Science.gov

Sample records for 31p nmr measurements

  1. On the noninvasive measurement of intracellular free magnesium by 31P NMR spectroscopy.

    PubMed

    Gupta, R K; Gupta, P; Yushok, W D; Rose, Z B

    1983-01-01

    We previously introduced a noninvasive measurement of the concentration of free Mg2+ in intact cells and tissues using 31P NMR. To resolve a controversy in the literature concerning the affinity of Mg2+ for ATP used in our procedure, the apparent dissociation constant of MgATP under simulated intracellular conditions has been determined by three independent magnetic resonance methods, including a newly developed combination procedure for determining this value at intracellular ATP levels. The new combination method, which utilizes 31P NMR to determine the degree of Mg2+ chelation of ATP and the dye antipyrylazo III for optical determination of free Mg2+, yielded a value of (50 +/- 10) microM for this apparent dissociation constant at pH 7.2 in the presence of 0.15 M K+ and 25 degrees C. We further show that hydroxyquinolines are not satisfactory indicators for optical determination of the Mg2+-nucleotide dissociation constant. From our determinations a low value of free Mg2+ (less than 1 mM) is established for all of the tissues studied, including perfused heart muscle, contrary to a recent report in the literature. Saturating human erythrocytes with Mg2+ results in an alpha- and beta-phosphorus resonance separation for intracellular ATP that is indistinguishable from that observed in a noncellular MgATP control under similar conditions, showing that MgATP resonances in this cell are unaffected by the cellular environment.

  2. Sediment depth attenuation of biogenic phosphorus compounds measured by 31P NMR.

    PubMed

    Ahlgren, Joakim; Tranvik, Lars; Gogoll, Adolf; Waldeback, Monica; Markides, Karin; Rydin, Emil

    2005-02-01

    Being a major cause of eutrophication and subsequent loss of water quality, the turnover of phosphorus (P) in lake sediments is in need of deeper understanding. A major part of the flux of P to eutrophic lake sediments is organically bound or of biogenic origin. This P is incorporated in a poorly described mixture of autochthonous and allochthonous sediment and forms the primary storage of P available for recycling to the water column, thus regulating lake trophic status. To identify and quantify biogenic sediment P and assess its lability, we analyzed sediment cores from Lake Erken, Sweden, using traditional P fractionation, and in parallel, NaOH extracts were analyzed using 31P NMR. The surface sediments contain orthophosphates (ortho-P) and pyrophosphates (pyro-P), as well as phosphate mono- and diesters. The first group of compounds to disappear with increased sediment depth is pyrophosphate, followed by a steady decline of the different ester compounds. Estimated half-life times of these compound groups are about 10 yr for pyrophosphate and 2 decades for mono- and diesters. Probably, these compounds will be mineralized to ortho-P and is thus potentially available for recycling to the water column, supporting further growth of phytoplankton. In conclusion, 31P NMR is a useful tool to asses the bioavailability of certain P compound groups, and the combination with traditional fractionation techniques makes quantification possible. PMID:15757351

  3. sup 31 P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase

    SciTech Connect

    Brindle, K.; Braddock, P.; Fulton, S. )

    1990-04-03

    Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creating kinase activities similar to those found in mammalian heart muscle. {sup 31}P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06 and 0.1 measured directly in cell extracts.

  4. Human in vivo phosphate metabolite imaging with 31P NMR.

    PubMed

    Bottomley, P A; Charles, H C; Roemer, P B; Flamig, D; Engeseth, H; Edelstein, W A; Mueller, O M

    1988-07-01

    Phosphorus (31P) spectroscopic images showing the distribution of high-energy phosphate metabolites in the human brain have been obtained at 1.5 T in scan times of 8.5 to 34 min at 27 and 64 cm3 spatial resolution using pulsed phase-encoding gradient magnetic fields and three-dimensional Fourier transform (3DFT) techniques. Data were acquired as free induction decays with a quadrature volume NMR detection coil of a truncated geometry designed to optimize the signal-to-noise ratio on the coil axis on the assumption that the sample noise represents the dominant noise source, and self-shielded magnetic field gradient coils to minimize eddy-current effects. The images permit comparison of metabolic data acquired simultaneously from different locations in the brain, as well as metabolite quantification by inclusion of a vial containing a standard of known 31P concentration in the image array. Values for the NMR visible adenosine triphosphate in three individuals were about 3 mM of tissue. The ratio of NMR detectable phosphocreatine to ATP in brain was 1.15 +/- 0.17 SD in these experiments. Potential sources of random and systematic error in these and other 31P measurements are identified.

  5. Distance measurements in disodium ATP hydrates by means of 31P double quantum two-dimensional solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Potrzebowski, M. J.; Gajda, J.; Ciesielski, W.; Montesinos, I. M.

    2006-04-01

    POST-C7 measurements provide constraints allowing distinguishing crystal lattice organization and establishing intra and/or intermolecular distances between phosphorus atoms of triphosphate chains for different hydrates of disodium ATP salts. Double-quantum efficiency in function of excitation time obtained from series of two-dimensional spectra for POST-C7 experiments was used to set up of buildup curves and semi-quantitative measure of 31P- 31P length.

  6. Solid state {sup 31}P MAS NMR spectroscopy and conductivity measurements on NbOPO{sub 4} and H{sub 3}PO{sub 4} composite materials

    SciTech Connect

    Risskov Sørensen, Daniel; Nielsen, Ulla Gro; Skou, Eivind M.

    2014-11-15

    A systematic study of composite powders of niobium oxide phosphate (NbOPO{sub 4}) and phosphoric acid (H{sub 3}PO{sub 4}) has been performed in order to characterize the material's ability to perform as an electrolyte material in medium temperature fuel cells and electrolyzers. Powders of H{sub 3}PO{sub 4} contents between 13.1 and 74.2 M% were produced and characterized with powder X-ray diffraction, {sup 31}P MAS NMR and impedance spectroscopy. NMR revealed that a significant degree of dehydration and vaporization of H{sub 3}PO{sub 4} takes place above 200 °C, and increases with temperature. At 500 °C the NbOPO{sub 4} and H{sub 3}PO{sub 4} has reacted to form niobium pyrophosphate (Nb{sub 2}P{sub 4}O{sub 15}). Impedance spectroscopy showed an increase in conductivity with increasing acid concentration, whereas the conductivity decreased slightly with increasing temperature. The highest conductivity measured was 2.5·10{sup −3} S/cm for a sample containing 74.2 M% of H{sub 3}PO{sub 4}. Lastly, it was shown that NbOPO{sub 4} has no significant conductivity of its own. - Graphical abstract: Conductivity of NbOPO{sub 4}/H{sub 3}PO{sub 4} composites as a function of equivalent P{sub 2}O{sub 5} content. The conductivity is insignificant for pure NbOPO{sub 4}. - Highlights: • Composites have been made from NbOPO{sub 4} and H{sub 3}PO{sub 4}. • The composites composition has been investigated with solid state NMR. • The composites have shown clear signs of acid dehydration upon heating. • The conductivity of the composites increases for increasing acid content. • NbOPO{sub 4} has no significant conductivity of its own.

  7. Characterization of active phosphorus surface sites at synthetic carbonate-free fluorapatite using single-pulse 1H, 31P, and 31P CP MAS NMR.

    PubMed

    Jarlbring, Mathias; Sandström, Dan E; Antzutkin, Oleg N; Forsling, Willis

    2006-05-01

    The chemically active phosphorus surface sites defined as PO(x), PO(x)H, and PO(x)H2, where x = 1, 2, or 3, and the bulk phosphorus groups of PO4(3-) at synthetic carbonate-free fluorapatite (Ca5(PO4)3F) have been studied by means of single-pulse 1H,31P, and 31P CP MAS NMR. The changes in composition and relative amounts of each surface species are evaluated as a function of pH. By combining spectra from single-pulse 1H and 31P MAS NMR and data from 31P CP MAS NMR experiments at varying contact times in the range 0.2-3.0 ms, it has been possible to distinguish between resonance lines in the NMR spectra originating from active surface sites and bulk phosphorus groups and also to assign the peaks in the NMR spectra to the specific phosphorus species. In the 31P CP MAS NMR experiments, the spinning frequency was set to 4.2 kHz; in the single-pulse 1H MAS NMR experiments, the spinning frequency was 10 kHz. The 31P CP MAS NMR spectrum of fluorapatite at pH 5.9 showed one dominating resonance line at 2.9 ppm assigned to originate from PO4(3-) groups and two weaker shoulder peaks at 5.4 and 0.8 ppm which were assigned to the unprotonated PO(x) (PO, PO2-, and PO3(2-)) and protonated PO(x)H (PO2H and PO3H-) surface sites. At pH 12.7, the intensity of the peak representing unprotonated PO(x) surface sites has increased 1.7% relative to the bulk peak, while the intensity of the peaks of the protonated species PO(x)H have decreased 1.4% relative to the bulk peak. At pH 3.5, a resonance peak at -4.5 ppm has appeared in the 31P CP MAS NMR spectrum assigned to the surface species PO(x)H2 (PO3H2). The results from the 1H MAS and 31P CP MAS NMR measurements indicated that H+, OH-, and physisorbed H2O at the surface were released during the drying process at 200 degrees C.

  8. Method development in quantitative NMR towards metrologically traceable organic certified reference materials used as (31)P qNMR standards.

    PubMed

    Weber, Michael; Hellriegel, Christine; Rueck, Alexander; Wuethrich, Juerg; Jenks, Peter; Obkircher, Markus

    2015-04-01

    Quantitative nuclear magnetic resonance (qNMR) spectroscopy is employed by an increasing number of analytical and industrial laboratories for the assignment of content and quantitative determination of impurities. Within the last few years, it was demonstrated that (1)H qNMR can be performed with high accuracy leading to measurement uncertainties below 1 % relative. It was even demonstrated that the combination of (1)H qNMR with metrological weighing can lead to measurement uncertainties below 0.1 % when highly pure substances are used. Although qNMR reference standards are already available as certified reference materials (CRM) providing traceability on the basis of (1)H qNMR experiments, there is an increasing demand for purity assays on phosphorylated organic compounds and metabolites requiring CRM for quantification by (31)P qNMR. Unfortunately, the number of available primary phosphorus standards is limited to a few inorganic CRM which only can be used for the analysis of water-soluble analytes but fail when organic solvents must be employed. This paper presents the concept of value assignment by (31)P qNMR measurements for the development of CRM and describes different approaches to establish traceability to primary Standard Reference Material from the National Institute of Standards and Technology (NIST SRM). Phosphonoacetic acid is analyzed as a water-soluble CRM candidate, whereas triphenyl phosphate is a good candidate for the use as qNMR reference material in organic solvents. These substances contain both nuclei, (1)H and (31)P, and the concept is to show that it is possible to indirectly quantify a potential phosphorus standard via its protons using (1)H qNMR. The same standard with its assigned purity can then be used for the quantification of an analyte via its phosphorus using (31)P qNMR. For the validation of the concept, triphenyl phosphate and phosphonoacetic acid have been used as (31)P qNMR standards to determine the purity of the analyte

  9. Method development in quantitative NMR towards metrologically traceable organic certified reference materials used as (31)P qNMR standards.

    PubMed

    Weber, Michael; Hellriegel, Christine; Rueck, Alexander; Wuethrich, Juerg; Jenks, Peter; Obkircher, Markus

    2015-04-01

    Quantitative nuclear magnetic resonance (qNMR) spectroscopy is employed by an increasing number of analytical and industrial laboratories for the assignment of content and quantitative determination of impurities. Within the last few years, it was demonstrated that (1)H qNMR can be performed with high accuracy leading to measurement uncertainties below 1 % relative. It was even demonstrated that the combination of (1)H qNMR with metrological weighing can lead to measurement uncertainties below 0.1 % when highly pure substances are used. Although qNMR reference standards are already available as certified reference materials (CRM) providing traceability on the basis of (1)H qNMR experiments, there is an increasing demand for purity assays on phosphorylated organic compounds and metabolites requiring CRM for quantification by (31)P qNMR. Unfortunately, the number of available primary phosphorus standards is limited to a few inorganic CRM which only can be used for the analysis of water-soluble analytes but fail when organic solvents must be employed. This paper presents the concept of value assignment by (31)P qNMR measurements for the development of CRM and describes different approaches to establish traceability to primary Standard Reference Material from the National Institute of Standards and Technology (NIST SRM). Phosphonoacetic acid is analyzed as a water-soluble CRM candidate, whereas triphenyl phosphate is a good candidate for the use as qNMR reference material in organic solvents. These substances contain both nuclei, (1)H and (31)P, and the concept is to show that it is possible to indirectly quantify a potential phosphorus standard via its protons using (1)H qNMR. The same standard with its assigned purity can then be used for the quantification of an analyte via its phosphorus using (31)P qNMR. For the validation of the concept, triphenyl phosphate and phosphonoacetic acid have been used as (31)P qNMR standards to determine the purity of the analyte

  10. Tendencies of 31P chemical shifts changes in NMR spectra of nucleotide derivatives.

    PubMed

    Lebedev, A V; Rezvukhin, A I

    1984-07-25

    31P NMR chemical shifts of the selected mono- and oligonucleotide derivatives, including the compounds with P-N, P-C, P-S bonds and phosphite nucleotide analogues have been presented. The influence of substituents upon 31P chemical shifts has been discussed. The concrete examples of 31P chemical shifts data application in the field of nucleotide chemistry have been considered.

  11. Compartmentation of Nucleotides in Corn Root Tips Studied by 31P-NMR and HPLC 1

    PubMed Central

    Hooks, Mark A.; Clark, Robert A.; Nieman, Richard H.; Roberts, Justin K. M.

    1989-01-01

    Corn (Zea mays L.) root tips were subjected to different conditions so that nucleotide levels varied over a wide range. Levels of nucleotides in corn root tips were measured using 31P nuclear magnetic resonance (NMR) spectroscopy and high performance liquid chromatography. Results indicate: (a) Similar amounts of NTP and sugar nucleotides were observed by in vivo NMR and in extracts. In contrast, a significant amount of NDP observed in root tip extracts was not detected by in vivo NMR. Thus, for a given sample, [NTP]/[NDP] ratios determined in vivo by 31P-NMR are always higher than ratios observed in extracts, deviating by ∼4-fold at the highest ratios. The NMR-invisible pool of NDP appeared quite metabolically inert, barely changing in size as total cell NDP changed. We conclude that NDP in corn root tips is compartmented with respect to NMR visibility, and that it is the NMR-visible pool which responds dynamically to metabolic state. The NMR-invisible NDP could either be immobilized (and so have broad, undetectable NMR signals), or be complexed with species that cause the chemical shift of NDP to change (so it does not contribute to the NMR signal of free NDP), or both. (b) 31P-NMR cannot distinguish between bases (A, U, C, and G) of nucleotides. HPLC analysis of root tip extracts showed that the relative amount of each base in the NTP and NDP pools was quite constant in the different samples. (c) In extracts, for each of the nonadenylate nucleotides, [NTP]/[NDP] was linearly proportional to [ATP]/[ADP], indicating near equilibrium in the nucleoside diphosphokinase (NDPK) reaction. However, the apparent equilibrium constants for the phosphorylation of GDP and UDP by ATP were significantly lower than 1, the true equilibrium constant for the NDPK reaction. Thus, for a given sample, [ATP]/[ADP] ∼ [CTP]/[CDP] > [UTP]/[UDP] > [GTP]/[GDP]. This result suggests that the different NDPs in corn root tips do not have equal access to NDPK. PMID:16666649

  12. Metabolic engineering applications of in vivo sup 31 P and sup 13 C NMR studies of Saccharomyces cerevisiae

    SciTech Connect

    Shanks, J.V.

    1989-01-01

    With intent to quantify NMR measurements as much as possible, analysis techniques of the in vivo {sup 31}P NMR spectrum are developed. A systematic procedure is formulated for estimating the relative intracellular concentrations of the sugar phosphates in S. cerevisiae from the {sup 31}P NMR spectrum. In addition, in vivo correlation of inorganic phosphate chemical shift with the chemical shifts of 3-phosphoglycerate, {beta}-fructose 1,6-diphosphate, fructose 6-phosphate, and glucose 6-phosphate are determined. Also, a method was developed for elucidation of the cytoplasmic and vacuolar components of inorganic phosphate in the {sup 31}P NMR spectrum of S. cerevisiae. An in vivo correlation relating the inorganic phosphate chemical shift of the vacuole with the chemical shift of the resonance for pyrophosphate and the terminal phosphate of polyphosphate (PP{sub 1}) is established. Transient measurements provided by {sup 31}P NMR are applied to reg1 mutant and standard strains. {sup 31}P and {sup 13}C NMR measurements are used to analyze the performance of recombinant strains in which the glucose phosphorylation step had been altered.

  13. Tendencies of 31P chemical shifts changes in NMR spectra of nucleotide derivatives.

    PubMed

    Lebedev, A V; Rezvukhin, A I

    1984-07-25

    31P NMR chemical shifts of the selected mono- and oligonucleotide derivatives, including the compounds with P-N, P-C, P-S bonds and phosphite nucleotide analogues have been presented. The influence of substituents upon 31P chemical shifts has been discussed. The concrete examples of 31P chemical shifts data application in the field of nucleotide chemistry have been considered. PMID:6087290

  14. In vivo dephosphorylation of WR-2721 monitored by 31P NMR spectroscopy

    SciTech Connect

    Knizner, S.A.; Jacobs, A.J.; Lyon, R.C.; Swenberg, C.E.

    1986-01-01

    The in vivo dephosphorylation of the radioprotective agent S-2-(3-(aminopropylamino))ethylphosphorothioic acid (WR-2721) in male CD2F1 mice was measured by 31P NMR spectroscopy after i.p. injection. The disappearance of the WR-2721 phosphate NMR signal with time was concurrent with an increase and splitting of the inorganic phosphate NMR signal. The more acidic inorganic phosphate resonance is shown to be attributed to phosphate (inorganic phosphate) in the urine. Using regression first-order kinetic analysis of data, after i.p. injection of 600 mg/kg, the half-life of WR-2721 was determined to be 40.9 +/- 5.9 (S.D.) min (n = 10).

  15. Membrane interactions in small fast-tumbling bicelles as studied by 31P NMR.

    PubMed

    Bodor, Andrea; Kövér, Katalin E; Mäler, Lena

    2015-03-01

    Small fast-tumbling bicelles are ideal for studies of membrane interactions at molecular level; they allow analysis of lipid properties using solution-state NMR. In the present study we used 31P NMR relaxation to obtain detailed information on lipid head-group dynamics. We explored the effect of two topologically different membrane-interacting peptides on bicelles containing either dimyristoylphosphocholine (DMPC), or a mixture of DMPC and dimyristoylphosphoglycerol (DMPG), and dihexanoylphosphocholine (DHPC). KALP21 is a model transmembrane peptide, designed to span a DMPC bilayer and dynorphin B is a membrane surface active neuropeptide. KALP21 causes significant increase in bicelle size, as evidenced by both dynamic light scattering and 31P T2 relaxation measurements. The effect of dynorphin B on bicelle size is more modest, although significant effects on T2 relaxation are observed at higher temperatures. A comparison of 31P T1 values for the lipids with and without the peptides showed that dynorphin B has a greater effect on lipid head-group dynamics than KALP21, especially at elevated temperatures. From the field-dependence of T1 relaxation data, a correlation time describing the overall lipid motion was derived. Results indicate that the positively charged dynorphin B decreases the mobility of the lipid molecules--in particular for the negatively charged DMPG--while KALP21 has a more modest influence. Our results demonstrate that while a transmembrane peptide has severe effects on overall bilayer properties, the surface bound peptide has a more dramatic effect in reducing lipid head-group mobility. These observations may be of general importance for understanding peptide-membrane interactions. PMID:25497765

  16. Chemical Characterization and Water Content Determination of Bio-Oils Obtained from Various Biomass Species using 31P NMR Spectroscopy

    SciTech Connect

    David, K.; Ben, H.; Muzzy, J.; Feik, C.; Iisa, K.; Ragauskas, A.

    2012-03-01

    Pyrolysis is a promising approach to utilize biomass for biofuels. One of the key challenges for this conversion is how to analyze complicated components in the pyrolysis oils. Water contents of pyrolysis oils are normally analyzed by Karl Fischer titration. The use of 2-chloro-4,4,5,5,-tetramethyl-1,3,2-dioxaphospholane followed by {sup 31}P NMR analysis has been used to quantitatively analyze the structure of hydroxyl groups in lignin and whole biomass. Results: {sup 31}P NMR analysis of pyrolysis oils is a novel technique to simultaneously characterize components and analyze water contents in pyrolysis oils produced from various biomasses. The water contents of various pyrolysis oils range from 16 to 40 wt%. The pyrolysis oils obtained from Loblolly pine had higher guaiacyl content, while that from oak had a higher syringyl content. Conclusion: The comparison with Karl Fischer titration shows that {sup 31}P NMR could also reliably be used to measure the water content of pyrolysis oils. Simultaneously with analysis of water content, quantitative characterization of hydroxyl groups, including aliphatic, C-5 substituted/syringyl, guaiacyl, p-hydroxyl phenyl and carboxylic hydroxyl groups, could also be provided by {sup 31}P NMR analysis.

  17. Crystallinity and compositional changes in carbonated apatites: Evidence from {sup 31}P solid-state NMR, Raman, and AFM analysis

    SciTech Connect

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M.Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-15

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and {sup 31}P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse {sup 31}P NMR linewidth and inverse Raman PO{sub 4}{sup 3−}ν{sub 1} bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO{sub 3}{sup 2−} range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the {sup 31}P NMR chemical shift frequency and the Raman phosphate ν{sub 1} band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. - Graphical abstract: Carbonated apatite shows an abrupt change in spectral (NMR, Raman) and morphological (AFM) properties at a composition of about one carbonate substitution per unit cell. Display Omitted - Highlights: • Crystallinity (XRD), particle size (AFM) of carbonated apatites and bone mineral. • Linear relationships among crystallinity, {sup 31}P NMR and Raman inverse bandwidths. • Low and high carbonated apatites use different charge-balancing ion-loss mechanism.

  18. Measurement of carbon flux through the MEP pathway for isoprenoid synthesis by (31)P-NMR spectroscopy after specific inhibition of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate reductase. Effect of light and temperature.

    PubMed

    Mongélard, Gaëlle; Seemann, Myriam; Boisson, Anne-Marie; Rohmer, Michel; Bligny, Richard; Rivasseau, Corinne

    2011-08-01

    The methylerythritol 4-phosphate (MEP) and the mevalonate pathways are the unique synthesis routes for the precursors of all isoprenoids. An original mean to measure the carbon flux through the MEP pathway in plants is proposed by using cadmium as a total short-term inhibitor of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (MEcDP) reductase (GcpE) and measuring the accumulation rate of its substrate MEcDP by (31) P-NMR spectroscopy. The MEP pathway metabolic flux was determined in spinach (Spinacia oleracea), pea (Pisum sativum), Oregon grape (Mahonia aquifolium) and boxwood (Buxus sempervirens) leaves. In spinach, flux values were compared with the synthesis rate of major isoprenoids. The flux increases with light intensity (fourfold in the 200-1200 µmol m(-2) s(-1) PPFR range) and temperature (sevenfold in the 25-37 °C range). The relationship with the light and the temperature dependency of isoprenoid production downstream of the MEP pathway is discussed.

  19. Crystallinity and compositional changes in carbonated apatites: Evidence from 31P solid-state NMR, Raman, and AFM analysis

    PubMed Central

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M. Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-01-01

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and 31P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse 31P NMR linewidth and inverse Raman PO43− ν1 bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO32− range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the 31P NMR chemical shift frequency and the Raman phosphate ν1 band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. PMID:24273344

  20. Measurement of the lateral diffusion of dipalmitoylphosphatidylcholine adsorbed on silica beads in the absence and presence of melittin: a 31P two-dimensional exchange solid-state NMR study.

    PubMed Central

    Picard, F; Paquet, M J; Dufourc, E J; Auger, M

    1998-01-01

    31P two-dimensional exchange solid-state NMR spectroscopy was used to measure the lateral diffusion, D(L), in the fluid phase of dipalmitoylphosphatidylcholine (DPPC) in the presence and absence of melittin. The use of a spherical solid support with a radius of 320 +/- 20 nm, on which lipids and peptides are adsorbed together, and a novel way of analyzing the two-dimensional exchange patterns afforded a narrow distribution of D(L) centered at a value of (8.8 +/- 0.5) x 10(-8) cm2/s for the pure lipid system and a large distribution of D(L) spanning 1 x 10(-8) to 10 x 10(-8) cm2/s for the lipids in the presence of melittin. In addition, the determination of D(L) for nonsupported DPPC multilamellar vesicles (MLVs) suggests that the support does not slow down the lipid diffusion and that the radii of the bilayers vary from 300 to 800 nm. Finally, the DPPC-melittin complex is stabilized at the surface of the silica beads in the gel phase, opening the way to further study of the interaction between melittin and DPPC. PMID:9533697

  1. Comparison of phosphorus forms in three extracts of dairy feces by solution 31P NMR analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using solution 31P NMR spectroscopy, we compared three extractants, deionized water, sodium acetate buffer (pH 5.0) with fresh sodium dithionite (NaAc-SD), and 0.25 M NaOH-0.05 M EDTA (NaOH-EDTA), for the profile of P compounds in two dairy fecal samples. Phosphorus extracted was 35% for water, and...

  2. Solid State FT-IR and (31)P NMR Spectral Features of Phosphate Compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid-state spectroscopic techniques, including Fourier transform infrared (FT-IR) and solid-state 31P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopies, are powerful tools for evaluating metal speciation and transformation mechanisms of P compounds in the environment. Studie...

  3. 31P-NMR SPECTROSCOPY OF RAT LIVER DURING SIMPLE STORAGE OR CONTINUOUS HYPOTHERMIC PERFUSION1

    PubMed Central

    Rossaro, Lorenzo; Murase, Noriko; Caldwell, Cary; Farghali, Hassan; Casavilla, Adrian; Starzl, Thomas E.; Ho, Chien; Van Thiel, David H.

    2010-01-01

    SUMMARY The ATP content and intracellular pH (pHi)3 of isolated rat liver before, during, and after cold preservation in either UW-lactobionate (UW, n=10) or Euro-Collins (EC, n=8) solutions were monitored using phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy. The 31P-NMR spectra were obtained on a 4.7-Tesla system operating at 81 MHz. Fructose metabolism, liver enzyme release, O2 consumption, and rat survival after liver transplantation were also evaluated. During simple cold storage (SCS), the ATP level declined to undetectable levels with both preservation solutions while the pHi declined to approximately 7.0. In contrast, during continuous hypothermic perfusion (CHP), hepatic ATP levels remained measurable during the 24-hour EC preservation and actually increased significantly (p>0.01) during UW preservation. After reperfusion at 37°C with Krebs-lactate, the SCS livers treated with EC differed significantly from the UW livers in terms of their ATP and pHi as well as their response to a fructose challenge. In contrast, livers undergoing CHP demonstrated similar behaviors with both solutions. These results demonstrate an increase in the hepatic ATP content during CHP which occurs with UW but is not seen with EC. On the other hand, only livers that were simply stored with UW achieved significant survival after transplant, while CHP livers were affected by vascular damage as demonstrated by fatal thrombosis after transplant. These data suggest that ATP content is not the only determinant of good liver function although a system of hypothermic perfusion might further improve liver preservation efficacy should injury to vascular endothelium be avoided. PMID:1402332

  4. /sup 31/P NMR saturation-transfer and /sup 13/C NMR kinetic studies of glycolytic regulation during anaerobic and aerobic glycolysis

    SciTech Connect

    Campbell-Burk, S.L.; den Hollander, J.A.; Alger, J.R.; Shulman, R.G.

    1987-11-17

    /sup 31/P NMR saturation-transfer techniques have been employed in glucose-gown derepressed yeast to determine unidirectional fluxes in the upper part of the Embden-Meyerhof-Parnas pathway. The experiments were performed during anaerobic and aerobic glycolysis by saturating the ATP/sub ..gamma../ resonances and monitoring changes in the phosphomonoester signals from glucose 6-phosphate and fructose 1,6-bisphosphate. These experiments were supplemented with /sup 13/C NMR measurements of glucose utilization rates and /sup 13/C NMR label distribution studies. Combined with data obtained previously from radioisotope measurement, these /sup 31/P and /sup 13/C NMR kinetic studies allowed estimation of the net glycolytic flow in addition to relative flows through phosphofructokinase (PFK) and Fru-1,6-P/sub 2/ase during anaerobic and aerobic glycolysis. The /sup 31/P NMR saturation-transfer results are consistent with previous results obtained from measurements of metabolite levels, radioisotope data, and /sup 13/C NMR studies, providing additional support for in vivo measurement of the flows during glycolysis.

  5. Structure and motion of phospholipids in human plasma lipoproteins. A sup 31 P NMR study

    SciTech Connect

    Fenske, D.B.; Chana, R.S.; Parmar, Y.I.; Treleaven, W.D.; Cushley, R.J. )

    1990-04-24

    The structure and motion of phospholipids in human plasma lipoproteins have been studied by using {sup 31}P NMR. Lateral diffusion coefficients, D{sub T}, obtained from the viscosity dependence of the {sup 31}P NMR line widths, were obtained for very low density lipoprotein (VLDL), low-density lipoprotein (LDL), high-density lipoproteins (HDL{sub 2}, HDL{sub 3}), and egg PC/TO microemulsions at 25{degree}C, for VLDL at 40{degree}C, and for LDL at 45{degree}C. In order to prove the orientation and/or order of the phospholipid head-group, estimates of the residual chemical shift anistropy, {Delta}{sigma}, have been obtained for all the lipoproteins and the microemulsions from the viscosity and field dependence for the {sup 31}P NMR line widths. These results suggest differences in the orientation and/or ordering of the head-group in the HDLs. The dynamic behavior of the phosphate moiety in LDL and HDL{sub 3} has been obtained from the temperature dependence of the {sup 31}P spin-lattice relaxation rates. Values of the correlation time for phosphate group reorientation and the activation energy for the motion are nearly identical in LDL and HDL{sub 3} and are similar to values obtained for phospholipid bilayers. This argues against long-lived protein-lipid interactions being the source of either the slow diffusion in LDL or the altered head-group orientation in the HDLs.

  6. Rapid assignment of solution 31P NMR spectra of large proteins by solid-state spectroscopy.

    PubMed

    Iuga, Adriana; Spoerner, Michael; Ader, Christian; Brunner, Eike; Kalbitzer, Hans Robert

    2006-07-21

    The application of the (31)P NMR spectroscopy to large proteins or protein complexes in solution is hampered by a relatively low intrinsic sensitivity coupled with large line widths. Therefore, the assignment of the phosphorus signals by two-dimensional NMR methods in solution is often extremely time consuming. In contrast, the quality of solid-state NMR spectra is not dependent on the molecular mass and the solubility of the protein. For the complex of Ras with the GTP-analogue GppCH(2)p we show solid-state (31)P NMR methods to be more sensitive by almost one order of magnitude than liquid-state NMR. Thus, solid-state NMR seems to be the method of choice for obtaining the resonance assignment of the phosphorus signals of protein complexes in solution. Experiments on Ras.GDP complexes show that the microcrystalline sample can be substituted by a precipitate of the sample and that unexpectedly the two structural states observed earlier in solution are present in crystals as well.

  7. CD and 31P NMR studies of tachykinin and MSH neuropeptides in SDS and DPC micelles

    NASA Astrophysics Data System (ADS)

    Schneider, Sydney C.; Brown, Taylor C.; Gonzalez, Javier D.; Levonyak, Nicholas S.; Rush, Lydia A.; Cremeens, Matthew E.

    2016-02-01

    Secondary structural characteristics of substance P (SP), neurokinin A (NKA), neurokinin B (NKB), α-melanocyte stimulating hormone peptide (α-MSH), γ1-MSH, γ2-MSH, and melittin were evaluated with circular dichroism in phosphite buffer, DPC micelles, and SDS micelles. CD spectral properties of γ1-MSH and γ2-MSH as well as 31P NMR of DPC micelles with all the peptides are reported for the first time. Although, a trend in the neuropeptide/micelle CD data appears to show increased α-helix content for the tachykinin peptides (SP, NKA, NKB) and increased β-sheet content for the MSH peptides (α-MSH, γ1-MSH, γ2-MSH) with increasing peptide charge, the lack of perturbed 31P NMR signals for all neuropeptides could suggest that the reported antimicrobial activity of SP and α-MSH might not be related to a membrane disruption mode of action.

  8. 31P NMR investigations on the ferromagnetic quantum critical system YbNi4P2

    NASA Astrophysics Data System (ADS)

    Sarkar, R.; Khuntia, P.; Krellner, C.; Geibel, C.; Steglich, F.; Baenitz, M.

    2012-04-01

    We studied the heavy-fermion system YbNi4P2, which presents strong ferromagnetic correlations, using the local 31P NMR probe over a wide field (0.2-8.6 T) and temperature (1.8-200 K) range. The 31P NMR Knight shift provides the static spin susceptibility which tracks the bulk susceptibility whereas the spin-lattice relaxation rate 31(1/T1) provides information about the fluctuations of the Yb 4f moment. The Korringa law is valid over a wide range of temperature and field. The Korringa product 31(1/T1TK2S0)≪1 gives evidence for the presence of strong ferromagnetic correlations. A 31(1/T1T)˜T-3/4 behavior was found over two decades in temperature.

  9. Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and (31)P NMR analysis.

    PubMed

    Xu, Gang; Zhang, You; Shao, Hongbo; Sun, Junna

    2016-11-01

    Phosphorus (P) recycling or reuse by pyrolyzing crop residue has recently elicited increased research interest. However, the effects of feedstock and pyrolysis conditions on P species have not been fully understood. Such knowledge is important in identifying the agronomic and environmental uses of biochar. Residues of three main Chinese agricultural crops and the biochars (produced at 300°C-600°C) derived from these crops were used to determine P transformations during pyrolysis. Hedley sequential fractionation and (31)P NMR analyses were used in the investigation. Our results showed that P transformation in biochar was significantly affected by pyrolysis temperature regardless of feedstock (Wheat straw, maize straw and peanut husk). Pyrolysis treatment transformed water soluble P into a labile (NaHCO3-Pi) or semi-labile pool (NaOH-Pi) and into a stable pool (Dil. HCl P and residual-P). At the same time, organic P was transformed into inorganic P fractions which was identified by the rapid decomposition of organic P detected with solution (31)P NMR. The P transformation during pyrolysis process suggested more stable P was formed at a higher pyrolysis temperature. This result was also evidenced by the presence of less soluble or stable P species, such as such as poly-P, crandallite (CaAl3(OH)5(PO4)2) and Wavellite (Al3(OH)3(PO4)2·5H2O), as detected by solid-state (31)P NMR in biochars formed at a higher pyrolysis temperature. Furthermore, a significant proportion of less soluble pyrophosphate was identified by solution (2%-35%) and solid-state (8%-53%) (31)P NMR, which was also responsible for the stable P forms at higher pyrolysis temperature although their solubility or stability requires further investigation. Results suggested that a relatively lower pyrolysis temperature retains P availability regardless of feedstock during pyrolysis process.

  10. [sup 31]P NMR study of immobilized artificial membrane surfaces. Structure and dynamics of immobilized phospholipids

    SciTech Connect

    Qiu, X.; Pidgeon, C. )

    1993-11-25

    Chromatography surfaces were prepared by immobilizing a single-chain ether phospholipid at approximately a monolayer density on silica particles. The chromatography particles are denoted as [sup ether]IAM.PC[sup C10/C3], and they are stable to all solvents. The structure and dynamics of the interphase created by immobilizing phospholipids on silica particles were studied by [sup 31]P NMR methods. [sup ether]IAM.PC[sup C10/C3] spontaneously wets when suspended in both aqueous and organic solvents, and [sup 31]P NMR spectra were obtained in water, methanol, chloroform, acetonitrile, and acetone. [sup 31]P NMR spectra were subjected to line-shape analysis. From line-shape analysis, the correlation times for rapid internal motion ([tau]-PLL) and wobbling ([tau]-PRP) of the phospholipid headgroup were calculated for each solvent. Immobilized phospholipid headgroups comprising the IAM interfacial region undergo rapid reorientation similar to the case of the phospholipids forming liposome membranes with [tau]-PLL approximately 1 ns. Phospholipids in liposome membranes exhibit slower wobbling motion ([tau]-PRP approximately 1 ms) in the plane of the membrane. However, the immobilized phospholipids on [sup ether]IAM.PC[sup C10/C3] surfaces wobble with correlation times [tau]-PRP that depend on the solvent bathing the [sup ether]IAM.PC[sup C10/C3] surface. 41 refs., 9 figs., 2 tabs.

  11. Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing investigations of connectivity in sodium aluminophosphate glasses

    SciTech Connect

    LANG,DAVID P.; ALAM,TODD M.; BENCOE,DENISE N.

    2000-05-01

    Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing experiments have been used to investigate the spatial distribution of aluminum and sodium cations with respect to the phosphate backbone for a series of sodium aluminophosphate glasses, xAl{sub 2}O{sub 3}{center_dot}50Na{sub 2}O{center_dot}(50{minus}x)P{sub 2}O{sub 5} (0{le} x {le} 17.5). From the {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na connectivity data gathered, information about the medium range order in these glasses is obtained. The expanded connectivity data allows for better identification and interpretation of the new resonances observed in the {sup 31}P MAS NMR spectra with the addition of alumina. The results of the dipolar dephasing experiments show that the sodium-phosphate distribution remains relatively unchanged for the glass series, and that the addition of aluminum occurs primarily through the depolymerization of the phosphate tetrahedral backbone.

  12. Interaction between beta-Purothionin and dimyristoylphosphatidylglycerol: a (31)P-NMR and infrared spectroscopic study.

    PubMed Central

    Richard, Julie-Andrée; Kelly, Isabelle; Marion, Didier; Pézolet, Michel; Auger, Michèle

    2002-01-01

    The interaction of beta-purothionin, a small basic and antimicrobial protein from the endosperm of wheat seeds, with multilamellar vesicles of dimyristoylphosphatidylglycerol (DMPG) was investigated by (31)P solid-state NMR and infrared spectroscopy. NMR was used to study the organization and dynamics of DMPG in the absence and presence of beta-purothionin. The results indicate that beta-purothionin does not induce the formation of nonlamellar phases in DMPG. Two-dimensional exchange spectroscopy shows that beta-purothionin decreases the lateral diffusion of DMPG in the fluid phase. Infrared spectroscopy was used to investigate the perturbations, induced by beta-purothionin, of the polar and nonpolar regions of the phospholipid bilayers. At low concentration of beta-purothionin, the temperature of the gel-to-fluid phase transition of DMPG increases from 24 degrees C to ~33 degrees C, in agreement with the formation of electrostatic interactions between the cationic protein and the anionic phospholipid. At higher protein concentration, the lipid transition is slightly shifted toward lower temperature and a second transition is observed below 20 degrees C, suggesting an insertion of the protein in the hydrophobic core of the lipid bilayer. The results also suggest that the presence of beta-purothionin significantly modifies the lipid packing at the surface of the bilayer to increase the accessibility of water molecules in the interfacial region. Finally, orientation measurements indicate that the alpha-helices and the beta-sheet of beta-purothionin have tilt angles of ~60 degrees and 30 degrees, respectively, relative to the normal of the ATR crystal. PMID:12324425

  13. Exploring new Routes for Identifying Phosphorus Species in Terrestrial and Aquatic Ecosystems with 31P NMR

    NASA Astrophysics Data System (ADS)

    Vestergren, Johan; Persson, Per; Sundman, Annelie; Ilstedt, Ulrik; Giesler, Reiner; Schleucher, Jürgen; Gröbner, Gerhard

    2014-05-01

    Phosphorus (P) is the primary growth-limiting nutrient in some of the world's biomes. Rock phosphate is a non-renewable resource and the major source of agricultural fertilizers. Predictions of P consumption indicate that rock phosphate mining may peak within 35 years, with severe impacts on worldwide food production1. Organic P compounds constitute a major fraction of soil P, but little is known about the dynamics and bioavailability of organic P species. Our aim is to develop new liquid and solid state 31P-NMR (nuclear magnetic resonance) techniques to identify P-species in water and soils; information required for correlating P speciation with plant and soil processes2, and eventually to improve P use. Soil organic P is frequently extracted using NaOH/EDTA, followed by characterization of the extract by solution 31P-NMR. However, the obtained NMR spectra usually have poor resolution due to line broadening caused by the presence of paramagnetic ions. Therefore, we successfully developed an approach to avoid paramagnetic line broadening by precipitation of metal sulfides. Sulfide precipitation dramatically reduces NMR line widths for soil extracts, without affecting P-composition. The resulting highly improved resolution allowed us to apply for the first time 2D 1H,31P-NMR methods to identify different P monoesters in spectral regions which are extremely crowded in 1D NMR spectra.3 By exploiting 2D 1H-31P NMR spectra of soil extracts we were able to unambiguously identify individual organic P species by combining 31P and 1H chemical shifts and coupling constants. This approach is even suitable for a structural characterization of unknown P-components and for tracing degradation pathways between diesters and monoesters3,4.Currently we apply our approach on boreal4 and tropical soils with focus on Burkina Faso. In addition we also monitor P-species in aqueos ecosystems. For this purpose stream water from the Krycklan catchment in northern Sweden5 has been used to

  14. sup 31 P and sup 1 H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: Relaxation measurements with Mn(II) and Co(II)

    SciTech Connect

    Jarori, G.K.; Ray, B.D.; Rao, B.D.N. )

    1989-11-28

    The paramagnetic effects of Mn(II) and Co(II) on the spin-lattice relaxation rates of {sup 31}P nuclei of ATP and ADP and of Mn(II) on the spin-lattice relaxation rate of the {delta} protons of arginine bound to arginine kinase from lobster tail muscle have been measured. Temperature variation of {sup 31}P relaxation rates in E-MnADP and E-MnATP yields activation energies ({Delta}E) in the range 6-10 kcal/mol. Thus, the {sup 31}P relaxation rates in these complexes are exchange limited and cannot provide structural information. However, the relaxation rates in E-CoADP and E-CoATP exhibit frequency dependence and {Delta}E values in the range 1-2 kcal/mol; i.e., these rates depend upon {sup 31}P-Co(II) distances. These distances were calculated to be in the range 3.2-4.5 {angstrom}, appropriate for direct coordination between Co(II) and the phosphoryl groups. The paramagnetic effect of Mn(II) on the {sup 1}H spin-lattice relaxation rate of the {delta} protons of arginine in the E-MnADP-Arg complex was also measured at three frequencies. From the frequency dependence of the relaxation rate an effective {tau}{sub C} of 0.6 ns has also been calculated, which is most likely to be the electron spin relaxation rate ({tau}{sub S1}) for Mn(II) in this complex. The distance estimated on the basis of the reciprocal sixth root of the average relaxation rate of the {delta} protons was 10.9 {plus minus} 0.3 {angstrom}.

  15. Intracellular pH and inorganic phosphate content of heart in vivo: A sup 31 P-NMR study

    SciTech Connect

    Katz, L.A.; Swain, J.A.; Portman, M.A.; Balaban, R.S. )

    1988-07-01

    Studies were performed to determine the contribution of red blood cells to the {sup 31}P-nuclear magnetic resonance (NMR) spectrum of the canine heart in vivo and the feasibility of measuring myocardial intracellular phosphate and pH. This was accomplished by replacing whole blood with a perfluorochemical perfusion emulsion blood substitute, Oxypherol, and noting the difference in the {sup 31}P-NMR spectrum of the heart. NMR data were collected with a NMR transmitter-receiver coil on the surface of the distal portion of the left ventricle. These studies demonstrated that a small contribution from 2,3-diphosphoglycerate (2,3-DPG) and phosphodiesters in the blood could be detected. The magnitude and shift of these blood-borne signals permitted the relative quantification of intracellular inorganic phosphate (P{sub i}) content as well as intracellular pH. Under resting conditions, the intracellular ATP/P{sub i} was 7.0 {plus minus} 0.08. This corresponds to a free intracellular P{sub 1} content of {approx} 0.8 {mu}mol./g wet wt. The intracellular pH was 7.10 {plus minus} 0.01. Acute respiratory alkalosis and acidosis, with the arterial pH ranging from {approximately}7.0 to 7.7, resulted in only small changes in the intracellular pH. These latter results demonstrate an effective myocardial intracellular proton-buffering mechanism in vivo.

  16. Absolute shielding scale for 31P from gas-phase NMR studies

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.; De Dios, Angel; Keith Jameson, A.

    1990-04-01

    Differences in the 31P nuclear shielding in the zero-pressure limit have been measured in seven compounds. An absolute 31P shielding scale based on the PH 3 molecular beam data is established and the absolute shielding of the standard liquid reference (85% aqueous H 3PO 4) is found to be 328.35 ppm, based on PH 3 being 594.45 ± 0.63 ppm. Comparisons with ab initio calculations show that calculations using local origins (the IGLO method) are in good agreement with experiment.

  17. In vivo 31P-NMR spectroscopy of right ventricle in pigs.

    PubMed

    Schwartz, G G; Steinman, S K; Weiner, M W; Matson, G B

    1992-06-01

    The energy metabolism of the right ventricle (RV) in vivo has been largely unexplored. The goal of this study was to develop and implement techniques for in vivo 31P nuclear magnetic resonance (NMR) spectroscopy of the RV free wall. A two-turn, crossover-design elliptical surface coil was constructed to provide high sensitivity across the thin RV wall but minimal sensitivity in the blood-filled RV cavity. In 36 open-chest, anesthetized pigs, 31P spectroscopy of the RV free wall was performed with this coil at a field strength of 2 Tesla. Spectra were obtained from 800 acquisitions in 24 min with an average signal-to-noise ratio of 13.2 for phosphocreatine (PCr). The PCr-to-ATP (PCr/ATP) ratio of porcine RV was 1.42 +/- 0.05 (mean +/- SE), uncorrected for saturation at a repetition time of 1.8 s. With the use of literature values of the time constant of longitudinal relaxation (T1) to correct for partial saturation, the RV PCr/ATP was estimated to lie between 1.7 and 2.3. Decreased RV PCr/ATP was observed during RV ischemia and pressure overload. Thus in vivo 31P spectroscopy of the RV is readily accomplished with an appropriate surface coil and can provide new information about RV energy metabolism. PMID:1621852

  18. Detoxification of organophosphorus pesticides and nerve agents through RSDL: efficacy evaluation by (31)P NMR spectroscopy.

    PubMed

    Elsinghorst, Paul W; Worek, Franz; Koller, Marianne

    2015-03-01

    Intoxication by organophosphorus compounds, especially by pesticides, poses a considerable risk to the affected individual. Countermeasures involve both medical intervention by means of antidotes as well as external decontamination to reduce the risk of dermal absorption. One of the few decontamination options available is Reactive Skin Decontamination Lotion (RSDL), which was originally developed for military use. Here, we present a (31)P NMR spectroscopy based methodology to evaluate the detoxification efficacy of RSDL with respect to a series of organophosphorus pesticides and nerve agents. Kinetic analysis of the obtained NMR data provided degradation half-lives proving that RSDL is also reasonably effective against organophosphorus pesticides. Unexpected observations of different RSDL degradation patterns are presented in view of its reported oximate-catalyzed mechanism of action.

  19. Detoxification of organophosphorus pesticides and nerve agents through RSDL: efficacy evaluation by (31)P NMR spectroscopy.

    PubMed

    Elsinghorst, Paul W; Worek, Franz; Koller, Marianne

    2015-03-01

    Intoxication by organophosphorus compounds, especially by pesticides, poses a considerable risk to the affected individual. Countermeasures involve both medical intervention by means of antidotes as well as external decontamination to reduce the risk of dermal absorption. One of the few decontamination options available is Reactive Skin Decontamination Lotion (RSDL), which was originally developed for military use. Here, we present a (31)P NMR spectroscopy based methodology to evaluate the detoxification efficacy of RSDL with respect to a series of organophosphorus pesticides and nerve agents. Kinetic analysis of the obtained NMR data provided degradation half-lives proving that RSDL is also reasonably effective against organophosphorus pesticides. Unexpected observations of different RSDL degradation patterns are presented in view of its reported oximate-catalyzed mechanism of action. PMID:25597861

  20. Phospholipid composition of plasma and erythrocyte membranes in animal species by 31P NMR.

    PubMed

    Ferlazzo, Alida Maria; Bruschetta, Giuseppe; Di Pietro, Patrizia; Medica, Pietro; Notti, Anna; Rotondo, Enrico

    2011-12-01

    The aim of this study was to provide basal values of phospholipid (PL) composition in different animal species by 31P NMR analysis using detergents. This fast and accurate method allowed a quantitative analysis of PLs without any previous separation. Plasma and erythrocyte membrane PLs were investigated in mammals (pig, cow, horse). Moreover, for the first time, the composition of plasma PLs in avian (chicken and ostrich) was performed by 31P NMR. Significant qualitative and quantitative interspecies differences in plasma PL levels were found. Phosphatidilcholine (PC) and sphingomyelin (SPH) levels were significantly higher (P < 0.001) in chicken plasma than all the other species tested. In erythrocytes, cow PC and phosphatidylcholine diarachidoyl were significantly lower (P < 0.001) than for pigs and horses, whereas pig PC presented intermediate values among cows and horses. Inorganic phosphate and 2,3-diphosphoglycerate levels were also significantly different between the species under investigation. The [SPH/total PLs] molar ratios in erythrocytes confirmed interspecies differences in phospholipid composition while the PC/SPH molar ratios could be related to a distinct erythrocyte flexibility and aggregability. Diet and nutrition may contribute primarily to the interspecies differences in plasma PL amounts detected. Significant differences between chicken plasma PC and SPH levels and those of the other animal species could be ascribed to a fat metabolism specific to egg production.

  1. Synthesis of prostanoids; enantiomeric purity of alcohols by a /sup 31/P NMR technique

    SciTech Connect

    Penning, T.D.

    1985-01-01

    The enone, 2,2-diemthyl-3a..beta.., 6a..beta..-dihydro-4H-cyclopenta-1,3-dioxol-4-one, has been synthesized in six steps from cyclopentadiene, resolved using sulfoximine chemistry, and converted into (-)-prostaglandin E/sub 2/ methyl ester in three steps. Introduction of the optically pure omega side-chain using a conjugate addition of a stabilized organocopper reagent, followed by direct alkylation of the enolate with the ..cap alpha.. side-chain allylic iodide in the presence of hexamethylphosphoramide, afforded a trans, vicinally disubstituted cyclopentanone. Deprotection of the C-15 alcohol, followed by aluminum amalgam reduction of the C-10/oxygen bond, provided (-)-PGE/sub 2/ methyl ester in 47% overall yield from the enone. In an extension of previously described work, 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide, prepared from l-ephedrine and thiophosphoryl chloride, was used to determine the enantiomeric excess of chiral alcohols in conjunction with /sup 31/P NMR. Chiral primary and secondary alcohols added quantitatively to the phospholidine to give diastereomers which could be analyzed by /sup 31/P NMR and HPLC. A number of other phosphorus heterocycles were also explored as potential chiral derivatizing reagents.

  2. 31P NMR conformational studies of non-palindromic DNA duplexes related to HIV-1 enhancer

    NASA Astrophysics Data System (ADS)

    Tisne, C.; Simenel, C.; Hantz, E.; Delepierre, M.

    1998-02-01

    Assignment of all 31P resonances of 16 base-pair DNA duplexes, 5' d(CTGGGGACTTTCCAGG)3' 5' d(CCTGGAAAGTCCCCAG)3', related to the DNA kappaB site of the HIV-1 LTR together with a mutated sequence 5' d(CTGCTCACTTTCCAGG)3' 5' d(CCTGGAAAGTGAGCAG)3' was determined by 2D heteronuclear inverse NMR spectroscopy (HSQC-TOCSY and heteronuclear COSY). ^3JH{3'}-P coupling constants for most of the phosphates of the mutated oligomer were obtained using heteronuclear selective COSY. L'attribution des résonances 31P du fragment d'ADN de seize paires de base 5' d(CTGGGGACTTTCCAGG)3' 5' d(CCTGGAAAGTCCCCAG)3' (16N) correspondant au site kappaB du LTR du HIV-1 et de la séquence mutée 5' d(CTGCTCACTTTCCAGG)3' 5' d(CCTGGAAAGTGAGCAG)3' (16M) a été déterminée à l'aide de méthodes 2D hétéronucléaires à détection indirecte (HSQC-TOCSY et COSY hétéronucléaires). Les constantes de couplage ^3JH{3'}-P ont été mesurées pour la plupart des phosphates de 16 M à l'aide d'expérience COSY hétéronucléaires sélectives.

  3. Investigation of broad resonances in 31P NMR spectra of the human brain in vivo.

    PubMed

    McNamara, R; Arias-Mendoza, F; Brown, T R

    1994-08-01

    Broad resonances that lie underneath the familiar small molecule profile of in vivo 31P NMR spectra can make accurate spectral integration of these mobile phosphates difficult. The two major broad components are the phosphate contained in the hydroxyapatite in cranial bone and the phosphodiester moiety in partially mobile membrane phospholipids. They can be removed with post-acquisition processing but this results in distortion of lineshapes and intensities and interferes with accurate quantitation. We have employed an off-resonance saturation procedure to eliminate the bone resonance and isolate the signal from the membrane phospholipids by subtraction. Selective saturation of the phospholipid resonance increases the clarity of the sharp peaks downfield from the phosphocreatine peak. Selective saturation 3-D chemical shift imaging techniques were used to create a localized phospholipid profile of the entire brain simultaneously. Monitoring localized phospholipid concentration may be important in studying demyelinating diseases. PMID:7848814

  4. Degradation of black phosphorus: a real-time 31P NMR study

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Yang, Bingchao; Wan, Bensong; Xi, Xuekui; Zeng, Zhongming; Liu, Enke; Wu, Guangheng; Liu, Zhongyuan; Wang, Wenhong

    2016-09-01

    In this work, degradation behaviors and mechanisms of black phosphorus (BP) crystals in air under ambient conditions were investigated by nuclear magnetic resonance spectroscopy. It has been found that the 31P NMR line intensity for BP decreases exponentially during aging even at the very first several hours, suggesting the origin of the degradation of transport properties. In addition to phosphoric acid, new phosphorous acid was also well resolved in the final aging products. Moreover, BP has been found to be stable in water without the presence of oxygen molecules. These findings are relevant for better understanding of degradation behaviors of BP upon aging and should be helpful for overcoming a barrier that might hamper progress toward applications of BP as a 2D material.

  5. Local structure of spin Peierls compound TiPO4: 47/49Ti and 31P NMR study

    NASA Astrophysics Data System (ADS)

    Stern, Raivo; Heinmaa, Ivo; Leitmäe, Alexander; Joon, Enno; Tsirlin, Alexander; Kremer, Reinhard; Glaum, Robert

    TiPO4 structure is made of slightly corrugated TiO2 ribbon chains of edge-sharing TiO6 octahedra. The almost perfect 1D spin 1/2 Ti3 + chains are well separated by PO4 tetrahedra. By magnetic susceptibility and MAS-NMR measurements [1] it was shown that TiPO4 has nonmagnetic singlet ground state with remarkably high Spin-Peierls (SP) transition temperature. The high-T magnetic susceptibility of TiPO4 follows well that of a S =1/2 Heisenberg chain with very strong nearest-neighbor AF spin-exchange coupling constant of J =965K. On cooling TiPO4 shows two successive phase transitions at 111K and 74K, with incommensurate (IC) SP phase between them. We studied local structure and dynamics in TiPO4 single crystal using 47/49Ti and 31P NMR in the temperature range 40K to 300K, and determined the principal values and orientation of the magnetic shift tensors for 31P and 47,49Ti nuclei. Since 47,49Ti (S =5/2 and S =7/2, respectively) have quadrupolar moments, we also found the principal axis values and orientations of the electric field gradient (efg) tensor in SP phase and at 295K. In SP phase the structure contains 2 magnetically inequivalent P sites and only one Ti site. From the T-dependence of the relaxation rate of 31P and 47Ti nuclei we determined activation energy Ea = 550 K for spin excitations in SP phase. J. Law et al ., PRB 83, 180414(R) (2011).

  6. P-O-B(3) linkages in borophosphate glasses evidenced by high field (11)B/(31)P correlation NMR.

    PubMed

    Tricot, G; Raguenet, B; Silly, G; Ribes, M; Pradel, A; Eckert, H

    2015-06-01

    The long-standing debate about the presence of P-O-B(3) linkages in glasses has been solved by high-field scalar correlation NMR. Previously suggested by dipolar NMR methods, the presence of such species has been definitively demonstrated by (11)B((31)P) J-HMQC NMR techniques. The results indicate that borophosphate networks contain P-O-B(3) bonds and thus present a higher degree of atomic homogeneity than previously thought. PMID:25891539

  7. A chelate-stabilized ruthenium(sigma-pyrrolato) complex: resolving ambiguities in nuclearity and coordination geometry through 1H PGSE and 31P solid-state NMR studies.

    PubMed

    Foucault, Heather M; Bryce, David L; Fogg, Deryn E

    2006-12-11

    Reaction of RuCl2(PPh3)3 with LiNN' (NN' = 2-[(2,6-diisopropylphenyl)imino]pyrrolide) affords a single product, with the empirical formula RuCl[(2,6-iPr2C6H3)N=CHC4H3N](PPh3)2. We identify this species as a sigma-pyrrolato complex, [Ru(NN')(PPh3)2]2(mu-Cl)2 (3b), rather than mononuclear RuCl(NN')(PPh3)2 (3a), on the basis of detailed 1D and 2D NMR characterization in solution and in the solid state. Retention of the chelating, sigma-bound iminopyrrolato unit within 3b, despite the presence of labile (dative) chloride and PPh3 donors, indicates that the chelate effect is sufficient to inhibit sigma --> pi isomerization of 3b to a piano-stool, pi-pyrrolato structure. 2D COSY, SECSY, and J-resolved solid-state 31P NMR experiments confirm that the PPh3 ligands on each metal center are magnetically and crystallographically inequivalent, and 31P CP/MAS NMR experiments reveal the largest 99Ru-31P spin-spin coupling constant (1J(99Ru,31P) = 244 +/- 20 Hz) yet measured. Finally, 31P dipolar-chemical shift spectroscopy is applied to determine benchmark phosphorus chemical shift tensors for phosphine ligands in hexacoordinate ruthenium complexes.

  8. Modified Prony Method to Resolve and Quantify in Vivo31P NMR Spectra of Tumors

    NASA Astrophysics Data System (ADS)

    Barone, P.; Guidoni, L.; Ragona, R.; Viti, V.; Furman, E.; Degani, H.

    Prony's method, successfully used in processing NMR signals, performs poorly at low signal-to-noise ratios. To overcome this problem, a statistical approach has been adopted by using Prony's method as a sampling device from the distribution associated with the true spectrum. Specifically, Prony's method is applied for each regression order p and number of data points n, both considered in a suitable range, and the estimates of frequencies, amplitudes, and decay factors are pooled separately. A histogram of the pooled frequencies is computed and, looking at the histogram, a lower and an upper frequency bound for each line of interest is determined. All frequency estimates in each of the determined intervals as well as associated decay factors and amplitudes are considered to be independent normal variates. A mean value and a corresponding 95% confidence interval are computed for each parameter. 31P NMR signals from MCF7 human breast cancer cells, inoculated into athymic mice and which developed into tumors, have been processed with traditional methods and with this modified Prony's method. The main components of the phosphomonoester peak, namely those deriving from phosphorylcholine and phosphorylethanolamine, are always well resolved with this new approach and their relative amplitudes can be consequently evaluated. Peak intensities of these two signals show different behavior during treatment of tumors with the antiestrogenic drug tamoxifen. The results of this new approach are compared with those obtainable with traditional techniques.

