(-3), 3.7 x 10(-3), and 7.4 x 10(-3) mm per year (mpy), respectively], in the artificial saliva. The frictional force of SR-50A decreased over time, but that of Mini-diamond and Archist increased. Therefore, SR-50A is believed to have better frictional properties to orthodontic wire than Mini-diamond and Archist. Cytotoxic results showed that the response index of SR-50A was 0/1 (mild), Mini-diamond 1/1 (mild+), and Archist 1/2 (mild+). SR-50A showed greater biocompatibility than either Mini-diamond or Archist. It is concluded that the SR-50A bracket has good frictional property, corrosion resistance and biocompatibility with a lower probability of allergic reaction, compared with conventionally used SS brackets.

  6. Tensile properties of the modified 13Cr martensitic stainless steels

    NASA Astrophysics Data System (ADS)

    Mabruri, Efendi; Anwar, Moch. Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-04-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  7. Primary incisor restoration using resin-veneered stainless steel crowns.

    PubMed

    Croll, T P

    1998-01-01

    The restoration of primary incisors with extensive caries lesions is a clinical challenge of severe dimensions. Not only are these teeth difficult to restore, but the patient's behavior can affect the treatment negatively. Requirements for an acceptable restoration include natural color; durability; adhesive cementation that is biocompatible with the pulp; easily and rapidly placed; requires only one treatment visit. Compared to other options, stainless steel crowns are the easiest to place. The most attractive restoration for these cases today is the adhesively bonded resin-composite crown, made by using acetate crown-form matrices, but this is being surpassed by the stainless steel crown forms (3M Unitek) that can be preveneered. This article describes a step-by-step method of placing preveneered stainless steel crowns for primary incisors. PMID:9617447

  8. Corrosion induced by cathodic hydrogen in 2205 duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Michalska, J.

    2011-05-01

    In this work new results about the influence of cathodic hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel are described. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the polarization curves. The conclusion is that, hydrogen deteriorated the passive film stability and corrosion resistance to pitting of 2205 duplex stainless steel. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen action was dependent on the hydrogen charging conditions.

  9. Transmission electron microscopy of undermined passive films on stainless steel

    SciTech Connect

    Isaacs, H.S.; Zhu, Y.; Sabatini, R.L.; Ryan, M.P.

    1999-06-01

    A study has been made of the passive film remaining over pits on stainless steel using a high resolution transmission electron microscope. Type 305 stainless steel was passivated in a borate buffer solution and pitted in ferric chloride. Passive films formed at 0.2 V relative to a saturated calomel electrode were found to be amorphous. Films formed at higher potentials showed only broad diffraction rings. The passive film was found to cover a remnant lacy structure formed over pits passivated at 0.8 V. The metallic strands of the lace were roughly hemitubular in shape with the curved surface facing the center of the pit.

  10. Ozone decay on stainless steel and sugarcane bagasse surfaces

    NASA Astrophysics Data System (ADS)

    Souza-Corrêa, Jorge A.; Oliveira, Carlos; Amorim, Jayr

    2013-07-01

    Ozone was generated using dielectric barrier discharges at atmospheric pressure to treat sugarcane bagasse for bioethanol production. It was shown that interaction of ozone molecules with the pretreatment reactor wall (stainless steel) needs to be considered during bagasse oxidation in order to evaluate the pretreatment efficiency. The decomposition coefficients for ozone on both materials were determined to be (3.3 ± 0.2) × 10-8 for stainless steel and (2.0 ± 0.3) × 10-7 for bagasse. The results have indicated that ozone decomposition has occurred more efficiently on the biomass material.

  11. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... COMMISSION Control of Ferrite Content in Stainless Steel Weld Metal AGENCY: Nuclear Regulatory Commission... Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. Revision 4 updates...

  12. 77 FR 3231 - Certain Stainless Steel Wire Rods From India: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... (``Sunset'') Review, 76 FR 38613 (July 1, 2011); see also Stainless Steel Wire Rod From India; Institution..., 76 FR 38686 (July 1, 2011). \\1\\ Antidumping Duty Order: Certain Stainless Steel Wire Rods from India... the United States within a reasonably foreseeable time. See Stainless Steel Wire Rod From India, 77...

  13. 77 FR 27815 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... COMMISSION Aging Management of Stainless Steel Structures and Components in Treated Borated Water AGENCY..., ``Aging Management of Stainless Steel Structures and Components in Treated Borated Water.'' This LR-ISG... stainless steel structures and components exposed to treated borated water. The NRC published Revision 2...

  14. 76 FR 31585 - Forged Stainless Steel Flanges From India: Notice of Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... International Trade Administration Forged Stainless Steel Flanges From India: Notice of Rescission of... stainless steel flanges from India. The period of review is February 1, 2010, through January 22, 2011... stainless steel flanges from India. See Antidumping or Countervailing Duty Order, Finding, or...

  15. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    SciTech Connect

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide

  16. Electrochemically induced annealing of stainless-steel surfaces.

    PubMed

    Burstein, G T; Hutchings, I M; Sasaki, K

    2000-10-19

    Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals.

  17. Electrochemically induced annealing of stainless-steel surfaces

    NASA Astrophysics Data System (ADS)

    Burstein, G. T.; Hutchings, I. M.; Sasaki, K.

    2000-10-01

    Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals.

  18. Bactericidal behavior of Cu-containing stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyu; Huang, Xiaobo; Ma, Yong; Lin, Naiming; Fan, Ailan; Tang, Bin

    2012-10-01

    Stainless steels are one of the most common materials used in health care environments. However, the lack of antibacterial advantage has limited their use in practical application. In this paper, antibacterial stainless steel surfaces with different Cu contents have been prepared by plasma surface alloying technology (PSAT). The steel surface with Cu content 90 wt.% (Cu-SS) exhibits strong bactericidal activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 3 h. Although the Cu-containing surface with Cu content 2.5 wt.% (CuNi-SS) can also kill all tested bacteria, this process needs 12 h. SEM observation of the bacterial morphology and an agarose gel electrophoresis were performed to study the antibacterial mechanism of Cu-containing stainless steel surfaces against E. coli. The results indicated that Cu ions are released when the Cu-containing surfaces are in contact with bacterial and disrupt the cell membranes, killing the bacteria. The toxicity of Cu-alloyed surfaces does not cause damage to the bacterial DNA. These results provide a scientific explanation for the antimicrobial applications of Cu-containing stainless steel. The surfaces with different antibacterial abilities could be used as hygienic surfaces in healthcare-associated settings according to the diverse requirement of bactericidal activities.

  19. High-temperature brazing of stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.; Mitchell, M. J.

    1978-01-01

    Prevention of iron contamination of platens is eliminated by placing alumina/silica ceramic-fiber blankets between platens and carbon-steel plate. Carbon-steel plates provide rigidity and improve heat transfer.

  20. Spray etching 2 µm features in 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sudipta; Ujihara, Motoki; Lee, Dong Gun; Chen, Jerry; Lei, Stanley; Carman, Greg P.

    2006-12-01

    304 stainless steel samples were patterned with either a photoresist (PR) mask or a silicon nitride (Si3Ni4) mask and then subjected to either wet immersion etching or spray etching techniques with ferric chloride (FeCl3). The silicon nitride mask provides much better adhesion to the stainless steel substrate resulting in less undercut compared to the PR mask. When a silicon nitride mask was subjected to spray etching, better adhesion and less undercut enabled features as small as 1.8 µm with an etch depth of 5.6 µm. This is an order of magnitude smaller than current spray etching techniques (20-50 µm) used in the steel industry. This procedure will allow spray etching features for batch fabrication for a variety of metals including steels, aluminum, nickel-based alloys and copper-based alloys with microscale resolution.

  1. 37. REDUCTION PLANT DRYER Stainless steel screen cylinder, encased ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. REDUCTION PLANT - DRYER Stainless steel screen cylinder, encased within an outer steel shell (top half missing). As fish were tumbled by the rotating screen, they were cooked and dried by live steam piped into the dryer through overhead pipes. The dryer is mounted on a slight angle, aiding the process by moving the drying fish towards the exhaust end of the dryer. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  2. Mechanical properties of low-nickel stainless steel

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1978-01-01

    Demand for improved corrosion-resistant steels, coupled with increased emphasis on conserving strategic metals, has led to development of family of stainless steels in which manganese and nitrogen are substituted for portion of usual nickel content. Advantages are approximately-doubled yield strength in annealed condition, better resistance to stress-corrosion cracking, retention of low magnetic permeability even after severe cold working, excellent strength and ductility at cryogenic temperatures, superior resistance to wear and galling, and excellent high-temperature properties.

  3. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. PMID:26952459

  4. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution.

  5. 73. View of line of stainless steel coolant storage tanks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. View of line of stainless steel coolant storage tanks for bi-sodium sulfate/water coolant solution at first floor of transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  6. Metal release from stainless steel in biological environments: A review.

    PubMed

    Hedberg, Yolanda S; Odnevall Wallinder, Inger

    2016-03-01

    Due to its beneficial corrosion resistance, stainless steel is widely used in, e.g., biomedical applications, as surfaces in food contact, and for products intended to come into skin contact. Low levels of metals can be released from the stainless steel surface into solution, even for these highly corrosion resistant alloys. This needs to be considered in risk assessment and management. This review aims to compile the different metal release mechanisms that are relevant for stainless steel when used in different biological settings. These mechanisms include corrosion-induced metal release, dissolution of the surface oxide, friction-induced metal release, and their combinations. The influence of important physicochemical surface properties, different organic species and proteins in solution, and of biofilm formation on corrosion-induced metal release is discussed. Chemical and electrochemical dissolution mechanisms of the surface oxides of stainless steel are presented with a focus on protonation, complexation/ligand-induced dissolution, and reductive dissolution by applying a perspective on surface adsorption of complexing or reducing ligands and proteins. The influence of alloy composition, microstructure, route of manufacture, and surface finish on the metal release process is furthermore discussed as well as the chemical speciation of released metals. Typical metal release patterns are summarized. PMID:26514345

  7. Materials data handbook: Stainless steel alloy A-286

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for stainless steel alloy A-286 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.

  8. Pitting corrosion of low-Cr austenitic stainless steels

    SciTech Connect

    Bullard, Sophie J.; Covino, Bernard S. Jr.

    1996-01-01

    The Albany Research Center has investigated the pitting corrosion resistance of experimental low-Cr stainless steels and several commercial stainless steels in chloride-containing aqueous and atmospheric environments. Previous research had shown the experimental alloys to be as corrosion resistant as commercial stainless steels in chloride-free acid environments. The alloys studied were Fe-8Cr-16Ni-5.5Si-1Cu-(0-1)Mo, 304 SS, and 316 SS. These alloys were examined by immersion and electrochemical tests in 3.5 wt. pct. NaCl and 6 wt.pct.FeCl{sub 3}. Results of these tests showed that the addition of one weight percent Mo improved the pitting resistance of the low-Cr alloy and that the Mo-containing experimental alloy was as resistant to pitting as the commercial alloys. Electrochemical tests did, however, show the experimental alloys to be slightly less resistant to pitting than the commercial alloys. Because of these results, the low-Cr alloy with one weight percent Mo and 304 SS were exposed for one year to a marine atmospheric environment on the coast of Oregon. The marine atmospheric corrosion resistance of the low-Cr alloy was found to be comparable to that for type 304 stainless steel.

  9. 77 FR 1504 - Stainless Steel Wire Rod From India

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... Commission instituted this review on July 1, 2011 (76 FR 38686) and determined on October 4, 2011, that it would conduct an expedited review (76 FR 64105, October 17, 2011). The Commission transmitted its... COMMISSION Stainless Steel Wire Rod From India Determination On the basis of the record \\1\\ developed in...

  10. Failure Assessment Diagram for Brazed 304 Stainless Steel Joints

    NASA Technical Reports Server (NTRS)

    Flom, Yory

    2011-01-01

    Interaction equations were proposed earlier to predict failure in Albemet 162 brazed joints. Present study demonstrates that the same interaction equations can be used for lower bound estimate of the failure criterion in 304 stainless steel joints brazed with silver-based filler metals as well as for construction of the Failure Assessment Diagrams (FAD).

  11. Method of forming dynamic membrane on stainless steel support

    NASA Technical Reports Server (NTRS)

    Gaddis, Joseph L. (Inventor); Brandon, Craig A. (Inventor)

    1988-01-01

    A suitable member formed from sintered, powdered, stainless steel is contacted with a nitrate solution of a soluble alkali metal nitrate and a metal such as zirconium in a pH range and for a time sufficient to effect the formation of a membrane of zirconium oxide preferably including an organic polymeric material such as polyacrylic acid.

  12. Metal release from stainless steel in biological environments: A review.

    PubMed

    Hedberg, Yolanda S; Odnevall Wallinder, Inger

    2015-03-29

    Due to its beneficial corrosion resistance, stainless steel is widely used in, e.g., biomedical applications, as surfaces in food contact, and for products intended to come into skin contact. Low levels of metals can be released from the stainless steel surface into solution, even for these highly corrosion resistant alloys. This needs to be considered in risk assessment and management. This review aims to compile the different metal release mechanisms that are relevant for stainless steel when used in different biological settings. These mechanisms include corrosion-induced metal release, dissolution of the surface oxide, friction-induced metal release, and their combinations. The influence of important physicochemical surface properties, different organic species and proteins in solution, and of biofilm formation on corrosion-induced metal release is discussed. Chemical and electrochemical dissolution mechanisms of the surface oxides of stainless steel are presented with a focus on protonation, complexation/ligand-induced dissolution, and reductive dissolution by applying a perspective on surface adsorption of complexing or reducing ligands and proteins. The influence of alloy composition, microstructure, route of manufacture, and surface finish on the metal release process is furthermore discussed as well as the chemical speciation of released metals. Typical metal release patterns are summarized.

  13. 2. GENERAL VIEW OF STAINLESS STEEL SMOKEHOUSES ON LEVEL 6, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW OF STAINLESS STEEL SMOKEHOUSES ON LEVEL 6, LOOKING EAST; SMOKEHOUSE UNITS WERE BUILT BY DRYING SYSTEMS COMPANY, DIVISION OF MICHIGAN OVEN COMPANY, MORTON GROVE, ILLINOIS - Rath Packing Company, Smokehouse-Hog Chilling Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  14. 6. DETAIL OF STAINLESS STEEL VISCERA CHUTE IN SOUTHEAST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF STAINLESS STEEL VISCERA CHUTE IN SOUTHEAST CORNER OF LEVEL4; ENTRAILS WERE DROPPED INTO CHUTE, THEN PASSED THROUGH THE FLOOR TO THE GUT SHANTY ON LEVEL 3 TO BE SORTED AND CLEANED - Rath Packing Company, Hog Dressing Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  15. Alternative to Nitric Acid for Passivation of Stainless Steel Alloys

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L.; Kolody, Mark; Curran, Jerry

    2013-01-01

    Corrosion is an extensive problem that affects the Department of Defense (DoD) and National Aeronautics and Space Administration (NASA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. The DoD and NASA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and reduced operational cost. DoD and NASA agreed to collaborate to validate citric acid as an acceptable passivating agent for stainless steel. This paper details our investigation of prior work developing the citric acid passivation process, development of the test plan, optimization of the process for specific stainless steel alloys, ongoing and planned testing to elucidate the process' resistance to corrosion in comparison to nitric acid, and preliminary results.

  16. Cataract Section Across Temporary Stainless-Steel Sutures

    PubMed Central

    MacDonald, R. Keith

    1965-01-01

    The purpose of the technique described was to combine the advantages of a cleanedged Graefe-knife incision with those of safety and near-perfect apposition offered by preplaced sutures: a preliminary to cataract extraction. Uncuttable preplaced 2-mm. stainless steel sutures were finally replaced after completion of the incision by attached braided silk for closure purposes. PMID:14291461

  17. Battery and fuel cell electrodes containing stainless steel charging additive

    DOEpatents

    Zuckerbrod, David; Gibney, Ann

    1984-01-01

    An electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer comprises a hydrophilic composite which includes: (i) carbon particles; (ii) stainless steel particles; (iii) a nonwetting agent; and (iv) a catalyst, where at least one current collector contacts said composite.

  18. 80 FR 29350 - Nonmetallic Thermal Insulation for Austenitic Stainless Steel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2015-05-21

    ... Doc No: 2015-12292] NUCLEAR REGULATORY COMMISSION [NRC-2014-0209] Nonmetallic Thermal Insulation for..., ``Nonmetallic Thermal Insulation for Austenitic Stainless Steel.'' The RG describes methods and procedures that... using nonmetallic thermal insulation to minimize any contamination that could promote stress-...

  19. Phase formation at bonded vanadium and stainless steel interfaces

    SciTech Connect

    Summers, T.S.E.

    1992-01-01

    The interface between vanadium bonded to stainless steel was studies to determine whether a brittle phase formed during three joining operations. Inertia friction welds between V and 21-6-9 stainless steel were examined using TEM. In the as-welded condition, a continuous, polygranular intermetallic layer about 0.25 {mu}m thick was present at the interface. This layer grew to about 50 {mu}m thick during heat treatment at 1000{degrees}C for two hours. Analysis of electron diffraction patterns confirmed that this intermetallic was the {omega} phase. The interface between vanadium and type 304, SANDVIK SAF 2205, and 21-6-9 stainless steel bonded by a co-extrusion process had intermetallic particles at the interface in the as-extruded condition. Heat treatment at 1000{degrees}C for two hours caused these particles to grow into continuous layers in all three cases. Based on the appearance, composition and hardness of this interfacial intermetallic, it was also concluded to be {omega} phase. Bonding V to type 430 stainless steel by co-extrusion caused V-rich carbides to form at the interface due to the higher concentration of C in the type 430 than in the other stainless steels investigated. The carbide particles initially present grew into a continuous layer during a two-hour heat treatment at 1000{degrees}C. Co-hipping 21-6-9 stainless steel tubing with V rod resulted in slightly more concentric specimens than the co-extruded ones, but a continuous layer of the {omega} phase formed during the hipping operation. This brittle layer could initiate failure during subsequent forming operations. The vanadium near the stainless steel interface in the co-extruded and co-hipped tubing in some cases was harder than before heat treatment. It was concluded that this hardening was due to thermal straining during cooling following heat treatment and that thermal strains might present a greater problem than seen here when longer tubes are used in actual applications.

  20. Achievement of a superpolish on bare stainless steel

    SciTech Connect

    Howells, M.R.; Casstevens, J.

    1997-08-01

    We report the achievement of a superpolished surface, suitable for x-ray reflection, on bare stainless steel. The rms roughness obtained on various samples varied from 2.2 to 4.2 {angstrom}, as measured by an optical profiler with a bandwidth 0.29-100 mm{sup -1}. The type 17-4 PH precipitation-hardening stainless steel used to make the mirrors is also capable of ultrastability and has good manufactureability. This combination of properties makes it an excellent candidate material for mirror substrates. We describe the successful utilization of this type of steel in making elliptical-cylinder mirrors for a soft-x-ray microprobe system at the Advanced Light Source, and discuss possible for its unusual stability and polishability.

  1. Cavitation Erosion of Sensitized UNS S31803 Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Mitelea, Ion; Micu, Lavinia Mădălina; Bordeaşu, Ilare; Crăciunescu, Corneliu Marius

    2016-05-01

    During processing or use, duplex steels can be subjected to heating at high temperatures that can affect their behavior. This work aims to correlate the influence of the sensitization treatment on the ultrasonic cavitation erosion behavior of a UNS S31803 (X2CrNiMoN22-5-3) duplex stainless steel. Duplex stainless steels, formed as a result of rapid cooling after solution annealing, are sensitized at temperatures of 475 and 850 °C, respectively, leading to hardening and embrittlement due to the spinodal decomposition of the ferrite and the precipitation of secondary phases. The ultrasonic cavitation erosion experiments showed that the sensitization at 850 °C reduced the mean depth of erosion by about 11% and the mean depth of erosion rate by 28%. By contrast, the sensitization at 475 °C deteriorates the cavitation erosion resistance, increasing the erosion parameters by up to 22%, compared to the solution annealed state.

  2. Low Temperature Surface Carburization of Stainless Steels

    SciTech Connect

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  3. Antibacterial activity against Porphyromonas gingivalis and biological characteristics of antibacterial stainless steel.

    PubMed

    Zhang, Dan; Ren, Ling; Zhang, Yang; Xue, Nan; Yang, Ke; Zhong, Ming

    2013-05-01

    To evaluate the possibility of an alternative to the traditional orthodontic stainless steel implants, the antibacterial activity against Porphyromonas gingivalis (P. gingivalis) and the related cytotoxicity of a type 304 Cu bearing antibacterial stainless steel were studied. The results indicated that the antibacterial stainless steel showed excellent antibacterial property against P. gingivalis, compared with the control steel (a purchased medical grade 304 stainless steel). Compared to the control steel, there were fewer bacteria on the surface of the antibacterial stainless steel, with significant difference in morphology. The cytotoxicities of the antibacterial stainless steel to both MG-63 and KB cells were all grade 1, the same as those of the control steel. There were no significant differences in the apoptosis rates on MG-63 and KB cells between the antibacterial stainless steel and the control steel. This study demonstrates that the antibacterial stainless steel is possible to reduce the incidence of implant-related infections and can be a more suitable material for the micro-implant than the conventional stainless steel in orthodontic treatment.

  4. 2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS

    SciTech Connect

    Morgan, M.

    2013-01-31

    This report summarizes the research and development accomplishments during FY12 for the tritium effects on materials program. The tritium effects on materials program is designed to measure the long-term effects of tritium and its radioactive decay product, helium-3, on the structural properties of forged stainless steels which are used as the materials of construction for tritium reservoirs. The FY12 R&D accomplishments include: (1) Fabricated and Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for Future Aging Studies; (2) Developed an Experimental Plan for Measuring Cracking Thresholds of Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3) Calculated Sample Tritium Contents For Laboratory Inventory Requirements and Environmental Release Estimates; (4) Published report on “Cracking Thresholds and Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless Steels”; and, (5) Published report on “The Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture Toughness Properties of Stainless Steels”. These accomplishments are highlighted here and references given to additional reports for more detailed information.

  5. Oxidation of tritium atoms at a stainless steel surface

    SciTech Connect

    Finn, P.A.; VanDeventer, E.H.

    1986-10-01

    The dynamic reaction of oxygen and tritium on a stainless steel surface was studied for low oxygen concentrations (less than 1 ppM oxygen in helium). The oxygen was swept over a stainless surface through which 20 to 90 ..mu..Ci/d of tritium permeated. Dynamic conditions were maintained for three to five days with gas flow rates maintained at 40 to 100 mL/min. The ratio between the tritiated water collected and the tritium gas collected was less than one. At oxygen levels greater than 50 ppM, the ratio of tritiated water to tritium gas appears to be greater than 10.

  6. Reducing tool wear when machining austenitic stainless steels

    SciTech Connect

    Magee, J.H.; Kosa, T.

    1998-07-01

    Austenitic stainless steels are considered more difficult to machine than carbon steels due to their high work hardening rate, large spread between yield and ultimate tensile strength, high toughness and ductility, and low thermal conductivity. These characteristics can result in a built-up edge or excessive tool wear during machining, especially when the cutting speed is too high. The practical solution is to lower the cutting speed until tool life reaches an acceptable level. However, lower machining speed negatively impacts productivity. Thus, in order to overcome tool wear at relatively high machining speeds for these alloys, on-going research is being performed to improve cutting fluids, develop more wear-resistant tools, and to modify stainless steels to make them less likely to cause tool wear. This paper discusses compositional modifications to the two most commonly machined austenitic stainless steels (Type 303 and 304) which reduced their susceptibility to tool wear, and allowed these grades to be machined at higher cutting speeds.

  7. High specialty stainless steels and nickel alloys for FGD dampers

    SciTech Connect

    Herda, W.R.; Rockel, M.B.; Grossmann, G.K.; Starke, K.

    1997-08-01

    Because of process design and construction, FGD installations normally have bypass ducts, which necessitates use of dampers. Due to corrosion from acid dew resulting from interaction of hot acidic flue gases and colder outside environments, carbon steel cannot be used as construction material under these specific conditions. In the past, commercial stainless steels have suffered by pitting and crevice corrosion and occasionally failed by stress corrosion cracking. Only high alloy specialty super-austenitic stainless steels with 6.5% Mo should be used and considered for this application. Experience in Germany and Europe has shown that with regard to safety and life cycle cost analysis as well as providing a long time warranty, a new specialty stainless steel, alloy 31--UNS N08031--(31 Ni, 27 Cr, 6.5 Mo, 0.2 N) has proven to be the best and most economical choice. Hundreds of tons in forms of sheet, rod and bar, as well as strip (for damper seals) have been used and installed in many FGD installations throughout Europe. Under extremely corrosive conditions, the new advanced Ni-Cr-Mo alloy 59--UNS N06059--(59 Ni, 23 Cr, 16 Mo) should be used. This paper describes qualification and workability of these alloys as pertains to damper applications. Some case histories are also provided.

  8. Ultrasonic characterization of centrifugally cast stainless steel: Topical report

    SciTech Connect

    Jeong, P.

    1987-06-01

    Ultrasonic wave propagation in centrifugally cast stainless steel (CCSS) was investigated. The difficulties of inspecting CCSS material stem from elastic anisotropy that hampers defect location and severe attenuation caused by coarse grains within the structure that makes defect detection difficult. During this investigation, grain effects on ultrasonic wave propagation were investigated, techniques for identifying different grain structures were developed, and compensation methods for grain effects were addressed. Each step is explained analytically based on relevant theory and proven experimentally. Experiments were conducted on specially designed test specimens: angled blocks, polygonal blocks, wedge blocks, and calibration blocks. Wave parameters such as phase velocity, skew angle, energy velocity, attenuation, beam width, amplitude variation patterns, and frequency dependence on grain structures were all measured with these specimens. CCSS grain structures investigated were equiaxed-fine grains, columnar-dendritic grains, and coarse grains. For comparison purposes, additional types of material such as static-cast stainless steel, forged stainless steel, and carbon steel materials were also investigated. Longitudinal wave, horizontally and vertically polarized shear wave modes were all considered in experiments. The use of an automated ultrasonic system was also demonstrated for grain structure identification.

  9. Effect of Sputtered AlY Coating on High-Temperature Oxidation Behavior of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Fu, Guangyan; Xie, Huanzhang; Su, Yong; Qi, Zeyan; Hou, Qiang

    2016-08-01

    AlY coating on 1Cr18Ni9Ti stainless steel was prepared by magnetron sputtering method and some of them were pre-oxidized or vacuum diffusion annealed at 600°C, and the effect of the coating with different treatments on the oxidation behavior of the stainless steel was studied at 1,100°C in air. Results show that the order of the 24-h oxidation mass gain for the specimens is the stainless steel without coating > the stainless steel with coating but without any pre-treatment > the stainless steel with AlY coating after pre-oxidation treatment > the stainless steel with AlY coating after vacuum diffusion annealing. After oxidation, a thick and loose Fe2O3/Cr2O3 film is formed on the stainless steel without coating, while thinner Fe2O3/Cr2O3 film is formed on the stainless steel with AlY coating. Compared to the oxidation film formed on the steel with pre-oxidized coating, the one formed on the steel with vacuum diffusion annealed coating is thinner and denser. The rare earth Y and its oxides Y2O3 in the coating produce reactive element effect and improve the ductility/adhesion of the oxide film, which enhances the oxidation resistance of the stainless steel, especially in the vacuum diffusion annealed AlY coating.

  10. Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys

    SciTech Connect

    Lazarus, L.J.

    2001-12-10

    Near-net-shape components can be made with powder metallurgy (PM) processes. Only secondary operations such as milling and drilling are required to complete these components. In the past and currently production components are made from powder metallurgy (PM) stainless steel alloys. process engineers are unfamiliar with the difference in machining properties of wrought versus PM alloys and have had to make parts to develop the machining parameters. Design engineers are not generally aware that some PM alloy variations can be furnished with machining additives that greatly increase tool life. Specimens from a MANTEC PM alloy property study were made available. This study was undertaken to determine the machining properties of a number of stainless steel wrought and PM alloys under the same conditions so that comparisons of their machining properties could be made and relative tool life determined.

  11. Electrochemical Corrosion Testing of Borated Stainless Steel Alloys

    SciTech Connect

    lister, tedd e; Mizia, Ronald E

    2007-09-01

    The Department of Energy Office of Civilian Radioactive Waste Management has specified borated stainless steel manufactured to the requirements of ASTM A 887-89, Grade A, UNS S30464, to be the material used for the fabrication of the fuel basket internals of the preliminary transportation, aging, and disposal canister system preliminary design. The long-term corrosion resistance performance of this class of borated materials must be verified when exposed to expected YMP repository conditions after a waste package breach. Electrochemical corrosion tests were performed on crevice corrosion coupons of Type 304 B4 and Type 304 B5 borated stainless steels exposed to single postulated in-package chemistry at 60°C. The results show low corrosion rates for the test period

  12. Electrochemical Corrosion Testing of Borated Stainless Steel Alloys

    SciTech Connect

    lister, tedd e; Mizia, Ronald E

    2007-05-01

    The Department of Energy Office of Civilian Radioactive Waste Management has specified borated stainless steel manufactured to the requirements of ASTM A 887-89, Grade A, UNS S30464, to be the material used for the fabrication of the fuel basket internals of the preliminary transportation, aging, and disposal canister system preliminary design. The long-term corrosion resistance performance of this class of borated materials must be verified when exposed to expected YMP repository conditions after a waste package breach. Electrochemical corrosion tests were performed on crevice corrosion coupons of Type 304 B4 and Type 304 B5 borated stainless steels exposed to single postulated in-package chemistry at 60°C. The results show low corrosion rates for the test period

  13. Long-Term Underground Corrosion of Stainless Steels

    SciTech Connect

    M. K. Adler Flitton; T. S. Yoder

    2007-03-01

    In 1970, the National Institute of Standards and Technology (NIST) implemented the most ambitious and comprehensive long-term corrosion behavior test to date for stainless steels in soil environments. Over thirty years later, one of the six test sites was targeted to research subsurface contamination and transport processes in the vadose and saturated zones. This research directly applies to environmental management operational corrosion issues and long term stewardship scientific needs for understanding the behavior of waste forms and their near-field contaminant transport of chemical and radiological contaminants at nuclear disposal sites. This paper briefly describes the ongoing research and the corrosion analysis results of the stainless steel plate specimens recovered from the partial recovery of the first test site.

  14. Duplex stainless steels for the pulp and paper industry

    SciTech Connect

    Alfonsson, E.; Olsson, J.

    1999-07-01

    The metallurgy and corrosion resistance of duplex stainless steel, particularly with regards to applications in the pulp and paper industry, are described. Practical experiences from pressure vessel installations in cooking plants and bleach plants as well as from non-pressurized items in different parts along the fiber line, are given. The paper also reviews corrosion test results presented previously and compares these with recent test data and the practical experiences. Though most of the installations have been successful, some cases of corrosion attacks on duplex stainless steel have been reported, although these are very limited in number: one digester, one calorifier, two pulp storage towers, and two bleach plant filter washers, of a total of more than 700 identified installations.

  15. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    SciTech Connect

    Zaleski, Tania M.

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  16. Precipitation and cavity formation in austenitic stainless steels during irradiation

    SciTech Connect

    Lee, E.H.; Rowcliffe, A.F.; Mansur, L.K.

    1981-01-01

    Microstructural evolution in austenitic stainless steels subjected to displacement damage at high temperature is strongly influenced by the interactions between helium atoms and second phase particles. Cavity nucleation occurs by the trapping of helium at partially coherent particle-matrix interfaces. The recent precipitate point defect collector theory describes the more rapid growth of precipitate-attached cavities compared to matrix cavities where the precipitate-matrix interface collects point defects to augment the normal point deflect flux to the cavitry. Data are presented which support these ideas. It is shown that during nickel ion irradiation of a titanium-modified stainless steel at 675/sup 0/C the rate of injection of helium has a strong effect on the total swelling and also on the nature and distribution of precipitate phases.

  17. New hermetic sealing material for vacuum brazing of stainless steels

    NASA Astrophysics Data System (ADS)

    Hildebrandt, S.; Wiehl, G.; Silze, F.

    2016-03-01

    For vacuum brazing applications such as in vacuum interrupter industry Hermetic Sealing Materials (HSM) with low partial pressure are widely used. AgCu28 dominates the hermetic sealing market, as it has a very good wetting behavior on copper and metallized ceramics. Within recent decades wetting on stainless steel has become more and more important. However, today the silver content of HSMs is more in focus than in the past decades, because it has the biggest impact on the material prices. Umicore Technical Materials has developed a new copper based HSM, CuAg40Ga10. The wettability on stainless steel is significantly improved compared to AgCu28 and the total silver content is reduced by almost 44%. In this article the physical properties of the alloy and its brazed joints will be presented compared to AgCu28.

  18. Cathodic properties of different stainless steels in natural seawater

    SciTech Connect

    Johnsen, R.; Bardal, E.

    1985-05-01

    The cathodic properties of a number of stainless steels, which were exposed to natural seawater flowing at 0 to 2.5 m/s and polarized to potentials from -300 to -950 mV SCE, have been studied. The current density development at constant potential and the free corrosion potential during the exposure time were recorded continuously. At the end of the exposure period, after approximately 28 to 36 days of exposure, polarization curves were determined. After one to three weeks of exposure, depending on the water velocity, microbiological activity on the surface caused an increase in the current density requirement of the specimen. An explanation for the mechanism behind the current density increase caused by slime production from marine bacteria may be increased exchange current density, i/sub 0/. There was no measurable calcareous deposit on the stainless steel surfaces at the end of the exposure periods.

  19. Lifetest investigations with stainless steel/water heat pipes

    NASA Astrophysics Data System (ADS)

    Muenzel, W. D.; Kraehling, H.

    Life tests were conducted on water heat pipes, made from four different alloys of stainless steel, at operation temperatures of 120, 160, 220, and 320 C in a reflux boiler mode for more than 20,000 hr. Other parameters varied during the tests included capillary structure, pretreatment and cleaning of the components, additional oxidation of the inner surface, filling procedures, amoung of liquid change, the number of ventings, and the duration of the reaction runs. The best results were obtained with pipes containing stainless steels with molybdenum alloy additions and with carbon contents of greater than 0.03%; with components which formed a protective surface layer; with the use of double-distilled water that had been ultrasonically degassed; with repeated ventings during the initial reaction run of 500 hr minimum duration; and with the addition of gaseous oxygen into the heat pipe during the reaction run with subsequent venting.

  20. Corrosion testing of stainless steel-zirconium metal waste forms

    SciTech Connect

    Abraham, D.P.; Simpson, L.J.; Devries, M.J.; McDeavitt, S.M.

    1999-07-01

    Stainless steel-zirconium (SS-Zr) alloys have been developed as waste forms for the disposal of metallic waste generated during the electrometallurgical treatment of spent nuclear fuel. The waste forms incorporate irradiated cladding hulls, components of the alloy fuel, noble metal fission products, and actinide elements. The baseline waste form is a stainless steel-15 wt% zirconium (SS-15Zr) alloy. This article presents microstructures and some of the corrosion studies being conducted on the waste form alloys. Electrochemical corrosion, immersion corrosion, and vapor hydration tests have been performed on various alloy compositions to evaluate corrosion behavior and resistance to selective leaching of simulated fission products. The SS-Zr waste forms immobilize and retain fission products very effectively and show potential for acceptance as high-level nuclear waste forms.

  1. Corrosion behavior of stainless steel-zirconium alloy waste forms

    SciTech Connect

    Abraham, D.P.; Simpson, L.J.; DeVries, M.J.; Callahan, D.E.

    1999-07-01

    Stainless steel-zirconium (SS-Zr) alloys are being considered as waste forms for the disposal of metallic waste generated during the electrometallurgical treatment of spent nuclear fuel. The baseline waste form for spent fuels from the EBR-11 reactor is a stainless steel-15 wt.% zirconium (SS-15Zr) alloy. This article briefly reviews the microstructure of various SS-Zr waste form alloys and presents results of immersion corrosion and electrochemical corrosion tests performed on these alloys. The electrochemical tests show that the corrosion behavior of SS-Zr alloys is comparable to those of other alloys being considered for the Yucca Mountain geologic repository. The immersion tests demonstrate that the SS-Zr alloys are resistant to selective leaching of fission product elements and, hence, suitable as candidates for high-level nuclear waste forms.

  2. Failure Assessment of Stainless Steel and Titanium Brazed Joints

    NASA Technical Reports Server (NTRS)

    Flom, Yury A.

    2012-01-01

    Following successful application of Coulomb-Mohr and interaction equations for evaluation of safety margins in Albemet 162 brazed joints, two additional base metal/filler metal systems were investigated. Specimens consisting of stainless steel brazed with silver-base filler metal and titanium brazed with 1100 Al alloy were tested to failure under combined action of tensile, shear, bending and torsion loads. Finite Element Analysis (FEA), hand calculations and digital image comparison (DIC) techniques were used to estimate failure stresses and construct Failure Assessment Diagrams (FAD). This study confirms that interaction equation R(sub sigma) + R(sub tau) = 1, where R(sub sigma) and R(sub t u) are normal and shear stress ratios, can be used as conservative lower bound estimate of the failure criterion in stainless steel and titanium brazed joints.

  3. SELECTIVE SEPARATION OF URANIUM FROM FERRITIC STAINLESS STEELS

    DOEpatents

    Beaver, R.J.; Cherubini, J.H.

    1963-05-14

    A process is described for separating uranium from a nuclear fuel element comprising a uranium-containing core and a ferritic stainless steel clad by heating said element in a non-carburizing atmosphere at a temperature in the range 850-1050 un. Concent 85% C, rapidly cooling the heated element through the temperature range 815 un. Concent 85% to 650 EC to avoid annealing said steel, and then contacting the cooled element with an aqueous solution of nitric acid to selectively dissolve the uranium. (AEC)

  4. Attack polish for nickel-base alloys and stainless steels

    DOEpatents

    Steeves, Arthur F.; Buono, Donald P.

    1983-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  5. Attack polish for nickel-base alloys and stainless steels

    DOEpatents

    Not Available

    1980-05-28

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels is described. The chemical attack polich comprises FeNO/sub 3/, concentrated CH/sub 3/COOH, concentrated H/sub 2/SO/sub 4/ and H/sub 2/O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  6. Method of polishing nickel-base alloys and stainless steels

    DOEpatents

    Steeves, Arthur F.; Buono, Donald P.

    1981-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  7. Ion beam nitriding of single and polycrystalline austenitic stainless steel

    SciTech Connect

    Abrasonis, G.; Riviere, J.P.; Templier, C.; Declemy, A.; Pranevicius, L.; Milhet, X.

    2005-04-15

    Polycrystalline and single crystalline [orientations (001) and (011)] AISI 316L austenitic stainless steel was implanted at 400 deg. C with 1.2 keV nitrogen ions using a high current density of 0.5 mA cm{sup -2}. The nitrogen distribution profiles were determined using nuclear reaction analysis (NRA). The structure of nitrided polycrystalline stainless steel samples was analyzed using glancing incidence and symmetric x-ray diffraction (XRD) while the structure of the nitrided single crystalline stainless steel samples was analyzed using x-ray diffraction mapping of the reciprocal space. For identical treatment conditions, it is observed that the nitrogen penetration depth is larger for the polycrystalline samples than for the single crystalline ones. The nitrogen penetration depth depends on the orientation, the <001> being more preferential for nitrogen diffusion than <011>. In both type of samples, XRD analysis shows the presence of the phase usually called 'expanded' austenite or {gamma}{sub N} phase. The lattice expansion depends on the crystallographic plane family, the (001) planes showing an anomalously large expansion. The reciprocal lattice maps of the nitrided single crystalline stainless steel demonstrate that during nitriding lattice rotation takes place simultaneously with lattice expansion. The analysis of the results based on the presence of stacking faults, residual compressive stress induced by the lattice expansion, and nitrogen concentration gradient indicates that the average lattice parameter increases with the nitrided layer depth. A possible explanation of the anomalous expansion of the (001) planes is presented, which is based on the combination of faster nitriding rate in the (001) oriented grains and the role of stacking faults and compressive stress.

  8. Fatigue crack propagation behavior of stainless steel welds

    NASA Astrophysics Data System (ADS)

    Kusko, Chad S.

    The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.