  9. Analysis of 31P MAS NMR spectra and transversal relaxation of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1994-01-01

    Phosphorus magic angle spinning nuclear magnetic resonance (NMR) spectra and transversal relaxation of M13 and TMV are analyzed by use of a model, which includes both local backbone motions of the encapsulated nucleic acid molecules and overall rotational diffusion of the rod-shaped virions about their length axis. Backbone motions influence the sideband intensities by causing a fast restricted reorientation of the phosphodiesters. To evaluate their influence on the observed sideband patterns, we extend the model that we used previously to analyze nonspinning 31P NMR lineshapes (Magusin, P.C.M.M., and M. A. Hemminga. 1993a. Biophys. J. 64:1861-1868) to magic angle spinning NMR experiments. Backbone motions also influence the conformation of the phosphodiesters, causing conformational averaging of the isotropic chemical shift, which offers a possible explanation for the various linewidths of the centerband and the sidebands observed for M13 gels under various conditions. The change of the experimental lineshape of M13 as a function of temperature and hydration is interpreted in terms of fast restricted fluctuation of the dihedral angles between the POC and the OCH planes on both sides of the 31P nucleus in the nucleic acid backbone. Backbone motions also seem to be the main cause of transversal relaxation measured at spinning rates of 4 kHz or higher. At spinning rates less than 2 kHz, transversal relaxation is significantly faster. This effect is assigned to slow, overall rotation of the rod-shaped M13 phage about its length axis. Equations are derived to simulate the observed dependence of T2e on the spinning rate. PMID:8038391

  10. (31)P NMR study of post mortem changes in pig muscle.

    PubMed

    Miri, A; Talmant, A; Renou, J P; Monin, G

    1992-01-01

    The rate and the extent of post mortem pH changes in pig muscle largely determine pork quality. Fast pH fall combined with low ultimate pH leads to pale soft exudative (PSE) meat; high ultimate pH leads to dark firm dry (DFD) meat. Post mortem metabolism was studied in pig muscle using(31)P NMR. Fifteen pigs, i.e. 7 Large White pigs and 8 Pietrain pigs, were used. Five pigs of each breed were slaughtered, taking care to minimize preslaughter stress. The other pigs (3 Large Whites and 2 Pietrains) were injected with 0·1 mg adrenaline per kg liveweight before slaughter, in order to increase meat ultimate pH. All the animals were killed by electronarcosis and exsanguination. Three of the adrenaline-treated pigs (1 Large White and 2 Pietrains) gave meat with ultimate pH above 6 (DFD meat). The pigs with normal muscle ultimate pH, i.e. 6 Large Whites and 6 Pietrains, had very variable rates of post mortem muscle metabolism (pH at 30 min after slaughter: 6·17-6·85 in Large Whites; 6·04-6·23 in Pietrains). The relationships between pH and ATP changes were similar in all pigs showing normal muscle ultimate pH, whereas ATP disappeared at a high pH value (on average pH 6·4) in pigs with high ultimate pH. The course of post mortem biochemical changes in a given animal could be predicted rather well by examination of a single(31)P NMR spectrum obtained around 30 min after death. At this time, muscle with a low rate of metabolism simultaneously showed medium to high pH, high ATP content (4-6·8 μmol/g) and rather low Pi content (6-14 μmol/g); muscle with a fast rate of metabolism (PSE-prone muscle) had low pH, low to medium ATP content (1·1-4 μmol/g) and generally high phosphomonoester (PME) content (9-23 μmol/g); muscle with high ultimate pH (DFD-prone muscle) had high pH, low PME content (4-8 μmol/g) and high Pi content (22-27 μmol/g).

  11. Differential cross sections measurement of 31P(p,pγ1)31P reaction for PIGE applications

    NASA Astrophysics Data System (ADS)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.

    2016-09-01

    Differential cross sections of proton induced gamma-ray emission from the 31P(p,pγ1)31P (Eγ = 1266 keV) nuclear reaction were measured in the proton energy range of 1886-3007 keV at the laboratory angle of 90°. For these measurements a thin Zn3P2 target evaporated onto a self-supporting C film was used. The gamma-rays and backscattered protons were detected simultaneously. An HPGe detector placed at an angle of 90° with respect to the beam direction was employed to collect gamma-rays while an ion implanted Si detector placed at a scattering angle of 165° was used to detect backscattered protons. Simultaneous collection of gamma-rays and RBS spectra is a great advantage of this approach which makes differential cross-section measurements independent on the collected beam charge. The obtained cross-sections were compared with the previously only measured data in the literature. The validity of the measured differential cross sections was verified through a thick target benchmarking experiment. The overall systematic uncertainty of cross section values was estimated to be better than ±9%.

  12. 31P NMR Kinetics Study of Cardiac Metabolism under Mild Hypoxia

    NASA Astrophysics Data System (ADS)

    Goudemant, J. F.; Elst, L. V.; Vanhaverbeke, Y.; Muller, R. N.

    The effects of mild hypoxia on the metabolic and mechanical functions of isovolumic perfused rat hearts have been studied. 31P NMR has been used to follow the metabolite concentrations as well as the intracellular pH. Additionally, the energy transfer through the creatine kinase reaction was estimated by the magnetization-transfer technique. The needs of myofibrillar energy and of mitochondrial ATP production have been assessed through mechanical activity and oxygen-consumption rate. It has been observed that mild hypoxia simultaneously impairs contractile and metabolic functions. The aerobic ATP production is maintained under these conditions while anaerobic energy metabolism seems accelerated. The accumulation of some metabolites (ADP and P i) and the decrease of creatine kinase forward flux ( Vfor) tend, however, to prove that ATP availability for myofibrils is lowered. The large aerobic energy production observed must therefore be explained by an energy wastage in the mitochondria. In spite of normal ATP concentration, a contractile dysfunction is observed and can be explained by the P i accumulation, which is known to impair the use of the myofibrillar ATP. Another hypothesis supported by the magnetization transfer experiments is the poor ATP availability resulting from the ATP wastage in the mitochondria and from the inefficient energy transport by the PCr-Cr shuttle.

  13. Activation of dehydrogenase activity and cardiac respiration: A sup 31 P-NMR study

    SciTech Connect

    Katz, L.A.; Koretsky, A.P.; Balaban, R.S. )

    1988-07-01

    {sup 31}P-NMR studies were performed to determine the tissue phosphate and oxygen consumption effects of known maneuvers on the activation of pyruvate dehydrogenase during work jumps in the perfused rat heart. In control studies of the glucose-perfused heart, work jumps, with pacing, resulted in a 32% increase in oxygen consumption ({dot char}Qo{sub 2}) from 1.72 {plus minus} 0.09 to 2.29 {plus minus} 0.12 mmol O{sub 2}{center dot}h{sup {minus}1}{center dot}g dry wt{sup {minus}1}. During this transition no significant change in the high energy phosphates were detected. In contrast, work jumps did cause changes in the phosphates when the activation of pyruvate dehydrogenase was blocked with 2.5 {mu}g of ruthenium red per milliliter or maximally stimulated with 11 mM pyruvate before the increase in work. The observed increase in {dot char}Qo{sub 2} and inorganic phosphate and calculated increase in ADP are consistent with these phosphates controlling mitochondrial respiration under these conditions. These results suggest that the activation of pyruvate dehydrogenase and/or other dehydrogenases may be an important step in the orchestration of work and {dot char}Qo{sub 2}.

  14. 31P-NMR studies of isolated adult heart cells: effect of myoglobin inactivation.

    PubMed

    Gupta, R K; Wittenberg, B A

    1991-10-01

    31P nuclear magnetic resonance (NMR) studies of isolated adult rat heart cells revealed that the cells maintained high-energy phosphates for up to 6 h in polyamide hollow fibers perfused with well-oxygenated nutrient medium. Glucose plus pyruvate superfused heart cells maintained [phosphocreatine]/[ATP] at 1.4 +/- 0.1, internal pH at 7.09 +/- 0.04 (external pH = 7.25), and intracellular free Mg2+ at 0.51 +/- 0.04 mM. In glucose-containing media, hypoxia was accompanied by a reversible decrease in intracellular ATP and phosphocreatine of approximately 50% and 80%, respectively, while the intracellular free Mg2+ was reversibly increased by 40%. However, inhibition of glycolysis by iodoacetate in aerobic pyruvate-containing medium did not significantly alter high-energy phosphate content. Inactivation of intracellular myoglobin with 1-2 mM sodium nitrite, which reduces the steady-state respiratory oxygen consumption rate by 30%, caused a significant (30%) decrease in intracellular phosphocreatine peak, which was reversed upon removal of sodium nitrite. The nitrite-induced decrease in phosphocreatine was also observed in iodoacetate-treated myocytes but not in oligomycin-treated cells. These results indicate that functional myoglobin enhances high-energy phosphate synthesis in well-oxygenated myocytes. PMID:1928397

  15. Molybdenum modified phosphate glasses studied by 31P MAS NMR and Raman spectroscopy.

    PubMed

    Szumera, Magdalena

    2015-02-25

    Glasses have been synthesized in the system P2O5-SiO2-K2O-MgO-CaO modified by addition of MoO3. Glasses were prepared by conventional fusion method from 40 g batches. The influence of Mo-cations on the analysed glass structure was investigated by means of Raman and (31)P MAS-NMR techniques. It has been found that molybdate units can form Mo[MoO4/MoO6]-O-P and/or Mo[MoO4/MoO6]-O-Si bonds with non-bridging oxygens atoms of Q2 methaphosphate units, resulting in the transformation of chain methaphosphate structure into pyrophosphate and finally into orthophosphate structure. It has been also found that increasing amount of MoO3 in the structure of investigated glasses causes their gradual depolymerization and molybdenum ions in the analysed glass matrix act as modifying cations.

  16. /sup 31/P NMR characterization of graded traumatic brain injury in rats

    SciTech Connect

    Vink, R.; McIntosh, T.K.; Yamakami, I.; Faden, A.I.

    1988-01-01

    Irreversible tissue injury following central nervous system trauma is believed to result from both mechanical disruption at the time of primary insult, and more delayed autodestructive processes. These delayed events are associated with various biochemical changes, including alterations in phosphate energy metabolism and intracellular pH. Using /sup 31/P NMR, we have monitored the changes in phosphorus energy metabolism and intracellular pH in a single hemisphere of the rat brain over an 8-h period following graded, traumatic, fluid percussion-induced brain injury. Following trauma the ratio of phosphocreatine to inorganic phosphate (PCr/Pi) declined in each injury group. This decline was transitory with low injury (1.0 +/- 0.5 atm), biphasic with moderate (2.1 +/- 0.4 atm) and high (3.9 +/- 0.9 atm) injury, and sustained following severe injury (5.9 +/- 0.7 atm). The initial PCr/Pi decline in the moderate and high injury groups was associated with intracellular acidosis; however, the second decline occurred in the absence of any pH changes. Alterations in ATP occurred only in severely injured animals and such changes were associated with marked acidosis and 100% mortality rate. After 4h, the posttraumatic PCr/Pi ratio correlated linearly with the severity of injury. We suggest that a reduced posttraumatic PCr/Pi ratio may be indicative of altered mitochondrial energy production and may predict a reduced capacity of the cell to recover from traumatic injury.

  17. Interaction of antiaggregant molecule ajoene with membranes. An ESR and 1H, 2H, 31P-NMR study.

    PubMed

    Debouzy, J C; Neumann, J M; Hervé, M; Daveloose, D; Viret, J; Apitz-Castro, R

    1989-01-01

    The structure of ajoene, a molecule extracted from garlic, has been studied by 1H-NMR and its interaction with model membranes by 1H-, 2H-, 31-P-NMR and ESR experiments. This study clearly shows that the ajoene molecule is located deep in the layer and is close to the interlayer medium. Moreover while NMR experiments show that the membrane structure is only slightly affected by the presence of ajoene, ESR experiments reveal significant modifications in phospholipid dynamics. This interaction, observed before with the phenothiazine derivative, promazine, results in an increase of the membrane fluidity in its hydrophobic part and could be related to clinical properties of ajoene.

  18. Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules.

    PubMed

    Zheng, Anmin; Huang, Shing-Jong; Liu, Shang-Bin; Deng, Feng

    2011-09-01

    A brief review is presented on acidity characterization of solid acid catalysts by means of solid-state phosphor-31 magic-angle-spinning nuclear magnetic resonance ((31)P MAS NMR) spectroscopy using phosphor-containing molecules as probes. It is emphasized that such a simple approach using (31)P MAS NMR of adsorbed phosphorous probe molecules, namely trimethylphosphine (TMP) and trialkylphosphine oxides (R(3)PO), represents a unique technique in providing detailed qualitative and quantitative features, viz. type, strength, distribution, and concentration of acid sites in solid acid catalysts. In particular, it will be shown that when applied with a proper choice of probe molecules with varied sizes and results obtained from elemental analysis, the amounts and locations (intracrystalline vs. extracrystalline) of different types (Brønsted vs. Lewis) of acid sites may be determined. In addition, by incorporating the NMR results with that obtained from theoretical density functional theory (DFT) calculations, correlations between the (31)P chemical shifts (δ(31)P) and acidic strengths of Brønsted and Lewis acid sites may also be derived, facilitating a suitable acidity scale for solid acid catalysts.

  19. In vivo 31P NMR OSIRIS of bioenergetic changes in rabbit kidneys during and after ischaemia: effect of pretreatment with an indeno-indole compound.

    PubMed

    Sørensen, V; Jonsson, O; Pettersson, S; Scherstén, T; Soussi, B

    1998-04-01

    Changes in energy phosphates of rabbit kidneys subjected to ischaemia-reperfusion have been measured in vivo with volume selective 31P NMR spectroscopy. The effects of pretreatment with a new lipid peroxidation inhibitor (indeno-indol derivate--code name H290/51) on the bioenergetic changes were analysed. The left kidney was moved to a subcutaneous pocket to facilitate exact positioning over the surface coil. A 1H NMR image was acquired and a 3.5-mL cube selected for 31P NMR spectra. 31P NMR spectra were recorded before occlusion of the left renal artery, during 1 h of ischaemia and 2 hours of reperfusion. Ischaemia induced drastic changes in the levels of inorganic phosphates and ATP as well as intracellular acidosis. A normalization was observed during reperfusion. Two hours after reperfusion significantly higher values for beta-ATP/Pi and intracellular pH were recorded in the animals pretreated with H290/51. The present technique allows quantitative analyses of changes in kidney bioenergetics in vivo during different experimental conditions. The importance of ischaemia-reperfusion induced lipid peroxidation for mitochondrial function is emphasized.

  20. Gated /sup 31/P NMR study of tetanic contraction in rat muscle depleted of phosphocreatine

    SciTech Connect

    Shoubridge, E.A.; Radda, G.K.

    1987-05-01

    Rats were fed a diet containing 1% ..beta..-guanidino-propionic acid (GPA) for 6-12 wk to deplete their muscles of phosphocreatine (PCr). Gated /sup 31/P nuclear magnetic resonance (NMR) spectra were obtained from the gastrocnemius-plantaris muscle at various time points during either a 1- or 3-s isometric tetanic contraction using a surface coil. The energy cost of a 1-s tetanus in unfatigued control rat muscle was 48.4 ..mu..mol ATP x g dry wt/sup -1/ x s/sup -1/ and was largely supplied by PCr; anaerobic glycogenolysis was negligible. In GPA-fed rats PCr was undetectable after 400 ms. This had no effect on initial force generated per gram, which was not significantly different from controls. Developed tension in a 3-s tetanus in GPA-fed rats could be divided into a peak phase (duration 0.8-0.9 s) and a plateau phase (65% peak tension) in which PCr was undetectable and the (ATP) was < 20% of that in control muscle. Energy from glycogenolysis was sufficient to maintain force generation at this submaximal level. Mean net glycogen utilization per 3-s tetanus was 78% greater than in control muscle. However, the observed decrease in intracellular pH was less than that expected from energy budget calculations, suggesting either increased buffering capacity or modulation of ATP hydrolysis in the muscles of GPA-fed rats. The results demonstrate that the transport role of PCr is not essential in contracting muscle in GPA-fed rats. PCr is probably important in this regard in the larger fibers of control muscle. Although fast-twitch muscles depleted of PCr have nearly twice the glycogen reserves of control muscle, glycogenolysis is limited in its capacity to fill the role of PCr as an energy buffer under conditions of maximum ATP turnover.

  1. Distinguishing bicontinuous lipid cubic phases from isotropic membrane morphologies using (31)P solid-state NMR spectroscopy.

    PubMed

    Yang, Yu; Yao, Hongwei; Hong, Mei

    2015-04-16

    Nonlamellar lipid membranes are frequently induced by proteins that fuse, bend, and cut membranes. Understanding the mechanism of action of these proteins requires the elucidation of the membrane morphologies that they induce. While hexagonal phases and lamellar phases are readily identified by their characteristic solid-state NMR line shapes, bicontinuous lipid cubic phases are more difficult to discern, since the static NMR spectra of cubic-phase lipids consist of an isotropic (31)P or (2)H peak, indistinguishable from the spectra of isotropic membrane morphologies such as micelles and small vesicles. To date, small-angle X-ray scattering is the only method to identify bicontinuous lipid cubic phases. To explore unique NMR signatures of lipid cubic phases, we first describe the orientation distribution of lipid molecules in cubic phases and simulate the static (31)P chemical shift line shapes of oriented cubic-phase membranes in the limit of slow lateral diffusion. We then show that (31)P T2 relaxation times differ significantly between isotropic micelles and cubic-phase membranes: the latter exhibit 2 orders of magnitude shorter T2 relaxation times. These differences are explained by the different time scales of lipid lateral diffusion on the cubic-phase surface versus the time scales of micelle tumbling. Using this relaxation NMR approach, we investigated a DOPE membrane containing the transmembrane domain (TMD) of a viral fusion protein. The static (31)P spectrum of DOPE shows an isotropic peak, whose T2 relaxation times correspond to that of a cubic phase. Thus, the viral fusion protein TMD induces negative Gaussian curvature, which is an intrinsic characteristic of cubic phases, to the DOPE membrane. This curvature induction has important implications to the mechanism of virus-cell fusion. This study establishes a simple NMR diagnostic probe of lipid cubic phases, which is expected to be useful for studying many protein-induced membrane remodeling phenomena

  2. Characterization of different precursors and activated vanadium phosphate catalysts by [sup 31]P NMR spin echo mapping

    SciTech Connect

    Sananes, M.T. Univ. of Liverpool ); Tuel, A.; Volta, J.C. ); Hutchings, G.J. )

    1994-07-01

    In a previous publication, the authors emphasized the use of the spin echo mapping technique applied to [sup 31]P NMR to obtain information on the valence state of vanadium in different environments of phosphorus for several VPO reference structures. In this paper, the authors describe the use of this technique, combined with knowledge of reference phases, to study VPO catalysts prepared from different precursors and used for the oxidation of n-butane into maleic anhydride. 9 refs., 2 figs., 1 tab.

  3. Analysis of monoglycerides, diglycerides, sterols, and free fatty acids in coconut (Cocos nucifera L.) oil by 31P NMR spectroscopy.

    PubMed

    Dayrit, Fabian M; Buenafe, Olivia Erin M; Chainani, Edward T; de Vera, Ian Mitchelle S

    2008-07-23

    Phosphorus-31 nuclear magnetic resonance spectroscopy ( (31)P NMR) was used to differentiate virgin coconut oil (VCO) from refined, bleached, deodorized coconut oil (RCO). Monoglycerides (MGs), diglycerides (DGs), sterols, and free fatty acids (FFAs) in VCO and RCO were converted into dioxaphospholane derivatives and analyzed by (31)P NMR. On the average, 1-MG was found to be higher in VCO (0.027%) than RCO (0.019%). 2-MG was not detected in any of the samples down to a detection limit of 0.014%. On the average, total DGs were lower in VCO (1.55%) than RCO (4.10%). When plotted in terms of the ratio [1,2-DG/total DGs] versus total DGs, VCO and RCO samples grouped separately. Total sterols were higher in VCO (0.096%) compared with RCO (0.032%), and the FFA content was 8 times higher in VCO than RCO (0.127% vs 0.015%). FFA determination by (31)P NMR and titration gave comparable results. Principal components analysis shows that the 1,2-DG, 1,3-DG, and FFAs are the most important parameters for differentiating VCO from RCO.

  4. Improvement of (31)P NMR spectral resolution by 8-hydroxyquinoline precipitation of paramagnetic Fe and Mn in environmental samples.

    PubMed

    Ding, Shiming; Xu, Di; Li, Bin; Fan, Chengxin; Zhang, Chaosheng

    2010-04-01

    Solution (31)P nuclear magnetic resonance (NMR) spectroscopy is currently the main method for the characterization of phosphorus (P) forms in environment samples. However, identification and quantification of P compounds may be hampered by poor resolution of spectra caused by paramagnetic Fe and Mn. In this study, a novel technique was developed to improve spectral resolution by removing paramagnetic Fe and Mn from alkaline extracts via 8-hydroxyquinoline (8-HOQ) precipitation. Batch experiments showed that both Fe and Mn were effectively removed by the precipitation at pH 9.0, with the removal efficiencies of 83-91% for Fe and 67-78% for Mn from the extracts of five different environmental samples, while little effect was found on concentration of total P. The (31)P NMR analysis of a model P solution showed that addition of 8-HOQ and its precipitation with metal ions did not alter P forms. Further analyses of the five extracts with (31)P NMR spectroscopy demonstrated that the 8-HOQ precipitation was an ideal method compared with the present postextraction techniques, such as bicarbonate dithionate (BD), EDTA and Chelex-100 treatments, by improving spectral resolution to a large extent with no detrimental effects on P forms. PMID:20201571

  5. [31P-NMR analysis of high energy phosphorous compounds (ATP and phosphocreatine) in the living rat brain--effects of halothane anesthesia and a hypoxic condition].

    PubMed

    Yuasa, T; Miyatake, T; Kuwabara, T; Umeda, M; Eguchi, K

    1983-11-01

    31phosphorus nuclear magnetic resonance (31P-NMR) measurements have provided new and valuable insights for studying the metabolism of living systems. The aim of this paper is to introduce a technique of application of 31P-NMR measurements using a surface coil method, and to discuss the effects of halothane anesthesia and hypoxic hypoxia on the energetic metabolism of intact rat brains. All measurements were made using a JEOL FX 270 spectrometer with a super conducting magnet of 54-mm bore diameter. The magnetic field intensity of this machine is 6.3 tesla, and the resonance frequency used for 31P was 109.14 MHz. We remodelled an ordinary probe to take a live rat, and the animals were made to inhale anesthetic halothane or mixture of oxygen and nitrogen at various concentrations controlled by a flow regulator. The best conditions for measurements with our surface coil method were determined in this study as follows: (1) 90 degrees pulse width and selectivity, Fig. 1 shows signal selectivity in depthwise direction changed with 90 degrees pulse width, which was set to 20 microseconds. (2) Sensitivity and resolution; To obtain a spectrum of 31P-NMR from a rat brain 500 accumulations of free induction decays were considered suitable for both time and space resolution. Fig. 2 shows variations of signal intensity with pulse repetition time, which was set to 2 sec. It took about 17 min for averaging to get a spectrogram. (3) Quantitative accuracy and qualification; As shown in Fig. 3, a linear relationship was found between the signal intensity of beta-phosphate of ATP and the concentration of ATP solutions, thus proving the quantitative accuracy of our systems.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6661335

  6. Dynamic phosphometabolomic profiling of human tissues and transgenic models by 18O-assisted 31P NMR and mass spectrometry

    PubMed Central

    Nemutlu, Emirhan; Zhang, Song; Gupta, Anu; Juranic, Nenad O.; Macura, Slobodan I.; Terzic, Andre; Jahangir, Arshad

    2012-01-01

    Next-generation screening of disease-related metabolomic phenotypes requires monitoring of both metabolite levels and turnover rates. Stable isotope 18O-assisted 31P nuclear magnetic resonance (NMR) and mass spectrometry uniquely allows simultaneous measurement of phosphometabolite levels and turnover rates in tissue and blood samples. The 18O labeling procedure is based on the incorporation of one 18O into Pi from [18O]H2O with each act of ATP hydrolysis and the distribution of 18O-labeled phosphoryls among phosphate-carrying molecules. This enables simultaneous recording of ATP synthesis and utilization, phosphotransfer fluxes through adenylate kinase, creatine kinase, and glycolytic pathways, as well as mitochondrial substrate shuttle, urea and Krebs cycle activity, glycogen turnover, and intracellular energetic communication. Application of expanded 18O-labeling procedures has revealed significant differences in the dynamics of G-6-P[18O] (glycolysis), G-3-P[18O] (substrate shuttle), and G-1-P[18O] (glycogenolysis) between human and rat atrial myocardium. In human atria, the turnover of G-3-P[18O], which defects are associated with the sudden death syndrome, was significantly higher indicating a greater importance of substrate shuttling to mitochondria. Phosphometabolomic profiling of transgenic hearts deficient in adenylate kinase (AK1−/−), which altered levels and mutations are associated to human diseases, revealed a stress-induced shift in metabolomic profile with increased CrP[18O] and decreased G-1-P[18O] metabolic dynamics. The metabolomic profile of creatine kinase M-CK/ScCKmit−/−-deficient hearts is characterized by a higher G-6-[18O]P turnover rate, G-6-P levels, glycolytic capacity, γ/β-phosphoryl of GTP[18O] turnover, as well as β-[18O]ATP and β-[18O]ADP turnover, indicating altered glycolytic, guanine nucleotide, and adenylate kinase metabolic flux. Thus, 18O-assisted gas chromatography-mass spectrometry and 31P NMR provide a suitable

  7. Dynamic structures of intact chicken erythrocyte chromatins as studied by 1H-31P cross-polarization NMR.

    PubMed Central

    Akutsu, H; Nishimoto, S; Kyogoku, Y

    1994-01-01

    The dynamic properties of DNA in intact chicken erythrocyte cells, nuclei, nondigested chromatins, digested soluble chromatins, H1, H5-depleted soluble chromatins and nucleosome cores were investigated by means of single-pulse and 1H-31P cross-polarization NMR. The temperature dependence of the phosphorus chemical shift anisotropy was identical for the former three in the presence of 3 mM MgCl2, suggesting that the local higher order structure is identical for these chromatins. The intrinsic phosphorus chemical shift anisotropy of the nucleosome cores was -159 ppm. The chemical shift anisotropy of DNA in the chromatins can be further averaged by the motion of the linker DNA. The spin-lattice relaxation time in the rotating frame of the proton spins (T1p) of the nondigested chromatins was measured at various locking fields. The result was analyzed on the assumption of the isotropic motion to get a rough value of the correlation time of the motion efficient for the relaxation, which was eventually ascribed to the segmental motion of the linker DNA with restricted amplitude. The 30 nm filament structure induced by NaCl was shown to be dynamically different from that induced by MgCl2. Side-by-side compaction of 30-nm filaments was suggested to be induced in the MgCl2 concentration range higher than 0.3 mM. Biological significance of the dynamic structure was discussed in connection with the results obtained. PMID:7948693

  8. Influence of temperature on 31P NMR chemical shifts of phospholipids and their metabolites I. In chloroform-methanol-water.

    PubMed

    Estrada, Rosendo; Stolowich, Neal; Yappert, M Cecilia

    2008-09-01

    Spectral overlap of (31)P NMR resonances and the lack of reproducibility in chemical shifts corresponding to phospholipids in organic solvents challenge the accuracy of band assignments and quantification. To alleviate these problems, the use of temperature coefficients is proposed. Changes in temperature enable the resolution of overlapped resonances and provide a facile approach for the computation of temperature coefficients. The coefficients were evaluated for various glycero- and sphingo-phospholipids. Their values suggest that differences in H-bonding between the phosphate and the head groups are responsible for the changes of chemical shift with temperature. Among parent phospholipids, and in addition to sphingomyelin, the smallest temperature coefficient values (closest to zero) were observed for phosphatidylcholine, phosphatidylglycerol, dihydrosphingomyelin, and cardiolipin. The highest values were exhibited by phospholipids with protonated head groups, such as phosphatidylserine and phosphatidylethanolamine. The lowest and, in fact, negative values were measured for phospholipids with an exposed phosphate group: phosphatidic acid, ceramide-1-phosphate, and dihydroceramide-1-phosphate. Diacyl, alkyl-acyl, and alkenyl-acyl phospholipids with the same head group exhibited comparable coefficients but differed slightly in chemical shifts. Compared to their parent glycerophospholipids, all lyso analogs had greater temperature coefficients, possibly due to the presence of an extra OH capable of forming a H-bond with the phosphate group. PMID:18534182

  9. Monitoring biodegradation of poly(butylene sebacate) by Gel Permeation Chromatography, (1)H-NMR and (31)P-NMR techniques.

    PubMed

    Siotto, Michela; Zoia, Luca; Tosin, Maurizio; Degli Innocenti, Francesco; Orlandi, Marco; Mezzanotte, Valeria

    2013-02-15

    The increasing use of new generation plastics has been accompanied by the development of standard methods for studying their biodegradability. Generally, test methods are based on the measurement of CO(2) production, i.e. the mineralization degree of the tested materials. However, in order to describe the biodegradation process, the determination of the residual amount of tested material which remains in the environment and its chemical characterization can be very important. In this study, the biodegradation in soil of a model polyester (poly(butylene sebacate)) was monitored. Gel Permeation Chromatography and Nuclear Magnetic Resonance ((31)P-NMR and (1)H-NMR) were used in order to obtain information about the polyester structure and the possible by-products that can be found in soil during and at the end of the incubation. The polyester mineralization (i.e. the CO(2) production) was tested according to ASTM 5988 standard method for 245 days. When the polyester mineralization was about 21% and 37% (after 78 and 140 days of incubation) and at the end of the process (63% of mineralization, 100% if compared to the cellulose used as reference material), the soil was extracted with chloroform (solvent of the tested substance) and the extracts were analyzed using GPC and NMR acquisitions. The analytical acquisitions showed high molecular weight polyester in soil during the incubation (78 and 140 days): the polyester concentration decreased but its structure remained almost the same with a slow decreasing in molecular weight. At the end of the test (245 days) no film of the polyester could be extracted from the soil: NMR acquisitions and GPC analyses of the extracts suggested a strong degraded structure of the residual polyester. Even if at the end of the process only 63% of carbon had been lost by mineralization, the whole of the added polyester seems to have disappeared after about eight months of incubation, suggesting substantial biomass formation.

  10. 31P NMR relaxation of cortical bone mineral at multiple magnetic field strengths and levels of demineralization.

    PubMed

    Seifert, Alan C; Wright, Alexander C; Wehrli, Suzanne L; Ong, Henry H; Li, Cheng; Wehrli, Felix W

    2013-09-01

    Recent work has shown that solid-state (1) H and (31) P MRI can provide detailed insight into bone matrix and mineral properties, thereby potentially enabling differentiation of osteoporosis from osteomalacia. However, (31) P MRI of bone mineral is hampered by unfavorable relaxation properties. Hence, accurate knowledge of these properties is critical to optimizing MRI of bone phosphorus. In this work, (31) P MRI signal-to-noise ratio (SNR) was predicted on the basis of T1 and T2 * (effective transverse relaxation time) measured in lamb bone at six field strengths (1.5-11.7 T) and subsequently verified by 3D ultra-short echo-time and zero echo-time imaging. Further, T1 was measured in deuterium-exchanged bone and partially demineralized bone. (31) P T2 * was found to decrease from 220.3 ± 4.3 µs to 98.0 ± 1.4 µs from 1.5 to 11.7 T, and T1 to increase from 12.8 ± 0.5 s to 97.3 ± 6.4 s. Deuteron substitution of exchangeable water showed that 76% of the (31) P longitudinal relaxation rate is due to (1) H-(31) P dipolar interactions. Lastly, hypomineralization was found to decrease T1, which may have implications for (31) P MRI based mineralization density quantification. Despite the steep decrease in the T2 */T1 ratio, SNR should increase with field strength as B0 (0.4) for sample-dominated noise and as B0 (1.1) for coil-dominated noise. This was confirmed by imaging experiments. PMID:23505120

  11. 31P magnetization transfer measurements of Pi→ATP flux in exercising human muscle.

    PubMed

    Sleigh, Alison; Savage, David B; Williams, Guy B; Porter, David; Carpenter, T Adrian; Brindle, Kevin M; Kemp, Graham J

    2016-03-15

    Fundamental criticisms have been made over the use of (31)P magnetic resonance spectroscopy (MRS) magnetization transfer estimates of inorganic phosphate (Pi)→ATP flux (VPi-ATP) in human resting skeletal muscle for assessing mitochondrial function. Although the discrepancy in the magnitude of VPi-ATP is now acknowledged, little is known about its metabolic determinants. Here we use a novel protocol to measure VPi-ATP in human exercising muscle for the first time. Steady-state VPi-ATP was measured at rest and over a range of exercise intensities and compared with suprabasal oxidative ATP synthesis rates estimated from the initial rates of postexercise phosphocreatine resynthesis (VATP). We define a surplus Pi→ATP flux as the difference between VPi-ATP and VATP. The coupled reactions catalyzed by the glycolytic enzymes GAPDH and phosphoglycerate kinase (PGK) have been shown to catalyze measurable exchange between ATP and Pi in some systems and have been suggested to be responsible for this surplus flux. Surplus VPi-ATP did not change between rest and exercise, even though the concentrations of Pi and ADP, which are substrates for GAPDH and PGK, respectively, increased as expected. However, involvement of these enzymes is suggested by correlations between absolute and surplus Pi→ATP flux, both at rest and during exercise, and the intensity of the phosphomonoester peak in the (31)P NMR spectrum. This peak includes contributions from sugar phosphates in the glycolytic pathway, and changes in its intensity may indicate changes in downstream glycolytic intermediates, including 3-phosphoglycerate, which has been shown to influence the exchange between ATP and Pi catalyzed by GAPDH and PGK. PMID:26744504

  12. 31P magnetization transfer measurements of Pi→ATP flux in exercising human muscle.

    PubMed

    Sleigh, Alison; Savage, David B; Williams, Guy B; Porter, David; Carpenter, T Adrian; Brindle, Kevin M; Kemp, Graham J

    2016-03-15

    Fundamental criticisms have been made over the use of (31)P magnetic resonance spectroscopy (MRS) magnetization transfer estimates of inorganic phosphate (Pi)→ATP flux (VPi-ATP) in human resting skeletal muscle for assessing mitochondrial function. Although the discrepancy in the magnitude of VPi-ATP is now acknowledged, little is known about its metabolic determinants. Here we use a novel protocol to measure VPi-ATP in human exercising muscle for the first time. Steady-state VPi-ATP was measured at rest and over a range of exercise intensities and compared with suprabasal oxidative ATP synthesis rates estimated from the initial rates of postexercise phosphocreatine resynthesis (VATP). We define a surplus Pi→ATP flux as the difference between VPi-ATP and VATP. The coupled reactions catalyzed by the glycolytic enzymes GAPDH and phosphoglycerate kinase (PGK) have been shown to catalyze measurable exchange between ATP and Pi in some systems and have been suggested to be responsible for this surplus flux. Surplus VPi-ATP did not change between rest and exercise, even though the concentrations of Pi and ADP, which are substrates for GAPDH and PGK, respectively, increased as expected. However, involvement of these enzymes is suggested by correlations between absolute and surplus Pi→ATP flux, both at rest and during exercise, and the intensity of the phosphomonoester peak in the (31)P NMR spectrum. This peak includes contributions from sugar phosphates in the glycolytic pathway, and changes in its intensity may indicate changes in downstream glycolytic intermediates, including 3-phosphoglycerate, which has been shown to influence the exchange between ATP and Pi catalyzed by GAPDH and PGK.

  13. /sup 31/P NMR studies of ATP synthesis and hydrolysis kinetics in the intact myocardium

    SciTech Connect

    Kingsley-Hickman, P.B.; Sako, E.Y.; Mohanakrishnan, P.; Robitaille, P.M.L.; From, A.H.L.; Foker, J.E.; Ugurbil, K.

    1987-11-17

    The origin of the nuclear magnetic resonance (NMR)-measurable ATP in equilibrium P/sub i/ exchange and whether it can be used to determine net oxidative ATP synthesis rates in the intact myocardium were examined by detailed measurements of ATP in equilibrium P/sub i/ exchange rates in both directions as a function of the myocardial oxygen consumption rate (MVO/sub 2/) in (1) glucose-perfused, isovolumic rat hearts with normal glycolytic activity and (2) pyruvate-perfused hearts where glycolytic activity was reduced or eliminated either by depletion of their endogenous glycogen or by use of the inhibitor iodoacetate. In glucose-perfused hearts, the P/sub i/ ..-->.. ATP rate measured by the conventional two-site saturation transfer (CST) technique remained constant while MVO2 was increased approximately 2-fold. When the glycolytic activity was reduced, the P/sub i/ ..-->.. ATP rate decreased significantly, demonstrating the existence of a significant glycolytic contribution. The ATP ..-->.. P/sub i/ rates and rate:MVO ratios measured by the multiple-site saturation transfer method at two MVO/sub 2/ levels were equal to the corresponding P/sub i/..-->.. ATP rates and rate:MVO ratios obtained in the absence of a glycolytic contribution. The following conclusions are drawn from these studies: (1) unless the glycolytic contribution to the ATP in equilibrium P/sub i/ exchange is inhibited or is specifically shown not to exist, the myocardial P/sub i/ in equilibrium ATP exchange due to oxidative phosphorylation cannot be studied by NMR; (2) at moderate MVO/sub 2/ levels, the reaction catalyzed by the two glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase is near equilibrium; (3) the ATP synthesis by the mitochondrial H/sup +/-ATPase occurs unidirectionally (i.e., the reaction is far out of equilibrium); (4) the operative P:O ratio in the intact myocardium under our conditions is significantly less than the canonically accepted value

  14. Using 31P-NMR to investigate dynamics of soil phosphorus compounds in the Rothamsted Long Term Experiments

    NASA Astrophysics Data System (ADS)

    Blackwell, Martin; Turner, Ben; Granger, Steve; Hooper, Tony; Darch, Tegan; Hawkins, Jane; Yuan, Huimin; McGrath, Steve

    2015-04-01

    The technique of 31P-NMR spectroscopy has done more to advance the knowledge of phosphorus forms (especially organic phosphorus) in environmental samples than any other method. The technique has advanced such that specific compounds can be identified where previously only broad categories such as orthophosphate monoesters and diesters were distinguishable. The Soil Archive and Long Term Experiments at Rothamsted Research, UK, potentially provides an unequalled opportunity to use this technique to observe changes in soil phosphorus compounds with time and under different treatments, thereby enhancing our understanding of phosphorus cycling and use by plants. Some of the earliest work using this technique on soils was carried out by Hawkes et al. in 1984 and this used soils from two of the oldest Rothamsted Long Term Experiments, namely Highfield and Park Grass. Here we revisit the samples studied in this early work and reanalyse them using current methodology to demonstrate how the 31P-NMR technique has advanced. We also present results from a study on the phosphorus chemistry in soils along the Hoosfield acid strip (Rothamsted, UK), where a pH gradient from 3.7 to 7.8 occurs in a single soil with little variation in total phosphorus (mean ± standard deviation 399 ± 27 mg P kg-1). Soil pH was found to be an important factor in determining the proportion of phosphomonoesters and phosphodiesters in the soil organic phosphorus, although total organic phosphorus concentrations were a relatively consistent proportion of the total soil phosphorus (36 ± 2%) irrespective of soil pH. Key words. 31P-NMR, soil organic phosphorus, long term experiments, Hoosfield acid strip

  15. 31P{1H}NMR and carbonyl force constants of unsymmetrical bidentate phosphine complexes of group (VI) metal carbonyls

    NASA Astrophysics Data System (ADS)

    Jesu Raj, Joe Gerald; Pathak, Devendra Deo; Kapoor, Pramesh N.

    2015-05-01

    In our present work we report synthesis of an unsymmetrical diphos ligand, 1-diphenylphosphino-2-di-m-tolylphosphinoethane and its coordinate complexes with group (VI) metal carbonyls such as Cr(CO)6 Mo(CO)6 and W(CO)6. The synthesized ligand and its complexes have been completely characterized by elemental analyses, FTIR, 1HNMR, 31P{1H}NMR and FAB mass spectrometry methods. Special emphasis has been given to calculations of carbonyl force constants. Based on the spectroscopic evidences it has been confirmed that these metal carbonyl complexes with the ditertiary phosphine ligand showed cis geometry in their molecular structure.

  16. Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a 31P NMR study.

    PubMed

    Reale, Anna; Mannina, Luisa; Tremonte, Patrizio; Sobolev, Anatoli P; Succi, Mariantonietta; Sorrentino, Elena; Coppola, Raffaele

    2004-10-01

    myo-Inositol hexaphosphate (IP6) is the main source of phosphorus in cereal grains, and therefore, in bakery products. Different microorganisms such as yeasts and lactic acid bacteria have phytase enzymes able to hydrolyze IP6 during the wholemeal breadmaking. In this paper, the phytase activity of Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus curvatus, and Saccharomyces cerevisiae strains, isolated from southern Italian sourdoughs, is assayed using the (31)P NMR technique. The sourdough technology based on the use of lactic acid bacteria in the breadmaking is finally suggested.

  17. Intrauterine fetal brain NMR spectroscopy: 1H and 31P studies in rats

    SciTech Connect

    Nakada, T.; Kwee, I.L.; Suzuki, N.; Houkin, K. )

    1989-11-01

    Fetal brain metabolism was investigated in utero noninvasively using multinuclear nuclear magnetic resonance spectroscopy in rats at two representative prenatal stages: early (17-18 days) and late (20-21 days) stages. Phosphorus-31 (31P) spectroscopy revealed that phosphocreatine is significantly lower in the early stage and increases to the level of early neonates by the late prenatal stage. Intracellular pH at the early stage was found to be strikingly high (7.52 +/- 0.21) and decreased to a level similar to that of neonates by the late stage (7.29 +/- 0.07). Phosphomonoester levels at both stages were similar to the values reported for early neonates. Water-suppressed proton (1H) spectroscopy demonstrated a distinctive in vivo fetal brain spectral pattern characterized by low levels of N-acetyl aspartate and high levels of taurine. High-resolution proton spectroscopy and homonuclear chemical-shift correlate spectroscopy of brain perchloric acid extracts confirmed these in vivo findings. In vitro 31P spectroscopy of acidified chloroform methanol extracts showed the characteristic membrane phospholipid profiles of fetal brain. The phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) ratio (PE/PC) did not show significant changes between the two stages at 0.40 +/- 0.11, a value similar to that of early neonates.

  18. 2D exchange 31P NMR spectroscopy of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1995-01-01

    Two-dimensional (2D) exchange 31P nuclear magnetic resonance spectroscopy is used to study the slow overall motion of the rod-shaped viruses M13 and tobacco mosaic virus in concentrated gels. Even for short mixing times, observed diagonal spectra differ remarkably from projection spectra and one-dimensional spectra. Our model readily explains this to be a consequence of the T2e anisotropy caused by slow overall rotation of the viruses about their length axis. 2D exchange spectra recorded for 30% (w/w) tobacco mosaic virus with mixing times < 1 s do not show any off-diagonal broadening, indicating that its overall motion occurs in the sub-Hz frequency range. In contrast, the exchange spectra obtained for 30% M13 show significant off-diagonal intensity for mixing times of 0.01 s and higher. A log-gaussian distribution around 25 Hz of overall diffusion coefficients mainly spread between 1 and 10(3) Hz faithfully reproduces the 2D exchange spectra of 30% M13 recorded at various mixing times in a consistent way. A small but notable change in diagonal spectra at increasing mixing time is not well accounted for by our model and is probably caused by 31P spin diffusion. PMID:7756532

  19. FTIR and {sup 31}P-NMR spectroscopic analyses of surface species in phosphate-catalyzed lactic acid conversion

    SciTech Connect

    Gunter, G.C.; Tam, M.S.; Miller, D.J.

    1996-11-01

    The surface species present on silica/alumina-supported sodium phosphates, active catalysts for the conversion of lactic acid to acrylic acid and 2,3-pentanedione, are examined by pre- and postreaction MAS {sup 31}P-NMR and FTIR spectroscopies. Species present following lactic acid conversion are identified by transmission FTIR of phosphates supported on silicon disks (as a model catalyst system) and verified by {sup 31}P-NMR and diffuse reflectance IR spectroscopy of actual catalysts used in reaction. Monosodium phosphate (NaH{sub 2}PO{sub 4}) condenses to a mixture of sodium polyphosphate (NaPO{sub 3}){sub n} and sodium trimetaphosphate (Na{sub 3}P{sub 3}O{sub 9}), which exhibit little catalytic activity for converting lactic acid to desired products. Disodium phosphate (Na{sub 2}HPO{sub 4}) condenses to tetrasodium pyrophosphate (Na{sub 4}P{sub 2}O{sub 7}), and proton transfer from lactic acid to pyrophosphate results in the formation of sodium lactate. Trisodium phosphate (Na{sub 3}PO{sub 4}) accepts a proton from lactic acid to form sodium lactate and disodium phosphate, which condenses to pyrophosphate. The presence of pyrophosphate and sodium lactate on supported disodium and trisodium phosphates explains their similar catalytic properties; the larger quantity of sodium lactate present on trisodium phosphate leads to higher conversions at lower temperatures. 40 refs., 14 figs., 2 tabs.

  20. Inhibition mechanisms of Zn precipitation on aluminum oxide by glyphosate: a 31P NMR and Zn EXAFS study.

    PubMed

    Li, Wei; Wang, Yu-Jun; Zhu, Mengqiang; Fan, Ting-Ting; Zhou, Dong-Mei; Phillips, Brian L; Sparks, Donald L

    2013-05-01

    In this research, the effects of glyphosate (GPS) on Zn sorption/precipitation on γ-alumina were investigated using a batch technique, Zn K-edge EXAFS, and (31)P NMR spectroscopy. The EXAFS analysis revealed that, in the absence of glyphosate, Zn adsorbed on the aluminum oxide surface mainly as bidentate mononuclear surface complexes at pH 5.5, whereas Zn-Al layered double hydroxide (LDH) precipitates formed at pH 8.0. In the presence of glyphosate, the EXAFS spectra of Zn sorption samples at pH 5.5 and 8.0 were very similar, both of which demonstrated that Zn did not directly bind to the mineral surface but bonded with the carboxyl group of glyphosate. Formation of γ-alumina-GPS-Zn ternary surface complexes was further suggested by (31)P solid state NMR data which indicated the glyphosate binds to γ-alumina via a phosphonate group, bridging the mineral surface and Zn. Additionally, we showed the sequence of additional glyphosate and Zn can influence the sorption mechanism. At pH 8, Zn-Al LDH precipitates formed if Zn was added first, and no precipitates formed if glyphosate was added first or simultaneously with Zn. In contrast, at pH 5.5, only γ-alumina-GPS-Zn ternary surface complexes formed regardless of whether glyphosate or Zn was added first or both were added simultaneously. PMID:23550510

  1. Inhibition mechanisms of Zn precipitation on aluminum oxide by glyphosate: a 31P NMR and Zn EXAFS study.

    PubMed

    Li, Wei; Wang, Yu-Jun; Zhu, Mengqiang; Fan, Ting-Ting; Zhou, Dong-Mei; Phillips, Brian L; Sparks, Donald L

    2013-05-01

    In this research, the effects of glyphosate (GPS) on Zn sorption/precipitation on γ-alumina were investigated using a batch technique, Zn K-edge EXAFS, and (31)P NMR spectroscopy. The EXAFS analysis revealed that, in the absence of glyphosate, Zn adsorbed on the aluminum oxide surface mainly as bidentate mononuclear surface complexes at pH 5.5, whereas Zn-Al layered double hydroxide (LDH) precipitates formed at pH 8.0. In the presence of glyphosate, the EXAFS spectra of Zn sorption samples at pH 5.5 and 8.0 were very similar, both of which demonstrated that Zn did not directly bind to the mineral surface but bonded with the carboxyl group of glyphosate. Formation of γ-alumina-GPS-Zn ternary surface complexes was further suggested by (31)P solid state NMR data which indicated the glyphosate binds to γ-alumina via a phosphonate group, bridging the mineral surface and Zn. Additionally, we showed the sequence of additional glyphosate and Zn can influence the sorption mechanism. At pH 8, Zn-Al LDH precipitates formed if Zn was added first, and no precipitates formed if glyphosate was added first or simultaneously with Zn. In contrast, at pH 5.5, only γ-alumina-GPS-Zn ternary surface complexes formed regardless of whether glyphosate or Zn was added first or both were added simultaneously.

  2. In vivo 31P NMR Study of the Metabolism of Murine Mammary 16/C Adenocarcinoma and Its Response to Chemotherapy, X-Radiation, and Hyperthermia

    NASA Astrophysics Data System (ADS)

    Evanochko, W. T.; Ng, T. C.; Lilly, M. B.; Lawson, A. J.; Corbett, T. H.; Durant, J. R.; Glickson, J. D.

    1983-01-01

    31P NMR spectroscopy with surface coils has been used to monitor, in vivo, the phosphate metabolism of subcutaneously implanted mammary 16/C adenocarcinoma in C3H/He mice. This model tumor was studied during untreated tumor growth and after treatment with adriamycin, hyperthermia, and x-radiation. The mammary 16/C tumor exhibited a Gompertzian growth pattern. Levels of high-energy phosphate metabolites--phosphocreatine and ATP--decreased with increases in tumor mass. There was a concomitant increase in the level of Pi and a decrease in the apparent pH of the tumor. These spectral changes appear to reflect changes in tumor vascularization that accompany tumor growth, the tumor becoming progressively more hypoxic. Partial response of this tumor to chemotherapy with adriamycin was reflected in a small but measurable increase in the phosphocreatine resonance, a decrease in Pi, and a return of the intratumor pH to neutral. Hyperthermia resulted in progressive conversion of the 31P NMR spectrum to that of a dead tumor (high levels of Pi, small levels of residual sugar phosphates and pyridine dinucleotides, and acidic pH). X-irradiation (14.0 Gy) led to disappearance of the phosphocreatine peak within 15 min of treatment. Subsequently, this resonance grew back beyond its pretreatment level. As the tumor receded, its spectrum reflected the characteristics of aerobically metabolizing tissue (high levels of phosphocreatine and ATP and low levels of Pi and sugar phosphates).

  3. Studies of uptake and suppresion of Mn/sup 2 +/ migration in highly vacuolated sycamore (Acer pseudoplatanus L) cells by /sup 31/P NMR

    SciTech Connect

    Roby, C.; Bligny, R.; Douce, R.; Pfeffer, P.E.

    1987-04-01

    Recent /sup 31/P NMR studies have demonstrated that Mn/sup 2 +/ appears to invade the cells of heterogeneous excised tissue of corn root tips sequentially, first entering the cytoplasmic compartment, where it complexes with nucleotides and P/sub i/. Under aerobic conditions, further migration across the tonoplast, followed by vacoule trapping was visualized through paramagnetic broadening of the vacoular P/sub i/ resonance. Cultured cells such as Acer pseudoplatanus L offer better opportunities for studying cellular activity by /sup 31/P NMR because of their homogeneity and uniformly rapid response to various metabolic disturbances. In contrast to excised root tissue, Mn/sup 2 +/ showed no measurable accumulation in the cytoplasmic compartments of these cells under aerobic conditions. However, a rapid crossing of the large tonoplast resulted in immediate vacuolar metal ion sequestration. Anoxia did not foster leakage of Mn/sup 2 +/ from the vacuole to the cytoplasm, while hypoxia completely halted all movement of Mn/sup 2 +/ across the plasmalema. This disparity in terms of cell and tissue morphology, membrane permeability and possible tissue trapping of metal ions will be discussed.

  4. Interactions of glycerol monooleate and dimethylsulphoxide with phospholipids. A differential scanning calorimetry and 31P-NMR study.

    PubMed

    Tilcock, C P; Fisher, D

    1982-03-01

    1. A comparative study has been made of the effects of the fusogens glycerol monooleate and dimethyl-sulphoxide on the polymorphic phase behaviour of dipalmitoyl phosphatidylcholine and dipalmitoyl phosphatidylethanolamine by differential scanning calorimetry and 31P-NMR techniques. 2. Glycerol monooleate induces a reduction in the temperature, cooperativity and enthalpy of the gel to liquid-crystal transitions of dipalmitoyl phosphatidylcholine and dipalmitoyl phosphatidylethanolamine, whereas dimethylsulphoxide induces an increase in the temperature and enthalpy and a reduction in the cooperativity of the gel to liquid-crystal transitions for those same phospholipids. 3. Glycerol monooleate induces the formation of isotropic and hexagonal (HII) phases when mixed with either dipalmitoyl phosphatidylcholine or dipalmitoyl phosphatidylethanolamine. By contrast, in the presence of dimethylsulphoxide, those same phospholipids retain the lamellar configuration observed in the absence of fusogen. 4. These results are discussed in terms of the mechanisms of chemically induced cell fusion.

  5. Mechanisms of Peptide-Induced Pore Formation in Lipid Bilayers Investigated by Oriented 31P Solid-State NMR Spectroscopy

    PubMed Central

    Bertelsen, Kresten; Dorosz, Jerzy; Hansen, Sara Krogh; Nielsen, Niels Chr.; Vosegaard, Thomas

    2012-01-01

    There is a considerable interest in understanding the function of antimicrobial peptides (AMPs), but the details of their mode of action is not fully understood. This motivates extensive efforts in determining structural and mechanistic parameters for AMP’s interaction with lipid membranes. In this study we show that oriented-sample 31P solid-state NMR spectroscopy can be used to probe the membrane perturbations and -disruption by AMPs. For two AMPs, alamethicin and novicidin, we observe that the majority of the lipids remain in a planar bilayer conformation but that a number of lipids are involved in the peptide anchoring. These lipids display reduced dynamics. Our study supports previous studies showing that alamethicin adopts a transmembrane arrangement without significant disturbance of the surrounding lipids, while novicidin forms toroidal pores at high concentrations leading to more extensive membrane disturbance. PMID:23094079

  6. Observation of myo-inositol 1,2-(cyclic) phosphate in a Morris hepatoma by 31P NMR.

    PubMed

    Graham, R A; Meyer, R A; Szwergold, B S; Brown, T R

    1987-01-01

    We have identified an unusual resonance at 16.5 ppm in the 31P NMR spectrum of a Morris (7777) hepatoma grown in the inguinal fossa of a Buffalo rat as myoinositol 1,2-(cyclic) phosphate. This compound has been observed in all of the 32 tumors examined as well as in cultured cells derived from the tumor, but it has not been observed in normal rat tissues. Its level in the aqueous phase of chloroform/methanol/water extracts of the tumor is 70 +/- 40 nmol/g, wet weight (n = 4). The presence of a breakdown product of phosphatidylinositol at such high levels in a fast growing tumor may provide an important clue for understanding the metabolic defect that results in the malignant growth of this tumor.

  7. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by {sup 31}P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G.

    1992-11-01

    In this study, Iowa State University researchers used {sub 31}P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850{degrees}F{sup +} distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.{sup 31}P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different {sup 31}P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a {sup 31}P-tagged reagent (ClPOCMe{sub 2}CMe{sub 2}O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  8. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by [sup 31]P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G. )

    1992-11-01

    In this study, Iowa State University researchers used [sub 31]P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850[degrees]F[sup +] distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.[sup 31]P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different [sup 31]P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a [sup 31]P-tagged reagent (ClPOCMe[sub 2]CMe[sub 2]O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  9. Hetergeneous tumour response to photodynamic therapy assessed by in vivo localised 31P NMR spectroscopy.

    PubMed Central

    Ceckler, T. L.; Gibson, S. L.; Kennedy, S. D.; Hill, R.; Bryant, R. G.

    1991-01-01

    Photodynamic therapy (PDT) is efficacious in the treatment of small malignant lesions when all cells in the tumour receive sufficient drug, oxygen and light to induce a photodynamic effect capable of complete cytotoxicity. In large tumours, only partial effectiveness is observed presumably because of insufficient light penetration into the tissue. The heterogeneity of the metabolic response in mammary tumours following PDT has been followed in vivo using localised phosphorus NMR spectroscopy. Alterations in nucleoside triphosphates (NTP), inorganic phosphate (Pi) and pH within localised regions of the tumour were monitored over 24-48 h following PDT irradiation of the tumour. Reduction of NTP and increases in Pi were observed at 4-6 h after PDT irradiation in all regions of treated tumours. The uppermost regions of the tumours (those nearest the skin surface and exposed to the greatest light fluence) displayed the greatest and most prolonged reduction of NTP and concomitant increase in Pi resulting in necrosis. The metabolite concentrations in tumour regions located towards the base of the tumour returned a near pre-treatment levels by 24-48 h after irradiation. The ability to follow heterogeneous metabolic responses in situ provides one means to assess the degree of metabolic inhibition which subsequently leads to tumour necrosis. Images Figure 4 PMID:1829953

  10. (31)P Solid-State NMR study of the chemical setting process of a dual-paste injectable brushite cements.

    PubMed

    Legrand, A P; Sfihi, H; Lequeux, N; Lemaître, J

    2009-10-01

    The composition and evolution of a brushite-type calcium phosphate cement was investigated by Solid-State NMR and X-ray during the setting process. The cement is obtained by mixing beta-tricalcium phosphate [Ca(3)(PO(4))(2), beta-TCP] and monocalcium phosphate monohydrate [Ca(H(2)PO(4))(2).H(2)O, MCPM] in presence of water, with formation of dicalcium phosphate dihydrate or brushite [CaHPO(2).2H(2)O, DCPD]. Analysis of the initial beta-TCP paste has shown the presence of beta-calcium pyrophosphate [Ca(2)P(2)O(7), beta-CPy] and that of the initial MCPM a mixture of MCPM and dicalcium phosphate [CaHPO(4), DCP]. Follow-up of the chemical composition by (31)P Solid-State NMR enables to show that the chemical setting process appeared to reach an end after 20 min. The constant composition observed at the end of the process was similarly determined.

  11. Bone mineral (31)P and matrix-bound water densities measured by solid-state (31)P and (1)H MRI.

    PubMed

    Seifert, Alan C; Li, Cheng; Rajapakse, Chamith S; Bashoor-Zadeh, Mahdieh; Bhagat, Yusuf A; Wright, Alexander C; Zemel, Babette S; Zavaliangos, Antonios; Wehrli, Felix W

    2014-07-01

    Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging because of extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors' age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, aged 27-97 years, were acquired by zero-echo-time 31-phosphorus ((31)P) and 1-hydrogen ((1)H) MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-computed tomography (μCT), and apparent mineral density by peripheral quantitative CT (pQCT). MRI-derived densities were compared to X-ray-based measurements by least-squares regression. Mean bone mineral (31)P density was 6.74 ± 1.22 mol/l (corresponding to 1129 ± 204 mg/cc mineral), and mean bound water (1)H density was 31.3 ± 4.2 mol/l (corresponding to 28.3 ± 3.7 %v/v). Both (31)P and bound water (BW) densities were correlated negatively with porosity ((31)P: R(2) = 0.32, p < 0.005; BW: R(2) = 0.63, p < 0.0005) and age ((31)P: R(2) = 0.39, p < 0.05; BW: R(2) = 0.70, p < 0.0001), and positively with pQCT density ((31)P: R(2) = 0.46, p < 0.05; BW: R(2) = 0.50, p < 0.005). In contrast, the bone mineralization ratio (expressed here as the ratio of (31)P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound

  12. Unique Backbone-Water Interaction Detected in Sphingomyelin Bilayers with 1H/31P and 1H/13C HETCOR MAS NMR Spectroscopy

    PubMed Central

    Holland, Gregory P.; Alam, Todd M.

    2008-01-01

    Two-dimensional 1H/31P dipolar heteronuclear correlation (HETCOR) magic-angle spinning nuclear magnetic resonance (NMR) is used to investigate the correlation of the lipid headgroup with various intra- and intermolecular proton environments. Cross-polarization NMR techniques involving 31P have not been previously pursued to a great extent in lipid bilayers due to the long 1H-31P distances and high degree of headgroup mobility that averages the dipolar coupling in the liquid crystalline phase. The results presented herein show that this approach is very promising and yields information not readily available with other experimental methods. Of particular interest is the detection of a unique lipid backbone-water intermolecular interaction in egg sphingomyelin (SM) that is not observed in lipids with glycerol backbones like phosphatidylcholines. This backbone-water interaction in SM is probed when a mixing period allowing magnetization exchange between different 1H environments via the nuclear Overhauser effect (NOE) is included in the NMR pulse sequence. The molecular information provided by these 1H/31P dipolar HETCOR experiments with NOE mixing differ from those previously obtained by conventional NOE spectroscopy and heteronuclear NOE spectroscopy NMR experiments. In addition, two-dimensional 1H/13C INEPT HETCOR experiments with NOE mixing support the 1H/31P dipolar HETCOR results and confirm the presence of a H2O environment that has nonvanishing dipolar interactions with the SM backbone. PMID:18390621

  13. 31P NMR spectroscopy of hypertrophied rat heart: effect of graded global ischemia.

    PubMed

    Clarke, K; Sunn, N; Willis, R J

    1989-12-01

    To investigate the cause for the greater susceptibility of hypertrophied hearts to ischemic injury, we determined the interrelations of total work output, contractile function and energy metabolism in isolated, perfused normal and hypertrophied rat hearts subjected to graded global ischemia. Cardiac hypertrophy was induced by giving rats seven daily injections of either triiodothyronine (0.2 mg/kg) or isoproterenol (5 mg/kg). All hearts were perfused at an aortic pressure of 100 mmHg in the isovolumic mode in an NMR spectrometer (7.05 Tesla). Heart rate, developed pressure, and coronary flow were monitored simultaneously with changes in pH, creatine phosphate, ATP and inorganic phosphate. During pre-ischemic perfusion, the total work output (rate-pressure product) of hyperthyroid hearts was 28% higher than that of control hearts, whereas hearts from isoproterenol-treated animals showed no difference. However, when related to unit muscle mass, work was normal in hyperthyroid hearts and 26% lower after isoproterenol. Contractile function per unit myocardium (developed pressure/g wet weight) was lower in the hypertrophied hearts. ATP content was the same in all groups. Creatine phosphate decreased 41% after triiodothyronine and 25% after isoproterenol. Inorganic phosphate levels and intracellular pH were similar in control and isoproterenol-treated rat hearts, but were higher in the hyperthyroid rat hearts. The phosphorylation potential and the free energy change of ATP hydrolysis were lowered by hypertrophy, the levels correlating with the depressed contractile function. At each ischemic flow rate, both work and contractile function per unit myocardium were the same for all hearts, but the relations between flow and phosphorylation potential were different for each type of heart. Thus, at low flow rates, hypertrophied hearts perform the same amount of work and have the same contractile function as control hearts, but with abnormal changes in energy metabolism

  14. Direct Speciation of Phosphorus in Alum-Amended Poultry Litter: Solid-State 31P NMR Investigation

    SciTech Connect

    Hunger, Stefan; Cho, Herman M.; Sims, James T.; Sparks, Donald L.

    2004-02-01

    Amending poultry litter (PL) with aluminum sulfate (alum) has proven to be effective in reducing water-soluble phosphorus (P) in the litter and in runoff from fields that have received PL applications; it has therefore been suggested as a best management practice. Although its effectiveness has been demonstrated on a macroscopic scale in the field, little is known about P speciation in either alumamended or unamended litter. This knowledge is important for the evaluation of the long-term stability and bioavailability of P, which is a necessary prerequisite for the assessment of the sustainability of intensive poultry operations. Both solid state MAS and CP-MAS {sup 31}P NMR as well as {sup 31}P({sup 27}Al) TRAPDOR were used to investigate P speciation in alumamended and unamended PL. The results indicate the presence of a complex mixture of organic and inorganic orthophosphate phases. A calcium phosphate phase, probably a surface precipitate on calcium carbonate, could be identified in both unamended and alum-amended PL, as well as physically bound HPO{sub 4}{sup 2-}. Phosphate associated with Al was found in the alum-amended PL, most probably a mixture of a poorly ordered wavellite and phosphate surface complexes on aluminum hydroxide that had been formed by the hydrolysis of alum. However, a complex mixture of organic and inorganic phosphate species could not be resolved. Phosphate associated with Al comprised on average 40{+-}14% of the total P in alum-amended PL, whereas calcium phosphate phases comprised on average 7{+-}4% in the alum-amended PL and 14{+-}5% in the unamended PL.

  15. Rate equation for creatine kinase predicts the in vivo reaction velocity: /sup 31/P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat

    SciTech Connect

    Bittl, J.A.; DeLayre, J.; Ingwall, J.S.

    1987-09-22

    Brain, heart, and skeletal muscle contain four different creatine kinase isozymes and various concentrations of substrates for the creatine kinase reaction. To identify if the velocity of the creatine kinase reaction under cellular conditions is regulated by enzyme activity and substrate concentrations as predicted by the rate equation, the authors used /sup 31/P NMR and spectrophotometric techniques to measure reaction velocity, enzyme content, isozyme distribution, and concentrations of substrates in brain, heart, and skeletal muscle of living rat under basal or resting conditions. The total tissue activity of creatine kinase in the direction of MgATP synthesis provided an estimate for V/sub max/ and exceeded the NMR-determined in vivo reaction velocities by an order of magnitude. The isozyme composition varied among the three tissues: >99% BB for brain; 14% MB, 61% MM, and 25% mitochondrial for heart; and 98% MM and 2% mitochondrial for skeletal muscle. The NMR-determined reaction velocities agreed with predicted values from the creatine kinase rate equation. The concentrations of free creatine and cytosolic MgADP, being less than or equal to the dissociation constants for each isozyme, were dominant terms in the creatine kinase rate equation for predicting the in vivo reaction velocity. Thus, they observed that the velocity of the creatine kinase reaction is regulated by total tissue enzyme activity and by the concentrations of creatine and MgADP in a manner that is independent of isozyme distribution.

  16. Effect of Ca:Mg ratio on precipitated P species identified using 31P solid state NMR

    NASA Astrophysics Data System (ADS)

    Manimel Wadu, M.

    2009-04-01

    M.C.W. Manimel Wadu1, O.O Akinremi1, S. Kroeker2 1Department of Soil Science, University of Manitoba, Winnipeg, R3T 2N2, Canada 2Department of Chemistry, University of Manitoba, Winnipeg, R3T 2N2, Canada Agronomic efficiency of added P fertilizer is reduced by the precipitation reactions with the exchangeable Ca and Mg in calcareous soils. We hypothesized that the ratio of Ca to Mg on the soil exchange complex will affect the species of P that is precipitated and its solubility in the soil. A laboratory experiment was conducted using a model calcareous soil system which was composed of resin (Amberlite IRP69) and sand coated with CaCO3 packed into a column. The resin was pre saturated with Ca and Mg in order to achieve five different saturation ratios of Ca:Mg approximately as 100:0, 70:30, 50:50, 30:70 and 0:100. Monoammonium Phosphate was applied to the soil surface to simulate one-dimensional diffusive transport. The column was then incubated for 2 weeks. Chemical analysis for water and acid soluble P, pH, NH4, Ca and Mg was performed on 2mm sections of the soil to a depth of 10 cm. This paper will present and discuss the distribution of P along the soil column. Unlike similar studies that have speculated on the precipitation of P, this study will identify and quantify the P species that is formed using 31P solid state NMR technique. Such knowledge will be helpful in understanding the effect of Ca and Mg on P availability in calcareous system and the role of each cation on P precipitation. Key words: P fertilizers, Ca, Mg, model system, solid state NMR

  17. CO2 induced acute respiratory acidosis and brain tissue intracellular pH: a 31P NMR study in swine.

    PubMed

    Martoft, L; Stødkilde-Jørgensen, H; Forslid, A; Pedersen, H D; Jørgensen, P F

    2003-07-01

    High concentration carbon dioxide (CO(2)) is used to promote pre-slaughter anaesthesia in swine and poultry, as well as short-lasting surgical anaesthesia and euthanasia in laboratory animals. Questions related to animal welfare have been raised, as CO(2) anaesthesia does not set in momentarily. Carbon dioxide promotes anaesthesia by lowering the intracellular pH in the brain cells, but the dynamics of the changes in response to a high concentration of CO(2) is not known. Based on (31)P NMR spectroscopy, we describe CO(2)-induced changes in intracellular pH in the brains of five pigs inhaling 90% CO(2) in ambient air for a period of 60 s, and compare the results to changes in arterial blood pH, P(CO2), O(2) saturation and HCO(3)(-) concentration. The intracellular pH paralleled the arterial pH and P(CO2) during inhalation of CO(2); and it is suggested that the acute reaction to CO(2) inhalation mainly reflects respiratory acidosis, and not metabolic regulation as for example transmembrane fluxes of H(+)/HCO(3)(-). The intracellular pH decreased to approximately 6.7 within the 60 s inhalation period, and the situation was metabolically reversible after the end of CO(2) inhalation. The fast decrease in intracellular pH supports the conclusion that high concentration CO(2) leads to anaesthesia soon after the start of inhalation. PMID:12869287

  18. Detailed Chemical Composition of Condensed Tannins via Quantitative (31)P NMR and HSQC Analyses: Acacia catechu, Schinopsis balansae, and Acacia mearnsii.

    PubMed

    Crestini, Claudia; Lange, Heiko; Bianchetti, Giulia

    2016-09-23

    The chemical composition of Acacia catechu, Schinopsis balansae, and Acacia mearnsii proanthocyanidins has been determined using a novel analytical approach that rests on the concerted use of quantitative (31)P NMR and two-dimensional heteronuclear NMR spectroscopy. This approach has offered significant detailed information regarding the structure and purity of these complex and often elusive proanthocyanidins. More specifically, rings A, B, and C of their flavan-3-ol units show well-defined and resolved absorbance regions in both the quantitative (31)P NMR and HSQC spectra. By integrating each of these regions in the (31)P NMR spectra, it is possible to identify the oxygenation patterns of the flavan-3-ol units. At the same time it is possible to acquire a fingerprint of the proanthocyanidin sample and evaluate its purity via the HSQC information. This analytical approach is suitable for both the purified natural product proanthocyanidins and their commercial analogues. Overall, this effort demonstrates the power of the concerted use of these two NMR techniques for the structural elucidation of natural products containing labile hydroxy protons and a carbon framework that can be traced out via HSQC. PMID:27551744

  19. Ionization behavior of polyphosphoinositides determined via the preparation of pH titration curves using solid-state 31P NMR.

    PubMed

    Graber, Zachary T; Kooijman, Edgar E

    2013-01-01

    Detailed knowledge of the degree of ionization of lipid titratable groups is important for the evaluation of protein-lipid and lipid-lipid interactions. The degree of ionization is commonly evaluated by acid-base titration, but for lipids localized in a multicomponent membrane interface this is not a suitable technique. For phosphomonoester-containing lipids such as the polyphosphoinositides, phosphatidic acid, and ceramide-1-phosphate, this is more conveniently accomplished by (31)P NMR. Here, we describe a solid-state (31)P NMR procedure to construct pH titration curves to determine the degree of ionization of phosphomonoester groups in polyphosphoinositides. This procedure can also be used, with suitable sample preparation conditions, for other important signaling lipids. Access to a solid-state, i.e., magic angle spinning, capable NMR spectrometer is assumed. The procedures described here are valid for a Bruker instrument, but can be adapted for other spectrometers as needed.

  20. ¹¹³Cd NMR experiments reveal an unusual metal cluster in the solution structure of the yeast splicing protein Bud31p.

    PubMed

    van Roon, Anne-Marie M; Yang, Ji-Chun; Mathieu, Daniel; Bermel, Wolfgang; Nagai, Kiyoshi; Neuhaus, David

    2015-04-13

    Establishing the binding topology of structural zinc ions in proteins is an essential part of their structure determination by NMR spectroscopy. Using (113)Cd NMR experiments with (113)Cd-substituted samples is a useful approach but has previously been limited mainly to very small protein domains. Here we used (113)Cd NMR spectroscopy during structure determination of Bud31p, a 157-residue yeast protein containing an unusual Zn3Cys9 cluster, demonstrating that recent hardware developments make this approach feasible for significantly larger systems.

  1. Spin-echo methods for the determination of 31P transverse relaxation times of the ATP NMR signals in vivo.

    PubMed

    Straubinger, K; Jung, W I; Bunse, M; Lutz, O; Küper, K; Dietze, G

    1994-01-01

    31P magnetic resonance spectroscopy (MRS) examinations of the calf muscles of healthy volunteers were performed to determine T2 of the coupled ATP signals by use of the Hahn spin-echo and the frequency-selective spin-echo method. Additional measurements with the J-coupling refocused double echo are presented. The most reliable determination of T2 relaxation times is possible with the frequency-selective spin echo. The other methods yield substantially wrong results. Theoretical explanations are given how J-coupling and pulse-angle deviations affect the signals and therefore the T2 determinations. The calculations for a weakly coupled homonuclear AX spin system are shown because they demonstrate most of the relevant facts. In addition, some important results for a homonuclear AMX spin system, which the ATP is considered to be, are given.

  2. Organophosphates in agrogray soils with periodic water logging according to the data of 31P NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kovalev, I. V.; Kovaleva, N. O.

    2011-01-01

    The composition of organic phosphorus compounds was studied using the 31P NMR spectroscopy method in agrogray soils with periodic water logging. The phosphorus content was determined by the specific difference between the hydrological and the redox regimes of these soils. The phosphorus of the organic compounds in the agrogray soils with contrasting water regimes is composed mostly of phosphoric monoesters and diesters, including nucleic and teichoic acids. The relative distribution of the monoesters and inorganic orthophosphates is shown depending on the climate and the soil's position in the relief. The area of the monoester peaks increases by two times and that of the mineral orthophosphate decreases by six times in the agro-gray soils of Bryansk opolie with an optimal regime of moistening and evaporation in comparison with the agro-gray gleyed soils of Kolomna opolie. As the degree of the soil hydromorphism in the sequence of deeply gleyed soils and gleyic soils increased, the portion of monoesters decreased. Favorable conditions for the microbial activity are formed in soils with a contrasting redox regime, and this is expressed in the accumulation of labile diesters. Inverse relationships were found between the distributions of the mono- and diesters in iron-manganic nodules and in the soils enclosing them; this was caused by the different mechanisms of the stabilization of the stable and labile phosphorus containing compounds. A high percentage of mineral orthophosphate in the nodules allows assuming the presence of chemisorbed orthophosphate ions in organomineral phosphate-metal-humus complexes. The transformation of iron-manganic nodules under the influence of drying demonstrates the more direct participation of microorganisms in the nodules' formation than the contribution of the physicochemical processes.

  3. Assessing the phosphate distribution in bioactive phosphosilicate glasses by 31P solid-state NMR and molecular dynamics simulations.

    PubMed

    Stevensson, Baltzar; Mathew, Renny; Edén, Mattias

    2014-07-24

    Melt-derived bioactive phosphosilicate glasses are widely utilized as bone-grafting materials for various surgical applications. However, the insight into their structural features over a medium-range scale up to ∼ 1 nm remains limited. We present a comprehensive assessment of the spatial distribution of phosphate groups across the structures of 11 Na2O-CaO-SiO2-P2O5 glasses that encompass both bioactive and nonbioactive compositions, with the P contents and silicate network connectivities varied independently. Both parameters are known to strongly influence the bioactivity of the glass in vitro. The phosphate distribution was investigated by double-quantum (31)P nuclear magnetic resonance (NMR) experiments under magic-angle spinning (MAS) conditions and by molecular dynamics (MD) simulations. The details of the phosphate-ion dispersion were probed by evaluating the MD-derived glass models against various scenarios of randomly distributed, as well as clustered, phosphate groups. From comparisons of the P-P interatomic-distance spreads and the statistics of small phosphate clusters assessed for variable cutoff radii, we conclude that the spatial arrangement of the P atoms in phosphosilicate glasses is well-approximated by a statistical distribution, particularly across a short-range scale of ≤ 450 pm. The primary distinction is reflected in slightly closer P-P interatomic contacts in the MD-derived structures over the distance span of 450-600 pm relative to that of randomly distributed phosphate groups. The nature of the phosphate-ion dispersion remains independent of the silicate network polymerization and nearly independent of the P content of the glass throughout our explored parameter space of 1-6 mol % P2O5 and silicate network connectivities up to 2.9.

  4. The effect of ethanol on hydroxyl and carbonyl groups in biopolyol produced by hydrothermal liquefaction of loblolly pine: (31)P-NMR and (19)F-NMR analysis.

    PubMed

    Celikbag, Yusuf; Via, Brian K; Adhikari, Sushil; Buschle-Diller, Gisela; Auad, Maria L

    2016-08-01

    The goal of this study was to investigate the role of ethanol and temperature on the hydroxyl and carbonyl groups in biopolyol produced from hydrothermal liquefaction of loblolly pine (Pinus spp.) carried out at 250, 300, 350 and 390°C for 30min. Water and water/ethanol mixture (1/1, wt/wt) were used as liquefying solvent in the HTL experiments. HTL in water and water/ethanol is donated as W-HTL and W/E-HTL, respectively. It was found that 300°C and water/ethanol solvent was the optimum liquefaction temperature and solvent, yielding up to 68.1wt.% bio-oil and 2.4wt.% solid residue. (31)P-NMR analysis showed that biopolyol produced by W-HTL was rich in phenolic OH while W/E-HTL produced more aliphatic OH rich biopolyols. Moreover, biopolyols with higher hydroxyl concentration were produced by W/E-HTL. Carbonyl groups were analyzed by (19)F-NMR, which showed that ethanol reduced the concentration of carbonyl groups. PMID:27126078

  5. The effect of ethanol on hydroxyl and carbonyl groups in biopolyol produced by hydrothermal liquefaction of loblolly pine: (31)P-NMR and (19)F-NMR analysis.

    PubMed

    Celikbag, Yusuf; Via, Brian K; Adhikari, Sushil; Buschle-Diller, Gisela; Auad, Maria L

    2016-08-01

    The goal of this study was to investigate the role of ethanol and temperature on the hydroxyl and carbonyl groups in biopolyol produced from hydrothermal liquefaction of loblolly pine (Pinus spp.) carried out at 250, 300, 350 and 390°C for 30min. Water and water/ethanol mixture (1/1, wt/wt) were used as liquefying solvent in the HTL experiments. HTL in water and water/ethanol is donated as W-HTL and W/E-HTL, respectively. It was found that 300°C and water/ethanol solvent was the optimum liquefaction temperature and solvent, yielding up to 68.1wt.% bio-oil and 2.4wt.% solid residue. (31)P-NMR analysis showed that biopolyol produced by W-HTL was rich in phenolic OH while W/E-HTL produced more aliphatic OH rich biopolyols. Moreover, biopolyols with higher hydroxyl concentration were produced by W/E-HTL. Carbonyl groups were analyzed by (19)F-NMR, which showed that ethanol reduced the concentration of carbonyl groups.

  6. A 31P NMR spectroscopy study of Xenopus laevis heart perfused in vitro with creatinol-O-phosphate, phosphocreatine, adenosine triphosphate, fructose diphosphate and ouabain.

    PubMed

    Olsen, J I; Rossini, P; Schweizer, M P; Bernardi, M; Moretti, V; Re, L; Rossini, L

    1993-09-01

    Xenopus laevis heart was studied by 31P NMR using a 200 MHz proton spectrometer; hearts were perfused, at pH 7.35 and room temperature, with normal oxygenated or K(+)-enriched Ringer. Solution was later added with creatinol-O-phosphate (COP), phosphocreatine (PCr), adenosine triphosphate (ATP), fructose-1,6-diphosphate (FDP) and ouabain. NMR spectra of the heart show organic phosphomono- and phosphodi-esters, inorganic phosphate, PCr, overlapping alpha-ATP/ADP and gamma-ATP/beta-ADP, and beta-ATP signals. Their chemical shift positions and areas showed no significant changes in the course of 1.5 h perfusions with either solution, except in a few preparations, whether the heart was beating or reversibly arrested. While COP reduced the signals in beating hearts, the same spectra exhibited no consistent, substantial changes under PCr, ATP and FDP 1 to 10 mM, pH 7.35 perfusion with either solution, nor when ouabain mumol was added. The spectra are briefly discussed in comparison with those observed in the perfused heart of mammals (mostly rat), and particularly with those obtained in the frog (Rana temporaria) heart, both by analysing the bioenergetic equilibria on the basis of total tissue substrate levels measured in extracts of freeze-clamped tissue, and by evaluating cytochrome-b, flavin and pyridine nucleotide in vitro oxido-reduction read-outs in separate, similar experimental settings.

  7. {sup 31}P NMR study of the complexation of TBP with lanthanides and actinides in solution and in a clay matrix

    SciTech Connect

    Hartzell, C.J.

    1994-07-24

    Goal was to use NMR to study TBP/lanthanide complexes in the interlayer or on edge sites of clays. Work in this laboratory yielded details of the complexation of Eu(NO{sub 3}){sub 3} and Pr(NO{sub 3}){sub 3} with TBP in hexane solution; this information is crucial to interpretation of results of NMR studies of the complexes exchanged into clays. The solution {sup 31}P-chemical shift values were improved by repeating the studies on the lanthanide salts dissolved directly into neat TBP. NMR studies of these neat solutions of the Eu(NO{sub 3}){sub 3}{lg_bullet}3TBP-complex and the Pr(NO{sub 3}){sub 3}{lg_bullet}3TBP-complex show that the {sup 31}P chemical shift remains relatively constant for TBP: lanthanide ratios below 3: 1. At higher ratios, the chemical shift approaches that of free TBP, indicating rapid exchange of TBP between the free and complexed state. Exchange of these complexes into the clay hectorite yielded discrete {sup 31}P-NMR signals for the Eu{lg_bullet}TBP complex at -190 ppm and free TBP at -6 ppm. Adsorption of the Pr{lg_bullet}TBP complex yielded broad signals at 76 ppm for the complex and -6 ppm for free TBP. There was no evidence of exchange between the incorporated complex and the free TBP.

  8. Effects of pH and cholesterol on DMPA membranes: a solid state 2H- and 31P-NMR study.

    PubMed Central

    Pott, T; Maillet, J C; Dufourc, E J

    1995-01-01

    The effect of pH and cholesterol on the dimyristoylphosphatidic acid (DMPA) model membrane system has been investigated by solid state 2H- and 31P-NMR. It has been shown that each of the three protonation states of the DMPA molecule corresponds to a 31P-NMR powder pattern with characteristic delta sigma values; this implies additionally that the proton exchange on the membrane surface is slow on the NMR time scale (millisecond range). Under these conditions, the 2H-labeled lipid chains sense only one magnetic environment, indicating that the three spectra detected by 31P-NMR are related to charge-dependent local dynamics or orientations of the phosphate headgroup or both. Chain ordering in the fluid phase is also found to depend weakly on the charge at the interface. In addition, it has also been found that the first pK of the DMPA membrane is modified by changes in the lipid lateral packing (gel or fluid phases or in the presence of cholesterol) in contrast to the second pK. The incorporation of 30 mol% cholesterol affects the phosphatidic acid bilayer in a way similar to what has been reported for phosphatidylcholine/cholesterol membranes, but to an extent comparable to 10-20 mol % sterol in phosphatidylcholines. However, the orientation and molecular order parameter of cholesterol in DMPA are similar to those found in dimyristoylphosphatidylcholine. PMID:8580333

  9. Correcting human heart 31P NMR spectra for partial saturation. Evidence that saturation factors for PCr/ATP are homogeneous in normal and disease states

    NASA Astrophysics Data System (ADS)

    Bottomley, Paul A.; Hardy, Christopher J.; Weiss, Robert G.

    Heart PCr/ATP ratios measured from spatially localized 31P NMR spectra can be corrected for partial saturation effects using saturation factors derived from unlocalized chest surface-coil spectra acquired at the heart rate and approximate Ernst angle for phosphor creatine (PCr) and again under fully relaxed conditions during each 31P exam. To validate this approach in studies of normal and disease states where the possibility of heterogeneity in metabolite T1 values between both chest muscle and heart and normal and disease states exists, the properties of saturation factors for metabolite ratios were investigated theoretically under conditions applicable in typical cardiac spectroscopy exams and empirically using data from 82 cardiac 31P exams in six study groups comprising normal controls ( n = 19) and patients with dilated ( n = 20) and hypertrophic ( n = 5) cardiomyopathy, coronary artery disease ( n = 16), heart transplants ( n = 19), and valvular heart disease ( n = 3). When TR ≪ T1,(PCr), with T1(PCr) ⩾ T1(ATP), the saturation factor for PCr/ATP lies in the range 1.5 ± 0.5, regardless of the T1 values. The precise value depends on the ratio of metabolite T1 values rather than their absolute values and is insensitive to modest changes in TR. Published data suggest that the metabolite T1 ratio is the same in heart and muscle. Our empirical data reveal that the saturation factors do not vary significantly with disease state, nor with the relative fractions of muscle and heart contributing to the chest surface-coil spectra. Also, the corrected myocardial PCr/ATP ratios in each normal or disease state bear no correlation with the corresponding saturation factors nor the fraction of muscle in the unlocalized chest spectra. However, application of the saturation correction (mean value, 1.36 ± 0.03 SE) significantly reduced scatter in myocardial PCr/ATP data by 14 ± 11% (SD) ( p ⩽ 0.05). The findings suggest that the relative T1 values of PCr and ATP are

  10. Delineation of conformational preferences in human salivary statherin by 1H, 31P NMR and CD studies: sequential assignment and structure-function correlations.

    PubMed

    Naganagowda, G A; Gururaja, T L; Levine, M J

    1998-08-01

    Membrane-induced solution structure of human salivary statherin, a 43 amino acid residue acidic phosphoprotein, has been investigated by two-dimensional proton nuclear magnetic resonance (2D 1H NMR) spectroscopy. NMR assignments and structural analysis of this phosphoprotein was accomplished by analyzing the pattern of sequential and medium range NOEs, alphaCH chemical shift perturbations and deuterium exchange measurements of the amide proton resonances. The NMR data revealed three distinct structural motifs in the molecule: (1) an alpha-helical structure at the N-terminal domain comprising Asp1-Tyr16, (2) a polyproline type II (PPII) conformation predominantly occurring at the middle proline-rich domain spanning Gly19-Gln35, and (3) a 3(10)-helical structure at the C-terminal Pro36-Phe43 sequence. Presence of a few weak dalphaN(i,i+2) NOEs suggests that N-terminus also possesses minor population of 3(10)-helical conformation. Of the three secondary structural elements, helical structure formed by the N-terminal residues, Asp1-Ile11 appears to be more rigid as observed by the relatively very slow exchange of amide hydrogens of Glu5-Ile11. 31P NMR experiments clearly indicated that N-terminal domain of statherin exists mainly in disordered state in water whereas, upon addition of structure stabilizing co-solvent, 2,2,2-trifluorethanol (TFE), it showed a strong propensity for helical conformation. Calcium ion interaction studies suggested that the disordered N-terminal region encompassing the two vicinal phosphoserines is essential for the binding of calcium ions in vivo. Results from the circular dichroism (CD) experiments were found to be consistent with and complimentary to the NMR data and provided an evidence that non-aqueous environment such as TFE, could induce the protein to fold into helical conformation. The findings that the statherin possesses blended solvent sensitive secondary structural elements and the requirement of non-structured N-terminal region

  11. Vacuolar glyphosate-sequestration correlates with glyphosate resistance in ryegrass (Lolium spp.) from Australia, South America, and Europe: a 31P NMR investigation.

    PubMed

    Ge, Xia; d'Avignon, D André; Ackerman, Joseph J H; Collavo, Alberto; Sattin, Maurizio; Ostrander, Elizabeth L; Hall, Erin L; Sammons, R Douglas; Preston, Christopher

    2012-02-01

    Lolium spp., ryegrass, variants from Australia, Brazil, Chile, and Italy showing differing levels of glyphosate resistance were examined by (31)P NMR. Extents of glyphosate (i) resistance (LD(50)), (ii) inhibition of 5-enopyruvyl-shikimate-3-phosphate synthase (EPSPS) activity (IC(50)), and (iii) translocation were quantified for glyphosate-resistant (GR) and glyphosate-sensitive (GS) Lolium multiflorum Lam. variants from Chile and Brazil. For comparison, LD(50) and IC(50) data for Lolium rigidum Gaudin variants from Italy were also analyzed. All variants showed similar cellular uptake of glyphosate by (31)P NMR. All GR variants showed glyphosate sequestration within the cell vacuole, whereas there was minimal or no vacuole sequestration in the GS variants. The extent of vacuole sequestration correlated qualitatively with the level of resistance. Previous (31)P NMR studies of horseweed ( Conyza canadensis (L.) Cronquist) revealed that glyphosate sequestration imparted glyphosate resistance. Data presented herein suggest that glyphosate vacuolar sequestration is strongly contributing, if not the major contributing, resistance mechanism in ryegrass as well.

  12. Probing the interface of core shell particles of GaPO 4 and AlPO 4 by 31P MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, S. K.; Jayakumar, O. D.; Vishwanadh, B.; Sudarsan, V.

    2011-02-01

    Hexagonal GaPO 4, pseudo-hexagonal AlPO 4 and the core shell particles of these phosphates have been prepared in ethylene glycol medium at 180 °C, followed by annealing at 900 °C for 24 h and investigated by powder X-ray diffraction and 31P Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) techniques. The 31P NMR studies of these core shell particles showed a multi-component NMR pattern consisting of five peaks originating due to the distinct structural configurations formed by the varying number of Al 3+ and Ga 3+ as the next nearest neighbors around the probe 31P nuclei of the PO 4 tetrahedron. Existence of different PO 4 structural units with varying number of Al 3+ and Ga 3+ as its next nearest neighbors around P nucleus at the interface of the core shell particles has been confirmed. These results clearly indicate the bond formation at the interface between the core and shell material for these particles.

  13. In vivo /sup 31/P NMR studies of corn root tissue and its uptake of toxic metals. [Zea mays L

    SciTech Connect

    Pfeffer, P.E.; Tu, S.I.; Gerasimowicz, W.V.; Cavanaugh, J.R.

    1986-01-01

    Excised corn root tissue has been evaluated for its viability, integrity of compartmentation, intracellular pH gradients, total mobile phosphorus content and nucleotide concentrations under different levels of acidity, and mineral stresses using in vivo /sup 31/P nuclear magnetic resonance spectroscopy at 21 to 23/sup 0/C. Perfusion with Al/sup 3 +/ ion at low pH (4.0) for 20 hours caused the overall concentration of nucleotides in the cytoplasm to decrease significantly relative to the control. Respiratory activity as measured by O/sub 2/ uptake decreased by a comparable amount over this time period. The addition of glucose to the Al-containing perfusate negated the inhibitory effects on the respiratory system. Treatment of the tissue with paramagnetic manganese ion while perfusing in the presence of O/sub 2/ allowed for the observation of the sequence of events leading to the irreversible trapping of Mn/sup 2 +/ in the vacuole. Pretreatment of the roots with Mg/sup 2 +/ prevented Mn/sup 2 +/ migration to the vacuole over the time period of this experiment. Hypoxia prevented all but a limited uptake of Mn/sup 2 +/ into the cytoplasm of the root tips. No evidence of Mn/sup 2 +/ complexation of either cytoplasmic or vacuole Pi suggests that the energy derived from O/sub 2/ consuming processes is necessary for the facilitated movement of this divalent cation.

  14. Molecular level investigations of phosphate sorption on corundum (α-Al2O3) by 31P solid state NMR, ATR-FTIR and quantum chemical calculation

    NASA Astrophysics Data System (ADS)

    Li, Wei; Pierre-Louis, Andro-Marc; Kwon, Kideok D.; Kubicki, James D.; Strongin, Daniel R.; Phillips, Brian L.

    2013-04-01

    Phosphate sorption at the corundum (α-Al2O3)/water interface was investigated as a function of phosphate concentration (0.1-1 mM) and pH (3-11) by 31P solid state NMR spectroscopy, ATR-FTIR, and quantum chemical calculation. The 31P NMR spectra indicate that under these experimental conditions phosphate adsorbs onto corundum mainly as inner-sphere complexes that yield a peak at δP = -2.8 ppm with full width at half maximum (FWHM) of 9.2 ppm, with a small amount aluminum phosphate surface precipitates as suggested by an NMR signal observed from δP = -12 to -20 ppm. We employed 31P{27Al} rotational echo adiabatic passage double resonance (REAPDOR) to further analyze the phosphate adsorption samples prepared at pH 5 and 9 in order to determine the phosphate/Al coordination. To aid interpretation of the NMR data, a series of bidentate and monodentate structural models of phosphate adsorbed on corundum (0 0 1) and (0 1 2) surfaces were calculated using density function theory (DFT). By comparing the experimental REAPDOR curves and those simulated from these models, we can assign the dominant peaks to bidentate binuclear surface complexes. Formation of bidentate binuclear surface complexes is supported by the ATR/FTIR spectra combined with DFT calculation, which further suggests a mixture of non-protonated bidentate and mono-protonated bidentate surface complexes on the corundum surface at pH 5. At pH 9, both NMR and ATR/FTIR indicate the formation of bidentate surface complexes on corundum surface.

  15. Intra- and extracellular pH of the brain in vivo studied by 31P-NMR during hyper- and hypocapnia.

    PubMed

    Portman, M A; Lassen, N A; Cooper, T G; Sills, A M; Potchen, E J

    1991-12-01

    Studies were performed to determine the pH relationships among the extracellular, intracellular, and arterial blood compartments in the brain in vivo. Resolution of the extracellular monophosphate resonance peak from the intracellular peak in 31P nuclear magnetic resonance (NMR) spectra of sheep brain with the calvarium intact enabled pH measurement in these respective compartments. Sheep were then subjected to both hyper- and hypoventilation, which resulted in a wide range of arterial PCO2 and pH values. Linear regression analysis of pH in these compartments yielded slopes of 0.56 +/- 0.05 for extracellular pH (pHe) vs. arterial pH, 0.43 +/- 0.078 for intracellular pH (pHi) vs. pHe, and 0.23 +/- 0.056 for pHi vs. arterial pH. These data indicate that CO2 buffering capacity is different and decreases from the intracellular to extracellular to arterial blood compartments. Separation of the extracellular space from the vascular space may be a function of the blood-brain barrier, which contributes to the buffering capability of the extracellular compartment. A marked decrease in the pH gradient between the extracellular and intracellular space occurs during hypercarbia and may influence mechanisms of central respiratory control.

  16. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    SciTech Connect

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S.

    2012-11-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup −}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup −} deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup −} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup −} deer mouse model. Analysis of NMR data of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs) were

  17. Phosphatidylinositol-specific phospholipase C from Bacillus cereus combines intrinsic phosphotransferase and cyclic phosphodiesterase activities: A sup 31 P NMR study

    SciTech Connect

    Shashidhar, M.S.; Kuppe, A. ); Volwerk, J.J.; Griffith, O.H.

    1990-09-04

    The inositol phosphate products formed during the cleavage of phosphatidylinositol by phosphatidylinositol-specific phospholipase C from Bacillus cereus were analyzed by {sup 31}P NMR. {sup 31}P NMR spectroscopy can distinguish between the inositol phosphate species and phosphatidylinositol. Chemical shift values (with reference to phosphoric acid) observed are {minus}0.41, 3.62, 4.45, and 16.30 ppm for phosphatidylinositol, myo-inositol 1-monophosphate, myo-inositol 2-monophosphate, and myo-inositol 1,2-cyclic monophosphate, respectively. It is shown that under a variety of experimental conditions this phospholipase C cleaves phosphatidylinositol via an intramolecular phosphotransfer reaction producing diacylglycerol and D-myo-inositol 1,2-cyclic monophosphate. The authors also report the new and unexpected observation that the phosphatidylinositol-specific phospholipase C from B. cereus is able to hydrolyze the inositol cyclic phosphate to form D-myo-inositol 1-monophosphate. The enzyme, therefore, possesses phosphotransferase and cyclic phosphodiesterase activities. The second reaction requires thousandfold higher enzyme concentrations to be observed by {sup 31}P NMR. This reaction was shown to be regiospecific in that only the 1-phosphate was produced and stereospecific in that only D-myo-inositol 1,2-cyclic monophosphate was hydrolyzed. Inhibition with a monoclonal antibody specific for the B.cereus phospholipase C showed that the cyclic phosphodiesterase activity is intrinsic to the bacterial enzyme. They propose a two-step mechanism for the phosphatidyl-inositol-specific phospholipase C from B. cereus involving sequential phosphotransferase and cyclic phosphodiesterase activities. This mechanism bears a resemblance to the well-known two-step mechanism of pancreatic ribonuclease, RNase A.

  18. Combined (Super 31)P and (Super 1)H NMR Experiments in the Structural Elucidation of Polynuclear Thiolate Complexes

    ERIC Educational Resources Information Center

    Cerrada, Elena; Laguna, Mariano

    2005-01-01

    A facile synthesis of two gold(I) complexes with 1,2-benzenedithiolate ligand and two different bidentate phosphines are described. A detailed sequence of NMR experiments is suggested to determine the structure of the compounds.

  19. Hydration behaviour of POPC/C(12)-Bet mixtures investigated by sorption gravimetry, (31)P NMR spectroscopy and X-ray diffraction.

    PubMed

    Pfeiffer, H; Weichert, H; Klose, G; Heremans, K

    2012-02-01

    The hydration behaviour of mixtures of the zwitterionic phospholipid 1-palmitoyl-2-oleolyl-sn-glycero-3-phosphocholine (POPC) and the zwitterionic surfactant N,N-dimethyl-N-dodecyl-betain (C(12)-Bet) was investigated by sorption gravimetry, solid-state (31)P NMR-spectroscopy and small angle X-ray diffraction (SAXD). Negative excess hydration (dehydration) was found for almost all hydration degrees investigated. This behaviour is explained by the formation of an inner salt between the dipoles of phospholipid and surfactant headgroups that show a reverse sequence of partial charges with respect to the hydrocarbon backbone. The formation of an inner-salt most probably reduces potential water binding sites. Moreover, NMR data suggest that the incorporation of the zwitterionic surfactant into the phospholipid membrane is correlated with reorientation of the phosphate axis towards the membrane director as well as with reduced lateral and wobbling diffusion. PMID:22285958

  20. Trimethylphosphine-Assisted Surface Fingerprinting of Metal Oxide Nanoparticle by (31)P Solid-State NMR: A Zinc Oxide Case Study.

    PubMed

    Peng, Yung-Kang; Ye, Lin; Qu, Jin; Zhang, Li; Fu, Yingyi; Teixeira, Ivo F; McPherson, Ian James; He, Heyong; Tsang, Shik Chi Edman

    2016-02-24

    Nano metal oxides are becoming widely used in industrial, commercial and personal products (semiconductors, optics, solar cells, catalysts, paints, cosmetics, sun-cream lotions, etc.). However, the relationship of surface features (exposed planes, defects and chemical functionalities) with physiochemical properties is not well studied primarily due to lack of a simple technique for their characterization. In this study, solid state (31)P MAS NMR is used to map surfaces on various ZnO samples with the assistance of trimethylphosphine (TMP) as a chemical probe. As similar to XRD giving structural information on a crystal, it is demonstrated that this new surface-fingerprint technique not only provides qualitative (chemical shift) but also quantitative (peak intensity) information on the concentration and distribution of cations and anions, oxygen vacancies and hydroxyl groups on various facets from a single deconvoluted (31)P NMR spectrum. On the basis of this technique, a new mechanism for photocatalytic •OH radical generation from direct surface-OH oxidation is revealed, which has important implications regarding the safety of using nano oxides in personal care products. PMID:26812527

  1. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae

    NASA Astrophysics Data System (ADS)

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud

    2016-02-01

    31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ.

  2. 31P NMR characterization and efficiency of new types of water-insoluble phosphate fertilizers to supply plant-available phosphorus in diverse soil types.

    PubMed

    Erro, Javier; Baigorri, Roberto; Yvin, Jean-Claude; Garcia-Mina, Jose M

    2011-03-01

    Hydroponic plant experiments demonstrated the efficiency of a type of humic acid-based water-insoluble phosphate fertilizers, named rhizosphere controlled fertilizers (RCF), to supply available phosphorus (P) to different plant species. This effect was well correlated to the root release of specific organic acids. In this context, the aims of this study are (i) to study the chemical nature of RCF using solid-state (31)P NMR and (ii) to evaluate the real efficiency of RCF matrix as a source of P for wheat plants cultivated in an alkaline and acid soil in comparison with traditional water-soluble (simple superphosphate, SSP) and water-insoluble (dicalcium phosphate, DCP) P fertilizers. The (31)P NMR study revealed the formation of multimetal (double and triple, MgZn and/or MgZnCa) phosphates associated with chelating groups of the humic acid through the formation of metal bridges. With regard to P fertilizer efficiency, the results obtained show that the RCF matrix produced higher plant yields than SSP in both types of soil, with DCP and the water-insoluble fraction from the RCF matrix (WI) exhibiting the best results in the alkaline soil. By contrast, in the acid soil, DCP showed very low efficiency, WI performed on a par with SSP, and RCF exhibited the highest efficiency, thus suggesting a protector effect of humic acid from soil fixation. PMID:21254775

  3. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae

    PubMed Central

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud

    2016-01-01

    31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ. PMID:26902733

  4. 31P NMR characterization and efficiency of new types of water-insoluble phosphate fertilizers to supply plant-available phosphorus in diverse soil types.

    PubMed

    Erro, Javier; Baigorri, Roberto; Yvin, Jean-Claude; Garcia-Mina, Jose M

    2011-03-01

    Hydroponic plant experiments demonstrated the efficiency of a type of humic acid-based water-insoluble phosphate fertilizers, named rhizosphere controlled fertilizers (RCF), to supply available phosphorus (P) to different plant species. This effect was well correlated to the root release of specific organic acids. In this context, the aims of this study are (i) to study the chemical nature of RCF using solid-state (31)P NMR and (ii) to evaluate the real efficiency of RCF matrix as a source of P for wheat plants cultivated in an alkaline and acid soil in comparison with traditional water-soluble (simple superphosphate, SSP) and water-insoluble (dicalcium phosphate, DCP) P fertilizers. The (31)P NMR study revealed the formation of multimetal (double and triple, MgZn and/or MgZnCa) phosphates associated with chelating groups of the humic acid through the formation of metal bridges. With regard to P fertilizer efficiency, the results obtained show that the RCF matrix produced higher plant yields than SSP in both types of soil, with DCP and the water-insoluble fraction from the RCF matrix (WI) exhibiting the best results in the alkaline soil. By contrast, in the acid soil, DCP showed very low efficiency, WI performed on a par with SSP, and RCF exhibited the highest efficiency, thus suggesting a protector effect of humic acid from soil fixation.

  5. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae.

    PubMed

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P; Ferrier-Pagès, Christine; Grover, Renaud

    2016-01-01

    (31)P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on (31)P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ. PMID:26902733

  6. Carbon-13, sup 15 N, and sup 31 P NMR studies on 6-hydroxy-L-nicotine oxidase from Arthrobacter oxidans

    SciTech Connect

    Pust, S.; Vervoort, J.; Decker, K.; Bacher, A.; Mueller, F. )

    1989-01-24

    The interaction between the apoprotein of 6-hydroxy-L-nicotine oxidase from Arthrobacter oxidans and the prosthetic group FAD has been investigated by {sup 13}C, {sup 15}N and {sup 31}P NMR techniques. The FAD prosthetic group was selectively enriched in {sup 13}C and {sup 15}N isotopes by adding isotopically labeled riboflavin derivatives to the growth medium of riboflavin-requiring mutant cells. In the oxidized state the chemical shift of the C(7) and C(8) atoms indicates that the xylene moiety of the isoalloxazine ring is embedded in a hydrophobic environment. The binding of the competitive inhibitor, 6-hydroxy-D-nicotine, influences the resonances of the C(4a) and the N(5) atom strongly. It is suggested that these shifts are due to a strong hydrogen-bonding interaction between the N(5) atom and the inhibitor. On reduction all resonances, except those of the C(10a) and the N(1) atoms, shift upfield, indicating the increased electron density in the ring system. It can unambiguously be concluded from the chemical shift of the N(1) atom that the reduced flavin is anionic. The doublet character of the N(3) and N(5) resonances suggests that bulk water has no access to the active center. The strong downfield shift of the N(1) position indicates that this atom is embedded in a polar environment, but it does not indicate the presence of a positively charged residue. The {sup 31}P NMR spectra show that the resonances of the pyrophosphate group of the bound FAD differ slightly from those of free FAD. Besides the {sup 31}P resonances from FAD, four peaks around 0 ppm are observed that belongs to bound phosphorus residues. The residues are not located close to the isoalloxazine ring.

  7. The regulation of intracellular pH studied by 31P- and 1H-NMR spectroscopy in superfused guinea-pig cerebral cortex slices.

    PubMed

    Brooks, K J; Bachelard, H S

    1992-10-01

    (1) The intracellular pH (pHi) of superfused slices of guinea-pig cerebral cortex was measured in 31P-NMR spectra using the chemical shifts of intracellular inorganic phosphate (Pi) and of 2-deoxyglucose 6-phosphate (DOG6P). The pHi was found to be 7.30 +/- 0.04 (SD, n = 15) in bicarbonate-buffered medium and 7.20 +/- 0.05 (n = 10, P < 0.001) in bicarbonate-free HEPES buffer of the same pH (7.4). (2) Decreases in pHe below 7.05 resulted in pHi falling to similar values, with a decrease in the energy state. There was no change in intracellular lactate as assessed by 1H-NMR. (3) The tissues showed an ability to buffer higher pH: increasing pHe to 8.0 had no effect on pHi, PCr or lactate. (4) In order to characterize possible mechanisms of pH regulation in the tissue, the recovery from acid insult was investigated under various conditions. Initially pHi was decreased to 6.44 +/- 0.15 (n = 15) by exposure to media containing 6 mM bicarbonate gassed with O2/CO2, 80:20 (pHe 6.4). When this medium was replaced by normal bicarbonate buffer (pH 7.4) there was full recovery of pHi to 7.31 +/- 0.05 (n = 15), whereas replacing the buffer with HEPES resulted in incomplete recovery of pHi to 6.88 +/- 0.15 (n = 15, P < 0.001). (5) In the presence of the carbonic anhydrase inhibitor, acetazolamide (1 mM), or the sodium/proton exchange inhibitor, amiloride (1 mM), there was an incomplete return of pHi to the control value (pHi 6.90 +/- 0.20, n = 5, P < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1303163

  8. A gradient scheme suitable for localized shimming and in vivo 1H/31P STEAM and ISIS NMR spectroscopy.

    PubMed

    Yongbi, N M; Payne, G S; Leach, M O

    1994-12-01

    A gradient scheme is presented which may be used for STEAM or ISIS localization. One application of the scheme is to perform single-shot STEAM shimming prior to data acquisition with STEAM and ISIS, using identical gradient amplitudes and durations. Using conventional STEAM to shim for ISIS can produce line-shape distortions induced by different eddy currents in the two sequences; with this gradient scheme the problem is minimized. Line-shape improvements of STEAM and ISIS localized data obtained after volume localized shimming with the proposed STEAM sequence are demonstrated. The localization performance of the STEAM and ISIS sequences are demonstrated on phantoms and in vivo for 1H and 31P metabolites. PMID:7869899

  9. Structural and {sup 31}P NMR investigation of Bi(MM'){sub 2}PO{sub 6} statistic solid solutions: Deconvolution of lattice constraints and cationic influences

    SciTech Connect

    Colmont, Marie; Delevoye, Laurent; Ketatni, El Mostafa; Montagne, Lionel; Mentre, Olivier . E-mail: mentre@ensc-lille.fr

    2006-07-15

    Two solid solutions BiM{sub x} Mg{sub (2-x)}PO{sub 6} (with M {sup 2+}=Zn or Cd) have been studied through {sup 31}P MAS NMR. The analysis has been performed on the basis of refined crystal structures through X-ray diffraction and neutron diffraction. The BiZn {sub x} Mg{sub (2-x)}PO{sub 6} does not provide direct evidence for sensitive changes in the phosphorus local symmetry. This result is in good agreement with structural data which show nearly unchanged lattices and atomic separations through the Zn{sup 2+} for Mg{sup 2+} substitution. On the other hand, the Cd{sup 2+} for Mg{sup 2+} substitution behaves differently. Indeed, up to five resonances are observed, each corresponding to one of the five first-cationic neighbour distributions, i.e. 4Mg/0Cd, 3Mg/1Cd, 2Mg/2Cd, 1Mg/3Cd and 0Mg/4Cd. Their intensities match rather well the expected weight for each configuration of the statistical Cd{sup 2+}/Mg{sup 2+} mixed occupancy. The match is further improved when one takes into account the influence of the 2nd cationic sphere that is available from high-field NMR data (18.8 T). Finally, the fine examination of the chemical shift for each resonance versus x allows to de-convolute the mean Z/a {sup 2} effective field into two sub-effects: a lattice constraint-only term and a chemical-only term whose effects are directly quantifiable. - Graphical abstract: First (CdMg){sub 4} cationic sphere influence on the {sup 31}P NMR signal in Bi(Cd,Mg){sub 2}PO{sub 6}. Display Omitted.

  10. Combining solid-state and solution-state 31P NMR to study in vivo phosphorus metabolism.

    PubMed Central

    Cholli, A L; Yamane, T; Jelinski, L W

    1985-01-01

    Otherwise unavailable information concerning the distribution of phosphorylated compounds in biological systems is obtained by a combined solid-state/solution-state NMR approach, illustrated here for oocytes from Rana pipiens. General methodology is developed, and further extensions are proposed. The following conclusions pertain to the specific system under examination. (i) Nucleoside phosphates can be observed by magic-angle sample spinning of the lyophilized material. (ii) The solid-state NMR technique of dipolar decoupling provides no additional resolution of the phospholipid and phosphoprotein components of the yolk. However, cellular death produces sufficient pH changes to cause the phospholipid and protein phosphate peaks to become resolvable. The concentration of nucleoside phosphates also decreases. (iii) The phospholipid and phosphoprotein components are shown by computer simulation to be present in a ratio of 40:60, respectively. (iv) The amounts of inorganic phosphate, nucleoside phosphates, and sugar phosphates are determined by solution-state NMR observation of the perchloric acid extract of the oocytes. PMID:3871524

  11. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy.

    PubMed

    Li, Wei; Joshi, Sunendra R; Hou, Guangjin; Burdige, David J; Sparks, Donald L; Jaisi, Deb P

    2015-01-01

    Nutrient contamination has been one of the lingering issues in the Chesapeake Bay because the bay restoration is complicated by temporally and seasonally variable nutrient sources and complex interaction between imported and regenerated nutrients. Differential reactivity of sedimentary phosphorus (P) pools in response to imposed biogeochemical conditions can record past sediment history and therefore a detailed sediment P speciation may provide information on P cycling particularly the stability of a P pool and the formation of one pool at the expense of another. This study examined sediment P speciation from three sites in the Chesapeake Bay: (i) a North site in the upstream bay, (ii) a middle site in the central bay dominated by seasonally hypoxic bottom water, and (iii) a South site at the bay-ocean boundary using a combination of sequential P extraction (SEDEX) and spectroscopic techniques, including (31)P NMR, P X-ray absorption near edge structure spectroscopy (XANES), and Fe extended X-ray absorption fine structure (EXAFS). Results from sequential P extraction reveal that sediment P is composed predominantly of ferric Fe-bound P and authigenic P, which was further confirmed by solid-state (31)P NMR, XANES, and EXAFS analyses. Additionally, solution (31)P NMR results show that the sediments from the middle site contain high amounts of organic P such as monoesters and diesters, compared to the other two sites, but that these compounds rapidly decrease with sediment depth indicating remineralized P could have precipitated as authigenic P. Fe EXAFS enabled to identify the changes in Fe mineral composition and P sinks in response to imposed redox condition in the middle site sediments. The presence of lepidocrocite, vermiculite, and Fe smectite in the middle site sediments indicates that some ferric Fe minerals can still be present along with pyrite and vivianite, and that ferric Fe-bound P pool can be a major P sink in anoxic sediments. These results provide

  12. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy.

    PubMed

    Li, Wei; Joshi, Sunendra R; Hou, Guangjin; Burdige, David J; Sparks, Donald L; Jaisi, Deb P

    2015-01-01

    Nutrient contamination has been one of the lingering issues in the Chesapeake Bay because the bay restoration is complicated by temporally and seasonally variable nutrient sources and complex interaction between imported and regenerated nutrients. Differential reactivity of sedimentary phosphorus (P) pools in response to imposed biogeochemical conditions can record past sediment history and therefore a detailed sediment P speciation may provide information on P cycling particularly the stability of a P pool and the formation of one pool at the expense of another. This study examined sediment P speciation from three sites in the Chesapeake Bay: (i) a North site in the upstream bay, (ii) a middle site in the central bay dominated by seasonally hypoxic bottom water, and (iii) a South site at the bay-ocean boundary using a combination of sequential P extraction (SEDEX) and spectroscopic techniques, including (31)P NMR, P X-ray absorption near edge structure spectroscopy (XANES), and Fe extended X-ray absorption fine structure (EXAFS). Results from sequential P extraction reveal that sediment P is composed predominantly of ferric Fe-bound P and authigenic P, which was further confirmed by solid-state (31)P NMR, XANES, and EXAFS analyses. Additionally, solution (31)P NMR results show that the sediments from the middle site contain high amounts of organic P such as monoesters and diesters, compared to the other two sites, but that these compounds rapidly decrease with sediment depth indicating remineralized P could have precipitated as authigenic P. Fe EXAFS enabled to identify the changes in Fe mineral composition and P sinks in response to imposed redox condition in the middle site sediments. The presence of lepidocrocite, vermiculite, and Fe smectite in the middle site sediments indicates that some ferric Fe minerals can still be present along with pyrite and vivianite, and that ferric Fe-bound P pool can be a major P sink in anoxic sediments. These results provide

  13. Structure and Membrane Interactions of the Antibiotic Peptide Dermadistinctin K by Multidimensional Solution and Oriented 15N and 31P Solid-State NMR Spectroscopy

    PubMed Central

    Verly, Rodrigo M.; Moraes, Cléria Mendonça de; Resende, Jarbas M.; Aisenbrey, Christopher; Bemquerer, Marcelo Porto; Piló-Veloso, Dorila; Valente, Ana Paula; Almeida, Fábio C.L.; Bechinger, Burkhard

    2009-01-01

    DD K, a peptide first isolated from the skin secretion of the Phyllomedusa distincta frog, has been prepared by solid-phase chemical peptide synthesis and its conformation was studied in trifluoroethanol/water as well as in the presence of sodium dodecyl sulfate and dodecylphosphocholine micelles or small unilamellar vesicles. Multidimensional solution NMR spectroscopy indicates an α-helical conformation in membrane environments starting at residue 7 and extending to the C-terminal carboxyamide. Furthermore, DD K has been labeled with 15N at a single alanine position that is located within the helical core region of the sequence. When reconstituted into oriented phosphatidylcholine membranes the resulting 15N solid-state NMR spectrum shows a well-defined helix alignment parallel to the membrane surface in excellent agreement with the amphipathic character of DD K. Proton-decoupled 31P solid-state NMR spectroscopy indicates that the peptide creates a high level of disorder at the level of the phospholipid headgroup suggesting that DD K partitions into the bilayer where it severely disrupts membrane packing. PMID:19289046

  14. Multimodal neuroimaging provides a highly consistent picture of energy metabolism, validating 31P MRS for measuring brain ATP synthesis.

    PubMed

    Chaumeil, Myriam M; Valette, Julien; Guillermier, Martine; Brouillet, Emmanuel; Boumezbeur, Fawzi; Herard, Anne-Sophie; Bloch, Gilles; Hantraye, Philippe; Lebon, Vincent

    2009-03-10

    Neuroimaging methods have considerably developed over the last decades and offer various noninvasive approaches for measuring cerebral metabolic fluxes connected to energy metabolism, including PET and magnetic resonance spectroscopy (MRS). Among these methods, (31)P MRS has the particularity and advantage to directly measure cerebral ATP synthesis without injection of labeled precursor. However, this approach is methodologically challenging, and further validation studies are required to establish (31)P MRS as a robust method to measure brain energy synthesis. In the present study, we performed a multimodal imaging study based on the combination of 3 neuroimaging techniques, which allowed us to obtain an integrated picture of brain energy metabolism and, at the same time, to validate the saturation transfer (31)P MRS method as a quantitative measurement of brain ATP synthesis. A total of 29 imaging sessions were conducted to measure glucose consumption (CMRglc), TCA cycle flux (V(TCA)), and the rate of ATP synthesis (V(ATP)) in primate monkeys by using (18)F-FDG PET scan, indirect (13)C MRS, and saturation transfer (31)P MRS, respectively. These 3 complementary measurements were performed within the exact same area of the brain under identical physiological conditions, leading to: CMRglc = 0.27 +/- 0.07 micromol x g(-1) x min(-1), V(TCA) = 0.63 +/- 0.12 micromol x g(-1) x min(-1), and V(ATP) = 7.8 +/- 2.3 micromol x g(-1) x min(-1). The consistency of these 3 fluxes with literature and, more interestingly, one with each other, demonstrates the robustness of saturation transfer (31)P MRS for directly evaluating ATP synthesis in the living brain.

  15. Multiple Antiferromagnetic Spin Fluctuations and Novel Evolution of Tc in Iron-Based Superconductors LaFe(As1‑xPx)(O1‑yFy) Revealed by 31P-NMR Studies

    NASA Astrophysics Data System (ADS)

    Shiota, Takayoshi; Mukuda, Hidekazu; Uekubo, Masahiro; Engetsu, Fuko; Yashima, Mitsuharu; Kitaoka, Yoshio; Lai, Kwing To; Usui, Hidetomo; Kuroki, Kazuhiko; Miyasaka, Shigeki; Tajima, Setsuko

    2016-05-01

    We report on 31P-NMR studies of LaFe(As1‑xPx)(O1‑yFy) over wide compositions for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 0.14, which provide clear evidence that antiferromagnetic spin fluctuations (AFMSFs) are one of the indispensable elements for enhancing Tc. Systematic 31P-NMR measurements revealed two types of AFMSFs in the temperature evolution, that is, one is the AFMSFs that develop rapidly down to Tc with low-energy characteristics, and the other, with relatively higher energy than the former, develops gradually upon cooling from high temperature. The low-energy AFMSFs in low y (electron doping) over a wide x (pnictogen height suppression) range are associated with the two orbitals of dxz/yz, whereas the higher-energy ones for a wide y region around low x originate from the three orbitals of dxy and dxz/yz. We remark that the nonmonotonic variation of Tc as a function of x and y in LaFe(As1‑xPx)(O1‑yFy) is attributed to these multiple AFMSFs originating from degenerated multiple 3d orbitals inherent to Fe-pnictide superconductors.

  16. Analysis of brain metabolism changes induced by acute potassium cyanide intoxication by 31P NMR in vivo using chronically implanted surface coils.

    PubMed

    Decorps, M; Lebas, J F; Leviel, J L; Confort, S; Remy, C; Benabid, A L

    1984-03-12

    Chronic implantation of surface coils on the skull has been developed to record 31P NMR spectra of the brain in unanesthetized rats. Intraperitoneal sublethal potassium cyanide doses induce strong and reversible changes in high-energy phosphate compounds in the brain, similar in part to those induced by ischemia. These effects are dose-dependent as far as phosphocreatine, inorganic orthophosphates and pH are concerned; ATP does not seem to be altered by KCN doses ranging from 3 to 5 mg/kg but starts decreasing at a dose of 6 mg/kg. The fraction of Mg2+ complexed ATP which could be estimated as about 90% was not affected by KCN intoxication. For high doses (6 mg/kg) a new peak, appearing on the upfield side of the inorganic phosphate peak, may correspond to an acidic compartment, the significance of which is discussed.

  17. The investigation of membrane binding by amphibian peptide agonists of CCK2R using (31)P and (2)H solid-state NMR.

    PubMed

    Sherman, Patrick J; Separovic, Frances; Bowie, John H

    2014-05-01

    It has been proposed that some neuropeptides may be anchored to the cell membranes prior to attaching to the adjacent active sites of transmembrane receptors. The three amphibian skin neuropeptides signiferin 1 [RLCIPYIIPC(OH)] (smooth muscle active and immunomodulator), riparin 1.1 [[RLCIPVIFPC(OH)] (immunomodulator) and rothein 1 [SVSNIPESIGF(OH)] (immunomodulator) act via CCK2 transmembrane receptors. A combination of (31)P and (2)H solid state NMR studies of each of these three peptides in eukaryotic phospholipid models at 25°C shows that rothein 1 does not interact with the membrane at all. In contrast, both of the cyclic disulfides signiferin 1 and riparin 1.1 interact with phospholipid head groups and partially penetrate into the upper leaflet of the model bilayer, but to different extents. These interactions are not sufficiently effective to cause disruption of the lipid bilayer since the peptides are not antimicrobial, anticancer, antifungal nor active against enveloped viruses. PMID:24582625

  18. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples. PMID:23913630

  19. Analysis of brain metabolism changes induced by acute potassium cyanide intoxication by 31P NMR in vivo using chronically implanted surface coils.