  9. Manganese-stabilized austenitic stainless steels for fusion applications

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-01-01

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  10. Manganese-stabilized austenitic stainless steels for fusion applications

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-08-07

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  11. Pitting of stainless steel in an emergency service water system

    SciTech Connect

    Morgan, D.J.; Willertz, L.E.

    1994-12-31

    Pitting of AISI 321 grade stainless steel flex-hoses in an emergency service water system has been experienced recently, after 13 years of successful service. Failures of new hoses have occurred in as little as 4 months. This paper presents the authors analysis of the failures and discusses the primary suspected mechanisms, underdeposit pitting and microbiologically influenced corrosion (MIC). It also presents their approach for investigating suspected causes and developing an integrated plan to minimize its recurrence.

  12. Stainless steel cookware as a significant source of nickel, chromium, and iron.

    PubMed

    Kuligowski, J; Halperin, K M

    1992-08-01

    Stainless steels are widely used materials in food preparation and in home and commercial cookware. Stainless is readily attacked by organic acids, particularly at cooking temperatures; hence iron, chromium, and nickel should be released from the material into the food. Nickel is implicated in numerous health problems, notably allergic contact dermatitis. Conversely, chromium and iron are essential nutrients for which stainless could be a useful source. Home cookware was examined by atomic absorption spectroscopy: seven different stainless utensils as well as cast iron, mild steel, aluminum and enamelled steel. The materials were exposed to mildly acidic conditions at boiling temperature. Nickel was a major corrosion product from stainless steel utensils; chromium and iron were also detected. It is recommended that nickel-sensitive patients switch to a material other than stainless, and that the stainless steel cookware industry seriously consider switching to a non-nickel formulation.

  13. 75 FR 973 - Certain Welded Stainless Steel Pipes From the Republic of Korea: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ... Welded Stainless Steel Pipes from Korea, 57 FR 62301 (Dec. 30, 1992), as amended in Notice of Amended... Sales at Less than Fair Value: Certain Cut-to-Length Carbon Steel Plate from South Africa, 62 FR 61731... International Trade Administration Certain Welded Stainless Steel Pipes From the Republic of Korea:...

  14. 75 FR 67689 - Stainless Steel Bar From Brazil: Preliminary Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Brazil. See Antidumping Duty Orders: Stainless Steel Bar from Brazil, India and Japan, 60 FR 9661... Steel Bar From Brazil: Preliminary Results of Antidumping Duty Administrative Review, 74 FR 10022 (March... Less Than Fair Value: Stainless Steel Bar From Brazil, 59 FR 66914 (December 28, 1994). These...

  15. [Clinical evaluation of gingival tissue restored with stainless steel crown].

    PubMed

    Chao, D D; Tsai, T P; Chen, T C

    1992-12-01

    The use of stainless steel crown for the restoration of primary molars is widely accepted in pediatric dentistry. There has been a concern regarding their effect on the health of the gingival tissue. It is a possibility that the preformed crown may be a contributing cause of gingivitis. This study evaluated one hundred and thirty-seven crowns in forty-five patients who had received pedodontic treatment at Chang Gung Memorial Hospital. The results indicated that the majority of stainless steel crowns had one or more defects, with crown crimping being the most common error. According to what the paired t-test showed, non-ideal crowns indicated that the gingival index was significantly higher than the entire mouth and control teeth. However the supragingival plaque accumulation of these teeth was significant lower than the entire mouth and control teeth. There was only a moderate positive correlation between supragingival plaque and gingivitis. The operator is necessary to adapt the stainless steel crown margin as closely as possible to the tooth and to avoid the mechanical defect of a crown. It minimizes the irritation of gingival tissue and diminishes the bacterial adherence of subgingival plaque, therefore preserving the health of gingival tissue.

  16. Characterization of blasted austenitic stainless steel and its corrosion resistance

    NASA Astrophysics Data System (ADS)

    Otsubo, F.; Kishitake, K.; Akiyama, T.; Terasaki, T.

    2003-12-01

    It is known that the corrosion resistance of stainless steel is deteriorated by blasting, but the reason for this deterioration is not clear. A blasted austenitic stainless steel plate (JIS-SUS304) has been characterized with comparison to the scraped and non-blasted specimens. The surface roughness of the blasted specimen is larger than that of materials finished with #180 paper. A martensite phase is formed in the surface layer of both blasted and scraped specimens. Compressive residual stress is generated in the blasted specimen and the maximum residual stress is formed at 50 100 µm from the surface. The corrosion potentials of the blasted specimen and subsequently solution treated specimen are lower than that of the non-blasted specimen. The passivation current densities of the blasted specimens are higher those of the non-blasted specimen. The blasted specimen and the subsequently solution treated specimen exhibit rust in 5% sodium chloride (NaCl) solution, while the non-blasted specimen and ground specimen do not rust in the solution. It is concluded that the deterioration of corrosion resistance of austenitic stainless steel through blasting is caused by the roughed morphology of the surface.

  17. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  18. Austenitic stainless steel patterning by plasma assisted diffusion treatments

    NASA Astrophysics Data System (ADS)

    Czerwiec, T.; Marcos, G.; Thiriet, T.; Guo, Y.; Belmonte, T.

    2009-09-01

    The new concept of surface texturing or surface patterning on austenitic stainless steel by plasma assisted diffusion treatment is presented in this paper. It allows the creation of uniform micro or nano relief with regularly shaped asperities or depressions. Plasma assisted diffusion treatments are based on the diffusion of nitrogen and/or carbon in a metallic material at moderate to elevated temperatures. Below 420°C, a plasma assisted nitriding treatment of austenitic stainless steel produces a phase usually called expanded austenite. Expanded austenite is a metastable nitrogen supersaturated solid solution with a disordered fcc structure and a distorted lattice. The nitrided layer with the expanded austenite is highly enriched in nitrogen (from 10 to 35 at%) and submitted to high compressive residual stresses. From mechanical consideration, it is shown that the only possible deformation occurs in the direction perpendicular to the surface. Such an expansion of the layer from the initial surface of the substrate to the gas phase is used here for surface patterning of stainless steel parts. The surface patterning is performed by using masks (TEM grid) and multi-dipolar plasmas.

  19. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2016-02-01

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  20. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  1. Iodine susceptibility of pseudomonads grown attached to stainless steel surfaces

    NASA Technical Reports Server (NTRS)

    Pyle, B. H.; McFeters, G. A.

    1990-01-01

    Pseudomonads were adapted to grow in phosphate-buffered water and on stainless steel surfaces to study the iodine sensitivity of attached and planktonic cells. Cultures adapted to low nutrient growth were incubated at room temperature in a circulating reactor system with stainless steel coupons to allow biofilm formation on the metal surfaces. In some experiments, the reactor was partially emptied and refilled with buffer at each sampling time to simulate a "fill-and-draw" water system. Biofilms of attached bacteria, resuspended biofilm bacteria, and reactor suspension, were exposed to 1 mg l-1 iodine for 2 min. Attached bacterial populations which established on coupons within 3 to 5 days displayed a significant increase in resistance to iodine. Increased resistance was also observed for resuspended cells from the biofilm and planktonic bacteria in the system suspension. Generally, intact biofilms and resuspended biofilm cells were most resistant, followed by planktonic bacteria and phosphate buffer cultures. Thus, biofilm formation on stainless steel surfaces within water systems can result in significantly increased disinfection resistance of commonly-occurring water-borne bacteria that may enhance their ability to colonise water treatment and distribution systems.

  2. Impact Testing of Stainless Steel Material at Cold Temperatures

    SciTech Connect

    Spencer D. Snow; D. Keith Morton; Robert K. Blandford

    2008-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, a previous paper [1] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens at room and elevated temperatures. The goal of the work presented herein is to add recently completed impact tensile testing results at -20 degrees F conditions for dual-marked 304/304L and 316/316L stainless steel material specimens (hereafter referred to as 304L and 316L, respectively). Recently completed welded material impact testing at -20 degrees F, room, 300 degrees F, and 600 degrees F is also reported. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, the impact tests achieved strain rates in the 4 to 40 per second range, depending upon the material temperature. Elevated true stress-strain curves for these materials reflecting varying strain rates and temperatures are presented herein.

  3. Thermo-mechanical behavior of stainless steel knitted structures

    NASA Astrophysics Data System (ADS)

    Hamdani, Syed Talha Ali; Fernando, Anura; Maqsood, Muhammad

    2016-09-01

    Heating fabric is an advanced textile material that is extensively researched by the industrialists and the scientists alike. Ability to create highly flexible and drapeable heating fabrics has many applications in everyday life. This paper presents a study conducted on the comparison of heatability of knitted fabric made of stainless steel yarn. The purpose of the study is to find a suitable material for protective clothing against cold environments. In the current research the ampacity of stainless steel yarn is observed in order to prevent the overheating of the heating fabrics. The behavior of the knitted structure is studied for different levels of supply voltage. Infrared temperature sensing is used to measure the heat generated from the fabrics in order to measure the temperature of the fabrics without physical contact. It is concluded that interlock structure is one of the most suited structures for knitted heating fabrics. As learnt through this research, fabrics made of stainless steel yarn are capable of producing a higher level of heating compared to that of knitted fabric made using silver coated polymeric yarn at the same supply voltage.

  4. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    SciTech Connect

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  5. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing

    PubMed Central

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  6. Surface interactions of cesium and boric acid with stainless steel

    SciTech Connect

    Grossman-Canfield, N.

    1995-08-01

    In this report, the effects of cesium hydroxide and boric acid on oxidized stainless steel surfaces at high temperatures and near one atmosphere of pressure are investigated. This is the first experimental investigation of this chemical system. The experimental investigations were performed using a mass spectrometer and a mass electrobalance. Surfaces from the different experiments were examined using a scanning electron microscope to identify the presence of deposited species, and electron spectroscopy for chemical analysis to identify the species deposited on the surface. A better understanding of the equilibrium thermodynamics, the kinetics of the steam-accelerated volatilizations, and the release kinetics are gained by these experiments. The release rate is characterized by bulk vaporization/gas-phase mass transfer data. The analysis couples vaporization, deposition, and desorption of the compounds formed by cesium hydroxide and boric acid under conditions similar to what is expected during certain nuclear reactor accidents. This study shows that cesium deposits on an oxidized stainless steel surface at temperatures between 1000 and 1200 Kelvin. Cesium also deposits on stainless steel surfaces coated with boric oxide in the same temperature ranges. The mechanism for cesium deposition onto the oxide layer was found to involve the chemical reaction between cesium and chromate. Some revaporization in the cesium hydroxide-boric acid system was observed. It has been found that under the conditions given, boric acid will react with cesium hydroxide to form cesium metaborate. A model is proposed for this chemical reaction.

  7. Adsorption of ammonia on treated stainless steel and polymer surfaces

    NASA Astrophysics Data System (ADS)

    Vaittinen, O.; Metsälä, M.; Persijn, S.; Vainio, M.; Halonen, L.

    2014-05-01

    Adsorption of dynamically diluted ammonia at part-per-billion to low part-per-million concentrations in dry nitrogen was studied with treated and non-treated stainless steel and polymer test tubes. The treatments included electropolishing and two types of coatings based on amorphous silicon. Cavity ring-down spectroscopy with an external cavity diode laser operating in the near-infrared wavelength range was used to monitor the adsorption process in real time in continuous-flow conditions to obtain quantitative assessment of the adsorptive properties of the studied surfaces. The investigated polymers were all less adsorptive than any of the treated or non-treated stainless steel surfaces. Some of the commercial coatings reduced the adsorption loss of stainless steel by a factor of ten or more. Polyvinylidene fluoride was found to be superior (less adsorption) to the four other studied polymer coatings. The number of adsorbed ammonia molecules per surface area obtained at different ammonia gas phase concentrations was modeled with Langmuir and Freundlich isotherms. The time behavior of the adsorption-desorption process occurring in the time scale of seconds and minutes was simulated with a simple kinetic model.

  8. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  9. Corrosion Performance of Stainless Steels in a Simulated Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Vinje, Rubiela D.; MacDowell, Louis

    2004-01-01

    At the Kennedy Space Center, NASA relies on stainless steel (SS) tubing to supply the gases and fluids required to launch the Space Shuttle. 300 series SS tubing has been used for decades but the highly corrosive environment at the launch pad has proven to be detrimental to these alloys. An upgrade with higher alloy content materials has become necessary in order to provide a safer and long lasting launch facility. In the effort to find the most suitable material to replace the existing AISI 304L SS ([iNS S30403) and AISI 316L SS (UNS S31603) shuttle tubing, a study involving atmospheric exposure at the corrosion test site near the launch pads and electrochemical measurements is being conducted. This paper presents the results of an investigation in which stainless steels of the 300 series, 304L, 316L, and AISI 317L SS (UNS S31703) as well as highly alloyed stainless steels 254-SMO (UNS S32154), AL-6XN (N08367) and AL29-4C ([iNS S44735) were evaluated using direct current (DC) electrochemical techniques under conditions designed to simulate those found at the Space Shuttle Launch pad. The electrochemical results were compared to the atmospheric exposure data and evaluated for their ability to predict the long-term corrosion performance of the alloys.

  10. Compatibility Assessment of Advanced Stainless Steels in Sodium

    SciTech Connect

    Pawel, Steven J

    2012-01-01

    Type 316L stainless steel capsules containing commercially pure sodium and miniature tensile specimens of HT-UPS (austenitic, 14Cr-16Ni), NF-616 (ferritic/martensitic, 9Cr-2W-0.5Mo), or 316L (austenitic, 17Cr-10Ni-2Mo) stainless steel were exposed at 600 or 700 C for 100 and 400 h as a screening test for compatibility. Using weight change, tensile testing, and metallographic analysis, HT-UPS and 316L were found to be largely immune to changes resulting from sodium exposure, but NF-616 was found susceptible to substantial decarburization at 700 C. Subsequently, two thermal convection loops (TCLs) constructed of 316L and loaded with commercially pure sodium and miniature tensile specimens of HT-UPS and 316L were operated for 2000 h each one between 500 and 650 C, the other between 565 and 725 C at a flow rate of about 1.5 cm/s. Changes in specimen appearance, weight, and tensile properties were observed to be very minor in all cases, and there was no metallographic evidence of microstructure changes, composition gradients, or mass transfer resulting from prolonged exposure in a TCL. Thus, it appears that HT-UPS and 316L stainless steels are similarly compatible with commercially pure sodium under these exposure conditions.

  11. Evaluation of manual ultrasonic inspection of cast stainless steel piping

    SciTech Connect

    Taylor, T.T.

    1984-05-01

    Two studies have attempted to determine the degree of inspectability of centrifugally cast stainless steel (CCSS) pipe. In one study, Westinghouse examined the reliability of ultrasonic test methods in the detection of mechanical fatigue cracks. The second study was an NRC-sponsored Pipe Inspection Round Robin (PIRR) test conducted at Pacific Northwest Laboratory (PNL). The Westinghouse study reported that 80% detection was achieved for mechanical fatigue cracks having 20% throughwall depth. The PNL study reported that less than 30% detection was achieved for thermal fatigue cracks ranging from 5% to 50% through-wall. A cooperative program between PNL and Westinghouse was conducted to resolve the differences between the two studies. The program was designed as a limited round robin. Detection experiments were performed on samples from both the PNL and Westinghouse studies. The data reported here indicate that flaw type (thermal fatigue versus mechanical fatigue) was a significant factor in detection. Mechanical fatigue cracks were more easily detected than thermal fatigue cracks. The data conclusively show that manual ultrasonic inspection cannot size flaws in cast stainless steel material. The study recommends that ultrasonic inspection of cast stainless steel pipe be continued because cracks caused by some failure mechanisms (i.e., mechanical fatigue cracks) have proven to be detectable.

  12. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    SciTech Connect

    Jafarzadegan, M.; Feng, A.H.; Abdollah-zadeh, A.; Saeid, T.; Shen, J.; Assadi, H.

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  13. Exposure to stainless steel welding fumes and lung cancer: a meta-analysis.

    PubMed

    Sjögren, B; Hansen, K S; Kjuus, H; Persson, P G

    1994-05-01

    Stainless steel welding is associated with exposure to metals including hexavalent chromium and nickel. This study is a meta-analysis of five studies of stainless steel welders and the occurrence of lung cancer. Asbestos exposure and smoking habits have been taken into account. The calculated pooled relative risk estimate was 1.94 with a 95% confidence interval of 1.28-2.93. This result suggests a causal relation between exposure to stainless steel welding and lung cancer.

  14. Particle Impact Ignition Test Data on a Stainless Steel Hand Valve

    NASA Technical Reports Server (NTRS)

    Peralta, Stephen

    2010-01-01

    This slide presentation reviews the particle impact ignition test of a stainless steel hand valve. The impact of particles is a real fire hazard with stainless steel hand valves, however 100 mg of particulate can be tolerated. Since it is unlikely that 100 mg of stainless steel contaminant particles can be simultaneously released into this type of valve in the WSTF configuration, this is acceptable and within statistical confidence as demonstrated by testing.

  15. Evaluation of stainless steel cladding for use in current design LWRs. Final report

    SciTech Connect

    Strasser, A.; Santucci, J.; Lindquist, K.; Yario, W.; Stern, G.; Goldstein, L.; Joseph, L.

    1982-12-01

    The design of stainless steel-clad LWR fuel and its performance at steady-state, transient, and accident conditions were reviewed. The objective was to evaluate the potential benefits and disadvantages of substituting stainless steel-clad fuel for the currently used Zircaloy-clad fuel. For a large, modern PWR, the technology and the fuel-cycle costs of stainless steel- and Zircaloy-clad fuels were compared.

  16. Exposure to stainless steel welding fumes and lung cancer: a meta-analysis.

    PubMed Central

    Sjögren, B; Hansen, K S; Kjuus, H; Persson, P G

    1994-01-01

    Stainless steel welding is associated with exposure to metals including hexavalent chromium and nickel. This study is a meta-analysis of five studies of stainless steel welders and the occurrence of lung cancer. Asbestos exposure and smoking habits have been taken into account. The calculated pooled relative risk estimate was 1.94 with a 95% confidence interval of 1.28-2.93. This result suggests a causal relation between exposure to stainless steel welding and lung cancer. PMID:8199684

  17. Tensile behavior of irradiated manganese-stabilized stainless steel

    SciTech Connect

    Klueh, R.L.

    1996-10-01

    Tensile tests were conducted on seven experimental, high-manganese austenitic stainless steels after irradiation up to 44 dpa in the FFTF. An Fe-20Mn-12Cr-0.25C base composition was used, to which various combinations of Ti, W, V, B, and P were added to improve strength. Nominal amounts added were 0.1% Ti, 1% W, 0.1% V, 0.005% B, and 0.03% P. Irradiation was carried out at 420, 520, and 600{degrees}C on the steels in the solution-annealed and 20% cold-worked conditions. Tensile tests were conducted at the irradiation temperature. Results were compared with type 316 SS. Neutron irradiation hardened all of the solution-annealed steels at 420, 520, and 600{degrees}C, as measured by the increase in yield stress and ultimate tensile strength. The steel to which all five elements were added to the base composition showed the least amount of hardening. It also showed a smaller loss of ductility (uniform and total elongation) than the other steels. The total and uniform elongations of this steel after irradiation at 420{degrees}C was over four times that of the other manganese-stabilized steels and 316 SS. There was much less difference in strength and ductility at the two higher irradiation temperatures, where there was considerably less hardening, and thus, less loss of ductility. In the cold-worked condition, hardening occured only after irradiation at 420{degrees}C, and there was much less difference in the properties of the steels after irradiation. At the 420{degrees}C irradiation temperature, most of the manganese-stabilized steels maintained more ductility than the 316 SS. After irradiation at 420{degrees}C, the temperature of maximum hardening, the steel to which all five of the elements were added had the best uniform elongation.

  18. Superplastic Forming of Duplex Stainless Steel for Aerospace Part

    SciTech Connect

    Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo

    2011-08-22

    In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 deg. C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.

  19. Superplastic Forming of Duplex Stainless Steel for Aerospace Part

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo

    2011-08-01

    In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 °C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.

  20. Defect microstructures in neutron-irradiated copper and stainless steel

    SciTech Connect

    Zinkle, S.J.; Sindelar, R.L.

    1987-09-01

    The defect microstructures of copper and type 304L austenitic stainless steel have been examined following neutron irradiation under widely different conditions. Less than 0.2% of the defect clusters in steel irradiated at 120/sup 0/C with moderated fission neutrons were resolvable as stacking fault tetrahedra (SFT). The fraction of defect clusters identified as SFT in copper varied from approx.10% for a low-dose 14-MeV neutron irradiation at 25/sup 0/C to approx.50% for copper irradiated to 1.3 dpa in a moderated fission spectrum at 182/sup 0/C. The mean cluster size in copper was about 2.6 nm for both cases, despite the large differences in irradiation conditions. The mean defect cluster size in the irradiated steel was about 1.8 nm. The absence of SFT in stainless steel may be due to the generation of 35 appm He during the irradiation, which caused the vacancies to form helium-filled cavities instead of SFT. 20 refs.

  1. Improved corrosion resistance of 316L stainless steel by nanocrystalline and electrochemical nitridation in artificial saliva solution

    NASA Astrophysics Data System (ADS)

    Lv, Jinlong; Liang, Tongxiang

    2015-12-01

    The fluoride ion in artificial saliva significantly changed semiconductor characteristic of the passive film formed on the surface of 316L stainless steels. The electrochemical results showed that nanocrystalline α‧-martensite improved corrosion resistance of the stainless steel in a typical artificial saliva compared with coarse grained stainless steel. Moreover, comparing with nitrided coarse grained stainless steel, corrosion resistance of the nitrided nanocrystalline stainless steel was also improved significantly, even in artificial saliva solution containing fluoride ion. The present study showed that the cryogenic cold rolling and electrochemical nitridation improved corrosion resistance of 316L stainless steel for the dental application.

  2. Electrochemical and passivation behavior investigation of ferritic stainless steel in simulated concrete pore media.

    PubMed

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Xiao, Kui; Li, Xiaogang

    2015-12-01

    The applications of stainless steel are one of the most reliable solutions in concrete structures to reduce chloride-induced corrosion problems and increase the structures service life, however, due to high prices of nickel, especially in many civil engineering projects, the austenitic stainless steel is replaced by the ferritic stainless steels. Compared with austenite stainless steel, the ferritic stainless steel is known to be extremely resistant of stress corrosion cracking and other properties. The good corrosion resistance of the stainless steel is due to the formation of passive film. While, there is little literature about the electrochemical and passive behavior of ferritic stainless steel in the concrete environments. So, here, we present the several corrosion testing methods, such as the potentiodynamic measurements, EIS and Mott-Schottky approach, and the surface analysis methods like XPS and AES to display the passivation behavior of 430 ferritic stainless steel in alkaline solution with the presence of chloride ions. These research results illustrated a simple and facile approach for studying the electrochemical and passivation behavior of stainless steel in the concrete pore environments. PMID:26501086

  3. Electrochemical and passivation behavior investigation of ferritic stainless steel in simulated concrete pore media.

    PubMed

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Xiao, Kui; Li, Xiaogang

    2015-12-01

    The applications of stainless steel are one of the most reliable solutions in concrete structures to reduce chloride-induced corrosion problems and increase the structures service life, however, due to high prices of nickel, especially in many civil engineering projects, the austenitic stainless steel is replaced by the ferritic stainless steels. Compared with austenite stainless steel, the ferritic stainless steel is known to be extremely resistant of stress corrosion cracking and other properties. The good corrosion resistance of the stainless steel is due to the formation of passive film. While, there is little literature about the electrochemical and passive behavior of ferritic stainless steel in the concrete environments. So, here, we present the several corrosion testing methods, such as the potentiodynamic measurements, EIS and Mott-Schottky approach, and the surface analysis methods like XPS and AES to display the passivation behavior of 430 ferritic stainless steel in alkaline solution with the presence of chloride ions. These research results illustrated a simple and facile approach for studying the electrochemical and passivation behavior of stainless steel in the concrete pore environments.

  4. Electrochemical and passivation behavior investigation of ferritic stainless steel in simulated concrete pore media

    PubMed Central

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Xiao, Kui; Li, Xiaogang

    2015-01-01

    The applications of stainless steel are one of the most reliable solutions in concrete structures to reduce chloride-induced corrosion problems and increase the structures service life, however, due to high prices of nickel, especially in many civil engineering projects, the austenitic stainless steel is replaced by the ferritic stainless steels. Compared with austenite stainless steel, the ferritic stainless steel is known to be extremely resistant of stress corrosion cracking and other properties. The good corrosion resistance of the stainless steel is due to the formation of passive film. While, there is little literature about the electrochemical and passive behavior of ferritic stainless steel in the concrete environments. So, here, we present the several corrosion testing methods, such as the potentiodynamic measurements, EIS and Mott–Schottky approach, and the surface analysis methods like XPS and AES to display the passivation behavior of 430 ferritic stainless steel in alkaline solution with the presence of chloride ions. These research results illustrated a simple and facile approach for studying the electrochemical and passivation behavior of stainless steel in the concrete pore environments. PMID:26501086

  5. Serrated flow behavior in AL6XN austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Meng, L. J.; Sun, J.; Xing, H.; Pang, G. W.

    2009-10-01

    Serrated flow behavior of the AL6XN austenitic stainless steel has been investigated at different temperatures and strain rates. The results show the serrated flow, peak/plateau in flow stress and negative strain rate sensitivity appearing in tensile deformation of the AL6XN steel at 773-973 K and 3.3 × 10 -5-3.3 × 10 -3 s -1 (excluding 873 K, 3.3 × 10 -5 s -1), suggesting the occurrence of dynamic strain aging (DSA). The activation energy for type-A and -(A + B) serrations was calculated to be 304 kJ/mol and diffusion of substitutional solutes, such as chromium and molybdenum is considered as the mechanism of serrated flow. TEM observations further revealed a typical planar slip mode in the regime of DSA of the deformed AL6XN steel.

  6. The interaction between nitride uranium and stainless steel

    NASA Astrophysics Data System (ADS)

    Shornikov, D. P.; Nikitin, S. N.; Tarasov, B. A.; Baranov, V. G.; Yurlova, M. S.

    2016-04-01

    Uranium nitride is most popular nuclear fuel for Fast Breeder Reactor New Generation. In-pile experiments at reactor BOR-60 was shown an interaction between nitride fuel and stainless steel in the range of 8-11% burn up (HA). In order to investigate this interaction has been done diffusion tests of 200 h and has been shown that the reaction occurs in the temperature range 1000-1100 ° C. UN interacted with steel in case of high pollution oxygen (1000-2000 ppm). Also has been shown to increase interaction UN with EP-823 steel in the presence of cesium. In this case the interaction layer had a thickness about 2-3 μm. Has been shown minimal interaction with new ODS steel EP-450. The interaction layer had a thickness less then 2 μm. Did not reveal the influence of tellurium and iodine increased interaction. It was show compatibility at 1000 °C between UN and EP-450 ODS steel, chrome steel, alloying aluminium and silicium.

  7. Semen quality and sex hormones among mild steel and stainless steel welders: a cross sectional study.

    PubMed

    Bonde, J P

    1990-08-01

    Welding may be detrimental to the male reproductive system. To test this hypothesis, semen quality was examined in 35 stainless steel welders, 46 mild steel welders, and 54 non-welding metal workers and electricians. These figures represent a participation rate of 37.1% in welders and 36.7% in non-welding subjects. The mean exposure to welding fume particulates was 1.3 mg/m3 (SD 0.8) in stainless steel welders using tungsten inert gas, 3.2 mg/m3 (SD 1.0) in low exposed mild steel welders using manual metal arc or metal active gas (n = 31), and 4.7 mg/m3 (SD 2.1) in high exposed mild steel welders (n = 15). The semen quality of each participant was defined in terms of the mean values of the particular semen parameters in three semen samples delivered at monthly intervals in a period with occupational exposure in a steady state. The sperm concentration was not reduced in either mild steel or stainless steel welders. The sperm count per ejaculate, the proportion of normal sperm forms, the degree of sperm motility, and the linear penetration rate of the sperm were significantly decreased and the sperm concentration of follicle stimulating hormone (FSH) was non-significantly increased in mild steel welders. A dose response relation between exposure to welding fumes and these semen parameters (sperm count excepted) was found. Semen quality decreased and FSH concentrations increased with increasing exposure. Significant deteriorations in some semen parameters were also observed in stainless steel welders. An analysis of information from questionnaires obtained from the whole population including subjects who declined to participate indicated an underestimation of effects due to selection bias. Potential confounding was treated by restriction and statistical analysis. The results support the hypothesis that mild steel welding and to a lesser extent stainless steel welding with tungsten inert gas is associated with reduced semen quality at exposure in the range of the

  8. Semen quality and sex hormones among mild steel and stainless steel welders: a cross sectional study.

    PubMed Central

    Bonde, J P

    1990-01-01

    Welding may be detrimental to the male reproductive system. To test this hypothesis, semen quality was examined in 35 stainless steel welders, 46 mild steel welders, and 54 non-welding metal workers and electricians. These figures represent a participation rate of 37.1% in welders and 36.7% in non-welding subjects. The mean exposure to welding fume particulates was 1.3 mg/m3 (SD 0.8) in stainless steel welders using tungsten inert gas, 3.2 mg/m3 (SD 1.0) in low exposed mild steel welders using manual metal arc or metal active gas (n = 31), and 4.7 mg/m3 (SD 2.1) in high exposed mild steel welders (n = 15). The semen quality of each participant was defined in terms of the mean values of the particular semen parameters in three semen samples delivered at monthly intervals in a period with occupational exposure in a steady state. The sperm concentration was not reduced in either mild steel or stainless steel welders. The sperm count per ejaculate, the proportion of normal sperm forms, the degree of sperm motility, and the linear penetration rate of the sperm were significantly decreased and the sperm concentration of follicle stimulating hormone (FSH) was non-significantly increased in mild steel welders. A dose response relation between exposure to welding fumes and these semen parameters (sperm count excepted) was found. Semen quality decreased and FSH concentrations increased with increasing exposure. Significant deteriorations in some semen parameters were also observed in stainless steel welders. An analysis of information from questionnaires obtained from the whole population including subjects who declined to participate indicated an underestimation of effects due to selection bias. Potential confounding was treated by restriction and statistical analysis. The results support the hypothesis that mild steel welding and to a lesser extent stainless steel welding with tungsten inert gas is associated with reduced semen quality at exposure in the range of the

  9. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels.

  10. MIC on stainless steels in wastewater treatment plants

    SciTech Connect

    Iversen, A.

    1999-11-01

    Field tests of stainless steels were carried out at five wastewater treatment plants for one year. Three stainless steel grades i.e. AISI 304 (UNS S30400), AISI 316 (UNS S31600) and duplex 2205 (UNS S31803) were tested in the final settling tank in the plants. The time dependence of the open circuit potential (OCP) was measured for all coupons. Ennoblement of the OCP, similar to that reported from investigations in seawater, was found in one of the plants. Waters from three of the exposure sites, containing dispersed deposits from exposed coupons, were chemically analyzed. Pitting corrosion was observed after the field test on steel grade AISI 304 in three of the five plants, and on AISI 316 in one plant. No corrosion was found on 2205 in any of the plants. Laboratory measurements of the OCP were carried out for AISI 304, AISI 316 and 2205 in water collected from one of the plants. Cathodic polarization curves were determined as well in wastewater from the same plant. The cathodic reaction rate increased at the highest OCP. Simulation of the ennoblement was carried out by potentiostatic polarization in a 600 ppm chloride solution. The current response indicated corrosion on AISI 304 welded material and on AISI 304, AISI 316 in crevice assemblies after a long period of induction time.

  11. Sensitization of Laser-beam Welded Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Rajendran, Kousika Dhasanur; Lindner, Stefan

    Ferritic and martensitic stainless steels are an attractive alternative in vehicle production due to their inherent corrosion resistance. By the opportunity of press hardening, their strength can be increased to up to 2000 MPa, making them competitors for unalloyed ultra-high strength steels. Welding, nevertheless, requires special care, especially when it comes to joining of high strength heat treated materials. With an adopted in-line heat treatment of the welds in as-rolled as well as press hardened condition, materials with sufficient fatigue strength and acceptable structural behavior can be produced. Because of microstructural transformations in the base material such as grain coarsening and forced carbide precipitation, the corrosion resistance of the weld zone may be locally impaired. Typically the material in the heat-affected zone becomes sensitive to intergranular cracking in the form of knife-edge corrosion besides the fusion line. The current study comprises of two text scenarios. By an alternating climate test, general response in a corroding environment is screened. In order to understand the corrosion mechanisms and to localize the sensitive zones, sensitisation tests were undertaken. Furthermore, the applicability of a standard test according to ASTM 763-83 was examined. It was found that the alternative climate test does not reveal any corrosion effects. Testing by the oxalic acid test revealed clearly the effect of welding, weld heat treatment and state of thermal processing. Also application of the standard which originally suited for testing ferritic stainless steels could have been justified.

  12. High-pressure stainless steel active membrane microvalves

    NASA Astrophysics Data System (ADS)

    Sharma, G.; Svensson, S.; Ogden, S.; Klintberg, L.; Hjort, K.

    2011-07-01

    In this work, high-pressure membrane microvalves have been designed, manufactured and evaluated. The valves were able to withstand back-pressures of 200 bar with a response time of less than 0.6 s. These stainless steel valves, manufactured with back-end batch production, utilize the large volume expansion coupled to the solid-liquid phase transition in paraffin wax. When membrane materials were evaluated, parylene coated stainless steel was found to be the best choice as compared to polydimethylsiloxane and polyimide. Also, the influence of the orifice placement and diameter is included in this work. If the orifice is placed too close to the rim of the membrane, the valve can stay sealed even after turning the power off, and the valve will not open until the pressure in the system is released. The developed steel valves, evaluated for both water and air, provide excellent properties in terms of mechanical stability, ease of fabrication, and low cost. Possible applications include sampling at high pressures, chemical microreactors, high performance liquid chromatography, pneumatics, and hydraulics.

  13. Cold Spray Repair of Martensitic Stainless Steel Components

    NASA Astrophysics Data System (ADS)

    Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.

    2014-12-01

    The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.

  14. Microstructure/property relationships in dissimilar welds between duplex stainless steels and carbon steels

    SciTech Connect

    Barnhouse, E.J.; Lippold, J.C.

    1998-12-01

    The metallurgical characteristics, toughness and corrosion resistance of dissimilar welds between duplex stainless steel Alloy 2205 and carbon steel A36 have been evaluated. Both duplex stainless steel ER2209 and Ni-based Alloy 625 filler metals were used to join this combination using a multipass, gas tungsten arc welding (GTAW) process. Defect-free welds were made with each filler metal. The toughness of both the 625 and 2209 deposits were acceptable, regardless of heat input. A narrow martensitic region with high hardness was observed along the A36/2209 fusion boundary. A similar region was not observed in welds made with the 625 filler metal. The corrosion resistance of the welds made with 2209 filler metal improved with increasing heat input, probably due to higher levels of austenite and reduced chromium nitride precipitation. Welds made with 625 exhibited severe attack in the root pass, while the bulk of the weld was resistant. This investigation has shown that both filler metals can be used to joint carbon steel to duplex stainless steels, but that special precautions may be necessary in corrosive environments.

  15. Corrosion behavior of wire-arc-sprayed stainless steel coating on mild steel

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Sakoda, N.; Tajiri, T.

    2006-09-01

    The corrosion characteristics of a wire-are-sprayed stainless steel coating on mild steel have been investigated in regards to atomizing gases and sealing treatment. Salt spray test was performed. The corrosion behavior of the coating was observed under a microscope succesively through a cycling test of wetting and drying in a salt solution. The sealing-treated coating was found to rust faster compared with the non-sealing-treated coating; it protected the mild steel substrate against corrosion, but even it deteriorated the coating itself due to the interruption of the substrate as an anode. The air-atomized coating ruste more heavily than the nitrogen-atomized one. Four different phases were observed in the coating in regards to corrosion behavior; namely, chromium-based oxide, iron-based oxide, chromium-depleted metallic phase, and stainless steel matrix phase. It was found that the chromium-depleted metallic phase and the iron-based oxide are non-corrosion-resistant, whereas the chromium-based oxide and the stainless steel matrix phase are corrosion-resistant.

  16. Osteogenic ability of Cu-bearing stainless steel.

    PubMed

    Ren, Ling; Wong, Hoi Man; Yan, Chun Hoi; Yeung, Kelvin W K; Yang, Ke

    2015-10-01

    A newly developed copper-bearing stainless steel (Cu-SS) by directly immobilizing proper amount of Cu into a medical stainless steel (317L SS) during the metallurgical process could enable continuous release of trace amount of Cu(2+) ions, which play the key role to offer the multi-biofunctions of the stainless steel, including the osteogenic ability in the present study. The results of in vitro experiments clearly demonstrated that Cu(2+) ions from Cu-SS could promote the osteogenic differentiation by stimulating the Alkaline phosphatase enzyme activity and the osteogenic gene expressions (Col1a1, Opn, and Runx2), and enhancing the adhesion and proliferation of osteoblasts cultured on its surface. The in vivo test further proved that more new bone tissue formed around the Cu-SS implant with more stable bone-to-implant contact in comparison with the 317L SS. In addition, Cu-SS showed satisfied biocompatibility according to the results of in vitro cytotoxicity and in vivo histocompatibility, and its daily released amount of Cu(2+) ions in physiological saline solution was at trace level of ppb order (1.4 ppb/cm(2) ), which is rather safe to human health. Apart from these results, it was also found that Cu-SS could inhibit the happening of inflammation with lower TNF-α expression in the bone tissue post implantation compared with 317L SS. In addition to good biocompatibility, the overall findings demonstrated that the Cu-SS possessed obvious ability of promoting osteogenesis, indicating a unique application advantage in orthopedics.

  17. Aging and Embrittlement of High Fluence Stainless Steels

    SciTech Connect

    Was, gary; Jiao, Zhijie; der ven, Anton Van; Bruemmer, Stephen; Edwards, Dan

    2012-12-31

    Irradiation of austenitic stainless steels results in the formation of dislocation loops, stacking fault tetrahedral, Ni-Si clusters and radiation-induced segregation (RIS). Of these features, it is the formation of precipitates which is most likely to impact the mechanical integrity at high dose. Unlike dislocation loops and RIS, precipitates exhibit an incubation period that can extend from 10 to 46 dpa, above which the cluster composition changes and a separate phase, (G-phase) forms. Both neutron and heavy ion irradiation showed that these clusters develop slowly and continue to evolve beyond 100 dpa. Overall, this work shows that the irradiated microstructure features produced by heavy ion irradiation are remarkably comparable in nature to those produced by neutron irradiation at much lower dose rates. The use of a temperature shift to account for the higher damage rate in heavy ion irradiation results in a fairly good match in the dislocation loop microstructure and the precipitate microstructure in austenitic stainless steels. Both irradiations also show segregation of the same elements and in the same directions, but to achieve comparable magnitudes, heavy ion irradiation must be conducted at a much higher temperature than that which produces a match with loops and precipitates. First-principles modeling has confirmed that the formation of Ni-Si precipitates under irradiation is likely caused by supersaturation of solute to defect sinks caused by highly correlated diffusion of Ni and Si. Thus, the formation and evolution of Ni-Si precipitates at high dose in austenitic stainless steels containing Si is inevitable.

  18. Corrosion in stainless-steel and nickel-titanium files.

    PubMed

    Stokes, O W; Fiore, P M; Barss, J T; Koerber, A; Gilbert, J L; Lautenschlager, E P

    1999-01-01

    This study evaluated and compared the corrosion susceptibility of stainless-steel and nickel-titanium (NiTi) endodontic files immersed in sodium hypochlorite. For each of the stainless-steel files (Kerr K-Flex, Caulk Flex-O, and Union Broach Flex-R) plus the NiTi files (Union Broach NiTi and Tulsa NiTi), the cutting flutes of 24 ISO size 20 files were immersed into 5.25% sodium hypochlorite. Their open circuit potential (OCP) was recorded for 1 h on a strip chart with high impedance. The strip chart recording for each file was classified into a stability score: (i) stable, (ii) unstable, or (iii) erratic. The OCP was measured by a potentiostat and a standard calomel electrode reference. The OCP classification of unstable and erratic for the files evaluated were as follows: K-Flex (16%), Flex-R (12%), Flex-O (75%), Union Broach NiTi (62%), and Tulsa NiTi (0%). After OCP testing, each of the 120 files was inspected by light microscopy at x 25. The frequencies of visually observed corrosion were detected as follows: K-Flex (2/24), Flex-R (1/24), Flex-O (6/24), Union Broach NiTi (2/24), and Tulsa NiTi (0/24). There was a significant difference in corrosion frequency between brands when evaluated by OCP and light microscopy; however, there was no significant difference between stainless steel and NiTi.