    PubMed

    Decorps, M; Lebas, J F; Leviel, J L; Confort, S; Remy, C; Benabid, A L

    1984-03-12

    Chronic implantation of surface coils on the skull has been developed to record 31P NMR spectra of the brain in unanesthetized rats. Intraperitoneal sublethal potassium cyanide doses induce strong and reversible changes in high-energy phosphate compounds in the brain, similar in part to those induced by ischemia. These effects are dose-dependent as far as phosphocreatine, inorganic orthophosphates and pH are concerned; ATP does not seem to be altered by KCN doses ranging from 3 to 5 mg/kg but starts decreasing at a dose of 6 mg/kg. The fraction of Mg2+ complexed ATP which could be estimated as about 90% was not affected by KCN intoxication. For high doses (6 mg/kg) a new peak, appearing on the upfield side of the inorganic phosphate peak, may correspond to an acidic compartment, the significance of which is discussed. PMID:6705916

  20. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples.

  1. 31P NMR analysis of intracellular pH of Swiss Mouse 3T3 cells: effects of extracellular Na+ and K+ and mitogenic stimulation.

    PubMed

    Civan, M M; Williams, S R; Gadian, D G; Rozengurt, E

    1986-01-01

    Swiss mouse 3T3 cells grown on microcarrier beads were superfused with electrolyte solution during continuous NMR analysis. Conventional 31P and 19F probes of intracellular pH (pHc) were found to be impracticable. Cells were therefore superfused with 1 to 4 mM 2-deoxyglucose, producing a large intracellular, pH-sensitive signal of 2-deoxyglucose phosphate (2DGP). The intracellular incorporation of 2DGP inhibited the Embden-Meyerhof pathway. However, intracellular ATP was at least in part retained and the cellular responsivity to changes in extracellular ionic composition and to the application of growth factors proved intact. Transient replacement of external Na+ with choline or K+ reversibly acidified the intracellular fluids. Quiescent cells and mitogenically stimulated cells displayed the same dependence of shifts in pHc on external Na+ concentration (CoNa). PHc also depended on intracellular Na+ concentration (CcNa). Increasing ccNa by withdrawing external K+ (thereby inhibiting the Na,K-pump) caused reversible intracellular acidification; subsequently reducing CoNa produced a larger acid shift in pHc than with external K+ present. Comparison of separate preparations indicated that pHc was higher in stimulated than in quiescent cells. Transient administration of mitogens also reversibly alkalinized quiescent cells studied continuously. This study documents the feasibility of monitoring pHc of Swiss mouse 3T3 cells using 31P NMR analysis of 2DGP. The results support the concept of a Na/H antiport operative in these cells, both in quiescence and after mitogenic stimulation. The data document by an independent technique that cytoplasmic alkalinization is an early event in mitogenesis, and that full activity of the Embden-Meyerhof pathway is not required for the expression of this event.

  2. Functional pools of fast and slow twitch fibers observed by /sup 31/P-NMR during exercise of flexor wrist muscles in man

    SciTech Connect

    Park, J.H.; Park, C.R.; Brown, R.L.; Chance, B.

    1987-05-01

    Functional compartments of fast and slow twitch fibers have been observed by /sup 31/P-NMR spectroscopy during exercise of the wrist flexor muscles in a sedentary, young male subject. Values of Pi, phosphocreatine (PCr) and adenine nucleotides were determined at rest and during an exercise protocol. The subject flexed his wrist muscles at 20% of maximum strength every 5 sec for 6 min and then increased his effort in the next two 6 min intervals to 40% and 60% of maximum. With exercise, the Pi/PCr rose rapidly to the exceptionally high value of 2.2 at 60% effort. As the Pi increased, the initial single peak (pH 7.0-6.9) split into two distinct components with pH values of 6.8 and 6.3. Quantitatively, distribution of the Pi was 40% in the pH 6.8 peak and 60% in the pH 6.3 peak as determined by area estimation following curve fitting. This presumably reflects two pools of Pi corresponding to the oxidative (slow twitch, high pH) and glycolytic (fast twitch, low pH) fibers. In the second identical exercise sequence which followed immediately, only one Pi peak (pH 6.8-6.9) appeared. This suggested that the glycolytic contribution to energy production was largely exhausted and the residual energy was derived from oxidative metabolism. During exercise at high levels, total phosphate decreased due primarily to loss of NMR visible adenine nucleotides. Similar phenomena have been observed in three other sedentary individuals, but not in trained athletes.

  3. Bioenergetic Measurements in Children with Bipolar Disorder: A Pilot 31P Magnetic Resonance Spectroscopy Study

    PubMed Central

    Sikoglu, Elif M.; Jensen, J. Eric; Vitaliano, Gordana; Liso Navarro, Ana A.; Renshaw, Perry F.

    2013-01-01

    Background Research exploring Bipolar Disorder (BD) phenotypes and mitochondrial dysfunction, particularly in younger subjects, has been insufficient to date. Previous studies have found abnormal cerebral pH levels in adults with BD, which may be directly linked to abnormal mitochondrial activity. To date no such studies have been reported in children with BD. Methods Phosphorus Magnetic Resonance Spectroscopy (31P MRS) was used to determine pH, phopshocreatine (PCr) and inorganic phosphate (Pi) levels in 8 subjects with BD and 8 healthy comparison subjects (HCS) ages 11 to 20 years old. Results There was no significant difference in pH between the patients and HCS. However, frontal pH values for patients with BD increased with age, contrary to studies of HCS and the pH values in the frontal lobe correlated negatively with the YMRS values. Global Pi was significantly lower in subjects with BD compared with HCS. There were no significant differences in PCr between the groups. Global PCr-to-Pi ratio (PCr/Pi) was significantly higher in subjects with BD compared with HCS. Conclusions The change in Pi levels for the patients with BD coupled with the no difference in PCr levels, suggest an altered mitochondrial phosphorylation. However, our findings require further investigation of the underlying mechanisms with the notion that a mitochondrial dysfunction may manifest itself differently in children than that in adults. Limitations Further investigations with larger patient populations are necessary to draw further conclusions. PMID:23382910

  4. Early estrogen-induced metabolic changes and their inhibition by actinomycin D and cycloheximide in human breast cancer cells: sup 31 P and sup 13 C NMR studies

    SciTech Connect

    Neeman, M.; Degani, H. )

    1989-07-01

    Metabolic changes following estrogen stimulation and the inhibition of these changes in the presence of actinomycin D and cycloheximide were monitored continuously in perfused human breast cancer T47D clone 11 cells with {sup 31}P and {sup 13}C NMR techniques. The experiments were performed by estrogen rescue of tamoxifen-treated cells. Immediately after perfusion with estrogen-containing medium, a continuous enhancement in the rates of glucose consumption, lactate production by glycolysis, and glutamate synthesis by the Krebs cycle occurred with a persistent 2-fold increase at 4 hr. Pretreatment with either actinomycin D or cycloheximide, at concentrations known to inhibit mRNA and protein synthesis, respectively, and simultaneous treatment with estrogen and each inhibitor prevented the estrogen-induced changes in glucose metabolism. This suggested that the observed estrogen stimulation required synthesis of mRNA and protein. These inhibitors also modulated several metabolic activities that were not related to estrogen stimulation. The observed changes in the in vivo kinetics of glucose metabolism may provide a means for the early detection of the response of human breast cancer cells to estrogen versus tamoxifen treatment.

  5. Geographical characterization of greek virgin olive oils (cv. Koroneiki) using 1H and 31P NMR fingerprinting with canonical discriminant analysis and classification binary trees.

    PubMed

    Petrakis, Panos V; Agiomyrgianaki, Alexia; Christophoridou, Stella; Spyros, Apostolos; Dais, Photis

    2008-05-14

    This work deals with the prediction of the geographical origin of monovarietal virgin olive oil (cv. Koroneiki) samples from three regions of southern Greece, namely, Peloponnesus, Crete, and Zakynthos, and collected in five harvesting years (2001-2006). All samples were chemically analyzed by means of 1H and 31P NMR spectroscopy and characterized according to their content in fatty acids, phenolics, diacylglycerols, total free sterols, free acidity, and iodine number. Biostatistical analysis showed that the fruiting pattern of the olive tree complicates the geographical separation of oil samples and the selection of significant chemical compounds. In this way the inclusion of the harvesting year improved the classification of samples, but increased the dimensionality of the data. Discriminant analysis showed that the geographical prediction at the level of three regions is very high (87%) and becomes (74%) when we pass to the thinner level of six sites (Chania, Sitia, and Heraklion in Crete; Lakonia and Messinia in Peloponnesus; Zakynthos). The use of classification and binary trees made possible the construction of a geographical prediction algorithm for unknown samples in a self-improvement fashion, which can be readily extended to other varieties and areas.

  6. Facilitated transport of Mn2+ in sycamore (Acer pseudoplatanus) cells and excised maize root tips. A comparative 31P n.m.r. study in vivo.

    PubMed

    Roby, C; Bligny, R; Douce, R; Tu, S I; Pfeffer, P E

    1988-06-01

    Movement of paramagnetic Mn2+ into sycamore (Acer pseudoplatanus) cells has been indirectly examined by observing the line broadening exhibited in its 31P n.m.r. spectra. Mn2+ was observed to pass into the vacuole, while exhibiting a very minor accumulation in the cytoplasm. With time, gradual leakage of phosphate from the vacuole to the cytoplasm was observed along with an increase in glucose-6-phosphate. Anoxia did not appear to affect the relative distribution of Mn2+ in the cytoplasm and vacuole. Under hypoxic conditions restriction of almost all movement of Mn2+ across the plasmalemma as well as the tonoplast was observed. In contrast, maize root tips showed entry and complete complexation of nucleotide triphosphate by Mn2+ during hypoxia. The rate of passage of Mn2+ across the tonoplast in both sycamore and maize root cells is approximately the same. However, the rates of facilitated movement across the respective plasma membranes appear to differ. More rapid movement of Mn2+ across the plasmalemma in maize root tip cells allows a gradual build-up of metal ion in the cytoplasm prior to its diffusion across the tonoplast. Sycamore cells undergo a slower uptake of Mn2+ into their cytoplasms (comparable with the rate of diffusion through the tonoplast), so little or no observable accumulation of Mn2+ is observed in this compartment.

  7. Conformational transitions of the phosphodiester backbone in native DNA: two-dimensional magic-angle-spinning 31P-NMR of DNA fibers.

    PubMed Central

    Song, Z; Antzutkin, O N; Lee, Y K; Shekar, S C; Rupprecht, A; Levitt, M H

    1997-01-01

    Solid-state 31P-NMR is used to investigate the orientation of the phosphodiester backbone in NaDNA-, LiDNA-, MgDNA-, and NaDNA-netropsin fibers. The results for A- and B-DNA agree with previous interpretations. We verify that the binding of netropsin to NaDNA stabilizes the B form, and find that in NaDNA, most of the phosphate groups adopt a conformation typical of the A form, although there are minor components with phosphate orientations close to the B form. For LiDNA and MgDNA samples, on the other hand, we find phosphate conformations that are in variance with previous models. These samples display x-ray diffraction patterns that correspond to C-DNA. However, we find two distinct phosphate orientations in these samples, one resembling that in B-DNA, and one displaying a twist of the PO4 groups about the O3-P-O4 bisectors. The latter conformation is not in accordance with previous models of C-DNA structure. Images FIGURE 2 FIGURE 3 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 14 PMID:9284321

  8. Quantitative ATP synthesis in human liver measured by localized 31P spectroscopy using the magnetization transfer experiment.

    PubMed

    Schmid, A I; Chmelík, M; Szendroedi, J; Krssák, M; Brehm, A; Moser, E; Roden, M

    2008-06-01

    The liver plays a central role in intermediate metabolism. Accumulation of liver fat (steatosis) predisposes to various liver diseases. Steatosis and abnormal muscle energy metabolism are found in insulin-resistant and type-2 diabetic states. To examine hepatic energy metabolism, we measured hepatocellular lipid content, using proton MRS, and rates of hepatic ATP synthesis in vivo, using the 31P magnetization transfer experiment. A suitable localization scheme was developed and applied to the measurements of longitudinal relaxation times (T1) in six healthy volunteers and the ATP-synthesis experiment in nine healthy volunteers. Liver 31P spectra were modelled and quantified successfully using a time domain fit and the AMARES (advanced method for accurate, robust and efficient spectral fitting of MRS data with use of prior knowledge) algorithm describing the essential components of the dataset. The measured T1 relaxation times are comparable to values reported previously at lower field strengths. All nine subjects in whom saturation transfer was measured had low hepatocellular lipid content (1.5 +/- 0.2% MR signal; mean +/- SEM). The exchange rate constant (k) obtained was 0.30 +/- 0.02 s(-1), and the rate of ATP synthesis was 29.5 +/- 1.8 mM/min. The measured rate of ATP synthesis is about three times higher than in human skeletal muscle and human visual cortex, but only about half of that measured in perfused rat liver. In conclusion, 31P MRS at 3 T provides sufficient sensitivity to detect magnetization transfer effects and can therefore be used to assess ATP synthesis in human liver.

  9. Modeling Ti/Ge Distribution in LiTi2-xGex(PO4)3 NASICON Series by (31)P MAS NMR and First-Principles DFT Calculations.

    PubMed

    Diez-Gómez, Virginia; Arbi, Kamel; Sanz, Jesús

    2016-08-01

    Ti/Ge distribution in rhombohedral LiTi2-xGex(PO4)3 NASICON series has been analyzed by (31)P magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and first-principles density functional theory (DFT) calculations. Nuclear magnetic resonance is an excellent probe to follow Ti/Ge disorder, as it is sensitive to the atomic scale environment without long-range periodicity requirements. In the samples considered here, PO4 units are surrounded by four Ti/Ge octahedra, and then, five different components ascribed to P(OTi)4, P(OTi)3(OGe), P(OTi)2(OGe)2, P(OTi)(OGe)3, and P(OGe)4 environments are expected in (31)P MAS NMR spectra of R3̅c NASICON samples. However, (31)P MAS NMR spectra of analyzed series display a higher number of signals, suggesting that, although the overall symmetry remains R3̅c, partial substitution causes a local decrement in symmetry. With the aid of first-principles DFT calculations, 10 detected (31)P NMR signals have been assigned to different Ti4-nGen arrangements in the R3 subgroup symmetry. In this assignment, the influence of octahedra of the same or different R2(PO4)3 structural units has been considered. The influence of bond distances, angles and atom charges on (31)P NMR chemical shieldings has been discussed. Simulation of the LiTi2-xGex(PO4)3 series suggests that detection of 10 P environments is mainly due to the existence of two oxygen types, O1 and O2, whose charges are differently affected by Ge and Ti occupation of octahedra. From the quantitative analysis of detected components, a random Ti/Ge distribution has been deduced in next nearest neighbor (NNN) sites that surround tetrahedral PO4 units. This random distribution was supported by XRD data displaying Vegard's law.

  10. Structural investigations of silicate-phosphate glasses containing MoO3 by FTIR, Raman and 31P MAS NMR spectroscopies.

    PubMed

    Szumera, M

    2014-09-15

    Molybdenum is a transition metal (refers to the "d" block of the periodic table) whose atom has an incomplete d sub-shell. It is known that in silicate glasses molybdenum may exist under four oxidation states: Mo6+, Mo5+, Mo4+ and Mo3+, simultaneously molybdenum cations, depending on their content in the glass network, may either be a glass forming component, or act as a modifier. The contemporary literature data show studies conducted mostly on the structure of silicate, phosphate, borate and borosilicate glasses containing molybdenum ions, but not silicate-phosphate glasses. Therefore, the author has undertaken detailed studies using FTIR, Raman and 31P MAS NMR techniques in order to examine the effect of MoO3 addition into the structure of silicate-phosphate glasses from SiO2P2O5K2OCaOMgO system. On the basis of obtained results it was concluded that molybdenum ions in the analysed glasses act as a modifier, which follows from the gradual breakage of oxygen bridges, i.e. POP, SiOSi, and SiOP, and the following formation of connections such as Mo[MoO4]OSi and/or Mo[MoO4]OP. In summary, it is concluded that the increase of MoO3 content (up to 4.4 mol.%) in the structure of glasses of SiO2P2O5K2OMgOCaO system results in weakening of the structure and gradual increase of the degree of silico-oxygen and phosphor-oxygen frameworks depolymerisation.

  11. Structural investigations of silicate-phosphate glasses containing MoO3 by FTIR, Raman and 31P MAS NMR spectroscopies.

    PubMed

    Szumera, M

    2014-09-15

    Molybdenum is a transition metal (refers to the "d" block of the periodic table) whose atom has an incomplete d sub-shell. It is known that in silicate glasses molybdenum may exist under four oxidation states: Mo6+, Mo5+, Mo4+ and Mo3+, simultaneously molybdenum cations, depending on their content in the glass network, may either be a glass forming component, or act as a modifier. The contemporary literature data show studies conducted mostly on the structure of silicate, phosphate, borate and borosilicate glasses containing molybdenum ions, but not silicate-phosphate glasses. Therefore, the author has undertaken detailed studies using FTIR, Raman and 31P MAS NMR techniques in order to examine the effect of MoO3 addition into the structure of silicate-phosphate glasses from SiO2P2O5K2OCaOMgO system. On the basis of obtained results it was concluded that molybdenum ions in the analysed glasses act as a modifier, which follows from the gradual breakage of oxygen bridges, i.e. POP, SiOSi, and SiOP, and the following formation of connections such as Mo[MoO4]OSi and/or Mo[MoO4]OP. In summary, it is concluded that the increase of MoO3 content (up to 4.4 mol.%) in the structure of glasses of SiO2P2O5K2OMgOCaO system results in weakening of the structure and gradual increase of the degree of silico-oxygen and phosphor-oxygen frameworks depolymerisation. PMID:24759778

  12. 31P NMR and Genetic Analysis Establish hinT as the only E. coli Purine Nucleoside Phosphoramidase and as Essential for Growth under High Salt Conditions

    PubMed Central

    Chou, Tsui-Fen; Bieganowski, Pawel; Shilinski, Kara; Cheng, Jilin; Brenner, Charles; Wagner, Carston R.

    2008-01-01

    Eukaryotic cells encode AMP-lysine hydrolases related to the rabbit histidine triad nucleotide-binding protein 1 (Hint1) sequence. Bacterial and archaeal cells have Hint homologs annotated in a variety of ways but the enzymes have not been characterized, nor have phenotypes been described due to loss of enzymatic activity. We developed a quantitative 31P NMR assay to determine whether Escherichia coli possesses an adenosine phosphoramidase activity. Indeed, soluble lysates prepared from wild-type laboratory Escherichia coli exhibited activity on the model substrate adenosine monophosphoramidate (AMP-NH2). The Escherichia coli Hint homolog, which had been comprehensively designated ycfF and is here named hinT, was cloned, over-expressed, purified and characterized with respect to purine nucleoside phosphoramidate substrates. Bacterial hinT was several times more active than mammalian Hint on three model substrates. In addition, bacterial and mammalian enzymes preferred guanosine versus adenosine phosphoramidates as substrates. Analysis of the lysates from a constructed hinT knockout strain of Escherichia coli demonstrated that all of the cellular purine nucleoside phosphoramidase activity is due to hinT. Physiological analysis of this mutant revealed that the loss of hinT enzymatic activity results in failure to grow in media containing 0.75 KCl, 0.9 M NaCl, 0.5 M NaOAc and 10 mM MnCl2. Thus, bacteria may possess nucleotidylylated phosphoramidate substrates that must be hydrolyzed to support growth under certain high salt conditions. PMID:15703176

  13. 31P NMR 2D Mapping of Creatine Kinase Forward Flux Rate in Hearts with Postinfarction Left Ventricular Remodeling in Response to Cell Therapy

    PubMed Central

    Gao, Ling; Cui, Weina; Zhang, Pengyuan; Jang, Albert; Zhu, Wuqiang; Zhang, Jianyi

    2016-01-01

    Utilizing a fast 31P magnetic resonance spectroscopy (MRS) 2-dimensional chemical shift imaging (2D-CSI) method, this study examined the heterogeneity of creatine kinase (CK) forward flux rate of hearts with postinfarction left ventricular (LV) remodeling. Immunosuppressed Yorkshire pigs were assigned to 4 groups: 1) A sham-operated normal group (SHAM, n = 6); 2) A 60 minutes distal left anterior descending coronary artery ligation and reperfusion (MI, n = 6); 3) Open patch group; ligation injury plus open fibrin patch over the site of injury (Patch, n = 6); and 4) Cell group, hiPSCs-cardiomyocytes, -endothelial cells, and -smooth muscle cells (2 million, each) were injected into the injured myocardium pass through a fibrin patch (Cell+Patch, n = 5). At 4 weeks, the creatine phosphate (PCr)/ATP ratio, CK forward flux rate (Flux PCr→ATP), and k constant of CK forward flux rate (kPCr→ATP) were severely decreased at border zone myocardium (BZ) adjacent to MI. Cell treatment results in significantly increase of PCr/ATP ratio and improve the value of kPCr→ATP and Flux PCr→ATP in BZ myocardium. Moreover, the BZ myocardial CK total activity and protein expression of CK mitochondria isozyme and CK myocardial isozyme were significantly reduced, but recovered in response to cell treatment. Thus, cell therapy results in improvement of BZ bioenergetic abnormality in hearts with postinfarction LV remodeling, which is accompanied by significantly improvements in BZ CK activity and CK isozyme expression. The fast 2D 31P MR CSI mapping can reliably measure the heterogeneity of bioenergetics in hearts with post infarction LV remodeling. PMID:27606901

  14. 31P NMR 2D Mapping of Creatine Kinase Forward Flux Rate in Hearts with Postinfarction Left Ventricular Remodeling in Response to Cell Therapy.

    PubMed

    Gao, Ling; Cui, Weina; Zhang, Pengyuan; Jang, Albert; Zhu, Wuqiang; Zhang, Jianyi

    2016-01-01

    Utilizing a fast 31P magnetic resonance spectroscopy (MRS) 2-dimensional chemical shift imaging (2D-CSI) method, this study examined the heterogeneity of creatine kinase (CK) forward flux rate of hearts with postinfarction left ventricular (LV) remodeling. Immunosuppressed Yorkshire pigs were assigned to 4 groups: 1) A sham-operated normal group (SHAM, n = 6); 2) A 60 minutes distal left anterior descending coronary artery ligation and reperfusion (MI, n = 6); 3) Open patch group; ligation injury plus open fibrin patch over the site of injury (Patch, n = 6); and 4) Cell group, hiPSCs-cardiomyocytes, -endothelial cells, and -smooth muscle cells (2 million, each) were injected into the injured myocardium pass through a fibrin patch (Cell+Patch, n = 5). At 4 weeks, the creatine phosphate (PCr)/ATP ratio, CK forward flux rate (Flux PCr→ATP), and k constant of CK forward flux rate (kPCr→ATP) were severely decreased at border zone myocardium (BZ) adjacent to MI. Cell treatment results in significantly increase of PCr/ATP ratio and improve the value of kPCr→ATP and Flux PCr→ATP in BZ myocardium. Moreover, the BZ myocardial CK total activity and protein expression of CK mitochondria isozyme and CK myocardial isozyme were significantly reduced, but recovered in response to cell treatment. Thus, cell therapy results in improvement of BZ bioenergetic abnormality in hearts with postinfarction LV remodeling, which is accompanied by significantly improvements in BZ CK activity and CK isozyme expression. The fast 2D 31P MR CSI mapping can reliably measure the heterogeneity of bioenergetics in hearts with post infarction LV remodeling. PMID:27606901

  15. Intracellular pH measurement in frog muscle by means of 31P-nuclear magnetic resonance.

    PubMed

    Yoshizaki, K; Nishikawa, H; Yamada, S; Morimoto, T; Watari, H

    1979-01-01

    The 31P-NMR technique was used for the monitoring of intracellular pH and studying its heterogeneity in the femoral biceps muscle of Rana catesbiana under anaerobic conditions. The value of intracellular pH of fresh muscle calculated from the chemical shift of intracellular inorganic phosphate (P1) was 7.3 on average and the line width of P1 was about 0.2 ppm. As the line width determined by the relaxation mechanism was 0.099 ppm, the P1 signal in fresh muscle was concluded to consist of overlapped narrow components, which indicated the heterogeneity of muscular pH (about 0.2 pH unit). Living muscle showed gradual acidification due to glycolysis and the decrease in heterogeneity. When glycolysis was suppressed by iodoacetic acid, slight alkalization due to the breakdown of creatine phosphate was observed. When the Lohmann reaction was suppressed by 2, 4-dinitro-1-fluorobenzene, rapid acidification accompanied by the appearance of a new acidic component was observed with the onset of ATP decrease. This new component was not detected in the muscle pretreated with glycerol to disrupt the transverse tubules. Therefore, it is likely that this new acidic component originates in the intracellular compartment, and not in the cellular difference. PMID:40052

  16. 31P-saturation-transfer nuclear-magnetic-resonance measurements of phosphocreatine turnover in guinea-pig brain slices.

    PubMed

    Morris, P G; Feeney, J; Cox, D W; Bachelard, H S

    1985-05-01

    The technique of 31P saturation-transfer n.m.r. was used to determine the forward and the reverse rate constants of creatine phosphotransferase in superfused guinea-pig cerebral tissues in vitro. The calculated forward rate constant of 0.22 +/- 0.03s-1 compared well with a previously reported value for rat brain in vivo [Shoubridge, Briggs & Radda (1982) FEBS Lett. 140, 288-292]. The reverse rate constant was found to be 0.55 +/- 0.10s-1. 3. By using concentrations of ATP and phosphocreatine estimated previously for this superfused preparation [Cox, Morris, Feeney & Bachelard (1983) Biochem. J. 212, 365-370], forward and reverse flux rates were calculated to be 0.68 and 0.72 mumol X s-1 X g-1 respectively. The concordance of forward and reverse fluxes contrasts with the situation observed in vitro in other tissues, and suggests that the creatine phosphotransferase reaction is at equilibrium under the conditions used here. 4. Lowering the concentration of glucose in the superfusing medium from 10mM to 0.5mM had no significant effect on phosphocreatine concentration or on the forward (ATP-generating) flux through creatine phosphotransferase. The results indicate that a normal phosphocreatine content in the presence of lowered glucose availability is reflected by an unchanged turnover rate.

  17. HPLC and 31P NMR characterization of the reaction between antitumor platinum agents and the phosphorothioate chemoprotective agent S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR-2721).

    PubMed

    Thompson, D C; Wyrick, S D; Holbrook, D J; Chaney, S G

    1995-10-26

    In prior studies, we examined the effects of the radioprotective and chemoprotective agent WR-2721 [S-2-(3-aminopropylamino)ethylphosphorothioic acid] on the in vivo biotransformation of the cisplatin [cis-diamminedichloroplatinum(II)] analog ormaplatin [(d,I)trans-1,2-diaminocyclohexanetetrachloroplatinum(IV), Pt(dach)Cl4, (formerly called tetraplatin)]. Those data suggested that a direct interaction between WR-2721 and ormaplatin and/or the corresponding Pt(II) drug, Pt(dach)Cl2, may be occurring in vivo. This would be in contrast to the generally accepted hypothesis that WR-2721 is a prodrug that must first be converted by alkaline phosphatase to a free thiol compound, WR-1065, before any appreciable reactivity would be evident. However, the major biotransformation product observed in the peritoneal fluid, plasma, and all tissues was Pt(dach)(WR-1065). We report here on further investigations into the in vitro reactivity of Pt(dach) compounds with WR-2721 and WR-1065. Separation of reaction products resulting from incubation of Pt(dach)(malonato) with either WR-2721 or WR-1065 under physiological conditions gave profiles that were indistinguishable by reverse phase HPLC and cation exchange HPLC at two different pHs. 31P NMR characterization of the dephosphorylation of WR-2721 revealed essentially no loss of inorganic phosphate for up to 24 hr when incubated in unbuffered water at 30 degrees. In contrast, when incubated with a 1:1 molar ratio of cisplatin under the same conditions, the WR-2721 signal was decreased markedly in the first 5 min, and had disappeared almost completely by 1 hr. The signal corresponding to inorganic phosphate increased in parallel to the decrease in the WR-2721 signal. No intermediate formation of a complex containing both platinum and phosphate could be detected at any time. These data suggest that the reaction between WR-2721 and platinum complexes results in rapid dephosphorylation of WR-2721, and, consequently, that the reaction

  18. Inhibition of thermolysin by phosphonamidate transition-state analogues: measurement of 31P-15N bond lengths and chemical shifts in two enzyme-inhibitor complexes by solid-state nuclear magnetic resonance.

    PubMed

    Copié, V; Kolbert, A C; Drewry, D H; Bartlett, P A; Oas, T G; Griffin, R G

    1990-10-01

    31P and 15N chemical shifts and 31P-15N bond lengths have been measured with solid-state NMR techniques in two inhibitors of thermolysin, carbobenzoxy-Glyp-L-Leu-L-Ala (ZGpLA) and carbobenzoxy-L-Phep-L-Leu-L-Ala (ZFpLA), both as free lithium salts and when bound to the enzyme. Binding of both inhibitors to thermolysin results in large changes in the 31P chemical shifts. These changes are more dramatic for the tighter binding inhibitor ZFpLA, where a approximately 20 ppm downfield movement of the 31P isotropic chemical shift (sigma iso) is observed. This shift is due to changes in the shift tensor elements sigma 11 and sigma 22, while sigma 33 remains essentially constant. We observed a similar pattern for ZGpLA, but only a approximately 5 ppm change occurs in sigma iso. The changes in the 15N chemical shifts for both inhibitors are small upon binding, amounting to downfield shifts of 2 and 4 ppm for ZGpLA and ZFpLA, respectively. This indicates that there are no changes in the protonation state of the 15N in either the ZFpLA- or the ZGpLA-thermolysin complex. NMR distance measurements yield a P-N bond length rP-N = 1.68 +/- 0.03 A for the tight binding inhibitor ZFpLA both in its free lithium salt form and in its thermolysin-ZFpLA complex, a distance that is much shorter than the 1.90-A distance reported by X-ray crystallography studies [Holden et al. (1987) Biochemistry 26, 8542-8553].(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2271586

  19. Inhibition of thermolysin by phosphonamidate transition-state analogues: measurement of 31P-15N bond lengths and chemical shifts in two enzyme-inhibitor complexes by solid-state nuclear magnetic resonance.

    PubMed

    Copié, V; Kolbert, A C; Drewry, D H; Bartlett, P A; Oas, T G; Griffin, R G

    1990-10-01

    31P and 15N chemical shifts and 31P-15N bond lengths have been measured with solid-state NMR techniques in two inhibitors of thermolysin, carbobenzoxy-Glyp-L-Leu-L-Ala (ZGpLA) and carbobenzoxy-L-Phep-L-Leu-L-Ala (ZFpLA), both as free lithium salts and when bound to the enzyme. Binding of both inhibitors to thermolysin results in large changes in the 31P chemical shifts. These changes are more dramatic for the tighter binding inhibitor ZFpLA, where a approximately 20 ppm downfield movement of the 31P isotropic chemical shift (sigma iso) is observed. This shift is due to changes in the shift tensor elements sigma 11 and sigma 22, while sigma 33 remains essentially constant. We observed a similar pattern for ZGpLA, but only a approximately 5 ppm change occurs in sigma iso. The changes in the 15N chemical shifts for both inhibitors are small upon binding, amounting to downfield shifts of 2 and 4 ppm for ZGpLA and ZFpLA, respectively. This indicates that there are no changes in the protonation state of the 15N in either the ZFpLA- or the ZGpLA-thermolysin complex. NMR distance measurements yield a P-N bond length rP-N = 1.68 +/- 0.03 A for the tight binding inhibitor ZFpLA both in its free lithium salt form and in its thermolysin-ZFpLA complex, a distance that is much shorter than the 1.90-A distance reported by X-ray crystallography studies [Holden et al. (1987) Biochemistry 26, 8542-8553].(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Modeling Ti/Ge Distribution in LiTi2-xGex(PO4)3 NASICON Series by (31)P MAS NMR and First-Principles DFT Calculations.

    PubMed

    Diez-Gómez, Virginia; Arbi, Kamel; Sanz, Jesús

    2016-08-01

    Ti/Ge distribution in rhombohedral LiTi2-xGex(PO4)3 NASICON series has been analyzed by (31)P magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and first-principles density functional theory (DFT) calculations. Nuclear magnetic resonance is an excellent probe to follow Ti/Ge disorder, as it is sensitive to the atomic scale environment without long-range periodicity requirements. In the samples considered here, PO4 units are surrounded by four Ti/Ge octahedra, and then, five different components ascribed to P(OTi)4, P(OTi)3(OGe), P(OTi)2(OGe)2, P(OTi)(OGe)3, and P(OGe)4 environments are expected in (31)P MAS NMR spectra of R3̅c NASICON samples. However, (31)P MAS NMR spectra of analyzed series display a higher number of signals, suggesting that, although the overall symmetry remains R3̅c, partial substitution causes a local decrement in symmetry. With the aid of first-principles DFT calculations, 10 detected (31)P NMR signals have been assigned to different Ti4-nGen arrangements in the R3 subgroup symmetry. In this assignment, the influence of octahedra of the same or different R2(PO4)3 structural units has been considered. The influence of bond distances, angles and atom charges on (31)P NMR chemical shieldings has been discussed. Simulation of the LiTi2-xGex(PO4)3 series suggests that detection of 10 P environments is mainly due to the existence of two oxygen types, O1 and O2, whose charges are differently affected by Ge and Ti occupation of octahedra. From the quantitative analysis of detected components, a random Ti/Ge distribution has been deduced in next nearest neighbor (NNN) sites that surround tetrahedral PO4 units. This random distribution was supported by XRD data displaying Vegard's law. PMID:27373306

  1. Interaction Study of an Amorphous Solid Dispersion of Cyclosporin A in Poly-Alpha-Cyclodextrin with Model Membranes by 1H-, 2H-, 31P-NMR and Electron Spin Resonance

    PubMed Central

    Debouzy, Jean-Claude; Bourbon, Fréderic; Lahiani-Skiba, Malika; Skiba, Mohamed

    2014-01-01

    The properties of an amorphous solid dispersion of cyclosporine A (ASD) prepared with the copolymer alpha cyclodextrin (POLYA) and cyclosporine A (CYSP) were investigated by 1H-NMR in solution and its membrane interactions were studied by 1H-NMR in small unilamellar vesicles and by 31P 2H NMR in phospholipidic dispersions of DMPC (dimyristoylphosphatidylcholine) in comparison with those of POLYA and CYSP alone. 1H-NMR chemical shift variations showed that CYSP really interacts with POLYA, with possible adduct formation, dispersion in the solid matrix of the POLYA, and also complex formation. A coarse approach to the latter mechanism was tested using the continuous variations method, indicating an apparent 1 : 1 stoichiometry. Calculations gave an apparent association constant of log Ka = 4.5. A study of the interactions with phospholipidic dispersions of DMPC showed that only limited interactions occurred at the polar head group level (31P). Conversely, by comparison with the expected chain rigidification induced by CYSP, POLYA induced an increase in the fluidity of the layer while ASD formation led to these effects almost being overcome at 298 K. At higher temperature, while the effect of CYSP seems to vanish, a resulting global increase in chain fluidity was found in the presence of ASD. PMID:24883210

  2. Skeletal muscle ATP synthesis and cellular H(+) handling measured by localized (31)P-MRS during exercise and recovery.

    PubMed

    Fiedler, Georg B; Schmid, Albrecht I; Goluch, Sigrun; Schewzow, Kiril; Laistler, Elmar; Niess, Fabian; Unger, Ewald; Wolzt, Michael; Mirzahosseini, Arash; Kemp, Graham J; Moser, Ewald; Meyerspeer, Martin

    2016-01-01

    (31)P magnetic resonance spectroscopy (MRS) is widely used for non-invasive investigation of muscle metabolism dynamics. This study aims to extend knowledge on parameters derived from these measurements in detail and comprehensiveness: proton (H(+)) efflux, buffer capacity and the contributions of glycolytic (L) and oxidative (Q) rates to ATP synthesis were calculated from the evolutions of phosphocreatine (PCr) and pH. Data are reported for two muscles in the human calf, for each subject and over a wide range of exercise intensities. 22 subjects performed plantar flexions in a 7T MR-scanner, leading to PCr changes ranging from barely noticeable to almost complete depletion, depending on exercise protocol and muscle studied by localized MRS. Cytosolic buffer capacity was quantified for the first time non-invasively and individually, as was proton efflux evolution in early recovery. Acidification started once PCr depletion reached 60-75%. Initial and end-exercise L correlated with end-exercise levels of PCr and approximately linear with pH. Q calculated directly from PCr and pH derivatives was plausible, requiring fewer assumptions than the commonly used ADP-model. In conclusion, the evolution of parameters describing cellular energy metabolism was measured over a wide range of exercise intensities, revealing a relatively complete picture of muscle metabolism. PMID:27562396

  3. Skeletal muscle ATP synthesis and cellular H+ handling measured by localized 31P-MRS during exercise and recovery

    PubMed Central

    Fiedler, Georg B.; Schmid, Albrecht I.; Goluch, Sigrun; Schewzow, Kiril; Laistler, Elmar; Niess, Fabian; Unger, Ewald; Wolzt, Michael; Mirzahosseini, Arash; Kemp, Graham J.; Moser, Ewald; Meyerspeer, Martin

    2016-01-01

    31P magnetic resonance spectroscopy (MRS) is widely used for non-invasive investigation of muscle metabolism dynamics. This study aims to extend knowledge on parameters derived from these measurements in detail and comprehensiveness: proton (H+) efflux, buffer capacity and the contributions of glycolytic (L) and oxidative (Q) rates to ATP synthesis were calculated from the evolutions of phosphocreatine (PCr) and pH. Data are reported for two muscles in the human calf, for each subject and over a wide range of exercise intensities. 22 subjects performed plantar flexions in a 7T MR-scanner, leading to PCr changes ranging from barely noticeable to almost complete depletion, depending on exercise protocol and muscle studied by localized MRS. Cytosolic buffer capacity was quantified for the first time non-invasively and individually, as was proton efflux evolution in early recovery. Acidification started once PCr depletion reached 60–75%. Initial and end-exercise L correlated with end-exercise levels of PCr and approximately linear with pH. Q calculated directly from PCr and pH derivatives was plausible, requiring fewer assumptions than the commonly used ADP-model. In conclusion, the evolution of parameters describing cellular energy metabolism was measured over a wide range of exercise intensities, revealing a relatively complete picture of muscle metabolism. PMID:27562396

  4. Centerband-only analysis of rotor-unsynchronized spin echo for measurement of lipid (31) P chemical shift anisotropy.

    PubMed

    Umegawa, Yuichi; Yamaguchi, Toshiyuki; Murata, Michio; Matsuoka, Shigeru

    2015-07-01

    Structural diversity and molecular flexibility of phospholipids are essential for biological membranes to play key roles in numerous cellular processes. Uncovering the behavior of individual lipids in membrane dynamics is crucial for understanding the molecular mechanisms underlying biological functions of cell membranes. In this paper, we introduce a simple method to investigate dynamics of lipid molecules in multi-component systems by measuring the (31) P chemical shift anisotropy (CSA) under magic angle spinning (MAS) conditions. For achieving both signal separation and CSA determination, we utilized a centerband-only analysis of rotor-unsynchronized spin echo (COARSE). This analysis is based on the curve fitting of periodic modulation of centerband intensity along the interpulse delay time in rotor-unsynchronized spin-echo experiments. The utility of COARSE was examined by using phospholipid vesicles, a three-component lipid raft model system, and archaeal purple membranes. We found that the apparent advantages of this method are high resolution and high sensitivity given by the moderate MAS speed and the one-dimensional acquisition with short spin-echo delays. COARSE provides an alternative method for CSA measurement that is effective in the investigation of lipid polymorphologies.

  5. Metabolic responses to forced dives in Pekin duck measured by indirect calorimetry and 31P-MRS.

    PubMed

    Stephenson, R; Jones, D R

    1992-12-01

    We tested the hypothesis that forced-dived ducks experience a reduction in metabolic rate during prolonged submergence. Unidirectionally ventilated conscious ducks were subjected to forced dives by temporarily stopping the airflow in the ventilation system and simultaneously filling a face mask with cold water. A typical cardiovascular response to submergence was observed: bradycardia and maintained arterial blood pressure. Phosphorylated metabolite concentrations in the pectoral muscle were measured noninvasively by phosphorus magnetic resonance spectroscopy (31P-MRS). ATP content was constant, and phosphocreatine was depleted via the creatine kinase reaction at a rate similar to the resting rate of ATP turnover, which was estimated to be 0.9 mumol.min-1 x g-1 in resting perfused pectoral muscle of pentobarbital-anesthetized ducks. Oxygen from myoglobin supplied at most 12% of the ATP required by the resting muscle during dives. Whole animal postdive excess oxygen consumption and blood lactic acid accumulation suggested that the shortfall in aerobic metabolism during forced dives was compensated by an increase in anaerobic metabolism. PMID:1481944

  6. Effects of temperature and extracellular pH on metabolites: kinetics of anaerobic metabolism in resting muscle by 31P- and 1H-NMR spectroscopy.

    PubMed

    Vezzoli, Alessandra; Gussoni, Maristella; Greco, Fulvia; Zetta, Lucia

    2003-09-01

    Environmental stress, such as low temperature, extracellular acidosis and anoxia, is known to play a key role in metabolic regulation. The aim of the present study was to gain insight into the combined temperature-pH regulation of metabolic rate in frog muscle, i.e. an anoxia-tolerant tissue. The rate of exergonic metabolic processes occurring in resting isolated muscles was determined at 15 degrees C and 25 degrees C as well as at extracellular pH values higher (7.9), similar (7.3) and lower (7.0) than the physiological intracellular pH. (31)P and (1)H nuclear magnetic resonance spectroscopy high-resolution measurements were carried out at 4.7 T in isolated frog (Rana esculenta) gastrocnemius muscle during anoxia to assess, by means of reference compounds, the concentration of all phosphate metabolites and lactate. Intra- and extracellular pH was also determined. In the range of examined temperatures (15-25 degrees C), the temperature dependence of anaerobic glycolysis was found to be higher than that of PCr depletion (Q(10)=2.3). High-energy phosphate metabolism was confirmed to be the initial and preferential energy source. The rate of phosphocreatine hydrolysis did not appear to be affected by extracellular pH changes. By contrast, independent of the intracellular pH value, at the higher temperature (25 degrees C) a lowering of the extracellular pH from 7.9 to 7.0 caused a depression in lactate accumulation. This mechanism was ascribed to the transmembrane proton concentration gradient. This parameter was demonstrated to regulate glycolysis, probably through a reduced lactate efflux, depending on the activity of the lactate-H(+) co-transporter. The calculated intracellular buffer capacity was related to intra- and extracellular pH and temperature. At the experimental extracellular pH of 7.9 and at a temperature of 15 degrees C and 25 degrees C, calculated intracellular buffering capacity was 29.50 micromol g(-1) pH unit(-1) and 69.98 micromol g(-1) pH unit(-1

  7. Metabolic changes in rat brain after prolonged ethanol consumption measured by 1H and 31P MRS experiments.

    PubMed

    Braunová, Z; Kasparová, S; Mlynárik, V; Mierisová, S; Liptaj, T; Tkác, I; Gvozdjáková, A

    2000-12-01

    1. In vivo 1H and 31P magnetic resonance spectroscopy techniques were applied to reveal biochemical changes in the rat brain caused by prolonged ethanol consumption. 2. Three models of ethanol intoxication were used. 3. 1H MRS showed a significant decrease in the concentration of myo-inositol in the brain of rats fed with 20% ethanol for 8 weeks. This change is consistent with perturbances in astrocytes. On the other hand, N-acetyl aspartate and choline content did not differ from controls. 4. 31P MRS did not reveal any significant changes in the high-energy phosphates or intracellular free Mg2+ content in the brain of rats after 14 weeks of 20% ethanol drinking. The intracellular pH was diminished. 5. By means of a 31P saturation transfer technique, a significant decrease was observed for the pseudo first-order rate constant k(for) of the creatine kinase reaction in the brain of rats administered 30% ethanol for 3 weeks using a gastric tube. 6. The 1H MRS results may indicate that myo-inositol loss, reflecting a disorder in astrocytes, might be one of the first changes associated with alcoholism, which could be detected in the brain by means of in vivo 1H MRS. 7. The results from 31p MRS experiments suggest that alcoholism is associated with decreased brain energy metabolism. 8. 31P saturation transfer, which provides insight into the turnover of high-energy phosphates, could be a more suitable technique for studying the brain energetics in chronic pathological states than conventional 31P MRS. PMID:11100978

  8. Characteristics and assessment of biogenic phosphorus in sediments from the multi-polluted Haihe River, China, using phosphorus fractionation and phosphorus-31 nuclear magnetic resonance (31P-NMR)

    NASA Astrophysics Data System (ADS)

    Zhang, W. Q.; Zhang, H.; Tang, W. Z.; Shan, B. Q.

    2013-10-01

    We studied the phosphorus (P) pollution, as described by concentrations, distribution and transformation potential, of sediments of the water scarce and heavily polluted Fuyang River, a tributary of the Haihe River, using P fractionation and phosphorus-31 nuclear magnetic resonance (31P-NMR).The sediments of the Fuyang River accumulate significant amounts of inorganic phosphorus (Pi) and organic phosphorus (Po) from industrial and domestic wastewater and agricultural non-point pollution. In terms of their contribution to total phosphorus, the rank order of the P fractions was as follows: H2SO4-P > NaOH-Pi > Res-P > NaOH-Po > KCl-P and their average relative proportions were 69.7:47.5:15.9:2.9:1.0 (the proportion was based on the average proportion of the KCl-P). Seven P compounds were detected by the 31P-NMR analysis. Orthophosphate (Ortho-P: 45.2-92.4%) and orthophosphate monoesters (mono-P: 6.6-45.7%) were the dominant forms. Smaller amounts of pyrophosphates (pyro-P: 0.1-6.6%), deoxyribonucleic acid (DNA-P: 0.3-3.9%), phosphonates (phon-P: 0-3.3%), phospholipids (lipids-P: 0-2.7%) and polyphosphate (poly-P: 0-0.04%) were observed in the sediments. Results of P fractionation and 31P-NMR analysis showed that 35% of Pi was labile P, including KCl-P and NaOH-Pi (Fe-P and Al-P). Biogenic-P accounted for 24% of P in the sediments. Analysis of the relationships between P species and water quality indicated that the Po compounds would mineralize to form ortho-P and would be potentially bioavailable for recycling to surface water, supporting further growth of phytoplankton and leading to algal blooms.

  9. Quantitative 31P NMR for Simultaneous Trace Analysis of Organophosphorus Pesticides in Aqueous Media Using the Stir Bar Sorptive Extraction Method

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Talebpour, Z.; Molaabasi, F.; Bijanzadeh, H. R.; Khazaeli, S.

    2016-09-01

    The analysis of pesticides in water samples is of primary concern for quality control laboratories due to the toxicity of these compounds and their associated public health risk. A novel analytical method based on stir bar sorptive extraction (SBSE), followed by 31P quantitative nuclear magnetic resonance (31P QNMR), has been developed for simultaneously monitoring and determining four organophosphorus pesticides (OPPs) in aqueous media. The effects of factors on the extraction efficiency of OPPs were investigated using a Draper-Lin small composite design. An optimal sample volume of 4.2 mL, extraction time of 96 min, extraction temperature of 42°C, and desorption time of 11 min were obtained. The results showed reasonable linearity ranges for all pesticides with correlation coefficients greater than 0.9920. The limit of quantification (LOQ) ranged from 0.1 to 2.60 mg/L, and the recoveries of spiked river water samples were from 82 to 94% with relative standard deviation (RSD) values less than 4%. The results show that this method is simple, selective, rapid, and can be applied to other sample matrices.

  10. Improving the Hyperpolarization of 31P Nuclei by Synthetic Design

    PubMed Central

    2015-01-01

    Traditional 31P NMR or MRI measurements suffer from low sensitivity relative to 1H detection and consequently require longer scan times. We show here that hyperpolarization of 31P nuclei through reversible interactions with parahydrogen can deliver substantial signal enhancements in a range of regioisomeric phosphonate esters containing a heteroaromatic motif which were synthesized in order to identify the optimum molecular scaffold for polarization transfer. A 3588-fold 31P signal enhancement (2.34% polarization) was returned for a partially deuterated pyridyl substituted phosphonate ester. This hyperpolarization level is sufficient to allow single scan 31P MR images of a phantom to be recorded at a 9.4 T observation field in seconds that have signal-to-noise ratios of up to 94.4 when the analyte concentration is 10 mM. In contrast, a 12 h 2048 scan measurement under standard conditions yields a signal-to-noise ratio of just 11.4. 31P-hyperpolarized images are also reported from a 7 T preclinical scanner. PMID:25811635

  11. Neither moderate hypoxia nor mild hypoglycaemia alone causes any significant increase in cerebral [Ca2+]i: only a combination of the two insults has this effect. A 31P and 19F NMR study.

    PubMed

    Badar-Goffer, R S; Thatcher, N M; Morris, P G; Bachelard, H S

    1993-12-01

    (1) The energy state and free intracellular calcium concentration ([Ca2+]i) of superfused cortical slices were measured in moderate hypoxia (approximately 65 microM O2), in mild hypoglycaemia (0.5 mM glucose), and in combinations of the two insults using 19F and 31P NMR spectroscopy. (2) Neither hypoxia nor hypoglycaemia alone caused any significant change in [Ca2+]i. Hypoxia caused a 40% fall in phosphocreatine (PCr) content but not in ATP level, and hypoglycaemia produced a slight fall in both (as expected from previous studies). These changes in the energy state recovered on return to control conditions. (3) A combined sequential insult (hypoxia, followed by hypoxia plus hypoglycaemia) produced a 100% increase in [Ca2+]i and a decrease in PCr level to approximately 25% of control. The reverse combined sequential insult (hypoglycaemia, followed by hypoglycaemia plus hypoxia) had the same effect. On return to control conditions there was some decrease in [Ca2+]i and a small increase in PCr content, but neither recovered to control levels. (4) Exposure of the tissue to the combined simultaneous insult (hypoxia plus hypoglycaemia) immediately after the control spectra had been recorded resulted in a fivefold increase in [Ca2+]i and a similar decrease in PCr level to 20-25% of control. There was little if any change of [Ca2+]i or PCr level on return to control conditions. (5) These results are discussed in terms of metabolic adaptation of some but not all of the cortical cells to the single type of insult, which renders the tissues less vulnerable to the combined insult.

  12. Effect of prior exercise in Pi/PC ratio and intracellular pH during a standardized exercise. A study on human muscle using [31P]NMR.

    PubMed

    Laurent, D; Authier, B; Lebas, J F; Rossi, A

    1992-01-01

    Seven subjects underwent a standard localized exercise of calf muscles in order to investigate whether the metabolic exercise-induced steady-state, as revealed by the evaluation of inorganic phosphate/phosphocreatine ratio, depends on the conditioning of the muscle just prior to the exercise. The experimental protocols consisted of two separate experiments using first [31P]nuclear magnetic resonance spectroscopy and second (on 3 subjects) infrared oxyphotometry to respectively follow variation of energy metabolism and tissular deoxygenation. The exercise consisted of 240 successive plantar flexions (0.5 Hz frequency) against a high load equivalent to 80% of the maximal voluntary contraction. This exercise was accomplished before cold exercise and after warm exercise, a warming-up period bringing to approximately 50% of VO2max. The results showed that: (1) steady-state level of phosphate/phosphocreatine and intracellular acidosis was significantly lowered by warming-up; (2) cold and warm exercise steady-state of calculated adenosine diphosphate values were not significantly different; (3) cold exercise rapidly induced a high tissular deoxygenation that is not observed during warm exercise; and (4) time-constant of phosphocreatine resynthesis is lowered after warm exercise but the initial slope of time-evolution is not modified. Parallel experiments also showed that phosphate/phosphocreatine steady-state was not modified in comparison with warm exercise when the same power of exercise was reached by stepwise incrementation of the charge. From these results we postulate that a better tissue oxygenation due to a global or localized warming-up allows to reach the same mechanical performance with a lower decrease of PCr content, owing to a faster adjustment of oxidative metabolism during the transitional period.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. A flow-through probe for in Vivo31P NMR spectroscopy of unanesthetized aquatic vertebrates at 9.4 tesla

    NASA Astrophysics Data System (ADS)

    van den Thillart, Guido; Körner, Frans; van Waarde, Aren; Erkelens, Cees; Lugtenburg, Johan

    A flow cell which fits in a modified bioprobe of a Bruker MSL-400 NMR spectrometer and allows the monitoring of the energy metabolism of an enclosed aquatic vertebrate at a selected temperature, water composition, and oxygen level ranging from 0 to 100% air saturation is described. The animal is pressed against the observation window and immobilized by an inflatable plastic bag. No anesthetics are used during the actual experiment. The signal of the tissue of interest is picked up with a surface coil, which is double-tuned to the phosphorus (162 MHz) and proton (400 MHz) frequencies. The flow cell can be moved vertically to the desired position. The usefulness of the fish probe is demonstrated by spectra of excellent resolution and signal-to-noise, obtained from the myotomal muscles of carp, goldfish, rainbow trout, and tilapia, by high phosphocreatine/ inorganic phosphate ratios, indicating a situation of low stress, and by stability of all NMR-observed parameters over periods of at least one working day (8 h).

  14. Solution (31)P NMR Study of the Acid-Catalyzed Formation of a Highly Charged {U24Pp12} Nanocluster, [(UO2)24(O2)24(P2O7)12](48-), and Its Structural Characterization in the Solid State Using Single-Crystal Neutron Diffraction.

    PubMed

    Dembowski, Mateusz; Olds, Travis A; Pellegrini, Kristi L; Hoffmann, Christina; Wang, Xiaoping; Hickam, Sarah; He, Junhong; Oliver, Allen G; Burns, Peter C

    2016-07-13

    The first neutron diffraction study of a single crystal containing uranyl peroxide nanoclusters is reported for pyrophosphate-functionalized Na44K6[(UO2)24(O2)24(P2O7)12][IO3]2·140H2O (1). Relative to earlier X-ray studies, neutron diffraction provides superior information concerning the positions of H atoms and lighter counterions. Hydrogen positions have been assigned and reveal an extensive network of H-bonds; notably, most O atoms present in the anionic cluster accept H-bonds from surrounding H2O molecules, and none of the surface-bound O atoms are protonated. The D4h symmetry of the cage is consistent with the presence of six encapsulated K cations, which appear to stabilize the lower symmetry variant of this cluster. (31)P NMR measurements demonstrate retention of this symmetry in solution, while in situ (31)P NMR studies suggest an acid-catalyzed mechanism for the assembly of 1 across a wide range of pH values.

  15. Hydrothermal synthesis, X-ray structure refinement, 31P NMR spectra and vibrational study of NaLa(HPO4)2

    NASA Astrophysics Data System (ADS)

    Ben Hassen, C.; Boujelbene, M.; Mhiri, T.

    2013-10-01

    NaLa(HPO4)2 was obtained by hydrothermal synthesis. The structure of NaLa(HPO4)2 was determined by X-ray powder diffraction methods. The results of Rietveld refinement revealed a space group P21/c (No. 14), with lattice parameters of a = 9.7151(17) Å, b = 8.320(12) Å, c = 9.83(2) Å, beta = 114.65(17)°, V = 722 (8) Å3 and Z = 4. Final refinement led to RF = 4.86% and RB = 12.35%.The existence of bound O-H and bound P-O in the structure has been confirmed by IR and Raman spectroscopy. The existence of two crystallographically independent phosphorus atoms in the structure has been confirmed by NMR spectrum. The structure is characterized by LaO6 octahedra which are solely connected to six adjacent HPO4 tetrahedra via common O-corners. This structure contains twelve- and four-membered rings forming channels along [1 1¯ 1]. The cross sections of the channels are given by twelve-membered rings consisting of four lanthanum coordination octahedral and eight hydrogenphosphate groups as well as four-membered rings consisting of two lanthanum coordination octahedra and two hydrogenphosphate tetrahedra. Sodium ions are located within those channels of the twelve-membered rings.

  16. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling.

    PubMed

    Barabás, Orsolya; Németh, Veronika; Bodor, Andrea; Perczel, András; Rosta, Edina; Kele, Zoltán; Zagyva, Imre; Szabadka, Zoltán; Grolmusz, Vince I; Wilmanns, Matthias; Vértessy, Beáta G

    2013-12-01

    Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason-Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy ((31)P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme-product complex structure. PMID:23982515

  17. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling

    PubMed Central

    Barabás, Orsolya; Németh, Veronika; Bodor, Andrea; Perczel, András; Rosta, Edina; Kele, Zoltán; Zagyva, Imre; Szabadka, Zoltán; Grolmusz, Vince I.; Wilmanns, Matthias; Vértessy, Beáta G.

    2013-01-01

    Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason–Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy (31P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme–product complex structure. PMID:23982515

  18. Measurement of changes in high-energy phosphates in the cardiac cycle by using gated /sup 31/P nuclear magnetic resonance. [Rats

    SciTech Connect

    Fossel, E.T.; Morgan, H.E.; Ingwall, J.S.

    1980-06-01

    Levels of the high-energy phosphate-containing compounds, ATP and creatine phosphate, and of inorganic phosphate (P/sub i/ were measured as a function of position in the cardiac cycle. Measurements were made on isolated, perfused, working rat hearts through the use of gated /sup 31/P nuclear magnetic resonance spectroscopy. Levels of ATP and creatine phosphate were found to vary during the cardiac cycle and were maximal at minimal aortic pressure and minimal at maximal aortic pressure. P/sub i/ varied inversely with the high-energy phosphates.

  19. Paramagnetic interactions in 31P NMR spectroscopy as a probe for short-range order/disorder of flux-grown rare earth element orthophosphate (monazite/xenotime) solid solutions

    NASA Astrophysics Data System (ADS)

    Palke, A. C.; Stebbins, J. F.; Boatner, L. A.

    2013-12-01

    Many models of inorganic solid solutions relevant to earth scientists start with the assumption of a completely random distribution of substitutional species. This is, in large part, due to the difficulty of obtaining robust experimental confirmation of short-range order/disorder using standard diffraction techniques that provide information about long-range order. Solid-state Nuclear Magnetic Resonance (NMR) spectroscopy has long been used in this capacity, as the technique is characteristically sensitive to variations in local atomic structure around specific NMR-active nuclei. NMR studies of geologically important inorganic materials have historically concentrated on diamagnetic systems in which the complicating effects of unpaired electrons from paramagnetic species (most ions of the transition metals or rare-earth elements) can be ignored. In these diamagnetic materials, variations in small-scale atomic structure in the solid state typically cause shifts in the frequencies of NMR peaks of up to a few tens of ppm. However, NMR spectroscopy is increasingly being applied to inorganic solid solutions in which one of the end members is paramagnetic. In many cases, this leads to the observation of parmagnetically-shifted peaks. Paramagnetic interactions can be much stronger than in ordinary diamagnetic materials and these peaks are typically shifted from tens to thousands of ppm. In this study we present the results of a 31P NMR investigation of a series of flux-grown solid solutions of La1-xCexPO4 ('x' between 0.027 and 0.32) having the monoclinic monazite structure, and of Y1-xMxPO4 (M = Vn+, Ce3+, Nd3+, 'x' between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted resonances were observed in the spectra of all samples shifted by up to -204 ppm due to the presence of paramagnetic Vn+, Ce3+, or Nd3+ in the diamagnetic host phase - either LaPO4 or YPO4. Analysis of the spectra and comparison to the crystal structures leads to the

  20. NMR Measures of Heterogeneity Length

    NASA Astrophysics Data System (ADS)

    Spiess, Hans W.