  19. Influence of surface finish on the cleanability of stainless steel.

    PubMed

    Frank, J F; Chmielewski, R

    2001-08-01

    Stainless steel for fabricating food processing equipment is available with various surface finishes. The objective of this research was to determine the effect of surface finish on cleanability. Nine samples of stainless steel, type 304, from various manufacturers including no finish (hot rolled and pickled), #4 finish, 2B mechanical polished, and electropolished were tested. Cleanability was assessed by using coupon samples soiled with either cultured milk inoculated with spores of Bacillus stearothermophilus or by growth of a Pseudomonas sp. biofilm. Samples were cleaned by immersion in a turbulent bath of 1.28% sodium hydroxide at 66 degrees C for 3 min followed by a sterile water rinse, neutralizing in 0.1% phosphoric acid for 30 s, rinsing in phosphate buffer, sanitizing in 100 ppm hypochlorite, neutralizing in sodium thiosulfate, and drying. To determine residual milk soil, coupon samples were covered with PM indicator agar and incubated for 25 h at 58 degrees C. Other coupons were subjected to an additional 10 soiling or cleaning cycles, and the residual protein was measured by using epifluorescent microscopy and image analysis. Results indicate that the spore count was more precise for measuring initial cleanability of the finished samples, and the protein residue determination was useful for determining the effect of repeated cleaning. Data on the removal of milk soil suggest that stainless steel should be purchased based on measures of surface defects rather than finish type. Surface defects, as determined using a surface roughness gauge, produced a correlation of 0.82 with spore counts. Data also indicated that biofilm was more difficult to remove than milk-based soil. PMID:11510656

  20. Biomonitoring of genotoxic exposure among stainless steel welders.

    PubMed

    Knudsen, L E; Boisen, T; Christensen, J M; Jelnes, J E; Jensen, G E; Jensen, J C; Lundgren, K; Lundsteen, C; Pedersen, B; Wassermann, K

    1992-05-16

    A biosurvey in the Danish metal industry measured the genotoxic exposure from stainless steel welding. The study comprised measurements of chromosomal aberrations (CA), sister-chromatid exchanges (SCE), unscheduled DNA synthesis (UDS) in peripheral lymphocytes and serum immunoglobulin G. Environmental monitoring of welding fumes and selected metal oxides, biomonitoring of chromium and nickel in serum and urine and mutagenic activity in urine, and evaluation of semen quality were also done. Manual metal arc (MMA) welding and tungsten inert gas (TIG) welding were the dominant welding processes. A higher frequency of chromosomal aberrations, classified as translocations, double minutes, exchanges and rings, was observed in stainless steel welders than in non-welders. SCE was lower in welders working with both MMA and TIG welding than in reference persons. N-Acetoxy-N-acetylaminofluorene (NA-AAF)-induced UDS was lower in 23 never-smoking welders than in 19 unexposed never-smokers. Smoking was a confounding factor resulting in significantly higher CA, SCE, NA-AAF binding to DNA and mutagenic activity in urine. Age was also a confounder: CA, SCE, NA-AAF binding to DNA and UDS increased significantly with age. No significant correlation between SCE and CA or between CA and UDS was found. UDS decreased significantly with increasing lymphocyte count and a higher lymphocyte count was seen in MMA welders than in reference persons and in smokers than in non-smokers. Differences in the composition among lymphocytes in exposed persons compared with non-exposed are suggested. MMA welding gave the highest exposure to chromium, an increased number of chromosomal aberrations and a decrease in SCE when compared with TIG welding. Consequently improvements in the occupational practice of stainless steel welding with MMA is recommended. PMID:1375338

  1. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    DOE PAGES

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to providemore » an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.« less

  2. Joining dissimilar stainless steels for pressure vessel components

    NASA Astrophysics Data System (ADS)

    Sun, Zheng; Han, Huai-Yue

    1994-03-01

    A series of studies was carried out to examine the weldability and properties of dissimilar steel joints between martensitic and austenitic stainless steels - F6NM (OCr13Ni4Mo) and AISI 347, respectively. Such joints are important parts in, e.g. the primary circuit of a pressurized water reactor (PWR). This kind of joint requires both good mechanical properties, corrosion resistance and a stable magnetic permeability besides good weldability. The weldability tests included weld thermal simulation of the martensitic steel for investigating the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the mechanical properties of the heat-affected zone (HAZ); implant testing for examining the tendency for cold cracking of martensitic steel; rigid restraint testing for determining hot crack susceptibility of the multi-pass dissimilar steel joints. The joints were subjected to various mechanical tests including a tensile test, bending test and impact test at various temperatures, as well as slow strain-rate test for examining the stress corrosion cracking tendency in the simulated environment of a primary circuit of a PWR. The results of various tests indicated that the quality of the tube/tube joints is satisfactory for meeting all the design requirements.

  3. Influence of fretting on flexural fatigue of 304 stainless steel and mild steel

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Rohn, D. A.

    1978-01-01

    Fretting fatigue experiments conducted on 304 stainless steel using a flexural fatigue test arrangement with bolted on fretting pads demonstrated that fatigue life is reduced by at least a factor of 10 in the 265 to 334 MPa (38,500 - to 48,500 psi) nominal flexural fatigue stress range. In addition, experiments in which the fretting pads were removed after selected numbers of cycles, followed by continued flexural fatigue without fretting show that continued fretting beyond 50,000 cycles does not significantly further reduce fatigue life of 304 stainless steel at 317 MPa (46,000 psi). Microscopic examination of the fretted contact areas revealed fracture initiation sites as well as numerous cracks that did not propagate to failure. Flexural fretting fatigue experiments performed on mild steel showed an insensitivity of fatigue life to the incidence of fretting under flexural stress conditions of from 162 to 217 MPa (23,500 to 31,500 psi).

  4. Laser Welding of Large Scale Stainless Steel Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Reitemeyer, D.; Schultz, V.; Syassen, F.; Seefeld, T.; Vollertsen, F.

    In this paper a welding process for large scale stainless steel structures is presented. The process was developed according to the requirements of an aircraft application. Therefore, stringers are welded on a skin sheet in a t-joint configuration. The 0.6 mm thickness parts are welded with a thin disc laser, seam length up to 1920 mm are demonstrated. The welding process causes angular distortions of the skin sheet which are compensated by a subsequent laser straightening process. Based on a model straightening process parameters matching the induced welding distortion are predicted. The process combination is successfully applied to stringer stiffened specimens.

  5. Ultrasonic Attenuation Measurements in Thermally Degraded 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Ortiz, N.; Carreón, H.; Sánchez, A.

    2009-03-01

    Ultrasonic attenuation plays an important role in materials characterization of metal components. This paper present data and discuss ultrasonic attenuation variations in a 2205 duplex stainless steel aged isothermally at 700° C and 900° C for different time intervals. Attenuation measurements as function of frequency where performed using pulse-echo immersion method and broad band planar transducers. Evidence is found of changes in the attenuation coefficient as aging time increases. The corresponding microstructure of aged specimens was observed and impact toughness was measured. Comparison is made with measurements of ferrite content for the two temperatures and different aging times.

  6. Laser-induced color marking of stainless steel

    NASA Astrophysics Data System (ADS)

    Antonczak, Arkadiusz J.; Nowak, Maciej; Koziol, Pawel; Kaczmarek, Pawel R.; Waz, Adam T.; Abramski, Krzysztof M.

    2013-01-01

    This paper presents the analysis of the impact of selected process parameters on the resulting laser color marking. The study was conducted for AISI 304 multipurpose stainless steel using a commercially available industrial fiber laser. It was determined how various process parameters, such as laser power, scanning speed of the laser beam, temperature of the material, location of the sample relative to the focal plane, affect the repeatability of the colors obtained. For objective assessment of color changes, an optical spectrometer and the CIE color difference parameter ΔEab * were used.

  7. Use of duplex stainless steel castings in control valves

    SciTech Connect

    Gossett, J.L.

    1996-07-01

    Duplex stainless steels have enjoyed rapidly increasing popularity in recent years. For numerous reasons the availability of these alloys in the cast form has lagged behind the availability of the wrought form. Commercial demand for control valves in these alloys has driven development of needed information to move into production. A systematic approach was used to develop specifications, suppliers and weld procedures. Corrosion, stress corrosion cracking (SCC), sulfide stress cracking (SSC) and hardness results are also presented for several alloys including; CD3MN (UNS J92205), CD4MCu (UNS J93370) and CD7MCuN (cast UNS S32550).

  8. General and Localized Corrosion of Borated Stainless Steels

    SciTech Connect

    T.E. Lister; Ronald E. Mizia; A.W. Erickson; T.L. Trowbridge; B. S. Matteson

    2008-03-01

    The Transportation, Aging and Disposal (TAD) canister-based system is being proposed to transport and store spent nuclear fuel at the Monitored Geologic Repository (MGR) located at Yucca Mountain, Nevada. The preliminary design of this system identifies borated stainless steel as the neutron absorber material that will be used to fabricate fuel basket inserts for nuclear criticality control. This paper discusses corrosion test results for verifying the performance of this material manufactured to the requirements of ASTM A887, Grade A, under the expected repository conditions.

  9. Low cycle fatigue behavior of aluminum/stainless steel composites

    NASA Technical Reports Server (NTRS)

    Bhagat, R. B.

    1983-01-01

    Composites consisting of an aluminum matrix reinforced with various volume fractions of stainless steel wire were fabricated by hot die pressing under various conditions of temperature, time, and pressure. The composites were tested in plane bending to complete fracture under cycle loading, and the results were analyzed on a computer to obtain a statistically valid mathematical relationship between the low-cycle fatigue life and the fiber volume fraction of the composite. The fractured surfaces of the composites were examined by scanning electron microscopy to identify the characteristic features of fatigue damage. Fatigue damage mechanisms are proposed and discussed.

  10. Microstructures of laser deposited 304L austenitic stainless steel

    SciTech Connect

    BROOKS,JOHN A.; HEADLEY,THOMAS J.; ROBINO,CHARLES V.

    2000-05-22

    Laser deposits fabricated from two different compositions of 304L stainless steel powder were characterized to determine the nature of the solidification and solid state transformations. One of the goals of this work was to determine to what extent novel microstructure consisting of single-phase austenite could be achieved with the thermal conditions of the LENS [Laser Engineered Net Shape] process. Although ferrite-free deposits were not obtained, structures with very low ferrite content were achieved. It appeared that, with slight changes in alloy composition, this goal could be met via two different solidification and transformation mechanisms.

  11. Shrinkage Prediction for the Investment Casting of Stainless Steels

    SciTech Connect

    Sabau, Adrian S

    2007-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine in order to obtain the actual tooling allowances. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. The numerical simulation results for the shrinkage factors were compared with experimental results.

  12. Vapor deposition of copper on stainless steel 304L

    SciTech Connect

    Vasofsky, R.W.

    1993-08-17

    Y-12 Plant is seeking to minimize the generation of hazardous wastes in its operations. The standard procedure for electroplating a thin layer of copper on type 304L stainless steel requires several aqueous pretreatment steps which generate Resource Conservation and Recovery Act (RCRA) hazardous wastes. We have evaluated a more environmentally acceptable procedure. Copper was vacuum deposited onto 304L coupons under differing deposition conditions and properties of coatings produced, including microstructure and adhesive strength, were examined. Results indicated that a noncolumnar, fine grain copper coating with high adhesion can be produced using this environmentally more acceptable approach.

  13. Portable probe to measure sensitization of stainless steel

    DOEpatents

    Park, Jang Y.

    1979-01-01

    An electrochemical cell for making field measurements of metals such as stainless steel comprises a cylinder containing a reservoir of an electrolyte, a reference electrode, a capillary tube connecting the electrolyte to the surface of the metal to be measured and another electrode in electrical contact with the electrolyte. External connections from the reference electrode, the other electrode, and the sample to a measuring device provide means for maintaining the potential of the electrolyte while sweeping the potential difference between the electrolyte and the metal. Such a sweep enables the determination of a current-voltage characteristic that is a measure of sensitization in the metal.

  14. Oxidation resistant high creep strength austenitic stainless steel

    DOEpatents

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  15. Controlled powder morphology experiments in megabar 304 stainless steel compaction

    SciTech Connect

    Staudhammer, K.P.; Johnson, K.A.

    1985-01-01

    Experiments with controlled morphology including shape, size, and size distribution were made on 304L stainless steel powders. These experiments involved not only the powder variables but pressure variables of 0.08 to 1.0 Mbar. Also included are measured container strain on the material ranging from 1.5% to 26%. Using a new strain controllable design it was possible to seperate and control, independently, strain and pressure. Results indicate that powder morphology, size distribution, packing density are among the pertinent parameters in predicting compaction of these powders.

  16. Apparatus and process for ultrasonic seam welding stainless steel foils

    DOEpatents

    Leigh, Richard W.

    1992-01-01

    An ultrasonic seam welding apparatus having a head which is rotated to form contact, preferably rolling contact, between a metallurgically inert coated surface of the head and an outside foil of a plurality of layered foils or work materials. The head is vibrated at an ultrasonic frequency, preferably along a longitudinal axis of the head. The head is constructed to transmit vibration through a contacting surface of the head into each of the layered foils. The contacting surface of the head is preferably coated with aluminum oxide to prevent the head from becoming welded to layered stainless steel foils.

  17. Evaluation of tantalum 316 stainless steel transition joints

    NASA Technical Reports Server (NTRS)

    Stoner, D. R.

    1972-01-01

    Tubular transition joints providing a metallurgically bonded connection between tantalum and 316 stainless steel pipe sections were comparatively evaluated for durability under thermal cycling conditions approximating the operation of a SNAP-8 mercury boiler. Both coextruded and vacuum brazed transition joints of 50mm (2 inch) diameter were tested by thermal cycling 100 times between 730 C and 120 C(1350 F and 250 F) in a high vacuum environment. The twelve evaluated transition joints survived the full test sequence without developing leaks, although liquid penetrant bond line indications eventually developed in all specimens. The brazed transition joints exhibited the best dimensional stability and bond line durability.

  18. Femtosecond laser color marking stainless steel surface with different wavelengths

    NASA Astrophysics Data System (ADS)

    Li, Guoqiang; Li, Jiawen; Hu, Yanlei; Zhang, Chenchu; Li, Xiaohong; Chu, Jiaru; Huang, Wenhao

    2015-03-01

    The femtosecond laser color marking stainless steel surfaces with different incident wavelengths were investigated theoretically and experimentally. It indicates that the spectral regions of the colors firstly increase and then reduce with increasing spatial periods of the ripples induced by laser irradiation. Additionally, the colors are gradually changed from blue to red due to the elongation of the diffracted light wavelengths. As a result, the color effects are distinctly different. This study offers a new controllable parameter to produce diverse colors, which may find a wide range of applications in the laser color marking, art designing and so on.

  19. High Strength Stainless Steel Properties that Affect Resistance Welding

    SciTech Connect

    Kanne, W.R.

    2001-08-01

    This report discusses results of a study on selected high strength stainless steel alloy properties that affect resistance welding. The austenitic alloys A-286, JBK-75 (Modified A-286), 21-6-9, 22-13-5, 316 and 304L were investigated and compared. The former two are age hardenable, and the latter four obtain their strength through work hardening. Properties investigated include corrosion and its relationship to chemical cleaning, the effects of heat treatment on strength and surface condition, and the effect of mechanical properties on strength and weldability.

  20. Equation of state and electrical conductivity of stainless steel.

    SciTech Connect

    Desjarlais, Michael Paul; Mattsson, Thomas Kjell Rene

    2004-11-01

    Warm dense matter is the region in phase space of density and temperature where the thermal, Fermi, and Coulomb energies are approximately equal. The lack of a dominating scale and physical behavior makes it challenging to model the physics to high fidelity. For Sandia, a fundamental understanding of the region is of importance because of the needs of our experimental HEDP programs for high fidelity descriptive and predictive modeling. We show that multi-scale simulations of macroscopic physical phenomena now have predictive capability also for difficult but ubiquitous materials such as stainless steel, a transition metal alloy.

  1. Aluminum nanocomposites having wear resistance better than stainless steel

    SciTech Connect

    An, Linan; Qu, Jun; Luo, Jinsong; Fan, Yi; Zhang, Ligong; Liu, Jinling; Xu, Chengying; Blau, Peter Julian

    2011-01-01

    Tribological behavior of alumina-particle-reinforced aluminum composites made by powder metallurgy process has been investigated. The nanocomposite containing 15 vol% of Al2O3 nanoparticles exhibits excellent wear resistance by showing significantly low wear rate and abrasive wear mode. The wear rate of the nanocomposite is even lower than stainless steel. We have also demonstrated that such excellent wear resistance only occurred in the composite reinforced with the high volume fraction of nanosized reinforcing particles. The results were discussed in terms of the microstructure of the nanocomposite.

  2. Carbon, nitrogen, and oxygen ion implantation of stainless steel

    SciTech Connect

    Rej, D.J.; Gavrilov, N.V.; Emlin, D.

    1995-12-31

    Ion implantation experiments of C, N, and O into stainless steel have been performed, with beam-line and plasma source ion implantation methods. Acceleration voltages were varied between 27 and 50 kV, with pulsed ion current densities between 1 and 10 mA/cm{sup 2}. Implanted doses ranged from 0.5 to 3 {times} 10{sup 18}cm{sup -2}, while workpiece temperatures were maintained between 25 and 800 C. Implant concentration profiles, microstructure, and surface mechanical properties of the implanted materials are reported.

  3. General and Localized corrosion of Austenitic and Borated Stainless Steels in Simulated Concentrated Ground Waters

    SciTech Connect

    D. Fix; J. Estill; L. Wong; R. Rebak

    2004-05-28

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water.

  4. General and Localized Corrosion of Austenitic And Borated Stainless Steels in Simulated Concentrated Ground Waters

    SciTech Connect

    Estill, J C; Rebak, R B; Fix, D V; Wong, L L

    2004-03-11

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water.

  5. 78 FR 45271 - Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... Commission, Washington, DC, and by publishing the notice in the Federal Register of May 24, 2013 (78 FR 31574... COMMISSION Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam Determination On the... injured by reason of imports from Malaysia, Thailand, and Vietnam of welded stainless steel pressure...

  6. Stress corrosion cracking of stainless steels in NaCl solutions

    NASA Astrophysics Data System (ADS)

    Speidel, Markus O.

    1981-05-01

    The metallurgical influences on the stress corrosion resistance of many commercial stainless steels have been studied using the fracture mechanics approach. The straight-chromium ferritic stainless steels, two-phase ferritic-austenitic stainless steels and high-nickel solid solutions (like alloys 800 and 600) investigated are all fully resistant to stress corrosion cracking at stress intensity (K1) levels ≤ MN • m-3/2 in 22 pct NaCl solutions at 105 °C. Martensitic stainless steels, austenitic stainless steels and precipitation hardened superalloys, all with about 18 pct chromium, may be highly susceptible to stress corrosion cracking, depending on heat treatment and other alloying elements. Molybdenum additions improve the stress corrosion cracking resistance of austenitic stainless steels significantly. The fracture mechanics approach to stress corrosion testing of stainless steels yields results which are consistent with both the service experience and the results from testing with smooth specimens. In particular, the well known “Copson curve” is reproduced by plotting the stress corrosion threshold stress intensity (ATISCC) vs the nickel content of stainless steels with about 18 pct chromium.

  7. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... Information The NRC published DG-1279 in the Federal Register on October 3, 2012 (77 FR 60479), for a 60-day... COMMISSION Control of Ferrite Content in Stainless Steel Weld Metal AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG) 1.31, ``Control of Ferrite Content in Stainless Steel Weld Metal.''...

  8. 75 FR 81309 - Stainless Steel Plate from Belgium, Italy, Korea, South Africa, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... Plate from Belgium, Italy, Korea, South Africa, and Taiwan AGENCY: United States International Trade... stainless steel plate from Belgium and South Africa and the antidumping duty orders on stainless steel plate from Belgium, Italy, Korea, South Africa, and Taiwan. SUMMARY: The Commission hereby gives notice...

  9. 76 FR 50495 - Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... COMMISSION Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan Determinations On the.... 1675(c)), that revocation of the countervailing duty order on stainless steel plate from South Africa..., South Africa, and Taiwan. \\3\\ Commissioner Charlotte R. Lane dissents with respect to the...

  10. 76 FR 53882 - Continuation of Antidumping and Countervailing Duty Orders: Stainless Steel Plate in Coils From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ..., South Africa, and Taiwan, 76 FR 50495 (Aug. 15, 2011), and Stainless Steel Plate in Coils from Belgium... Plate in Coils From Belgium, the Republic of Korea, South Africa, and Taiwan AGENCY: Import... on stainless steel plate in coils (SSPC) from Belgium, the Republic of Korea (Korea), South...

  11. 75 FR 59744 - Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... Plate From Belgium, Italy, Korea, South Africa, and Taiwan AGENCY: United States International Trade... countervailing duty orders on stainless steel plate from Belgium and South Africa and the antidumping duty orders on stainless steel plate from Belgium, Italy, Korea, South Africa, and Taiwan. SUMMARY:...

  12. 77 FR 41969 - Stainless Steel Bar From Japan: Rescission of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ... International Trade Administration Stainless Steel Bar From Japan: Rescission of Antidumping Duty Administrative...) initiated an administrative review of the antidumping duty order on stainless steel bar from Japan (the Order) covering the period February 1, 2010, through January 31, 2011. The interested party...

  13. 75 FR 67110 - Forged Stainless Steel Flanges From India and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... stainless steel flanges from India and Taiwan (65 FR 49964). Following second five-year reviews by Commerce... duty orders on imports of forged stainless steel flanges from India and Taiwan (71 FR 3457, January 23... part 201), and part 207, subparts A, D, E, and F (19 CFR part 207), as most recently amended at 74...

  14. 75 FR 53714 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... imports of stainless steel butt-weld pipe fittings from Japan (53 FR 9787). On February 23, 1993, Commerce... on imports of stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan (65 FR 11766... Japan, Korea, and Taiwan (70 FR 61119). The Commission is now conducting third reviews to...

  15. 75 FR 76025 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... party responded to the sunset review notice of initiation by the applicable deadline * * *'' (75 FR... COMMISSION Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan AGENCY: United States... stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan would be likely to lead...

  16. 75 FR 59744 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... group response to its notice of institution (75 FR 30437, June 1, 2010) was adequate and that the... COMMISSION Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan AGENCY... Korea and the antidumping duty orders on stainless steel sheet and strip from Germany, Italy,...

  17. 78 FR 21596 - Drawn Stainless Steel Sinks From the People's Republic of China: Countervailing Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... Countervailing Duty Determination, 78 FR 13017 (February 26, 2013). \\2\\ See Drawn Stainless Steel Sinks from... From the People's Republic of China: Preliminary Affirmative Countervailing Duty Determination, 77 FR... International Trade Administration Drawn Stainless Steel Sinks From the People's Republic of...

  18. Stress corrosion cracking of duplex stainless steels in caustic solutions

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ananya

    Duplex stainless steels (DSS) with roughly equal amount of austenite and ferrite phases are being used in industries such as petrochemical, nuclear, pulp and paper mills, de-salination plants, marine environments, and others. However, many DSS grades have been reported to undergo corrosion and stress corrosion cracking in some aggressive environments such as chlorides and sulfide-containing caustic solutions. Although stress corrosion cracking of duplex stainless steels in chloride solution has been investigated and well documented in the literature but the SCC mechanisms for DSS in caustic solutions were not known. Microstructural changes during fabrication processes affect the overall SCC susceptibility of these steels in caustic solutions. Other environmental factors, like pH of the solution, temperature, and resulting electrochemical potential also influence the SCC susceptibility of duplex stainless steels. In this study, the role of material and environmental parameters on corrosion and stress corrosion cracking of duplex stainless steels in caustic solutions were investigated. Changes in the DSS microstructure by different annealing and aging treatments were characterized in terms of changes in the ratio of austenite and ferrite phases, phase morphology and intermetallic precipitation using optical micrography, SEM, EDS, XRD, nano-indentation and microhardness methods. These samples were then tested for general and localized corrosion susceptibility and SCC to understand the underlying mechanisms of crack initiation and propagation in DSS in the above-mentioned environments. Results showed that the austenite phase in the DSS is more susceptible to crack initiation and propagation in caustic solutions, which is different from that in the low pH chloride environment where the ferrite phase is the more susceptible phase. This study also showed that microstructural changes in duplex stainless steels due to different heat treatments could affect their SCC

  19. The retention of iodine in stainless steel sample lines

    SciTech Connect

    Evans, G.J.; Deir, C.; Ball, J.M.

    1995-02-01

    Following an accident in a multi-unit CANDU nuclear generating station, decontamination of air vented from containment would play a critical role in minimizing the release of iodine to the environment. The concentration of gas phase iodine in containment air would be measured using the post accident radiation monitoring system, requiring that air samples be passed through a considerable length of tubing to a remote location where the desired measurements could safely be made. A significant loss of iodine, due to adsorption on the sample line surfaces, could greatly distort the measurement. In this study, the retention of I{sub 2}(g) on stainless steel was evaluated in bench scale experiments in order to evaluate, and if possible minimise, the extent of any such line losses. Experiments at the University of Toronto were performed using 6 inch lengths of 1/4 inch stainless steel tubing. Air, containing I-131 labelled I{sub 2}(g), ranging in concentration from 10{sup {minus}10} to 10{sup {minus}6} mol/dm{sup 3} and relative humidity (:RH) from 20 to 90 %, was passed through tubing samples maintained at temperatures ranging from 25 to 90{degrees}C. Adsorption at low gas phase iodine concentrations differed substantially from that at higher concentrations. The rate of deposition was proportional to the gas phase concentration, giving support to the concept of a first order deposition velocity. The surface loading increased with increasing relative humidity, particularly at low RH values, while the deposition rate decreased with increasing temperature. Surface water on the steel may play an important role in the deposition process. The chemisorbed iodine was located primarily in areas of corrosion. Furthermore, water used to wash the steel contained Fe, Mn and iodine in the form of iodide, suggesting that I{sub 2} reacted to form metal iodides. The deposition of I{sub 2} was also found to depend on the initial surface condition.

  20. Applications and experiences with super duplex stainless steel in wet FGD scrubber systems

    SciTech Connect

    Francis, R.; Byrne, G.; Warburton, G.; Hebdon, S.

    1998-12-31

    The paper presents the properties of the author`s company`s proprietary super duplex stainless steel. Work is presented showing the development of a more realistic laboratory solution representing typical limestone slurries found in real flue gas desulfurization (FGD) systems. The importance of additions of metal ions such as Fe{sup 3+} and Mn{sup 2+} as well as partially oxidized sulfur species is demonstrated. Results are presented comparing the crevice corrosion resistance of super duplex stainless steel in these slurries with other commonly used wrought and cast stainless steels, for both simulated anthracite and lignite type slurries. Data from loop tests on the erosion resistance of a range of alloys in simulated FGD slurries is presented. The results clearly show the superior resistance of super duplex stainless steel to both crevice corrosion and erosion in FGD slurries. Finally the experiences in UK FGD systems with both cast and wrought super duplex stainless steel are presented.

  1. Biocompatibility of 17-4 PH stainless steel foam for implant applications.

    PubMed

    Mutlu, Ilven; Oktay, Enver

    2011-01-01

    In this study, biocompatibility of 17-4 PH stainless steel foam for biomedical implant applications was investigated. 17-4 PH stainless steel foams having porosities in the range of 40-82% with an average pore size of around 600 μm were produced by space holder-sintering technique. Sintered foams were precipitation hardened for times of 1-6 h at temperatures between 450-570 °C. Compressive yield strength and Young's modulus of aged stainless steel foams were observed to vary between 80-130 MPa and 0.73-1.54 GPa, respectively. Pore morphology, pore size and the mechanical properties of the 17-4 PH stainless steel foams were close to cancellous bone. In vitro evaluations of cytotoxicity of the foams were investigated by XTT and MTT assays and showed sufficient biocompatibility. Surface roughness parameters of the stainless steel foams were also determined to characterize the foams.

  2. 76 FR 78614 - Welded ASTM A-312 Stainless Steel Pipe From South Korea and Taiwan: Continuation of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... International Trade Administration Welded ASTM A-312 Stainless Steel Pipe From South Korea and Taiwan... welded ASTM A-312 stainless steel pipe from South Korea (Korea) and Taiwan would likely lead to.... See Welded ASTM A-312 Stainless Steel Pipe From South Korea and Taiwan: Final Results of...

  3. 76 FR 38686 - Stainless Steel Wire Rod From India; Institution of a Five-Year Review Concerning the Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... on imports of stainless steel wire rod from India (58 FR 63335). Following first five-year reviews by... duty order on imports of stainless steel wire rod from India (65 FR 47403). Following second five-year... antidumping duty order on imports of stainless steel wire rod from India (71 FR 45023). The Commission is...

  4. 77 FR 24459 - Stainless Steel Butt-Weld Pipe Fittings From Italy: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... grades of stainless steel and ``commodity'' and ``specialty'' fittings. Specifically excluded from the... International Trade Administration Stainless Steel Butt-Weld Pipe Fittings From Italy: Final Results of... stainless steel butt-weld pipe fittings (SSBW pipe fittings) from Italy.\\1\\ This review covers...

  5. Study on tempering behaviour of AISI 410 stainless steel

    SciTech Connect

    Chakraborty, Gopa; Das, C.R.; Albert, S.K.; Bhaduri, A.K.; Thomas Paul, V.; Panneerselvam, G.; Dasgupta, Arup

    2015-02-15

    Martensitic stainless steels find extensive applications due to their optimum combination of strength, hardness and wear-resistance in tempered condition. However, this class of steels is susceptible to embrittlement during tempering if it is carried out in a specific temperature range resulting in significant reduction in toughness. Embrittlement of as-normalised AISI 410 martensitic stainless steel, subjected to tempering treatment in the temperature range of 673–923 K was studied using Charpy impact tests followed by metallurgical investigations using field emission scanning electron and transmission electron microscopes. Carbides precipitated during tempering were extracted by electrochemical dissolution of the matrix and identified by X-ray diffraction. Studies indicated that temper embrittlement is highest when the steel is tempered at 823 K. Mostly iron rich carbides are present in the steel subjected to tempering at low temperatures of around 723 K, whereas chromium rich carbides (M{sub 23}C{sub 6}) dominate precipitation at high temperature tempering. The range 773–823 K is the transition temperature range for the precipitates, with both Fe{sub 2}C and M{sub 23}C{sub 6} types of carbides coexisting in the material. The nucleation of Fe{sub 2}C within the martensite lath, during low temperature tempering, has a definite role in the embrittlement of this steel. Embrittlement is not observed at high temperature tempering because of precipitation of M{sub 23}C{sub 6} carbides, instead of Fe{sub 2}C, preferentially along the lath and prior austenite boundaries. Segregation of S and P, which is widely reported as one of the causes for temper embrittlement, could not be detected in the material even through Auger electron spectroscopy studies. - Highlights: • Tempering behaviour of AISI 410 steel is studied within 673–923 K temperature range. • Temperature regime of maximum embrittlement is identified as 773–848 K. • Results show that type of

  6. Stainless steel corrosion by molten nitrates : analysis and lessons learned.

    SciTech Connect

    Kruizenga, Alan Michael

    2011-09-01

    A secondary containment vessel, made of stainless 316, failed due to severe nitrate salt corrosion. Corrosion was in the form of pitting was observed during high temperature, chemical stability experiments. Optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were all used to diagnose the cause of the failure. Failure was caused by potassium oxide that crept into the gap between the primary vessel (alumina) and the stainless steel vessel. Molten nitrate solar salt (89% KNO{sub 3}, 11% NaNO{sub 3} by weight) was used during chemical stability experiments, with an oxygen cover gas, at a salt temperature of 350-700 C. Nitrate salt was primarily contained in an alumina vessel; however salt crept into the gap between the alumina and 316 stainless steel. Corrosion occurred over a period of approximately 2000 hours, with the end result of full wall penetration through the stainless steel vessel; see Figures 1 and 2 for images of the corrosion damage to the vessel. Wall thickness was 0.0625 inches, which, based on previous data, should have been adequate to avoid corrosion-induced failure while in direct contact with salt temperature at 677 C (0.081-inch/year). Salt temperatures exceeding 650 C lasted for approximately 14 days. However, previous corrosion data was performed with air as the cover gas. High temperature combined with an oxygen cover gas obviously drove corrosion rates to a much higher value. Corrosion resulted in the form of uniform pitting. Based on SEM and EDS data, pits contained primarily potassium oxide and potassium chromate, reinforcing the link between oxides and severe corrosion. In addition to the pitting corrosion, a large blister formed on the side wall, which was mainly composed of potassium, chromium and oxygen. All data indicated that corrosion initiated internally and moved outward. There was no evidence of intergranular corrosion nor were there any indication of fast pathways along grain boundaries. Much of the

  7. Corrosion study of bare and coated stainless steel

    NASA Technical Reports Server (NTRS)

    Morrison, J. D.

    1972-01-01

    A program was conducted at Kennedy Space Center from February 1968 to February 1971 to evaluate the performance of austenitic stainless steel alloys used in fluid systems lines. For several years, there had been numerous failures of stainless steel hardware caused by pitting and stress corrosion cracking. Several alloys were evaluated for effectiveness of certain sacrificial-type protective coverings in preventing corrosion failures. Samples were tested in specially designed racks placed 91 meters (100 yards) above high-tide line at Cape Kennedy. It is concluded that: (1) unprotected tubing samples showed evidence of pitting initiation after 2 weeks; (2) although some alloys develop larger pits than others, it is probable that the actual pitting rate is independent of alloy type; (3) the deepest pitting occurred in the sheltered part of the samples; and (4) zinc-rich coatings and an aluminum-filled coating have afforded sacrificial protection against pitting for at least 28 months. It is believed that a much longer effective coating life can be expected.

  8. IN-SITU MEASUREMENT OF TRITIUM PERMEATION THROUGH STAINLESS STEEL

    SciTech Connect

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin; Longhurst, Glen R.

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292° and 330°C. In-situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. An irradiation enhancement factor (IEF) was determined by comparing in-situ permeation data with a correlation for ex-reactor hydrogen permeation through austenitic stainless steel developed from literature data and reported by Le Claire. Nominal values for the IEF ranged between 3 and 5 for 316 SS. In-situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330°C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  9. In Situ Measurement of Tritium Permeation Through Stainless Steel

    SciTech Connect

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin; Longhurst, Glen

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292° and 330°C. In-situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. An irradiation enhancement factor (IEF) was determined by comparing in-situ permeation data with a correlation for ex-reactor hydrogen permeation through austenitic stainless steel developed from literature data and reported by Le Claire. Nominal values for the IEF ranged between 3 and 5 for 316 SS. In-situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330°C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  10. A porous stainless steel membrane system for extraterrestrial crop production

    NASA Technical Reports Server (NTRS)

    Koontz, H. V.; Prince, R. P.; Berry, W. L.; Knott, W. M. (Principal Investigator)

    1990-01-01

    A system was developed in which nutrient flow to plant roots is controlled by a thin (0.98 or 1.18 mm) porous (0.2 or 0.5 microns) stainless steel sheet membrane. The flow of nutrient solution through the membrane is controlled by adjusting the relative negative pressure on the nutrient solution side of the membrane. Thus, the nutrient solution is contained by the membrane and cannot escape from the compartment even under microgravity conditions if the appropriate pressure gradient across the membrane is maintained. Plant roots grow directly on the top surface of the membrane and pull the nutrient solution through this membrane interface. The volume of nutrient solution required by this system for plant growth is relatively small, since the plenum, which contains the nutrient solution in contact with the membrane, needs only to be of sufficient size to provide for uniform flow to all parts of the membrane. Solution not passing through the membrane to the root zone is recirculated through a reservoir where pH and nutrient levels are controlled. The size of the solution reservoir depends on the sophistication of the replenishment system. The roots on the surface of the membrane are covered with a polyethylene film (white on top, black on bottom) to maintain a high relative humidity and also limit light to prevent algal growth. Seeds are sown directly on the stainless steel membrane under the holes in the polyethylene film that allow a pathway for the shoots.

  11. Localized weld metal corrosion in stainless steel water tanks

    SciTech Connect

    Strum, M.J.

    1995-05-25

    The rapidly developed leaks within the TFC and TFD tanks (LLNL groundwater treatment facilities) were caused by localized corrosion within the resolidified weld metal. The corrosion was initiated by the severe oxidation of the backsides of the welds which left the exposed surfaces in a condition highly susceptible to aqueous corrosion. The propagation of surface corrosion through the thickness of the welds occurred by localized corrosive attack. This localized attack was promoted by the presence of shielded aqueous environments provided by crevices at the root of the partial penetration welds. In addition to rapid corrosion of oxidized surfaces, calcium carbonate precipitation provided an additional source of physical shielding from the bulk tank environment. Qualification testing of alternate weld procedures showed that corrosion damage can be prevented in 304L stainless steel GTA welds by welding from both sides while preventing oxidation of the tank interior through the use of an inert backing gas such as argon. Corrosion resistance was also satisfactory in GMA welds in which oxidized surfaces were postweld cleaned by wire brushing and chemically passivated in nitric acid. Further improvements in corrosion resistance are expected from a Mo-containing grade of stainless steel such as type 316L, although test results were similar for type 304L sheet welded with type 308L filler metal and type 316L sheet welded with type 316L filler metal.

  12. Nitrogen containing shielding gases for GTAW duplex stainless steels

    SciTech Connect

    Creffield, G.K.; Cole, M.H.; Paciej, R.; Huang, W.; Urmston, S.

    1993-12-31

    The duplex stainless steel are alloys characterized as consisting of two phases; austenite and ferrite. As such, they combine the benefits of both phases i.e. good ductility and general corrosion resistance of austenite, but with improved stress corrosion cracking resistance and strength associate with ferrite. Carefully controlled manufacturing techniques are employed to produce this combination in roughly equal proportions to ensure optimum properties. The range of duplex alloys studied in this work covered both the standard grade (2205) and the latest generation of super duplex (2507) alloys; typical compositions are shown in Table 1. Although the standard duplex is the most commonly available and widely used, super duplexes, which are characterized by higher chromium, nickel, molybdenum and nitrogen contents, have even better corrosion properties and are finding increasing applications in the offshore industry. To benefit from the superior properties of duplex, it is vital that these alloys can be welded effectively and that the properties of the welded joint match those of the parent weld. The objective of the current investigation was to study the effect of nitrogen, in both the shielding and purge gas, on the weld metal nitrogen content, microstructure and corrosion resistance, with the eventual aim of recommending an effective shielding gas mixture for duplex stainless steels.

  13. A porous stainless steel membrane system for extraterrestrial crop production.

    PubMed

    Koontz, H V; Prince, R P; Berry, W L

    1990-06-01

    A system was developed in which nutrient flow to plant roots is controlled by a thin (0.98 or 1.18 mm) porous (0.2 or 0.5 microns) stainless steel sheet membrane. The flow of nutrient solution through the membrane is controlled by adjusting the relative negative pressure on the nutrient solution side of the membrane. Thus, the nutrient solution is contained by the membrane and cannot escape from the compartment even under microgravity conditions if the appropriate pressure gradient across the membrane is maintained. Plant roots grow directly on the top surface of the membrane and pull the nutrient solution through this membrane interface. The volume of nutrient solution required by this system for plant growth is relatively small, since the plenum, which contains the nutrient solution in contact with the membrane, needs only to be of sufficient size to provide for uniform flow to all parts of the membrane. Solution not passing through the membrane to the root zone is recirculated through a reservoir where pH and nutrient levels are controlled. The size of the solution reservoir depends on the sophistication of the replenishment system. The roots on the surface of the membrane are covered with a polyethylene film (white on top, black on bottom) to maintain a high relative humidity and also limit light to prevent algal growth. Seeds are sown directly on the stainless steel membrane under the holes in the polyethylene film that allow a pathway for the shoots.