    2002-03-01

    Advanced solid state NMR spectroscopy provides a wealth of information about structure and dynamics of complex systems. On a local scale, multidimensional solid state NMR has elucidated the geometry and the time scale of segmental motions at the glass transition. The higher order correlation functions which are provided by this technique led to the notion of dynamic heterogeneities, which have been characterized in detail with respect to their rate memory and length scale. In polymeric and low molar mass glass formers of different fragility, length scales in the range 2 to 4 nm are observed. In polymeric systems, incompatibility of backbone and side groups as in polyalkylmethacrylates leads to heteogeneities on the nm scale, which manifest themselves in unusual chain dynamics at the glass transition involving extended chain conformations. References: K. Schmidt-Rohr and H.W. Spiess, Multidimensional Solid-State NMR and Polymers,Academic Press, London (1994). U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, H.W. Spiess, Phys. Rev. Lett. 81, 2727 (1998). S.A. Reinsberg, X.H. Qiu, M. Wilhelm, M.D. Ediger, H.W. Spiess, J.Chem.Phys. 114, 7299 (2001). S.A. Reinsberg, A. Heuer, B. Doliwa, H. Zimmermann, H.W. Spiess, J. Non-Crystal. Solids, in press (2002)

  1. Free magnesium levels in normal human brain and brain tumors: sup 31 P chemical-shift imaging measurements at 1. 5 T

    SciTech Connect

    Taylor, J.S.; Vigneron, D.B.; Murphy-Boesch, J.; Nelson, S.J.; Kessler, H.B.; Coia, L.; Curran, W.; Brown, T.R. )

    1991-08-01

    The authors have studied a series of normal subjects and patients with brain tumors, by using {sup 31}P three-dimensional chemical shift imaging to obtain localized {sup 31}P spectra of the brain. A significant proportion of brain cytosolic ATP in normal brain is not complexed to Mg{sup 2+}, as indicated by the chemical shift {delta} of the {beta}-P resonance of ATP. The ATP {beta}P resonance position in brain thus is sensitive to changes in intracellular free Mg{sup 2+} concentration and in the proportion of ATP complexed with Mg because this shift lies on the rising portion of the {delta} vs. Mg{sup 2+} titration curve for ATP. They have measured the ATP {beta}-P shift and compared intracellular free Mg{sup 2+} concentration and fractions of free ATP for normal individuals and a limited series of patients with brain tumors. In four of the five spectra obtained from brain tissue containing a substantial proportion of tumor, intracellular free Mg{sup 2+} was increased, and the fraction of free ATP was decreased, compared with normal brain.

  2. Theoretical Studies on the Fe-M Interactions and 31P NMR in Fe(CO)3(EtPhPpy)2MX2 (X = NCS, SCN, Cl; M = Zn, Cd, Hg)

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-xuan; Xu, Xuan; Xie, Mei-xiang

    2008-10-01

    To study the Fe-M interactions and their effects on 31P NMR, the structures of Fe(CO)3(EtPhPpy)2 1, Fe(CO)3(EtPhPpy)2M(NCS)2 (2: M = Zn, 3: M = Cd, 4: M = Hg) and Fe(CO)3(EtPhPpy)2CdX2 (5: X = C1, 6: X = SCN) were investigated by density functional theory (DFT) PBE0 method. The stabilities S of complexes follow S(2)>S(3)>S(4) and S(3)approxS(6)>S(5), indicating that 6 is stable and may be synthesized. The complexes with thiocyanate are more stable than that with chloride in Fe(CO)3(EtPhPpy)2CdX2. The strength / of Fe-M interactions follows I(2)approxI(3)31P chemical shifts are caused (compared with mononuclear complex 1).

  3. Comparative differential scanning calorimetric and FTIR and 31P-NMR spectroscopic studies of the effects of cholesterol and androstenol on the thermotropic phase behavior and organization of phosphatidylcholine bilayers.

    PubMed Central

    McMullen, T. P.; Lewis, R. N.; McElhaney, R. N.

    1994-01-01

    We have investigated the comparative effects of the incorporation of increasing quantities of androstenol and cholesterol on the thermotropic phase behavior of aqueous dispersions of members of a homologous series of linear saturated diacyl PCs1 using high sensitivity DSC. We have also employed FTIR and 31P-NMR spectroscopy to study the comparative effects of androstenol and cholesterol incorporation on the organization of the host PC bilayer in both the gel and liquid-crystalline states. The effects of androstenol and cholesterol incorporation on the thermotropic phase behavior of shorter chain PCs like 14:0 PC are generally similar but not identical. The incorporation of either sterol progressively decreases the temperature and enthalpy, but not the cooperativity, of the pretransition and completely abolishes it at sterol concentrations above 5 mol%. Moreover, at sterol concentrations of 1 to 20-25 mol%, both androstenol and cholesterol incorporation produce DSC endotherms consisting of superimposed sharp and broad components, the former due to the hydrocarbon chain melting of sterol-poor and the latter to the melting of sterol-rich 14:0 PC domains. The temperature and cooperativity of the sharp component are reduced slightly with increasing concentration of androstenol or cholesterol, and the enthalpy of the sharp component decreases progressively and becomes zero at 20-25 mol% sterol. As well, at cholesterol or androstenol concentrations above 20-25 mol%, the enthalpy of the broad component also decreases linearly with increasing sterol incorporation and becomes zero at sterol levels of about 50 mol%. However, whereas cholesterol incorporation progressively increases the temperature of the broad component of the DSC endotherm, androstenol incorporation decreases the temperature of this component. In contrast, the effects of androstenol and cholesterol incorporation on the thermotropic phase behavior of the intermediate and longer chain PCs studied here are

  4. High-energy phosphate metabolism during incremental calf exercise in humans measured by 31 phosphorus magnetic resonance spectroscopy (31P MRS).

    PubMed

    Schocke, Michael F H; Esterhammer, Regina; Kammerlander, Christian; Rass, Anton; Kremser, Christian; Fraedrich, Gustav; Jaschke, Werner R; Greiner, Andreas

    2004-01-01

    Several previous 31 phosphorus magnetic resonance spectroscopy ((31)P MRS) studies performing incremental or progressive muscle exercises have observed that a decrease in pH is accompanied with an acceleration in phosphocreatine (PCr) hydrolysis. The purpose of this study was to investigate the relationship between PCr breakdown and pH during isotonic, exhaustive, incremental plantar flexion exercises. We included eight healthy, male volunteers into this study. Using a 1.5 Tesla MR scanner and a self-built exercise bench, we performed serial free induction decay (FID) (31)P MRS measurements with a time resolution of 1 min at rest, isotonic calf muscle exercise, and recovery. The exercise protocol consisted of 5-min intervals with 4.5, 6, 7.5, and 9 W workload followed by 9-min recovery. Changes in PCr and inorganic phosphate (Pi) were determined as percent changes in comparison to the baseline. In addition, pH values were calculated. This study obtained significant decreases in PCr corresponding to the gradual increases in workload. In each workload level that was succeeded by all volunteers, PCr hydrolysis passed into a steady state. After an early biphasic response, we detected a significant decrease in pH from the first to the second minute of the 6-W workload level followed by a further continuous decrease in pH up to the second minute of the recovery phase. The decrease in pH was not accompanied by acceleration in PCr hydrolysis. In conclusion, this study shows that PCr hydrolysis during incremental plantar flexion exercises passes into a steady state at different workload levels. The observed decrease in pH does not result in acceleration of PCr hydrolysis. PMID:14972400

  5. Identification by stopped-exchange solution /sup 31/P NMR spectroscopy of the stepwise formation of (AgL/sub n/)PF/sub 6/ (n = 1-4). Comparison of metal-phosphorus coupling constants for triphenylphosphine and 5-phenyldibenzophosphole

    SciTech Connect

    Alyea, E.C.; Malito, J.; Nelson, J.H.

    1987-12-16

    The coordination properties of 5-phenyldibenzophosphate (PhDBP) have been studied extensively. The stepwise formation of (L/sub n/Ag)/sup +/PF/sub 6//sup -/ (n = 1-4) for L = PhDBP and PhP/sub 3/ observed in situ by stopped-exchange solution /sup 31/P NMR spectroscopy is reported herein. The relative coordinating properties of PhDBP and PhP/sub 3/ are compared. 21 references, 1 figure, 2 tables.

  6. Equilibrium exchange of dimethyl methylphosphonate across the human red cell membrane measured using NMR spin transfer

    NASA Astrophysics Data System (ADS)

    Kirk, Kiaran; Kuchel, Philip W.

    The 31P NMR spectrum of dimethyl methylphosphonate, in a suspension of human erythrocytes in a hypertonic medium, is characterized by separate intra- and extracellular resonances. The compound crosses the red cell membrane too rapidly for its transport to be monitored using conventional NMR time-course techniques. In the present work we adapted the saturation transfer method to measure the unidirectional flux of dimethyl methylphosphonate into the cell at equilibrium and thereby gained an estimate of its permeability coefficient. Repeated measurements on low hematocrit cell suspensions showed no significant variation in the permeability coefficients for cells from five different donors. Saturation transfer measurements conducted over a range of hematocrits demonstrated the hematocrit dependence of the unidirectional rate constant for dimethyl methylphosphonate influx. The calculated permeability coefficient was independent of hematocrit.

  7. Measurement of vorticity diffusion by NMR microscopy.

    PubMed

    Brown, Jennifer R; Callaghan, Paul T

    2010-05-01

    In a Newtonian fluid, vorticity diffuses at a rate determined by the kinematic viscosity. Here we use rapid NMR velocimetry, based on a RARE sequence, to image the time-dependent velocity field on startup of a fluid-filled cylinder and therefore measure the diffusion of vorticity. The results are consistent with the solution to the vorticity diffusion equation where the angular velocity on the outside surface of the fluid, at the cylinder's rotating wall, is fixed. This method is a means of measuring kinematic viscosity for low viscosity fluids without the need to measure stress. PMID:20189854

  8. High-resolution 2D NMR spectroscopy of bicelles to measure the membrane interaction of ligands.

    PubMed

    Dvinskikh, Sergey V; Dürr, Ulrich H N; Yamamoto, Kazutoshi; Ramamoorthy, Ayyalusamy

    2007-01-31

    Magnetically aligned bicelles are increasingly being used as model membranes in solution- and solid-state NMR studies of the structure, dynamics, topology, and interaction of membrane-associated peptides and proteins. These studies commonly utilize the PISEMA pulse sequence to measure dipolar coupling and chemical shift, the two key parameters used in subsequent structural analysis. In the present study, we demonstrate that the PISEMA and other rotating-frame pulse sequences are not suitable for the measurement of long-range heteronuclear dipolar couplings, and that they provide inaccurate values when multiple protons are coupled to a 13C nucleus. Furthermore, we demonstrate that a laboratory-frame separated-local-field experiment is capable of overcoming these difficulties in magnetically aligned bicelles. An extension of this approach to accurately measure 13C-31P and 1H-31P couplings from phospholipids, which are useful to understand the interaction of molecules with the membrane, is also described. In these 2D experiments, natural abundance 13C was observed from bicelles containing DMPC and DHPC lipid molecules. As a first application, these solid-state NMR approaches were utilized to probe the membrane interaction of an antidepressant molecule, desipramine, and its location in the membrane.

  9. NMR measurements of intracellular ions in hypertension

    NASA Astrophysics Data System (ADS)

    Veniero, Joseph C.; Gupta, R. K.

    1993-08-01

    The NMR methods for the measurement of intracellular free Na+, K+, Mg2+, Ca2+, and H+ are introduced. The recent literature is then presented showing applications of these methods to cells and tissues from hypertensive animal model systems, and humans with essential hypertension. The results support the hypothesis of consistent derangement of the intracellular ionic environment in hypertension. The theory that this derangement may be a common link in the disease states of high blood pressure and abnormal insulin and glucose metabolism, which are often associated clinically, is discussed.

  10. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and μXRCT

    SciTech Connect

    Mason, Harris E.; Smith, Megan M.; Hao, Yue; Carroll, Susan A.

    2014-12-31

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO₂ storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (μXRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectly predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.

  11. NMR Measurements of Granular Flow and Compaction

    NASA Astrophysics Data System (ADS)

    Fukushima, Eiichi

    1998-03-01

    Nuclear magnetic resonance (NMR) can be used to measure statistical distributions of granular flow velocity and fluctuations of velocity, as well as spatial distributions of particulate concentration, flow velocity, its fluctuations, and other parameters that may be derived from these. All measurements have been of protons in liquid-containing particles such as mustard seeds or pharmaceutical pills. Our favorite geometry has been the slowly rotating partially filled rotating drum with granular flow taking place along the free surface of the particles. All the above-mentioned parameters have been studied as well as a spatial distribution of particulate diffusion coefficients, energy dissipation due to collisions, as well as segregation of non-uniform mixtures of granular material. Finally, we describe some motions of granular material under periodic vibrations.

  12. NMR measurements in solutions of dialkylimidazolium haloaluminates

    SciTech Connect

    Takahashi, S.; Saboungi, M.L.; Klingler, R.J.; Chen, M.J.; Rathke, J.W.

    1992-06-01

    {sup 27}Al and {sup 35}Cl NMR spectra of AlCl{sub 3}-1-ethyl-3-methyl imidazolium chloride (EMIC) melts were measured for initial compositions ranging from 50 to 67 mol % AlCl{sub 3} at various temperatures. It was shown by changing the preaquisition delay time (DE value) that the dominant aluminum species are AlCl{sub 4}{sup {minus}} in the melt formed by mixing 50 mol % with EMIC and Al{sub 2}Cl{sub 7}{sup {minus}} in the 67 mol % AlCl{sub 3} melt. In the equimolar mixture, the chemical shift of {sup 27}Al NMR spectrum is 103.28 ppm and the line width is 22.83Hz. In the 67 mol % AlCl{sub 3} mixture, the chemical shift is 103.41 ppm and the line width is 2624Hz. A third species observed at 97 ppm in the {sup 27}Al spectra for the 55 and 60 mol % AlCl{sub 3} mixtures is identified to be a product of the reaction with residual water. The relaxation rates for each species in the melts were determined.

  13. Effects of sublethal copper exposure on muscle energy metabolism of common carp, measured by {sup 31}P-nuclear magnetic resonance spectroscopy

    SciTech Connect

    Boeck, G. De; Borger, R.; Van der Linden, A.; Blust, R.

    1997-04-01

    The effects of shock and subchronic exposure of copper on the energy metabolism of common carp (Cyprinus carpio) were studied by means of in vivo {sup 31}P-nuclear magnetic resonance spectroscopy ({sup 31}P-NMRS). During the experiments, fish were submitted to an additional hypoxic challenge and recovery from this challenge was followed for 6 hs. During all experiments adenosine triphosphate (ATP) levels remained stable. Under control conditions, levels of phosphocreatine (P{sub Cr}) and inorganic phosphate (P{sub i}) recovered rapidly after the hypoxic challenge; however, full recovery was not observed after shock copper exposure. Also, intracellular pH (pH{sub i}) did not recover from the hypoxic challenge after shock exposure. After 1 week of exposure the fish had clearly developed an increased tolerance to copper. At both copper concentrations, P{sub Cr} and P{sub i} levels returned to resting levels after the hypoxic challenge, but at the highest copper concentration P{sub Cr} to P{sub i} ratios were significantly lower than P{sub Cr} to P{sub i} ratios in the control group and levels of P{sub Cr} and P{sub i} were very unstable. At the high copper concentration, pH{sub i} was clearly decreased compared to the control group even before the hypoxic challenge.

  14. Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy.

    PubMed

    Cade-Menun, Barbara J

    2005-04-15

    Phosphorus nuclear magnetic resonance ((31)P-NMR) spectroscopy has advanced our knowledge of organic phosphorus (P) in soils and environmental samples more than any other technique. This paper reviews the use of (31)P-NMR spectroscopy for soil, water and other environmental samples. The requirements for a successful solid-state or solution (31)P-NMR experiment are described, including experimental set-up, sample preparation, extractants, experimental conditions, and post-experimental processing. Next, the literature on solid-state and solution (31)P-NMR spectroscopy in environmental samples is reviewed, including papers on: methods; P transformations; agricultural, forest and natural ecosystem soil studies; humic acid and particle size separations; manure, compost and sludge studies; and water research, including freshwater, estuary and marine studies. Future research needs are also discussed as well as suggestions to improve results, such as increased standardization among research groups.

  15. Solid-state nuclear magnetic resonance measurements of HIV fusion peptide 13CO to lipid 31P proximities support similar partially inserted membrane locations of the α helical and β sheet peptide structures.

    PubMed

    Gabrys, Charles M; Qiang, Wei; Sun, Yan; Xie, Li; Schmick, Scott D; Weliky, David P

    2013-10-01

    Fusion of the human immunodeficiency virus (HIV) membrane and the host cell membrane is an initial step of infection of the host cell. Fusion is catalyzed by gp41, which is an integral membrane protein of HIV. The fusion peptide (FP) is the ∼25 N-terminal residues of gp41 and is a domain of gp41 that plays a key role in fusion catalysis likely through interaction with the host cell membrane. Much of our understanding of the FP domain has been accomplished with studies of "HFP", i.e., a ∼25-residue peptide composed of the FP sequence but lacking the rest of gp41. HFP catalyzes fusion between membrane vesicles and serves as a model system to understand fusion catalysis. HFP binds to membranes and the membrane location of HFP is likely a significant determinant of fusion catalysis perhaps because the consequent membrane perturbation reduces the fusion activation energy. In the present study, many HFPs were synthesized and differed in the residue position that was (13)CO backbone labeled. Samples were then prepared that each contained a singly (13)CO labeled HFP incorporated into membranes that lacked cholesterol. HFP had distinct molecular populations with either α helical or oligomeric β sheet structure. Proximity between the HFP (13)CO nuclei and (31)P nuclei in the membrane headgroups was probed by solid-state NMR (SSNMR) rotational-echo double-resonance (REDOR) measurements. For many samples, there were distinct (13)CO shifts for the α helical and β sheet structures so that the proximities to (31)P nuclei could be determined for each structure. Data from several differently labeled HFPs were then incorporated into a membrane location model for the particular structure. In addition to the (13)CO labeled residue position, the HFPs also differed in sequence and/or chemical structure. "HFPmn" was a linear peptide that contained the 23 N-terminal residues of gp41. "HFPmn_V2E" contained the V2E mutation that for HIV leads to greatly reduced extent of fusion and

  16. Solid-State Nuclear Magnetic Resonance Measurements of HIV Fusion Peptide 13CO to Lipid 31P Proximities Support Similar Partially Inserted Membrane Locations of the α Helical and β Sheet Peptide Structures

    NASA Astrophysics Data System (ADS)

    Gabrys, Charles M.; Qiang, Wei; Sun, Yan; Xie, Li; Schmick, Scott D.; Weliky, David P.

    2013-10-01

    Fusion of the human immunodeficiency virus (HIV) membrane and the host cell membrane is an initial step of infection of the host cell. Fusion is catalyzed by gp41, which is an integral membrane protein of HIV. The fusion peptide (FP) is the -25 N-terminal residues of gp41 and is a domain of gp41 that plays a key role in fusion catalysis likely through interaction with the host cell membrane. Much of our understanding of the FP domain has been accomplished with studies of -HFP-, i.e., a -25-residue peptide composed of the FP sequence but lacking the rest of gp41. HFP catalyzes fusion between membrane vesicles and serves as a model system to understand fusion catalysis. HFP binds to membranes and the membrane location of HFP is likely a significant determinant of fusion catalysis perhaps because the consequent membrane perturbation reduces the fusion activation energy. In the present study, many HFPs were synthesized and differed in the residue position that was 13CO backbone labeled. Samples were then prepared that each contained a singly 13CO labeled HFP incorporated into membranes that lacked cholesterol. HFP had distinct molecular populations with either α helical or oligomeric - sheet structure. Proximity between the HFP 13CO nuclei and 31P nuclei in the membrane headgroups was probed by solid-state NMR (SSNMR) rotational-echo double-resonance (REDOR) measurements. For many samples, there were distinct 13CO shifts for the α helical and - sheet structures so that the proximities to 31P nuclei could be determined for each structure. Data from several differently labeled HFPs were then incorporated into a membrane location model for the particular structure. In addition to the 13CO labeled residue position, the HFPs also differed in sequence and/or chemical structure. -HFPmn- was a linear peptide that contained the 23 N-terminal residues of gp41. -HFPmn_V2E- contained the V2E mutation that for HIV leads to greatly reduced extent of fusion and infection. The

  17. Novel approach to the detection and quantification of phenolic compounds in olive oil based on 31P nuclear magnetic resonance spectroscopy.

    PubMed

    Christophoridou, Stella; Dais, Photis

    2006-02-01

    31P NMR spectroscopy has been employed to detect and quantify phenolic compounds in the polar fraction of virgin olive oil. This novel analytical method is based on the derivatization of the hydroxyl and carboxyl groups of phenolic compounds with 2-chloro-4,4,5,5-tetramethyldioxaphospholane and the identification of the phosphitylated compounds on the basis of the 31P chemical shifts. Quantification of a large number of phenolic compounds in virgin olive oil can be accomplished by integration of the appropriate signals in the 31P NMR spectrum and the use of the phosphitylated cyclohexanol as internal standard. Finally, the validity of this technique for quantitative measurements was thoroughly examined. PMID:16448164

  18. Muscle metabolic responses during high-intensity intermittent exercise measured by (31)P-MRS: relationship to the critical power concept.

    PubMed

    Chidnok, Weerapong; DiMenna, Fred J; Fulford, Jonathan; Bailey, Stephen J; Skiba, Philip F; Vanhatalo, Anni; Jones, Andrew M

    2013-11-01

    We investigated the responses of intramuscular phosphate-linked metabolites and pH (as assessed by (31)P-MRS) during intermittent high-intensity exercise protocols performed with different recovery-interval durations. Following estimation of the parameters of the power-duration relationship, i.e., the critical power (CP) and curvature constant (W'), for severe-intensity constant-power exercise, nine male subjects completed three intermittent exercise protocols to exhaustion where periods of high-intensity constant-power exercise (60 s) were separated by different durations of passive recovery (18 s, 30 s and 48 s). The tolerable duration of exercise was 304 ± 68 s, 516 ± 142 s, and 847 ± 240 s for the 18-s, 30-s, and 48-s recovery protocols, respectively (P < 0.05). The work done >CP (W>CP) was significantly greater for all intermittent protocols compared with the subjects' W', and this difference became progressively greater as recovery-interval duration was increased. The restoration of intramuscular phosphocreatine concentration during recovery was greatest, intermediate, and least for 48 s, 30 s, and 18 s of recovery, respectively (P < 0.05). The W>CP in excess of W' increased with greater durations of recovery, and this was correlated with the mean magnitude of muscle phosphocreatine reconstitution between work intervals (r = 0.61; P < 0.01). The results of this study show that during intermittent high-intensity exercise, recovery intervals allow intramuscular homeostasis to be restored, with the degree of restoration being related to the duration of the recovery interval. Consequently, and consistent with the intermittent CP model, the ability to perform W>CP during intermittent high-intensity exercise and, therefore, exercise tolerance, increases when recovery-interval duration is extended.

  19. Synthesis and sup 31 P NMR spectroscopy of trinuclear, phosphido-bridged iridium and rhodium clusters. Crystal and molecular structures of (M sub 3 (. mu. -PPh sub 2 ) sub 3 (CO) sub n L sub 2 ) (M = Ir or Rh, n = 3, L sub 2 = bis(diphenylphosphino)methane: M = Ir, n = 5, L = t-BuNC)

    SciTech Connect

    Berry, D.E.; Browning, J.; Dehghan, K.; Dixon, K.R.; Meanwell, N.J.; Phillips, A.J. )

    1991-02-06

    Reaction of (Ir{sub 2}(cyclooctene){sub 4}Cl{sub 2}) with CO, NHEt{sub 2}, and PHPh{sub 2} provides a synthetic route to the trinuclear, phosphido-bridged iridium clusters (Ir{sub 3}({mu}-PPh{sub 2}){sub 3}(CO){sub n}L{sub 2}) (n = 3, L = CO or PPh{sub 3}, L{sub 2} = bis(diphenylphosphino)methane (dppm); n = 5, L = t-BuNC). The CO and PPh{sub 3} complexes are analogues of previously known rhodium derivatives, and rhodium analogues of the dppm and t-BuNC complexes are also reported. The crystal structure of both the Ir and Rh complexes was determined and are reported. The molecular structure was also determined. Complete analyses of the {sup 31}P NMR spectra of the prepared complexes are also reported.

  20. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra. PMID:26789115

  1. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra.

  2. Phosphorus speciation by (31)P NMR spectroscopy in bracken (Pteridium aquilinum (L.) Kuhn) and bluebell (Hyacinthoides non-scripta (L.) Chouard ex Rothm.) dominated semi-natural upland soil.

    PubMed

    Ebuele, Victor O; Santoro, Anna; Thoss, Vera

    2016-10-01

    Access to P species is a driver for plant community composition based on nutrient acquisition. Here we investigated the distribution and accumulation of soil inorganic P (Pi) and organic P (Po) forms in a bracken and bluebell dominated upland soil for the period between bluebell above ground dominance until biomass is formed from half bluebells and half bracken. Chemical characterisation and (31)P Nuclear Magnetic Resonance spectroscopy was used to determine the organic and inorganic P species. Total P concentration in soils was 0.87gkg(-1), while in plants (above- and below-ground parts) total P ranged between 0.84-4.0gkg(-1) and 0.14-2.0gkg(-1) for bluebell and bracken, respectively. The P speciation in the plant samples was reflected in the surrounding soil. The main forms of inorganic P detected in the NaOH-EDTA soil extracts were orthophosphate (20.0-31.5%), pyrophosphate (0.6-2.5%) and polyphosphate (0.4-7.0%). Phytate (myo-IP6) was the most dominant organic P form (23.6-40.0%). Other major peaks were scyllo-IP6 and α- and β- glycerophosphate (glyP). In bluebells and bracken the main P form detected was orthophosphate ranging from (21.7-80.4%) and 68.5-81.1%, in above-ground and below-ground biomass, respectively. Other detected forms include α-glyP (4.5-14.4%) and β-glyP (0.9-7.7%) in bluebell, while in bracken they were detected only in stripe and blade in ranges of 2.5-5.5% and 4.4-9.6%, respectively. Pyrophosphate, polyphosphate, scyllo-IP6, phosphonates, found in soil samples, were not detected in any plant parts. In particular, the high abundance of phytate in the soil and in bluebell bulbs, may be related to a mechanism through which bluebells create a recalcitrant phosphorus store which form a key part of their adaptation to nutrient poor conditions.

  3. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and μXRCT

    DOE PAGES

    Mason, Harris E.; Smith, Megan M.; Hao, Yue; Carroll, Susan A.

    2014-12-31

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO₂ storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (μXRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectlymore » predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.« less

  4. 31-P NMR studies of intracellular pH (pH/sub i/) of the in vitro resting rat diaphragm (D) exposed to hypercapnia (HC), plus amiloride (HCA)

    SciTech Connect

    Fitzgerald, R.; Howell, S.; Jacobus, W.

    1986-03-05

    The authors have previously reported that the pH/sub i/ of the resting rat D in vitro fell when exposed to HC. Since pH/sub i/ influences cellular functions, it is important to understand mechanisms whereby a tissue maintains its pH/sub i/ One mechanism reported to exist in some vertebrate tissues is a sodium-proton pump which is inhibited by amiloride. If the rat D had the Na/sup +/-H/sup +/ pump, the resting rat D pH/sub i/, when exposed to hypercapnia, would decrease more if amiloride was present than if there was no amiloride. The D was placed in a 25 mm NMR sample tube and superfused with buffer gassed with 95%O/sub 2/-5%CO/sub 2/ at 37/sup 0/C. Two 15 minute pulsed Fourier transform spectra were acquired at 72.89 MHz using 2 sec repetition rate during normocapnia. The D was next superfused for 60 minutes with buffer gassed with 80%O/sub 2/-20%CO/sub 2/ and containing 5 x 10/sup -4/M amiloride (n=5; HCA) or not (n=8; HC). Four 15 minute spectra were obtained; pH/sub i/ was determined from the chemical shift of P/sub i/ resonance. The pH/sub i/ (X vector +/- SE) of HC D's fell from 7.14 +/- .04 to 6.85 +/- .05 at 1 hour of exposure. The pH/sub i/ of HCA D's fell from 6.95 +/- .05 to 6.57 +/- .03. The decrease in pH/sub i/ during hypercapnia is significantly greater (P<0.01) for HCA D's. These data suggest that the rat D uses a Na/sup +/-H/sup +/ pump to regulate pH/sub i/ and that this pump operates in the in vitro resting rat D exposed to hypercapnia.

  5. Biogenic phosphorus in oligotrophic mountain lake sediments: differences in composition measured with NMR spectroscopy.

    PubMed

    Ahlgren, Joakim; Reitzel, Kasper; Danielsson, Rolf; Gogoll, Adolf; Rydin, Emil

    2006-12-01

    Phosphorus (P) composition in alkaline sediment extracts from three Swedish oligotrophic mountain lakes was investigated using 31P-NMR spectroscopy. Surface sediments from one natural lake and two mature reservoirs, one of which has received nutrient additions over the last 3 years, were compared with respect to biogenic P composition. The results show significant differences in the occurrence of labile and biogenic P species in the sediments of the different systems. The P compound groups that varied most between these three systems were pyrophosphate and polyphosphates, compound groups known to play an important role in sediment P recycling. The content of these compound groups was lowest in the reservoirs and may indicate a coupling between anthropogenic disturbances (i.e., impoundment) to a water system and the availability of labile P species in the sediment. A statistical study was also conducted to determine the accuracy and reliability of using 31P-NMR spectroscopy for quantification of sediment P forms. PMID:17070896

  6. Posttranslational modification of Klebsiella pneumoniae flavodoxin by covalent attachment of coenzyme A, shown by sup 31 P NMR and electrospray mass spectrometry, prevents electron transfer from the nifJ protein to nitrogenase. A possible new regulatory mechanism for biological nitrogen fixation

    SciTech Connect

    Thorneley, R.N.F.; Ashby, G.A.; Drummond, M.H.; Eady, R.R.; Huff, S.; Macdonald, C.J. ); Abell, C.; Schneier, A. )

    1992-02-04

    A strain of Escherichia coli (71-18) that produces ca. 15% of its soluble cytoplasmic protein as a flavodoxin, the Klebsiella pneumoniae nifF gene product, has been constructed. The flavodoxin was purified using FPLC and resolved into two forms, designated KpFldI and KpFldII, which were shown to have identical N-terminal amino acid sequences (30 residues) in agreement with that predicted by the K. pneumoniae nifF DNA sequence. {sup 31}P NMR, electrospray mass spectrometry, UV-visible spectra, and thiol group estimations showed that the single cysteine residue (position 68) of KpFldI is posttranslationally modified in KpFldII by the covalent, mixed disulfide, attachment of coenzyme A. KpFldII was inactive as an electron carrier between the K. pneumoniae nifJ product (a pyruvate-flavodoxin oxidoreductase) and K. pneumoniae nifH product (the Fe-protein of nitrogenase). This novel posttranslational modification of a flavodoxin is discussed in terms of the regulation of nitrogenase activity in vivo in response to the level of dissolved O{sub 2} and the carbon status of diazotrophic cultures.

  7. /195/Pt(/sup 1/H) and /sup 31/P(/sup 1/H) NMR investigation of the platinum(0)-tetraphosphine complexes Pt(CH/sub 3/C(CH/sub 2/PPh/sub 2/)/sub 3/)PR/sub 3/

    SciTech Connect

    Green, L.M.; Youngae Park; Meek, D.W.

    1988-05-04

    Preparation of a series of dissociatively stable Pt(tripod)PR/sub 3/ complexes where tripod = CH/sub 3/C(CH/sub 2/PPh/sub 2/)/sub 3/ and PR/sub 3/ = PMe/sub 2/Ph, PMePh/sub 2/, PPh/sub 3/, P(4FC/sub 6/H/sub 4/)/sub 3/, P(3,5(CF/sub 3/)/sub 2/C/sub 6/H/sub 3/)/sub 3/, P(CH/sub 2/CH/sub 2/CN)/sub 3/, P(OMe)Ph/sub 2/, P(OMe)/sub 2/Ph, P(OMe)/sub 3/, P(POh)/sub 3/, and P(OCH/sub 2/CF/sub 3/)/sub 3/ are reported. /sup 195/Pt(/sup 1/H) and /sup 31/P(/sup 1/H) NMR data are also included. These data have expanded the data base available for the platinum (0) complexes and facilitated the drawing of empirical relationships from the platinum chemical shifts and platinum-phosphorus coupling constants. 29 refs., 1 fig., 1 tab.

  8. Improvements in Technique of NMR Imaging and NMR Diffusion Measurements in the Presence of Background Gradients.

    NASA Astrophysics Data System (ADS)

    Lian, Jianyu

    In this work, modification of the cosine current distribution rf coil, PCOS, has been introduced and tested. The coil produces a very homogeneous rf magnetic field, and it is inexpensive to build and easy to tune for multiple resonance frequency. The geometrical parameters of the coil are optimized to produce the most homogeneous rf field over a large volume. To avoid rf field distortion when the coil length is comparable to a quarter wavelength, a parallel PCOS coil is proposed and discussed. For testing rf coils and correcting B _1 in NMR experiments, a simple, rugged and accurate NMR rf field mapping technique has been developed. The method has been tested and used in 1D, 2D, 3D and in vivo rf mapping experiments. The method has been proven to be very useful in the design of rf coils. To preserve the linear relation between rf output applied on an rf coil and modulating input for an rf modulating -amplifying system of NMR imaging spectrometer, a quadrature feedback loop is employed in an rf modulator with two orthogonal rf channels to correct the amplitude and phase non-linearities caused by the rf components in the rf system. The modulator is very linear over a large range and it can generate an arbitrary rf shape. A diffusion imaging sequence has been developed for measuring and imaging diffusion in the presence of background gradients. Cross terms between the diffusion sensitizing gradients and background gradients or imaging gradients can complicate diffusion measurement and make the interpretation of NMR diffusion data ambiguous, but these have been eliminated in this method. Further, the background gradients has been measured and imaged. A dipole random distribution model has been established to study background magnetic fields Delta B and background magnetic gradients G_0 produced by small particles in a sample when it is in a B_0 field. From this model, the minimum distance that a spin can approach a particle can be determined by measuring

  9. Development and Characterization of NMR Measurements for Polymer Gel Dosimetry

    NASA Astrophysics Data System (ADS)

    Kwong, Zachary; Whitney, Heather

    2012-03-01

    Polymer gel dosimeters are systems of water, gelatin, and monomers which form polymers upon irradiation. The gelatin matrix retains dose distribution in 3D form, facilitating truly integrated measurements of complex dose plans for radiation therapy. Polymer gels have two proton pools coupled by exchange: free solvent protons and bound polymerized macromolecular protons. Measuring magnetization transfer (MT) and relaxation affords useful insights into particle rigidity and chemical exchange effects on relaxation in polymer gels. Polymer gel dose response has been previously quantified with several techniques, most often in terms of MRI parameters, usually at field strengths of 1.5 T and below. The research described here investigates the dose response of a revised MAGIC gel dosimeter via both high-field imaging and simpler nuclear magnetic resonance (NMR) spectroscopy. This includes both transverse and longitudinal relaxation rates (R2 and R1) and quantitative MT parameters. We investigated estimating polymer molecular weight for a given applied dose using the Rouse model and R2 data from the imaging study. Finally, we began development of NMR methods for studying dose response, requiring adaption of NMR experiments to accommodate for radiation damping.

  10. Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers. 2. Evidence from phosphorus-31 NMR measurements

    SciTech Connect

    Spooner, P.J.R.; Watts, A. )

    1991-04-23

    {sup 31}P NMR measurements were conducted to determine the structural and chemical environment of beef heart cardiolipin when bound to cytochrome c. {sup 31}P NMR line shapes infer that the majority of lipid remains in the bilayer state and that the average conformation of the lipid phosphate is not greatly affected by binding to the protein. An analysis of the spin-lattice (T{sub 1}) relaxation times of hydrated cardiolipin as a function of temperature describes a T{sub 1} minimum at around 25{degree}C which leads to a correlation time for the phosphates in the lipid headgroup of 0.71 ns. The relaxation behavior of the protein-lipid complex was markedly different, showing a pronounced enhancement in the phosphorus spin-lattice relaxation rate. This effect of the protein increased progressively with increasing temperature, giving no indication of a minimum in T{sub 1} up to 75{degree}C. The enhancement in lipid phosphorus T{sub 1} relaxation was observed with protein in both oxidation states, being somewhat less marked for the reduced form. The characteristics of the T{sub 1} effects and the influence of the protein on other relaxation processes determined for the lipid phosphorus (spin-spin relaxation and longitudinal relaxation in the rotating frame) point to a strong paramagnetic interaction from the protein. A comparison with the relaxation behavior of samples spinning at the magic angle was also consistent with this mechanism. The results suggest that cytochrome c reversibly denatures on complexation with cardiolipin bilayers, such that the electronic ground state prevailing in the native structure of both oxidized and reduced protein can convert to high-spin states with greater magnetic susceptibility.

  11. Phosphorus-31 NMR magnetization transfer measurements of metabolic reaction rates in the rat heart and kidney in vivo

    SciTech Connect

    Koretsky, A.P.

    1984-08-01

    This dissertation is concerned with the measurement of the rates of ATP synthesis in the rat kidney and of the creatine kinase catalyzed reaction in the rat heart in situ. Chronically implanted detection coils, employing a balanced matching configuration of capacitors in the tuned circuit, were used to obtain /sup 31/P NMR spectra from heart, kidney, and liver in situ. Gated spectra of heart obtained at systole and diastole and the effects of fructose on kidney and liver were studied. The ability to observe other nuclei using implanted coils is illustrated with /sup 39/K NMR spectra from kidney and muscle. The theoretical considerations of applying magnetization transfer techniques to intact organs are discussed with emphasis on the problems associated with multiple exchange reactions and compartmentation of reactants. Experimental measurements of the ATP synthesis rate (13 ..mu..mol/min/gm tissue) were compared to whole kidney oxygen consumption and Na/sup +/ reabsorption rates to derive ATP/O (0.8 to 1.7) and Na/sup +//ATP (4 to 10) values. The problems associated with ATP synthesis rate measurements in kidney, e.g., the heterogeneity of the inorganic phosphate resonance, are discussed and experiments to overcome these problems proposed.

  12. Rheo-NMR Measurements of Cocoa Butter Crystallized Under

    SciTech Connect

    Mudge, E.; Mazzanti, G

    2009-01-01

    Modifications of a benchtop NMR instrument were made to apply temperature control to a shearing NMR cell. This has enabled the determination in situ of the solid fat content (SFC) of cocoa butter under shearing conditions. The cocoa butter was cooled at 3 C/min to three final temperatures of 17.5, 20.0, and 22.5 C with applied shear rates between 45 and 720 s-1. Polymorphic transitions of the cocoa butter were determined using synchrotron X-ray diffraction with an identical shearing system constructed of Lexan. Sheared samples were shown to have accelerated phase transitions compared to static experiments. In experiments where form V was confirmed to be the dominant polymorph, the final SFC averaged around 50%. However, when other polymorphic forms were formed, a lower SFC was measured because the final temperature was within the melting range of that polymorph and only partial crystallization happened. A shear rate of 720 s-1 delayed phase transitions, likely due to viscous heating of the sample. Pulsed NMR is an invaluable tool for determining the crystalline fraction in hydrogen containing materials, yet its use for fundamental and industrial research on fat or alkanes crystallization under shear has only recently been developed.

  13. Two Phase Flow Measurements by Nuclear Magnetic Resonance (NMR)

    SciTech Connect

    Altobelli, Stephen A; Fukushima, Eiichi

    2006-08-14

    In concentrated suspensions, there is a tendency for the solid phase to migrate from regions of high shear rate to regions of low shear (Leighton & Acrivos, 1987). In the early years that our effort was funded by the DOE Division of Basic Energy Science, quantitative measurement of this process in neutrally buoyant suspensions was a major focus (Abbott, et al., 1991; Altobelli, et al., 1991). Much of this work was used to improve multi-phase numerical models at Sandia National Laboratories. Later, our collaborators at Sandia and the University of New Mexico incorporated body forces into their numerical models of suspension flow (Rao, Mondy, Sun, et al., 2002). We developed experiments that allow us to study flows driven by buoyancy, to characterize these flows in well-known and useful engineering terms (Altobelli and Mondy, 2002) and to begin to explore the less well-understood area of flows with multiple solid phases (Beyea, Altobelli, et al., 2003). We also studied flows that combine the effects of shear and buoyancy, and flows of suspensions made from non-Newtonian liquids (Rao, Mondy, Baer, et al, 2002). We were able to demonstrate the usefulness of proton NMR imaging of liquid phase concentration and velocity and produced quantitative data not obtainable by other methods. Fluids flowing through porous solids are important in geophysics and in chemical processing. NMR techniques have been widely used to study liquid flow in porous media. We pioneered the extension of these studies to gas flows (Koptyug, et al, 2000, 2000, 2001, 2002). This extension allows us to investigate a wider range of Peclet numbers, and to gather data on problems of interest in catalysis. We devised two kinds of NMR experiments for three-phase systems. Both experiments employ two NMR visible phases and one phase that gives no NMR signal. The earlier method depends on the two visible phases differing in a NMR relaxation property. The second method (Beyea, Altobelli, et al., 2003) uses two

  14. Xenon NMR measurements of permeability and tortuosity in reservoir rocks.

    PubMed

    Wang, Ruopeng; Pavlin, Tina; Rosen, Matthew Scott; Mair, Ross William; Cory, David G; Walsworth, Ronald Lee

    2005-02-01

    In this work we present measurements of permeability, effective porosity and tortuosity on a variety of rock samples using NMR/MRI of thermal and laser-polarized gas. Permeability and effective porosity are measured simultaneously using MRI to monitor the inflow of laser-polarized xenon into the rock core. Tortuosity is determined from measurements of the time-dependent diffusion coefficient using thermal xenon in sealed samples. The initial results from a limited number of rocks indicate inverse correlations between tortuosity and both effective porosity and permeability. Further studies to widen the number of types of rocks studied may eventually aid in explaining the poorly understood connection between permeability and tortuosity of rock cores. PMID:15833638

  15. Measurement of fibrin concentration by fast field-cycling NMR.

    PubMed

    Broche, Lionel M; Ismail, Saadiya R; Booth, Nuala A; Lurie, David J

    2012-05-01

    The relaxation of (1)H nuclei due to their interaction with quadrupolar (14)N nuclei in gel structures is measured using fast field-cycling NMR. This phenomenon called quadrupolar dips has been reported in different (1)H-(14)N bond-rich species. In this study, we have studied quadrupolar dips in fibrin, an insoluble protein that is the core matrix of thrombi. Fibrin was formed by the addition of thrombin to fibrinogen in 0.2% agarose gel. T(1)-dispersion curves were measured using fast field-cycling NMR relaxometry, over the field range of 1.5-3.5 MHz (proton Larmor frequency), and were analyzed using a curve-fitting algorithm. A linear increase of signal amplitude with increasing fibrin concentration was observed. This agrees with the current theory that predicts a linear relationship of signal amplitude with the concentration of contributing (14)N spins in the sample. Interestingly, fibrin formation gave rise to the signal, regardless of crosslinking induced by the transglutaminase factor XIIIa. To investigate the effect of proteins that might be trapped in the thrombi in vivo, the plasma protein albumin was added to the fibrin gel, and an increase in the quadrupolar signal amplitude was observed. This study can potentially be useful for thrombi classification by fast field-cycling MRI techniques.

  16. Phosphorus-31 NMR magnetization transfer measurements of metabolic reaction rates in the rat heart and kidney in vivo

    SciTech Connect

    Koretsky, A.P.

    1984-01-01

    /sup 31/P NMR is a unique tool to study bioenergetics in living cells. The application of magnetization transfer techniques to the measurement of steady-state enzyme reaction rates provides a new approach to understanding the regulation of high energy phosphate metabolism. This dissertation is concerned with the measurement of the rates of ATP synthesis in the rat kidney and of the creatine kinase catalyzed reaction in the rat heart in situ. The theoretical considerations of applying magnetization transfer techniques to intact organs are discussed with emphasis on the problems associated with multiple exchange reactions and compartmentation of reactants. Experimental measurements of the ATP synthesis rate were compared to whole kidney oxygen consumption and Na/sup +/ reabsorption rates to derive ATP/O values. The problems associated with ATP synthesis rate measurements in kidney, e.g. the heterogeneity of the inorganic phosphate resonance, are discussed and experiments to overcome these problems proposed. In heart, the forward rate through creatine kinase was measured to be larger than the reverse rate. To account for the difference in forward and reverse rates a model is proposed based on the compartmentation of a small pool of ATP.

  17. Local electromagnetic properties of magnetic pnictides: a comparative study probed by NMR measurements.

    PubMed

    Majumder, M; Ghoshray, K; Ghoshray, A; Pal, A; Awana, V P S

    2013-05-15

    (75)As and (31)P NMR studies are performed in PrCoAsO and NdCoPO respectively. The Knight shift data in PrCoAsO indicate the presence of an antiferromagnetic interaction between the 4f moments along the c axis in the ferromagnetic state of Co 3d moments. We propose a possible spin structure in this system. The (75)As quadrupolar coupling constant, νQ, increases continuously with decrease of temperature and is found to vary linearly with the intrinsic spin susceptibility, K(iso). This indicates the possibility of the presence of a coupling between charge density and spin density fluctuations. Further, the (31)P NMR Knight shift and spin-lattice relaxation rate (1/T1) in the paramagnetic state of NdCoPO indicate that the differences of LaCoPO and NdCoPO from SmCoPO are due to the decrement of the interlayer separation and not due to the moments of the 4f electrons. The nuclear spin-lattice relaxation time (T1) in NdCoPO shows weak anisotropy at 300 K. Using the self-consistent renormalization (SCR) theory of itinerant ferromagnets, it is shown that in the ab plane, the spin fluctuations are three-dimensional ferromagnetic in nature. From SCR theory the important spin-fluctuation parameters (T0, TA, F¯1) are evaluated. The similarities and dissimilarities of the NMR results in As and P based systems with different rare earths are also discussed. PMID:23604391

  18. Local electromagnetic properties of magnetic pnictides: a comparative study probed by NMR measurements.

    PubMed

    Majumder, M; Ghoshray, K; Ghoshray, A; Pal, A; Awana, V P S

    2013-05-15

    (75)As and (31)P NMR studies are performed in PrCoAsO and NdCoPO respectively. The Knight shift data in PrCoAsO indicate the presence of an antiferromagnetic interaction between the 4f moments along the c axis in the ferromagnetic state of Co 3d moments. We propose a possible spin structure in this system. The (75)As quadrupolar coupling constant, νQ, increases continuously with decrease of temperature and is found to vary linearly with the intrinsic spin susceptibility, K(iso). This indicates the possibility of the presence of a coupling between charge density and spin density fluctuations. Further, the (31)P NMR Knight shift and spin-lattice relaxation rate (1/T1) in the paramagnetic state of NdCoPO indicate that the differences of LaCoPO and NdCoPO from SmCoPO are due to the decrement of the interlayer separation and not due to the moments of the 4f electrons. The nuclear spin-lattice relaxation time (T1) in NdCoPO shows weak anisotropy at 300 K. Using the self-consistent renormalization (SCR) theory of itinerant ferromagnets, it is shown that in the ab plane, the spin fluctuations are three-dimensional ferromagnetic in nature. From SCR theory the important spin-fluctuation parameters (T0, TA, F¯1) are evaluated. The similarities and dissimilarities of the NMR results in As and P based systems with different rare earths are also discussed.

  19. Optimized 31P MRS in the human brain at 7 T with a dedicated RF coil setup

    PubMed Central

    van de Bank, Bart L.; Orzada, Stephan; Smits, Frits; Lagemaat, Miriam W.; Rodgers, Christopher T.; Bitz, Andreas K.

    2015-01-01

    The design and construction of a dedicated RF coil setup for human brain imaging (1H) and spectroscopy (31P) at ultra‐high magnetic field strength (7 T) is presented. The setup is optimized for signal handling at the resonance frequencies for 1H (297.2 MHz) and 31P (120.3 MHz). It consists of an eight‐channel 1H transmit–receive head coil with multi‐transmit capabilities, and an insertable, actively detunable 31P birdcage (transmit–receive and transmit only), which can be combined with a seven‐channel receive‐only 31P array. The setup enables anatomical imaging and 31P studies without removal of the coil or the patient. By separating transmit and receive channels and by optimized addition of array signals with whitened singular value decomposition we can obtain a sevenfold increase in SNR of 31P signals in the occipital lobe of the human brain compared with the birdcage alone. These signals can be further enhanced by 30 ± 9% using the nuclear Overhauser effect by B 1‐shimmed low‐power irradiation of water protons. Together, these features enable acquisition of 31P MRSI at high spatial resolutions (3.0 cm3 voxel) in the occipital lobe of the human brain in clinically acceptable scan times (~15 min). © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26492089

  20. Dynamic High-Resolution H-1 and P-31 NMR Spectroscopy and H-1 T-2 Measurements in Postmortem Rabbit Muscles Using Slow Magic Angle Spinning

    SciTech Connect

    Bertram, Hanne Christine; Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Andersen, Henrik J.

    2004-05-05

    Postmortem changes in rabbit muscle tissue with different glycogen status (normal vs low) were followed continuously from 13 min postmortem until 8 h postmortem and again 20 h postmortem using simultaneous magic angle spinning 1H and 31P NMR spectroscopy together with measurement of the transverse relaxation time, T2, of the muscle water. The 1H metabolite spectra were measured using the phase-altered spinning sidebands (PASS) technique at a spinning rate of 40 Hz. pH values calculated from the 31P NMR spectra using the chemical shifts of the C-6 line of histidine in the 1H spectra and the chemical shifts of inorganic phosphate in the 31P spectra confirmed the different muscle glycogen status in the tissues. High-resolution 1H spectra obtained from the PASS technique revealed the presence of a new resonance line at 6.8 ppm during the postmortem period, which were absent in muscles with low muscle glycogen content. This new resonance line may originate from the aminoprotons in creatine, and its appearance may be a result of a pH effect on the exchange rate between the amino and the water protons and thereby the NMR visibility. Alternatively, the new resonance line may originate from the aromatic protons in tyrosine, and its appearance may be a result of a pH-induced protein unfolding exposing hydrophobic amino acid residues to the aqueous environment. Further studies are needed to evaluate these hypotheses. Finally, distributed analysis of the water T2 relaxation data revealed three relaxation populations and an increase in the population believed to reflect extramyofibrillar water through the postmortem period. This increase was significantly reduced (p < 0.0001) in samples from animals with low muscle glycogen content, indicating that the pH is controlling the extent of postmortem expulsion of water from myofibrillar structures. The significance of the postmortem increase in the amount extramyofibrillar water on the water-holding capacity was verified by

  1. Systematic bias in NMR diffusion measurements on polydisperse systems

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoyue; Xu, Kaipin; Zhang, Shanmin

    2015-03-01

    Least-squares fitting of the Stejskal-Tanner equation is a routine process in the measurement of molecular diffusion coefficient (MDC) using Nuclear Magnetic Resonance (NMR) Spectroscopy. It is simple and elegant. However, a bias of the MDC is noticed when the system is polydispersed. This is due to improper accounts of the diffusion coefficient distribution. Eventually, it leads to a discrepancy between the observed MDC and the statistical mean value of the distribution. To reveal the discrepancy, an analytical solution is derived when the diffusion data is taken a logarithmic linearization. Computer simulation is also applied to obtain a non-linear regression result. For a Gaussian distribution of the MDCs, the bias is proportional to the square of the distribution width (linear regression), but it is also inversely proportional to the statistical mean value of the distribution (non-linear regression). This indicates that the MDC derived from Stejskal-Tanner equation only holds well for narrow distribution of MDCs. Otherwise, molecular radius derived from the Stokes-Einstein equation needs to be reconsidered due to the incorrect estimation of the MDC.

  2. Systematic bias in NMR diffusion measurements on polydisperse systems.

    PubMed

    Zhou, Xiaoyue; Xu, Kaipin; Zhang, Shanmin

    2015-03-01

    Least-squares fitting of the Stejskal-Tanner equation is a routine process in the measurement of molecular diffusion coefficient (MDC) using Nuclear Magnetic Resonance (NMR) Spectroscopy. It is simple and elegant. However, a bias of the MDC is noticed when the system is polydispersed. This is due to improper accounts of the diffusion coefficient distribution. Eventually, it leads to a discrepancy between the observed MDC and the statistical mean value of the distribution. To reveal the discrepancy, an analytical solution is derived when the diffusion data is taken a logarithmic linearization. Computer simulation is also applied to obtain a non-linear regression result. For a Gaussian distribution of the MDCs, the bias is proportional to the square of the distribution width (linear regression), but it is also inversely proportional to the statistical mean value of the distribution (non-linear regression). This indicates that the MDC derived from Stejskal-Tanner equation only holds well for narrow distribution of MDCs. Otherwise, molecular radius derived from the Stokes-Einstein equation needs to be reconsidered due to the incorrect estimation of the MDC.

  3. Method and sample spinning apparatus for measuring the NMR spectrum of an orientationally disordered sample

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR apparatus and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus spins the sample about an axis. The angle of the axis is mechanically varied such that the time average of two or more Legendre polynomials are zero.

  4. Method and apparatus for measuring the NMR spectrum of an orientationally disordered sample

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise oreintationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions is zero.

  5. 31P-nuclear magnetic resonance spectroscopy in vivo of six human melanoma xenograft lines: tumour bioenergetic status and blood supply.

    PubMed Central

    Lyng, H.; Olsen, D. R.; Southon, T. E.; Rofstad, E. K.

    1993-01-01

    Six human melanoma xenograft lines grown s.c. in BALB/c-nu/nu mice were subjected to 31P-nuclear magnetic resonance (31P-NMR) spectroscopy in vivo. The following resonances were detected: phosphomonoesters (PME), inorganic phosphate (Pi), phosphodiesters (PDE), phosphocreatine (PCr) and nucleoside triphosphate gamma, alpha and beta (NTP gamma, alpha and beta). The main purpose of the work was to search for possible relationships between 31P-NMR resonance ratios and tumour pH on the one hand and blood supply per viable tumour cell on the other. The latter parameter was measured by using the 86Rb uptake method. Tumour bioenergetic status [the (PCr + NTP beta)/Pi resonance ratio], tumour pH and blood supply per viable tumour cell decreased with increasing tumour volume for five of the six xenograft lines. The decrease in tumour bioenergetic status was due to a decrease in the (PCr + NTP beta)/total resonance ratio as well as an increase in the Pi/total resonance ratio. The decrease in the (PCr + NTP beta)/total resonance ratio was mainly a consequence of a decrease in the PCr/total resonance ratio for two lines and mainly a consequence of a decrease in the NTP beta/total resonance ratio for three lines. The magnitude of the decrease in the (PCr + NTP beta)/total resonance ratio and the magnitude of the decrease in tumour pH were correlated to the magnitude of the decrease in blood supply per viable tumour cell. Tumour pH decreased with decreasing tumour bioenergetic status, and the magnitude of this decrease was larger for the tumour lines showing a high than for those showing a low blood supply per viable tumour cell. No correlations across the tumour lines were found between tumour pH and tumour bioenergetic status or any other resonance ratio on the one hand and blood supply per viable tumour cell on the other. The differences in the 31P-NMR spectrum between the tumour lines were probably caused by differences in the intrinsic biochemical properties of the tumour

  6. Erythrocytes in muscular dystrophy. Investigation with /sup 31/P nuclear magnetic resonance spectroscopy

    SciTech Connect

    Sarpel, G.; Lubansky, H.J.; Danon, M.J.; Omachi, A.

    1981-05-01

    Phosphorus 31 nuclear magnetic resonance (/sup 31/P NMR) signals were recorded from intact human erythrocytes for 16 hours. Total phosphate concentration, which was estimated as the sum of the individual /sup 31/P signals, was 25% lower in erythrocytes from men with myotonic dystrophy than in control erythrocytes. The inorganic-phosphate fraction contained the highest average phosphate concentration over the 16-hour period, and made the major contribution to the difference in total phosphate between the two groups. This result was not observed in erythrocytes from either women with myotonic dystrophy or patients with Duchenne's dystrophy and may be due to a change in cell membrane permeability to inorganic phosphate, which leads to lower steady-state concentrations of the intracellular phosphates.

  7. Erythrocytes in muscular dystrophy. Investigation with 31P nuclear magnetic resonance spectroscopy

    SciTech Connect

    Sarpel, G.; Lubansky, H.J.; Danon, M.J.; Omachi, A.

    1981-05-01

    Phosphorus 31 nuclear magnetic resonance (31P NMR) signals were recorded from intact human erythrocytes for 16 hours. Total phosphate concentration, which was estimated as the sum of the individual 31P signals, was 25% lower in erythrocytes from men with myotonic dystrophy than in control erythrocytes. The inorganic-phosphate fraction contained the highest average phosphate concentration over the 16-hour period, and made the major contribution to the difference in total phosphate between the two groups. This result was not observed in erythrocytes from either women with myotonic dystrophy or patients with Duchenne's dystrophy and may be due to a change in cell membrane permeability to inorganic phosphate, which lead to lower steady-state concentrations of the intracellular phosphates.

  8. Bloch-Siegert B1+-Mapping for Human Cardiac 31P-MRS at 7 Tesla

    PubMed Central

    Clarke, William T.; Robson, Matthew D.; Rodgers, Christopher T.

    2016-01-01

    Purpose Phosphorus MR spectroscopy (31P-MRS) is a powerful tool for investigating tissue energetics in vivo. Cardiac 31P-MRS is typically performed using surface coils that create an inhomogeneous excitation field across the myocardium. Accurate measurements of B1+ (and hence flip angle) are necessary for quantitative analysis of 31P-MR spectra. We demonstrate a Bloch-Siegert B1+-mapping method for this purpose. Theory and Methods We compare acquisition strategies for Bloch-Siegert B1+-mapping when there are several spectral peaks. We optimize a Bloch-Siegert sensitizing (Fermi) pulse for cardiac 31P-MRS at 7 Tesla (T) and apply it in a three-dimensional (3D) chemical shift imaging sequence. We validate this in phantoms and skeletal muscle (against a dual-TR method) and present the first cardiac 31P B1+-maps at 7T. Results The Bloch-Siegert method correlates strongly (Pearson’s r = 0.90 and 0.84) and has bias <25 Hz compared with a multi-TR method in phantoms and dual-TR method in muscle. Cardiac 3D B1+-maps were measured in five normal volunteers. B1+ maps based on phosphocreatine and alpha-adenosine-triphosphate correlated strongly (r = 0.62), confirming that the method is T1 insensitive. Conclusion The 3D 31P Bloch-Siegert B1+-mapping is consistent with reference methods in phantoms and skeletal muscle. It is the first method appropriate for 31P B1+-mapping in the human heart at 7T. PMID:26509652

  9. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy.