  14. Fatigue Properties of DLC-Coated Stainless Steel

    NASA Astrophysics Data System (ADS)

    Morita, Tatsuro; Tomita, Kouta; Kagaya, Chuji; Kumakiri, Tadashi; Ikenaga, Masaru

    This study was conducted to investigate the effect of DLC (diamond-like carbon) coating on fatigue properties of austenitic stainless steel SUS304. For the DLC coating, UBMS (unbalanced magnetron sputtering) equipment was used. The generated surface layer of about 2 μm thickness was composed of both the DLC layer possessing high hardness and a very thin intermediate layer to improve adhesion force between the DLC layer and the substrate. DLC coating, which was carried out at a relatively low temperature, had no influence on the microstructure so that the mechanical properties of the stainless steel were unchanged by the coating. The results of the plane-bending fatigue test showed that the DLC coating improved fatigue strength by 18%. From the results of detailed observation conducted on the fatigue fracture surface, it was suggested that the improvement in fatigue strength resulted from the suppression of fatigue crack initiation due to the surface layer, which had high adhesion force and strength.

  15. Intergranular stress distributions in polycrystalline aggregates of irradiated stainless steel

    NASA Astrophysics Data System (ADS)

    Hure, J.; El Shawish, S.; Cizelj, L.; Tanguy, B.

    2016-08-01

    In order to predict InterGranular Stress Corrosion Cracking (IGSCC) of post-irradiated austenitic stainless steel in Light Water Reactor (LWR) environment, reliable predictions of intergranular stresses are required. Finite elements simulations have been performed on realistic polycrystalline aggregate with recently proposed physically-based crystal plasticity constitutive equations validated for neutron-irradiated austenitic stainless steel. Intergranular normal stress probability density functions are found with respect to plastic strain and irradiation level, for uniaxial loading conditions. In addition, plastic slip activity jumps at grain boundaries are also presented. Intergranular normal stress distributions describe, from a statistical point of view, the potential increase of intergranular stress with respect to the macroscopic stress due to grain-grain interactions. The distributions are shown to be well described by a master curve once rescaled by the macroscopic stress, in the range of irradiation level and strain considered in this study. The upper tail of this master curve is shown to be insensitive to free surface effect, which is relevant for IGSCC predictions, and also relatively insensitive to small perturbations in crystallographic texture, but sensitive to grain shapes.

  16. Water Lubrication of Stainless Steel using Reduced Graphene Oxide Coating

    PubMed Central

    Kim, Hae-Jin; Kim, Dae-Eun

    2015-01-01

    Lubrication of mechanical systems using water instead of conventional oil lubricants is extremely attractive from the view of resource conservation and environmental protection. However, insufficient film thickness of water due to low viscosity and chemical reaction of water with metallic materials have been a great obstacle in utilization of water as an effective lubricant. Herein, the friction between a 440 C stainless steel (SS) ball and a 440 C stainless steel (SS) plate in water lubrication could be reduced by as much as 6-times by coating the ball with reduced graphene oxide (rGO). The friction coefficient with rGO coated ball in water lubrication was comparable to the value obtained with the uncoated ball in oil lubrication. Moreover, the wear rate of the SS plate slid against the rGO coated ball in water lubrication was 3-times lower than that of the SS plate slid against the uncoated ball in oil lubrication. These results clearly demonstrated that water can be effectively utilized as a lubricant instead of oil to lower the friction and wear of SS components by coating one side with rGO. Implementation of this technology in mechanical systems is expected to aid in significant reduction of environmental pollution caused by the extensive use of oil lubricants. PMID:26593645

  17. Development of Cast Alumina-Forming Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; Walker, L. R.; Meyer, H. M., III; Leonard, D. N.

    2016-09-01

    Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800-850°C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.

  18. Aging degradation of cast stainless steel: status and program

    SciTech Connect

    Chopra, O.K.; Ayrault, G.

    1983-10-01

    A program has been initiated to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are reviewed to determine the critical parameters that control the aging behavior and to define the objectives and scope of the investigation. The test matrices for microstructural studies and mechanical property measurements are presented. The initial experimental effort is focussed on characterizing the microstructure of long-term, low-temperature aged material. Specimens from three heats of cast CF-8 and CF-8M stainless steel aged for up to 70,000 h at 300, 350, and 400/sup 0/C were obtained from George Fisher Ltd., of Switzerland. Initial analyses reveal the formation of three different types of precipitates which are not ..cap alpha..'. An FCC phase, similar to the M/sub 23/C/sub 6/ precipitates, was present in all the long-term aged material. 15 references, 10 figures, 2 tables.

  19. The diffusivity of hydrogen in Nb stabilized stainless steel

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Peterson, D. T.

    1983-01-01

    The evolution of hydrogen from 347 stainless steel has been studied by using a real time dynamic technique under ultrahigh vacuum conditions. Auger electron spectroscopy was used to determine the surface composition as a function of time and temperature. The surface film on the electropolished samples was found to be approximately 15 A thick and consisted of a carbon-oxygen complex and a metal oxide (FexOy). Upon heating to 400 C, the carbon-oxygen complex desorbed as CO and the remaining oxygen and carbon began to incorporate. Also at this temperature sulfur began to diffuse out of the bulk to the surface and at approximately 800 C formed a complete monolayer. At 900 C, carbon and oxygen virtually disappeared, leaving the monolayer of sulfur as the only surface contaminant. The hydrogen diffusivity was found to follow closely the equation D = 7.01 x 10 to the -7th exp(-48.0/RT) sq m per second over the entire temperature range studied, thus indicating that hydrogen evolution is not significantly affected by the changing surface composition. The somewhat higher value of the diffusivity obtained in this work compared to past measurements in austenitic stainless steels may indicate the importance of sample preprocessing and ultrahigh vacuum conditions in minimizing the effects of surface layers.

  20. Abnormal grain growth in AISI 304L stainless steel

    SciTech Connect

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2014-11-15

    The microstructural evolution during abnormal grain growth (secondary recrystallization) in 304L stainless steel was studied in a wide range of annealing temperatures and times. At relatively low temperatures, the grain growth mode was identified as normal. However, at homologous temperatures between 0.65 (850 °C) and 0.7 (900 °C), the observed transition in grain growth mode from normal to abnormal, which was also evident from the bimodality in grain size distribution histograms, was detected to be caused by the dissolution/coarsening of carbides. The microstructural features such as dispersed carbides were characterized by optical metallography, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and microhardness. Continued annealing to a long time led to the completion of secondary recrystallization and the subsequent reappearance of normal growth mode. Another instance of abnormal grain growth was observed at homologous temperatures higher than 0.8, which may be attributed to the grain boundary faceting/defaceting phenomenon. It was also found that when the size of abnormal grains reached a critical value, their size will not change too much and the grain growth behavior becomes practically stagnant. - Highlights: • Abnormal grain growth (secondary recrystallization) in AISI 304L stainless steel • Exaggerated grain growth due to dissolution/coarsening of carbides • The enrichment of carbide particles by titanium • Abnormal grain growth due to grain boundary faceting at very high temperatures • The stagnancy of abnormal grain growth by annealing beyond a critical time.

  1. Studies of aged cast stainless steel from the Shippingport reactor

    SciTech Connect

    Chopra, O.K.

    1990-10-01

    Charpy-impact and tensile tests were conducted on several cast stainless steel materials from the Shippingport reactor. Baseline mechanical properties for unaged material were determined from tests on either recovery-annealed material, i.e., annealed for 1 h at 550{degree}C and water-quenched, or material from the cooler region of the component. The materials indicate relatively modest decreases in impact energy. The results show good agreement with estimations based on accelerated laboratory-aging studies. Correlations for estimating thermal-aging degradation of cast stainless steels indicate that the degree of embrittlement of the Shippingport materials is low. The minimum room-temperature impact energies that would ever be achieved after long-term aging are >75 J/cm{sup 2} (>45 ft{center dot}lb) for all materials. The estimated activation energies for embrittlement range from 150 to 230 kJ/mole. The estimated fracture toughness J-R curves for the materials are also presented. 14 refs., 16 figs.

  2. Development of cryogenic thermal control heat pipes. [of stainless steels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The development of thermal control heat pipes that are applicable to the low temperature to cryogenic range was investigated. A previous effort demonstrated that stainless steel axially grooved tubing which met performance requirements could be fabricated. Three heat pipe designs utilizing stainless steel axially grooved tubing were fabricated and tested. One is a liquid trap diode heat pipe which conforms to the configuration and performance requirements of the Heat Pipe Experiment Package (HEPP). The HEPP is scheduled for flight aboard the Long Duration Flight Exposure Facility (LDEF). Another is a thermal switch heat pipe which is designed to permit energy transfer at the cooler of the two identical legs. The third thermal component is a hybrid variable conductance heat pipe (VCHP). The design incorporates both a conventional VCHP system and a liquid trap diode. The design, fabrication and thermal testing of these heat pipes is described. The demonstrated heat pipe behavior including start-up, forward mode transport, recovery after evaporator dry-out, diode performance and variable conductance control are discussed.

  3. Measured Biaxial Residual Stress Maps in a Stainless Steel Weld

    DOE PAGES

    Olson, Mitchell D.; Hill, Michael R.; Patel, Vipul I.; Muransky, Ondrej; Sisneros, Thomas A.

    2015-09-16

    Here, this paper describes a sequence of residual stress measurements made to determine a two-dimensional map of biaxial residual stress in a stainless steel weld. A long stainless steel (316L) plate with an eight-pass groove weld (308L filler) was used. The biaxial stress measurements follow a recently developed approach, comprising a combination of contour method and slitting measurements, with a computation to determine the effects of out-of-plane stress on a thin slice. The measured longitudinal stress is highly tensile in the weld- and heat-affected zone, with a maximum around 450 MPa, and compressive stress toward the transverse edges around ₋250more » MPa. The total transverse stress has a banded profile in the weld with highly tensile stress at the bottom of the plate (y = 0) of 400 MPa, rapidly changing to compressive stress (at y = 5 mm) of ₋200 MPa, then tensile stress at the weld root (y = 17 mm) and in the weld around 200 MPa, followed by compressive stress at the top of the weld at around ₋150 MPa. Finally, the results of the biaxial map compare well with the results of neutron diffraction measurements and output from a computational weld simulation.« less

  4. Measured Biaxial Residual Stress Maps in a Stainless Steel Weld

    SciTech Connect

    Olson, Mitchell D.; Hill, Michael R.; Patel, Vipul I.; Muransky, Ondrej; Sisneros, Thomas A.

    2015-09-16

    Here, this paper describes a sequence of residual stress measurements made to determine a two-dimensional map of biaxial residual stress in a stainless steel weld. A long stainless steel (316L) plate with an eight-pass groove weld (308L filler) was used. The biaxial stress measurements follow a recently developed approach, comprising a combination of contour method and slitting measurements, with a computation to determine the effects of out-of-plane stress on a thin slice. The measured longitudinal stress is highly tensile in the weld- and heat-affected zone, with a maximum around 450 MPa, and compressive stress toward the transverse edges around ₋250 MPa. The total transverse stress has a banded profile in the weld with highly tensile stress at the bottom of the plate (y = 0) of 400 MPa, rapidly changing to compressive stress (at y = 5 mm) of ₋200 MPa, then tensile stress at the weld root (y = 17 mm) and in the weld around 200 MPa, followed by compressive stress at the top of the weld at around ₋150 MPa. Finally, the results of the biaxial map compare well with the results of neutron diffraction measurements and output from a computational weld simulation.

  5. Assessment of Nickel Release from Stainless Steel Crowns

    PubMed Central

    Ramazani, Nahid; Ahmadi, Rahil; Darijani, Mansure

    2014-01-01

    Objective: Adverse effects of dental materials, especially metals, have been an important issue in recent decades. Purpose of Study: The purpose of this study was to determine the amount of nickel released from stainless steel crowns in artificial saliva. Materials and Methods: In this in-vitro study, 270 stainless steel crowns were divided into five groups, each with nine subgroups. Each group (I to V) was comprised of four, five, six, seven and eight crowns, respectively. Each subgroup was placed in a polyethylene jar containing artificial saliva and held in an incubator at 37°C for four weeks. The amount of released nickel was determined on days 1, 7, 14, 21 and 28, using an atomic absorption spectrophotometer. Wilcoxon Signed-Rank and Kruskal-Wallis with Dunn’s post hoc tests (SPSS software, v. 18) were used for statistical analysis at a significance level of 0.05. Results: The mean level of nickel on day 1 was more than that of day 7; this difference was statistically significant for all groups (P < 0.05), except for group II (P = 0.086). Also, the mean difference of released nickel between the groups was significant on day 1 (P = 0.006) and was insignificant on day 7 (P = 0.620). The nickel levels were zero on days 14, 21, and 28. Conclusion: The amount of nickel was below the toxic level and did not exceed the dietary intake. PMID:25628668

  6. Thermal treatment effects on laser surface remelting duplex stainless steel

    NASA Astrophysics Data System (ADS)

    do Nascimento, Alex M.; Ierardi, Maria Clara F.; Aparecida Pinto, M.; Tavares, Sérgio S. M.

    2008-10-01

    In this paper the microstructural changes and effects on corrosion resistance of duplex stainless steels UNS S32304 and UNS S32205, commonly used by the petroleum industry, were studied, following the execution of laser surface remelting (LSM) and post-thermal treatments (TT). In this way, data was obtained, which could then be compared with the starting condition of the alloys. In order to analyze the corrosion behaviour of the alloys in the as-received conditions, treated with laser and after post-thermal treatments, cyclic polarization tests were carried out. A solution of 3.5% NaCl (artificial sea water) was used, as duplex stainless steels are regularly used by the petroleum industry in offshore locations. The results obtained showed that when laser surface treated, due to rapid resolidification, the alloys became almost ferritic, and since the level of nitrogen in the composition of both alloys is superior to their solubility limit in ferrite, a precipitation of Cr2N (chromium nitrides) occurred in the ferritic matrix, causing loss of corrosion resistance, thus resulting in an increase in surface hardness. However, after the post-thermal treatment the alloys corrosion resistance was restored to values close to those of the as-received condition.

  7. Characterization of particle exposure in ferrochromium and stainless steel production.

    PubMed

    Järvelä, Merja; Huvinen, Markku; Viitanen, Anna-Kaisa; Kanerva, Tomi; Vanhala, Esa; Uitti, Jukka; Koivisto, Antti J; Junttila, Sakari; Luukkonen, Ritva; Tuomi, Timo

    2016-07-01

    This study describes workers' exposure to fine and ultrafine particles in the production chain of ferrochromium and stainless steel during sintering, ferrochromium smelting, stainless steel melting, and hot and cold rolling operations. Workers' personal exposure to inhalable dust was assessed using IOM sampler with a cellulose acetate filter (AAWP, diameter 25 mm; Millipore, Bedford, MA). Filter sampling methods were used to measure particle mass concentrations in fixed locations. Particle number concentrations and size distributions were examined using an SMPS+C sequential mobile particle sizer and counter (series 5.400, Grimm Aerosol Technik, Ainring, Germany), and a hand-held condensation particle counter (CPC, model 3007, TSI Incorporated, MN). The structure and elemental composition of particles were analyzed using TEM-EDXA (TEM: JEM-1220, JEOL, Tokyo, Japan; EDXA: Noran System Six, Thermo Fisher Scientific Inc., Madison,WI). Workers' personal exposure to inhalable dust averaged 1.87, 1.40, 2.34, 0.30, and 0.17 mg m(-3) in sintering plant, ferrochromium smelter, stainless steel melting shop, hot rolling mill, and the cold rolling mill, respectively. Particle number concentrations measured using SMPS+C varied from 58 × 10(3) to 662 × 10(3) cm(-3) in the production areas, whereas concentrations measured using SMPS+C and CPC3007 in control rooms ranged from 24 × 10(3) to 243 × 10(3) cm(-3) and 5.1 × 10(3) to 97 × 10(3) cm(-3), respectively. The elemental composition and the structure of particles in different production phases varied. In the cold-rolling mill non-process particles were abundant. In other sites, chromium and iron originating from ore and recycled steel scrap were the most common elements in the particles studied. Particle mass concentrations were at the same level as that reported earlier. However, particle number measurements showed a high amount of ultrafine particles, especially in sintering, alloy smelting and melting, and tapping

  8. Characterization of particle exposure in ferrochromium and stainless steel production.

    PubMed

    Järvelä, Merja; Huvinen, Markku; Viitanen, Anna-Kaisa; Kanerva, Tomi; Vanhala, Esa; Uitti, Jukka; Koivisto, Antti J; Junttila, Sakari; Luukkonen, Ritva; Tuomi, Timo

    2016-07-01

    This study describes workers' exposure to fine and ultrafine particles in the production chain of ferrochromium and stainless steel during sintering, ferrochromium smelting, stainless steel melting, and hot and cold rolling operations. Workers' personal exposure to inhalable dust was assessed using IOM sampler with a cellulose acetate filter (AAWP, diameter 25 mm; Millipore, Bedford, MA). Filter sampling methods were used to measure particle mass concentrations in fixed locations. Particle number concentrations and size distributions were examined using an SMPS+C sequential mobile particle sizer and counter (series 5.400, Grimm Aerosol Technik, Ainring, Germany), and a hand-held condensation particle counter (CPC, model 3007, TSI Incorporated, MN). The structure and elemental composition of particles were analyzed using TEM-EDXA (TEM: JEM-1220, JEOL, Tokyo, Japan; EDXA: Noran System Six, Thermo Fisher Scientific Inc., Madison,WI). Workers' personal exposure to inhalable dust averaged 1.87, 1.40, 2.34, 0.30, and 0.17 mg m(-3) in sintering plant, ferrochromium smelter, stainless steel melting shop, hot rolling mill, and the cold rolling mill, respectively. Particle number concentrations measured using SMPS+C varied from 58 × 10(3) to 662 × 10(3) cm(-3) in the production areas, whereas concentrations measured using SMPS+C and CPC3007 in control rooms ranged from 24 × 10(3) to 243 × 10(3) cm(-3) and 5.1 × 10(3) to 97 × 10(3) cm(-3), respectively. The elemental composition and the structure of particles in different production phases varied. In the cold-rolling mill non-process particles were abundant. In other sites, chromium and iron originating from ore and recycled steel scrap were the most common elements in the particles studied. Particle mass concentrations were at the same level as that reported earlier. However, particle number measurements showed a high amount of ultrafine particles, especially in sintering, alloy smelting and melting, and tapping

  9. Studies on Stress Corrosion Cracking of Super 304H Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Prabha, B.; Sundaramoorthy, P.; Suresh, S.; Manimozhi, S.; Ravishankar, B.

    2009-12-01

    Stress corrosion cracking (SCC) is a common mode of failure encountered in boiler components especially in austenitic stainless steel tubes at high temperature and in chloride-rich water environment. Recently, a new type of austenitic stainless steels called Super304H stainless steel, containing 3% copper is being adopted for super critical boiler applications. The SCC behavior of this Super 304H stainless steel has not been widely reported in the literature. Many researchers have studied the SCC behavior of steels as per various standards. Among them, the ASTM standard G36 has been widely used for evaluation of SCC behavior of stainless steels. In this present work, the SCC behavior of austenitic Fe-Cr-Mn-Cu-N stainless steel, subjected to chloride environments at varying strain conditions as per ASTM standard G36 has been studied. The environments employed boiling solution of 45 wt.% of MgCl2 at 155 °C, for various strain conditions. The study reveals that the crack width increases with increase in strain level in Super 304H stainless steels.

  10. Aerosol measurements from plasma torch cuts on stainless steel, carbon steel, and aluminum

    SciTech Connect

    Novick, V.J.; Brodrick, C.J.; Crawford, S.; Nasiatka, J.; Pierucci, K.; Reyes, V.; Sambrook, J.; Wrobel, S.; Yeary, J.

    1996-01-01

    The main purpose of this project is to quantify aerosol particle size and generation rates produced by a plasma torch whencutting stainless steel, carbon steel and aluminum. the plasma torch is a common cutting tool used in the dismantling of nuclear facilities. Eventually, other cutting tools will be characterized and the information will be compiled in a user guide to aid in theplanning of both D&D and other cutting operations. The data will be taken from controlled laboratory experiments on uncontaminated metals and field samples taken during D&D operations at ANL nuclear facilities. The plasma torch data was collected from laboratory cutting tests conducted inside of a closed, filtered chamber. The particle size distributions were determined by isokinetically sampling the exhaust duct using a cascade impactor. Cuts on different thicknesses showed there was no observable dependence of the aerosol quantity produced as a function of material thickness for carbon steel. However, data for both stainless steel and aluminum revealed that the aerosol mass produced for these materials appear to have some dependance on thickness, with thinner materials producing tmore aerosols. The results of the laboratory cutting tests show that most measured particle size distributions are bimodal with one mode at about 0.2 {mu}m and the other at about 10 {mu}m. The average Mass Median Aerodynamic Diameters (MMAD`s) for these tests are 0.36 {+-}0.08 {mu}m for stainless steel, 0.48 {+-}0.17{mu}m for aluminum and 0.52{+-}0.12 {mu}m for carbon steel.

  11. Attenuation of shock waves in copper and stainless steel

    SciTech Connect

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs.

  12. Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats.

    PubMed

    Antonini, James M; Roberts, Jenny R; Stone, Samuel; Chen, Bean T; Schwegler-Berry, Diane; Chapman, Rebecca; Zeidler-Erdely, Patti C; Andrews, Ronnee N; Frazer, David G

    2011-05-01

    Welding generates complex metal fumes that vary in composition. The objectives of this study were to compare the persistence of deposited metals and the inflammatory potential of stainless and mild steel welding fumes, the two most common fumes used in US industry. Sprague-Dawley rats were exposed to 40 mg/m(3) of stainless or mild steel welding fumes for 3 h/day for 3 days. Controls were exposed to filtered air. Generated fume was collected, and particle size and elemental composition were determined. Bronchoalveolar lavage was done on days 0, 8, 21, and 42 after the last exposure to assess lung injury/inflammation and to recover lung phagocytes. Non-lavaged lung samples were analyzed for total and specific metal content as a measure of metal persistence. Both welding fumes were similar in particle morphology and size. Following was the chemical composition of the fumes-stainless steel: 57% Fe, 20% Cr, 14% Mn, and 9% Ni; mild steel: 83% Fe and 15% Mn. There was no effect of the mild steel fume on lung injury/inflammation at any time point compared to air control. Lung injury and inflammation were significantly elevated at 8 and 21 days after exposure to the stainless steel fume compared to control. Stainless steel fume exposure was associated with greater recovery of welding fume-laden macrophages from the lungs at all time points compared with the mild steel fume. A higher concentration of total metal was observed in the lungs of the stainless steel welding fume at all time points compared with the mild steel fume. The specific metals present in the two fumes were cleared from the lungs at different rates. The potentially more toxic metals (e.g., Mn, Cr) present in the stainless steel fume were cleared from the lungs more quickly than Fe, likely increasing their translocation from the respiratory system to other organs.

  13. Dissimilar Friction Stir Welding Between UNS S31603 Austenitic Stainless Steel and UNS S32750 Superduplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Theodoro, Maria Claudia; Pereira, Victor Ferrinho; Mei, Paulo Roberto; Ramirez, Antonio Jose

    2015-02-01

    In order to verify the viability of dissimilar UNS S31603 austenitic and UNS S32750 superduplex stainless steels joined by friction stir welding, 6-mm-thick plates were welded using a PCBN-WRe tool. The welded joints were performed in position control mode at rotational speeds of 100 to 300 rpm and a feed rate of 100 mm/min. The joints performed with 150 and 200 rpm showed good appearance and no defects. The metallographic analysis of both joints showed no internal defects and that the material flow pattern is visible only in the stirred zone (SZ) of the superduplex steel. On the SZ top, these patterns are made of regions of different phases (ferrite and austenite), and on the bottom and central part of the SZ, these patterns are formed by alternated regions of different grain sizes. The ferrite grains in the superduplex steel are larger than those in the austenitic ones along the SZ and thermo-mechanically affected zone, explained by the difference between austenite and ferrite recrystallization kinetics. The amount of ferrite islands present on the austenitic steel base metal decreased near the SZ interface, caused by the dissolving of the ferrite in austenitic matrix. No other phases were found in both joints. The best weld parameters were found to be 200 rpm rotation speed, 100 mm/min feed rate, and tool position control.

  14. Structural integrity assessment of type 201LN stainless steel cryogenic pressure vessels

    SciTech Connect

    Rana, M.D.; Zawierucha, R.

    1995-12-01

    The ASME Boiler and Pressure Vessel Code Committee approved the Code Case 2123 in 1992 which allows the use of Type 201LN stainless steel in the construction of ASME Section VIII, Division 1 and Division 2 pressure vessels for -320{degrees}F applications. Type 201LN stainless steel is a nitrogen strengthened modified version of ASTM A240, Type 201 stainless steel with a restricted chemistry. The Code allowable design stresses for Type 201LN for Division 1 vessels are approximately 27% higher than Type 304 stainless steel and equal to that of the 5 Ni and 9 Ni steels. This paper discusses the important features of the Code Case 2123 and the structural integrity assessment of Type 201LN stainless steel cryogenic vessels. Tensile, Charpy-V-notch and fracture properties have been obtained on several heats of this steel including weldments. A linear-elastic fracture mechanics analysis has been conducted to assess the expected fracture mode and the fracture-critical crack sizes. The results have been compared with Type 304 stainless steel, 5 Ni and 9 Ni steel vessels.

  15. 76 FR 2708 - Porcelain-on-Steel Cooking Ware From Taiwan; Top-of-the-Stove Stainless Steel Cooking Ware From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... (Third Review)] Porcelain-on-Steel Cooking Ware From Taiwan; Top-of-the-Stove Stainless Steel Cooking... revocation of the antidumping duty order on imports of porcelain-on-steel cooking ware from Taiwan and the antidumping and countervailing duty orders on imports of top-of-the- stove stainless steel cooking ware...

  16. Modified Monkman-Grant relationship for austenitic stainless steel foils

    NASA Astrophysics Data System (ADS)

    Osman Ali, Hassan; Tamin, Mohd Nasir

    2013-02-01

    Characteristics of creep deformation for austenitic stainless steel foils are examined using the modified Monkman-Grant equation. A series of creep tests are conducted on AISI 347 steel foils at 700 °C and different stress levels ranging from 54 to 221 MPa. Results showed that at lower stress levels below 110 MPa, the creep life parameters ɛ, ɛr, tr can be expressed using the modified Monkman-Grant equation with exponent m'= 0.513. This indicates significant deviation of the creep behavior from the first order reaction kinetics theory for creep (m' = 1.0). The true tertiary creep damage in AISI 347 steel foil begins after 65.9% of the creep life of the foil has elapsed at stress levels above 150 MPa. At this high stress levels, Monkman-Grant ductility factor λ' saturates to a value of 1.3 with dislocation-controlled deformation mechanisms operating. At low stress levels, λ' increases drastically (λ'=190 at 54 MPa) when slow diffusion-controlled creep is dominant.

  17. Accurate modelling of anisotropic effects in austenitic stainless steel welds

    SciTech Connect

    Nowers, O. D.; Duxbury, D. J.; Drinkwater, B. W.

    2014-02-18

    The ultrasonic inspection of austenitic steel welds is challenging due to the formation of highly anisotropic and heterogeneous structures post-welding. This is due to the intrinsic crystallographic structure of austenitic steel, driving the formation of dendritic grain structures on cooling. The anisotropy is manifested as both a ‘steering’ of the ultrasonic beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the quantitative effects and relative impacts of these phenomena are not well-understood. A semi-analytical simulation framework has been developed to allow the study of anisotropic effects in austenitic stainless steel welds. Frequency-dependent scatterers are allocated to a weld-region to approximate the coarse grain-structures observed within austenitic welds and imaged using a simulated array. The simulated A-scans are compared against an equivalent experimental setup demonstrating excellent agreement of the Signal to Noise (S/N) ratio. Comparison of images of the simulated and experimental data generated using the Total Focusing Method (TFM) indicate a prominent layered effect in the simulated data. A superior grain allocation routine is required to improve upon this.

  18. Experimental and Theoretical Investigations of Hot Isostatically Pressed-Produced Stainless Steel/High Alloy Tool Steel Compound Materials

    NASA Astrophysics Data System (ADS)

    Lindwall, Greta; Flyg, Jesper; Frisk, Karin; Sandberg, Odd

    2011-05-01

    Consolidation of tool steel powders and simultaneous joining to a stainless 316L steel are performed by hot isostatic pressing (HIP). Two tool steel grades are considered: a high vanadium alloyed carbon tool steel, and a high vanadium and chromium alloyed nitrogen tool steel. The boundary layer arising during diffusion bonding is in focus and, in particular, the diffusion of carbon and nitrogen over the joint. Measurements of the elemental concentration profiles and corrosion tests by the double loop-electrochemical potentiokinetic reactivation (DL-EPR) method are performed. Comparative calculations with the DICTRA software are performed and are found to be in agreement with the experimental results. It is found that the carbon tool steel grade has a more critical influence on the corrosion resistance of the stainless 316L steel in comparison to the nitrogen tool steel grade.

  19. Development of high-strength, high-corrosion resistant austenitic stainless steel for sour gas service

    SciTech Connect

    Nakayama, T.; Fujiwara, K.; Torii, Y.; Inoue, T.

    1988-01-01

    An austenitic stainless steel for sour gas service has been developed. The new steel has been shown to offer high strength, i.e., 0.2% PS exceeding 42kgf/mm/sup 2/ (414MPa) under solution-annealed conditions, along with excellent resistance to sulphide stress corrosion cracking, pitting corrosion, and crevice corrosion, in comparison with conventional martensitic stainless steel such as CA-6NM, duplex stainless steel such as ASTM A790 UNS S31803, and austenitic stainless steels such as Type 316. Its higher resistance to corrosion cracking, etc., then Type 316 was thought to be attributable to the higher contents of Cr, Mo, and N, which help to form more stable passive film in a shorter time.

  20. A historical prospective study of European stainless steel, mild steel, and shipyard welders.

    PubMed

    Simonato, L; Fletcher, A C; Andersen, A; Anderson, K; Becker, N; Chang-Claude, J; Ferro, G; Gérin, M; Gray, C N; Hansen, K S

    1991-03-01

    A multicentre cohort of 11,092 male welders from 135 companies located in nine European countries has been assembled with the aim of investigating the relation of potential cancer risk, lung cancer in particular, with occupational exposure. The observation period and the criteria for inclusion of welders varied from country to country. Follow up was successful for 96.9% of the cohort and observed numbers of deaths (and for some countries incident cancer cases) were compared with expected numbers calculated from national reference rates. Mortality and cancer incidence ratios were analysed by cause category, time since first exposure, duration of employment, and estimated cumulative dose to total fumes, chromium (Cr), Cr VI, and nickel (Ni). Overall a statistically significant excess was reported for mortality from lung cancer (116 observed v 86.81 expected deaths, SMR = 134). When analysed by type of welding an increasing pattern with time since first exposure was present for both mild steel and stainless steel welders, which was more noticeable for the subcohort of predominantly stainless steel welders. No clear relation was apparent between mortality from lung cancer and duration of exposure to or estimated cumulative dose of Ni or Cr. Whereas the patterns of lung cancer mortality in these results suggest that the risk of lung cancer is higher for stainless steel than mild steel welders the different level of risk for these two categories of welding exposure cannot be quantified with precision. The report of five deaths from pleural mesothelioma unrelated to the type of welding draws attention to the risk of exposure to asbestos in welding activities.

  1. A historical prospective study of European stainless steel, mild steel, and shipyard welders.

    PubMed Central

    Simonato, L; Fletcher, A C; Andersen, A; Anderson, K; Becker, N; Chang-Claude, J; Ferro, G; Gérin, M; Gray, C N; Hansen, K S

    1991-01-01

    A multicentre cohort of 11,092 male welders from 135 companies located in nine European countries has been assembled with the aim of investigating the relation of potential cancer risk, lung cancer in particular, with occupational exposure. The observation period and the criteria for inclusion of welders varied from country to country. Follow up was successful for 96.9% of the cohort and observed numbers of deaths (and for some countries incident cancer cases) were compared with expected numbers calculated from national reference rates. Mortality and cancer incidence ratios were analysed by cause category, time since first exposure, duration of employment, and estimated cumulative dose to total fumes, chromium (Cr), Cr VI, and nickel (Ni). Overall a statistically significant excess was reported for mortality from lung cancer (116 observed v 86.81 expected deaths, SMR = 134). When analysed by type of welding an increasing pattern with time since first exposure was present for both mild steel and stainless steel welders, which was more noticeable for the subcohort of predominantly stainless steel welders. No clear relation was apparent between mortality from lung cancer and duration of exposure to or estimated cumulative dose of Ni or Cr. Whereas the patterns of lung cancer mortality in these results suggest that the risk of lung cancer is higher for stainless steel than mild steel welders the different level of risk for these two categories of welding exposure cannot be quantified with precision. The report of five deaths from pleural mesothelioma unrelated to the type of welding draws attention to the risk of exposure to asbestos in welding activities. PMID:2015204

  2. The effect of a tin barrier layer on the permeability of hydrogen through mild steel and ferritic stainless steel

    SciTech Connect

    Bowker, J.; Piercy, G.R.

    1984-11-01

    Experiments were performed to measure the effectiveness of a commercially electroplated tin layer as a barrier to hydrogen, and to see how this altered when the tin layer was converted to FeSn. The authors measured the permeability of hydrogen through AISI 410 ferritic stainless steel and determined the effectiveness of tin as a surface barrier on it. The measured values for the permeability of hydrogen in iron and ferritic stainless steel are shown.

  3. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro.

    PubMed

    Li, Menghua; Yin, Tieying; Wang, Yazhou; Du, Feifei; Zou, Xingzheng; Gregersen, Hans; Wang, Guixue

    2014-10-01

    Adverse effects of nickel ions being released into the living organism have resulted in development of high nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also improves steel properties. The cell cytocompatibility, blood compatibility and cell response of high nitrogen nickel-free austenitic stainless steel were studied in vitro. The mechanical properties and microstructure of this stainless steel were compared to the currently used 316L stainless steel. It was shown that the new steel material had comparable basic mechanical properties to 316L stainless steel and preserved the single austenite organization. The cell toxicity test showed no significant toxic side effects for MC3T3-E1 cells compared to nitinol alloy. Cell adhesion testing showed that the number of MC3T3-E1 cells was more than that on nitinol alloy and the cells grew in good condition. The hemolysis rate was lower than the national standard of 5% without influence on platelets. The total intracellular protein content and ALP activity and quantification of mineralization showed good cell response. We conclude that the high nitrogen nickel-free austenitic stainless steel is a promising new biomedical material for coronary stent development. PMID:25175259

  4. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro.

    PubMed

    Li, Menghua; Yin, Tieying; Wang, Yazhou; Du, Feifei; Zou, Xingzheng; Gregersen, Hans; Wang, Guixue

    2014-10-01

    Adverse effects of nickel ions being released into the living organism have resulted in development of high nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also improves steel properties. The cell cytocompatibility, blood compatibility and cell response of high nitrogen nickel-free austenitic stainless steel were studied in vitro. The mechanical properties and microstructure of this stainless steel were compared to the currently used 316L stainless steel. It was shown that the new steel material had comparable basic mechanical properties to 316L stainless steel and preserved the single austenite organization. The cell toxicity test showed no significant toxic side effects for MC3T3-E1 cells compared to nitinol alloy. Cell adhesion testing showed that the number of MC3T3-E1 cells was more than that on nitinol alloy and the cells grew in good condition. The hemolysis rate was lower than the national standard of 5% without influence on platelets. The total intracellular protein content and ALP activity and quantification of mineralization showed good cell response. We conclude that the high nitrogen nickel-free austenitic stainless steel is a promising new biomedical material for coronary stent development.

  5. Electrochemical Behavior of 2205 Duplex Stainless Steel in NaCl Solution with Different Chromate Contents

    NASA Astrophysics Data System (ADS)

    Luo, H.; Dong, C. F.; Cheng, X. Q.; Xiao, K.; Li, X. G.

    2012-07-01

    The electrochemical behavior of 2205 duplex stainless steel in NaCl solution with different chromate contents were investigated by potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis, and scanning electron microscope (SEM). The effect of chromate on passivity and pitting behavior of stainless steel was also studied. The results showed that pitting susceptibility as well as semiconducting properties of passive film is heavily dependent on the chromate concentration. There exists a critical chromate value (about 0.03 M in 1 M NaCl solutions) below which the pitting corrosion on the stainless steel would be inhibited and above which it would be accelerated.

  6. Adhesion of a fluorinated poly(amic acid) with stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Jung, Youngsuk; Song, Sunjin; Kim, Sangmo; Yang, Yooseong; Chae, Jungha; Park, Tai-Gyoo; Dong Cho, Myung

    2013-01-01

    The authors elucidate an origin and probable mechanism of adhesion strength change at an interface of fluorinated poly(amic acid) and stainless steel. Fluorination provides favorable delamination with release strength weaker than 0.08 N/mm from a metal surface, once the amount of residual solvent becomes less than 35 wt. %. However, the release strength critically depends on film drying temperature. Characterization on stainless steel surfaces and thermodynamic analyses on wet films reveal a drying temperature of 80 °C fosters interaction between the metal oxides at stainless steel surface and the free electron donating groups in poly(amic acid).

  7. The stainless steel crown debate: friend or foe?

    PubMed

    Uston, Karen A; Estrella, Maria Regina P

    2011-01-01

    In this article, we will explore the use of the stainless steel crown (SSC) in dentistry today. For the pediatric population, many factors can affect the choice of restoration, such as the variations between primary and permanent tooth morphology, oral environment, and patient selection. The current literature and dentistry guidelines encourage dentists to make an informed decision when determining the restoration recommended for a carious primary molar. To further help educate dental providers on the topic of SSCs the following items will be reviewed: the indications; techniques for placement; advantages; and drawbacks when compared to alternative restorative materials. Regardless of personal opinion, the SSC should continue to be recognized for its efficiency, cost-effectiveness, and successful treatment modality.

  8. Hydrogen effects in duplex stainless steel welded joints - electrochemical studies

    NASA Astrophysics Data System (ADS)

    Michalska, J.; Łabanowski, J.; Ćwiek, J.

    2012-05-01

    In this work results on the influence of hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel (DSS) welded joints are described. The results were discussed by taking into account three different areas on the welded joint: weld metal (WM), heat-affected zone (HAZ) and parent metal. The corrosion resistance was qualified with the polarization curves registered in a synthetic sea water. The conclusion is that, hydrogen may seriously deteriorate the passive film stability and corrosion resistance to pitting of 2205 DSS welded joints. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen degradation was dependent on the hydrogen charging conditions. WM region has been revealed as the most sensitive to hydrogen action.

  9. Strain oxidation cracking of austenitic stainless steels at 610 C

    SciTech Connect

    Calvar, M. Le; Scott, P.M.; Magnin, T.; Rieux, P.

    1998-02-01

    Strain oxidation cracking of both forged and welded austenitic stainless steels (SS) was studied. Creep and slow strain rate tests (SSRT) were performed in vacuum, air, and a gas furnace environment (air + carbon dioxide [CO{sub 2}] + water [H{sub 2}O]). Results showed cracking was environmentally dependent. Almost no cracking was observed in vacuum, whereas intergranular cracking was observed with increasing severity in passing from an air to a gas furnace environment. The most severe cracking was associated with formation of a less protective film formed in the gas furnace environment (air: haematite-like M{sub 2}O{sub 3} oxide; gas furnace environment: spinel M{sub 3}O{sub 4} oxide). Cracking depended strongly on the carbon content and the sensitization susceptibility of the material: the higher the carbon content, the more susceptible the alloy. This cracking was believed to be similar to other oxidation-induced cracking phenomena.

  10. Directional solidification studies of ternary austenitic stainless steels

    SciTech Connect

    Carder, K.H.

    1986-01-01

    The transformation of ferrite to austenite during the solidification of stainless steel welds and the subsequent tendencies toward microcracking are topics of considerable ''renewed'' interest. This revival of interest is due mainly to the use of high energy joining processes such as electron beam and laser welding into commercial practice. The rapid rates of solidification and cooling encountered in utilizing these processes have a significant effect on the amount of delta ferrite retained in the microstructure at room temperature. The present study is aimed at obtaining a correlation between solidification rates and microstructure. A directional solidification apparatus with controlled heat flows was designed and developed. This apparatus was used to determine the effect of velocity on the mode of solidification and the amount of ferrite retained in the microstructure at room temperature.

  11. Weld Properties of a Free Machining Stainless Steel

    SciTech Connect

    J. A. Brooks; S. H. Goods; C. V. Robino

    2000-08-01

    The all weld metal tensile properties from gas tungsten arc and electron beam welds in free machining austenitic stainless steels have been determined. Ten heats with sulfur contents from 0.04 to 0.4 wt.% and a wide range in Creq/Nieq ratios were studied. Tensile properties of welds with both processes were related to alloy composition and solidification microstructure. The yield and ultimate tensile strengths increased with increasing Creq/Nieq ratios and ferrite content, whereas the ductility measured by RA at fracture decreased with sulfur content. Nevertheless, a range in alloy compositions was identified that provided a good combination of both strength and ductility. The solidification cracking response for the same large range of compositions are discussed, and compositions identified that would be expected to provide good performance in welded applications.

  12. Influence of ultrasonic cavitation on passive film of stainless steel.

    PubMed

    Wang, Bao-Cheng; Zhu, Jin-hua

    2008-03-01

    The electrochemical behaviors of passive film of stainless steel 0Cr13Ni5Mo under the condition of static state (quiescence) and ultrasonic cavitation in the HCl solution have been studied by means of polarization curve, electrochemical impedance spectroscopy (EIS) and capacitance potential measurement. The results indicate that the passive film shows a multi layer structure distribution, and presents a p-type semiconductor property under the condition of quiescence. The stability of passive film decreases, the semiconducting property changes to an n-type semiconductor in the presence of cavitation. The amount of transition electrons from valence band because of cavitation is related to the height of Fermi level of passive film semiconductor. PMID:17584517

  13. Crevice and pitting corrosion behavior of stainless steels in seawater

    SciTech Connect

    Zaragoza-Ayala, A.E.; Orozco-Cruz, R.

    1999-11-01

    Pitting and crevice corrosion tests in natural seawater were performed on a series of stainless steels (i.e., S31603, N08904, S32304, S31803, S32520, N08925 and S31266) in order to determine their resistance to these types of localized corrosion. Open circuit potential (OCP) measurements for these alloys show for short exposure times an ennoblement in the OCP. After a certain time, occasional fall and rise in the OCP values was observed, which can be related to nucleation and repassivation of pits and/or crevices on the metal surface. Analysis of the electrochemical behavior and microscopic observations shows that only S31603 and S32304 alloys were susceptible to crevice and pitting corrosion, whereas the remaining alloys exhibited good resistance. Pitting potentials determined by the potentiodynamic technique also show S3 1603 and S32304 are susceptible to pitting corrosion under the experimental conditions used in this work.

  14. Fracture properties evaluation of stainless steel piping for LBB applications

    SciTech Connect

    Kim, Y.J.; Seok, C.S.; Chang, Y.S.

    1997-04-01

    The objective of this paper is to evaluate the material properties of SA312 TP316 and SA312 TP304 stainless steels and their associated welds manufactured for shutdown cooling line and safety injection line of nuclear generating stations. A total of 82 tensile tests and 58 fracture toughness tests on specimens taken from actual pipes were performed and the effect of various parameters such as the pipe size, the specimen orientation, the test temperature and the welding procedure on the material properties are discussed. Test results show that the effect of the test temperature on the fracture toughness was significant while the effects of the pipe size and the specimen orientation on the fracture toughness were negligible. The material properties of the GTAW weld metal was in general higher than those of the base metal.

  15. Formability analysis of austenitic stainless steel-304 under warm conditions

    NASA Astrophysics Data System (ADS)

    Lade, Jayahari; Singh, Swadesh Kumar; Banoth, Balu Naik; Gupta, Amit Kumar

    2013-12-01

    A warm deep drawing process of austenitic stainless steel-304 (ASS-304) of circular blanks with coupled ther mal analysis is studied in this article. 65 mm blanks were deep drawn at different temperatures and thickness distribution is experimentally measured after cutting the drawn component into two halves. The process is simulated using explicit fin ite element code LS-DYNA. A Barlat 3 parameter model is used in the simulation, as the material is anisotropic up to 30 0°C. Material properties for the simulation are determined at different temperatures using a 5 T UTM coupled with a furn ace. In this analysis constant punch speed and variable blank holder force (BHF) is applied to draw cups without wrinkle.

  16. Dynamic recrystallization in friction surfaced austenitic stainless steel coatings

    SciTech Connect

    Puli, Ramesh Janaki Ram, G.D.

    2012-12-15

    Friction surfacing involves complex thermo-mechanical phenomena. In this study, the nature of dynamic recrystallization in friction surfaced austenitic stainless steel AISI 316L coatings was investigated using electron backscattered diffraction and transmission electron microscopy. The results show that the alloy 316L undergoes discontinuous dynamic recrystallization under conditions of moderate Zener-Hollomon parameter during friction surfacing. - Highlights: Black-Right-Pointing-Pointer Dynamic recrystallization in alloy 316L friction surfaced coatings is examined. Black-Right-Pointing-Pointer Friction surfacing leads to discontinuous dynamic recrystallization in alloy 316L. Black-Right-Pointing-Pointer Strain rates in friction surfacing exceed 400 s{sup -1}. Black-Right-Pointing-Pointer Estimated grain size matches well with experimental observations in 316L coatings.

  17. Ultrasound treatment of centrifugally atomized 316 stainless steel powders

    NASA Astrophysics Data System (ADS)

    Rawers, James C.; McCune, Robert A.; Dunning, John S.

    1991-12-01

    The Bureau of Mines is studying the surface characteristics of rapidly solidified powders and the potential for surface modification of fine powders prior to consolidation. The surface modification and work hardening of fine powders were accomplished by applying high-energy ultrasound to centrifugally atomized austenitic 316 stainless steel powders suspended in liquid media. Cavitation implosion changed the surface morphology, hammering the surface and occasionally fretting off microchips of work-hardened metal. Ultrasound-cavitation work-hardened metal powder surfaces producing a strained, duplex austenite face-centered cubic (fcc)-martensite body-centered tetragonal (bct) phase structure. The amount of work hardening depended upon the quantity of ultrasound energy used, considering both power level and experimental time. Work hardening was relatively independent of the liquid media used.

  18. Interface nanochemistry effects on stainless steel diffusion bonding

    NASA Astrophysics Data System (ADS)

    Cox, M. J.; Carpenter, R. W.; Kim, M. J.

    2002-02-01

    The diffusion-bonding behavior of single-phase austenitic stainless steel depends strongly on the chemistry of the surfaces to be bounded. We found that very smooth (0.5 nm root-mean-square (RMS) roughness), mechanically polished and lapped substrates would bond completely in ultrahigh vacuum (UHV) in 1 hour at 1000 °C under 3.5 MPa uniaxial pressure, if the native oxide on the substrates was removed by ion-beam cleaning, as shown by in-situ Auger analysis. No voids were observed in these bonded interfaces by transmission electron microscopy (TEM), and the strength was equal to that of the unbounded bare material. No bond formed between the substrates if in-situ ion cleaning was not used. The rougher cleaned substrates partially bonded, indicating that roughness, as well as native oxides, reduced the bonding kinetics.

  19. Electromagnetic non-destructive technique for duplex stainless steel characterization

    NASA Astrophysics Data System (ADS)

    Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela

    2016-02-01

    Duplex stainless steel (DSS) is a two-phase (ferrite and austenite) material, which exhibits an attractive combination of mechanical properties and high corrosion resistance, being commonly employed for equipment of petrochemical plants, refining units and oil & gas platforms. The best properties of DSS are achieved when the phases are in equal proportions. However, exposition to high temperatures (e.g. welding process) may entail undesired consequences, such as deleterious phases precipitation (e.g. sigma, chi) and different proportion of the original phases, impairing dramatically the mechanical and corrosion properties of the material. A detailed study of the magnetic behavior of DSS microstructure with different ferrite austenite ratios and deleterious phases content was accomplished. The non destructive method evaluates the electromagnetic properties changes in the material and is capable to identify the presence of deleterious phases into DSS microstructure.

  20. Evaluation of Alternate Stainless Steel Surface Passivation Methods

    SciTech Connect

    Clark, Elliot A.

    2005-05-31

    Stainless steel containers were assembled from parts passivated by four commercial vendors using three passivation methods. The performance of these containers in storing hydrogen isotope mixtures was evaluated by monitoring the composition of initially 50% H{sub 2} 50% D{sub 2} gas with time using mass spectroscopy. Commercial passivation by electropolishing appears to result in surfaces that do not catalyze hydrogen isotope exchange. This method of surface passivation shows promise for tritium service, and should be studied further and considered for use. On the other hand, nitric acid passivation and citric acid passivation may not result in surfaces that do not catalyze the isotope exchange reaction H{sub 2} + D{sub 2} {yields} 2HD. These methods should not be considered to replace the proprietary passivation processes of the two current vendors used at the Savannah River Site Tritium Facility.

  1. Corrosion resistance of kolsterised austenitic 304 stainless steel

    SciTech Connect

    Abudaia, F. B. Khalil, E. O. Esehiri, A. F. Daw, K. E.

    2015-03-30

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe{sub 2}C{sub 5}. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  2. Documentation of Stainless Steel Lithium Circuit Test Section Design. Suppl

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas J. (Compiler); Martin, James J.

    2010-01-01

    The Early Flight Fission-Test Facilities (EFF-TF) team was tasked by Naval Reactors Prime Contract Team (NRPCT) to design, fabricate, and test an actively pumped lithium (Li) flow circuit. This Li circuit takes advantage of work in progress at the EFF TF on a stainless steel sodium/potassium (NaK) circuit. The effort involved modifying the original stainless steel NaK circuit such that it could be operated with Li in place of NaK. This new design considered freeze/thaw issues and required the addition of an expansion tank and expansion/extrusion volumes in the circuit plumbing. Instrumentation has been specified for Li and circuit heaters have been placed throughout the design to ensure adequate operational temperatures and no uncontrolled freezing of the Li. All major components have been designed and fabricated prior to circuit redesign for Li and were not modified. Basic circuit components include: reactor segment, Li to gas heat exchanger, electromagnetic liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. The reactor segment, based on a Los Alamos National Laboratory 100-kW design study with 120 fuel pins, is the only prototypic component in the circuit. However, due to earlier funding constraints, a 37-pin partial-array of the core, including the central three rings of fuel pins (pin and flow path dimensions are the same as those in the full design), was selected for fabrication and test. This Technical Publication summarizes the design and integration of the pumped liquid metal Li flow circuit as of May 1, 2005. This supplement contains drawings, analysis, and calculations

  3. Laser resistant stainless steel endotracheal tube: experimental and clinical evaluation.

    PubMed

    Fried, M P; Mallampati, S R; Liu, F C; Kaplan, S; Caminear, D S; Samonte, B R

    1991-01-01

    A fire due to endotracheal tube (ET) ignition is a catastrophic event that may occur during laser surgery of the upper airway, regardless of the wavelength utilized. Although methods exist that permit laser surgery without an ET, this is frequently not feasible. The current investigation was undertaken to evaluate the efficacy of a double-cuffed stainless steel ET, first in the laboratory and subsequently in a clinical setting. Bench testing was performed using CO2 (both standard and milliwatt) and KTP/532 lasers. Only the distal polyvinyl chloride cuffed end of the tube was potentially ignitable, however, the appropriate use of saline to fill the cuffs allowed only for cuff perforation without ignition. Canine testing was performed in 10 animals: 4 dogs were intubated from 3 to 4.5 hours with the laser resistant stainless steel endotracheal tube (LRSS-ET) (Laser-Flex Tracheal Tube; Mallinckrodt Anesthesia Products, St. Louis, MO) and 2 with an aluminum tape wrapped red rubber ET. Visual and histological examination were performed in both groups at 3 and 7 days. Four dogs underwent CO2 laser laryngeal surgery with visual and histological examination performed at 7 days postoperatively. No untoward effects could be demonstrated due to the LRSS-ET. A clinical study was then performed in 24 patients who underwent laser surgery of the upper aerodigestive tract with either a CO2 or KTP/532 laser. In all cases ventilation was adequate, the shaft of the LRSS-ET proved impervious to the laser, and the distal end of the tube protected the tracheobronchial tree safely.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1861569

  4. Documentation of Stainless Steel Lithium Circuit Test Section Design

    NASA Technical Reports Server (NTRS)

    Godfroy, T. J.; Martin, J. J.; Stewart, E. T.; Rhys, N. O.

    2010-01-01

    The Early Flight Fission-Test Facilities (EFF-TF) team was tasked by Naval Reactors Prime Contract Team (NRPCT) to design, fabricate, and test an actively pumped lithium (Li) flow circuit. This Li circuit takes advantage of work in progress at the EFF TF on a stainless steel sodium/potassium (NaK) circuit. The effort involved modifying the original stainless steel NaK circuit such that it could be operated with Li in place of NaK. This new design considered freeze/thaw issues and required the addition of an expansion tank and expansion/extrusion volumes in the circuit plumbing. Instrumentation has been specified for Li and circuit heaters have been placed throughout the design to ensure adequate operational temperatures and no uncontrolled freezing of the Li. All major components have been designed and fabricated prior to circuit redesign for Li and were not modified. Basic circuit components include: reactor segment, Li to gas heat exchanger, electromagnetic liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. The reactor segment, based on a Los Alamos National Laboratory 100-kW design study with 120 fuel pins, is the only prototypic component in the circuit. However, due to earlier funding constraints, a 37-pin partial-array of the core, including the central three rings of fuel pins (pin and flow path dimensions are the same as those in the full design), was selected for fabrication and test. This Technical Publication summarizes the design and integration of the pumped liquid metal Li flow circuit as of May 1, 2005.

  5. Impact Tensile Testing of Stainless Steels at Various Temperatures

    SciTech Connect

    D. K. Morton

    2008-03-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern (1 to 300 per second) are not well documented. However, research is being performed at the Idaho National Laboratory to quantify these characteristics. The work presented herein discusses tensile impact testing of dual-marked 304/304L and 316/316L stainless steel material specimens. Both base material and welded material specimens were tested at -20 oF, room temperature, 300 oF, and 600 oF conditions. Utilizing a drop weight impact test machine and 1/4-inch and 1/2-inch thick dog bone-shaped test specimens, a strain rate range of approximately 4 to 40 per second (depending on initial temperature conditions) was achieved. Factors were determined that reflect the amount of increased strain energy the material can absorb due to strain rate effects. Using the factors, elevated true stress-strain curves for these materials at various strain rates and temperatures were generated. By incorporating the strain rate elevated true stress-strain material curves into an inelastic finite element computer program as the defined material input, significant improvement in the accuracy of the computer analyses was attained. However, additional impact testing is necessary to achieve higher strain rates (up to 300 per second) before complete definition of strain rate effects can be made for accidental drop events and other similar energy-limited impulsive loads. This research approach, using impact testing and a total energy analysis methodology to quantify strain rate effects, can be applied to many other materials used in government and industry.

  6. Role of nanocrystalline cerium oxide coatings on austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Zhang, Haiying

    Protective nanocrystalline cerium oxide coating has been applied to ASTM grade 304L and 304 austenitic stainless steels to improve its oxidation resistance at elevated temperatures. Experimentally, the selected alloy was exposed to 800°C/1000°C under dry air conditions. Weight changes (DeltaW/A) were monitored as a function of time and the results were compared with uncoated alloys tested under similar conditions. It was found that the oxidation resistances of 304L and 304 stainless steels were significantly improved. A comparison of the oxidation rates indicated that the nanocrystalline cerium oxide coating reduced the rate of oxidation by more than two orders of magnitude. Nevertheless, a comprehensive understanding of the mechanisms responsible for the reduction in the oxidation rate is not clear. Consequently, this work is aimed at investigating the mechanisms involved during scale growth in the presence or absence of nanocrystalline coatings. For this purpose, density functional theory was carried out in order to predict oxygen and iron diffusion microscopic activation energies and reveal the intrinsic characteristics of nanocrystalline coatings. A numerical simulation of corrosion process has also been conducted to predict the corrosion rates of alloys with and without coatings. Hence, the results from simulations are compared with the experimental outcome, and possible explanations are given to account for the reduction in the exhibited oxidation rates. The simulation results will provide a highly valuable tool for the realization of functional nanostructures and architectures "by design", particularly in the development of novel coatings, and a new approach of life assessment.

  7. Corrosion of a stainless steel waste heat recuperator

    SciTech Connect

    Federer, J.I.; Tennery, V.J.

    1980-06-01

    Waste heat recuperation has significant potential for saving energy in fossil-fuel-fired industrial furnaces. Preheating the air used to burn the fuel can significantly reduce fuel consumption. The US Department of Energy is contracting several high-temperature waste heat recuperation demonstrations with the objective of using successful efforts to stimulate the industrial utilization of these devices. One of the recuperator demonstration contracts has as an objective the successful operation of a concentric-shell radiation recuperator of a new design on aluminum-scrap-remelting furnaces. The design employs type 309 stainless steel reradiant inserts within the type 309 stainless steel inner shell to increase heat radiation to the recuperator partition, thereby increasing the heat exhanger's effectiveness. The first demonstration recuperator in this program was installed on a furnace fired with No. 2 oil and melting about 60 Mg (66 tons) of aluminum per 24-h day. The unit operated for about 30 d and provided air to the burner at 540/sup 0/C. during this period, a burner control misoperation provided very fuel-rich gases to the base of the recuperator. This fuel combined with safety dilution air at the recuperator base and burned within the recuperator. Also, during this period, air flow loss was detected at the burner. An inspection revealed that this was caused by failure of the partition wall separating the primary and secondary sides of the recuperator. Extensive corrosion of the partition wall and reradiant inserts was also observed. The recuperator was removed from the furnace for an analysis of the failure.

  8. Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.

    2015-07-01

    This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.

  9. Microstructure and Mechanical Properties of Plasma Arc Brazed AISI 304L Stainless Steel and Galvanized Steel Plates

    NASA Astrophysics Data System (ADS)

    Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu

    2016-04-01

    Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.

  10. Stress corrosion cracking of austenitic stainless steel core internal welds.

    SciTech Connect

    Chung, H. M.; Park, J.-H.; Ruther, W. E.; Sanecki, J. E.; Strain, R. V.; Zaluzec, N. J.

    1999-04-14

    Microstructural analyses by several advanced metallographic techniques were conducted on austenitic stainless steel mockup and core shroud welds that had cracked in boiling water reactors. Contrary to previous beliefs, heat-affected zones of the cracked Type 304L, as well as 304 SS core shroud welds and mockup shielded-metal-arc welds, were free of grain-boundary carbides, which shows that core shroud failure cannot be explained by classical intergranular stress corrosion cracking. Neither martensite nor delta-ferrite films were present on the grain boundaries. However, as a result of exposure to welding fumes, the heat-affected zones of the core shroud welds were significantly contaminated by oxygen and fluorine, which migrate to grain boundaries. Significant oxygen contamination seems to promote fluorine contamination and suppress thermal sensitization. Results of slow-strain-rate tensile tests also indicate that fluorine exacerbates the susceptibility of irradiated steels to intergranular stress corrosion cracking. These observations, combined with previous reports on the strong influence of weld flux, indicate that oxygen and fluorine contamination and fluorine-catalyzed stress corrosion play a major role in cracking of core shroud welds.

  11. Hot compression deformation behavior of AISI 321 austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Haj, Mehdi; Mansouri, Hojjatollah; Vafaei, Reza; Ebrahimi, Golam Reza; Kanani, Ali

    2013-06-01

    The hot compression behavior of AISI 321 austenitic stainless steel was studied at the temperatures of 950-1100°C and the strain rates of 0.01-1 s-1 using a Baehr DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation ( Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950°C and the strain rate of 0.01 s-1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950°C, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti.

  12. A delayed hypersensitivity reaction to a stainless steel crown: a case report.

    PubMed

    Yilmaz, A; Ozdemir, C E; Yilmaz, Y

    2012-01-01

    Stainless steel crowns are commonly used to restore primary or permanent teeth in pediatric restorative dentistry. Here, we describe a case of a delayed hypersensitivity reaction, which manifested itself as perioral skin eruptions, after restoring the decayed first permanent molar tooth of a 13-year-old Caucasian girl with a preformed stainless steel crown. The eruptions completely healed within one week after removal of the stainless steel crown. The decayed tooth was then restored with a bis-acryl crown and bridge. Since no perioral skin eruptions occurred during the six-month follow-up, we presume that the cause of the perioral skin eruptions was a delayed hypersensitivity reaction, which was triggered by the nickel in the stainless steel crown.

  13. Post-irradiation annealing effects of austenitic stainless steels in IASCC

    SciTech Connect

    Katsura, Ryoei; Ishiyama, Yoshihide; Yokota, Norikatu; Kato, Takahiko; Nakata, Kiyotomo; Fukuya, Kouji; Sakamoto, Hiroshi; Asano, Kyoichi

    1998-12-31

    Post-irradiation annealing effects on the thermal sensitization and IASCC recovery for highly irradiated types 304 and 316L stainless steels were investigated using EPR and SSR tests. Irradiated type 316L stainless steel (neutron fluence: 8 x 10{sup 25} n/m{sup 2}, E > 1 MeV) was not sensitized and IGSCC susceptibility significantly was reduced to 7--0% at 400--700 C (x1h) from 23% at as-irradiated condition. Irradiated type 304 stainless steel (neutron fluence: 1.2 x 10{sup 26} n/m{sup 2}, E > 1MeV) was more easily sensitized than unirradiated material and IGSCC susceptibility was reduced to 62--45% at 400--500 C from 95% at the as-irradiated condition. These results on types 304 and 316L stainless steels indicated that the thermal healing technic enhanced IASCC recovery.

  14. 13. Building H9; view of stainless steel probes and vacuum ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Building H-9; view of stainless steel probes and vacuum line, looking W. (Ryan and Harms) - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  15. Dissolution of a 316L stainless steel vessel by a pool of molten aluminum

    SciTech Connect

    Tutu, N.K.; Finfrock, C.C.; Lara, J.D.; Schwarz, C.E.; Greene, G.A.

    1993-01-01

    Two experiments to study the dissolution of a torospherical stainless steel vessel by an isothermal pool of molten aluminum have been performed. The test vessels consisted of 24 inch diameter 316L stainless steel ``ASME Flanged and Dished Heads.`` The nominal values of the average melt temperatures for the two tests were: 977{degree}C and 1007{degree}C. The measurements of the dissolution depth as a function of the position along the vessel surface showed the dissolution to be spatially highly non-uniform. Large variations in the dissolution depth with respect to the azimuthal coordinate were also observed. The maximum value of the measured time averaged dissolution rate was found to be 5.05 mm/hr, and this occurred near the edge of the molten pool. The concentration measurements indicated that the molten pool was highly stratified with respect to the concentration of stainless steel in the melt (molten aluminum-stainless steel solution).

  16. PARAMETERS OF TREATED STAINLESS STEEL SURFACES IMPORTANT FOR RESISTANCE TO BACTERIAL CONTAMINATION

    EPA Science Inventory

    Use of materials that are resistant to bacterial contamination could enhance food safety during processing. Common finishing treatments of stainless steel surfaces used for components of poultry processing equipment were tested for resistance to bacterial attachment. Surface char...

  17. Friction behavior of 304 stainless steel of varying hardness lubricated with benzene and some benzyl structures

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1974-01-01

    The lubricating properties of some benzyl and benzene structures were determined by using 304 stainless steel surfaces strained to various hardness. Friction coefficients and wear track widths were measured with a Bowden-Leben type friction apparatus by using a pin-on-disk specimen configuration. Results obtained indicate that benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol resulted in the lowest friction coefficients for 304 stainless steel, while benzyl ether provided the least surface protection and gave the highest friction. Strainhardening of the 304 stainless steel prior to sliding resulted in reduced friction in dry sliding. With benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol changes in 304 stainless steel hardness had no effect upon friction behavior.

  18. HYDROGEN-ASSISTED FRACTURE IN FORGED TYPE 304L AUSTENITIC STAINLESS STEEL

    SciTech Connect

    Switzner, Nathan; Neidt, Ted; Hollenbeck, John; Knutson, J.; Everhart, Wes; Hanlin, R.; Bergen, R.; Balch, D. K.

    2012-09-06

    Austenitic stainless steels generally have good resistance to hydrogen-assisted fracture; however, structural designs for high-pressure gaseous hydrogen are constrained by the low strength of this class of material. Forging is used to increase the low strength of austenitic stainless steels, thus improving the efficiency of structural designs. Hydrogen-assisted racture, however, depends on microstructural details associated with manufacturing. In this study, hydrogen-assisted fracture of forged type 304L austenitic stainless steel is investigated. Microstructural variation in multi-step forged 304L was achieved by forging at different rates and temperatures, and by process annealing. High internal hydrogen content in forged type 304L austenitic stainless steel is achieved by thermal precharging in gaseous hydrogen and results in as much as 50% reduction of tensile ductility.

  19. Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressureless sintering

    SciTech Connect

    R, Shashanka Chaira, D.

    2015-01-15

    Nano-structured duplex and ferritic stainless steel powders are prepared by planetary milling of elemental Fe, Cr and Ni powder for 40 h and then consolidated by conventional pressureless sintering. The progress of milling and the continuous refinement of stainless steel powders have been confirmed by means of X-ray diffraction and scanning electron microscopy. Activation energy for the formation of duplex and ferritic stainless steels is calculated by Kissinger method using differential scanning calorimetry and is found to be 159.24 and 90.17 KJ/mol respectively. Both duplex and ferritic stainless steel powders are consolidated at 1000, 1200 and 1400 °C in argon atmosphere to study microstructure, density and hardness. Maximum sintered density of 90% and Vickers microhardness of 550 HV are achieved for duplex stainless steel sintered at 1400 °C for 1 h. Similarly, 92% sintered density and 263 HV microhardness are achieved for ferritic stainless steel sintered at 1400 °C. - Highlights: • Synthesized duplex and ferritic stainless steels by pulverisette planetary milling • Calculated activation energy for the formation of duplex and ferritic stainless steels • Studied the effect of sintering temperature on density, hardness and microstructure • Duplex stainless steel exhibits 90% sintered density and microhardness of 550 HV. • Ferritic stainless steel shows 92% sintered density and 263 HV microhardness.

  20. The effects of tritium and decay helium on the fracture toughness properties of stainless steels

    SciTech Connect

    Morgan, M.J.

    1991-01-01

    J-integral fracture mechanics techniques and scanning electron microscopy observations were used to investigate the effects of tritium and its decay product, helium-3, on Types 304L, 316L, 21-6-9, A286, and JBK-75 (Modified A286) stainless steels. Tritium-exposed samples of each steel had lower fracture toughness values and less resistance to stable crack growth than control samples. Type 316L stainless steel was more resistant to the embrittling effects of tritium and decay helium than the other steels.

  1. The effects of tritium and decay helium on the fracture toughness properties of stainless steels

    SciTech Connect

    Morgan, M.J.

    1991-12-31

    J-integral fracture mechanics techniques and scanning electron microscopy observations were used to investigate the effects of tritium and its decay product, helium-3, on Types 304L, 316L, 21-6-9, A286, and JBK-75 (Modified A286) stainless steels. Tritium-exposed samples of each steel had lower fracture toughness values and less resistance to stable crack growth than control samples. Type 316L stainless steel was more resistant to the embrittling effects of tritium and decay helium than the other steels.

  2. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    SciTech Connect

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.

  3. Corrosion behavior of a welded stainless-steel orthopedic implant.

    PubMed

    Reclaru, L; Lerf, R; Eschler, P Y; Meyer, J M

    2001-02-01

    The corrosion behavior of combinations of materials used in an orthopedic implant: the spherical part (forged or forged and annealed) constituting the head, the weld (tungsten inert gas (TIG) or electron beam (EB) techniques), and the cylindrical part (annealed) constituting the shaft of a femoral prosthesis - has been investigated. Open-circuit potentials, potentiodynamic curves, Tafel slope, mixed potential theory and susceptibility to intergranular attack are electrochemical and chemical procedures selected for this work. Electrochemical measurements using a microelectrode have been made in the following zones: spherical part, cylindrical part, weld, and weld/sphere, and weld/shaft interfaces. To detect intergranular attack, the Strauss test has been used. At the interfaces, corrosion currents, measured (Icorr) and predicted (Icouple) are low, in the order of the pico- to nanoampere. The electrochemical behavior of the electron beam (EB) weld is better than that of the tungsten inert gas (TIG). Welds at interfaces can behave either anodically or cathodically. It is better if welds, which are sensitive parts of the femoral prosthesis, behave cathodically. In this way, the risk of starting localized corrosion (pitting, crevice or intergranular corrosion) from a galvanic couple, remains low. From this point of view, the sample with the EB weld offers the best behavior. All the other samples containing a TIG type of weld exhibit a less favorable behavior. The mechanical treatments (forged, and forged and annealed) of the steel sphere did not show any difference in the corrosion behavior. No intergranular corrosion has been observed at the weld/steel interface for unsensitized samples. With sensitized samples, however, a TIG sample has exhibited some localized intergranular corrosion at a distance of 500 microm along the weld/stainless steel (sphere) interface. PMID:11197502

  4. Acoustic Emission Technique for Characterizing Deformation and Fatigue Crack Growth in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Mukhopadhyay, C. K.; Jayakumar, T.

    2003-03-01

    Acoustic emission (AE) during tensile deformation and fatigue crack growth (FCG) of austenitic stainless steels has been studied. In AISI type 316 stainless steel (SS), AE has been used to detect micro plastic yielding occurring during macroscopic plastic deformation. In AISI type 304 SS, relation of AE with stress intensity factor and plastic zone size has been studied. In AISI type 316 SS, fatigue crack growth has been characterised using acoustic emission.

  5. Dislocation characterization in cold rolled stainless steel using nonlinear ultrasonic techniques: A comprehensive model

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfeng; Xuan, Fu-zhen; Xiang, Yanxun

    2013-09-01

    Both dislocation density and character in cold rolled stainless steel cause the change of acoustic nonlinearity. An analytical model considering the different oscillating motion of edge and screw dislocations is presented for the generation of ultrasonic harmonic wave during the process of multiplication and motion of dislocation. Results reveal that the edge dislocation induces stronger acoustic nonlinearity response than screw dislocation. The new model is certified by the application to the cold rolled stainless steel.

  6. Improved impact toughness of 13Cr martensitic stainless steel hardened by laser

    NASA Astrophysics Data System (ADS)

    Tsay, L. W.; Chang, Y. M.; Torng, S.; Wu, H. C.

    2002-08-01

    The impact toughness of AISI 403 martensitic stainless steel plate and laser-hardened specimens tempered at various temperatures were examined. Phosphorus was the primary residual impurity responsible for tempered embrittlement of this alloy. The experimental result also indicated that AISI 403 stainless steel was very sensitive to reverse-temper embrittlement. The improved impact toughness of the laser-hardened specimen was attributed to the refined microstructure in the laser-hardened zone.

  7. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

    PubMed Central

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon

    2010-01-01

    Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility

  8. Utilization of stainless steel crowns by general dentists and pediatric dental specialists in Indiana.

    PubMed

    Kowolik, Joan; Kozlowski, Diana; Jones, James E

    2007-01-01

    The purpose of this study was to evaluate utilization of the stainless steel crown by both the general and pediatric dentists in Indiana. Although reports indicate that there has been a dramatic reduction in dental caries in the US, almost 20 percent of children have dental decay by age four, with almost 80 percent having a cavity by 17 years of age. After reviewing the literature, Seale has recommended that the stainless steel crown is the most successful restoration for children with a rate of high caries. All dental schools in North America teach the value of using stainless steel crowns and the method of tooth preparation. We hypothesized that greater use of the stainless steel crowns would be made by specialists than by general dentists. In this study, of the 200 questionnaires distributed, 62.5 percent were returned and analyzed. The results imply that stainless steel crowns are being significantly underutilized in general dental practice. It is interesting, and perhaps of concern, that the general dentists are not interested in continuing education courses about this subject. Over the next few years, with the aging of the pediatric dental community in Indiana, general (not specialty) dentists will treat most of the children. Because of this, pre-doctoral education needs to place more emphasis on preparation and utilization of the stainless steel crown.

  9. Long-term corrosion evaluation of stainless steels in Space Shuttle iodinated resin and water

    NASA Technical Reports Server (NTRS)

    Krohn, Douglas D.

    1992-01-01

    The effects of stainless steel exposure to iodinated water is a concern in developing the Integrated Water System (IWS) for Space Station Freedom. The IWS has a life requirement of 30 years, but the effects of general and localized corrosion over such a long period have not been determined for the candidate materials. In 1978, Umpqua Research Center immersed stainless steel 316L, 321, and 347 specimens in a solution of deionized water and the Space Shuttle microbial check valve resin. In April 1990, the solution was chemically analyzed to determine the level of corrosion formed, and the surface of each specimen was examined with scanning electron microscopy and metallography to determine the extent of general and pitting corrosion. This examination showed that the attack on the stainless steels was negligible and never penetrated past the first grain boundary layer. Of the three alloys, 316L performed the best; however, all three materials proved to be compatible with an aqueous iodine environment. In addition to the specimens exposed to aqueous iodine, a stainless steel specimen (unspecified alloy) was exposed to moist microbial check valve resin and air for a comparable period. This environment allowed contact of the metal to the resin as well as to the iodine vapor. Since the particular stainless steel alloy was not known, energy dispersive spectroscopy was used to determine that this alloy was stainless steel 301. The intergranular corrosion found on the specimen was limited to the first grain boundary layer.

  10. Nickel-free stainless steel avoids neointima formation following coronary stent implantation

    NASA Astrophysics Data System (ADS)

    Fujiu, Katsuhito; Manabe, Ichiro; Sasaki, Makoto; Inoue, Motoki; Iwata, Hiroshi; Hasumi, Eriko; Komuro, Issei; Katada, Yasuyuki; Taguchi, Tetsushi; Nagai, Ryozo

    2012-12-01

    SUS316L stainless steel and cobalt-chromium and platinum-chromium alloys are widely used platforms for coronary stents. These alloys also contain nickel (Ni), which reportedly induces allergic reactions in some subjects and is known to have various cellular effects. The effects of Ni on neointima formation after stent implantation remain unknown, however. We developed coronary stents made of Ni-free high-nitrogen austenitic stainless steel prepared using a N2-gas pressurized electroslag remelting (P-ESR) process. Neointima formation and inflammatory responses following stent implantation in porcine coronary arteries were then compared between the Ni-free and SUS316L stainless steel stents. We found significantly less neointima formation and inflammation in arteries implanted with Ni-free stents, as compared to SUS316L stents. Notably, Ni2+ was eluted into the medium from SUS316L but not from Ni-free stainless steel. Mechanistically, Ni2+ increased levels of hypoxia inducible factor protein-1α (HIF-1α) and its target genes in cultured smooth muscle cells. HIF-1α and their target gene levels were also increased in the vascular wall at SUS316L stent sites but not at Ni-free stent sites. The Ni-free stainless steel coronary stent reduces neointima formation, in part by avoiding activation of inflammatory processes via the Ni-HIF pathway. The Ni-free-stainless steel stent is a promising new coronary stent platform.

  11. Characterization of corrosion scale formed on stainless steel delivery pipe for reclaimed water treatment.

    PubMed

    Cui, Yong; Liu, Shuming; Smith, Kate; Yu, Kanghua; Hu, Hongying; Jiang, Wei; Li, Yuhong

    2016-01-01

    To reveal corrosion behavior of stainless steel delivery pipe used in reclaimed water treatment, this research focused on the morphological, mineralogical and chemical characteristics of stainless steel corrosion scale and corroded passive film. Corrosion scale and coupon samples were taken from a type 304 pipe delivering reclaimed water to a clear well in service for more than 12 years. Stainless steel corrosion scales and four representative pipe coupons were investigated using mineralogy and material science research methods. The results showed corrosion scale was predominantly composed of goethite, lepidocrocite, hematite, magnetite, ferrous oxide, siderite, chrome green and chromite, the same as that of corroded pipe coupons. Hence, corrosion scale can be identified as podiform chromite deposit. The loss of chromium in passive film is a critical phenomenon when stainless steel passive film is damaged by localized corrosion. This may provide key insights toward improving a better comprehension of the formation of stainless steel corrosion scale and the process of localized corrosion. The localized corrosion behavior of stainless steel is directly connected with reclaimed water quality parameters such as residual chlorine, DO, Cl(-) and SO4(2-). In particular, when a certain amount of residual chlorine in reclaimed water is present as an oxidant, ferric iron is the main chemical state of iron minerals.

  12. Heat transfer analysis of staphylococcus aureus on stainless steel with microwave radiation.

    PubMed

    Yeo, C B; Watson, I A; Stewart-Tull, D E; Koh, V H

    1999-09-01

    Staphylococcus aureus (NCTC 6571; Oxford strain) on stainless steel discs was exposed to microwave radiation at 2450 MHz and up to 800 W. Cell viability was reduced as the exposure time increased, with complete bacterial inactivation at 110 s, attaining a temperature of 61.4 degrees C. The low rate of temperature rise, RT, of the bacterial suspension as compared with sterile distilled water or nutrient broth suggests a significant influence of the microwave sterilization efficacy on the thermal properties of the micro-organisms. The heat transfer kinetics of thermal microwave irradiation suggest that the micro-organism has a power density at least 51-fold more than its surrounding liquid suspension. When the inoculum on the stainless steel disc was subjected to microwave radiation, heat conduction from the stainless steel to the inoculum was the cause of bacteriostasis with power absorbed at 23.8 W for stainless steel and 0.16 W for the bacteria-liquid medium. This report shows that the microwave killing pattern of Staph. aureus on stainless steel was mainly due to heat transfer from the stainless steel substrate and very little direct energy was absorbed from the microwaves. PMID:10540242

  13. Analytical and Electrochemical Study of Passive Films in Stainless Steels Subjected to Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Jahangiribabavi, Negin

    The objective of this research is to study the corrosion behavior of the stainless steel centrifugal contactor used in the spent nuclear fuel treatment process called UREX+ process. AISI type 304L stainless steel was suggested as the material of construction for this contactor. Corrosion of 304L stainless steel in three acidic aqueous solutions of 5.0M HNO3, 5.0M HNO 3 + 0.1M HF, and 5.0M HNO3 + 0.1M HF + 0.1M Zr4+ was studied. Immersion, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) corrosion tests were conducted at test temperatures of 25, 40, and 80°C and three different rotational speeds (0, 1000, 2000 rpm) in order to mimic the operating conditions of the centrifugal contactor. The results showed that the 5.0M HNO3 + 0.1M HF solution was the most corrosive environment as the fluoride ions dissolved the passive film present on the surface of the stainless steel. The addition of 0.1M Zr 4+ ions to this acidic mixture reduced the corrosion caused by HF to levels similar to those found in HNO3 solutions and allowed the stainless steel to preserve its passive film. Further addition of zirconium ion did not result in better corrosion resistance of the stainless steel. Besides, higher corrosion rates were obtained as the solutions temperatures increased while the hydrodynamic conditions had less significant effect on corrosion rates.

  14. Fatigue life assessment of 316L stainless steel and DIN-1.4914 martensitic steel before and after TEXTOR exposure

    NASA Astrophysics Data System (ADS)

    Shakib, J. I.; Ullmaier, H.; Little, E. A.; Schmitz, W.; Faulkner, R. G.; Chung, T. E.

    1992-09-01

    The effects of plasma exposure in the TEXTOR tokomak on elevated temperature fatigue lifetime and failure micromechanisms of 316L austenitic stainless steel and DIN 1.4914 martensitic steel (NET reference heats) have been evaluated. Fatigue tests were carried out in vacuum in the temperature range 150°-450°C and compared with data from reference specimens.Plasma-induced surface modifications lead to significant deterioration in fatigue life of 316L steel, whereas the lifetime of 1.4914 steel is unaffected. Fatigue in the 1.4914 steel is surface-initiated only at high stresses. At low stress amplitudes internal fatigue initiation at inclusions was observed.