    PubMed

    Lu, Yi; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2016-01-01

    NMR measurements do not require separation and chemical modification of samples and therefore rapidly and directly provide non-targeted information on chemical components in complex mixtures. In this study, one-dimensional (¹H, (13)C, and (31)P) and two-dimensional (¹H-(13)C and ¹H-(31)P) NMR spectroscopy were conducted to analyze yogurt without any pretreatment. ¹H, (13)C, and (31)P NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose were separately observed in the ¹H NMR spectra. In addition, the signals from the acyl chains of milk fats were also successfully identified but overlapped with many other signals. Quantitative difference spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the quantitative ¹H NMR spectra. This method allowed us to eliminate interference on the overlaps; therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat could be determined directly without separation. Moreover, the ¹H-(31)P HMBC spectra revealed for the first time that N-acetyl-d-glucosamine-1-phosphate is contained in yogurt. PMID:27322339

  10. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy

    PubMed Central

    Lu, Yi; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2016-01-01

    NMR measurements do not require separation and chemical modification of samples and therefore rapidly and directly provide non-targeted information on chemical components in complex mixtures. In this study, one-dimensional (1H, 13C, and 31P) and two-dimensional (1H-13C and 1H-31P) NMR spectroscopy were conducted to analyze yogurt without any pretreatment. 1H, 13C, and 31P NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose were separately observed in the 1H NMR spectra. In addition, the signals from the acyl chains of milk fats were also successfully identified but overlapped with many other signals. Quantitative difference spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the quantitative 1H NMR spectra. This method allowed us to eliminate interference on the overlaps; therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat could be determined directly without separation. Moreover, the 1H-31P HMBC spectra revealed for the first time that N-acetyl-d-glucosamine-1-phosphate is contained in yogurt. PMID:27322339

  11. In vivo 31P nuclear magnetic resonance investigation of tellurite toxicity in Escherichia coli.

    PubMed

    Lohmeier-Vogel, Elke M; Ung, Shiela; Turner, Raymond J

    2004-12-01

    Here we compare the physiological state of Escherichia coli exposed to tellurite or selenite by using the noninvasive technique of phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy. We studied glucose-fed Escherichia coli HB101 cells containing either a normal pUC8 plasmid with no tellurite resistance determinants present or the pTWT100 plasmid which contains the resistance determinants tehAB. No differences could be observed in intracellular ATP levels, the presence or absence of a transmembrane pH gradient, or the levels of phosphorylated glycolytic intermediates when resistant cells were studied by 31P NMR in the presence or absence of tellurite. In the sensitive strain, we observed that the transmembrane pH gradient was dissipated and intracellular ATP levels were rapidly depleted upon exposure to tellurite. Only the level of phosphorylated glycolytic intermediates remained the same as observed with resistant cells. Upon exposure to selenite, no differences could be observed by 31P NMR between resistant and sensitive strains, suggesting that the routes for selenite and tellurite reduction within the cells differ significantly, since only tellurite is able to collapse the transmembrane pH gradient and lower ATP levels in sensitive cells. The presence of the resistance determinant tehAB, by an as yet unidentified detoxification event, protects the cells from uncoupling by tellurite.

  12. In Vivo 31P Nuclear Magnetic Resonance Investigation of Tellurite Toxicity in Escherichia coli

    PubMed Central

    Lohmeier-Vogel, Elke M.; Ung, Shiela; Turner, Raymond J.

    2004-01-01

    Here we compare the physiological state of Escherichia coli exposed to tellurite or selenite by using the noninvasive technique of phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy. We studied glucose-fed Escherichia coli HB101 cells containing either a normal pUC8 plasmid with no tellurite resistance determinants present or the pTWT100 plasmid which contains the resistance determinants tehAB. No differences could be observed in intracellular ATP levels, the presence or absence of a transmembrane pH gradient, or the levels of phosphorylated glycolytic intermediates when resistant cells were studied by 31P NMR in the presence or absence of tellurite. In the sensitive strain, we observed that the transmembrane pH gradient was dissipated and intracellular ATP levels were rapidly depleted upon exposure to tellurite. Only the level of phosphorylated glycolytic intermediates remained the same as observed with resistant cells. Upon exposure to selenite, no differences could be observed by 31P NMR between resistant and sensitive strains, suggesting that the routes for selenite and tellurite reduction within the cells differ significantly, since only tellurite is able to collapse the transmembrane pH gradient and lower ATP levels in sensitive cells. The presence of the resistance determinant tehAB, by an as yet unidentified detoxification event, protects the cells from uncoupling by tellurite. PMID:15574934

  13. Homonuclear and Heteronuclear NMR Studies of a Statherin Fragment Bound to Hydroxyapatite Crystals

    SciTech Connect

    Raghunathan, Vinodhkumar; Gibson, James M.; Goobes, Gil; Popham, Jennifer M.; Louie, Elizabeth; Stayton, Patrick; Drobny, Gary P.

    2006-05-11

    Acidic proteins found in mineralized tissues act as nature's crystal engineers, where they play a key role in promoting or inhibiting the growth of minerals such as hydroxyapatite (HAP), Ca10(PO4)6(OH)2, the main mineral component of bone and teeth. Key to understanding the structural basis of protein-crystal recognition and protein control of hard tissue growth is the nature of interactions between the protein side chains and the crystal surface. In an earlier work we have measured the proximity of the lysine (K6) side chain in an SN-15 peptide fragment of the salivary protein statherin adsorbed to the Phosphorus-rich surface of HAP using solid-state NMR recoupling experiments. 15N(31P) rotational echo double resonance (REDOR) NMR data on the side-chain nitrogen in K6 gave rise to three different models of protein-surface interaction to explain the experimental data acquired. In this work we extend the analysis of the REDOR data by examining the contribution of interactions between surface phosphorus atoms to the observed 15N REDOR decay. We performed 31P-31P recoupling experiments in HAP and (NH4)2HPO4 (DHP) to explore the nature of dipolar coupled 31P spin networks. These studies indicate that extensive networks of dipolar coupled 31P spins can be represented as stronger effective dipolar couplings, the existence of which must be included in the analysis of REDOR data. We carried out 15N(31P) REDOR in the case of DHP to determine how the size of the dephasing spin network influences the interpretation of the REDOR data. Although use of an extended 31P coupled spin network simulates the REDOR data well, a simplified 31P dephasing system composed of two spins with a larger dipolar coupling also simulates the REDOR data and only perturbs the heteronuclear couplings very slightly. The 31P-31P dipolar couplings between phosphorus nuclei in HAP can be replaced by an effective dipolar interaction of 600 Hz between two 31P spins. We incorporated this coupling and

  14. Measurement of longitudinal relaxation times in crowded 1H NMR spectra using one- and two-dimensional maximum quantum (MAXY) NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Maili; Ye, Chaohui; Farrant, R. Duncan; Nicholson, Jeremy K.; Lindon, John C.

    Methods for measuring longitudinal relaxation times of protons in heavily overlapped 1H NMR spectra are introduced and exemplified using a solution of cholesteryl acetate. The methods are based on 1-dimensional and 2-dimensional maximum quantum NMR spectroscopy (MAXY), which makes possible the selective detection of CH, CH2 and CH31H NMR resonances. A modification of the BIRD pulse sequence to achieve selective inversion of protons bonded to either 12C or 13C is given. The approach should find application in studies of molecular dynamics where isotopic enrichment is not possible and the level of available sample dictates the use of 1H NMR spectroscopy.

  15. Cerebral blood flow measured by NMR indicator dilution in cats.

    PubMed

    Ewing, J R; Branch, C A; Helpern, J A; Smith, M B; Butt, S M; Welch, K M

    1989-02-01

    We developed techniques to assess the utility of a nuclear magnetic resonance (NMR) indicator for cerebral blood flow studies in cats, using Freon-22 for the first candidate. A PIN-diode-switched NMR experiment allowed the acquisition of an arterial as well as a cerebral fluorine-19 signal proportional to concentration vs. time in a 1.89 T magnet. Mean +/- SD blood:brain partition coefficients for Freon-22 were estimated at 0.93 +/- 0.08 for gray matter and 0.77 +/- 0.12 for white matter. Using maximum-likelihood curve fitting, estimates of mean +/- SD resting cerebral blood flow were 50 +/- 19 ml/100 g-min for gray matter and 5.0 +/- 2.0 ml/100 g-min for white matter. Hypercapnia produced the expected increases in gray and white matter blood flow. The physiologic effects of Freon-22, including an increase in cerebral blood flow itself with administration of 40% by volume, may limit its use as an indicator. Nevertheless, the NMR techniques described demonstrate the feasibility of fluorine-19-labeled compounds as cerebral blood flow indicators and the promise for their use in humans.

  16. Cerebral blood flow measured by NMR indicator dilution in cats

    SciTech Connect

    Ewing, J.R.; Branch, C.A.; Helpern, J.A.; Smith, M.B.; Butt, S.M.; Welch, K.M.

    1989-02-01

    We developed techniques to assess the utility of a nuclear magnetic resonance (NMR) indicator for cerebral blood flow studies in cats, using Freon-22 for the first candidate. A PIN-diode-switched NMR experiment allowed the acquisition of an arterial as well as a cerebral fluorine-19 signal proportional to concentration vs. time in a 1.89 T magnet. Mean +/- SD blood:brain partition coefficients for Freon-22 were estimated at 0.93 +/- 0.08 for gray matter and 0.77 +/- 0.12 for white matter. Using maximum-likelihood curve fitting, estimates of mean +/- SD resting cerebral blood flow were 50 +/- 19 ml/100 g-min for gray matter and 5.0 +/- 2.0 ml/100 g-min for white matter. Hypercapnia produced the expected increases in gray and white matter blood flow. The physiologic effects of Freon-22, including an increase in cerebral blood flow itself with administration of 40% by volume, may limit its use as an indicator. Nevertheless, the NMR techniques described demonstrate the feasibility of fluorine-19-labeled compounds as cerebral blood flow indicators and the promise for their use in humans.

  17. Cerebral blood flow measured by NMR indicator dilution in cats.

    PubMed

    Ewing, J R; Branch, C A; Helpern, J A; Smith, M B; Butt, S M; Welch, K M

    1989-02-01

    We developed techniques to assess the utility of a nuclear magnetic resonance (NMR) indicator for cerebral blood flow studies in cats, using Freon-22 for the first candidate. A PIN-diode-switched NMR experiment allowed the acquisition of an arterial as well as a cerebral fluorine-19 signal proportional to concentration vs. time in a 1.89 T magnet. Mean +/- SD blood:brain partition coefficients for Freon-22 were estimated at 0.93 +/- 0.08 for gray matter and 0.77 +/- 0.12 for white matter. Using maximum-likelihood curve fitting, estimates of mean +/- SD resting cerebral blood flow were 50 +/- 19 ml/100 g-min for gray matter and 5.0 +/- 2.0 ml/100 g-min for white matter. Hypercapnia produced the expected increases in gray and white matter blood flow. The physiologic effects of Freon-22, including an increase in cerebral blood flow itself with administration of 40% by volume, may limit its use as an indicator. Nevertheless, the NMR techniques described demonstrate the feasibility of fluorine-19-labeled compounds as cerebral blood flow indicators and the promise for their use in humans. PMID:2645693

  18. Measuring Level Alignment at the Metal–Molecule Interface by In Situ Electrochemical 13C NMR

    SciTech Connect

    Li, Ying; Zelakiewicz, Brian S.; Allison, Thomas C.; Tong, Yu ye J.

    2015-03-16

    A new technique to measure energy-level alignment at a metal–molecule interface between the Fermi level of the metal and the frontier orbitals of the molecule is proposed and experimentally demonstrated. The method, which combines the electrochemistry of organo-ligand-stabilized Au nanoparticles with 13C NMR spectroscopy (i.e. in situ electrochemical NMR), enables measuring both occupied and unoccupied states.

  19. Probing the interaction of U(vi) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy.

    PubMed

    Uribe, Eva C; Mason, Harris E; Shusterman, Jennifer A; Bruchet, Anthony; Nitsche, Heino

    2016-06-21

    The fundamental interaction of U(vi) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U(vi) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse (31)P NMR on U(vi) contacted samples revealed that U(vi) only interacts with a fraction of the ligands present on the surface. At pH 4 the U(vi) extraction capacity of the material is limited to 27-37% of the theoretical capacity, based on ligand loading. We combined single pulse (31)P NMR on U(vi)-contacted samples with batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U(vi) binds to deprotonated phosphonate and/or silanol sites. We use (31)P-(31)P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U(vi)-complexed and non-complexed ligand environments. These measurements reveal that U(vi) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex. PMID:27265020

  20. Ultra-low-field NMR relaxation and diffusion measurements using an optical magnetometer.

    PubMed

    Ganssle, Paul J; Shin, Hyun D; Seltzer, Scott J; Bajaj, Vikram S; Ledbetter, Micah P; Budker, Dmitry; Knappe, Svenja; Kitching, John; Pines, Alexander

    2014-09-01

    Nuclear magnetic resonance (NMR) relaxometry and diffusometry are important tools for the characterization of heterogeneous materials and porous media, with applications including medical imaging, food characterization and oil-well logging. These methods can be extremely effective in applications where high-resolution NMR is either unnecessary, impractical, or both, as is the case in the emerging field of portable chemical characterization. Here, we present a proof-of-concept experiment demonstrating the use of high-sensitivity optical magnetometers as detectors for ultra-low-field NMR relaxation and diffusion measurements.

  1. NMR measurements in a hydrogen/helium slush at 4.2 K

    NASA Astrophysics Data System (ADS)

    Matusiak, Marcin; Hamida, Jaha; Ihas, Gary G.; Sullivan, Neil

    2003-03-01

    Matrix isolation of various atoms in solid hydrogen presents both pure and applied research possibilities. When single atom properties are measured with NMR in the background of a quantum solid, insight into electronic interactions and quantum diffusion may be obtained. A cell has been constructed which, when filled with liquid helium, may have various gases injected into it. If this gas is a mixture of hydrogen and, say, boron, NMR may be performed on both the H and the B nuclei. Crystal or amorphous structures and atomic diffusion may be investigated. Design and construction of the apparatus will be presented. The first pulsed NMR data on H will be presented and interpreted.

  2. J-GFT NMR for precise measurement of mutually correlated nuclear spin-spin couplings.

    PubMed

    Atreya, Hanudatta S; Garcia, Erwin; Shen, Yang; Szyperski, Thomas

    2007-01-24

    G-matrix Fourier transform (GFT) NMR spectroscopy is presented for accurate and precise measurement of chemical shifts and nuclear spin-spin couplings correlated according to spin system. The new approach, named "J-GFT NMR", is based on a largely extended GFT NMR formalism and promises to have a broad impact on projection NMR spectroscopy. Specifically, constant-time J-GFT (6,2)D (HA-CA-CO)-N-HN was implemented for simultaneous measurement of five mutually correlated NMR parameters, that is, 15N backbone chemical shifts and the four one-bond spin-spin couplings 13Calpha-1Halpha, 13Calpha-13C', 15N-13C', and 15N-1HNu. The experiment was applied for measuring residual dipolar couplings (RDCs) in an 8 kDa protein Z-domain aligned with Pf1 phages. Comparison with RDC values extracted from conventional NMR experiments reveals that RDCs are measured with high precision and accuracy, which is attributable to the facts that (i) the use of constant time evolution ensures that signals do not broaden whenever multiple RDCs are jointly measured in a single dimension and (ii) RDCs are multiply encoded in the multiplets arising from the joint sampling. This corresponds to measuring the couplings multiple times in a statistically independent manner. A key feature of J-GFT NMR, i.e., the correlation of couplings according to spin systems without reference to sequential resonance assignments, promises to be particularly valuable for rapid identification of backbone conformation and classification of protein fold families on the basis of statistical analysis of dipolar couplings.

  3. Gated in vivo examination of cardiac metabolites with /sup 31/P nuclear magnetic resonance

    SciTech Connect

    Kantor, H.L.; Briggs, R.W.; Metz, K.R.; Balaban, R.S.

    1986-07-01

    Phosphorus-31 nuclear magnetic resonance (/sup 31/P NMR) spectroscopy was used to study the temporal aspects of metabolism of canine heart in vivo. An NMR catheter coil was passed through the jugular vein of a dog into the apex of the right ventricle and spectra were recorded at four points in the cardiac cycle by triggering from the blood pressure trace of the animal. The /sup 31/P spin-lattice relaxation times of phosphocreatine (PC) and the ..gamma../sup -/,..cap alpha../sup -/, and ..beta..-phosphates of ATP at 1.89 Tesla are 4.4, 1.8, 1.7, and 1.6 s, respectively. The ratio of PC to ATP is 2.0. No changes in PC/ATP were noted in any of the four portions of the cardiac cycle examined, and difference spectra exhibited no observable signals, in contrast to previously reported results for glucose-perfused rat hearts. On the assumption that intracellular pH and the total creatine pool were constant, the expression for the creatine kinase reaction was used to deduce that free ADP concentrations were invariant throughout the cardiac cycle. This is in apparent disagreement with the proposed regulatory role for ADP in heart oxidative phosphorylation.

  4. NMR measurement of hydrodynamic dispersion in porous media subject to biofilm mediated precipitation reactions.

    PubMed

    Fridjonsson, Einar O; Seymour, Joseph D; Schultz, Logan N; Gerlach, Robin; Cunningham, Alfred B; Codd, Sarah L

    2011-03-01

    Noninvasive measurements of hydrodynamic dispersion by nuclear magnetic resonance (NMR) are made in a model porous system before and after a biologically mediated precipitation reaction. Traditional magnetic resonance imaging (MRI) was unable to detect the small scale changes in pore structure visualized during light microscopy analysis after destructive sampling of the porous medium. However, pulse gradient spin echo nuclear magnetic resonance (PGSE NMR) measurements clearly indicated a change in hydrodynamics including increased pore scale mixing. These changes were detected through time-dependent measurement of the propagator by PGSE NMR. The dynamics indicate an increased pore scale mixing which alters the preasymptotic approach to asymptotic Gaussian dynamics governed by the advection diffusion equation. The methods described here can be used in the future to directly measure the transport of solutes in biomineral-affected porous media and contribute towards reactive transport models, which take into account the influence of pore scale changes in hydrodynamics.

  5. Dissolution Dynamic Nuclear Polarization Instrumentation for Real-time Enzymatic Reaction Rate Measurements by NMR.

    PubMed

    Balzan, Riccardo; Fernandes, Laetitia; Comment, Arnaud; Pidial, Laetitia; Tavitian, Bertrand; Vasos, Paul R

    2016-01-01

    The main limitation of NMR-based investigations is low sensitivity. This prompts for long acquisition times, thus preventing real-time NMR measurements of metabolic transformations. Hyperpolarization via dissolution DNP circumvents part of the sensitivity issues thanks to the large out-of-equilibrium nuclear magnetization stemming from the electron-to-nucleus spin polarization transfer. The high NMR signal obtained can be used to monitor chemical reactions in real time. The downside of hyperpolarized NMR resides in the limited time window available for signal acquisition, which is usually on the order of the nuclear spin longitudinal relaxation time constant, T1, or, in favorable cases, on the order of the relaxation time constant associated with the singlet-state of coupled nuclei, TLLS. Cellular uptake of endogenous molecules and metabolic rates can provide essential information on tumor development and drug response. Numerous previous hyperpolarized NMR studies have demonstrated the relevancy of pyruvate as a metabolic substrate for monitoring enzymatic activity in vivo. This work provides a detailed description of the experimental setup and methods required for the study of enzymatic reactions, in particular the pyruvate-to-lactate conversion rate in presence of lactate dehydrogenase (LDH), by hyperpolarized NMR. PMID:26967906

  6. Measurement of pH by NMR Spectroscopy in Concentrated Aqueous Fluoride Buffers

    PubMed Central

    Gerken, James B.

    2010-01-01

    An NMR spectroscopic technique has been developed to give rapid, accurate pH measurements on tenth-milliliter samples of concentrated acidic aqueous solutions buffered by fluoride ion in the pH 1.5 – 4.5 range. The fluoride 19F chemical shift has been calibrated as a function of pH at 0.1 and 1.0 M concentration by reference to an internal 3-fluoropyridine standard. Subsequent measurements of fluoride buffer pH required no additives and only two NMR spectra in the presence of an external reference standard. PMID:21278857

  7. Pitfalls in the Measurement of Metabolite Concentrations Using the One-Pulse Experiment in in Vivo NMR: Commentary on ``On Neglecting Chemical Exchange Effects When Correcting in Vivo 31P MRS Data for Partial Saturation''

    NASA Astrophysics Data System (ADS)

    Spencer, Richard G. S.; Fishbein, Kenneth W.; Galban, Craig J.

    2001-04-01

    In an article in a previous issue of the Journal of Magnetic Resonance, Ouwerkerk and Bottomley (J. Magn. Reson.148, pp. 425-435, 2001) show that even in the presence of chemical exchange, the dependence of saturation factors on repetition time in the one-pulse experiment is approximately monoexponential. They conclude from this fact that the effect of chemical exchange on the use of saturation factors when correcting for partial saturation is negligible. We take issue with this conclusion and demonstrate that because saturation factors in the presence of chemical exchange are strongly dependent upon all of the chemical parameters of the system, that is, upon all T1's and M0's of resonances in the exchange network and upon the reaction rates themselves, it is problematic to apply saturation factor corrections in situations in which any of these parameters may change. The error criterion we establish reflects actual errors in quantitation, rather than departures from monoexponentiality.

  8. Estimation and measurement of flat or solenoidal coil inductance for radiofrequency NMR coil design.

    PubMed

    Rainey, Jan K; DeVries, Jeffrey S; Sykes, Brian D

    2007-07-01

    The inductance of a radiofrequency coil determines its compatibility with a given NMR probe circuit. However, calculation (or estimation) of inductance for radiofrequency coils of dimensions suitable for use in an NMR probe is not trivial, particularly for flat-coils. A comparison of a number of formulae for calculation of inductance is presented through the use of a straightforward inductance measurement circuit. This technique relies upon instrumentation available in many NMR laboratories rather than upon more expensive and specialized instrumentation often utilized in the literature. Inductance estimation methods are suggested and validated for both flat-coils and solenoids. These have proven very useful for fabrication of a number of new coils in our laboratory for use in static solid-state NMR probes operating at (1)H frequencies of 300 and 600MHz. Solenoidal coils with very similar measured and estimated inductances having inner diameters from 1 to 5mm are directly compared as an example of the practical application of inductance estimation for interchange of coils within an existing solid-state NMR probe.

  9. Combining SIP and NMR Measurements to Develop Improved Estimates of Permeability in Sandstone Cores

    NASA Astrophysics Data System (ADS)

    Keating, K.; Binley, A. M.

    2013-12-01

    Permeability is traditionally measured in-situ by inducing groundwater flow using pumping, slug, or packer tests; however, these methods require the existence of wells, can be labor intensive and can be constrained by measurement support volumes. Indirect estimates of permeability based on geophysical techniques benefit from relatively short measurement times, do not require fluid extraction, and are non-invasive when made from the surface (or minimally invasive when made in a borehole). However, estimates of permeability based on a single geophysical method often require calibration for rock type, and cannot be used to uniquely determine all of the physical properties required to accurately determine permeability. In this laboratory study we present the first critical step towards developing a method for estimating permeability based on the synergistic coupling of two complementary geophysical methods: spectral induced polarization (SIP) and nuclear magnetic resonance (NMR). To develop an improved model for estimating permeability, laboratory SIP and NMR measurements were collected on a series of sandstone cores, covering a wide range of permeabilities. Current models for estimating permeability from each individual geophysical measurement were compared to independently obtained estimates of permeability. The comparison confirmed previous research showing that estimates from SIP or NMR alone only yield the permeability within order of magnitude accuracy and must be calibrated for rock type. Next, the geophysical parameters determined from SIP and NMR were compared to independent measurements the physical properties of the sandstone cores including gravimetric porosity and pores-size distributions (obtained from mercury injection porosimetry); this comparison was used to evaluate which geophysical parameter more consistently and accurately predicted each physical property. Finally, we present an improved method for estimating permeability in sandstone cores based

  10. An introduction to NMR-based approaches for measuring protein dynamics

    PubMed Central

    Kleckner, Ian R; Foster, Mark P

    2010-01-01

    Proteins are inherently flexible at ambient temperature. At equilibrium, they are characterized by a set of conformations that undergo continuous exchange within a hierarchy of spatial and temporal scales ranging from nanometers to micrometers and femtoseconds to hours. Dynamic properties of proteins are essential for describing the structural bases of their biological functions including catalysis, binding, regulation and cellular structure. Nuclear magnetic resonance (NMR) spectroscopy represents a powerful technique for measuring these essential features of proteins. Here we provide an introduction to NMR-based approaches for studying protein dynamics, highlighting eight distinct methods with recent examples, contextualized within a common experimental and analytical framework. The selected methods are (1) Real-time NMR, (2) Exchange spectroscopy, (3) Lineshape analysis, (4) CPMG relaxation dispersion, (5) Rotating frame relaxation dispersion, (6) Nuclear spin relaxation, (7) Residual dipolar coupling, (8) Paramagnetic relaxation enhancement. PMID:21059410

  11. Evaluation of an electrochemical model of erythrocyte pH buffering using 31P nuclear magnetic resonance data

    PubMed Central

    1990-01-01

    When erythrocytes are suspended in a solution of known composition the resultant values of such basic cell parameters as volume and pH are difficult to predict. To facilitate such predictions, we developed a mathematical model describing the passive transmembrane distribution of permeant species; three simultaneous equations were produced. Certain essential data required for the model were determined experimentally; these included the pH dependence of the charge on the hemoglobin molecule and the variation of the osmotic coefficient of hemoglobin with cell volume. Finally, cells were added to various solutions, and then titrated to produce a wide pH range (pH 6-8). We measured the resultant cell volume, cellular and extracellular pH using both conventional and 31P NMR methods. The expected equilibrium values of these electrochemical parameters were also calculated by solving (numerically) the three model equations. The accuracy of the model simulations was evaluated by direct comparison of calculated and experimentally determined values. PMID:2374002

  12. 1H NMR and calorimetric measurements on rabbit eye lenses.

    PubMed

    Gutsze, A; Bodurka, J; Olechnowicz, R; Buntkowsky, G; Limbach, H H

    1995-01-01

    The dynamic properties of water molecules in the rabbit lens were studied by proton nuclear magnetic resonance line shape analysis, measurements of relaxation times as a function of temperature and calorimetric measurements. The experiments prove, as already suggested by other authors, that there are two types of water in the lens of rabbit eyes, namely bound unfreezable hydration water and bulk freezable water. Line shape analysis and relaxometry showed, that this two types of water exist in two different environments, which may be identified as the nucleus and the cortex of the lens. The line shape analysis showed furthermore that water molecules in the rabbit lens has a common spin lattice relaxation time (T1), but two different transverse relaxation times (T2A and T2B). The tentative model of fast water exchange on the T1 time scale and slow water exchange on the T2 time scale, was used to explain experimental proton relaxation data of the rabbit lens. An estimation for this exchange rate kex by comparing it to the relaxation times is given (T1(-1) < kex < T1(-1)). It has also been shown by a calorimetric measurements, that the lenses can be easily under-cooled to temperatures well below the freezing point of water. The achievable maximum undercooling temperature of the lens is a function of the cooling rate KC, therefore it has to be considered as an experimentally adjustable parameter which is not characteristic for the investigated sample. Thus it must be noted that any previous discussions about the specific value of the temperature of water crystallisation in biological systems need to be carefully reconsidered.

  13. Characterizing dissolved and particulate phosphorus in water with 31P nuclear magnetic resonance spectroscopy.

    PubMed

    Cade-Menun, Barbara J; Navaratnam, John A; Walbridge, Mark R

    2006-12-15

    Management of aquatic ecosystems is hampered because current methodology limits characterization of phosphorus (P)forms. We developed a procedure to characterize dissolved (DP) and particulate (PP) P from river waters by solution 31P nuclear magnetic resonance (NMR) spectroscopy, using 4-L samples, and tested this procedure with a spiking trial. Most P was orthophosphate. Organic P forms included phosphonates, myo-inositol hexakisphosphate, and orthophosphate diesters. This research represents an important technical advance to characterize DP and PP in natural waters. It is simple, uses samples small enough for routine collection, and puts PP and DP into the same chemical environment for direct comparison. The technique is sensitive, detecting changes in spectra from P additions as small as 2% of total P, and identifying differences from two points along the flow path of a single river. However, lyophilizing samples in NaOH-ethylenediamine-tetraacetic acid (EDTA) may alter some P forms, which requires further investigation.

  14. Probing the interaction of U(VI) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy

    DOE PAGES

    Uribe, Eva C.; Mason, Harris E.; Shusterman, Jennifer A.; Bruchet, Anthony; Nitsche, Heino

    2016-05-30

    The fundamental interaction of U(VI) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U(VI) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse 31P NMR on U(VI) contacted samples revealed that U(VI)only interacts with a fraction of the ligands present on the surface. At pH 4 the U(VI) extraction capacity of the material is limited to 27–37% of the theoretical capacity, based on ligand loading. We combined single pulse 31P NMR on U(VI)-contacted samples withmore » batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U(VI) binds to deprotonated phosphonate and/or silanol sites. We use 31P–31P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U(VI)-complexed and non-complexed ligand environments. Furthermore, these measurements reveal that U(VI) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.« less

  15. Excitation functions for actinides produced in the interactions of sup 31 P with sup 248 Cm

    SciTech Connect

    Leyba, J.D.; Henderson, R.A.; Hall, H.L.; Czerwinski, K.R.; Kadkhodayan, B.A.; Kreek, S.A.; Brady, E.K.; Gregorich, K.E.; Lee, D.M.; Nurmia, M.J.; Hoffman, D.C. Nuclear Science Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California )

    1991-11-01

    Excitation functions have been measured for the production of various isotopes of Bk, Cf, Es, and Fm from the interactions of 174- and 239-MeV {sup 31}P projectiles with {sup 248}Cm. The isotopic distributions were symmetric and displayed full widths at half maximum of 2.5, 2.5, and 2.25 mass units for Bk, Cf, and Fm, respectively. The maxima of the isotopic distributions occur for those reaction channels which involve the exchange of the fewest number of nucleons between the target and projectile for which the calculated excitation energy is a positive quantity. The maxima of the excitation functions occur at those projectile energies which are consistent with the calculated reaction barriers based upon a binary reaction mechanism. The effects of the odd proton in the {sup 31}P projectile on the final isotopic distributions are discussed.

  16. Macroscopic orientation effects in broadline NMR-spectra of model membranes at high magnetic field strength: A method preventing such effects.

    PubMed

    Brumm, T; Möps, A; Dolainsky, C; Brückner, S; Bayerl, T M

    1992-04-01

    The partial orientation of multilamellar vesicles (MLV) in high magnetic fields has been studied and a method to prevent such effects is herewith proposed. The orientation effect was measured with (2)H-, (31)P-NMR and electron microscopy on MLVs of dipalmitoyl phosphatidylcholine with 30 mol% cholesterol. We present the first freeze-etch electron microscopy data obtained from MLV samples that were frozen directly in the NMR magnet at a field strength of 9.4 Tesla. These experiments clearly show that the MLVs adopt an ellipsoidal (but not a cylindrical) shape in the magnetic field. Best fit (31)P-NMR lineshape calculations assuming an ellipsoidal distribution of molecular director axes to the experimentally obtained spectra provide a quantitative measure of the average semiaxis ratio of the ellipsoidal MLVs and its change with temperature. The application of so-called spherical supported vesicles (SSV) is found to prevent any partial orientation effects so that undistorted NMR powder pattern of the bilayer can be measured independently of magnetic field strength and temperature.The usefulness of SSVs is further demonstrated by a direct comparison of spectral data such as (31)P-and (2)H-NMR lineshapes and relaxation times as well as (2)H-NMR dePaked spectra obtained for both model systems. These experiments show that spectral data obtained from partially oriented MLVs are not unambiguous to interpret, in particular, if an external parameter such as temperature is varied.

  17. Measurement and Imaging of Planar Electromagnetic Phantoms Based on NMR Imaging Methods

    NASA Astrophysics Data System (ADS)

    Frollo, I.; Andris, P.; Přibil, J.; Vojtíšek, L.; Dermek, T.; Valkovič, L.

    2010-01-01

    Planar electromagnetic phantom design for measurement and imaging using NMR has been performed. Electromagnetic phantom computation and testing on a NMR 0.178 Tesla Esaote Opera imager were accomplished. The classical geometrical and chemical phantoms are generally used for testing of NMR imaging systems. They are simple cylindrical or rectangular objects with different dimensions and shapes with holes filled with specially prepared water solutions. In our experiments a homogeneous phantom (reference medium) - a container filled with water - was used. The resultant image represents the magnetic field distribution in the homogeneous phantom. An image acquired by this method is actually a projection of the sample properties onto the homogeneous phantom. The goal of the paper is to map and image the magnetic field deformation using NMR imaging methods. We are using a double slender rectangular vessel with constant thickness filled with specially prepared water solution in our experiments. For detection a carefully tailored gradient-echo imaging method, susceptible to magnetic field homogeneity, was used.

  18. Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements.

    PubMed

    Beauchamp, Kyle A; Lin, Yu-Shan; Das, Rhiju; Pande, Vijay S

    2012-04-10

    Recent hardware and software advances have enabled simulation studies of protein systems on biophysically-relevant timescales, often revealing the need for improved force fields. Although early force field development was limited by the lack of direct comparisons between simulation and experiment, recent work from several labs has demonstrated direct calculation of NMR observables from protein simulations. Here we quantitatively evaluate recent molecular dynamics force fields against a suite of 524 chemical shift and J coupling ((3)JH(N)H(α), (3)JH(N)C(β), (3)JH(α)C', (3)JH(N)C', and (3)JH(α)N) measurements on dipeptides, tripeptides, tetra-alanine, and ubiquitin. Of the force fields examined (ff96, ff99, ff03, ff03*, ff03w, ff99sb*, ff99sb-ildn, ff99sb-ildn-phi, ff99sb-ildn-nmr, CHARMM27, OPLS-AA), two force fields (ff99sb-ildn-phi, ff99sb-ildn-nmr) combining recent side chain and backbone torsion modifications achieve high accuracy in our benchmark. For the two optimal force fields, the calculation error is comparable to the uncertainty in the experimental comparison. This observation suggests that extracting additional force field improvements from NMR data may require increased accuracy in J coupling and chemical shift prediction. To further investigate the limitations of current force fields, we also consider conformational populations of dipeptides, which were recently estimated using vibrational spectroscopy.

  19. Measuring chirality in NMR in the presence of a time-dependent electric field

    SciTech Connect

    Walls, Jamie D.; Harris, Robert A.

    2014-06-21

    Traditional nuclear magnetic resonance (NMR) experiments are “blind” to chirality since the spectra for left and right handed enantiomers are identical in an achiral medium. However, theoretical arguments have suggested that the effective Hamiltonian for spin-1/2 nuclei in the presence of electric and magnetic fields can be different for left and right handed enantiomers, thereby enabling NMR to be used to spectroscopically detect chirality even in an achiral medium. However, most proposals to detect the chiral NMR signature require measuring signals that are equivalent to picomolar concentrations for {sup 1}H nuclei, which are outside current NMR detection limits. In this work, we propose to use an AC electric field that is resonantly modulated at the Larmor frequency, thereby enhancing the effect of the chiral term by four to six orders of magnitude. We predict that a steady-state transverse magnetization, whose direction will be opposite for different enantiomers, will build up during application of an AC electric field. We also propose an experimental setup that uses a solenoid coil with an AC current to generate the necessary periodic electric fields that can be used to generate chiral signals which are equivalent to the signal from a {sup 1}H submicromolar concentration.

  20. NMR measurement of oil shale magnetic relaxation at high magnetic field

    USGS Publications Warehouse

    Seymour, Joseph D.; Washburn, Kathryn E.; Kirkland, Catherine M.; Vogt, Sarah J.; Birdwell, Justin E.; Codd, Sarah L.

    2013-01-01

    Nuclear magnetic resonance (NMR) at low field is used extensively to provide porosity and pore-size distributions in reservoir rocks. For unconventional resources, due to low porosity and permeability of the samples, much of the signal exists at very short T2 relaxation times. In addition, the organic content of many shales will also produce signal at short relaxation times. Despite recent improvements in low-field technology, limitations still exist that make it difficult to account for all hydrogen-rich constituents in very tight rocks, such as shales. The short pulses and dead times along with stronger gradients available when using high-field NMR equipment provides a more complete measurement of hydrogen-bearing phases due to the ability to probe shorter T2 relaxation times (-5 sec) than can be examined using low-field equipment. Access to these shorter T2 times allows for confirmation of partially resolved peaks observed in low-field NMR data that have been attributed to solid organic phases in oil shales. High-field (300 MHz or 7 T) NMR measurements of spin-spin T2 and spin-lattice T1 magnetic relaxation of raw and artificially matured oil shales have potential to provide data complementary to low field (2 MHz or 0.05T) measurements. Measurements of high-field T2 and T1-T2 correlations are presented. These data can be interpreted in terms of organic matter phases and mineral-bound water known to be present in the shale samples, as confirmed by Fourier transform infrared spectroscopy, and show distributions of hydrogen-bearing phases present in the shales that are similar to those observed in low field measurements.

  1. Discriminating between Lüders and von Neumann measuring devices: An NMR investigation

    NASA Astrophysics Data System (ADS)

    Sudheer Kumar, C. S.; Shukla, Abhishek; Mahesh, T. S.

    2016-10-01

    Quantum state after measuring a degenerate observable is given by Lüders and von Neumann state update rules. While the former preserves superpositions, the latter does not. Even though both rules are valid and realizable, which rule a given measuring device ("Black Box") obeys, depends on its internal details. Recently Hegerfeldt and Mayato (2012) [5] had formulated a protocol to discriminate between the two kinds of measuring devices. Here we have reformulated this protocol for system and measuring qubits. We then experimentally investigated this protocol on an NMR spectrometer, and found that Lüders rule is favoured.

  2. Measurements of heavy-atom isotope effects using 1H NMR spectroscopy.

    PubMed

    Pabis, Anna; Kamiński, Rafał; Ciepielowski, Grzegorz; Jankowski, Stefan; Paneth, Piotr

    2011-10-01

    A novel method for measuring heavy-atom KIEs for magnetically active isotopes using (1)H NMR is presented. It takes advantage of the resonance split of the protons coupled with the heavy atom in the (1)H spectrum. The method is validated by the example of the (13)C-KIE on the hydroamination of styrene with aniline, catalyzed by phosphine-ligated palladium triflates.

  3. An improved technique for computing permeability from NMR measurements in mudstones

    NASA Astrophysics Data System (ADS)

    Daigle, Hugh; Dugan, Brandon

    2011-08-01

    We develop a technique for extending nuclear magnetic resonance (NMR) permeability estimation to clay-rich sediments. Our technique builds on the Schlumberger-Doll Research (SDR) equation by using porosity, grain size, specific surface, and magnetic susceptibility data to yield more accurate permeability estimation in mudstones with large pore surface areas and complex mineralogies. Based on measurements of natural sediments as well as resedimented laboratory mixtures of silica, bentonite, and kaolinite powders, we find that our method predicts permeability values that match measured values over four orders of magnitude and among lithologies that vary widely in grain size, mineralogy, and surface area. Our results show that the relationship between NMR data and permeability is a function of mineralogy and grain geometry, and that permeability predictions in clay-rich sediments can be improved with insights regarding the nature of the pore system made by the Kozeny theory. This technique extends the utility of NMR measurements beyond typical reservoir-quality rocks to a wide range of lithologies.

  4. NMR study of crystallization in MgO-CaO-SiO 2-P 2O 5 glass-ceramics

    NASA Astrophysics Data System (ADS)

    Ren, Hai-Lan; Yue, Yong; Ye, Chao-Hui; Guo, Li-Ping; Lei, Jia-Heng

    1998-08-01

    29Si and 31P magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) measurements were employed to investigate crystallization in MgO-CaO-SiO 2-P 2O 5 bioglass-ceramics. The results suggest that wollastonite (β-CaSiO 3) is separated as a new crystalline phase, corresponding to the appearance of a sharp signal in the 29Si MAS NMR spectra, while oxyapatite (Ca 10(PO 4) 6O) forms in the process of the order of the phosphorus-rich phases increasing as a whole, corresponding to the gradual narrowing of 31P MAS NMR spectra. ZnO can make the glass stable and difficult to crystallize at a low temperature, while at a high temperature, ZnO can participate in the crystallization of β-CaSiO 3 and promote it.

  5. Using NMR, SIP, and MS measurements for monitoring subsurface biogeochemical reactions at the Rifle IFRC site

    NASA Astrophysics Data System (ADS)

    Rosier, C. L.; Keating, K.; Williams, K. H.; Robbins, M.; Ntarlagiannis, D.; Grunewald, E.; Walsh, D. O.

    2013-12-01

    The Rifle Integrated Field Research Challenge (IFRC) site is located on a former uranium ore-processing facility in Rifle, Colorado (USA). Although removal of tailings and contaminated surface materials was completed in 1996, residual uranium contamination of groundwater and subsurface sediments remains. Since 2002, research at the site has primarily focused on quantifying uranium mobility associated with stimulated and natural biogeochemical processes. Uranium mobility at the Rifle IFRC site is typically quantified through direct sampling of groundwater; however, direct sampling does not provide information about the solid phase material outside of the borehole and continuous measurements are not always possible due to multiple constraints. Geophysical methods have been suggested as a minimally invasive alternative approach for long term monitoring of biogeochemical reactions associated with uranium remediation. In this study, nuclear magnetic resonance (NMR), spectral induced polarization (SIP), and magnetic susceptibility (MS) are considered as potential geophysical methods for monitoring the biogeochemical reactions occurring at the Rifle IFRC site. Additionally, a pilot field study using an NMR borehole-logging tool was carried out at the Rifle IFRC site. These methods are sensitive to changes in the chemical and physical subsurface properties that occur as a result of bioremediation efforts; specifically, changes in the redox state and chemical form of iron, production of iron sulfide minerals, production of the magnetic mineral magnetite, and associated changes in the pore geometry. Laboratory experiments consisted of monitoring changes in the NMR, SIP and MS response of an acetate-amended columns packed with sediments from the Rifle IFRC site over the course of two months. The MS values remained relatively stable throughout the course of the experiment suggesting negligible production of magnetic phases (e.g. magnetite, pyrrhotite) as a result of enhanced

  6. A Wet-Lab Approach to Stereochemistry Using [superscript 31]P NMR Spectroscopy

    ERIC Educational Resources Information Center

    Fenton, Owen S.; Sculimbrene, Bianca R.

    2011-01-01

    Understanding stereochemistry is an important and difficult task for students to master in organic chemistry. In both introductory and advanced courses, students are encouraged to explore the spatial relationships between molecules, but this exploration is often limited either to the lecture hall or the confines of the library. As such, we sought…

  7. A portable single-sided magnet system for remote NMR measurements of pulmonary function

    PubMed Central

    Mikayel, Dabaghyan; Iga, Muradyan; James, Butler; Eric, Frederick; Feng, Zhou; Angelos, Kyriazis; Charles, Hardin; Samuel, Patz; Mirko, Hrovat

    2014-01-01

    In this work, we report initial results from a light-weight, low field magnetic resonance device designed to make relative pulmonary density measurements at the bedside. The development of this device necessarily involves special considerations for the magnet, RF and data acquisition schemes as well as a careful analysis of what is needed to provide useful information in the ICU. A homogeneous field region is created remotely from the surface of the magnet such that when the magnet is placed against the chest, an NMR signal is measured from a small volume in the lung. In order to achieve portability, one must trade off field strength and therefore spatial resolution. We report initial measurements from a ping-pong ball size region in the lung as a function of lung volume. As expected, we measured decreased signal at larger lung volumes since lung density decreases with increasing lung volume. Using a CPMG sequence with ΔTE=3.5 ms and a 20 echo train, a signal to noise ratio ~1100 was obtained from an 8.8mT planar magnet after signal averaging for 43 s. This is the first demonstration of NMR measurements made on a human lung with a light-weight planar NMR device. We argue that very low spatial resolution measurements of different lobar lung regions will provide useful diagnostic information for clinicians treating Acute Respiratory Distress Syndrome as clinicians want to avoid ventilator pressures that cause either lung over distension (too much pressure) or lung collapse (too little pressure). PMID:24953556

  8. Evaluation of a New 1H/31P Dual-Tuned Birdcage Coil for 31P Spectroscopy

    PubMed Central

    Potter, WM; Wang, L; McCully, KK; Zhao, Q

    2013-01-01

    We introduce a new dual-tuned Hydrogen/Phosphorus (1H/31P) birdcage coil, referred to as split birdcage coil, and evaluate its performance using both simulations and magnetic resonance (MR) experiments on a 3 T MR scanner. The proposed coil simplifies the practical matters of tuning and matching, which makes the coil easily reproducible. Simulations were run with the Finite Difference in Time Domain (FDTD) method to evaluate the sensitivity and homogeneity of the magnetic field generated by the proposed 1H coils. Following simulations, MR experiments were conducted using both a phantom and human thigh to compare the proposed design with a currently available commercial dual-tuned flexible surface coil, referred to as flex surface coil, for signal to noise ratio (SNR) as well as homogeneity for the 31P coil. At regions deep within the human thigh, the split birdcage coil was able to acquire spectroscopic signal with a higher average SNR than the flex surface coil. For all regions except those close to the flex surface coil, the split birdcage coil matched or exceeded the performance of the flex surface coil. PMID:24039555

  9. Fractional order analysis of Sephadex gel structures: NMR measurements reflecting anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.

    2011-12-01

    We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.

  10. Mechanism of decreased NMR-measured free magnesium in stored erythrocytes

    SciTech Connect

    Bock, J.L.; Wenz, B.; Gupta, R.K.

    1986-05-01

    P-31 NMR spectra of ebythrocytes stored with standard preservation media (ACD or CPDA-1) show a progressive upfield shift of the ..beta..P resonance of ATP. This would seem to indicate lower Mg-saturation of ATP and hence lower intracellular free magnesium (Mg/sub i/), but total intracellular Mg measured by AAS does not change. The authors have now observed similar spectral changes in erythrocytes stored in citrate-free media, hence the shifts are not an effect of citrate. Acidifying fresh blood to mimic the pH changes that occur with storage did not induce comparable shifts, nor did treatment of fresh blood with gramicidin, which causes Na/K redistribution across the erythrocyte membrane similar to that occurring with storage. The shifts were largely reversed when stored cells were incubated at 37/sup 0/C for 1 hr with fresh citrated or heparinized plasma. Such incubation also increased ATP levels but did not increased 2,3-DPG, hence the shifts do not depend on disappearance of 2,3-DPG. P-31 NMR of acid extracts of stored cells show accumulation of some pyrophosphate, but probably not enough to account for the large apparent decreased in Mg/sub i/. The NMR estimation of decreased Mg/sub i/ in stored blood does not appear to be an artifact related to alterations in monovalent cations or in binding of ligands to hemoglobin. A possible mechanism is increased binding of Mg to the cell membrane.

  11. Solid-State NMR Characterization of Mixed Phosphonic Acid Ligand Binding and Organization on Silica Nanoparticles.

    PubMed

    Davidowski, Stephen K; Holland, Gregory P

    2016-04-01

    As ligand functionalization of nanomaterials becomes more complex, methods to characterize the organization of multiple ligands on surfaces is required. In an effort to further the understanding of ligand-surface interactions, a combination of multinuclear ((1)H, (29)Si, (31)P) and multidimensional solid-state nuclear magnetic resonance (NMR) techniques was utilized to characterize the phosphonic acid functionalization of fumed silica nanoparticles using methylphosphonic acid (MPA) and phenylphosphonic acid (PPA). (1)H → (29)Si cross-polarization (CP)-magic angle spinning (MAS) solid-state NMR was used to selectively detect silicon atoms near hydrogen atoms (primarily surface species); these results indicate that geminal silanols are preferentially depleted during the functionalization with phosphonic acids. (1)H → (31)P CP-MAS solid-state NMR measurements on the functionalized silica nanoparticles show three distinct resonances shifted upfield (lower ppm) and broadened compared to the resonances of the crystalline ligands. Quantitative (31)P MAS solid-state NMR measurements indicate that ligands favor a monodentate binding mode. When fumed silica nanoparticles were functionalized with an equal molar ratio of MPA and PPA, the MPA bound the nanoparticle surface preferentially. Cross-peaks apparent in the 2D (1)H exchange spectroscopy (EXSY) NMR measurements of the multiligand sample at short mixing times indicate that the MPA and PPA are spatially close (≤5 Å) on the surface of the nanostructure. Furthermore, (1)H-(1)H double quantum-single quantum (DQ-SQ) back-to-back (BABA) 2D NMR spectra further confirmed that MPA and PPA are strongly dipolar coupled with observation of DQ intermolecular contacts between the ligands. DQ experimental buildup curves and simulations indicate that the average distance between MPA and PPA is no further than 4.2 ± 0.2 Å. PMID:26914738

  12. Noninvasive measurements of glycogen in perfused mouse livers using chemical exchange saturation transfer NMR and comparison to (13)C NMR spectroscopy.

    PubMed

    Miller, Corin O; Cao, Jin; Chekmenev, Eduard Y; Damon, Bruce M; Cherrington, Alan D; Gore, John C

    2015-06-01

    Liver glycogen represents an important physiological form of energy storage. It plays a key role in the regulation of blood glucose concentrations, and dysregulations in hepatic glycogen metabolism are linked to many diseases including diabetes and insulin resistance. In this work, we develop, optimize, and validate a noninvasive protocol to measure glycogen levels in isolated perfused mouse livers using chemical exchange saturation transfer (CEST) NMR spectroscopy. Model glycogen solutions were used to determine optimal saturation pulse parameters which were then applied to intact perfused mouse livers of varying glycogen content. Glycogen measurements from serially acquired CEST Z-spectra of livers were compared with measurements from interleaved natural abundance (13)C NMR spectra. Experimental data revealed that CEST-based glycogen measurements were highly correlated with (13)C NMR glycogen spectra. Monte Carlo simulations were then used to investigate the inherent (i.e., signal-to-noise-based) errors in the quantification of glycogen with each technique. This revealed that CEST was intrinsically more precise than (13)C NMR, although in practice may be prone to other errors induced by variations in experimental conditions. We also observed that the CEST signal from glycogen in liver was significantly less than that observed from identical amounts in solution. Our results demonstrate that CEST provides an accurate, precise, and readily accessible method to noninvasively measure liver glycogen levels and their changes. Furthermore, this technique can be used to map glycogen distributions via conventional proton magnetic resonance imaging, a capability universally available on clinical and preclinical magnetic resonance imaging (MRI) scanners vs (13)C detection, which is limited to a small fraction of clinical-scale MRI scanners. PMID:25946616

  13. Noninvasive measurements of glycogen in perfused mouse livers using chemical exchange saturation transfer NMR and comparison to (13)C NMR spectroscopy.

    PubMed

    Miller, Corin O; Cao, Jin; Chekmenev, Eduard Y; Damon, Bruce M; Cherrington, Alan D; Gore, John C

    2015-06-01

    Liver glycogen represents an important physiological form of energy storage. It plays a key role in the regulation of blood glucose concentrations, and dysregulations in hepatic glycogen metabolism are linked to many diseases including diabetes and insulin resistance. In this work, we develop, optimize, and validate a noninvasive protocol to measure glycogen levels in isolated perfused mouse livers using chemical exchange saturation transfer (CEST) NMR spectroscopy. Model glycogen solutions were used to determine optimal saturation pulse parameters which were then applied to intact perfused mouse livers of varying glycogen content. Glycogen measurements from serially acquired CEST Z-spectra of livers were compared with measurements from interleaved natural abundance (13)C NMR spectra. Experimental data revealed that CEST-based glycogen measurements were highly correlated with (13)C NMR glycogen spectra. Monte Carlo simulations were then used to investigate the inherent (i.e., signal-to-noise-based) errors in the quantification of glycogen with each technique. This revealed that CEST was intrinsically more precise than (13)C NMR, although in practice may be prone to other errors induced by variations in experimental conditions. We also observed that the CEST signal from glycogen in liver was significantly less than that observed from identical amounts in solution. Our results demonstrate that CEST provides an accurate, precise, and readily accessible method to noninvasively measure liver glycogen levels and their changes. Furthermore, this technique can be used to map glycogen distributions via conventional proton magnetic resonance imaging, a capability universally available on clinical and preclinical magnetic resonance imaging (MRI) scanners vs (13)C detection, which is limited to a small fraction of clinical-scale MRI scanners.

  14. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    SciTech Connect

    Hou, Guangjin E-mail: tpolenov@udel.edu; Lu, Xingyu E-mail: lexvega@comcast.net; Vega, Alexander J. E-mail: lexvega@comcast.net; Polenova, Tatyana E-mail: tpolenov@udel.edu

    2014-09-14

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear {sup 1}H-X (X = {sup 13}C, {sup 15}N, {sup 31}P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the {sup 1}H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the {sup 1}H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from {sup 1}H chemical shift anisotropy, while keeping the {sup 1}H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [{sup 15}N]-N-acetyl-valine and [U-{sup 13}C,{sup 15}N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate {sup 1}H-{sup 15}N dipolar couplings in the context of 3D experiments is presented on U-{sup 13}C,{sup 15}N-enriched dynein light chain protein LC8.

  15. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hou, Guangjin; Lu, Xingyu; Vega, Alexander J.; Polenova, Tatyana

    2014-09-01

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear 1H-X (X = 13C, 15N, 31P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the 1H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the 1H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from 1H chemical shift anisotropy, while keeping the 1H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [15N]-N-acetyl-valine and [U-13C,15N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate 1H-15N dipolar couplings in the context of 3D experiments is presented on U-13C,15N-enriched dynein light chain protein LC8.

  16. Measurement and Quantification of Heterogeneity, Flow, and Mass Transfer in Porous Media Using NMR Low-Field Techiques

    NASA Astrophysics Data System (ADS)

    Paciok, E.; Olaru, A. M.; Haber, A.; van Landeghem, M.; Haber-Pohlmeier, S.; Sucre, O. E.; Perlo, J.; Casanova, F.; Blümich, B.; RWTH Aachen Mobile Low-Field NMR

    2011-12-01

    Nuclear magnetic resonance (NMR) is renowned for its unique potential to both reveal and correlate spectroscopic, relaxometric, spatial and dynamic properties in a large variety of organic and inorganic systems. NMR has no restrictions regarding sample opacity and is an entirely non-invasive method, which makes it the ideal tool for the investigation of porous media. However, for years NMR research of soils was limited by the use of high-field NMR devices, which necessitated elaborate NMR experiments and were not applicable to bulky samples or on-site field measurements. The evolution of low-field NMR devices during the past 20 years has brought forth portable, small-scale NMR systems with open and closed magnet arrangements specialized to specific NMR applications. In combination with recent advances in 2D-NMR Laplace methodology [1], low-field NMR has opened up the possibility to study real-life microporous systems ranging from granular media to natural soils and oil well boreholes. Thus, information becomes available, which before has not been accessible with high-field NMR. In this work, we present our recent progress in mobile low-field NMR probe design for field measurements of natural soils: a slim-line logging tool, which can be rammed into the soil of interest on-site. The performance of the device is demonstrated in measurements of moisture profiles of model soils [2] and field measurements of relaxometric properties and moisture profiles of natural soils [3]. Moreover, an improved concept of the slim-line logging tool is shown, with a higher excitation volume and a better signal-to-noise due to an improved coil design. Furthermore, we present our recent results in 2D exchange relaxometry and simulation. These include relaxation-relaxation experiments on natural soils with varying degree of moisture saturation, where we could draw a connection between the relaxometric properties of the soil to its pore size-related diffusivity and to its clay content

  17. Dietary fat modulation of mammary tumor growth and metabolism demonstrated by /sup 31/P-nuclear magnetic resonance

    SciTech Connect

    Erickson, K.L.; Buckman, D.K.; Hubbard, N.E.; Ross, B.

    1986-03-05

    The relationship of dietary fat concentration and saturation on the growth and metabolic activity of line 168 was studied using syngeneic mice fed 6 experimental diets before and during tumor growth. Tumor latency was significantly greater for mice fed a diet containing the minimum of essential fatty acids (EFA, 0.5% corn oil) or 8% coconut oil (SF) than for mice fed 8 or 20% safflower oil (PUF) or 20% SF. Changes in dietary fat resulted in alterations of tumor cell and serum fatty acid composition but not the number of inflammatory cells infiltrating the tumor. /sup 31/P-surface coil NMR was used to measure possible changes in tumor metabolism in vivo. Although pH decreased from 7.2 to 6.6 as the tumor volume increased, there was no difference in pH among dietary groups. There was an inverse relationship between both sugar phosphate (SP)/Pi and ATP/Pi ratios and tumor volume; those ratios for mice fed an EFA deficient or minimal EFA diet decreased at a different rate than ratios for mice fed diets with additional fat. Tumors of mice fed diets containing no or a low level (0.3%) of 18:2 had higher SP/ATP ratios than mice fed diets containing a moderate level (approx. 4%) of 18:2. Thus, high levels of dietary fat had a significant effect on promotion of mammary tumors during early stages of tumor growth. Differences in tumor volume associated with dietary fat may be related to changes in the levels of high energy phosphate metabolites.

  18. Optimized slim-line logging NMR tool to measure soil moisture in situ

    NASA Astrophysics Data System (ADS)

    Perlo, Josefina; Danieli, Ernesto; Perlo, Juan; Blümich, Bernhard; Casanova, Federico

    2013-08-01

    We report the optimization of a slim-line logging NMR tool carried out by maximizing the signal-to-noise ratio of the NMR measurements. The tool, based on cylindrical permanent magnets of 20 cm length and 5 cm diameter, has a penetration depth of about 2 cm measured from its surface. This is obtained thanks to a large radio frequency coil whose dimensions are comparable to the sensor size. An analytical expression of the SNR as a function of parameters which take into account the interaction between the radio frequency coil and the magnet shielding is developed. In view of the external constrains such as the one imposed by the excavation hole, a proper tool size is determined in the optimization process. Due to its size and properties, the sensor is suitable to measure water content in the vadose zone, which is the zone comprised within the first meters of the Earth surface and whose study is important for improving water management in agriculture and for refining climate models.

  19. Optimized slim-line logging NMR tool to measure soil moisture in situ.

    PubMed

    Perlo, Josefina; Danieli, Ernesto; Perlo, Juan; Blümich, Bernhard; Casanova, Federico

    2013-08-01

    We report the optimization of a slim-line logging NMR tool carried out by maximizing the signal-to-noise ratio of the NMR measurements. The tool, based on cylindrical permanent magnets of 20 cm length and 5 cm diameter, has a penetration depth of about 2 cm measured from its surface. This is obtained thanks to a large radio frequency coil whose dimensions are comparable to the sensor size. An analytical expression of the SNR as a function of parameters which take into account the interaction between the radio frequency coil and the magnet shielding is developed. In view of the external constrains such as the one imposed by the excavation hole, a proper tool size is determined in the optimization process. Due to its size and properties, the sensor is suitable to measure water content in the vadose zone, which is the zone comprised within the first meters of the Earth surface and whose study is important for improving water management in agriculture and for refining climate models.

  20. Magnetism in CeRhIn5 at high fields measured by NMR

    NASA Astrophysics Data System (ADS)

    Mounce, A. M.; Ronning, F.; Bauer, E. D.; Thompson, J. D.; Reyes, A. P.; Kuhns, P. L.

    2015-03-01

    De Haas-van Alphen measurements of CeRhIn5 at ambient pressure show an abrupt change in the Fermi surface volume at high fields, H* ~ 30 T, and low temperatures resulting in antiferromagnetic phases with a small Fermi surface at fields below H* and a large Fermi surface at fields H such that H* < H < 50 T. Nuclear magnetic resonance (NMR) is the ideal probe for these magnetic states as the microscopic details are still lacking. Our preliminary NMR measurements find the magnetic order for H ∥ c is incommensurate up to 30 T as opposed to H ⊥ c which transitions from incommensurate to commensurate at H ~ 2 T. Furthermore, we find that the magnetic moment decreases near 17 T for H ∥ c . These measurements provide an insight into the magnetic anisotropy of CeRhIn5 and are a crucial step to studying its high field phases. Work at Los Alamos was performed under the auspices of the U.S. DOE, Office of Basic Energy Science, Division of Materials and Engineering.

  1. Quantitative NMR Analysis of Partially Substituted Biodiesel Glycerols

    SciTech Connect

    Nagy, M.; Alleman, T. L.; Dyer, T.; Ragauskas, A. J.

    2009-01-01

    Phosphitylation of hydroxyl groups in biodiesel samples with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane followed by 31P-NMR analysis provides a rapid quantitative analytical technique for the determination of substitution patterns on partially esterified glycerols. The unique 31P-NMR chemical shift data was established with a series mono and di-substituted fatty acid esters of glycerol and then utilized to characterize an industrial sample of partially processed biodiesel.