  15. Disinfection of Preexisting Contamination of BACILLUS CEREUS on Stainless Steel when Using Glycoconjugate Solution

    NASA Astrophysics Data System (ADS)

    Pavan, Casey; Tarasenko, Olga

    2011-06-01

    Stainless steel is ubiquitous in our modern world, however it can become contaminated. This can endanger our health. The aim of our study is to disinfect stainless steel using Bacillus cereus as a model organism. Bacillus cereus is a microbe that is ubiquitous in nature, specifically soil. B. cereus is known to cause illness in humans. To prevent this, we propose to use a glycoconjugate solution (GS) for disinfection of stainless steel after it is contamination by B. cereus spores. In this study, two GS (9, 10) were tested for disinfection effectiveness on B. cereus spores on the surface of stainless steel foil (AISI-Series 200/300/400, THERMA-FOIL, Dayville, CT 0241). The disinfection rate of each GS was assessed by exposing the steel surface to B. cereus spores first and allowing them to settle for 24 hours. GS was used to treat the contaminated surface. The steel is washed and the resulting solution is plated on tryptic soy agar (TSA) plates. The GS with the fewest colony forming unit (CFU) formed on TSA is determined to be the most efficient during disinfection. Results show that both GS demonstrate a strong ability to disinfect B. cereus spores. Between the two, GS 9 shows the highest disinfection efficacy by killing approximately 99.5% of spores. This is a drastic improvement over the 0-20% disinfection of the control. Based on this we find that studied GS do have the capacity to act as a disinfectant on stainless steel.

  16. Disinfection of preexisting contamination of bacillus cereus on stainless steel when using glycoconjugate solution

    SciTech Connect

    Pavan, Casey; Tarasenko, Olga

    2011-06-10

    Stainless steel is ubiquitous in our modern world, however it can become contaminated. This can endanger our health. The aim of our study is to disinfect stainless steel using Bacillus cereus as a model organism. Bacillus cereus is a microbe that is ubiquitous in nature, specifically soil. B. cereus is known to cause illness in humans. To prevent this, we propose to use a glycoconjugate solution (GS) for disinfection of stainless steel after it is contamination by B. cereus spores. In this study, two GS (9, 10) were tested for disinfection effectiveness on B. cereus spores on the surface of stainless steel foil (AISI-Series 200/300/400, THERMA-FOIL, Dayville, CT 0241). The disinfection rate of each GS was assessed by exposing the steel surface to B. cereus spores first and allowing them to settle for 24 hours. GS was used to treat the contaminated surface. The steel is washed and the resulting solution is plated on tryptic soy agar (TSA) plates. The GS with the fewest colony forming unit (CFU) formed on TSA is determined to be the most efficient during disinfection. Results show that both GS demonstrate a strong ability to disinfect B. cereus spores. Between the two, GS 9 shows the highest disinfection efficacy by killing approximately 99.5% of spores. This is a drastic improvement over the 0-20% disinfection of the control. Based on this we find that studied GS do have the capacity to act as a disinfectant on stainless steel.

  17. Challenges and Capabilities for Inspection of Cast Stainless Steel Piping

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.; Doctor, Steven R.

    2007-12-31

    Studies conducted at the Pacific N¬orthwest National Laboratory (PNNL) in Richland, Washington, have focused on developing and evaluating the reliability of nondestructive examination (NDE) approaches for inspecting coarse-grained, cast stainless steel reactor components. The objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the utility, effec¬tiveness and limitations of NDE techniques as related to the inservice inspec¬tion of primary system piping components in pressurized water reactors (PWRs). This paper describes results from recent assessments built upon early work with low frequency ultrasonic testing (UT) coupled with synthetic aperture focusing technique (SAFT) signal processing, and has subsequently evolved into an approach using low frequency phased array technology as applied from the outer diameter surface of the piping. In addition, eddy current examination as performed from the inner diameter surface of these piping welds is also reported. Cast stainless steel (CSS) pipe specimens were examined that contain thermal and mechanical fatigue cracks located close to the weld roots and have inside/outside surface geometrical conditions that simulate several PWR primary piping weldments and configurations. In addition, segments of vintage centrifugally cast piping were also examined to understand inherent acoustic noise and scattering due to grain structures and determine consistency of UT responses from different locations. The advanced UT methods were applied from the outside surface of these specimens using automated scanning devices and water coupling. The phased array approach was implemented with a modified instrument operating at low frequencies and composite volumetric images of the samples were generated with 500 kHz, 750 kHz, and 1.0 MHz arrays. Eddy current studies were conducted on the inner diameter surface of these piping welds using a commercially available instrument and a

  18. Thermal stability study for candidate stainless steels of GEN IV reactors

    NASA Astrophysics Data System (ADS)

    Simeg Veternikova, J.; Degmova, J.; Pekarcikova, M.; Simko, F.; Petriska, M.; Skarba, M.; Mikula, P.; Pupala, M.

    2016-11-01

    Candidate stainless steels for GEN IV reactors were investigated in term of thermal and corrosion stability at high temperatures. New austenitic steel (NF 709), austenitic ODS steel (ODS 316) and two ferritic ODS steels (MA 956 and MA 957) were exposed to around 1000 °C in inert argon atmosphere at pressure of ∼8 MPa. The steels were further studied in a light of vacancy defects presence by positron annihilation spectroscopy and their thermal resistance was confronted to classic AISI steels. The thermal strain supported a creation of oxide layers observed by scanning electron microscopy (SEM).

  19. Fatigue crack growth at elevated temperature 316 stainless steel and H-13 steel

    NASA Technical Reports Server (NTRS)

    Chen, W. C.; Liu, H. W.

    1976-01-01

    Crack growths were measured at elevated temperatures under four types of loading: pp, pc, cp, and cc. In H-13 steel, all these four types of loading gave nearly the same crack growth rates, and the length of hold time had negligible effects. In AISI 316 stainless steel, the hold time effects on crack growth rate were negligible if the loading was tension-tension type; however, these effects were significant in reversed bending load, and the crack growth rates under these four types of loading varied considerably. Both tensile and compressive hold times caused increased crack growth rate, but the compressive hold period was more deleterious than the tensile one. Metallographic examination showed that all the crack paths under different types of loading were largely transgranular for both CTS tension-tension specimens and SEN reversed cantilever bending specimens. In addition, an electric potential technique was used to monitor crack growth at elevated temperature.

  20. Bactericidal activity of copper and niobium-alloyed austenitic stainless steel.

    PubMed

    Baena, M I; Márquez, M C; Matres, V; Botella, J; Ventosa, A

    2006-12-01

    Biofouling and microbiologically influenced corrosion are processes of material deterioration that originate from the attachment of microorganisms as quickly as the material is immersed in a nonsterile environment. Stainless steels, despite their wide use in different industries and as appliances and implant materials, do not possess inherent antimicrobial properties. Changes in hygiene legislation and increased public awareness of product quality makes it necessary to devise control methods that inhibit biofilm formation or to act at an early stage of the biofouling process and provide the release of antimicrobial compounds on a sustainable basis and at effective level. These antibacterial stainless steels may find a wide range of applications in fields, such as kitchen appliances, medical equipment, home electronics, and tools and hardware. The purpose of this study was to obtain antibacterial stainless steel and thus mitigate the microbial colonization and bacterial infection. Copper is known as an antibacterial agent; in contrast, niobium has been demonstrated to improve the antimicrobial effect of copper by stimulating the formation of precipitated copper particles and its distribution in the matrix of the stainless steel. Thus, we obtained slides of 3.8% copper and 0.1% niobium alloyed stainless steel; subjected them to three different heat treatment protocols (550 degrees C, 700 degrees C, and 800 degrees C for 100, 200, 300, and 400 hours); and determined their antimicrobial activities by using different initial bacterial cell densities and suspending solutions to apply the bacteria to the stainless steels. The bacterial strain used in these experiments was Escherichia coli CCM 4517. The best antimicrobial effects were observed in the slides of stainless steel treated at 700 degrees C and 800 degrees C using an initial cell density of approximately 10(5) cells ml(-1) and phosphate-buffered saline as the solution in which the bacteria came into contact with

  1. Bactericidal activity of copper and niobium-alloyed austenitic stainless steel.

    PubMed

    Baena, M I; Márquez, M C; Matres, V; Botella, J; Ventosa, A

    2006-12-01

    Biofouling and microbiologically influenced corrosion are processes of material deterioration that originate from the attachment of microorganisms as quickly as the material is immersed in a nonsterile environment. Stainless steels, despite their wide use in different industries and as appliances and implant materials, do not possess inherent antimicrobial properties. Changes in hygiene legislation and increased public awareness of product quality makes it necessary to devise control methods that inhibit biofilm formation or to act at an early stage of the biofouling process and provide the release of antimicrobial compounds on a sustainable basis and at effective level. These antibacterial stainless steels may find a wide range of applications in fields, such as kitchen appliances, medical equipment, home electronics, and tools and hardware. The purpose of this study was to obtain antibacterial stainless steel and thus mitigate the microbial colonization and bacterial infection. Copper is known as an antibacterial agent; in contrast, niobium has been demonstrated to improve the antimicrobial effect of copper by stimulating the formation of precipitated copper particles and its distribution in the matrix of the stainless steel. Thus, we obtained slides of 3.8% copper and 0.1% niobium alloyed stainless steel; subjected them to three different heat treatment protocols (550 degrees C, 700 degrees C, and 800 degrees C for 100, 200, 300, and 400 hours); and determined their antimicrobial activities by using different initial bacterial cell densities and suspending solutions to apply the bacteria to the stainless steels. The bacterial strain used in these experiments was Escherichia coli CCM 4517. The best antimicrobial effects were observed in the slides of stainless steel treated at 700 degrees C and 800 degrees C using an initial cell density of approximately 10(5) cells ml(-1) and phosphate-buffered saline as the solution in which the bacteria came into contact with

  2. Hydrofluoric acid etched stainless steel wire for solid-phase microextraction.

    PubMed

    Xu, Hua-Ling; Li, Yan; Jiang, Dong-Qing; Yan, Xiu-Ping

    2009-06-15

    Stainless steel wire has been widely used as the substrate of solid-phase microextraction (SPME) fibers to overcome the shortcomings of conventional silica fibers such as fragility, by many researchers. However, in previous reports various sorbent coatings are always required in conjunction with the stainless steel wire for SPME. In this work, we report the bare stainless steel wire for SPME without the need for any additional coatings taking advantage of its high mechanical and thermal stability. To evaluate the performance of stainless steel wire for SPME, polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, chlorobenzene, n-propylbenzene, aniline, phenol, n-hexane, n-octane, n-decane, n-undecane, n-dodecane, chloroform, trichloroethylene, n-octanol, and butanol were tested as analytes. Although the stainless steel wire had almost no extraction capability toward the tested analytes before etching, it did exhibit high affinity to the tested PAHs after etching with hydrofluoric acid. The etched stainless steel wire gave a much bigger enhancement factor (2541-3981) for the PAHs than the other analytes studied (< or = 515). Etching with hydrofluoric acid produced a porous and flower-like structure with Fe(2)O(3), FeF(3), Cr(2)O(3), and CrF(2) on the surface of the stainless steel wire, giving high affinity to the PAHs due to cation-pi interaction. On the basis of the high selectivity of the etched stainless steel wire for PAHs, a new SPME method was developed for gas chromatography with flame ionization detection to determine PAHs with the detection limits of 0.24-0.63 microg L(-1). The precision for six replicate extractions using one SPME fiber ranged from 2.9% to 5.3%. The fiber-to-fiber reproducibility for three parallel prepared fibers was 4.3-8.8%. One etched stainless steel wire can stand over 250 cycles of SPME without significant loss of extraction efficiency. The developed etched stainless steel wire is very stable, highly selective, and

  3. Dosimetric evaluation of hybrid brass/stainless-steel apertures for proton therapy.

    PubMed

    Chen, Hao; Matysiak, Witold; Flampouri, Stella; Slopsema, Roelf; Li, Zuofeng

    2014-09-01

    In passive scattering proton therapy, patient specific collimators (apertures) are used to laterally shape the proton beam, and compensators are employed to distally conform proton dose to the target. Brass is a commonly used material for apertures and recently a hybrid brass/stainless-steel (BR/SST) aperture design has been introduced to reduce treatment cost without clinical flow change. We measured stopping power and leakage dose for apertures made of stainless steel and brass in the Proton Therapy system. The linear stopping power ratios for stainless steel (type 304) and brass to water were calculated to be 5.46 and 5.51, respectively. Measured stopping power ratios of SST and BR were 5.51  ±  0.04 and 5.56  ±  0.08, respectively, which agrees with the calculated values within 1%. Leakage dose on the downstream surface of two slabs of Ø18 cm stainless steel apertures (total thickness of 6.5 cm) for the maximum available proton energy (235 MeV) was 1.283% ± 0.004% of the prescription dose, and was smaller compared to the 1.358% ± 0.005% leakage dose measured for existing brass apertures of identical physical dimensions. Therefore, the existing beam range limits for brass aperture slabs used at our institution with safety margin allowances for material composition and delivered beam range uncertainties can be safely applied for the new BR/SST aperture design. Potential range differences in the brass and stainless steel interface regions of the hybrid design were further investigated using EBT3 GafChromic film. Film dosimetry revealed no discernible range variations across the brass and stainless steel interface regions. Neutron dose to the patient from brass and stainless steel apertures was simulated using the Monte Carlo method. The results indicate that stainless steel produces similar patient neutron dose compared to brass. Material activation dose rates of stainless steel were measured over a period of 7 d after irradiation. The

  4. 76 FR 8773 - Forged Stainless Steel Flanges From India and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... reviews, * * *'' (76 FR 5331). Accordingly, pursuant to section 751(c) of the Tariff Act of 1930 (19 U.S.C... COMMISSION Forged Stainless Steel Flanges From India and Taiwan AGENCY: United States International Trade... steel flanges from India and Taiwan would be likely to lead to continuation or recurrence of...

  5. 49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a water... (percent) 321 (percent) 347 (percent) Carbon (max) 0.08 0.08 0.08 Manganese (max) 2.00 2.00 2.00 Phosphorus... Columbium All ranges .05 .05 1Rephosphorized steels not subject to check analysis for phosphorus....

  6. 49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a water... (percent) 321 (percent) 347 (percent) Carbon (max) 0.08 0.08 0.08 Manganese (max) 2.00 2.00 2.00 Phosphorus... Columbium All ranges .05 .05 1Rephosphorized steels not subject to check analysis for phosphorus....

  7. 49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a water... (percent) 321 (percent) 347 (percent) Carbon (max) 0.08 0.08 0.08 Manganese (max) 2.00 2.00 2.00 Phosphorus... Columbium All ranges .05 .05 1Rephosphorized steels not subject to check analysis for phosphorus....

  8. 75 FR 12514 - Stainless Steel Bar From Brazil: Preliminary Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... Brazil. See Antidumping Duty Orders: Stainless Steel Bar from Brazil, India and Japan, 60 FR 9661... Steel Bar From Brazil, 59 FR 66914 (December 28, 1994). These deposit requirements, when imposed, shall..., Finding, or Suspended Investigation; Opportunity To Request Administrative Review, 74 FR 6013 (February...

  9. Copper modified austenitic stainless steel alloys with improved high temperature creep resistance

    DOEpatents

    Swindeman, R.W.; Maziasz, P.J.

    1987-04-28

    An improved austenitic stainless steel that incorporates copper into a base Fe-Ni-Cr alloy having minor alloying substituents of Mo, Mn, Si, T, Nb, V, C, N, P, B which exhibits significant improvement in high temperature creep resistance over previous steels. 3 figs.

  10. Dislocation loop evolution under ion irradiation in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Etienne, A.; Hernández-Mayoral, M.; Genevois, C.; Radiguet, B.; Pareige, P.

    2010-05-01

    A solution annealed 304 and a cold worked 316 austenitic stainless steels were irradiated from 0.36 to 5 dpa at 350 °C using 160 keV Fe ions. Irradiated microstructures were characterized by transmission electron microscopy (TEM). Observations after irradiation revealed the presence of a high number density of Frank loops. Size and number density of Frank loops have been measured. Results are in good agreement with those observed in the literature and show that ion irradiation is able to simulate dislocation loop microstructure obtained after neutron irradiation. Experimental results and data from literature were compared with predictions from the cluster dynamic model, MFVIC (Mean Field Vacancy and Interstitial Clustering). It is able to reproduce dislocation loop population for neutron irradiation. Effects of dose rate and temperature on the loop number density are simulated by the model. Calculations for ion irradiations show that simulation results are consistent with experimental observations. However, results also show the model limitations due to the lack of accurate parameters.

  11. In situ measurement of tritium permeation through stainless steel

    SciTech Connect

    Walter G. Luscher; David J. Senor; Kevin K. Clayton; Glen R. Longhurst

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 degrees C and 330 degrees C. In situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330 degrees C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  12. Effect of heat treatment on stainless steel orthodontic wires.

    PubMed

    Cuoghi, Osmar Aparecido; Kasbergen, Geraldo Francisco; Santos, Paulo Henrique dos; Mendonça, Marcos Rogério de; Tondelli, Pedro Marcelo

    2011-01-01

    This study evaluated the effect of heat treatment on CrNi stainless steel orthodontic archwires. Half of forty archwires of each thickness - 0.014" (0.35 mm), 0.016" (0.40 mm), 0.018" (0.45 mm) and 0.020" (0.50 mm) (totalling 160 archwires) - were subjected to heat treatment while the remainder were not. All of the archwires had their individual thickness measured in the anterior and posterior regions using AutoCad 2000 software before and after compressive and tensile strength testing. The data was statistically analysed utilising multivariance ANOVA at a 5% significance level. All archwires without heat treatment that were subjected to tensile strength testing presented with anterior opening, which was more accentuated in the 0.020" archwires. In the posterior region, the opening produced by the tensile force was more accentuated in the archwires without heat treatment. There was greater stability in the thermally treated archwires, especially those subjected to tensile strength testing, which indicates that the heat treatment of orthodontic archwires establishes a favourable and indispensable condition to preserve the intercanine width. PMID:21359492

  13. Composite rebonding to stainless steel metal using different bonding agents.

    PubMed

    al-Shalan, T A; Till, M J; Feigal, R J

    1997-01-01

    The purpose of this study was to determine the in vitro bond strengths of composite rebonded to stainless steel crown metal (SS) using five different bonding agents after composite to SS bond failure had been produced. The adhesive systems were applied to the failed bonds following the manufacturers' instructions and, as a control, composite was bonded to SS without using a bonding agent. Each group was then divided into two subgroups: mechanically prepared (MP), in which the SS was roughened by a diamond bur, and unprepared (NMP), in which no modification of the SS was done. ESPE VISIO-GEM composite was placed in a plastic mold and light cured to the treated SS. Samples were stored in water at 37 degrees C for 72 hr, thermocycled for 500 cycles between 5 and 55 degrees C, and mounted in an Instron Universal Testing Machine. Caulk's Adhesive System provided significantly higher rebond strength (228.97 +/- 106.9 kg/cm2) than the other materials, and mechanical surface preparation offered no significant advantages.

  14. Impact analysis of stainless steel spent fuel canisters

    SciTech Connect

    Aramayo, G.A.; Turner, D.W.

    1998-04-01

    This paper presents the results of the numerical analysis performed to asses the structural integrity of spent nuclear fuel (SNF) stainless steel canisters when subjected to impact loads associated with free gravity drops from heights not exceeding 20 ft. The SNF canisters are to be used for the Shipment of radioactive material from the Oak Ridge National Laboratory (ORNL) Site to the Idaho National Engineering and Environmental Laboratory (INEEL) for storage. The Idaho chemical Processing Plant Fuel Receipt Criteria Questionnaire requires that the vertical drop accidents from two heights be analyze. These heights are those that are considered to be critical at the time of unloading the canisters from the shipping cask. The configurations analyzed include a maximum payload of 90 lbs dropping from heights of 20 and 3 ft. The nominal weight of the canister is 23.3 lbs. The analysis has been performed using finite element methods. Innovative analysis techniques are used to capture the effects of failure and separation of canister components. The structural integrity is evaluated in terms of physical deformation and separation of the canister components that may result from failure of components at selected interfaces.

  15. Evaluation of aging of cast stainless steel components

    SciTech Connect

    Chung, H.M.

    1991-02-01

    Cast stainless steel is used extensively in nuclear reactors for primary-pressure-boundary components such as primary coolant pipes, elbows, valves, pumps, and safe ends. These components are, however, susceptible to thermal aging embrittlement in light water reactors because of the segregation of Cr atoms from Fe and Ni by spinodal decomposition in ferrite and the precipitation of Cr-rich carbides on ferrite/austenite boundaries. A recent advance in understanding the aging kinetics is presented. Aging kinetics are strongly influenced by the synergistic effects of other metallurgical reactions that occur in parallel with spinodal decomposition, i.e., clustering of Ni, Mo, and Si solute atoms and the nucleation and growth of G-phase precipitates in the ferrite phase. A number of methods are outlined for estimating aging embrittlement under end-of-life of life-extension conditions, depending on several factors such as degree of permissible conservatism, availability of component archive material, and methods of estimating and verifying the activation energy of aging. 33 refs., 6 figs., 3 tabs.

  16. Tension bending ratcheting tests of 304 stainless steel

    SciTech Connect

    Larson, L.D.; Jones, D.P.; Rapp, D.G.

    1996-12-31

    This paper discusses results of an experimental program conducted to investigate the strain ratcheting behavior of 304 stainless steel under various combinations of applied membrane load and displacement controlled cyclic bending strain. Tests were performed on uniaxial specimens at temperatures of 70 F (21 C) and 550 F (288 C). Bending strain, ratchet strain and axial displacement of the specimens were monitored throughout the tests. Membrane stress to monotonic yield stress ratios of 2/3, 1/2, and 1/3 were tested with pseudo-elastic bending stress to yield stress ratios ranging from 1.4 to 10.7. Test output was in the form of plots of cumulative axial membrane strain versus cycles up to the point of shakedown, i.e., the point at which no additional progressive strain was observed. Shakedown was demonstrated in the 500 F tests but not the room temperature tests. The 550 F results are shown in terms of shakedown membrane strain versus equivalent bending stress ratio for each of the tested membrane stress ratios. The cyclic and monotonic stress-strain curves for the test materials are presented to enable the use of various models for predicting the ratcheting and shakedown behavior. The results may be used to develop improved ratcheting and shakedown rules permitting a relaxation of the traditional ratcheting rules in the ASME Boiler and Pressure Vessel Code.

  17. In-situ Characterization of Cast Stainless Steel Microstructures

    SciTech Connect

    Ramuhalli, Pradeep; Meyer, Ryan M.; Cinson, Anthony D.; Moran, Traci L.; Prowant, Matthew S.; Watson, Bruce E.; Mathews, Royce; Harris, Robert V.; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    Cast austenitic stainless steel (CASS) was commonly used in selected designs of nuclear power reactor systems for corrosion resistance and enhanced durability in service. CASS materials are generally coarse-grained and elastically anisotropic in nature, and are consequently difficult to inspect ultrasonically, largely due to detrimental effects of ultrasonic wave interactions with the coarse-grain microstructures. To address the inspection needs for these materials, new approaches that are robust to these phenomena are being developed. However, to enhance the probability of detecting flaws, knowledge of the microstructure and the corresponding acoustic properties of the material may be required. This paper discusses the application of ultrasonic backscatter measurement methods for classifying the microstructure of CASS components, when making measurements from the outside surface of the pipe or component. Results to date from laboratory experiments demonstrate the potential of these measurements to classify the material type of CASS for two homogeneous microstructures—equiaxed-grain material or columnar-grain material. Measurements on mixed or banded microstructures also show correlation with the estimated volume-fraction of columnar grains in the material. However, several operational issues will need to be addressed prior to applying this method for in-situ characterization of CASS microstructure.

  18. Phase Separation in Lean Grade Duplex Stainless Steel 2101

    SciTech Connect

    Garfinkel, D.; Poplawsky, Jonathan D.; Guo, Wei; Young, Jr., George A.; Tucker, Julie

    2015-08-19

    The use of duplex stainless steels (DSS) in nuclear power generation systems is limited by thermal instability that leads to embrittlement in the temperature range of 204°C - 538°C. New lean grade alloys, such as 2101, offer the potential to mitigate these effects. Thermal embrittlement was quantified through impact toughness and hardness testing on samples of alloy 2101 after aging at 427°C for various durations (1-10,000 hours). Additionally, atom probe tomography (APT) was utilized in order to observe the kinetics of α-α’ separation and G-phase formation. Mechanical testing and APT data for two other DSS alloys, 2003 and 2205 were used as a reference to 2101. The results show that alloy 2101 exhibits superior performance compared to the standard grade DSS alloy, 2205, but inferior to the lean grade alloy, 2003, in mechanical testing. APT data demonstrates that the degree of α-α’ separation found in alloy 2101 closely resembles that of 2205, and greatly exceeds 2003. Additionally, contrary to what was observed in 2003, 2101 demonstrated G-phase like precipitates after long aging times, though precipitates were not as abundant as was observed in 2205.

  19. Cumulative creep fatigue damage in 316 stainless steel

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1989-01-01

    The cumulative creep-fatigue damage behavior of 316 stainless steel at 1500 F was experimentally established for the two-level loading cases of fatigue followed by fatigue, creep fatigue followed by fatigue, and fatigue followed by creep fatigue. The two-level loadings were conducted such that the lower life (high strain) cycling was applied first for a controlled number of cycles and the higher life (low strain) cycling was conducted as the second level to failure. The target life levels in this study were 100 cycles to failure for both the fatigue and creep-fatigue lowlife loading, 5000 cycles to failure for the higher life fatigue loading and 10,000 cycles to failure for the higher life creep-fatigue loading. The failed specimens are being examined both fractographically and metallographically to ascertain the nature of the damaging mechanisms that produced failure. Models of creep-fatigue damage accumulation are being evaluated and knowledge of the various damaging mechanisms is necessary to ensure that predictive capability is instilled in the final failure model.

  20. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    NASA Astrophysics Data System (ADS)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 °C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  1. Investigations on the Predictability of Coining Stainless Steel AISI 410

    NASA Astrophysics Data System (ADS)

    Grobbink, S. J.; Klaseboer, G.; Post, J.; Huetink, J.

    2010-06-01

    Due to the increasing trend towards miniaturization, various industries demand the knowledge of materials forming on microscale. Forming has many advantages above machining such as high accuracy, low costs and strengthening by cold-working. However, a drawback of microforming is that it leads to problems caused by so-called size effects. A lot of research has been done on this topic, but only a minor part deals with the forming of high strength materials. In this study two channels with 0.25 mm width and 4.5 mm length are formed in stainless steel sheet AISI 410 with an initial sheet thickness 0.5 mm. The channels are formed by the coining process. The experiments have been repeated in which all dimensions are scaled down by a factor two, in order to check if size effects occur. Ring compression tests are used to determine a shear friction coefficient. A finite element model was build up and solved with MSC.Marc in order to gain a better understanding of the coining process. A size dependent material model known from literature and a conventional material model is used for the simulations. Both results are compared with the experimental results.

  2. Modeling the Flow Curve of AISI 410 Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Momeni, A.; Dehghani, K.; Heidari, M.; Vaseghi, M.

    2012-11-01

    In the present study, hot deformation behavior of AISI 410 martensitic stainless steel was investigated and modeled after conducting compression tests at the temperature range of 900-1150 °C and strain rate range of 0.001-1 s-1. At the studied temperature and strain rates, the flow curves were typical of dynamic recrystallization (DRX) showing a hardening peak followed by a softening one, and a steady state. The flow curves up to the peaks were modeled using the Estrin and Mecking equation. The softening due to DRX was also considered to increase the consistency of the developed model. The experimental equation proposed by Cingara and McQueen was also used to model the work hardening region. The results showed that the phenomenological model based on the Estrin and Mecking equation resulted in a better model for the work hardening region. Based on the Avrami equation, a model was developed to estimate the flow softening due to DRX between the peak and the starting point of steady state. The average value of the Avrami exponent was determined as 2.2, and it decreased with the increasing Zener-Hollomon parameter.

  3. In-situ Characterization of Cast Stainless Steel Microstructures

    SciTech Connect

    Anderson, Michael T.; Bond, Leonard J.; Diaz, Aaron A.; Good, Morris S.; Harris, Robert V.; Mathews, Royce; Ramuhalli, Pradeep; Roberts, Kamandi C.

    2010-12-01

    Cast austenitic stainless steel (CASS) that was commonly used in U.S. nuclear power plants is a coarse-grained, elastically anisotropic material. The engineering properties of CASS made it a material of choice for selected designs of nuclear power reactor systems. However, the fabrication processes result in a variety of coarse-grain microstructures that are difficult to inspect ultrasonically, largely due to detrimental effects of wave interactions with the microstructure. To address the inspection needs, new approaches that are robust to these phenomena are being sought. However, overcoming the deleterious effects of the coarse-grained microstructure on the interrogating ultrasonic beam will require knowledge of the microstructure and the corresponding acoustic properties of the material, for potential optimization of inspection parameters to enhance the probability of detecting flaws. The goal of improving the reliability and effectiveness of ultrasonic inspection of CASS specimens can therefore potentially be achieved by first characterizing the microstructure of the component. The characterization of CASS microstructure must be done in-situ, to enable dynamic selection and optimization of the ultrasonic inspection technique. This paper discusses the application of ultrasonic measurement methods for classifying the microstructure of CASS components, when making measurements from the outside surface of the pipe or component. Results to date demonstrate the potential of ultrasonic and electromagnetic measurements to classify the material type of CASS for two consistent microstructures-equiaxed-grain material and columnar-grain material.

  4. Phase transformation diffusion bonding of titanium alloy with stainless steel

    SciTech Connect

    Qin, B. . E-mail: jjj-jenny@163.com; Sheng, G.M.; Huang, J.W.; Zhou, B.; Qiu, S.Y.; Li, C.

    2006-01-15

    Phase transformation diffusion bonding between a titanium alloy (TA17) and an austenitic stainless steel (0Cr18Ni9Ti) has been carried out in vacuum. Relationships between the bonding parameters and the tensile strength of the joints were investigated, and the optimum bond parameters were obtained: maximum cyclic temperature = 890 deg. C, minimum cyclic temperature = 800 deg. C, number of cycles = 10, bonding pressure = 5 MPa and heating rate = 30 deg. C/s. The maximum tensile strength of the joint was 307 MPa. The reaction products and the interface structure of the joints were investigated by light optical and scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The study indicated the existence of {sigma} phase, Fe{sub 2}Ti, Fe-Ti intermetallic and {beta}-Ti in the reaction zone. The presence of the brittle Fe-Ti intermetallic phase lowered both the strength and the ductility of the phase transformation diffusion-bonded joint significantly.

  5. Cutting tool study: 21-6-9 stainless steel

    SciTech Connect

    McManigle, A.P.

    1992-07-29

    The Rocky Flats Plant conducted a study to test cermet cutting tools by performing machinability studies on War Reserve product under controlled conditions. The purpose of these studies was to determine the most satisfactory tools that optimize tool life, minimize costs, improve reliability and chip control, and increase productivity by performing the operations to specified Accuracies. This study tested three manufacturers` cermet cutting tools and a carbide tool used previously by the Rocky Flats Plant for machining spherical-shaped 21-6-9 stainless steel forgings (Figure 1). The 80-degree diamond inserts were tested by experimenting with various chip-breaker geometries, cutting speeds, feedrates, and cermet grades on the outside contour roughing operation. The cermets tested were manufactured by Kennametal, Valenite, and NTK. The carbide tool ordinarily used for this operation is manufactured by Carboloy. Evaluation of tho tools was conducted by investigating the number of passes per part and parts per insert, tool wear, cutting time, tool life, surface finish, and stem taper. Benefits to be gained from this study were: improved part quality, better chip control, increased tool life and utilization, and greater fabrication productivity. This was to be accomplished by performing the operation to specified accuracies within the scope of the tools tested.

  6. Electrochemical Evaluation of Stainless Steels in Acidified Sodium Chloride Solutions

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; MacDowell, L. G.; Vinje, R. D.

    2004-01-01

    This paper presents the results of an investigation in which several 300-series stainless steels (SS): AISI S30403 SS (UNS S30403), AISI 316L SS (UNS S31603), and AISI 317L SS (LINS S31703), as well as highly-alloyed: SS 254-SMO (UNS S32154), AL-6XN (N08367) and AL29-4C (UNS S44735), were evaluated using DC electrochemical techniques in three different electrolyte solutions. The solutions consisted of neutral 3.55% NaCl, 3.55% NaCl in 0.1N HCl, and 3.55% NaCl in 1.0N HCl. These solutions were chosen to simulate environments that are less, similar, and more aggressive, respectively, than the conditions at the Space Shuttle launch pads. The electrochemical test results were compared to atmospheric exposure data and evaluated for their ability to predict the long-term corrosion performance of the subject alloys. The electrochemical measurements for the six alloys indicated that the higher-alloyed SS 254-SMO, AL29-4C, and AL-6XN exhibited significantly higher resistance to localized corrosion than the 300-series SS. There was a correlation between the corrosion performance of the alloys during a two-year atmospheric exposure and the corrosion rates calculated from electrochemical (polarization resistance) measurements.

  7. Embrittlement in CN3MN Grade Superaustenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Başkan, Mertcan; Chumbley, Scott L.; Kalay, Yunus Eren

    2014-05-01

    Superaustenitic stainless steels (SSS) are widely used in extreme environments such as off-shore oil wells, chemical and food processing equipment, and seawater systems due to their excellent corrosion resistance and superior toughness. The design of the corresponding heat treatment process is crucial to create better mechanical properties. In this respect, the short-term annealing behavior of CN3MN grade SSS was investigated by a combined study of Charpy impact tests, hardness measurements, scanning and transmission electron microscopy. Specimens were heat treated at 1200 K (927 °C) for up to 16 minutes annealing time and their impact strengths and hardnesses were tested. The impact toughness was found to decrease to less than the half of the initial values while hardness stayed the same. Detailed fracture surface analyses revealed a ductile to brittle failure transition for relatively short annealing times. Brittle fracture occurred in both intergranular and transgranular modes. SEM and TEM indicated precipitation of nano-sized intermetallics, accounting for the intergranular embrittlement, along the grain boundaries with respect to annealing time. The transgranular fracture originated from linear defects seen to exist within the grains. Close observation of such defects revealed stacking-fault type imperfections, which lead to step-like cracking observed in microlength scales.

  8. Stress corrosion cracking on irradiated 316 stainless steel

    NASA Astrophysics Data System (ADS)

    Furutani, Gen; Nakajima, Nobuo; Konishi, Takao; Kodama, Mitsuhiro

    2001-02-01

    Tests on irradiation-assisted stress corrosion cracking (IASCC) were carried out by using cold-worked (CW) 316 stainless steel (SS) in-core flux thimble tubes which were irradiated up to 5×10 26 n/m 2 ( E>0.1 MeV) at 310°C in a Japanese PWR. Unirradiated thimble tube was also tested for comparison with irradiated tubes. Mechanical tests such as the tensile, hardness tests and metallographic observations were performed. The susceptibility to SCC was examined by the slow strain rate test (SSRT) under PWR primary water chemistry condition and compositional analysis on the grain boundary segregation was made. Significant changes in the mechanical properties due to irradiation such as a remarkable increase of strength and hardness, and a considerable reduction of elongation were seen. SSRT results revealed that the intergranular fracture ratio (%IGSCC) increased as dissolved hydrogen (DH) increased. In addition, SSRT results in argon gas atmosphere showed a small amount of intergranular cracking. The depletion of Fe, Cr, Mo and the enrichment of Ni and Si were observed in microchemical analyses on the grain boundary.

  9. In situ measurement of tritium permeation through stainless steel

    NASA Astrophysics Data System (ADS)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  10. Development of Alumina-Forming Austenitic Stainless Steels

    SciTech Connect

    Brady, Michael P; Yamamoto, Yukinori; Bei, Hongbin; Santella, Michael L; Maziasz, Philip J

    2009-01-01

    This paper presents the results of the continued development of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys, which exhibit a unique combination of excellent oxidation resistance via protective alumina (Al2O3) scale formation and high-temperature creep strength through the formation of stable nano-scale MC carbides and intermetallic precipitates. Efforts in fiscal year 2009 focused on the characterization and understanding of long-term oxidation resistance and tensile properties as a function of alloy composition and microstructure. Computational thermodynamic calculations of the austenitic matrix phase composition and the volume fraction of MC, B2-NiAl, and Fe2(Mo,Nb) base Laves phase precipitates were used to interpret oxidation behavior. Of particular interest was the enrichment of Cr in the austenitic matrix phase by additions of Nb, which aided the establishment and maintenance of alumina. Higher levels of Nb additions also increased the volume fraction of B2-NiAl precipitates, which served as an Al reservoir during long-term oxidation. Ageing studies of AFA alloys were conducted at 750 C for times up to 2000 h. Ageing resulted in near doubling of yield strength at room temperature after only 50 h at 750 C, with little further increase in yield strength out to 2000 h of ageing. Elongation was reduced on ageing; however, levels of 15-25% were retained at room temperature after 2000 h of total ageing.

  11. Fracture toughness evaluations of TP304 stainless steel pipes

    SciTech Connect

    Rudland, D.L.; Brust, F.W.; Wilkowski, G.M.

    1997-02-01

    In the IPIRG-1 program, the J-R curve calculated for a 16-inch nominal diameter, Schedule 100 TP304 stainless steel (DP2-A8) surface-cracked pipe experiment (Experiment 1.3-3) was considerably lower than the quasi-static, monotonic J-R curve calculated from a C(T) specimen (A8-12a). The results from several related investigations conducted to determine the cause of the observed toughness difference are: (1) chemical analyses on sections of Pipe DP2-A8 from several surface-cracked pipe and material property specimen fracture surfaces indicate that there are two distinct heats of material within Pipe DP2-A8 that differ in chemical composition; (2) SEN(T) specimen experimental results indicate that the toughness of a surface-cracked specimen is highly dependent on the depth of the initial crack, in addition, the J-R curves from the SEN(T) specimens closely match the J-R curve from the surface-cracked pipe experiment; (3) C(T) experimental results suggest that there is a large difference in the quasi-static, monotonic toughness between the two heats of DP2-A8, as well as a toughness degradation in the lower toughness heat of material (DP2-A8II) when loaded with a dynamic, cyclic (R = {minus}0.3) loading history.

  12. Optimizing a 6%Mo stainless steel for FGD service

    SciTech Connect

    Maurer, J.F.L.; Underkofler, J.W.

    1998-12-31

    Materials used in flue gas desulfurization systems are expected to be resistant to highly aggressive exposures. This does not always happen. Premature material degradation frequently results in unplanned outages, lost production, unsafe conditions and in some severe cases, the necessity to replace large portions of facilities well before their designed obsolescence. Understanding the exposure environments and operating conditions in conjunction with a materials capability is key to proper materials selection. Understanding the fine tuning needs of an alloy may be even more imperative to long term successful application. The need for special alloys to resist the aggressive corrosivity of FGD environments invariably dictates higher alloyed and probably more expensive materials. In order to be cost effective, these materials must perform at a high efficiency level and provide a long service life. The typical broad, generic specifications used to define material composition and mechanical property acceptance levels, may not be sufficient. This presentation will examine the optimization potential of one material, UNS N08367, a 6% molybdenum containing stainless steel. The alloy has been proven in many environment, but use of optimization techniques may augment its performance. Included will be a review of the positive and negative effects of certain major and minor alloying additions, the response to varied thermal treatments, control of surface depletion and stress levels, and fabrication, with optimization in mind. The items reviewed, will have applicability to other material systems, with some modifications to suit the specific alloy and environments.

  13. Studies of aged cast stainless steel from the Shippingport reactor

    SciTech Connect

    Chopra, O.K.

    1991-10-01

    The mechanical properties of cast stainless steels from the Shippingport reactor have been characterized. Baseline properties for unaged materials were obtained from tests on either recovery-annealed material or material from a cooler region of the component. The materials exhibited modest decrease in impact energy and fracture toughness and a small increase in tensile strength. The fracture toughness J-R curve, J{sub IC} value, tensile flow stress, and Charpy-impact energy of the materials showed very good agreement with estimations based on accelerated laboratory aging studies. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy that would be achieved after long-term aging, were established from materials that were aged further in the laboratory at temperatures between 320 and 400{degree}C. The results showed very good agreement with estimates; the activation energies ranged from 125 to 250 kJ/mole and the minimum room-temperature impact energy was >75 J/cm{sup 2}. The estimated impact energy and fracture toughness J-R curve for materials from the Ringhals reactor hot and crossover-leg elbows are also presented.

  14. Tensile and creep data on type 316 stainless steel

    SciTech Connect

    Sikka, V. K.; Booker, B. L.P.; Booker, M. K.; McEnerney, J. W.

    1980-01-01

    This report summarizes tensile and creep data on 13 heats of type 316 stainless steel. It includes ten different product forms (three plates, four pipes, and three bars) of the reference heat tested at ORNL. Tensile data are presented in tabular form and analyzed as a function of temperature by the heat centering method. This method yielded a measure of variations within a single heat as well as among different heats. The upper and lower scatter bands developed by this method were wider at the lower temperatures than at the high temperatures (for strength properties), a trend reflected by the experimental data. The creep data on both unaged and aged specimens are presented in tabular form along with creep curves for each test. The rupture time data are compared with the ASME Code Case minimum curve at each test temperature in the range from 538 to 704{sup 0}C. The experimental rupture time data are also compared with the values predicted by using the rupture model based on elevated-temperature ultimate tensile strength. A creep ductility trend curve was developed on the basis of the reference heat data and those published in the literature on nitrogen effects. To characterize the data fully, information was also supplied on vendor, product form, fabrication method, material condition (mill-annealed vs laboratory annealed and aged), grain size, and chemical composition for various heats. Test procedures used for tensile and creep results are also discussed.

  15. Tritium Effects on Fracture Toughness of Stainless Steel Weldments

    SciTech Connect

    MORGAN, MICHAEL; CHAPMAN, G. K.; TOSTEN, M. H.; WEST, S. L.

    2005-05-12

    The effects of tritium on the fracture toughness properties of Type 304L and Type 21-6-9 stainless steel weldments were measured. Weldments were tritium-charged-and-aged and then tested in order to measure the effect of the increasing decay helium content on toughness. The results were compared to uncharged and hydrogen-charged samples. For unexposed weldments having 8-12 volume percent retained delta ferrite, fracture toughness was higher than base metal toughness. At higher levels of weld ferrite, the fracture toughness decreased to values below that of the base metal. Hydrogen-charged and tritium-charged weldments had lower toughness values than similarly charged base metals and toughness decreased further with increasing weld ferrite content. The effect of decay helium content was inconclusive because of tritium off-gassing losses during handling, storage and testing. Fracture modes were dominated by the dimpled rupture process in unexposed weldments. In hydrogen and tritium-exposed weldments, the fracture modes depended on the weld ferrite content. At high ferrite contents, hydrogen-induced transgranular fracture of the weld ferrite phase was observed.

  16. Eddy current techniques for super duplex stainless steel characterization

    NASA Astrophysics Data System (ADS)

    Camerini, C.; Sacramento, R.; Areiza, M. C.; Rocha, A.; Santos, R.; Rebello, J. M.; Pereira, G.

    2015-08-01

    Super duplex stainless steel (SDSS) is a two-phase material where the microstructure consists of grains of ferrite (δ) and austenite (γ). SDSS exhibit an attractive combination of properties, such as: strength, toughness and stress corrosion cracking resistance. Nevertheless, SDSS attain these properties after a controlled solution heat treatment, leading to a similar volumetric fraction of δ and γ. Any further heat treatment, welding operation for example, can change the balance of the original phases, or may also lead to precipitation of a deleterious phase, such as sigma (σ). For these situations, the material corrosion resistance is severely impaired. In the present study, several SDSS samples with low σ phase content and non-balanced microstructure were intentionally obtained by thermally treating SDSS specimens. Electromagnetic techniques, conventional Eddy Current Testing (ECT) and Saturated Low Frequency Eddy Current (SLOFEC), were employed to characterize the SDSS samples. The results showed that ECT and SLOFEC are reliable techniques to evaluate σ phase presence in SDSS and can provide an estimation of the δ content.

  17. Phase Separation in Lean-Grade Duplex Stainless Steel 2101

    NASA Astrophysics Data System (ADS)

    Garfinkel, David A.; Poplawsky, Jonathan D.; Guo, Wei; Young, George A.; Tucker, Julie D.

    2015-08-01

    The use of duplex stainless steels (DSS) in nuclear power generation systems is limited by thermal instability that leads to embrittlement in the temperature range of 204°C to 538°C. New lean-grade alloys, such as 2101, offer the potential to mitigate these effects. Thermal embrittlement was quantified through impact toughness and hardness testing on samples of alloy 2101 after aging at 427°C for various durations (1-10,000 h). Additionally, atom probe tomography (APT) was utilized in order to observe the kinetics of α-α' separation and G-phase formation. Mechanical testing and APT data for two other DSS alloys, 2003 and 2205, were used as a reference to 2101. The results show that alloy 2101 exhibits superior performance compared to the standard-grade DSS alloy 2205 but inferior to the lean-grade alloy 2003 in mechanical testing. APT data demonstrate that the degree of α-α' separation found in alloy 2101 closely resembles that of 2205 and greatly exceeds 2003. Additionally, contrary to what was observed in 2003, 2101 demonstrated G-phase like precipitates after long aging times, although precipitates were not as abundant as was observed in 2205.

  18. Solidification microstructures in single-crystal stainless steel melt pools

    SciTech Connect

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  19. TEM studies of plasma nitrided austenitic stainless steel.

    PubMed

    Stróz, D; Psoda, M

    2010-03-01

    Cross-sectional transmission electron microscopy and X-ray phase analysis were used to study the structure of a layer formed during nitriding the AISI 316L stainless steel at temperature 440 degrees C. It was found that the applied treatment led to the formation of 6-microm-thick layer of the S-phase. There is no evidence of CrN precipitation. The X-ray diffraction experiments proved that the occurred austenite lattice expansion - due to nitrogen atoms - depended on the crystallographic direction. The cross-sectional transmission electron microscopy studies showed that the layer consisted of a single cubic phase that contained a lot of defects such as dislocations, stacking faults, slip bands and twins. The high-resolution electron microscopy observations were applied to study the defect formation due to the nitriding process. It was shown that the presence of great number of stacking faults leads to formation of nanotwins. Weak, forbidden {100} reflections were still another characteristic feature of the S-phase. These were not detected in the X-ray spectra of the phase. Basing on the high-resolution electron microscopy studies it can be suggested that the short-range ordering of the nitrogen atoms in the octahedral sites inside the f.c.c. matrix lattice takes place and gives rise to appearance of these spots. It is suggested that the cubic lattice undergoes not only expansion but also slight rombohedral distortion that explains differences in the lattice expansion for different crystallographic directions.

  20. Phase Separation in Lean Grade Duplex Stainless Steel 2101

    DOE PAGES

    Garfinkel, D.; Poplawsky, Jonathan D.; Guo, Wei; Young, Jr., George A.; Tucker, Julie

    2015-08-19

    The use of duplex stainless steels (DSS) in nuclear power generation systems is limited by thermal instability that leads to embrittlement in the temperature range of 204°C - 538°C. New lean grade alloys, such as 2101, offer the potential to mitigate these effects. Thermal embrittlement was quantified through impact toughness and hardness testing on samples of alloy 2101 after aging at 427°C for various durations (1-10,000 hours). Additionally, atom probe tomography (APT) was utilized in order to observe the kinetics of α-α’ separation and G-phase formation. Mechanical testing and APT data for two other DSS alloys, 2003 and 2205 weremore » used as a reference to 2101. The results show that alloy 2101 exhibits superior performance compared to the standard grade DSS alloy, 2205, but inferior to the lean grade alloy, 2003, in mechanical testing. APT data demonstrates that the degree of α-α’ separation found in alloy 2101 closely resembles that of 2205, and greatly exceeds 2003. Additionally, contrary to what was observed in 2003, 2101 demonstrated G-phase like precipitates after long aging times, though precipitates were not as abundant as was observed in 2205.« less

  1. Metal ion release from new and recycled stainless steel brackets.

    PubMed

    Huang, Tsui-Hsien; Ding, Shinn-Jyh; Min, Yan; Kao, Chia-Tze

    2004-04-01

    As orthodontic appliances can corrode with time in the oral environment, the aim of this study was to compare the release of metal ions from new and recycled brackets immersed in buffers of different pH values over a 48 week period. To simulate commercial recycling, the stainless steel brackets were divided into two groups: new and recycled. The bases of the latter were coated with adhesive and the brackets were heat treated before being immersed in the test solution for 48 weeks. The release of nickel, chromium, iron, copper, cobalt and manganese ions was analysed by atomic absorption spectrophotometry. Differences were compared using one-way analysis of variance. The results showed that recycled brackets released more ions than new brackets (P < 0.05). Brackets immersed in solutions of pH 4 released more ions than those immersed in solutions of pH 7, and the total amount of ions released increased with time over the 48 week period (P < 0.05). This study demonstrates that both new and recycled brackets will corrode in the oral environment. To avoid clinical side-effects, metal brackets should be made more resistant to corrosion, and recycled brackets should not be used. PMID:15130040

  2. Stainless steel manual metal arc welding fumes in rats.

    PubMed Central

    Kalliomäki, P L; Lakomaa, E; Kalliomäki, K; Kiilunen, M; Kivelä, R; Vaaranen, V

    1983-01-01

    Forty two male Wistar rats were exposed to manual metal arc (MMA) stainless steel (SS) welding fumes generated by an automatic welding device for "nose-only" exposure. The exposure simulated an actual MMA/SS welding environment as closely as possible. For the retention study, the duration of exposure was one hour per workday for one, two, three, of four weeks and for the clearance study four weeks. The retention and clearance of the chromium, nickel, and iron found in MMA/SS welding fumes in the rats' lungs were studied as was the distribution of the metals to other organs. Instrumental neutron activation analysis (INAA) was used for the multi-element chemical activation analyses. The concentrations of chromium and nickel in the blood and the urine were determined by atomic absorption method (AAS). The retention of exogenous iron was determined by a magnetic measuring method. The results indicated that the lungs were the target organs of soluble hexavalent chromates. The half times of lung clearance for Cr, Ni, and Fe were 40 +/- 4 d, 20 +/- d, and 50 +/- 10 d. When the lung clearance curves are compared, the half times of Cr and Fe lung clearance are similar but nickel disappears faster. The distribution and clearance patterns of chromium to other organs differ from those obtained after single intravenous or intratracheal injections of alkaline chromates. PMID:6830723

  3. Twinning and martensite in a 304 austenitic stainless steel

    SciTech Connect

    Shen, Yongfeng; Li, Xi; Sun, Xin; Wang, Y. D.; Zuo, Liang

    2012-08-30

    The microstructure characteristics and deformation behavior of 304L stainless steel during tensile deformation at two different strain rates have been investigated by means of interrupted tensile tests, electron-backscatter-diffraction (EBSD) and transmission electron microscopy (TEM) techniques. The volume fractions of transformed martensite and deformation twins at different stages of the deformation process were measured using X-ray diffraction method and TEM observations. It is found that the volume fraction of martensite monotonically increases with increasing strain but decreases with increasing strain rate. On the other hand, the volume fraction of twins increases with increasing strain for strain level less than 57%. Beyond that, the volume fraction of twins decreases with increasing strain. Careful TEM observations show that stacking faults (SFs) and twins preferentially occur before the nucleation of martensite. Meanwhile, both {var_epsilon}-martensite and {alpha}{prime}-martensite are observed in the deformation microstructures, indicating the co-existence of stress induced- transformation and strain-induced-transformation. We also discussed the effects of twinning and martensite transformation on work-hardening as well as the relationship between stacking faults, twinning and martensite transformation.

  4. Welding stainless steels for structures operating at liquid helium temperature

    SciTech Connect

    Witherell, C.E.

    1980-04-18

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2/sup 0/K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2/sup 0/K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness.

  5. Upset Resistance Welding of Carbon Steel to Austenitic Stainless Steel Narrow Rods

    NASA Astrophysics Data System (ADS)

    Ozlati, Ashkaan; Movahedi, Mojtaba; Mohammadkamal, Helia

    2016-09-01

    Effects of welding current (at the range of 2-4 kA) on the microstructure and mechanical properties of upset resistance welds of AISI-1035 carbon steel to AISI-304L austenitic stainless steel rods were investigated. The results showed that the joint strength first increased by raising the welding current up to 3 kA and then decreased beyond it. Increasing trend was related to more plastic deformation, accelerated diffusion, reduction of defects and formation of mechanical locks at the joint interface. For currents more than 3 kA, decrease in the joint strength was mainly caused by formation of hot spots. Using the optimum welding current of 3 kA, tensile strength of the joint reached to ~76% of the carbon steel base metal strength. Microstructural observations and microhardness results confirmed that there was no hard phase, i.e., martensite or bainite, at the weld zone. Moreover, a fully austenitic transition layer related to carbon diffusion from carbon steel was observed at the weld interface.

  6. Cast CF8C-Plus Stainless Steel for Turbocharger Applications

    SciTech Connect

    Maziasz, P.J.; Shyam, A.; Evans, N.D.; Pattabiraman, K. (Honeywell Turbo Technologies

    2010-06-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) project is to provide the critical test data needed to qualify CF8C-Plus cast stainless steel for commercial production and use for turbocharger housings with upgraded performance and durability relative to standard commercial cast irons or stainless steels. The turbocharger technologies include, but are not limited to, heavy-duty highway diesel engines, and passenger vehicle diesel and gasoline engines. This CRADA provides additional critical high-temperature mechanical properties testing and data analysis needed to quality the new CF8C-Plus steels for turbocharger housing applications.

  7. Stainless Steel Bipolar Plates Deposited with Multilayer Films for PEMFC Applications

    NASA Astrophysics Data System (ADS)

    Cho, Hyun; Yun, Young-Hoon

    2013-08-01

    A chromium nitride (CrN, Cr2N)/chromium (Cr)/indium-tin-oxide (ITO) system and a gold (Au)/titanium (Ti) system were separately deposited using a sputtering method and an E-beam method, respectively, onto stainless steel 316 and 304 plates. The XRD patterns of the deposited stainless steel plates showed the crystalline phase of typical indium-tin oxide and of metallic phases, such as chromium, gold, and the metal substrate, as well as those of external chromium nitride films. The nitride films were composed of two metal nitride phases that consisted of CrN and Cr2N compounds. The surface morphologies of the modified stainless steel bipolar plates were observed using atomic force microscopy and FE-SEM. The chromium nitride (CrN, Cr2N)/chromium (Cr)/indium-tin-oxide (ITO) multilayer that was formed on the stainless steel plates had a surface microstructural morphology that consisted of fine columnar grains 10 nm in diameter and 60 nm in length. The external gold films that were formed on the stainless steel plates had a grain microstructure approximately 100 nm in diameter. The grain size of the external surface of the stainless steel plates with the gold (Au)/titanium (Ti) system increased with increasing gold film thickness. The electrical resistances and water contact angles of the stainless steel bipolar plates that were covered with the multilayer films were examined as a function of the thickness of the ITO film or of the external gold film. In the corrosion test, ICP-MS results indicated that the gold (Au)/titanium (Ti) films showed relatively excellent chemical stability after exposure to H2SO4 solution with pH 3 at 80 °C.

  8. Effects of inoculation level, material hydration, and stainless steel surface roughness on the transfer of listeria monocytogenes from inoculated bologna to stainless steel and high-density polyethylene.

    PubMed

    Rodríguez, Andrés; Autio, Wesley R; McLandsborough, Lynne A

    2007-06-01

    The influence of inoculation level, material hydration, and stainless steel surface roughness on the transfer of Listeria monocytogenes from inoculated bologna to processing surfaces (stainless steel and polyethylene) was assessed. Slices of bologna (14 g) were inoculated with Listeria at different levels, from 10(5) to 10(9) CFU/cm2. Transfer experiments were done at a constant contact time (30 s) and pressure (45 kPa) with a universal testing machine. After transfer, cells that had been transferred to sterile stainless steel and polyethylene were removed and counted, and the efficiency of transfer (EOT) was calculated. As the inoculation level increased from 10(5) to 10(9) CFU/cm(2), the absolute level of transfer increased in a similar fashion. By calculating EOTs, the data were normalized, and the initial inoculation level had no effect on the transfer (P > 0.05). The influence of hydration level on stainless steel, high-density polyethylene, and material type was investigated, and the EOTs ranged from 0.1 to 1 under all the conditions tested. Our results show that transfers to wetted processing surfaces (mean EOT = 0.43) were no different from dried processing surfaces (mean EOT = 0.35) (P > 0.05). Material type was shown to be a significant factor, with greater numbers of Listeria transferring from bologna to stainless steel (mean EOT = 0.49) than from bologna to polyethylene (mean EOT = 0.28) (P < 0.01). Stainless steel with three different surface roughness (Ra) values of <0.8 microm (target Ra = 0.25, 0.50, and 0.75 Vmicrom) and two different finishes (mechanically polished versus mechanically polished and further electropolished) was used to evaluate its effect on the transfer. The surface roughness and finish on the stainless steel did not have any effect on the transfer of Listeria (P > 0.05). Our results showed that when evaluating the transfer of Listeria, the use of EOTs rather than the absolute transfer values is essential to allow comparisons of

  9. Nickel-free austenitic stainless steels of exceptional strength and corrosion resistance

    SciTech Connect

    Speidel, M.O.; Magdowski, R.; Uggowitzer, P.J.

    1996-11-01

    Both the price of nickel and the allergic reaction that it can cause to human beings make it desirable to develop and use nickel-free austenitic stainless steels. The steels should be austenitic so as to avoid ferro-magnetism, a condition which has to be fulfilled for a number of requirements, including its use as implants in the human body, for wrist watch cases and many others. The paper presents the development of a nickel-free steel containing 11 percent manganese, 17 percent chromium, 4 percent molybdenum, and 0.9 percent nitrogen. This austenitic stainless steel has exceptional strength and corrosion resistance. These properties could result in numerous applications of the steel. A limitation, however, is that the steel is not weldable.

  10. The effects of laser welding parameters on the microstructure of ferritic and duplex stainless steels welds

    NASA Astrophysics Data System (ADS)

    Pekkarinen, J.; Kujanpää, V.

    This study is focused to determine empirically, which microstructural changes occur in ferritic and duplex stainless steels when heat input is controlled by welding parameters. Test welds were done autogenously bead-on-plate without shielding gas using 5 kW fiber laser. For comparison, some gas tungsten arc welds were made. Used test material were 1.4016 (AISI 430) and 1.4003 (low-carbon ferritic) type steels in ferritic steels group and 1.4162 (low-alloyed duplex, LDX2101) and 1.4462 (AISI 2205) type steels in duplex steels group. Microstructural changes in welds were identified and examined using optical metallographic methods.

  11. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers

    NASA Astrophysics Data System (ADS)

    Gago, A. S.; Ansar, S. A.; Saruhan, B.; Schulz, U.; Lettenmeier, P.; Cañas, N. A.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Arnold, J.; Friedrich, K. A.

    2016-03-01

    Proton exchange membrane (PEM) electrolysis is a promising technology for large H2 production from surplus electricity from renewable sources. However, the electrolyser stack is costly due to the manufacture of bipolar plates (BPP). Stainless steel can be used as an alternative, but it must be coated. Herein, dense titanium coatings are produced on stainless steel substrates by vacuum plasma spraying (VPS). Further surface modification of the Ti coating with Pt (8 wt% Pt/Ti) deposited by physical vapour deposition (PVD) magnetron sputtering reduces the interfacial contact resistance (ICR). The Ti and Pt/Ti coatings are characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron microscopy (XPS). Subsequently, the coatings are evaluated in simulated and real PEM electrolyser environments, and they managed to fully protect the stainless steel substrate. In contrast, the absence of the thermally sprayed Ti layer between Pt and stainless steel leads to pitting corrosion. The Pt/Ti coating is tested in a PEM electrolyser cell for almost 200 h, exhibiting an average degradation rate of 26.5 μV h-1. The results reported here demonstrate the possibility of using stainless steel as a base material for the stack of a PEM electrolyser.

  12. Evaluation of stainless steel zirconium alloys as high-level nuclear waste forms

    NASA Astrophysics Data System (ADS)

    McDeavitt, S. M.; Abraham, D. P.; Park, J. Y.

    1998-09-01

    Stainless steel-zirconium (SS-Zr) alloys have been developed for the consolidation and disposal of waste stainless steel, zirconium, and noble metal fission products such as Nb, Mo, Tc, Ru, Pd, and Ag recovered from spent nuclear fuel assemblies. These remnant waste metals are left behind following electrometallurgical treatment, a molten salt-based process being demonstrated by Argonne National Laboratory. Two SS-Zr compositions have been selected as baseline waste form alloys: (a) stainless steel-15 wt% zirconium (SS-15Zr) for stainless steel-clad fuels and (b) zirconium-8 wt% stainless steel (Zr-8SS) for Zircaloy-clad fuels. Simulated waste form alloys were prepared and tested to characterize the metallurgy of SS-15Zr and Zr-8SS and to evaluate their physical properties and corrosion resistance. Both SS-15Zr and Zr-8SS have multi-phase microstructures, are mechanically strong, and have thermophysical properties comparable to other metals. They also exhibit high resistance to corrosion in simulated groundwater as determined by immersion, electrochemical, and vapor hydration tests. Taken together, the microstructure, physical property, and corrosion resistance data indicate that SS-15Zr and Zr-8SS are viable materials as high-level waste forms.

  13. The Underground Corrosion of Selected Type 300 Stainless Steels After 34 Years

    SciTech Connect

    T. S. Yoder; M. K. Adler Flitton

    2009-03-01

    Recently, interest in long-term underground corrosion has greatly increased because of the ongoing need to dispose of nuclear waste. Additionally, the Nuclear Waste Policy Act of 1982 requires disposal of high-level nuclear waste in an underground repository. Current contaminant release and transport models use limited available short-term underground corrosion rates when considering container and waste form degradation. Consequently, the resulting models oversimplify the complex mechanisms of underground metal corrosion. The complexity of stainless steel corrosion mechanisms and the processes by which corrosion products migrate from their source are not well depicted by a corrosion rate based on general attack. The research presented here is the analysis of austenitic stainless steels after 33½ years of burial. In this research, the corrosion specimens were analyzed using applicable ASTM standards as well as microscopic and X-ray examination to determine the mechanisms of underground stainless steel corrosion. As presented, the differences in the corrosion mechanisms vary with the type of stainless steel and the treatment of the samples. The uniqueness of the long sampling time allows for further understanding of the actual stainless steel corrosion mechanisms, and when applied back into predictive models, will assist in reduction of the uncertainty in parameters for predicting long-term fate and transport.

  14. The effects of stainless steel radial reflector on core reactivity for small modular reactor

    NASA Astrophysics Data System (ADS)

    Kang, Jung Kil; Hah, Chang Joo; Cho, Sung Ju; Seong, Ki Bong

    2016-01-01

    Commercial PWR core is surrounded by a radial reflector, which consists of a baffle and water. Radial reflector is designed to reflect neutron back into the core region to improve the neutron efficiency of the reactor and to protect the reactor vessels from the embrittling effects caused by irradiation during power operation. Reflector also helps to flatten the neutron flux and power distributions in the reactor core. The conceptual nuclear design for boron-free small modular reactor (SMR) under development in Korea requires to have the cycle length of 4˜5 years, rated power of 180 MWth and enrichment less than 5 w/o. The aim of this paper is to analyze the effects of stainless steel radial reflector on the performance of the SMR using UO2 fuels. Three types of reflectors such as water, water/stainless steel 304 mixture and stainless steel 304 are selected to investigate the effect on core reactivity. Additionally, the thickness of stainless steel and double layer reflector type are also investigated. CASMO-4/SIMULATE-3 code system is used for this analysis. The results of analysis show that single layer stainless steel reflector is the most efficient reflector.

  15. Estimation of fracture toughness of cast stainless steels during thermal aging in LWR systems

    SciTech Connect

    Chopra, O.K. )

    1991-06-01

    A procedure and correlations are presented for predicting the change in fracture toughness of cast stainless steel components due to thermal aging during service in light water rectors (LWRs) at 280--330{degrees}C (535--625{degrees}F). The fracture toughness J-R curve and Charpy-impact energy of aged cast stainless steels are estimated from known mineral in formation. Fracture toughness of a specific cast stainless steel is estimated from the extent and kinetics of thermal embrittlement. The extent of thermal embrittlement is characterized by the room-temperature normalized'' Charpy-impact energy. A correlation for the extent of embrittlement at saturation,'' i.e., the minimum impact energy that would be achieved for the material after long-term aging, is given in terms of a material parameter, {Phi}, which is determined from the chemical composition. The fracture toughness J-R curve for the material is then obtained from correlations between room-temperature Charpy-impact energy and fracture toughness parameters. Fracture toughness as a function of time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which is determined from chemical composition. A common lower-bound'' J-R curve for cast stainless steels with unknown chemical composition is also defined for a given material specification, ferrite content, and temperature. Examples for estimating impact strength and fracture toughness of cast stainless steel components during reactor service are describes. 24 refs., 39 figs., 2 tabs.

  16. Effect of Plasma Nitriding and Nitrocarburizing on HVOF-Sprayed Stainless Steel Coatings

    NASA Astrophysics Data System (ADS)

    Park, Gayoung; Bae, Gyuyeol; Moon, Kyungil; Lee, Changhee

    2013-12-01

    In this work, the effects of plasma nitriding (PN) and nitrocarburizing on HVOF-sprayed stainless steel nitride layers were investigated. 316 (austenitic), 17-4PH (precipitation hardening), and 410 (martensitic) stainless steels were plasma-nitrided and nitrocarburized using a N2 + H2 gas mixture and the gas mixture containing C2H2, respectively, at 550 °C. The results showed that the PN and nitrocarburizing produced a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer depending on the crystal structures of the HVOF-sprayed stainless steel coatings. Also, the diffusion depth of nitrogen increased when a small amount of C2H2 (plasma nitrocarburizing process) was added. The PN and nitrocarburizing resulted in not only an increase of the surface hardness, but also improvement of the load bearing capacity of the HVOF-sprayed stainless steel coatings because of the formation of CrN, Fe3N, and Fe4N phases. Also, the plasma-nitrocarburized HVOF-sprayed 410 stainless steel had a superior surface microhardness and load bearing capacity due to the formation of Cr23C6 on the surface.

  17. Peptide-based biocoatings for corrosion protection of stainless steel biomaterial in a chloride solution.

    PubMed

    Muruve, Noah G G; Cheng, Y Frank; Feng, Yuanchao; Liu, Tao; Muruve, Daniel A; Hassett, Daniel J; Irvin, Randall T

    2016-11-01

    In this work, PEGylated D-amino acid K122-4 peptide (D-K122-4-PEG), derived from the type IV pilin of Pseudomonas aeruginosa, coated on 304 stainless steel was investigated for its corrosion resistant properties in a sodium chloride solution by various electrochemical measurements, surface characterization and molecular dynamics simulation. As a comparison, stainless steel electrodes coated with non-PEGylated D-amino acid retroinverso peptide (RI-K122-4) and D-amino acid K122-4 peptide (D-K122-4) were used as control variables during electrochemical tests. It was found that the D-K122-4-PEG coating is able to protect the stainless steel from corrosion in the solution. The RI-K122-4 coating shows corrosion resistant property and should be investigated further, while the D-K122-4 peptide coating, in contrast, shows little to no effect on corrosion. The morphological characterizations support the corrosion resistance of D-K122-4-PEG on stainless steel. The adsorption of D-K122-4 molecules occurs preferentially on Fe2O3, rather than Cr2O3, present on the stainless steel surface.

  18. Peptide-based biocoatings for corrosion protection of stainless steel biomaterial in a chloride solution.

    PubMed

    Muruve, Noah G G; Cheng, Y Frank; Feng, Yuanchao; Liu, Tao; Muruve, Daniel A; Hassett, Daniel J; Irvin, Randall T

    2016-11-01

    In this work, PEGylated D-amino acid K122-4 peptide (D-K122-4-PEG), derived from the type IV pilin of Pseudomonas aeruginosa, coated on 304 stainless steel was investigated for its corrosion resistant properties in a sodium chloride solution by various electrochemical measurements, surface characterization and molecular dynamics simulation. As a comparison, stainless steel electrodes coated with non-PEGylated D-amino acid retroinverso peptide (RI-K122-4) and D-amino acid K122-4 peptide (D-K122-4) were used as control variables during electrochemical tests. It was found that the D-K122-4-PEG coating is able to protect the stainless steel from corrosion in the solution. The RI-K122-4 coating shows corrosion resistant property and should be investigated further, while the D-K122-4 peptide coating, in contrast, shows little to no effect on corrosion. The morphological characterizations support the corrosion resistance of D-K122-4-PEG on stainless steel. The adsorption of D-K122-4 molecules occurs preferentially on Fe2O3, rather than Cr2O3, present on the stainless steel surface. PMID:27524070

  19. Fabrication of High Strength and Ductile Stainless Steel Fiber Felts by Sintering

    NASA Astrophysics Data System (ADS)

    Wang, J. Z.; Tang, H. P.; Qian, M.; Li, A. J.; Ma, J.; Xu, Z. G.; Li, C. L.; Liu, Y.; Wang, Y.

    2016-03-01

    Stainless steel fiber felts are important porous stainless steel products for a variety of industry applications. A systematic study of the sintering of 28- µm stainless steel fibers has been conducted for the first time, assisted with synchrotron radiation experiments to understand the evolution of the sintered joints. The critical sintering conditions for the formation of bamboo-like grain structures in the fiber ligaments were identified. The evolution of the number density of the sintered joints and the average sintered neck radius during sintering was assessed based on synchrotron radiation experiments. The optimum sintering condition for the fabrication of high strength and ductile 28- µm-diameter stainless steel fiber felts was determined to be sintering at 1000°C for 900 s. Sintering under this optimum condition increased the tensile strength of the as-sintered stainless steel fiber felts by 50% compared to conventional sintering (1200°C for 7200 s), in addition to much reduced sintering cycle and energy consumption.

  20. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    NASA Astrophysics Data System (ADS)

    Cheng, Feng; Jiang, Shuyun

    2014-02-01

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (-200 V/80 A, labeled DLC-1, and -100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  1. Aging of LAB-based liquid scintillator in stainless steel containers

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Tao; Yu, Bo-Xiang; Shan, Qing; Ding, Ya-Yun; Du, Bing; Liu, Shu-Tong; Zhang, Xuan; Zhou, Li; Jia, Wen-Bao; Fang, Jian; Ye, Xing-Chen; Hu, Wei; Niu, Shun-Li; Yan, Jia-Qing; Zhao, Hang; Hong, Dao-Jin

    2015-06-01

    Types 316 and 304 stainless steel are two candidates for the storage vessels and piping systems of LAB-based liquid scintillator (LS) in the JUNO experiment. LS aging experiments are carried out at temperatures of 40 °C and 25 °C. After 192 days aging at 40 °C, the attenuation length of LS was reduced by 6% in a glass container, 12% in a type 304 stainless steel tank, and 10% in a type 316 stainless steel tank. At 25 °C in 304 and 316 stainless steel tanks, the attenuation length was reduced by 6% after 307 days. The light yield and the absorption spectrum were practically the same as that of the unaged sample. The concentration of element Fe in the LAB-based LS did not show a clear change. Type 316 and 304 stainless steel can be used as vessels and transportation pipeline material for LAB-based LS. Supported by Strategic Priority Research Program of the Chinese Academy of Sciences (XDA10010500) and National Natural Science Foundation of China (11205183, 11005117, 11225525, 11390384)

  2. 76 FR 87 - Grant of Authority for Subzone Status; ThyssenKrupp Steel and Stainless USA, LLC; (Stainless and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ...-2008); Whereas, notice inviting public comment has been given in the Federal Register (73 FR 58535-58536, 10-7-08; 74 FR 38401, 8-3-09; 74 FR 47921, 9-18-09; 75 FR 17692-17693, 4-7-2010) and the... Foreign-Trade Zones Board Grant of Authority for Subzone Status; ThyssenKrupp Steel and Stainless USA,...

  3. Raman mapping of intact biofilms on stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Nguyen, Julie K.; Heighton, Lynne; Xu, Yunfeng; Nou, Xiangwu; Schmidt, Walter F.

    2016-05-01

    Many issues occur when microbial bacteria contaminates human food or water; it can be dangerous to the public. Determining how the microbial are growing, it can help experts determine how to prevent the outbreaks. Biofilms are a tightly group of microbial cells that grow on living surfaces or surrounding themselves. Though biofilms are not necessarily uniform; when there are more than one type of microbial bacteria that are grown, Raman mapping is performed to determine the growth patterns. Depending on the type of microbial bacteria, they can grow in various patterns such as symmetrical or scattered on the surface. The biofilms need to be intact in order to preclude and potentially figuring out the relative intensity of different components in a biofilm mixture. In addition, it is important to determine whether one biofilms is a substrate for another biofilm to be detected. For example, it is possible if layer B appears above layer A, but layer A doesn't appear above layer B. In this case, three types of biofilms that are grown includes Listeria(L), Ralstonia(R), and a mixture of the two (LR). Since microbe deposits on metal surfaces are quite suitable, biofilms were grown on stainless steel surface slides. Each slide was viewed under a Raman Microscope at 100X and using a 532nm laser to provide great results and sharp peaks. The mapping of the laser helps determine how the bacteria growth, at which intensity the bacteria appeared in order to identify specific microbes to signature markers on biofilms.

  4. Retention of esthetic veneers on primary stainless steel crowns.

    PubMed

    Baker, L H; Moon, P; Mourino, A P

    1996-01-01

    The purpose of this study was to ascertain the amount of shearing force necessary to fracture, dislodge or deform the esthetic veneer facings of four commercially available veneered primary incisor stainless steel crowns. The four types tested were: Cheng Crowns, [Peter Cheng Orthodontic Laboratory]; Whiter Biter Crown II, [White Bite Inc.]; Kinder Krowns, [Mayclin Dental Studio, Inc]; and NuSmile Primary Crowns, [Orthodontic Technologies, Inc]. The crowns (#4 right central incisor) from each manufacturer were obtained with the facings attached. The crowns were soaked for ninety days and thermocycled at 4 degrees C and 55 degrees C for 500 45-second cycles. The crowns were cemented to standardized chromium cobalt metal dies. Each die was placed in to a custom holder on the Instron Universal testing machine. A force was applied at the incisal edge of the veneer at 148 degrees, (the primary interincisal angle), with a crosshead speed of 0.05 inches/minute until the veneer either fractured, dislodged or deformed. The mean force (Ibs) required +/- SD to produce failure, in descending order, was as follows: Cheng (107.8 +/- 17.3); NuSmile (100.2 +/- 18.2); KinderKrown (91.3 +/- 27.4)d Whiter Biter (81.5 +/- 21.7). To test the hypothesis of no difference among the four manufacturers, an analysis of variance was performed using PROC GLM. The resultant F statistic was 2.79 (p < 0.0543), indicating a marginally statistically significant difference in the response variable "pressure" among the four groups. A posthoc test was then performed to ascertain where these differences occurred. These results, using Turkey's studentized range test for pairwise comparisons, suggested that the only difference was between the Cheng and Whiter Biter manufacturers. PMID:8853822

  5. Nonlinear dynamic analysis of hydrodynamically-coupled stainless steel structures

    SciTech Connect

    Zhao, Y.

    1996-12-01

    Spent nuclear fuel is usually stored temporarily on the site of nuclear power plants. The spent fuel storage racks are nuclear-safety-related stainless steel structures required to be analyzed for seismic loads. When the storage pool is subjected to three-dimensional (3-D) floor seismic excitations, rack modules, stored fuel bundles, adjacent racks and pool walls, and surrounding water are hydrodynamically coupled. Hydrodynamic coupling (HC) significantly affects the dynamic responses of the racks that are free-standing and submerged in water within the pool. A nonlinear time-history dynamic analysis is usually needed to describe the motion behavior of the racks that are both geometrically nonlinear and material nonlinear in nature. The nonlinearities include the friction resistance between the rack supporting legs and the pool floor, and various potential impacts of fuel-rack, rack-rack, and rack-pool wall. The HC induced should be included in the nonlinear dynamic analysis using the added-hydrodynamic-mass concept based on potential theory per the US Nuclear Regulatory Commission (USNRC) acceptance criteria. To this end, a finite element analysis constitutes a feasible and effective tool. However, most people perform somewhat simplified 1-D, or 2-D, or 3-D single rack and 2-D multiple rack analyses. These analyses are incomplete because a 3-D single rack model behaves quite differently from a 2-D mode. Furthermore, a 3-D whole pool multi-rack model behaves differently than a 3-D single rack model, especially when the strong HC effects are unsymmetrical. In this paper 3-D nonlinear dynamic time-history analyses were performed in a more quantitative manner using sophisticated finite element models developed for a single rack as well as all twelve racks in the whole-pool. Typical response results due to different HC effects are determined and discussed.

  6. Weld solidification cracking in 304 to 204L stainless steel

    SciTech Connect

    Hochanadel, Patrick W; Lienert, Thomas J; Martinez, Jesse N; Johnson, Matthew Q

    2010-09-15

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found.This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GTAW showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  7. Weld solidification cracking in 304 to 304L stainless steel

    SciTech Connect

    Hochanadel, Patrick W; Lienert, Thomas J; Martinez, Jesse N; Martinez, Raymond J; Johnson, Matthew Q

    2010-01-01

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  8. HYDROGEN EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF FORGED STAINLESS STEELS

    SciTech Connect

    Morgan, M

    2008-03-28

    The effect of hydrogen on the fracture toughness properties of Types 304L, 316L and 21-6-9 forged stainless steels was investigated. Fracture toughness samples were fabricated from forward-extruded forgings. Samples were uniformly saturated with hydrogen after exposure to hydrogen gas at 34 MPa or 69 and 623 K prior to testing. The fracture toughness properties were characterized by measuring the J-R behavior at ambient temperature in air. The results show that the hydrogen-charged steels have fracture toughness values that were about 50-60% of the values measured for the unexposed steels. The reduction in fracture toughness was accompanied by a change in fracture appearance. Both uncharged and hydrogen-charged samples failed by microvoid nucleation and coalescence, but the fracture surfaces of the hydrogen-charged steels had smaller microvoids. Type 316L stainless steel had the highest fracture toughness properties and the greatest resistance to hydrogen degradation.

  9. Method for reducing formation of electrically resistive layer on ferritic stainless steels

    SciTech Connect

    Rakowski, James M.

    2013-09-10

    A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surface region that has been depleted of silicon relative to a remainder of the steel.

  10. Estimation of mechanical properties of cast stainless steels during thermal aging in LWR systems

    SciTech Connect

    Chopra, O.K.

    1991-10-01

    A procedure and correlations are presented for predicting Charpy- impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of aged cast stainless steels from known material information. The ``saturation`` impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Mechanical properties as a function of time and temperature of reactor service are estimated from impact energy and flow stress of the unaged material and the kinetics of embrittlement, which are also determined from chemical composition. The J{sub IC} values are determined from the estimated J-R curve and flow stress. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented. A common ``lower-bound`` J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature.

  11. Fractures of modern high nitrogen stainless steel cemented stems: cause, mechanism, and avoidance in 14 cases.

    PubMed

    Yates, Piers J; Quraishi, Nasir A; Kop, Allan; Howie, Donald W; Marx, Clare; Swarts, Eric

    2008-02-01

    We present 14 cases of fracture of modern, high-nitrogen, stainless steel stems. Our clinical and radiological data suggest that heavy patients with small stems and poor proximal support are at risk for fracturing their implants. "Champagne-glass" canals can lead to the use of smaller stems often placed in varus, which can lead to cantilever bending and fatigue failure in the distal half of the stem. Metallurgical assessment of the retrieved high-nitrogen, stainless steel stems reveals microstructural inconsistencies that may contribute to their failure. Based on our findings, careful consideration and attention to technique is required when using stainless steel stems in patients with high body mass index or high weight. Technique is particularly important in femurs with champagne-glass canals. PMID:18280411

  12. Removal of the long-lived 222Rn daughters from copper and stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Zuzel, G.; Wójcik, M.

    2012-06-01

    Removal of the long-lived 222Rn daughters from copper and stainless steel surfaces was investigated. Etching and electropolishing were applied to discs exposed earlier to a strong radon source for 210Pb, 210Bi and 210Po deposition. Cleaning efficiency for 210Pb was tested with a n-type high purity germanium spectrometer, for 210Bi a beta spectrometer and for 210Po an alpha spectrometer was used. According to the performed measurements electropolishing removes very effectively all the isotopes from copper and stainless steel. Copper etching reduces efficiently lead and bismuth however for polonium the effect is negligible because of its fast re-deposition. For stainless steel, etching is much more effective compared to copper and it also works for 210Po.

  13. Prospects of increasing the strength of aluminum by reinforcing it with stainless steel wire (a review)

    NASA Technical Reports Server (NTRS)

    Botvina, L. R.; Ivanova, V. S.; Kopev, I. M.