  2. How Bonding in Manganous Phosphates Affects their Mn(II)-(31)P Hyperfine Interactions.

    PubMed

    Un, Sun; Bruch, Eduardo M

    2015-11-01

    Manganous phosphates have been postulated to play an important role in cells as antioxidants. In situ Mn(II) electron-nuclear double resonance (ENDOR) spectroscopy has been used to measure their speciation in cells. The analyses of such ENDOR spectra and the quantification of cellular Mn(II) phosphates has been based on comparisons to in vitro model complexes and heuristic modeling. In order to put such analyses on a more physical and theoretical footing, the Mn(II)-(31)P hyperfine interactions of various Mn(II) phosphate complexes have been measured by 95 GHz ENDOR spectroscopy. The dipolar components of these interactions remained relatively constant as a function of pH, esterification, and phosphate chain length, while the isotropic contributions were significantly affected. Counterintuitively, although the manganese-phosphate bonds are weakened by protonation and esterification, they lead to larger isotropic values, indicating higher unpaired-electron spin densities at the phosphorus nuclei. By comparison, extending the phosphate chain with additional phosphate groups lowers the spin density. Density functional theory calculations of model complexes quantitatively reproduced the measured hyperfine couplings and provided detailed insights into how bonding in Mn(II) phosphate complexes modulates the electron-spin polarization and consequently their isotropic hyperfine couplings. These results show that various classes of phosphates can be identified by their ENDOR spectra and provide a theoretical framework for understanding the in situ (31)P ENDOR spectra of cellular Mn(II) complexes.

  3. How Bonding in Manganous Phosphates Affects their Mn(II)-(31)P Hyperfine Interactions.

    PubMed

    Un, Sun; Bruch, Eduardo M

    2015-11-01

    Manganous phosphates have been postulated to play an important role in cells as antioxidants. In situ Mn(II) electron-nuclear double resonance (ENDOR) spectroscopy has been used to measure their speciation in cells. The analyses of such ENDOR spectra and the quantification of cellular Mn(II) phosphates has been based on comparisons to in vitro model complexes and heuristic modeling. In order to put such analyses on a more physical and theoretical footing, the Mn(II)-(31)P hyperfine interactions of various Mn(II) phosphate complexes have been measured by 95 GHz ENDOR spectroscopy. The dipolar components of these interactions remained relatively constant as a function of pH, esterification, and phosphate chain length, while the isotropic contributions were significantly affected. Counterintuitively, although the manganese-phosphate bonds are weakened by protonation and esterification, they lead to larger isotropic values, indicating higher unpaired-electron spin densities at the phosphorus nuclei. By comparison, extending the phosphate chain with additional phosphate groups lowers the spin density. Density functional theory calculations of model complexes quantitatively reproduced the measured hyperfine couplings and provided detailed insights into how bonding in Mn(II) phosphate complexes modulates the electron-spin polarization and consequently their isotropic hyperfine couplings. These results show that various classes of phosphates can be identified by their ENDOR spectra and provide a theoretical framework for understanding the in situ (31)P ENDOR spectra of cellular Mn(II) complexes. PMID:26488236

  4. 4 T Actively detuneable double-tuned 1H/31P head volume coil and four-channel 31P phased array for human brain spectroscopy.

    PubMed

    Avdievich, N I; Hetherington, H P

    2007-06-01

    Typically 31P in vivo magnetic resonance spectroscopic studies are limited by SNR considerations. Although phased arrays can improve the SNR; to date 31P phased arrays for high-field systems have not been combined with 31P volume transmit coils. Additionally, to provide anatomical reference for the 31P studies, without removal of the coil or patient from the magnet, double-tuning (31P/1H) of the volume coil is required. In this work we describe a series of methods for active detuning and decoupling enabling use of phased arrays with double-tuned volume coils. To demonstrate these principles we have built and characterized an actively detuneable 31P/1H TEM volume transmit/four-channel 31P phased array for 4 T magnetic resonance spectroscopic imaging (MRSI) of the human brain. The coil can be used either in volume-transmit/array-receive mode or in TEM transmit/receive mode with the array detuned. Threefold SNR improvement was obtained at the periphery of the brain using the phased array as compared to the volume coil. PMID:17379554

  5. Transport of phosphocholine in higher plant cells: sup 31 P nuclear magnetic resonance studies

    SciTech Connect

    Gout, E.; Bligny, R.; Roby, C.; Douce, R. )

    1990-06-01

    Phosphocholine (PC) is an abundant primary form of organic phosphate that is transported in plant xylem sap. Addition of PC to the perfusate of compressed P{sub i}-starved sycamore cells monitored by {sup 31}P NMR spectroscopy resulted in an accumulation of PC and all the other phosphate esters in the cytoplasmic compartment. Addition of hemicholinium-3, an inhibitor of choline uptake, to the perfusate inhibited PC accumulation but not inorganic phosphate (P{sub i}). When the P{sub i}-starved cells were perfused with a medium containing either P{sub i} or PC, the resulting P{sub i} distribution in the cell was the same. Addition of choline instead of PC to the perfusate of compressed cells resulted in an accumulation of PC in the cytoplasmic compartment from choline kinase activity. In addition, PC phosphatase activity has been discovered associated with the cell wall. These results indicate that PC was rapidly hydrolyzed outside the cell and that choline and P{sub i} entered the cytosolic compartment where choline kinase re-forms PC.

  6. Nanoscale NMR spectroscopy and imaging of multiple nuclear species.

    PubMed

    DeVience, Stephen J; Pham, Linh M; Lovchinsky, Igor; Sushkov, Alexander O; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ∼100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species ((1)H, (19)F, (31)P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (∼20 mT) using two complementary sensor modalities. PMID:25559712

  7. Measuring JHH values with a selective constant-time 2D NMR protocol

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Lin, Yanqin; Chen, Zhong

    2016-11-01

    Proton-proton scalar couplings play important roles in molecule structure elucidation. However, measurements of JHH values in complex coupled spin systems remain challenging. In this study, we develop a selective constant-time (SECT) 2D NMR protocol with which scalar coupling networks involving chosen protons can be revealed, and corresponding JHH values can be measured through doublets along the F1 dimension. All JHH values within a network of n fully coupled protons can be separately determined with (n - 1) SECT experiments. Additionally, the proposed pulse sequence possesses satisfactory sensitivity and handy implementation. Therefore, it will interest scientists who intend to address structural analyzes of molecules with overcrowded spectra, and may greatly facilitate the applications of scalar-coupling constants in molecule structure studies.

  8. 1H-NMR measurements of proton mobility in nano-crystalline YSZ.

    PubMed

    Hinterberg, Judith; Adams, Alina; Blümich, Bernhard; Heitjans, Paul; Kim, Sangtae; Munir, Zuhair A; Martin, Manfred

    2013-12-01

    We report nuclear magnetic resonance (NMR) results on water saturated, dense, nano-crystalline YSZ samples (9.5 mol% yttria doped zirconia) which exhibit proton conductivity at temperatures as low as room temperature. (1)H-NMR spectra recorded under static and magic angle spinning conditions show two distinct signals. Their temperature-dependent behavior and their linewidths suggest that one can be attributed to (free) water adsorbed on the surface of the sample and the other one to mobile protons within the sample. This interpretation is supported by comparison with measurements on a single-crystalline sample. For the nano-crystalline samples motional narrowing is observed for the signal originating from protons in the sample interior. For these protons, the analysis of temperature and field dependent spin-lattice relaxation time T1 points towards diffusion in a confined two-dimensional geometry. We attribute this quasi two-dimensional motion to protons that are mobile along internal interfaces or nanopores of nano-crystalline YSZ.

  9. O-tert-Butyltyrosine, an NMR tag for high-molecular-weight systems and measurements of submicromolar ligand binding affinities.

    PubMed

    Chen, Wan-Na; Kuppan, Kekini Vahini; Lee, Michael David; Jaudzems, Kristaps; Huber, Thomas; Otting, Gottfried

    2015-04-01

    O-tert-Butyltyrosine (Tby) is an unnatural amino acid that can be site-specifically incorporated into proteins using established orthogonal aminoacyl-tRNA synthetase/tRNA systems. Here we show that the tert-butyl group presents an outstanding NMR tag that can readily be observed in one-dimensional (1)H NMR spectra without any isotope labeling. Owing to rapid bond rotations and the chemical equivalence of the protons of a solvent-exposed tert-butyl group from Tby, the singlet resonance from the tert-butyl group generates an easily detectable narrow signal in a spectral region with limited overlap with other methyl resonances. The potential of the tert-butyl (1)H NMR signal in protein research is illustrated by the observation and assignment of two resonances in the Bacillus stearothermophilus DnaB hexamer (320 kDa), demonstrating that this protein preferentially assumes a 3-fold rather than 6-fold symmetry in solution, and by the quantitative measurement of the submicromolar dissociation constant Kd (0.2 μM) of the complex between glutamate and the Escherichia coli aspartate/glutamate binding protein (DEBP, 32 kDa). The outstanding signal height of the (1)H NMR signal of the Tby tert-butyl group allows Kd measurements using less concentrated protein solutions than usual, providing access to Kd values 1 order of magnitude lower than established NMR methods that employ direct protein detection for Kd measurements. PMID:25789794

  10. Measuring Residual Dipolar Couplings in Excited Conformational States of Nucleic Acids by CEST NMR Spectroscopy.

    PubMed

    Zhao, Bo; Zhang, Qi

    2015-10-28

    Nucleic acids undergo structural transitions to access sparsely populated and transiently lived conformational states--or excited conformational states--that play important roles in diverse biological processes. Despite ever-increasing detection of these functionally essential states, 3D structure determination of excited states (ESs) of RNA remains elusive. This is largely due to challenges in obtaining high-resolution structural constraints in these ESs by conventional structural biology approaches. Here, we present nucleic-acid-optimized chemical exchange saturation transfer (CEST) NMR spectroscopy for measuring residual dipolar couplings (RDCs), which provide unique long-range angular constraints in ESs of nucleic acids. We demonstrate these approaches on a fluoride riboswitch, where one-bond (13)C-(1)H RDCs from both base and sugar moieties provide direct structural probes into an ES of the ligand-free riboswitch.

  11. Direct measurement of brain glucose concentrations in humans by sup 13 C NMR spectroscopy

    SciTech Connect

    Gruetter, R.; Novotny, E.J.; Boulware, S.D.; Rothman, D.L.; Mason, G.F.; Shulman, G.I.; Shulan, R.G.; Tamborlane, W.V. )

    1992-02-01

    Glucose is the main fuel for energy metabolism in the normal human brain. It is generally assumed that glucose transport into the brain is not rate-limiting for metabolism. Since brain glucose concentrations cannot be determined directly by radiotracer techniques, the authors used {sup 13}C NMR spectroscopy after infusing enriched D-(1-{sup 13}C)glucose to measure brain glucose concentrations at euglycemia and at hyperglycemia in six healthy children. Brain glucose concentrations averaged 1.0 {plus minus} 0.1 {mu}mol/ml at euglycemia and 1.8-2.7 {mu}mol/ml at hyperglycemia. Michaelis-Menten parameters of transport were calculated from the relationship between plasma and brain glucose concentrations. The brain glucose concentrations and transport constants are consistent with transport not being rate-limiting for resting brain metabolism at plasma levels >3 mM.

  12. Dynamical theory of spin noise and relaxation: Prospects for real-time NMR measurements.

    PubMed

    Field, Timothy R

    2014-11-01

    Recent developments in theoretical aspects of spin noise and relaxation and their interrelationship reveal a modified spin density, distinct from the density matrix, as the necessary object to describe fluctuations in spin systems. These fluctuations are to be viewed as an intrinsic quantum mechanical property of such systems immersed in random magnetic environments and are observed as "spin noise" in the absence of any radio frequency excitation. With the prospect of ultrafast digitization, the role of spin noise in real-time parameter extraction for (NMR) spin systems, and the advantage over standard techniques, is of essential importance, especially for systems containing a small number of spins. In this article we outline prospects for harnessing the recent dynamical theory in terms of spin-noise measurement, with attention to real-time properties.

  13. The Effect of Inhomogeneous Sample Susceptibility on Measured Diffusion Anisotropy Using NMR Imaging

    NASA Astrophysics Data System (ADS)

    Trudeau, J. D.; Dixon, W. T.; Hawkins, J.

    1995-07-01

    Water diffusion measurements in white matter of freshly excised pig spinal cord and in parenchyma of fresh celery (excluding the fibers along the edge of the stalk) were performed using NMR at 200 MHz. In white matter of pig spinal cord, the measured diffusion coefficient is anisotropic and independent of sample orientation with respect to the magnetic field, In celery parenchyma, diffusion is isotropic and independent of orientation in the magnetic field when using a diffusion sequence that gives results independent of self-induced magnetic-held gradients. However, when the standard diffusion pulse sequence that gives results dependent upon self-induced magnetic-field gradients is used, diffusion in celery appears isotropic when the stalk is oriented parallel to the magnetic field but anisotropic when oriented perpendicular. Susceptibility variations leading to anisotropic self-induced magnetic-field gradients approximately 3 kHz/cm in magnitude when the celery is oriented perpendicular to the magnetic field can explain this apparent anisotropic diffusion. A study of the apparent diffusion coefficient (ADC) in celery as a function of diffusion times ranging from 8 to 22 ms indicates that the motion is at most only slightly restricted. Therefore, although the effect is not seen in all types of samples, one must be aware that self-induced gradients may affect the ADC and may cause isotropic diffusion to appear anisotropic. In addition, NMR experiments that change diffusion-sensitizing gradient timings to study restricted diffusion change the effects of the self-induced gradients as well as the effect of barriers on the ADC, complicating interpretation.

  14. Binding of phenol and differently halogenated phenols to dissolved humic matter as measured by NMR spectroscopy.

    PubMed

    Smejkalová, Daniela; Spaccini, Riccardo; Fontaine, Barbara; Piccolo, Alessandro

    2009-07-15

    1H- and 19F-NMR measurements of spin-lattice (T1) and spin-spin (T2) relaxationtimes and diffusion ordered spectroscopy (DOSY) were applied to investigate the association of nonsubstituted (phenol (P)) and halogen-substituted (2,4-dichlorophenol (DCP); 2,4,6-trichlorophenol (TCP), and 2,4,6-trifluorophenol (TFP) phenols with a dissolved humic acid (HA). T1 and T2 values for both 1H and 19F in phenols decreased with enhancing HA concentration, indicating reduction in molecular mobility due to formation of noncovalent interactions. Moreover, correlation times (tau c) for different hydrogen and fluorine atoms in phenols showed that anisotropic mobility turned into isotropic motion with HA additions. Changes in relaxation times suggested that DCP and TCP were more extensively bound to HA than P and TFP. This was confirmed by diffusion measurements which showed full association of DCP and TCP to a less amount of HA than that required for entire complexation of P and TFP. Calculated values of binding constants (Ka) reflected the overall NMR behavior, being significantly larger for DCP- and TCP-HA (10.04 +/- 1.32 and 4.47 +/- 0.35 M(-1), respectively) than for P- and TFP-HA complexes (0.57 +/- 0.03 and 0.28 +/- 0.01 M(-1), respectively). Binding increased with decreasing solution pH, thus indicating a dependence on the fraction of protonated form (alpha) of phenols in solution. However, it was found that the hydrophobicity conferred to phenols by chlorine atoms on aromatic rings is a stronger drive than alpha for the phenols repartition within the HA hydrophobic domains.

  15. Lithium ion diffusion in Li β-alumina single crystals measured by pulsed field gradient NMR spectroscopy

    SciTech Connect

    Chowdhury, Mohammed Tareque Takekawa, Reiji; Iwai, Yoshiki; Kuwata, Naoaki; Kawamura, Junichi

    2014-03-28

    The lithium ion diffusion coefficient of a 93% Li β-alumina single crystal was measured for the first time using pulsed field gradient (PFG) NMR spectroscopy with two different crystal orientations. The diffusion coefficient was found to be 1.2 × 10{sup −11} m{sup 2}/s in the direction perpendicular to the c axis at room temperature. The Li ion diffusion coefficient along the c axis direction was found to be very small (6.4 × 10{sup −13} m{sup 2}/s at 333 K), which suggests that the macroscopic diffusion of the Li ion in the β-alumina crystal is mainly two-dimensional. The diffusion coefficient for the same sample was also estimated using NMR line narrowing data and impedance measurements. The impedance data show reasonable agreement with PFG-NMR data, while the line narrowing measurements provided a lower value for the diffusion coefficient. Line narrowing measurements also provided a relatively low value for the activation energy and pre-exponential factor. The temperature dependent diffusion coefficient was obtained in the temperature range 297–333 K by PFG-NMR, from which the activation energy for diffusion of the Li ion was estimated. The activation energy obtained by PFG-NMR was smaller than that obtained by impedance measurements, which suggests that thermally activated defect formation energy exists for 93% Li β-alumina single crystals. The diffusion time dependence of the diffusion coefficient was observed for the Li ion in the 93% Li β-alumina single crystal by means of PFG-NMR experiments. Motion of Li ion in fractal dimension might be a possible explanation for the observed diffusion time dependence of the diffusion coefficient in the 93% Li β–alumina system.

  16. DQ-DRENAR: A new NMR technique to measure site-resolved magnetic dipole-dipole interactions in multispin-1/2 systems: Theory and validation on crystalline phosphates

    NASA Astrophysics Data System (ADS)

    Ren, Jinjun; Eckert, Hellmut

    2013-04-01

    A new solid state NMR technique is described for measuring homonuclear dipole-dipole interactions in multi-spin-1/2 systems under magic-angle spinning conditions. Re-coupling is accomplished in the form of an effective double quantum (DQ) Hamiltonian created by a symmetry-based POST-C7 sequence consisting of two excitation blocks, attenuating the signal (intensity S'). For comparison, a reference signal S0 with the dipolar re-coupling absent is generated by shifting the phase of the second block by 90° relative to the first block. As in rotational echo double resonance, the homonuclear dipole-dipole coupling constant can then be extracted from a plot of the normalized difference signal (S0 - S')/S0 versus dipolar mixing time. The method is given the acronym DQ-DRENAR ("Double-Quantum-based Dipolar Re-coupling effects Nuclear Alignment Reduction"). The method is analyzed mathematically, and on the basis of detailed simulations, with respect to the order and the geometry of the spin system, the dipolar truncation phenomenon, and the influence of the chemical shift anisotropy on experimental curves. Within the range of (S0 - S')/S0 ≤0.3-0.5 such DRENAR curves can be approximated by simple parabolae, yielding effective squared dipole-dipole coupling constants summed over all the pairwise interactions present. The method has been successfully validated for 31P-31P distance determinations of numerous crystalline model compounds representing a wide range of dipolar coupling strengths.

  17. Ultrafast NMR T1 Relaxation Measurements: Probing Molecular Properties in Real Time

    PubMed Central

    Smith, Pieter E. S.; Donovan, Kevin J.; Szekely, Or; Baias, Maria; Frydman, Lucio

    2016-01-01

    The longitudinal relaxation properties of NMR active nuclei carry useful information about the site-specific chemical environments and about the mobility of molecular fragments. Molecular mobility is in turn a key parameter reporting both on stable properties like size, as well as on dynamic ones such as transient interactions and irreversible aggregation. In order to fully investigate the latter, a fast sampling of the relaxation parameters of transiently formed molecular species may be needed. Nevertheless, the acquisition of longitudinal relaxation data is typically slow, being limited by the requirement that the time for which the nucleus relaxes be varied incrementally until a complete build-up curve is generated. Recently a number of single-shot inversion recovery methods have been developed capable of alleviating this need; still, these may be challenged by either spectral resolution restrictions or when coping with very fast relaxing nuclei. Here we present a new experiment to measure the T1s of multiple nuclear spins that experience fast longitudinal relaxation, while retaining full high-resolution chemical shift information. Good agreement is observed between T1s measured with conventional means and T1s measured using the new technique. The method is applied to the real time investigation of the reaction between D-xylose and sodium borate, which is in turn elucidated with the aid of ancillary ultrafast and conventional 2D TOCSY measurements. PMID:23878001

  18. Measurement of Solution Viscosity via Diffusion-Ordered NMR Spectroscopy (DOSY)

    ERIC Educational Resources Information Center

    Li, Weibin; Kagan, Gerald; Hopson, Russell; Williard, Paul G.

    2011-01-01

    Increasingly, the undergraduate chemistry curriculum includes nuclear magnetic resonance (NMR) spectroscopy. Advanced NMR techniques are often taught including two-dimensional gradient-based experiments. An investigation of intermolecular forces including viscosity, by a variety of methods, is often integrated in the undergraduate physical and…

  19. A portable NMR sensor to measure dynamic changes in the amount of water in living stems or fruit and its potential to measure sap flow.

    PubMed

    Windt, Carel W; Blümler, Peter

    2015-04-01

    Nuclear magnetic resonance (NMR) and NMR imaging (magnetic resonance imaging) offer the possibility to quantitatively and non-invasively measure the presence and movement of water. Unfortunately, traditional NMR hardware is expensive, poorly suited for plants, and because of its bulk and complexity, not suitable for use in the field. But does it need to be? We here explore how novel, small-scale portable NMR devices can be used as a flow sensor to directly measure xylem sap flow in a poplar tree (Populus nigra L.), or in a dendrometer-like fashion to measure dynamic changes in the absolute water content of fruit or stems. For the latter purpose we monitored the diurnal pattern of growth, expansion and shrinkage in a model fruit (bean pod, Phaseolus vulgaris L.) and in the stem of an oak tree (Quercus robur L.). We compared changes in absolute stem water content, as measured by the NMR sensor, against stem diameter variations as measured by a set of conventional point dendrometers, to test how well the sensitivities of the two methods compare and to investigate how well diurnal changes in trunk absolute water content correlate with the concomitant diurnal variations in stem diameter. Our results confirm the existence of a strong correlation between the two parameters, but also suggest that dynamic changes in oak stem water content could be larger than is apparent on the basis of the stem diameter variation alone.

  20. A portable NMR sensor to measure dynamic changes in the amount of water in living stems or fruit and its potential to measure sap flow.

    PubMed

    Windt, Carel W; Blümler, Peter

    2015-04-01

    Nuclear magnetic resonance (NMR) and NMR imaging (magnetic resonance imaging) offer the possibility to quantitatively and non-invasively measure the presence and movement of water. Unfortunately, traditional NMR hardware is expensive, poorly suited for plants, and because of its bulk and complexity, not suitable for use in the field. But does it need to be? We here explore how novel, small-scale portable NMR devices can be used as a flow sensor to directly measure xylem sap flow in a poplar tree (Populus nigra L.), or in a dendrometer-like fashion to measure dynamic changes in the absolute water content of fruit or stems. For the latter purpose we monitored the diurnal pattern of growth, expansion and shrinkage in a model fruit (bean pod, Phaseolus vulgaris L.) and in the stem of an oak tree (Quercus robur L.). We compared changes in absolute stem water content, as measured by the NMR sensor, against stem diameter variations as measured by a set of conventional point dendrometers, to test how well the sensitivities of the two methods compare and to investigate how well diurnal changes in trunk absolute water content correlate with the concomitant diurnal variations in stem diameter. Our results confirm the existence of a strong correlation between the two parameters, but also suggest that dynamic changes in oak stem water content could be larger than is apparent on the basis of the stem diameter variation alone. PMID:25595754

  1. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations.

    PubMed

    Liu, Qing; Shi, Chaowei; Yu, Lu; Zhang, Longhua; Xiong, Ying; Tian, Changlin

    2015-02-13

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of (15)N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S(2)) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S(2)) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S(2) values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S(2) parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S(2) calculated from the experimental NMR relaxation measurements, in a site-specific manner.

  2. Solid-State Quantitative (1)H and (31)P MRI of Cortical Bone in Humans.

    PubMed

    Seifert, Alan C; Wehrli, Felix W

    2016-06-01

    Magnetic resonance imaging (MRI) plays a pivotal role for assessment of the musculoskeletal system. It is currently the clinical modality of choice for evaluation of soft tissues including cartilage, ligaments, tendons, muscle, and bone marrow. By comparison, the study of calcified tissue by MRI is still in its infancy. In this article, we review the potential of the modality for assessment of cortical bone properties known to be affected in degenerative bone disease, with focus on parameters related to matrix and mineral densities, and porosity, by means of emerging solid-state (1)H and (31)P MRI techniques. In contrast to soft tissues, the MRI signal in calcified tissues has very short lifetime, on the order of 100 μs to a few milliseconds, demanding customized imaging approaches that allow capture of the signal almost immediately after excitation. The technologies described are suited for quantitatively imaging human cortical bone in specimens as well as in vivo in patients on standard clinical imagers, yielding either concentrations in absolute units when measured against a reference standard, or more simply, in the form of surrogate biomarkers. The two major water fractions in cortical bone are those of collagen-bound and pore water occurring at an approximately 3:1 ratio. Collagen-bound water density provides a direct quantitative measure of osteoid density. While at an earlier stage of development, quantification of mineral phosphorus by (31)P MRI yields mineral density and, together with knowledge of matrix density, should allow quantification of the degree of bone mineralization. PMID:27048472

  3. Characterization of phosphorus forms in lake macrophytes and algae by solution (31)P nuclear magnetic resonance spectroscopy.

    PubMed

    Feng, Weiying; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; Giesy, John P; He, Zhongqi; Song, Lirong; Fan, Mingle

    2016-04-01

    Debris from aquatic macrophytes and algae are important recycling sources of phosphorus (P), which can result in continuing blooms of algae by recycling bioavailable P in the eutrophic lakes. However, knowledge of forms of P in aquatic macrophytes and algae and their contribution to internal loads of P in lakes is limited. Without such knowledge, it is difficult to develop appropriate strategies to remediate and or restore aquatic ecosystems that have become eutrophic. Therefore, in this work, P was extracted from six types of aquatic macrophytes and algae collected from Tai Lake of China and characterized by use of solution (31)P-nuclear magnetic resonance (NMR) spectroscopy. When extracted by 0.5 M NaOH-25 mM EDTA, extraction recovery of total P(TP) and organic P(Po) exceeded 90 %. Concentrations of Po in algae and aquatic macrophytes were 5552 mg kg(-1) and 1005 mg kg(-1) and accounted for 56.0 and 47.2 % of TP, respectively. When Po, including condensed P, was characterized by solution (31)P-NMR Po in algae included orthophosphate monoesters (79.8 %), pyrophosphate (18.2 %), and orthophosphate diester (2.0 %), and Po in aquatic macrophytes included orthophosphate monoesters (90.3 %), pyrophosphate (4.2 %), and orthophosphate diester (5.5 %). Additionally, orthophosphate monoesters in algal debris mainly included β-glycerophosphate (44.1 %), α-glycerophosphate (13.5 %), and glucose 6-phosphate (13.5 %). Orthophosphate monoesters in aquatic macrophytes mainly included β-glycerophosphate (27.9 %), α-glycerophosphate (24.6 %), and adenosine 5' monophosphate (8.2 %). Results derived from this study will be useful in better understanding nutrient cycling, relevant eutrophication processes, and pollution control for freshwater lakes.

  4. NMR studies of a bacterial cell culture medium (LB broth): cyclic nucleotides in yeast extracts.

    PubMed

    Rayner, M H; Sadler, P J; Scawen, M D

    1990-03-01

    The composition of LB broth (tryptone, yeast extract and NaCl) was investigated by 1H,31P-NMR spectroscopy, FPLC and gel electrophoresis. An unexpected finding was the high level of 2'3'-cyclic nucleotides, detected by characteristic 31P-NMR resonances in the region 20-21 ppm, originating from the yeast component. 31P-NMR resonances for cyclic nucleotides were observed during the autolysis of Saccharomyces cerevisiae cells, and in model reactions of RNase with RNA.

  5. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by AMS and NMR measurements

    NASA Astrophysics Data System (ADS)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petäjä, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2011-08-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line air mass concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50 % of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component showed features consistent with less oxygenated aerosols and was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated to the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from

  6. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations

    SciTech Connect

    Liu, Qing; Shi, Chaowei; Yu, Lu; Zhang, Longhua; Xiong, Ying; Tian, Changlin

    2015-02-13

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of {sup 15}N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S{sup 2}) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S{sup 2}) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S{sup 2} values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S{sup 2} parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S{sup 2} calculated from the experimental NMR relaxation measurements, in a site-specific manner. - Highlights: • Correlation analysis between NMR relaxation measurements and MD simulations. • General order parameter (S{sup 2}) as common reference between the two methods. • Different protein dynamics with different Histidine charge states in neutral pH. • Different protein dynamics with different water models.

  7. NMR methods for in-situ biofilm metabolism studies: spatial and temporal resolved measurements

    SciTech Connect

    Majors, Paul D.; Mclean, Jeffrey S.; Fredrickson, Jim K.; Wind, Robert A.

    2005-11-01

    We are developing nuclear magnetic resonance (NMR) microscopy, spectroscopy and combined NMR/optical techniques to the study of biofilms. Objectives include: time and depth-resolved metabolite concentrations with isotropic spatial resolution on the order of 10 microns, metabolic pathways and flux rates, mass transport and ultimately their correlation with gene expression by optical microscopy in biofilms. These methods are being developed with Shewanella oneidensis MR-1 as a model system, but are equally applicable to other biofilm systems of interest. Thus, spatially resolved NMR of biofilms is expected to contribute significantly to the understanding of adherent cell metabolism.

  8. Investigation of phosphorous in thin films using the 31P(α,p)34S nuclear reaction

    NASA Astrophysics Data System (ADS)

    Pitthan, E.; Gobbi, A. L.; Stedile, F. C.

    2016-03-01

    Phosphorus detection and quantification were obtained, using the 31P(α,p)34S nuclear reaction and Rutherford Backscattering Spectrometry, in deposited silicon oxide films containing phosphorus and in carbon substrates implanted with phosphorus. It was possible to determine the total amount of phosphorus using the resonance at 3.640 MeV of the 31P(α,p)34S nuclear reaction in samples with phosphorus present in up to 23 nm depth. Phosphorous amounts as low as 4 × 1014 cm-2 were detected. Results obtained by nuclear reaction were in good agreement with those from RBS measurements. Possible applications of phosphorus deposition routes used in this work are discussed.

  9. Abnormal skeletal muscle oxidative capacity after lung transplantation by 31P-MRS.

    PubMed

    Evans, A B; Al-Himyary, A J; Hrovat, M I; Pappagianopoulos, P; Wain, J C; Ginns, L C; Systrom, D M

    1997-02-01

    Although lung transplantation improves exercise capacity by removal of a ventilatory limitation, recipients' postoperative maximum oxygen uptake (VO2max) remains markedly abnormal. To determine if abnormal skeletal muscle oxidative capacity contributes to this impaired aerobic capacity, nine lung transplant recipients and eight healthy volunteers performed incremental quadriceps exercise to exhaustion with simultaneous measurements of pulmonary gas exchange, minute ventilation, blood lactate, and quadriceps muscle pH and phosphorylation potential by 31P-magnetic resonance spectroscopy (31P-MRS). Five to 38 mo after lung transplantation, peak VO2 was decreased compared with that of normal control subjects (6.7 +/- 0.4 versus 12.3 +/- 1.0 ml/min/kg, p < 0.001), even after accounting for differences in age and lean body weight. Neither ventilation, arterial O2 saturation nor mild anemia could account for the decrease in aerobic capacity. Quadriceps muscle intracellular pH (pH(i)) was more acidic at rest (7.07 +/- 0.01 versus 7.12 +/- 0.01 units, p < 0.05) and fell during exercise from baseline values at a lower metabolic rate (282 +/- 21 versus 577 +/- 52 ml/min, p < 0.001). Regressions for pH(i) versus VO2, phosphocreatine/inorganic phosphate ratio (PCr/Pi) versus VO2, and blood lactate versus pH(i) were not different. Among transplant recipients, the metabolic rate at which pH(i) fell correlated closely with VO2max (r = 0.87, p < 0.01). The persistent decrease in VO2max after lung transplantation may be related to abnormalities of skeletal muscle oxidative capacity. PMID:9032203

  10. The use of dielectric and NMR measurements to determine the pore-scale location of organic. 1998 annual progress report

    SciTech Connect

    Knight, R.

    1998-06-01

    'The objective of the three-year research project is to investigate the effect of adsorbed organics on the dielectric and nuclear magnetic resonance (NMR) response of porous geological materials. This will allow the author to assess the use of dielectric and NMR measurements at a site to determine whether organic contaminants are present in the central volume of the pore space or are adsorbed to the solid surfaces. In addition, she proposes to use laboratory dielectric and NMR measurements to study the kinetics of the adsorption and desorption of organics. This report summarizes work completed after 20 months of a three-year project. The research involves the study of the NMR and dielectric behavior of sands with three types of solid surfaces: water-wet, where water spontaneously coats and adsorbs to the solid surfaces; hydrophobic, where water is repelled from the solid surfaces by an organosilane coating; and oil-wet, where oil coats the solid surfaces. The oil-wet case is representative of a contaminated soil, in which oil has become adsorbed to the solid surfaces.'

  11. Diffusion anisotropy in excised normal rat spinal cord measured by NMR microscopy.

    PubMed

    Inglis, B A; Yang, L; Wirth, E D; Plant, D; Mareci, T H

    1997-01-01

    A conventional spin-echo NMR imaging pulse sequence was used to obtain high-resolution images of excised normal rat spinal cord at 7 and 14 T. It was observed that the large pulsed-field gradients necessary for high-resolution imaging caused a diffusion weighting that dominated the image contrast and that could be used to infer microscopic structural organization beyond that defined by the resolution of the image matrix (i.e., fiber orientation could be assigned based on diffusion anisotropy). Anisotropic diffusion coefficients were therefore measured using apparent diffusion tensor (ADT) imaging to assess more accurately fiber orientations in the spinal cord; structural anisotropy information is portrayed in the six unique images of the complete ADT. To reduce the dimensionality of the data, a trace image was generated using a separate color scale for each of the three diagonal element images of the ADT. This new image retains much of the invariance of the trace to the relative orientations of laboratory and sample axes (inherent to a greyscale trace image) but provides, by the use of color, contrast reflecting diffusion anisotropy. The colored trace image yields a pseudo-three-dimensional view of the rat spinal cord, from which it is possible to deduce fiber orientations.

  12. Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging.

    PubMed

    Burstein, D; Gray, M L; Hartman, A L; Gipe, R; Foy, B D

    1993-07-01

    The ability of water and solutes to move through the cartilage matrix is important to the normal function of cartilage and is presumed to be altered in degenerative diseases of cartilage such as osteoarthritis and rheumatoid arthritis. Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) techniques were used to measure a self diffusion coefficient (D) for small solutes in samples of explanted cartilage for diffusion times ranging from 13 ms to 2 s. With a diffusion time of 13 ms, the intratissue diffusivity of several small solutes (water, Na+, Li+, and CF3CO2-) was found consistently to be about 60% of the diffusivity of the same species in free solution. Equilibration of the samples at low pH (which titrates the charge groups so that the net matrix charge of -300 mM at pH 8 becomes approximately -50 mM at pH 2) did not affect the diffusivity of water or Na+. These data, and the similarity between the D in cartilage relative to free solution for water, anions, and cations, are consistent with the view that charge is not an important determinant of the intratissue diffusivity of small solutes in cartilage. With 35% compression, the diffusivity of water and Li+ dropped by 19 and 39%, respectively. In contrast, the diffusivity of water increased by 20% after treatment with trypsin (to remove the proteoglycans and noncollagenous proteins). These data and the lack of an effect of charge on diffusivity are consistent with D being dependent on the composition and density of the solid tissue matrix. A series of diffusion-weighted proton images demonstrated that D could be measured on a localized basis and that changes in D associated with an enzymatically depleted matrix could be clearly observed. Finally, evidence of restriction to diffusion within the tissue was found with studies in which D was measured as a function of diffusion time. The measured D for water in cartilage decreased with diffusion times ranging from 25 ms to 2 s, at which

  13. Comparison of phytate and other organic P forms in Mehlich-3 and Alkaline-EDTA matrices by ICP, NMR and mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The favored method of organic P identification over the last few decades has been 31P NMR. While this technique has the distinct advantage of speciating the organic P fraction, it has a relatively poor detection threshold (0.05 mg/ml), which typically limits 31P NMR to qualitative or confirmative ap...

  14. Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Pecher, Oliver; Bayley, Paul M.; Liu, Hao; Liu, Zigeng; Trease, Nicole M.; Grey, Clare P.

    2016-04-01

    We have developed and explored the use of a new Automatic Tuning Matching Cycler (ATMC) in situ NMR probe system to track the formation of intermediate phases and investigate electrolyte decomposition during electrochemical cycling of Li- and Na-ion batteries (LIBs and NIBs). The new approach addresses many of the issues arising during in situ NMR, e.g., significantly different shifts of the multi-component samples, changing sample conditions (such as the magnetic susceptibility and conductivity) during cycling, signal broadening due to paramagnetism as well as interferences between the NMR and external cycler circuit that might impair the experiments. We provide practical insight into how to conduct ATMC in situ NMR experiments and discuss applications of the methodology to LiFePO4 (LFP) and Na3V2(PO4)2F3 cathodes as well as Na metal anodes. Automatic frequency sweep 7Li in situ NMR reveals significant changes of the strongly paramagnetic broadened LFP line shape in agreement with the structural changes due to delithiation. Additionally, 31P in situ NMR shows a full separation of the electrolyte and cathode NMR signals and is a key feature for a deeper understanding of the processes occurring during charge/discharge on the local atomic scale of NMR. 31P in situ NMR with "on-the-fly" re-calibrated, varying carrier frequencies on Na3V2(PO4)2F3 as a cathode in a NIB enabled the detection of different P signals within a huge frequency range of 4000 ppm. The experiments show a significant shift and changes in the number as well as intensities of 31P signals during desodiation/sodiation of the cathode. The in situ experiments reveal changes of local P environments that in part have not been seen in ex situ NMR investigations. Furthermore, we applied ATMC 23Na in situ NMR on symmetrical Na-Na cells during galvanostatic plating. An automatic adjustment of the NMR carrier frequency during the in situ experiment ensured on-resonance conditions for the Na metal and

  15. 31P nuclear magnetic resonance in vivo spectroscopy of the metabolic changes induced in the awake rat brain during KCN intoxication and its reversal by hydroxocobalamine.

    PubMed

    Benabid, A L; Decorps, M; Remy, C; Le Bas, J F; Confort, S; Leviel, J L

    1987-03-01

    Radiofrequency surface coils were chronically implanted in rats, which were subsequently subjected to 31P nuclear magnetic resonance (NMR) investigations at 4.7 T. The implanted coil allowed study of the animals without need for anesthesia, which is a prerequisite for studies of normal brain metabolism. The animals may be kept in the NMR probe for several hours. During subsequent experiments, they may be placed in the same position, therefore allowing follow-up studies for periods as long as 2 months. This method has been used in the study of sublethal KCN intoxication. KCN, a cytochrome c oxidase inhibitor, induces a blockade of cell respiratory processes, which is reflected, in a dose-dependent manner, by a decrease in phosphocreatine content and pH and an increase in inorganic phosphate content, whereas ATP levels remain constant until high doses of KCN (6 mg/kg i.p.) are reached. 31P NMR allows the time course of these metabolic changes to be followed. For high KCN doses, a new peak, termed X, is observed, which is interpreted as being due to a pool of inorganic phosphate at very low pH (5.65), corresponding to a subset of cells that did not survive KCN injury. Hydroxocobalamine, a specific antidote of KCN, suppresses the metabolic changes due to 6 mg/kg of KCN.

  16. 31P nuclear magnetic resonance in vivo spectroscopy of the metabolic changes induced in the awake rat brain during KCN intoxication and its reversal by hydroxocobalamine.

    PubMed

    Benabid, A L; Decorps, M; Remy, C; Le Bas, J F; Confort, S; Leviel, J L

    1987-03-01

    Radiofrequency surface coils were chronically implanted in rats, which were subsequently subjected to 31P nuclear magnetic resonance (NMR) investigations at 4.7 T. The implanted coil allowed study of the animals without need for anesthesia, which is a prerequisite for studies of normal brain metabolism. The animals may be kept in the NMR probe for several hours. During subsequent experiments, they may be placed in the same position, therefore allowing follow-up studies for periods as long as 2 months. This method has been used in the study of sublethal KCN intoxication. KCN, a cytochrome c oxidase inhibitor, induces a blockade of cell respiratory processes, which is reflected, in a dose-dependent manner, by a decrease in phosphocreatine content and pH and an increase in inorganic phosphate content, whereas ATP levels remain constant until high doses of KCN (6 mg/kg i.p.) are reached. 31P NMR allows the time course of these metabolic changes to be followed. For high KCN doses, a new peak, termed X, is observed, which is interpreted as being due to a pool of inorganic phosphate at very low pH (5.65), corresponding to a subset of cells that did not survive KCN injury. Hydroxocobalamine, a specific antidote of KCN, suppresses the metabolic changes due to 6 mg/kg of KCN. PMID:3027259

  17. Studies of 3He polarization losses during NMR and EPR measurment and Polarized 3He target cell lifetime

    NASA Astrophysics Data System (ADS)

    An, Peibo

    2014-09-01

    The 3He target cell polarized by spin-exchange optical pumping(SEOP) is used as a neutron substitute to study the inner structure of the neutron. In our lab, nuclear-magnetic-resonance(NMR) is used to measure the relative polarization and electron-paramagnetic-resonance(EPR) is used to measure the spin exchange EPR frequency shift parameter of potassium and rubidium in our target cell presented in magnetic fields. The alkali in the cell is used to facilitate the polarization of 3He. The first part of my work presents the study of the polarization losses of the cell during both NMR and EPR. With the help of improved RF coils, we keep the background noise received by pickup coils reasonably low, but three other kinds of losses are inevitable: losses during Adiabatic Fast Passage (AFP) sweep, losses due to flux change caused by different cell orientation with respect to RF fields and physical losses. Fortunately there is only flux change in NMR measurements. The second part of my work presents the study of cell lifetime improvement. The polarization decreases in a process called relaxation exponentially. The lifetime of a cell is how long it can keep its polarization. The typical lifetime of cells produced in our lab is about 22 hours. With a newly designed vacuum system. The 3He target cell polarized by spin-exchange optical pumping(SEOP) is used as a neutron substitute to study the inner structure of the neutron. In our lab, nuclear-magnetic-resonance(NMR) is used to measure the relative polarization and electron-paramagnetic-resonance(EPR) is used to measure the spin exchange EPR frequency shift parameter of potassium and rubidium in our target cell presented in magnetic fields. The alkali in the cell is used to facilitate the polarization of 3He. The first part of my work presents the study of the polarization losses of the cell during both NMR and EPR. With the help of improved RF coils, we keep the background noise received by pickup coils reasonably low, but

  18. Sensitivity and resolution of two-dimensional NMR diffusion-relaxation measurements.

    PubMed

    Kausik, Ravinath; Hürlimann, Martin D

    2016-09-01

    The performance of 2D NMR diffusion-relaxation measurements for fluid typing applications is analyzed. In particular, we delineate the region in the diffusion - relaxation plane that can be determined with a given gradient strength and homogeneity, and compare the performance of the single and double echo encoding with the stimulated echo diffusion encoding. We show that the diffusion editing based approach is able to determine the diffusion coefficient only if the relaxation time T2 exceeds a cutoff value T2,cutoff, that scales like T2,cutoff∝g(-2/3)D(-1/3). For stimulated echo encoding, the optimal diffusion encoding times (Td and δ), that provide the best diffusion sensitivity, rely only on the T1/T2 ratios and not on the diffusion coefficients of the fluids or the applied gradient strengths. Irrespective of T1, for high enough gradients (i.e. when γ(2)g(2)DT2(3)>10(2)), the Hahn echo based encoding is superior to encoding based on the stimulated echo. For weaker gradients, the stimulated echo is superior only if the T1/T2 ratio is much larger than 1. For single component systems, the diffusion sensitivity is not adversely impacted by the uniformity of the gradients and the diffusion distributions can be well measured. The presence of non-uniform gradients can affect the determination of the diffusion distributions when you have two fluids of comparable T2. In such situations the effective single component diffusion coefficient is always closer to the geometric mean diffusion coefficient of the two fluids. PMID:27389638

  19. Solute diffusion in ionic liquids, NMR measurements and comparisons to conventional solvents.

    PubMed

    Kaintz, Anne; Baker, Gary; Benesi, Alan; Maroncelli, Mark

    2013-10-01

    Diffusion coefficients of a variety of dilute solutes in the series of 1-alkyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imides ([Prn1][Tf2N], n = 3, 4, 6, 8, and 10), trihexyltetracedecylphosphonium bis(trifluoromethanesulfonyl)imide [P14,666][Tf2N], and assorted imidazolium ionic liquids are measured using pulsed field gradient (1)H NMR. These data, combined with available literature data, are used to try to uncover the solute and solvent characteristics most important in determining tracer diffusion rates. Discussion is framed in terms of departures from simple hydrodynamic predictions for translational friction using the ratio ζobs/ζSE, where ζobs is the observed friction, determined from the measured diffusion coefficient D via ζobs = kBT/D, and ζSE = 6πηR is the Stokes friction on a sphere of radius R (determined from the solute van der Waals volume) in a solvent with viscosity η. In the case of neutral solutes, the primary determinant of whether hydrodynamic predictions are accurate is the relative size of solute versus solvent molecules. A single correlation, albeit with considerable scatter, is found between ζobs/ζSE and the ratio of solute-to-solvent van der Waals volumes, ζobs/ζSE = {1 + a(VU/VV)(-p)}, with constants a = 1.93 and p = 1.88. In the case of small solutes, the observed friction is over 100-fold smaller than predictions of hydrodynamic models. The dipole moment of the solute has little effect on the friction, whereas solute charge has a marked effect. For monovalent solutes of size comparable to or smaller than the solvent ions, the observed friction is comparable to or even greater than what is predicted by hydrodynamics. These general trends are shown to be quite similar to what is observed for tracer diffusion in conventional solvents. PMID:23968276

  20. Sensitivity and resolution of two-dimensional NMR diffusion-relaxation measurements

    NASA Astrophysics Data System (ADS)

    Kausik, Ravinath; Hürlimann, Martin D.

    2016-09-01

    The performance of 2D NMR diffusion-relaxation measurements for fluid typing applications is analyzed. In particular, we delineate the region in the diffusion - relaxation plane that can be determined with a given gradient strength and homogeneity, and compare the performance of the single and double echo encoding with the stimulated echo diffusion encoding. We show that the diffusion editing based approach is able to determine the diffusion coefficient only if the relaxation time T2 exceeds a cutoff value T2,cutoff , that scales like T2,cutoff ∝g - 2 / 3D - 1 / 3 . For stimulated echo encoding, the optimal diffusion encoding times (Td and δ), that provide the best diffusion sensitivity, rely only on the T1 /T2 ratios and not on the diffusion coefficients of the fluids or the applied gradient strengths. Irrespective of T1 , for high enough gradients (i.e. when γ2g2 DT23 >102), the Hahn echo based encoding is superior to encoding based on the stimulated echo. For weaker gradients, the stimulated echo is superior only if the T1 /T2 ratio is much larger than 1. For single component systems, the diffusion sensitivity is not adversely impacted by the uniformity of the gradients and the diffusion distributions can be well measured. The presence of non-uniform gradients can affect the determination of the diffusion distributions when you have two fluids of comparable T2 . In such situations the effective single component diffusion coefficient is always closer to the geometric mean diffusion coefficient of the two fluids.

  1. (31)P-MRS of healthy human brain: ATP synthesis, metabolite concentrations, pH, and T1 relaxation times.

    PubMed

    Ren, Jimin; Sherry, A Dean; Malloy, Craig R

    2015-11-01

    The conventional method for measuring brain ATP synthesis is (31)P saturation transfer (ST), a technique typically dependent on prolonged pre-saturation with γ-ATP. In this study, ATP synthesis rate in resting human brain is evaluated using EBIT (exchange kinetics by band inversion transfer), a technique based on slow recovery of γ-ATP magnetization in the absence of B1 field following co-inversion of PCr and ATP resonances with a short adiabatic pulse. The unidirectional rate constant for the Pi → γ-ATP reaction is 0.21 ± 0.04 s(-1) and the ATP synthesis rate is 9.9 ± 2.1 mmol min(-1)  kg(-1) in human brain (n = 12 subjects), consistent with the results by ST. Therefore, EBIT could be a useful alternative to ST in studying brain energy metabolism in normal physiology and under pathological conditions. In addition to ATP synthesis, all detectable (31)P signals are analyzed to determine the brain concentration of phosphorus metabolites, including UDPG at around 10 ppm, a previously reported resonance in liver tissues and now confirmed in human brain. Inversion recovery measurements indicate that UDPG, like its diphosphate analogue NAD, has apparent T1 shorter than that of monophosphates (Pi, PMEs, and PDEs) but longer than that of triphosphate ATP, highlighting the significance of the (31)P-(31)P dipolar mechanism in T1 relaxation of polyphosphates. Another interesting finding is the observation of approximately 40% shorter T1 for intracellular Pi relative to extracellular Pi, attributed to the modulation by the intracellular phosphoryl exchange reaction Pi ↔ γ-ATP. The sufficiently separated intra- and extracellular Pi signals also permit the distinction of pH between intra- and extracellular environments (pH 7.0 versus pH 7.4). In summary, quantitative (31)P MRS in combination with ATP synthesis, pH, and T1 relaxation measurements may offer a promising tool to detect biochemical alterations at early stages of brain dysfunctions and diseases

  2. (31)P-MRS of healthy human brain: ATP synthesis, metabolite concentrations, pH, and T1 relaxation times.

    PubMed

    Ren, Jimin; Sherry, A Dean; Malloy, Craig R

    2015-11-01

    The conventional method for measuring brain ATP synthesis is (31)P saturation transfer (ST), a technique typically dependent on prolonged pre-saturation with γ-ATP. In this study, ATP synthesis rate in resting human brain is evaluated using EBIT (exchange kinetics by band inversion transfer), a technique based on slow recovery of γ-ATP magnetization in the absence of B1 field following co-inversion of PCr and ATP resonances with a short adiabatic pulse. The unidirectional rate constant for the Pi → γ-ATP reaction is 0.21 ± 0.04 s(-1) and the ATP synthesis rate is 9.9 ± 2.1 mmol min(-1)  kg(-1) in human brain (n = 12 subjects), consistent with the results by ST. Therefore, EBIT could be a useful alternative to ST in studying brain energy metabolism in normal physiology and under pathological conditions. In addition to ATP synthesis, all detectable (31)P signals are analyzed to determine the brain concentration of phosphorus metabolites, including UDPG at around 10 ppm, a previously reported resonance in liver tissues and now confirmed in human brain. Inversion recovery measurements indicate that UDPG, like its diphosphate analogue NAD, has apparent T1 shorter than that of monophosphates (Pi, PMEs, and PDEs) but longer than that of triphosphate ATP, highlighting the significance of the (31)P-(31)P dipolar mechanism in T1 relaxation of polyphosphates. Another interesting finding is the observation of approximately 40% shorter T1 for intracellular Pi relative to extracellular Pi, attributed to the modulation by the intracellular phosphoryl exchange reaction Pi ↔ γ-ATP. The sufficiently separated intra- and extracellular Pi signals also permit the distinction of pH between intra- and extracellular environments (pH 7.0 versus pH 7.4). In summary, quantitative (31)P MRS in combination with ATP synthesis, pH, and T1 relaxation measurements may offer a promising tool to detect biochemical alterations at early stages of brain dysfunctions and diseases.

  3. A compact high-performance low-field NMR apparatus for measurements on fluids at very high pressures and temperatures

    SciTech Connect

    Freedman, R.; Anand, V. Ganesan, K.; Tabrizi, P.; Torres, R.; Grant, B.; Catina, D.; Ryan, D.; Borman, C.; Krueckl, C.

    2014-02-15

    We discuss an innovative new high-performance apparatus for performing low-field Nuclear Magnetic Resonance (NMR) relaxation times and diffusion measurements on fluids at very high pressures and high temperatures. The apparatus sensor design and electronics specifications allow for dual deployment either in a fluid sampling well logging tool or in a laboratory. The sensor and electronics were designed to function in both environments. This paper discusses the use of the apparatus in a laboratory environment. The operating temperature and pressure limits, and the signal-to-noise ratio (SNR) of the new system exceed by a very wide margin what is currently possible. This major breakthrough was made possible by a revolutionary new sensor design that breaks many of the rules of conventional high pressure NMR sensor design. A metallic sample holder capable of operating at high pressures and temperatures is provided to contain the fluid under study. The sample holder has been successfully tested for operation up to 36 Kpsi. A solenoid coil wound on a slotted titanium frame sits inside the metallic sample holder and serves as an antenna to transmit RF pulses and receive NMR signals. The metal sample holder is sandwiched between a pair of gradient coils which provide a linear field gradient for pulsed field gradient diffusion measurements. The assembly sits in the bore of a low-gradient permanent magnet. The system can operate over a wide frequency range without the need for tuning the antenna to the Larmor frequency. The SNR measured on a water sample at room temperature is more than 15 times greater than that of the commercial low-field system in our laboratory. Thus, the new system provides for data acquisition more than 200 times faster than was previously possible. Laboratory NMR measurements of relaxations times and diffusion coefficients performed at pressures up to 25 Kpsi and at temperatures up to 175 °C with crude oils enlivened with dissolved hydrocarbon gases

  4. A compact high-performance low-field NMR apparatus for measurements on fluids at very high pressures and temperatures.

    PubMed

    Freedman, R; Anand, V; Grant, B; Ganesan, K; Tabrizi, P; Torres, R; Catina, D; Ryan, D; Borman, C; Krueckl, C

    2014-02-01

    We discuss an innovative new high-performance apparatus for performing low-field Nuclear Magnetic Resonance (NMR) relaxation times and diffusion measurements on fluids at very high pressures and high temperatures. The apparatus sensor design and electronics specifications allow for dual deployment either in a fluid sampling well logging tool or in a laboratory. The sensor and electronics were designed to function in both environments. This paper discusses the use of the apparatus in a laboratory environment. The operating temperature and pressure limits, and the signal-to-noise ratio (SNR) of the new system exceed by a very wide margin what is currently possible. This major breakthrough was made possible by a revolutionary new sensor design that breaks many of the rules of conventional high pressure NMR sensor design. A metallic sample holder capable of operating at high pressures and temperatures is provided to contain the fluid under study. The sample holder has been successfully tested for operation up to 36 Kpsi. A solenoid coil wound on a slotted titanium frame sits inside the metallic sample holder and serves as an antenna to transmit RF pulses and receive NMR signals. The metal sample holder is sandwiched between a pair of gradient coils which provide a linear field gradient for pulsed field gradient diffusion measurements. The assembly sits in the bore of a low-gradient permanent magnet. The system can operate over a wide frequency range without the need for tuning the antenna to the Larmor frequency. The SNR measured on a water sample at room temperature is more than 15 times greater than that of the commercial low-field system in our laboratory. Thus, the new system provides for data acquisition more than 200 times faster than was previously possible. Laboratory NMR measurements of relaxations times and diffusion coefficients performed at pressures up to 25 Kpsi and at temperatures up to 175 °C with crude oils enlivened with dissolved hydrocarbon gases

  5. A compact high-performance low-field NMR apparatus for measurements on fluids at very high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Freedman, R.; Anand, V.; Grant, B.; Ganesan, K.; Tabrizi, P.; Torres, R.; Catina, D.; Ryan, D.; Borman, C.; Krueckl, C.

    2014-02-01

    We discuss an innovative new high-performance apparatus for performing low-field Nuclear Magnetic Resonance (NMR) relaxation times and diffusion measurements on fluids at very high pressures and high temperatures. The apparatus sensor design and electronics specifications allow for dual deployment either in a fluid sampling well logging tool or in a laboratory. The sensor and electronics were designed to function in both environments. This paper discusses the use of the apparatus in a laboratory environment. The operating temperature and pressure limits, and the signal-to-noise ratio (SNR) of the new system exceed by a very wide margin what is currently possible. This major breakthrough was made possible by a revolutionary new sensor design that breaks many of the rules of conventional high pressure NMR sensor design. A metallic sample holder capable of operating at high pressures and temperatures is provided to contain the fluid under study. The sample holder has been successfully tested for operation up to 36 Kpsi. A solenoid coil wound on a slotted titanium frame sits inside the metallic sample holder and serves as an antenna to transmit RF pulses and receive NMR signals. The metal sample holder is sandwiched between a pair of gradient coils which provide a linear field gradient for pulsed field gradient diffusion measurements. The assembly sits in the bore of a low-gradient permanent magnet. The system can operate over a wide frequency range without the need for tuning the antenna to the Larmor frequency. The SNR measured on a water sample at room temperature is more than 15 times greater than that of the commercial low-field system in our laboratory. Thus, the new system provides for data acquisition more than 200 times faster than was previously possible. Laboratory NMR measurements of relaxations times and diffusion coefficients performed at pressures up to 25 Kpsi and at temperatures up to 175 °C with crude oils enlivened with dissolved hydrocarbon gases

  6. Characterization of the phosphoserine of pepsinogen using /sup 31/P nuclear magnetic resonance: corroboration of X-ray crystallographic results

    SciTech Connect

    Williams, S.P.; Bridger, W.A.; James, M.N.G.

    1986-10-21

    The endogenous phosphoserine residue in porcine pepsinogen has been titrated with use of phosphorus-31 nuclear magnetic resonance (/sup 31/P NMR). It has an observed pK/sub a/sub 2// of 6.7 and a narrow line width (approx. =10 Hz). The phosphate can be readily removed by an acid phosphatase from potato; however, it is resistant to hydrolysis by several alkaline phosphatases. The X-ray crystal structure of porcine pepsinogen at 1.8-A resolution shows a rather weak and diffuse region of electron density in the vicinity of the phosphorylated serine residue. This suggests considerable dynamic mobility or conformational disorder of the phosphate. In order to define more fully this behavior the NMR data have been used to corroborate these crystallographic results. All these physical data are consistent with a highly mobile phosphoserine residue on the surface of the zymogen and freely exposed to solvent. In addition, certain properties of this phosphoserine moiety on pepsinogen are similar to those of one of the phosphorylated residues of ovalbumin. The possible significance of this is discussed.

  7. High resolution NMR measurements using a 400MHz NMR with an (RE)Ba2Cu3O7-x high-temperature superconducting inner coil: Towards a compact super-high-field NMR.

    PubMed

    Piao, R; Iguchi, S; Hamada, M; Matsumoto, S; Suematsu, H; Saito, A T; Li, J; Nakagome, H; Takao, T; Takahashi, M; Maeda, H; Yanagisawa, Y

    2016-02-01

    Use of high-temperature superconducting (HTS) inner coils in combination with conventional low-temperature superconducting (LTS) outer coils for an NMR magnet, i.e. a LTS/HTS NMR magnet, is a suitable option to realize a high-resolution NMR spectrometer with operating frequency >1GHz. From the standpoint of creating a compact magnet, (RE: Rare earth) Ba2Cu3O7-x (REBCO) HTS inner coils which can tolerate a strong hoop stress caused by a Lorentz force are preferred. However, in our previous work on a first-generation 400MHz LTS/REBCO NMR magnet, the NMR resolution and sensitivity were about ten times worse than that of a conventional LTS NMR magnet. The result was caused by a large field inhomogeneity in the REBCO coil itself and the shielding effect of a screening current induced in that coil. In the present paper, we describe the operation of a modified 400MHz LTS/REBCO NMR magnet with an advanced field compensation technology using a combination of novel ferromagnetic shimming and an appropriate procedure for NMR spectrum line shape optimization. We succeeded in obtaining a good NMR line shape and 2D NOESY spectrum for a lysozyme aqueous sample. We believe that this technology is indispensable for the realization of a compact super-high-field high-resolution NMR. PMID:26778351

  8. On Neglecting Chemical Exchange Effects When Correcting in Vivo 31P MRS Data for Partial Saturation

    NASA Astrophysics Data System (ADS)

    Ouwerkerk, Ronald; Bottomley, Paul A.