    1982-01-01

    The theoretical and experimental strength of aluminum reinforced with stainless steel wire is analyzed. Various methods of producing the composite material and it's static and cyclical strengths are considered. The reinforcement of aluminum with stainless steel wire was accomplished from the perspective of increasing the specific strength of aluminum and it's alloys, increasing the strength of the material with respect to high and low temperatures, as well as increasing the cyclical strength. The production of the composite aluminum-stainless steel wire material with approximated or calculated strengthening is possible by any of the considered methods. The selection of the proper production technology depends on precise details and conditions of application of the material.

  14. Two-Phase Master Sintering Curve for 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Jung, Im Doo; Ha, Sangyul; Park, Seong Jin; Blaine, Deborah C.; Bollina, Ravi; German, Randall M.

    2016-11-01

    The sintering behavior of 17-4 PH stainless steel has been efficiently characterized by a two-phase master sintering curve model (MSC). The activation energy for the sintering of gas-atomized and water-atomized 17-4 PH powders is derived using the mean residual method, and the relative density of both powders is well predicted by the two-phase MSC model. The average error between dilatometry data and MSC model has been reduced by 68 pct for gas-atomized powder and by 45 pct for water-atomized powder through the consideration of phase transformation of 17-4 PH in MSC model. The effect of δ-ferrite is considered in the two-phase MSC model, leading to excellent explanation of the sintering behavior for 17-4 PH stainless steel. The suggested model is useful in predicting the densification and phase change phenomenon during sintering of 17-4 PH stainless steel.

  15. A Stainless-Steel Mandrel for Slumping Glass X-ray Mirrors

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; O'Dell, Stephen L.; Jones, William D.; Kester, Thomas J.; Griffith, Charles W.; Zhang, William W.; Saha, Timo T.; Chan, Kai-Wing

    2009-01-01

    We have fabricated a precision full-cylinder stainless-steel mandrel at Marshall Space Flight Center. The mandrel is figured for a 30-cm diameter primary (paraboloid) mirror of an 840-cm focal-length Wolter-1 telescope. We have developed this mandrel for experiments in slumping.thermal forming at about 600 C.of glass mirror segments at Goddard Space Flight Center, in support of NASA's participation in the International X-ray Observatory (IXO). Precision turning of stainless-steel mandrels may offer a low-cost alternative to conventional figuring of fused-silica or other glassy forming mandrels. We report on the fabrication, metrology, and performance of this first mandrel; then we discuss plans and goals for stainless-steel mandrel technology.

  16. A Stainless-Steel Mandrel for Slumping Glass X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Gubarev, Mikhail V.; Jones, William D.; Kester, Thomas J.; Griffith, Charles W.; Zhang, William W.; Saha, Timo T.; Chan, Kai-Wing

    2008-01-01

    We have fabricated a precision full -cylinder stainless-steel mandrel at Marshall Space Flight Center. The mandrel is figured for a 30-cm-diameter primary (paraboloid) mirror of an 840-cm focal-lengthWolter-1 telescope. We have developed this mandrel for experiments in slumping.thermal forming at about 600 C-of glass mirror segments at Goddard Space Flight Center, in support of NASA fs participation in the International X -ray Observatory (IXO). Precision turning of stainless ]steel mandrels may offer a lowcost alternative to conventional figuring of fused -silica or other glassy forming mandrels. We report on the fabrication, metrology, and performance of this first mandrel; then we discuss plans and goals for stainless-steel mandrel technology.

  17. Reactor Materials Program electrochemical potential measurements by ORNL with unirradiated and irradiated stainless steel specimens

    SciTech Connect

    Baumann, E.W.; Caskey, G.R. Jr.

    1993-07-01

    Effect of irradiation of stainless steel on electrochemical potential (ECP) was investigated by measurements in dilute HNO{sub 3} and H{sub 2}O{sub 2} solutions, conditions simulating reactor moderator. The electrodes were made from unirradiated/irradiated, unsensitized/sensitized specimens from R-reactor piping. Results were inconclusive because of budgetary restrictions. The dose rate may have been too small to produce a significant radiolytic effect. Neither the earlier CERT corrosion susceptibility tests nor the present ECP measurements showed a pronounced effect of irradiation on susceptibility of the stainless steel to IGSCC; this is confirmed by the absence in the stainless steel of the SRS reactor tanks (except for the C Reactor tank knuckle area).

  18. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Zhou, Ming; Li, Jian; Ye, Xia; Li, Gang; Cai, Lan

    2009-10-01

    Fabrication of superhydrophobic surfaces induced by femtosecond laser is a research hotspot of superhydrophobic surface studies nowadays. We present a simple and easily-controlled method for fabricating stainless steel-based superhydrophobic surfaces. The method consists of microstructuring stainless steel surfaces by irradiating samples with femtosecond laser pulses and silanizing the surfaces. By low laser fluence, we fabricated typical laser-induced periodic surface structures (LIPSS) on the submicron level. The apparent contact angle (CA) on the surface is 150.3°. With laser fluence increasing, we fabricated periodic ripples and periodic cone-shaped spikes on the micron scale, both covered with LIPSS. The stainless steel-based surfaces with micro- and submicron double-scale structure have higher apparent CAs. On the surface of double-scale structure, the maximal apparent CA is 166.3° and at the same time, the sliding angle (SA) is 4.2°.

  19. The influence of cell surface properties of thermophilic streptococci on attachment to stainless steel.

    PubMed

    Flint, S H; Brooks, J D; Bremer, P J

    1997-10-01

    The quality of milk products is threatened by the formation of biofilms of thermophilic streptococci on the internal surfaces of plate heat exchangers used in milk processing. Although attachment to stainless steel surfaces is one of the first stages in the development of a biofilm, the mechanisms involved in attachment have not been reported. The cell surface properties of 12 strains of thermophilic streptococci were examined to determine their importance in attachment to stainless steel surfaces. Hydrophobicity, extracellular polysaccharide production and cell surface charge varied between the different strains but could not be related to numbers attaching. Treating the cells with sodium metaperiodate, lysozyme or trichloroacetic acid to disrupt cell surface polysaccharide had no effect on attachment. Treatment with trypsin or sodium dodecyl sulphate to remove cell surface proteins resulted in a 100-fold reduction in the number of bacteria attaching. This result suggests that the surface proteins of the thermophilic streptococci are important in their attachment to stainless steel. PMID:9351231

  20. Radiation Hydrodynamics of Stainless Steel Wire Arrays on the Z Accelerator

    SciTech Connect

    Davis, J.; Dasgupta, A.; Thornhill, J. W.; Giuliani, J.; Clark, R. W.; Whitney, K.; Coverdale, C. A.; Lepell, D.; Jones, B.; Deeney, C.

    2009-01-21

    Experiments on the Z accelerator with nested stainless steel wire arrays produced K-shell x-ray yields exceeding 50 kJ in the energy range 5.5 to 8 keV. Stainless steel (Z = 24-28) can barely be ionized to the K-shell on Z, and the spectra are therefore sensitive to the details of the implosion. We have simulated the implosion dynamics of stainless steel wire arrays with diameters ranging from 4.5 to 8.0 centimeters using a detailed configuration non-LTE radiation hydrodynamics model. Reasonable agreement with total and K-shell experimental yields was obtained for the various array configurations. A comparison is made between the 1-D and 2-D simulations for shot Z-578.

  1. Hardness of Carburized Surfaces in 316LN Stainless Steel after Low Temperature Neutron Irradiation

    SciTech Connect

    Byun, TS

    2005-01-31

    A proprietary surface carburization treatment is being considered to minimize possible cavitation pitting of the inner surfaces of the stainless steel target vessel of the SNS. The treatment gives a large supersaturation of carbon in the surface layers and causes substantial hardening of the surface. To answer the question of whether such a hardened layer will remain hard and stable during neutron irradiation, specimens of the candidate materials were irradiated in the High Flux Isotope Reactor (HFIR) to an atomic displacement level of 1 dpa. Considerable radiation hardening occurred in annealed 316LN stainless steel and 20% cold rolled 316LN stainless steel, and lesser radiation hardening in Kolsterised layers on these materials. These observations coupled with optical microscopy examinations indicate that the carbon-supersaturated layers did not suffer radiation-induced decomposition and softening.

  2. The potential of modified type 310 stainless steel for advanced fossil energy applications

    SciTech Connect

    Swindeman, R.W.

    1992-03-01

    An evaluation was undertaken to determine the potential of modified type 310 stainless steel for fossil energy applications. First, alloy performance criteria for components in several emerging technologies were identified. Then, a brief review of existing alloy technology was undertaken relative to performance criteria. Key issues were the tendency for type 310 stainless steel to embrittle due to the formation of intermetallic phases, the poor resistance of type 310 stainless steel to highly sulfidizing environments, the need to examine the strength and ductility of weldments, and the lack of a long-time data base and criteria for setting allowable stress at temperatures in excess of 800{degrees}C. An activity was outlined that would address several of the key issues.

  3. Electrical Characteristics of Top-Gated Graphene Field Effect Transistors Fabricated on Stainless Steel (STS) Substrate.

    PubMed

    Jeong, Saebyuk; Lee, Hojoon; Lee, Jeong-Soo

    2016-05-01

    Top-gated Graphene transistors with Al2O3 gate-dielectric on the flexible stainless steel substrate have been demonstrated. Graphene was synthesized on copper foil using a chemical vapor deposition method and transferred onto the stainless steel substrate by wet transfer technique. The stainless steel substrate was polished by chemical mechanical polishing method and the spin-on-glass layer was coated on the surface to improve the surface roughness. The average surface roughness R(a) was as low as 5.9 nm from the AFM measurement. The measured hole and electron mobilities from the current-voltage characteristics at room temperature were calculated as high as 310 and 45 cm2/Vs, respectively. In addition, the effect of surrounding temperature up to 355 K on the electrical variations was investigated. The mobility was inversely proportional to the temperature with negligible hysteresis where the temperature coefficient was calculated as low as -0.65 %/K. PMID:27483892

  4. Two-Phase Master Sintering Curve for 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Jung, Im Doo; Ha, Sangyul; Park, Seong Jin; Blaine, Deborah C.; Bollina, Ravi; German, Randall M.

    2016-08-01

    The sintering behavior of 17-4 PH stainless steel has been efficiently characterized by a two-phase master sintering curve model (MSC). The activation energy for the sintering of gas-atomized and water-atomized 17-4 PH powders is derived using the mean residual method, and the relative density of both powders is well predicted by the two-phase MSC model. The average error between dilatometry data and MSC model has been reduced by 68 pct for gas-atomized powder and by 45 pct for water-atomized powder through the consideration of phase transformation of 17-4 PH in MSC model. The effect of δ-ferrite is considered in the two-phase MSC model, leading to excellent explanation of the sintering behavior for 17-4 PH stainless steel. The suggested model is useful in predicting the densification and phase change phenomenon during sintering of 17-4 PH stainless steel.

  5. Biocompatible carbohydrate-functionalized stainless steel surfaces: a new method for passivating biomedical implants.

    PubMed

    Slaney, Anne M; Wright, Vincent A; Meloncelli, Peter J; Harris, Kenneth D; West, Lori J; Lowary, Todd L; Buriak, Jillian M

    2011-05-01

    A convenient method for passivating and functionalizing stainless steel is described. Several methods of coating stainless steel (SS) samples with silica were investigated and of these methods, a thin (less than 15 nm thick) layer of silica created by atomic layer deposition (ALD) was found to give superior performance in electrochemical testing. These interfaces were then used as a platform for further functionalization with molecules of biological interest. Specifically, the SS samples were functionalized with biologically significant carbohydrates [N-acetyl-D-glucosamine (GlcNAc) and D-galactose (Gal)] that contain trialkoxysilane derivatives as chemical handles for linking to the surface. The presence and biological availability of these moieties on the silica coated SS were confirmed by XPS analysis and an enzyme-linked lectin assay (ELLA) using complementary lectins that specifically recognize the surface-bound carbohydrate. This method has the potential of being adapted to the functionalization of stainless steel biomedical implants with other biologically relevant carbohydrates.

  6. Corrosion resistance of stainless steels and high Ni-Cr alloys to acid fluoride wastes

    SciTech Connect

    Smith, H.D.; Mackey, D.B.; Pool, K.H. ); Schwenk, E.B. )

    1992-04-01

    TRUEX processing of Hanford Site waste will utilize potentially corrosive acid fluoride processing solutions. Appropriate construction materials for such a processing facility need to be identified. Toward this objective, candidate stainless steels and high Ni-Cr alloys have been corrosion tested in simulated acid fluoride process solutions at 333K. The high Ni-Cr alloys exhibited corrosion rates as low as 0.14 mm/y in a solution with an HF activity of about 1.2 M, much lower than the 19 to 94 mm/y observed for austenitic stainless steels. At a lower HF activity (about 0.008 M), stainless steels display delayed passivation while high Ni-Cr alloys display essentially no reaction.

  7. Aspects of testing and selecting stainless steels for sea water applications

    SciTech Connect

    Steinsmo, U.; Rogne, T.; Drugli, J.M.

    1994-12-31

    In the period from 1980, highly alloyed stainless steels (i.e. Pitting Resistance Equivalent (PRE{sub N}) > 40) have been widely selected for chlorinated sea water systems in the Norwegian offshore industry. Recently failures have been reported -- severe crevice corrosion on flanges in a cooling water system and crevice corrosion at the threaded cast and forged joints in a fire water system. The failures highlights the question of corrosion testing and safe use limits for high alloyed stainless steels in sea water systems. This paper discusses three aspects regarding testing and selection of highly alloyed stainless steels for sea water application -- the relevancy of the electrochemical test methods used, the quality control system and the importance of repassivation.

  8. ESD morphology deposition with WZr8 electrode on austenitic stainless steel support

    NASA Astrophysics Data System (ADS)

    Perju, M. C.; Ţugui, C. A.; Nejneru, C.; Axinte, M.; Vizureanu, P.

    2016-06-01

    Stainless steels are used to obtain mechanical parts, working in severe conditions with high dynamic loads in wet, chemically active environments. For this reason, these materials have good corrosion resistance in acidic or basic chemical agents. The main drawback is the relatively low wear and resistance to mechanical stress. This paper proposes a remedy by deposition of the hard thin films of tungsten electrode by spark electro-deposition method (ESD). Tungsten is an alfagen element and causes an increase for the mechanical properties at high and low temperatures for the austenitic stainless steels. Tungsten does not alter the corrosion resistance of stainless steels. The morphology for the obtained layers was analyzed using SEM, in 3D images, and profilographs.

  9. Adhesion of Salmonella Enteritidis and Listeria monocytogenes on stainless steel welds.

    PubMed

    Casarin, Letícia Sopeña; Brandelli, Adriano; de Oliveira Casarin, Fabrício; Soave, Paulo Azevedo; Wanke, Cesar Henrique; Tondo, Eduardo Cesar

    2014-11-17

    Pathogenic microorganisms are able to adhere on equipment surfaces, being possible to contaminate food during processing. Salmonella spp. and Listeria monocytogenes are important pathogens that can be transmitted by food, causing severe foodborne diseases. Most surfaces of food processing industry are made of stainless steel joined by welds. However currently, there are few studies evaluating the influence of welds in the microorganism's adhesion. Therefore the purpose of the present study was to investigate the adhesion of Salmonella Enteritidis and L. monocytogenes on surface of metal inert gas (MIG), and tungsten inert gas (TIG) welding, as well as to evaluate the cell and surface hydrophobicities. Results demonstrated that both bacteria adhered to the surface of welds and stainless steel at same levels. Despite this, bacteria and surfaces demonstrated different levels of hydrophobicity/hydrophilicity, results indicated that there was no correlation between adhesion to welds and stainless steel and the hydrophobicity. PMID:25261827

  10. Adhesion of Salmonella Enteritidis and Listeria monocytogenes on stainless steel welds.

    PubMed

    Casarin, Letícia Sopeña; Brandelli, Adriano; de Oliveira Casarin, Fabrício; Soave, Paulo Azevedo; Wanke, Cesar Henrique; Tondo, Eduardo Cesar

    2014-11-17

    Pathogenic microorganisms are able to adhere on equipment surfaces, being possible to contaminate food during processing. Salmonella spp. and Listeria monocytogenes are important pathogens that can be transmitted by food, causing severe foodborne diseases. Most surfaces of food processing industry are made of stainless steel joined by welds. However currently, there are few studies evaluating the influence of welds in the microorganism's adhesion. Therefore the purpose of the present study was to investigate the adhesion of Salmonella Enteritidis and L. monocytogenes on surface of metal inert gas (MIG), and tungsten inert gas (TIG) welding, as well as to evaluate the cell and surface hydrophobicities. Results demonstrated that both bacteria adhered to the surface of welds and stainless steel at same levels. Despite this, bacteria and surfaces demonstrated different levels of hydrophobicity/hydrophilicity, results indicated that there was no correlation between adhesion to welds and stainless steel and the hydrophobicity.

  11. Final Report, Volume 3, Guidance Document for the Evaluation of Cast Super Duplex Stainless Steel

    SciTech Connect

    Hariharan, Vasudevan; Lundin, Carl, D.

    2005-09-30

    Volume 3 comprises of the Development of Qualification Standards for Cast Super Duplex Stainless Steel (A890-5A) which is equivalent to wrought 2507. The objective of this work was to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). The various tests which were carried out were ASTM A923 Test Method A, B and C (Sodium Hydroxide Etch Test, Charpy Impact Test and Ferric Chloride Corrosion Test), ferrite measurement using Feritscope{reg_sign}, ASTM E562 Manual Point Count Method and X-Ray Diffraction, hardness measurement using Rockwell B and C and microstructural analysis using SEM and EDS.

  12. Final Report, Volume 3, Guidance Document for the Evaluation of Cast Super Duplex Stainless Steel

    SciTech Connect

    Hariharan, Vasudevan; Lundin, Carl, W.

    2005-09-30

    Volume 3 is comprised of the Development of Qualification Standards for Cast Super Duplex Stainless Steel (A890-5A) which is equivalent to wrought 2507. The objective of this work was to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). The various tests which were carried out were ASTM A923 Test Method A, B and C (Sodium Hydroxide Etch Test, Charpy Impact Test and Ferric Chloride Corrosion Test), ferrite measurement using Feritscope®, ASTM E562 Manual Point Count Method and X-Ray Diffraction, hardness measurement using Rockwell B and C and microstructural analysis using SEM and EDS.

  13. Electrical Characteristics of Top-Gated Graphene Field Effect Transistors Fabricated on Stainless Steel (STS) Substrate.

    PubMed

    Jeong, Saebyuk; Lee, Hojoon; Lee, Jeong-Soo

    2016-05-01

    Top-gated Graphene transistors with Al2O3 gate-dielectric on the flexible stainless steel substrate have been demonstrated. Graphene was synthesized on copper foil using a chemical vapor deposition method and transferred onto the stainless steel substrate by wet transfer technique. The stainless steel substrate was polished by chemical mechanical polishing method and the spin-on-glass layer was coated on the surface to improve the surface roughness. The average surface roughness R(a) was as low as 5.9 nm from the AFM measurement. The measured hole and electron mobilities from the current-voltage characteristics at room temperature were calculated as high as 310 and 45 cm2/Vs, respectively. In addition, the effect of surrounding temperature up to 355 K on the electrical variations was investigated. The mobility was inversely proportional to the temperature with negligible hysteresis where the temperature coefficient was calculated as low as -0.65 %/K.

  14. 76 FR 74807 - Stainless Steel Bar From Brazil, India, Japan, and Spain; Institution of Five-Year Reviews

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... on imports of stainless steel bar from Spain (60 FR 11656). Following first five-year reviews by... duty orders on imports of stainless steel bar from Brazil, India, Japan, and Spain (66 FR 19919..., Japan, and Spain (72 FR 2858). The Commission is now conducting third reviews to determine...

  15. Prediction of stainless steel activation in experimental breeder reactor 2 (EBR-II) reflector and blanket subassemblies

    SciTech Connect

    Bunde, K.A.

    1996-12-31

    Stainless steel structural components in nuclear reactors become radioactive wastes when no longer useful. Prior to disposal, certain physical attributes must be analyzed. These attributes include structural integrity, chemical stability, and the radioactive material content among others. The focus of this work is the estimation of the radioactive material content of stainless steel wastes from a research reactor operated by Argonne National Laboratory.

  16. 78 FR 14270 - Stainless Steel Sheet and Strip in Coils From Mexico: Notice of Settlement of NAFTA Proceedings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... FR 40560 (July 27, 1999) (notice of amended LTFV determination and antidumping duty order) (Order... sunset review. See Stainless Steel Sheet and Strip in Coils from Germany, Italy and Mexico, 76 FR 49450... 25, 2010. \\1\\ Stainless Steel Sheet and Strip in Coils from Mexico, 71 FR 76978 (December 22,...

  17. 76 FR 5331 - Forged Stainless Steel Flanges From India and Taiwan: Final Results of Sunset Reviews and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    .... See Initiation of Five-Year (``Sunset'') Review, 75 FR 67082 (November 1, 2010). We did not receive a... Forged Stainless Steel Flanges From India, 59 FR 5994 (February 9, 1994) and Antidumping Duty Order: Certain Forged Stainless Steel Flanges From Taiwan, 59 FR 5995 (February 9, 1994). On January 23,...

  18. 76 FR 38688 - Certain Welded Stainless Steel Pipe From Korea and Taiwan; Institution of a Five-Year Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... ASTM A-312 stainless steel pipe from Korea (57 FR 62301) and Taiwan (57 FR 62300). Following first five... ASTM A-312 stainless steel pipe from Korea and Taiwan (71 FR 53412, September 11, 2006). The Commission...), as most recently amended at 74 FR 2847 (January 16, 2009). \\1\\ No response to this request...

  19. 75 FR 61699 - Stainless Steel Plate in Coils From Belgium, Italy, South Africa, South Korea, and Taiwan: Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... International Trade Administration Stainless Steel Plate in Coils From Belgium, Italy, South Africa, South Korea... orders on stainless steel plate in coils (SSPC) from Belgium, Italy, South Africa, South Korea, and..., South Africa, South Korea, and Taiwan pursuant to section 751(c) of the Act. See Initiation of...

  20. 77 FR 14002 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines: Final Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ...'' section of this notice. \\1\\ See Initiation of Five-Year (``Sunset'') Review, 76 FR 67412 (November 1, 2011... International Trade Administration Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the... duty orders on stainless steel butt-weld pipe fittings (butt-weld pipe fittings) from Italy,...

  1. 76 FR 67146 - Stainless Steel Butt-Weld Pipe Fittings From Italy; Extension of Time Limit for Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... Part, and Deferral of Administrative Review, 76 FR 17825 (March 31, 2011). This review covers the... International Trade Administration Stainless Steel Butt-Weld Pipe Fittings From Italy; Extension of Time Limit... administrative review of the antidumping duty order on stainless steel butt-weld pipe fittings from Italy in...

  2. 76 FR 75870 - Stainless Steel Plate in Coils From Belgium: Notice of Extension of Time Limit for Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... Administrative Reviews and Request for Revocation in Part, 76 FR 37781 (June 28, 2011). The preliminary results... International Trade Administration Stainless Steel Plate in Coils From Belgium: Notice of Extension of Time... administrative review of the antidumping duty order on stainless steel plate in coils from Belgium, covering...

  3. High surface area stainless steel brushes as cathodes in microbial electrolysis cells.

    PubMed

    Call, Douglas F; Merrill, Matthew D; Logan, Bruce E

    2009-03-15

    Microbial electrolysis cells (MECs) are an efficient technology for generating hydrogen gas from organic matter, but alternatives to precious metals are needed for cathode catalysts. We show here that high surface area stainless steel brush cathodes produce hydrogen at rates and efficiencies similar to those achieved with platinum-catalyzed carbon cloth cathodes in single-chamber MECs. Using a stainless steel brush cathode with a specific surface area of 810 m2/m3, hydrogen was produced at a rate of 1.7 +/- 0.1 m3-H2/m3-d (current density of 188 +/- 10 A/m3) at an applied voltage of 0.6 V. The energy efficiency relative to the electrical energy input was 221 +/- 8%, and the overall energy efficiency was 78 +/- 5% based on both electrical energy and substrate utilization. These values compare well to previous results obtained using platinum on flat carbon cathodes in a similar system. Reducing the cathode surface area by 75% decreased performance from 91 +/- 3 A/m3 to 78 +/- 4 A/m3. A brush cathode with graphite instead of stainless steel and a specific surface area of 4600 m2/m3 generated substantially less current (1.7 +/- 0.0 A/m3), and a flat stainless steel cathode (25 m2/m3) produced 64 +/- 1 A/m3, demonstrating that both the stainless steel and the large surface area contributed to high current densities. Linear sweep voltammetry showed that the stainless steel brush cathodes both reduced the overpotential needed for hydrogen evolution and exhibited a decrease in overpotential over time as a result of activation. These results demonstrate for the first time that hydrogen production can be achieved at rates comparable to those with precious metal catalysts in MECs without the need for expensive cathodes. PMID:19368232

  4. Hybrid Laser-arc Welding of 17-4 PH Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ma, Junjie; Atabaki, Mehdi Mazar; Pillai, Raju; Kumar, Biju; Vasudevan, Unnikrishnan; Sreshta, Harold; Kovacevic, Radovan

    2015-06-01

    17-4 PH stainless steel has wide applications in severe working conditions due to its combination of good corrosion resistance and high strength. The weldability of 17-4 PH stainless steel is challenging. In this work, hybrid laser-arc welding was developed to weld 17-4 PH stainless steel. This method was chosen based on its advantages, such as deep weld penetration, less filler materials, and high welding speed. The 17-4 PH stainless steel plates with a thickness of 19 mm were successfully welded in a single pass. During the hybrid welding, the 17-4 PH stainless steel was immensely susceptible to porosity and solidification cracking. The porosity was avoided by using nitrogen as the shielding gas. The nitrogen stabilized the keyhole and inhibited the formation of bubbles during welding. Solidification cracking easily occurred along the weld centerline at the root of the hybrid laser-arc welds. The microstructural evolution and the cracking susceptibility of 17-4 PH stainless steel were investigated to remove these centerline cracks. The results showed that the solidification mode of the material changed due to high cooling rate at the root of the weld. The rapid cooling rate caused the transformation from ferrite to austenite during the solidification stage. The solidification cracking was likely formed as a result of this cracking-susceptible microstructure and a high depth/width ratio that led to a high tensile stress concentration. Furthermore, the solidification cracking was prevented by preheating the base metal. It was found that the preheating slowed the cooling rate at the root of the weld, and the ferrite-to-austenite transformation during the solidification stage was suppressed. Delta ferrite formation was observed in the weld bead as well no solidification cracking occurred by optimizing the preheating temperature.

  5. Cause-specific mortality in Finnish ferrochromium and stainless steel production workers

    PubMed Central

    Pukkala, E.

    2016-01-01

    Background Although stainless steel has been produced for more than a hundred years, exposure-related mortality data for production workers are limited. Aims To describe cause-specific mortality in Finnish ferrochromium and stainless steel workers. Methods We studied Finnish stainless steel production chain workers employed between 1967 and 2004, from chromite mining to cold rolling of stainless steel, divided into sub-cohorts by production units with specific exposure patterns. We obtained causes of death for the years 1971–2012 from Statistics Finland. We calculated standardized mortality ratios (SMRs) as ratios of observed and expected numbers of deaths based on population mortality rates of the same region. Results Among 8088 workers studied, overall mortality was significantly decreased (SMR 0.77; 95% confidence interval [CI] 0.70–0.84), largely due to low mortality from diseases of the circulatory system (SMR 0.71; 95% CI 0.61–0.81). In chromite mine, stainless steel melting shop and metallurgical laboratory workers, the SMR for circulatory disease was below 0.4 (SMR 0.33; 95% CI 0.07–0.95, SMR 0.22; 95% CI 0.05–0.65 and SMR 0.16; 95% CI 0.00–0.90, respectively). Mortality from accidents (SMR 0.84; 95% CI 0.67–1.04) and suicides (SMR 0.72; 95% CI 0.56–0.91) was also lower than in the reference population. Conclusions Working in the Finnish ferrochromium and stainless steel industry appears not to be associated with increased mortality. PMID:26655692

  6. Mechanical Properties and Microstructure of Dissimilar Friction Stir Welds of 11Cr-Ferritic/Martensitic Steel to 316 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sato, Yutaka S.; Kokawa, Hiroyuki; Fujii, Hiromichi T.; Yano, Yasuhide; Sekio, Yoshihiro

    2015-12-01

    Dissimilar joints between ferritic and austenitic steels are of interest for selected applications in next generation fast reactors. In this study, dissimilar friction-stir welding of an 11 pct Cr ferritic/martensitic steel to a 316 austenitic stainless steel was attempted and the mechanical properties and microstructure of the resulting welds were examined. Friction-stir welding produces a stir zone without macroscopic weld-defects, but the two dissimilar steels are not intermixed. The two dissimilar steels are interleaved along a sharp zigzagging interface in the stir zone. During small-sized tensile testing of the stir zone, this sharp interface did not act as a fracture site. Furthermore, the microstructure of the stir zone was refined in both the ferritic/martensitic steel and the 316 stainless steel resulting in improved mechanical properties over the adjacent base material regions. This study demonstrates that friction-stir welding can produce welds between dissimilar steels that contain no macroscopic weld-defects and display suitable mechanical properties.

  7. Portable hyperspectral fluorescence imaging system for detection of biofilms on stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Jun, Won; Lee, Kangjin; Millner, Patricia; Sharma, Manan; Chao, Kuanglin; Kim, Moon S.

    2008-04-01

    A rapid nondestructive technology is needed to detect bacterial contamination on the surfaces of food processing equipment to reduce public health risks. A portable hyperspectral fluorescence imaging system was used to evaluate potential detection of microbial biofilm on stainless steel typically used in the manufacture of food processing equipment. Stainless steel coupons were immersed in bacterium cultures, such as E. coli, Pseudomonas pertucinogena, Erwinia chrysanthemi, and Listeria innocula. Following a 1-week exposure, biofilm formations were assessed using fluorescence imaging. In addition, the effects on biofilm formation from both tryptic soy broth (TSB) and M9 medium with casamino acids (M9C) were examined. TSB grown cells enhance biofilm production compared with M9C-grown cells. Hyperspectral fluorescence images of the biofilm samples, in response to ultraviolet-A (320 to 400 nm) excitation, were acquired from approximately 416 to 700 nm. Visual evaluation of individual images at emission peak wavelengths in the blue revealed the most contrast between biofilms and stainless steel coupons. Two-band ratios compared with the single-band images increased the contrast between the biofilm forming area and stainless steel coupon surfaces. The 444/588 nm ratio images exhibited the greatest contrast between the biofilm formations and stainless coupon surfaces.

  8. Preconditioning with Cations Increases the Attachment of Anoxybacillus flavithermus and Geobacillus Species to Stainless Steel

    PubMed Central

    Flint, Steve; Palmer, Jon; Brooks, John; Lindsay, Denise

    2013-01-01

    Preconditioning of Anoxybacillus flavithermus E16 and Geobacillus sp. strain F75 with cations prior to attachment often significantly increased (P ≤ 0.05) the number of viable cells that attached to stainless steel (by up to 1.5 log CFU/cm2) compared with unconditioned bacteria. It is proposed that the transition of A. flavithermus and Geobacillus spp. from milk formulations to stainless steel product contact surfaces in milk powder manufacturing plants is mediated predominantly by bacterial physiological factors (e.g., surface-exposed adhesins) rather than the concentrations of cations in milk formulations surrounding bacteria. PMID:23645192

  9. Effects of internal helium on mechanical properties of NITRONIC[trademark] 40 stainless steel

    SciTech Connect

    Mosley, W.C.

    1993-01-01

    This report describes results of tests on annealed Nitronic 40 stainless steel containing 0.0, 0.26, and 2.6 appM helium-3 (He-3), over the temperature range 25-842 C. Ultimate tensile strength, 0.2% offset yield strength, total elongation, uniform elongation, nonuniform elongation, and reduction-in-area were measured. The predominant effect of He-3 is decreased ductility caused by inhibition of necking. Annealed Nitronic 40 exhibits greater sensitivity to internal He-3 than solution-annealed Incoloy 903 and high-energy-rate forged 316L stainless steel.

  10. Surface modifications of stainless steel to minimise contamination in mass spectrometers

    NASA Astrophysics Data System (ADS)

    Abda, J.; Douce, D.; Jones, G.; Skeldon, P.; Thompson, G. E.

    2015-12-01

    The effect of electrochemically grown and vapour deposited coatings on the build-up of contamination on stainless steel surfaces in the electrospray ionisation source of a mass spectrometer is investigated, together with their influence on the robustness of the instrument response. Quantification of the contamination build-up on flat samples, using white light interferometry, allowed the identification of the most beneficial treatments. Coating with electrochemically-grown anodic oxide and cathodic oxide films and amorphous carbon films doped with silicon or nitrogen resulted in reduced contamination compared with the uncoated stainless steel surface, and provided improved robustness of the instrument response.

  11. A Hybrid Laser Surface Treatment for Refurbishment of Stress Corrosion Cracking Damaged 304L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Sundar, R.; Kumar, B. Sunil; Ganesh, P.; Kaul, R.; Ranganathan, K.; Bindra, K. S.; Kain, V.; Oak, S. M.; Kukreja, L. M.

    2015-06-01

    The paper describes a new hybrid laser surface treatment approach, combining laser surface melting and laser shock peening treatments, for refurbishment stress corrosion cracking damaged type 304L stainless steel specimens. Hybrid laser surface treatment produced crack-free compressively stressed surface. With respect to as-machined specimens, laser-rejuvenated specimens demonstrated significantly reduced susceptibility to stress corrosion cracking in chloride environment with minor increase in mean surface roughness. The results of the study, although particularly applicable to shallow stress corrosion cracking damage, are important for life extension of in-service stainless steel components operating in corrosive chloride environment.

  12. Coupled Multi-Electrode Investigation of Crevice Corrosion of AISI 316 Stainless Steel

    SciTech Connect

    F. Bocher; F. Presuel-Moreno; N.D. Budinasky; J.R. Scully

    2006-06-23

    Close packed coupled multi-electrodes arrays (MEA) simulating a planar electrode were used to measure the current evolution as a function of position during initiation and propagation of crevice corrosion of AISI 316 stainless steel. Scaling laws derived from polarization data enabled the use of rescaled crevices providing spatial resolution. Crevice corrosion of AISI 316 stainless steel in 0.6 M NaCl at 50 C was found to initiate close to the crevice mouth and to spread inwards with time. The local crevice current density increased dramatically over a short period to reach a limiting value.

  13. Samarium electrodeposited acetate and oxide thin films on stainless steel substrate characterized by XPS

    DOE PAGES

    Myhre, Kristian; Burns, Jonathan; Meyer, Harry; Sims, Nathan; Boll, Rose

    2016-06-01

    Characterization of a samarium thin film deposited on a stainless steel substrate using molecular electrodeposition was carried out using a Thermo Scientific K-Alpha X-ray photoelectron spectrometer. We studied two types of samarium electrodeposition samples, one as-deposited and one heated to 700 °C in an air flow. Survey scans include peaks coming from the stainless steel substrate, such as Fe and Cr. An X-ray photoelectron spectroscopy (XPS) survey spectrum, Sm 3d, C 1s, and O 1s narrow scans are shown. It was determined that the heating process decomposed the deposited Sm acetate to Sm2O3 using XPS.

  14. Effects of Nitrogen on Passivity of Nickel-Free Stainless Steels by Electrochemical Impedance Spectroscopy Analysis

    NASA Astrophysics Data System (ADS)

    Wu, Xinqiang; Fu, Yao; Ke, Wei; Xu, Song; Feng, Bing; Hu, Botao

    2015-09-01

    The effects of different nitrogen contents on the passivity of nickel-free stainless steels in 0.5 M sulfuric acid + 0.5 M sodium chloride solution were investigated by electrochemical impedance spectroscopy in the potential ranges of active dissolution and active-passive transition. A simplified reaction model containing adsorbed intermediates involved dissolution process, and passivation process was proposed to explain the impedance characteristics. Based on both equivalent circuit and mathematical model analysis, the effects of nitrogen on the passivity of stainless steels are discussed.

  15. Corrosion behavior of surface films on boron-implanted high purity iron and stainless steels

    NASA Technical Reports Server (NTRS)

    Kim, H. J.; Carter, W. B.; Hochman, R. F.; Meletis, E. I.

    1985-01-01

    Boron (dose, 2 x 10 to the 17th ions/sq cm) was implanted into high purity iron, AISI 316 austenitic stainless steel, and AISI 440C martensitic stainless steel, at 40 keV. The film structure of implanted samples was examined and characterized by contrast and diffraction analyses utilizing transmission electron microscopy. The effect of B(+) ion implantation on the corrosion behavior was studied using the potentiodynamic polarization technique. Tests were performed in deaerated 1 N H2SO4 and 0.1 M NaCl solutions. Scanning electron microscopy was used to examine the morphology of the corroded surfaces after testing.

  16. Comparison of Stress Corrosion Cracking Susceptibility of Laser Machined and Milled 304 L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Kumar, Aniruddha; Nagpure, D. C.; Rai, S. K.; Singh, M. K.; Khooha, Ajay; Singh, A. K.; Singh, Amrendra; Tiwari, M. K.; Ganesh, P.; Kaul, R.; Singh, B.

    2016-07-01

    Machining of austenitic stainless steel components is known to introduce significant enhancement in their susceptibility to stress corrosion cracking. The paper compares stress corrosion cracking susceptibility of laser machined 304 L stainless steel specimens with conventionally milled counterpart in chloride environment. With respect to conventionally milled specimens, laser machined specimens displayed more than 12 times longer crack initiation time in accelerated stress corrosion cracking test in boiling magnesium chloride as per ASTM G36. Reduced stress corrosion cracking susceptibility of laser machined surface is attributed to its predominantly ferritic duplex microstructure in which anodic ferrite phase was under compressive stress with respect to cathodic austenite.

  17. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    PubMed

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.

  18. Ennoblement of stainless steel studied by x-ray photoelectron spectroscopy

    SciTech Connect

    Olesen, B.H. |; Avci, R.; Lewandowski, Z.

    1998-12-31

    Manganese oxides deposited by biofilms of Leptothrix discophora SP-6 on 316L stainless steel corrosion coupons increased the open circuit potential of the steel to values of +375 mV{sub SCE}. XPS spectra of the deposits compared to spectra of different manganese containing minerals indicated that the deposits were composed of MnO{sub 2}. The redox reaction responsible for the potential change results in electron transfer from the metal substratum to the mineral deposit. To study the processes of manganese dioxide reduction, MnO{sub 2} which had been electroplated on stainless steel was reduced electrochemically. The surface chemistry before and after reduction was analyzed by XPS. The authors demonstrated that the manganese dioxide deposited on stainless steel coupons can be reduced to Mn{sup 2+} by accepting two electrons from the metal. MnOOH was identified as an unstable intermediate product in this reaction. Consequently they hypothesize, that manganese dioxide microbially deposited on stainless steel surfaces can provide an efficient cathodic reaction and accelerate microbially influenced corrosion processes.

  19. X-mas trees: A new application for duplex stainless steels

    SciTech Connect

    Hochoertler, G.; Zeiler, G.; Haberfellner, K.

    1995-12-31

    The development of fields in severe areas (subsea installations, deserts) necessitates the use of materials which can operate maintenance free in these conditions. Depending on production route and aggressivity of relevant media, the materials used until now, such as AISI 4130, are being superseded by higher alloyed materials such as F6NM, Duplex and Super Duplex Steels. Extensive investigation of metallurgical, mechanical, technological and stress aspects as well as research into the influence of melting, forging and heat treatment processes on high alloyed materials enables ``High Tech`` forgings to be manufactured. Based on investigations and experience gained by previously produced forgings (WYE-piece, Gate Valve components, Swivel forgings, line pipes made of Super Duplex Stainless Steels and Duplex Stainless Steels), the first X-mas trees made of solid Duplex Stainless Steel has been produced. Due to the excellent mechanical and corrosion properties of Duplex Stainless Steel, the expensive and time consuming cladding can be eliminated for most environments, which results in good economy and significantly reduced production time. To obtain information about the quality of such a large forging, samples were taken from one of these X-mas trees and the mechanical and corrosion properties were investigated.

  20. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    PubMed

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures. PMID:27612756