    2001-02-01

    Signal acquisition in most MRS experiments requires a correction for partial saturation that is commonly based on a single exponential model for T1 that ignores effects of chemical exchange. We evaluated the errors in 31P MRS measurements introduced by this approximation in two-, three-, and four-site chemical exchange models under a range of flip-angles and pulse sequence repetition times (TR) that provide near-optimum signal-to-noise ratio (SNR). In two-site exchange, such as the creatine-kinase reaction involving phosphocreatine (PCr) and γ-ATP in human skeletal and cardiac muscle, errors in saturation factors were determined for the progressive saturation method and the dual-angle method of measuring T1. The analysis shows that these errors are negligible for the progressive saturation method if the observed T1 is derived from a three-parameter fit of the data. When T1 is measured with the dual-angle method, errors in saturation factors are less than 5% for all conceivable values of the chemical exchange rate and flip-angles that deliver useful SNR per unit time over the range T1/5 ≤ TR ≤ 2T1. Errors are also less than 5% for three- and four-site exchange when TR ≥ T1*/2, the so-called "intrinsic" T1's of the metabolites. The effect of changing metabolite concentrations and chemical exchange rates on observed T1's and saturation corrections was also examined with a three-site chemical exchange model involving ATP, PCr, and inorganic phosphate in skeletal muscle undergoing up to 95% PCr depletion. Although the observed T1's were dependent on metabolite concentrations, errors in saturation corrections for TR = 2 s could be kept within 5% for all exchanging metabolites using a simple interpolation of two dual-angle T1 measurements performed at the start and end of the experiment. Thus, the single-exponential model appears to be reasonably accurate for correcting 31P MRS data for partial saturation in the presence of chemical exchange. Even in systems where

  9. Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging

    SciTech Connect

    Detre, J.A.; Subramanian, V.H.; Mitchell, M.D.; Smith, D.S.; Kobayashi, A.; Zaman, A.; Leigh, J.S. Jr. )

    1990-05-01

    Cerebral blood flow (CBF) was measured in cat brain in vivo at 2.7 T using 2H NMR to monitor the washout of deuterated saline injected into both carotid arteries via the lingual arteries. In anesthetized cats, global CBF varied directly with PaCO{sub 2} over a range of 20-50 mm Hg, and the corresponding global CBF values ranged from 25 to 125 ml.100 g-1.min-1. Regional CBF was measured in a 1-cm axial section of cat brain using intracarotid deuterated saline and gradient-echo 2H NMR imaging. Blood flow images with a maximum pixel resolution of 0.3 x 0.3 x 1.0 cm were generated from the deuterium signal washout at each pixel. Image derived values for CBF agreed well with other determinations, and decreased significantly with hypocapnia.

  10. Dynamic NMR microscopy measurement of the dynamics and flow partitioning of colloidal particles in a bifurcation

    NASA Astrophysics Data System (ADS)

    Fridjonsson, Einar O.; Seymour, Joseph D.; Cokelet, Giles R.; Codd, Sarah L.

    2011-05-01

    The flow and distribution of Newtonian, polymeric and colloid suspension fluids at low Reynolds numbers in bifurcations has importance in a wide range of disciplines, including microvascular physiology and microfluidic devices. A bifurcation consisting of circular capillaries laser etched into a hard polymer with inlet diameter 2.50 ± 0.01 mm, bifurcating to a small diameter outlet of 0.76 ± 0.01 mm and a large diameter outlet of 1.25 ± 0.01 mm is examined. Four distinct fluids (water, 0.25%wt xanthan gum, 8 and 22%vol hard-sphere colloidal suspensions) are flowed at flow rates from 10 to 30 ml/h corresponding to Reynolds numbers based on the entry flow from 0.001 to 8. PGSE NMR techniques are applied to obtain dynamic images of the fluids inside the bifurcation with spatial resolution of 59 × 59 μm/pixel in plane over a 200-μm-thick slice. Velocity in all three spatial directions is examined to determine the impact of secondary flows and characterize the transport in the bifurcation. The velocity data provide direct measurement of the volumetric distribution of the flow between the two channels as a function of flow rate. Water and the 8% colloidal suspension show a constant distribution with increasing flow rate, the xanthan gum shows an increase in fluid going into the larger outlet with higher flow rate, and the 22% colloidal suspension shows a decrease in fluid entering the larger channel with higher flow rate. For the colloidal particle flow, the distribution of colloid particles down the capillary is determined by examining the spectrally resolved propagator for the oil inside the core-shell particles in a direction perpendicular to the axial flow. Using dynamic magnetic resonance microscopy, the potential for using magnetic resonance for "particle counting" in a microscale bifurcation is thus demonstrated.

  11. Comparison of double-quantum NMR normalization schemes to measure homonuclear dipole-dipole interactions

    SciTech Connect

    Saalwächter, Kay

    2014-08-14

    A recent implementation of a double-quantum (DQ) recoupling solid-state NMR experiment, dubbed DQ-DRENAR, provides a quantitative measure of homonuclear dipole-dipole coupling constants in multispin-1/2 systems. It was claimed to be more robust than another, previously known experiment relying on the recording of point-by-point normalized DQ build-up curves. Focusing on the POST-C7 and BaBa-xy16 DQ pulse sequences, I here present an in-depth comparison of both approaches based upon spin-dynamics simulations, stressing that they are based upon very similar principles and that they are largely equivalent when no imperfections are present. With imperfections, it is found that DQ-DRENAR/POST-C7 does not fully compensate for additional signal dephasing related to chemical shifts (CS) and their anisotropy (CSA), which over-compensates the intrinsic CS(A)-related efficiency loss of the DQ Hamiltonian and leads to an apparent cancellation effect. The simulations further show that the CS(A)-related dephasing in DQ-DRENAR can be removed by another phase cycle step or an improved super-cycled wideband version. Only the latter, or the normalized DQ build-up, are unaffected by CS(A)-related signal loss and yield clean pure dipolar-coupling information subject to unavoidable, pulse sequence specific performance reduction related to higher-order corrections of the dipolar DQ Hamiltonian. The intrinsically super-cycled BaBa-xy16 is shown to exhibit virtually no CS(A) related imperfection terms, but its dipolar performance is somewhat more challenged by CS(A) effects than POST-C7, which can however be compensated when applied at very fast MAS (>50 kHz). Practically, DQ-DRENAR uses a clever phase cycle separation to achieve a significantly shorter experimental time, which can also be beneficially employed in normalized DQ build-up experiments.

  12. Comparison of double-quantum NMR normalization schemes to measure homonuclear dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Saalwächter, Kay

    2014-08-01

    A recent implementation of a double-quantum (DQ) recoupling solid-state NMR experiment, dubbed DQ-DRENAR, provides a quantitative measure of homonuclear dipole-dipole coupling constants in multispin-1/2 systems. It was claimed to be more robust than another, previously known experiment relying on the recording of point-by-point normalized DQ build-up curves. Focusing on the POST-C7 and BaBa-xy16 DQ pulse sequences, I here present an in-depth comparison of both approaches based upon spin-dynamics simulations, stressing that they are based upon very similar principles and that they are largely equivalent when no imperfections are present. With imperfections, it is found that DQ-DRENAR/POST-C7 does not fully compensate for additional signal dephasing related to chemical shifts (CS) and their anisotropy (CSA), which over-compensates the intrinsic CS(A)-related efficiency loss of the DQ Hamiltonian and leads to an apparent cancellation effect. The simulations further show that the CS(A)-related dephasing in DQ-DRENAR can be removed by another phase cycle step or an improved super-cycled wideband version. Only the latter, or the normalized DQ build-up, are unaffected by CS(A)-related signal loss and yield clean pure dipolar-coupling information subject to unavoidable, pulse sequence specific performance reduction related to higher-order corrections of the dipolar DQ Hamiltonian. The intrinsically super-cycled BaBa-xy16 is shown to exhibit virtually no CS(A) related imperfection terms, but its dipolar performance is somewhat more challenged by CS(A) effects than POST-C7, which can however be compensated when applied at very fast MAS (>50 kHz). Practically, DQ-DRENAR uses a clever phase cycle separation to achieve a significantly shorter experimental time, which can also be beneficially employed in normalized DQ build-up experiments.

  13. Backbone dynamics of the oligomerization domain of p53 determined from 15N NMR relaxation measurements.

    PubMed

    Clubb, R T; Omichinski, J G; Sakaguchi, K; Appella, E; Gronenborn, A M; Clore, G M

    1995-05-01

    The backbone dynamics of the tetrameric p53 oligomerization domain (residues 319-360) have been investigated by two-dimensional inverse detected heteronuclear 1H-15N NMR spectroscopy at 500 and 600 MHz. 15N T1, T2, and heteronuclear NOEs were measured for 39 of 40 non-proline backbone NH vectors at both field strengths. The overall correlation time for the tetramer, calculated from the T1/T2 ratios, was found to be 14.8 ns at 35 degrees C. The correlation times and amplitudes of the internal motions were extracted from the relaxation data using the model-free formalism (Lipari G, Szabo A, 1982, J Am Chem Soc 104:4546-4559). The internal dynamics of the structural core of the p53 oligomerization domain are uniform and fairly rigid, with residues 327-354 exhibiting an average generalized order parameter (S2) of 0.88 +/- 0.08. The N- and C-termini exhibit substantial mobility and are unstructured in the solution structure of p53. Residues located at the N- and C-termini, in the beta-sheet, in the turn between the alpha-helix and beta-sheet, and at the C-terminal end of the alpha-helix display two distinct internal motions that are faster than the overall correlation time. Fast internal motions (< or = 20 ps) are within the extreme narrowing limit and are of uniform amplitude. The slower motions (0.6-2.2 ns) are outside the extreme narrowing limit and vary in amplitude.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7663341

  14. Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome–nascent chain complexes

    PubMed Central

    Cassaignau, Anaïs M. E.; Cabrita, Lisa D.

    2016-01-01

    The translational diffusion of macromolecules can be examined non-invasively by stimulated echo (STE) NMR experiments to accurately determine their molecular sizes. These measurements can be important probes of intermolecular interactions and protein folding and unfolding, and are crucial in monitoring the integrity of large macromolecular assemblies such as ribosome–nascent chain complexes (RNCs). However, NMR studies of these complexes can be severely constrained by their slow tumbling, low solubility (with maximum concentrations of up to 10 μM), and short lifetimes resulting in weak signal, and therefore continuing improvements in experimental sensitivity are essential. Here we explore the use of the paramagnetic longitudinal relaxation enhancement (PLRE) agent NiDO2A on the sensitivity of 15N XSTE and SORDID heteronuclear STE experiments, which can be used to monitor the integrity of these unstable complexes. We exploit the dependence of the PLRE effect on the gyromagnetic ratio and electronic relaxation time to accelerate recovery of 1H magnetization without adversely affecting storage on Nz during diffusion delays or introducing significant transverse relaxation line broadening. By applying the longitudinal relaxation-optimized SORDID pulse sequence together with NiDO2A to 70S Escherichia coli ribosomes and RNCs, NMR diffusion sensitivity enhancements of up to 4.5-fold relative to XSTE are achieved, alongside ~1.9-fold improvements in two-dimensional NMR sensitivity, without compromising the sample integrity. We anticipate these results will significantly advance the use of NMR to probe dynamic regions of ribosomes and other large, unstable macromolecular assemblies. PMID:26253948

  15. On the role of experimental imperfections in constructing (1)H spin diffusion NMR plots for domain size measurements.

    PubMed

    Nieuwendaal, Ryan C

    2016-01-01

    We discuss the precision of 1D chemical-shift-based (1)H spin diffusion NMR experiments as well as straightforward experimental protocols for reducing errors. The (1)H spin diffusion NMR experiments described herein are useful for samples that contain components with significant spectral overlap in the (1)H NMR spectrum and also for samples of small mass (<1mg). We show that even in samples that display little spectral contrast, domain sizes can be determined to a relatively high degree of certainty if common experimental variability is accounted for and known. In particular, one should (1) measure flip angles to high precision (≈±1° flip angle), (2) establish a metric for phase transients to ensure their repeatability, (3) establish a reliable spectral deconvolution procedure to ascertain the deconvolved spectra of the neat components in the composite or blend spin diffusion spectrum, and (4) when possible, perform 1D chemical-shift-based (1)H spin diffusion experiments with zero total integral to partially correct for errors and uncertainties if these requirements cannot fully be implemented. We show that minimizing the degree of phase transients is not a requirement for reliable domain size measurement, but their repeatability is essential, as is knowing their contribution to the spectral offset (i.e. the J1 coefficient). When performing experiments with zero total integral in the spin diffusion NMR spectrum with carefully measured flip angles and known phase transient effects, the largest contribution to error arises from an uncertainty in the component lineshapes which can be as high as 7%. This uncertainty can be reduced considerably if the component lineshapes deconvolved from the composite or blend spin diffusion spectra adequately match previously acquired pure component spectra. PMID:27039203

  16. In situ measurement of molecular diffusion during catalytic reaction by pulsed-field gradient NMR spectroscopy

    SciTech Connect

    Hong, Y.; Kaerger, J.; Hunger, B. ); Feoktistova, N.N.; Zhdanov, S.P. )

    1992-09-01

    Pulsed-field gradient (PFG) NMR spectroscopy is applied to study the intracrystalline diffusivity of the reactant and product molecules during the conversion of cyclopropane to propene in Zeolite X. The diffusivities are found to be large enough that any influence of intracrystalline diffusion on the overall reaction in flow reactors may be excluded.

  17. Longitudinal NMR parameter measurements of Japanese pear fruit during the growing process using a mobile magnetic resonance imaging system

    NASA Astrophysics Data System (ADS)

    Geya, Yuto; Kimura, Takeshi; Fujisaki, Hirotaka; Terada, Yasuhiko; Kose, Katsumi; Haishi, Tomoyuki; Gemma, Hiroshi; Sekozawa, Yoshihiko

    2013-01-01

    Longitudinal nuclear magnetic resonance (NMR) parameter measurements of Japanese pear fruit (Pyrus pyrifolia Nakai, Kosui) were performed using an electrically mobile magnetic resonance imaging (MRI) system with a 0.2 T and 16 cm gap permanent magnet. To measure the relaxation times and apparent diffusion coefficients of the pear fruit in relation to their weight, seven pear fruits were harvested almost every week during the cell enlargement period and measured in a research orchard. To evaluate the in situ relaxation times, six pear fruits were longitudinally measured for about two months during the same period. The measurements for the harvested samples showed good agreement with the in situ measurements. From the measurements of the harvested samples, it is clear that the relaxation rates of the pear fruits linearly change with the inverse of the linear dimension of the fruits, demonstrating that the relaxation mechanism is a surface relaxation. We therefore conclude that the mobile MRI system is a useful device for measuring the NMR parameters of outdoor living plants.

  18. SVD-Based Technique for Interference Cancellation and Noise Reduction in NMR Measurement of Time-Dependent Magnetic Fields.

    PubMed

    Chen, Wenjun; Ma, Hong; Yu, De; Zhang, Hua

    2016-03-04

    A nuclear magnetic resonance (NMR) experiment for measurement of time-dependent magnetic fields was introduced. To improve the signal-to-interference-plus-noise ratio (SINR) of NMR data, a new method for interference cancellation and noise reduction (ICNR) based on singular value decomposition (SVD) was proposed. The singular values corresponding to the radio frequency interference (RFI) signal were identified in terms of the correlation between the FID data and the reference data, and then the RFI and noise were suppressed by setting the corresponding singular values to zero. The validity of the algorithm was verified by processing the measured NMR data. The results indicated that, this method has a significantly suppression of RFI and random noise, and can well preserve the FID signal. At present, the major limitation of the proposed SVD-based ICNR technique is that the threshold value for interference cancellation needs to be manually selected. Finally, the inversion waveform of the applied alternating magnetic field was given by fitting the processed experimental data.

  19. SVD-Based Technique for Interference Cancellation and Noise Reduction in NMR Measurement of Time-Dependent Magnetic Fields

    PubMed Central

    Chen, Wenjun; Ma, Hong; Yu, De; Zhang, Hua

    2016-01-01

    A nuclear magnetic resonance (NMR) experiment for measurement of time-dependent magnetic fields was introduced. To improve the signal-to-interference-plus-noise ratio (SINR) of NMR data, a new method for interference cancellation and noise reduction (ICNR) based on singular value decomposition (SVD) was proposed. The singular values corresponding to the radio frequency interference (RFI) signal were identified in terms of the correlation between the FID data and the reference data, and then the RFI and noise were suppressed by setting the corresponding singular values to zero. The validity of the algorithm was verified by processing the measured NMR data. The results indicated that, this method has a significantly suppression of RFI and random noise, and can well preserve the FID signal. At present, the major limitation of the proposed SVD-based ICNR technique is that the threshold value for interference cancellation needs to be manually selected. Finally, the inversion waveform of the applied alternating magnetic field was given by fitting the processed experimental data. PMID:26959024

  20. Rapid measurement of multidimensional 1H solid-state NMR spectra at ultra-fast MAS frequencies

    NASA Astrophysics Data System (ADS)

    Ye, Yue Qi; Malon, Michal; Martineau, Charlotte; Taulelle, Francis; Nishiyama, Yusuke

    2014-02-01

    A novel method to realize rapid repetition of 1H NMR experiments at ultra-fast MAS frequencies is demonstrated. The ultra-fast MAS at 110 kHz slows the 1H-1H spin diffusion, leading to variations of 1H T1 relaxation times from atom to atom within a molecule. The different relaxation behavior is averaged by applying 1H-1H recoupling during relaxation delay even at ultra-fast MAS, reducing the optimal relaxation delay to maximize the signal to noise ratio. The way to determine optimal relaxation delay for arbitrary relaxation curve is shown. The reduction of optimal relaxation delay by radio-frequency driven recoupling (RFDR) was demonstrated on powder samples of glycine and ethenzamide with one and multi-dimensional NMR measurements.

  1. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and Te125 NMR measurements in complex tellurides

    DOE PAGES

    Levin, E. M.

    2016-06-27

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S, depends on the free (mobile) carrier concentration, n, and effective mass, m*, as S ~ m*/n2/3. The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1/T1, depends on both n and m* as 1/T1~(m*)3/2n (within classical Maxwell-Boltzmann statistics) or as 1/T1~(m*)2n2/3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown that the combination of the Seebeck coefficientmore » and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study AgxSbxGe50–2xTe50, well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Thus, values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.« less

  2. Two-dimensional NMR measurement and point dipole model prediction of paramagnetic shift tensors in solids

    SciTech Connect

    Walder, Brennan J.; Davis, Michael C.; Grandinetti, Philip J.; Dey, Krishna K.; Baltisberger, Jay H.

    2015-01-07

    A new two-dimensional Nuclear Magnetic Resonance (NMR) experiment to separate and correlate the first-order quadrupolar and chemical/paramagnetic shift interactions is described. This experiment, which we call the shifting-d echo experiment, allows a more precise determination of tensor principal components values and their relative orientation. It is designed using the recently introduced symmetry pathway concept. A comparison of the shifting-d experiment with earlier proposed methods is presented and experimentally illustrated in the case of {sup 2}H (I = 1) paramagnetic shift and quadrupolar tensors of CuCl{sub 2}⋅2D{sub 2}O. The benefits of the shifting-d echo experiment over other methods are a factor of two improvement in sensitivity and the suppression of major artifacts. From the 2D lineshape analysis of the shifting-d spectrum, the {sup 2}H quadrupolar coupling parameters are 〈C{sub q}〉 = 118.1 kHz and 〈η{sub q}〉 = 0.88, and the {sup 2}H paramagnetic shift tensor anisotropy parameters are 〈ζ{sub P}〉 = − 152.5 ppm and 〈η{sub P}〉 = 0.91. The orientation of the quadrupolar coupling principal axis system (PAS) relative to the paramagnetic shift anisotropy principal axis system is given by (α,β,γ)=((π)/2 ,(π)/2 ,0). Using a simple ligand hopping model, the tensor parameters in the absence of exchange are estimated. On the basis of this analysis, the instantaneous principal components and orientation of the quadrupolar coupling are found to be in excellent agreement with previous measurements. A new point dipole model for predicting the paramagnetic shift tensor is proposed yielding significantly better agreement than previously used models. In the new model, the dipoles are displaced from nuclei at positions associated with high electron density in the singly occupied molecular orbital predicted from ligand field theory.

  3. (77)Se chemical shift tensor of L-selenocystine: experimental NMR measurements and quantum chemical investigations of structural effects.

    PubMed

    Struppe, Jochem; Zhang, Yong; Rozovsky, Sharon

    2015-03-01

    The genetically encoded amino acid selenocysteine and its dimeric form, selenocystine, are both utilized by nature. They are found in active sites of selenoproteins, enzymes that facilitate a diverse range of reactions, including the detoxification of reactive oxygen species and regulation of redox pathways. Due to selenocysteine and selenocystine's specialized biological roles, it is of interest to examine their (77)Se NMR properties and how those can in turn be employed to study biological systems. We report the solid-state (77)Se NMR measurements of the L-selenocystine chemical shift tensor, which provides the first experimental chemical shift tensor information on selenocysteine-containing systems. Quantum chemical calculations of L-selenocystine models were performed to help understand various structural effects on (77)Se L-selenocystine's chemical shift tensor. The effects of protonation state, protein environment, and substituent of selenium-bonded carbon on the isotropic chemical shift were found to be in a range of ca. 10-20 ppm. However, the conformational effect was found to be much larger, spanning ca. 600 ppm for the C-Se-Se-C dihedral angle range of -180° to +180°. Our calculations show that around the minimum energy structure with a C-Se-Se-C dihedral angle of ca. -90°, the energy costs to alter the dihedral angle in the range from -120° to -60° are within only 2.5 kcal/mol. This makes it possible to realize these conformations in a protein or crystal environment. (77)Se NMR was found to be a sensitive probe to such changes and has an isotropic chemical shift range of 272 ± 30 ppm for this energetically favorable conformation range. The energy-minimized structures exhibited calculated isotropic shifts that lay within 3-9% of those reported in previous solution NMR studies. The experimental solid-state NMR isotropic chemical shift is near the lower bound of this calculated range for these readily accessible conformations. These results suggest

  4. Glyphosate complexation to aluminium(III). An equilibrium and structural study in solution using potentiometry, multinuclear NMR, ATR-FTIR, ESI-MS and DFT calculations.

    PubMed

    Purgel, Mihály; Takács, Zoltán; Jonsson, Caroline M; Nagy, Lajos; Andersson, Ingegärd; Bányai, István; Pápai, Imre; Persson, Per; Sjöberg, Staffan; Tóth, Imre

    2009-11-01

    The stoichiometries and stability constants of a series of Al(3+)-N-phosponomethyl glycine (PMG/H(3)L) complexes have been determined in acidic aqueous solution using a combination of precise potentiometric titration data, quantitative (27)Al and (31)P NMR spectra, ATR-FTIR spectrum and ESI-MS measurements (0.6M NaCl, 25 degrees C). Besides the mononuclear AlH(2)L(2+), Al(H(2)L)(HL), Al(HL)(2)(-) and Al(HL)L(2-), dimeric Al(2)(HL)L(+) and trinuclear Al(3)H(5)L(4)(2+) complexes have been postulated. (1)H and (31)P NMR data show that different isomers co-exist in solution and the isomerization reactions are slow on the (31)P NMR time scale. The geometries of monomeric and dimeric complexes likely double hydroxo bridged and double phosphonate bridged isomers have been optimized using DFT ab initio calculations starting from rational structural proposals. Energy calculations using the PCM solvation method also support the co-existence of isomers in solutions.

  5. Gas-phase NMR measurements, absolute shielding scales, and magnetic dipole moments of 29Si and 73Ge nuclei.

    PubMed

    Makulski, W; Jackowski, K; Antusek, A; Jaszuński, M

    2006-10-12

    New gas-phase NMR measurements of the shielding constants of 29Si, 73Ge, and 1H nuclei in SiH4 and GeH4 are reported. The results, extrapolated to zero density, provide accurate isolated molecule values, best suited for comparison with theoretical calculations. Using the recent ab initio results for these molecules and the measured chemical shifts, we determine the absolute shielding scales for 29Si and 73Ge. This allows us to provide new values of the nuclear magnetic dipole moments for these two nuclei; in addition, we examine the dipole moments of 13C and 119Sn.

  6. Advancement of 31P Magnetic Resonance Spectroscopy Using GRAPPA Reconstruction on a 3D Volume

    NASA Astrophysics Data System (ADS)

    Clevenger, Tony

    The overall objective of this research is to improve currently available metabolic imaging techniques for clinical use in monitoring and predicting treatment response to radiation therapy in liver cancer. Liver metabolism correlates with inflammatory and neoplastic liver diseases, which alter the intracellular concentration of phosphorus- 31 (31P) metabolites [1]. It is assumed that such metabolic changes occur prior to physical changes of the tissue. Therefore, information on regional changes of 31P metabolites in the liver, obtained by Magnetic Resonance Spectroscopic Imaging (MRSI) [1,2], can help in diagnosis and follow-up of various liver diseases. Specifically, there appears to be an immediate need of this technology for both the assessment of tumor response in patients with Hepatocellular Carcinoma (HCC) treated with Stereotactic Body Radiation Therapy (SBRT) [3--5], as well as assessment of radiation toxicity, which can result in worsening liver dysfunction [6]. Pilot data from our lab has shown that 31P MRSI has the potential to identify treatment response five months sooner than conventional methods [7], and to assess the biological response of liver tissue to radiation 24 hours post radiation therapy [8]. While this data is very promising, commonly occurring drawbacks for 31P MRSI are patient discomfort due to long scan times and prone positioning within the scanner, as well as reduced data quality due to patient motion and respiration. To further advance the full potential of 31P MRSI as a clinical diagnostic tool in the management of liver cancer, this PhD research project had the following aims: I) Reduce the long acquisition time of 3D 31P MRS by formulating and imple- menting an appropriate GRAPPA undersampling scheme and reconstruction on a clinical MRI scanner II) Testing and quantitative validation of GRAPPA reconstruction on 3D 31P MRSI on developmental phantoms and healthy volunteers At completion, this work should considerably advance 31P MRSI

  7. Microsolvation and sp2-stereoinversion of monomeric α-(2,6-di-tert-butylphenyl)vinyllithium as measured by NMR

    PubMed Central

    Knittl, Monika; Rossmann, Eva C

    2014-01-01

    Summary The β-unsubstituted title compound dissolves in THF as a uniformly trisolvated monomer, whereas it forms exclusively disolvated monomers in tert-butyl methyl ether, Et2O, TMEDA, or toluene with TMEDA (1.4 equiv). This was established at low temperatures through the observation of separated NMR signals for free and lithium-coordinated ligands and/or through the patterns and magnitudes of 13C,6Li NMR coupling constants. An aggregated form was observed only with Et2O (2 equiv) in toluene as the solvent. The olefinic geminal interproton coupling constants of the H2C= part can be used as a secondary criterion to differentiate between these differently solvated ground-states (3, 2, or <2 coordinated ligands per Li). Due to a kinetic trisolvation privilege of THF, the cis/trans sp2-stereoinversion rates could be measured through analyses of 1H NMR line broadening and coalescence only in THF as the solvent: The pseudomonomolecular (because THF-catalyzed), ionic mechanism is initialized by a C–Li bond heterolysis with the transient immobilization of one additional THF ligand, followed by stereoinversion of the quasi-sp2-hybridized carbanionic center in cooperation with a “conducted tour” migration of Li+(THF)4 along the α-aryl group within the solvent-separated ion pair. PMID:25383123

  8. Aggregation properties and structural studies of anticancer drug Irinotecan in DMSO solution based on NMR measurements

    NASA Astrophysics Data System (ADS)

    D'Amelio, N.; Aroulmoji, V.; Toraldo, A.; Sundaraganesan, N.; Anbarasan, P. M.

    2012-04-01

    Irinotecan is an antitumor drug mostly used in the treatment of colorectal cancer. Its efficacy is influenced by the chemical state of the molecule undergoing chemical equilibria, metabolic changes and photodegradation. In this work, we describe the chemical equilibria of the drug in dimethyl sulfoxide (DMSO). The energetic barrier for hindered rotation around the bond connecting the piperidino—piperidino moiety with the camptothecin-like fragment was evaluated. Furthermore, we showed how the molecule aggregates in DMSO solution forming dimeric species able to prevent its degradation. The equilibrium constant for self-aggregation was determined by NMR based on the assumption of the isodesmic model. The formation of a dimer was highlighted by NMR diffusion ordered spectroscopy (NMR-DOSY) experiments at the concentrations used. Structural features of the complex were inferred by NOE and 13C chemical shift data. Molecular modelling of the complex driven by experimental data, lead to a structure implying the formation of two hydrogen bonds involving the lactone ring whose opening is one of the main causes of drug degradation. This species is probably responsible for the improved stability of the drug at concentrations higher than 1 mM.

  9. Effects of sleep deprivation on sleep homeostasis and restoration during methadone-maintenance: a [31] P MRS brain imaging study

    PubMed Central

    Trksak, George H.; Jensen, J. Eric; Plante, David T.; Penetar, David M.; Tartarini, Wendy L.; Maywalt, Melissa A.; Brendel, Michael; Dorsey, Cynthia M.; Renshaw, Perry F.; Lukas, Scott E.

    2009-01-01

    SUMMARY Insomnia afflicts many individuals, but particularly those in chronic methadone treatment. Studies examining sleep deprivation (SD) have begun to identify sleep restoration processes involving brain bioenergetics. The technique [31]P magnetic resonance spectroscopy (MRS) can measure brain changes in the high-energy phosphates: alpha-, beta-, and gamma-nucleoside triphosphate (NTP). In the present study, 21 methadone-maintained (MM) and 16 control participants underwent baseline (BL), SD (40 wakeful hrs), recovery1 (RE1), and recovery2 (RE2) study nights. Polysomnographic sleep was recorded each night and [31]P MRS brain scanning conducted each morning using a 4T MR scanner (dual-tuned proton/phosphorus headcoil). Interestingly, increases in total sleep time (TST) and sleep efficiency index (SEI) commonly associated with RE sleep were not apparent in MM participants. Analysis of methadone treatment duration revealed that the lack of RE sleep increases in TST and SEI were primarily exhibited by short-term MM participants (methadone<12 months), while RE sleep in long-term MM (methadone>12 months) participants was more comparable to control participants. Slow wave sleep increased during RE1, but there was no difference between MM and control participants. Spectral power analysis revealed that compared to control participants; MM participants had greater delta, theta, and alpha spectral power during BL and RE sleep. [31]P MRS revealed that elevations in brain beta-NTP (a direct measure of ATP) following RE sleep were greater in MM compared to control participants. Results suggest that differences in sleep and brain chemistry during RE in MM participants may be reflective of a disruption in homeostatic sleep function. PMID:19775835

  10. Magic-angle-spinning NMR on solid biological systems. Analysis Of the origin of the spectral linewidths

    NASA Astrophysics Data System (ADS)

    Hemminga, M. A.; de Jager, P. A.; Krüse, J.; Lamerichs, R. M. J. N.

    Magic-angle-spinning (MAS) high-power 1H-decoupled 13C and 31P NMR has been applied to solid biological materials to obtain information about the mechanisms that determine the spectral linewidths. The line broadening in MAS 31P NMR spectra of solid tobacco mosaic virus (TMV) has been investigated by selective saturation and T2 measurements. About 90 Hz stems from homogeneous effects, whereas the inhomogeneous contribution is approximately 100 Hz. The inhomogeneous line broadening is assigned to macroscopic inhomogeneities in the sample and not to variations in the nucleotide bases along the RNA strand in TMV. It is concluded that sample preparation is of vital importance for obtaining well-resolved spectra. Under optimal preparation techniques the isotropic values of the chemical shift of the different 31P sites have been determined to obtain information about the secondary structure of the viral RNA. The chemical shift anisotropy has been determined from the relative intensities of the spinning side bands in the spectra. The chemical shift information is used to make a tentative assignment of the resonance in terms of the three structurally distinguishable phosphate groups in TMV. The origin of the linewidths in MAS NMR has been examined further by 13C NMR of approximately 10% 13C-enriched coat protein of cowpea chlorotic mottle virus, using selective excitation and saturation techniques, as well as measurements of the relaxation times T1 γ and T2. The CO resonance in the spectrum is composed of an inhomogeneous and homogeneous part with a total linewidth of 700 Hz. The homogeneous linewidth, contributing with 200 Hz, is found to arise from slow molecular motions in the solid on a millisecond timescale.

  11. Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Hurlimann, M. D.; Sen, P. N.; Schwartz, L. M.; Patz, S.; Walsworth, R. L.

    2001-01-01

    We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects.

  12. Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media.

    PubMed

    Mair, R W; Hürlimann, M D; Sen, P N; Schwartz, L M; Patz, S; Walsworth, R L

    2001-01-01

    We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects. PMID:11445310

  13. Medium-range order in sodium phosphate glasses: a quantitative rotational echo double resonance solid state NMR study.

    PubMed

    Strojek, Wenzel; Eckert, Hellmut

    2006-05-21

    Sodium ultraphosphate glasses (Na(2)O)(x)(P(2)O(5))(1-x) show a strongly non-linear dependence of the glass transition temperatures T(g)(x) on composition. To explore the structural origins of this behaviour, local and medium range ordering processes have been investigated by state-of-the-art (23)Na high-resolution and dipolar NMR spectroscopies. In particular, (31)P(23)Na) and (23)Na((31)P) rotational echo double resonance (REDOR) experiments have been analyzed to yield quantitative constraints for the structural description of these glasses. The sodium ions are found to be randomly distributed and, for x < 0.25, spatially correlated with a single metaphosphate-type Q((2)) unit at a distance of 330 pm. In this region, unusual compositional trends observed for the (23)Na chemical shifts and nuclear electric quadrupolar coupling constants, measured by triple-quantum magic-angle spinning (TQMAS) NMR, suggest a systematic decrease of Na coordination number with x. At higher sodium contents (x > 0.25), the magnitude of the (31)P((23)Na) dipolar interaction increases markedly, indicating a significantly increased extent of Q((2))-Na-Q((2)) crosslinking. Based on these results, a comprehensive description of medium-range order in sodium ultraphosphate glasses is developed, suggesting that the T(g)(x) dependence is closely linked to changes in the relative phosphorus/sodium distance distributions.

  14. Measurement of lipid accumulation in Chlorella vulgaris via flow cytometry and liquid-state ¹H NMR spectroscopy for development of an NMR-traceable flow cytometry protocol.

    PubMed

    Bono, Michael S; Garcia, Ravi D; Sri-Jayantha, Dylan V; Ahner, Beth A; Kirby, Brian J

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols. PMID:26267664

  15. Measurement of Lipid Accumulation in Chlorella vulgaris via Flow Cytometry and Liquid-State ¹H NMR Spectroscopy for Development of an NMR-Traceable Flow Cytometry Protocol

    PubMed Central

    Bono Jr., Michael S.; Garcia, Ravi D.; Sri-Jayantha, Dylan V.; Ahner, Beth A.; Kirby, Brian J.

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols. PMID:26267664

  16. Cation location in microporous zeolite, SSZ-13, probed with xenon adsorption measurement and 129Xe NMR spectrum.

    PubMed

    Shin, Na Ra; Kim, Su Hyun; Shin, Hye Sun; Jang, Ik Jun; Cho, Sung June

    2013-06-01

    The location of metal ion, Ag2+, Ca2+, Cu2+ and Y3+ in the SSZ-13 has been investigated with xenon adsorption measurement and 129Xe NMR spectrum. It was referred that the location of the metal ion varies depending on the corresponding charge. The ion-exchanged Ag ion was located in the alpha-cage to interact directly with xenon. Others multivalent cation contributed little with xenon because these were present near the six membered rings where xenon cannot access. PMID:23862500

  17. Quantification of in vivo ³¹P NMR brain spectra using LCModel.

    PubMed

    Deelchand, Dinesh Kumar; Nguyen, Tra-My; Zhu, Xiao-Hong; Mochel, Fanny; Henry, Pierre-Gilles

    2015-06-01

    Quantification of (31)P NMR spectra is commonly performed using line-fitting techniques with prior knowledge. Currently available time- and frequency-domain analysis software includes AMARES (in jMRUI) and CFIT respectively. Another popular frequency-domain approach is LCModel, which has been successfully used to fit both (1)H and (13)C in vivo NMR spectra. To the best of our knowledge LCModel has not been used to fit (31)P spectra. This study demonstrates the feasibility of using LCModel to quantify in vivo (31)P MR spectra, provided that adequate prior knowledge and LCModel control parameters are used. Both single-voxel and MRSI data are presented, and similar results are obtained with LCModel and with AMARES. This provides a new method for automated, operator-independent analysis of (31)P NMR spectra. PMID:25871439

  18. In vivo mouse myocardial (31)P MRS using three-dimensional image-selected in vivo spectroscopy (3D ISIS): technical considerations and biochemical validations.

    PubMed

    Bakermans, Adrianus J; Abdurrachim, Desiree; van Nierop, Bastiaan J; Koeman, Anneke; van der Kroon, Inge; Baartscheer, Antonius; Schumacher, Cees A; Strijkers, Gustav J; Houten, Sander M; Zuurbier, Coert J; Nicolay, Klaas; Prompers, Jeanine J

    2015-10-01

    (31)P MRS provides a unique non-invasive window into myocardial energy homeostasis. Mouse models of cardiac disease are widely used in preclinical studies, but the application of (31)P MRS in the in vivo mouse heart has been limited. The small-sized, fast-beating mouse heart imposes challenges regarding localized signal acquisition devoid of contamination with signal originating from surrounding tissues. Here, we report the implementation and validation of three-dimensional image-selected in vivo spectroscopy (3D ISIS) for localized (31)P MRS of the in vivo mouse heart at 9.4 T. Cardiac (31)P MR spectra were acquired in vivo in healthy mice (n = 9) and in transverse aortic constricted (TAC) mice (n = 8) using respiratory-gated, cardiac-triggered 3D ISIS. Localization and potential signal contamination were assessed with (31)P MRS experiments in the anterior myocardial wall, liver, skeletal muscle and blood. For healthy hearts, results were validated against ex vivo biochemical assays. Effects of isoflurane anesthesia were assessed by measuring in vivo hemodynamics and blood gases. The myocardial energy status, assessed via the phosphocreatine (PCr) to adenosine 5'-triphosphate (ATP) ratio, was approximately 25% lower in TAC mice compared with controls (0.76 ± 0.13 versus 1.00 ± 0.15; P < 0.01). Localization with one-dimensional (1D) ISIS resulted in two-fold higher PCr/ATP ratios than measured with 3D ISIS, because of the high PCr levels of chest skeletal muscle that contaminate the 1D ISIS measurements. Ex vivo determinations of the myocardial PCr/ATP ratio (0.94 ± 0.24; n = 8) confirmed the in vivo observations in control mice. Heart rate (497 ± 76 beats/min), mean arterial pressure (90 ± 3.3 mmHg) and blood oxygen saturation (96.2 ± 0.6%) during the experimental conditions of in vivo (31)P MRS were within the normal physiological range. Our results show that respiratory-gated, cardiac-triggered 3D ISIS allows for non-invasive assessments of in vivo

  19. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy.

    PubMed

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as (13)C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. (13)C) and abundant I (e.g. (1)H) spins affects the measured T1S values in solid-state NMR in the absence of (1)H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance l-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions. PMID:27187211

  20. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy.

    PubMed

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as (13)C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. (13)C) and abundant I (e.g. (1)H) spins affects the measured T1S values in solid-state NMR in the absence of (1)H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance l-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.

  1. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.

  2. Lateralization effects of image-guided 31P magnetoresonance spectroscopic parameters in the frontal lobe of schizophrenics and healthy controls

    NASA Astrophysics Data System (ADS)

    Huebner, Gabriele; Volz, Hans-Peter; Riehemann, Stefan; Wenda, Berit; Roessger, Grit; Rzanny, Reinhard; Sauer, Heinrich

    1999-05-01

    Phosphorus-31 magnetic resonance spectroscopy (31P-MRS) has gained much interest in schizophrenia research in the last years since it allows the non-invasive measurement of high- energy phosphates and phospholipids in vivo. We investigated hemispherical differences of the concentrations of different phosphorus compounds in the frontal lobes. For this purpose, well defined volumes in the dorsolateral prefrontal cortex of 32 healthy controls and 51 schizophrenic patients were examined. Schizophrenic patients showed significant lateralization effects of phosphodiesters (PDE) and the intracellular pH-value. Differences in the lateralization of 31P-MRS parameters between patients and healthy volunteers were only detected for the pH-value. While healthy controls exhibit lower pH-values in the left frontal lobe (6.96), in schizophrenic patients we found lower pH-values in the right (6.89). Detailed examinations showed that this effect is mainly based on the subgroup of schizophrenics who received atypical neuroleptic medication.

  3. Pulsed NMR Measurements in Superfluid 3He in Aerogel of 97.5 % Porosity

    SciTech Connect

    Ishikawa, Osamu; Kado, Ryusuke; Obara, Ken; Yano, Hideo; Hata, Tohru; Nakagawa, Hisashi; Yokogawa, Hiroshi; Yokoyama, Masaru

    2006-09-07

    Aerogel is made of thin SiO2 strands of a few nanometer diameter. Since the coherence length of superfluid 3He is much longer than the silica strand diameter and is nearly the same as the mean distance between silica strands, aerogel gives us a chance to study the effects of an impurity in superfluid 3He. To investigate what superfluid states are formed in aerogel, we performed a pulsed NMR experiment. Both the A-like and B-like phases show a tipping angle dependent frequency shift in the FID signal after an rf pulse. The dependence in the A-like phase is well explained by an expectation based on the ''robust phase'' introduced by Fomin, while the FID frequencies in the B-like phase behave similarly to those observed in the bulk B phase in a slab geometry with the initial condition of a non-Leggett configuration.

  4. Structure and equilibria of Ca 2+-complexes of glucose and sorbitol from multinuclear ( 1H, 13C and 43Ca) NMR measurements supplemented with molecular modelling calculations

    NASA Astrophysics Data System (ADS)

    Pallagi, A.; Dudás, Cs.; Csendes, Z.; Forgó, P.; Pálinkó, I.; Sipos, P.

    2011-05-01

    Ca 2+-complexation of D-glucose and D-sorbitol have been investigated with the aid of multinuclear ( 1H, 13C and 43Ca) NMR spectroscopy and ab initio quantum chemical calculations. Formation constants of the forming 1:1 complexes have been estimated from one-dimensional 13C NMR spectra obtained at constant ionic strength (1 M NaCl). Binding sites were identified from 2D 1H- 43Ca NMR spectra. 2D NMR measurements and ab initio calculations indicated that Ca 2+ ions were bound in a tridentate manner via the glycosidic OH, the ethereal oxygen in the ring and the OH on the terminal carbon for the α- and β-anomers of glucose and for sorbitol simultaneous binding of four hydroxide moieties (C1, C2, C4 and C6) was suggested.

  5. Efficient design of multituned transmission line NMR probes: the electrical engineering approach.

    PubMed

    Frydel, J A; Krzystyniak, M; Pienkowski, D; Pietrzak, M; de Sousa Amadeu, N; Ratajczyk, T; Idzik, K; Gutmann, T; Tietze, D; Voigt, S; Fenn, A; Limbach, H H; Buntkowsky, G

    2011-01-01

    Transmission line-based multi-channel solid state NMR probes have many advantages regarding the cost of construction, number of RF-channels, and achievable RF-power levels. Nevertheless, these probes are only rarely employed in solid state-NMR-labs, mainly owing to the difficult experimental determination of the necessary RF-parameters. Here, the efficient design of multi-channel solid state MAS-NMR probes employing transmission line theory and modern techniques of electrical engineering is presented. As technical realization a five-channel ((1)H, (31)P, (13)C, (2)H and (15)N) probe for operation at 7 Tesla is described. This very cost efficient design goal is a multi port single coil transmission line probe based on the design developed by Schaefer and McKay. The electrical performance of the probe is determined by measuring of Scattering matrix parameters (S-parameters) in particular input/output ports. These parameters are compared to the calculated parameters of the design employing the S-matrix formalism. It is shown that the S-matrix formalism provides an excellent tool for examination of transmission line probes and thus the tool for a rational design of these probes. On the other hand, the resulting design provides excellent electrical performance. From a point of view of Nuclear Magnetic Resonance (NMR), calibration spectra of particular ports (channels) are of great importance. The estimation of the π/2 pulses length for all five NMR channels is presented.

  6. A comparison of 31P magnetic resonance spectroscopy and microbubble-enhanced ultrasound for characterizing hepatitis c-related liver disease.

    PubMed

    Lim, A K P; Patel, N; Eckersley, R J; Fitzpatrick, J; Crossey, M M E; Hamilton, G; Goldin, R D; Thomas, H C; Vennart, W; Cosgrove, D O; Taylor-Robinson, S D

    2011-10-01

    We compared in vivo hepatic (31) P magnetic resonance spectroscopy ((31) P MRS) and hepatic vein transit times (HVTT) using contrast-enhanced ultrasound with a microbubble agent to assess the severity of hepatitis C virus (HCV)-related liver disease. Forty-six patients with biopsy-proven HCV-related liver disease and nine healthy volunteers had (31) P MRS and HVTT performed on the same day. (31) P MR spectra were obtained at 1.5 T. Peak areas were calculated for metabolites, including phosphomonoesters (PME) and phosphodiesters (PDE). Patients also had the microbubble ultrasound contrast agent, Levovist (2 g), injected into an antecubital vein, and time-intensity Doppler ultrasound signals of the right and middle hepatic veins were measured. The HVTT was calculated as the time from injection to a sustained rise in Doppler signal 10% greater than baseline. The shortest times were used for analysis. Based on Ishak histological scoring, there were 15 patients with mild hepatitis, 20 with moderate/severe hepatitis and 11 with cirrhosis. With increasing severity of disease, the PME/PDE ratio was steadily elevated, while the HVTT showed a monotonic decrease. Both imaging modalities could separate patients with cirrhosis from the mild and moderate/severe hepatitis groups. No statistical difference was observed in the accuracy of each test to denote mild, moderate/severe hepatitis and cirrhosis (Fisher's exact test P =1.00). (31) P MRS and HVTT show much promise as noninvasive imaging tests for assessing the severity of chronic liver disease. Both are equally effective and highly sensitive in detecting cirrhosis.

  7. The 2D {31P} Spin-Echo-Difference Constant-Time [13C, 1H]-HMQC Experiment for Simultaneous Determination of 3JH3‧P and 3JC4‧P in 13C-Labeled Nucleic Acids and Their Protein Complexes

    NASA Astrophysics Data System (ADS)

    Szyperski, Thomas; Fernández, César; Ono, Akira; Wüthrich, Kurt; Kainosho, Masatsune

    1999-10-01

    A two-dimensional {31P} spin-echo-difference constant-time [13C, 1H]-HMQC experiment (2D {31P}-sedct-[13C, 1H]-HMQC) is introduced for measurements of 3JC4‧P and 3JH3‧P scalar couplings in large 13C-labeled nucleic acids and in DNA-protein complexes. This experiment makes use of the fact that 1H-13C multiple-quantum coherences in macromolecules relax more slowly than the corresponding 13C single-quantum coherences. 3JC4‧P and 3JH3‧P are related via Karplus-type functions with the phosphodiester torsion angles β and ɛ, respectively, and their experimental assessment therefore contributes to further improved quality of NMR solution structures. Data are presented for a uniformly 13C, 15N-labeled 14-base-pair DNA duplex, both free in solution and in a 17-kDa protein-DNA complex.

  8. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    ERIC Educational Resources Information Center

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  9. High-resolution magic angle spinning (1) H NMR measurement of ligand concentration in solvent-saturated chromatographic beads.

    PubMed

    Elwinger, Fredrik; Furó, István

    2016-04-01

    A method based on (1) H high-resolution magic angle spinning NMR has been developed for measuring concentration accurately in heterogeneous materials like that of ligands in chromatography media. Ligand concentration is obtained by relating the peak integrals for a butyl ligand in the spectrum of a water-saturated chromatography medium to the integral of the added internal reference. The method is fast, with capacity of 10 min total sample preparation and analysis time per sample; precise, with a reproducibility expressed as 1.7% relative standard deviation; and accurate, as indicated by the excellent agreement of derived concentration with that obtained previously by (13) C single-pulse excitation MAS NMR. The effects of radiofrequency field inhomogeneity, spin rate, temperature increase due to spinning, and distribution and re-distribution of medium and reference solvent both inside the rotor during spinning and between bulk solvent and pore space are discussed in detail. © 2016 The Authors Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  10. A theoretical study of rotational diffusion models for rod-shaped viruses. The influence of motion on 31P nuclear magnetic resonance lineshapes and transversal relaxation.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1993-01-01

    Information about the interaction between nucleic acids and coat proteins in intact virus particles may be obtained by studying the restricted backbone dynamics of the incapsulated nucleic acids using 31P nuclear magnetic resonance (NMR) spectroscopy. In this article, simulations are carried out to investigate how reorientation of a rod-shaped virus particle as a whole and isolated nucleic acid motions within the virion influence the 31P NMR lineshape and transversal relaxation dominated by the phosphorus chemical shift anisotropy. Two opposite cases are considered on a theoretical level. First, isotropic rotational diffusion is used as a model for mobile nucleic acids that are loosely or partially bound to the protein coat. The effect of this type of diffusion on lineshape and transversal relaxation is calculated by solving the stochastic Liouville equation by an expansion in spherical functions. Next, uniaxial rotational diffusion is assumed to represent the mobility of phosphorus in a virion that rotates as a rigid rod about its length axis. This type of diffusion is approximated by an exchange process among discrete sites. As turns out from these simulations, the amplitude and the frequency of the motion can only be unequivocally determined from experimental data by a combined analysis of the lineshape and the transversal relaxation. In the fast motional region both the isotropic and the uniaxial diffusion model predict the same transversal relaxation as the Redfield theory. For very slow motion, transversal relaxation resembles the nonexponential relaxation as observed for water molecules undergoing translational diffusion in a magnetic field gradient. In this frequency region T2e is inversely proportional to the cube root of the diffusion coefficient. In addition to the isotropic and uniaxial diffusion models, a third model is presented, in which fast restricted nucleic acid backbone motions dominating the lineshape are superimposed on a slow rotation of the

  11. Structural investigations of PuIII phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Popa, Karin; Raison, Philippe E.; Martel, Laura; Martin, Philippe M.; Prieur, Damien; Solari, Pier L.; Bouëxière, Daniel; Konings, Rudy J. M.; Somers, Joseph

    2015-10-01

    PuPO4 was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β- decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state 31P NMR agrees with the XANES results and the presence of a solid-solution.

  12. Measuring the Longitudinal NMR Relaxation Rates of Fast Relaxing Nuclei Using a Signal Eliminating Relaxation Filter

    NASA Astrophysics Data System (ADS)

    Hansen, D. Flemming; Led, Jens J.

    2001-08-01

    A new experiment for selective determination of the relaxation rates of fast relaxing NMR signals is presented. The experiment is derived from the conventional inversion recovery experiment by substituting the 180° inversion pulse of this experiment with a signal eliminating relaxation filter (SERF) consisting of three 180° pulses separated by two variable delays, Δ1 and Δ2. The SERF experiment allows a selective suppression of signals with relaxation rates below a given limit while monitoring the relaxation of faster relaxing signals. The experiment was tested on a sample of 20% oxidized plastocyanin from Anabaena variabilis, where the fast exchange of an electron between the reduced (diamagnetic) and the oxidized (paramagnetic) form results in a series of average signals with widely different relaxation rates. To ensure an optimum extraction of information from the experimental data, the relaxation rates were obtained from the SERF experiment by a simultaneous analysis of all the FIDs of the experiment using a fast linear prediction model method developed previously. The reliability of the relaxation rates obtained from the SERF experiment was confirmed by a comparison of the rates with the corresponding rates obtained from a conventional inversion recovery experiment.

  13. Measuring the longitudinal NMR relaxation rates of fast relaxing nuclei using a signal eliminating relaxation filter.

    PubMed

    Hansen, D F; Led, J J

    2001-08-01

    A new experiment for selective determination of the relaxation rates of fast relaxing NMR signals is presented. The experiment is derived from the conventional inversion recovery experiment by substituting the 180 degrees inversion pulse of this experiment with a signal eliminating relaxation filter (SERF) consisting of three 180 degrees pulses separated by two variable delays, Delta1 and Delta2. The SERF experiment allows a selective suppression of signals with relaxation rates below a given limit while monitoring the relaxation of faster relaxing signals. The experiment was tested on a sample of 20% oxidized plastocyanin from Anabaena variabilis, where the fast exchange of an electron between the reduced (diamagnetic) and the oxidized (paramagnetic) form results in a series of average signals with widely different relaxation rates. To ensure an optimum extraction of information from the experimental data, the relaxation rates were obtained from the SERF experiment by a simultaneous analysis of all the FIDs of the experiment using a fast linear prediction model method developed previously. The reliability of the relaxation rates obtained from the SERF experiment was confirmed by a comparison of the rates with the corresponding rates obtained from a conventional inversion recovery experiment.

  14. Transport properties of bulk hydrogen and hydrogen-helium slush at 4MHz using NMR measurements.

    NASA Astrophysics Data System (ADS)

    Hamida, J. A.; Sullivan, N. S.

    2004-03-01

    The most promising large-scale advance in rocket propulsion is the use of atomic propellants, stabilized in cryogenic environments. The high energy atomic propellants must be stored in a stabilizing medium to inhibit or delay their combination into molecules. We report studies of a suitable cryogenic matrix for atomic propellants consisting of a slush of small grains of solid hydrogen floating in liquid helium. Using NMR techniques, transport properties for bulk samples of solid hydrogen at 4 MHz have been studied as a function of ortho concentration and temperature. In an earlier experiment we determined the stability, transport and thermal properties of a solid hydrogen-liquid helium stabilizer. The nuclear spin-spin and spin-lattice relaxation times of the stabilizer were observed to be appreciably shorter than that expected for bulk samples. We anticipate that the solid-liquid surface relaxation could be the critical path for relaxation towards equilibrium. To address this question, data on relaxation processes for hydrogen -helium slush prepared by different methods will be compared.

  15. Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.

    PubMed

    Lamley, Jonathan M; Lougher, Matthew J; Sass, Hans Juergen; Rogowski, Marco; Grzesiek, Stephan; Lewandowski, Józef R

    2015-09-14

    Typically, protein dynamics involve a complex hierarchy of motions occurring on different time scales between conformations separated by a range of different energy barriers. NMR relaxation can in principle provide a site-specific picture of both the time scales and amplitudes of these motions, but independent relaxation rates sensitive to fluctuations in different time scale ranges are required to obtain a faithful representation of the underlying dynamic complexity. This is especially pertinent for relaxation measurements in the solid state, which report on dynamics in a broader window of time scales by more than 3 orders of magnitudes compared to solution NMR relaxation. To aid in unraveling the intricacies of biomolecular dynamics we introduce (13)C spin-lattice relaxation in the rotating frame (R1ρ) as a probe of backbone nanosecond-microsecond motions in proteins in the solid state. We present measurements of (13)C'R1ρ rates in fully protonated crystalline protein GB1 at 600 and 850 MHz (1)H Larmor frequencies and compare them to (13)C'R1, (15)N R1 and R1ρ measured under the same conditions. The addition of carbon relaxation data to the model free analysis of nitrogen relaxation data leads to greatly improved characterization of time scales of protein backbone motions, minimizing the occurrence of fitting artifacts that may be present when (15)N data is used alone. We also discuss how internal motions characterized by different time scales contribute to (15)N and (13)C relaxation rates in the solid state and solution state, leading to fundamental differences between them, as well as phenomena such as underestimation of picosecond-range motions in the solid state and nanosecond-range motions in solution.

  16. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  17. Ab Initio Calculation of Nuclear Magnetic Resonance Chemical Shift Anisotropy Tensors 1. Influence of Basis Set on the Calculation of 31P Chemical Shifts

    SciTech Connect

    Alam, T.M.

    1998-09-01

    The influence of changes in the contracted Gaussian basis set used for ab initio calculations of nuclear magnetic resonance (NMR) phosphorous chemical shift anisotropy (CSA) tensors was investigated. The isotropic chemical shitl and chemical shift anisotropy were found to converge with increasing complexity of the basis set at the Hartree-Fock @IF) level. The addition of d polarization function on the phosphorous nucIei was found to have a major impact of the calculated chemical shi~ but diminished with increasing number of polarization fimctions. At least 2 d polarization fimctions are required for accurate calculations of the isotropic phosphorous chemical shift. The introduction of density fictional theory (DFT) techniques through tie use of hybrid B3LYP methods for the calculation of the phosphorous chemical shift tensor resulted in a poorer estimation of the NMR values, even though DFT techniques result in improved energy and force constant calculations. The convergence of the W parametem with increasing basis set complexity was also observed for the DFT calculations, but produced results with consistent large deviations from experiment. The use of a HF 6-31 l++G(242p) basis set represents a good compromise between accuracy of the simulation and the complexity of the calculation for future ab initio calculations of 31P NMR parameters in larger complexes.

  18. Skeletal muscle ATP turnover by 31P magnetic resonance spectroscopy during moderate and heavy bilateral knee extension

    PubMed Central

    Cannon, Daniel T; Bimson, William E; Hampson, Sophie A; Bowen, T Scott; Murgatroyd, Scott R; Marwood, Simon; Kemp, Graham J; Rossiter, Harry B

    2014-01-01

    During constant-power high-intensity exercise, the expected increase in oxygen uptake () is supplemented by a  slow component (), reflecting reduced work efficiency, predominantly within the locomotor muscles. The intracellular source of inefficiency is postulated to be an increase in the ATP cost of power production (an increase in P/W). To test this hypothesis, we measured intramuscular ATP turnover with 31P magnetic resonance spectroscopy (MRS) and whole-body during moderate (MOD) and heavy (HVY) bilateral knee-extension exercise in healthy participants (n = 14). Unlocalized 31P spectra were collected from the quadriceps throughout using a dual-tuned (1H and 31P) surface coil with a simple pulse-and-acquire sequence. Total ATP turnover rate (ATPtot) was estimated at exercise cessation from direct measurements of the dynamics of phosphocreatine (PCr) and proton handling. Between 3 and 8 min during MOD, there was no discernable (mean ± SD, 0.06 ± 0.12 l min−1) or change in [PCr] (30 ± 8 vs. 32 ± 7 mm) or ATPtot (24 ± 14 vs. 17 ± 14 mm min−1; each P = n.s.). During HVY, the was 0.37 ± 0.16 l min−1 (22 ± 8%), [PCr] decreased (19 ± 7 vs. 18 ± 7 mm, or 12 ± 15%; P < 0.05) and ATPtot increased (38 ± 16 vs. 44 ± 14 mm min−1, or 26 ± 30%; P < 0.05) between 3 and 8 min. However, the increase in ATPtot (ΔATPtot) was not correlated with the during HVY (r2 = 0.06; P = n.s.). This lack of relationship between ΔATPtot and , together with a steepening of the [PCr]– relationship in HVY, suggests that reduced work efficiency during heavy exercise arises from both contractile (P/W) and mitochondrial sources (the O2 cost of ATP resynthesis; P/O). PMID:25281731

  19. Reproducibility of creatine kinase reaction kinetics in human heart: a (31) P time-dependent saturation transfer spectroscopy study.

    PubMed

    Bashir, Adil; Gropler, Robert

    2014-06-01

    Creatine kinase (CK) is essential for the buffering and rapid regeneration of adenosine triphosphate (ATP) in heart tissue. Herein, we demonstrate a (31) P MRS protocol to quantify CK reaction kinetics in human myocardium at 3 T. Furthermore, we sought to quantify the test-retest reliability of the measured metabolic parameters. The method localizes the (31) P signal from the heart using modified one-dimensional image-selected in vivo spectroscopy (ISIS), and a time-dependent saturation transfer (TDST) approach was used to measure CK reaction parameters. Fifteen healthy volunteers (22 measurements in total) were tested. The CK reaction rate constant (kf ) was 0.32 ± 0.05 s(-1) and the coefficient of variation (CV) was 15.62%. The intrinsic T1 for phosphocreatine (PCr) was 7.36 ± 1.79 s with CV = 24.32%. These values are consistent with those reported previously. The PCr/ATP ratio was equal to 1.94 ± 0.15 with CV = 7.73%, which is within the range of healthy subjects. The reproducibility of the technique was tested in seven subjects and inferred parameters, such as kf and T1 , exhibited good reliability [intraclass correlation coefficient (ICC) of 0.90 and 0.79 for kf and T1 , respectively). The reproducibility data provided in this study will enable the calculation of the power and sample sizes required for clinical and research studies. The technique will allow for the examination of cardiac energy metabolism in clinical and research studies, providing insight into the relationship between energy deficit and functional deficiency in the heart.

  20. NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water

    PubMed Central

    Mallamace, F.; Corsaro, C.; Broccio, M.; Branca, C.; González-Segredo, N.; Spooren, J.; Chen, S.-H.; Stanley, H. E.

    2008-01-01

    Using NMR, we measure the proton chemical shift δ, of supercooled nanoconfined water in the temperature range 195 K < T < 350 K. Because δ is directly connected to the magnetic shielding tensor, we discuss the data in terms of the local hydrogen bond geometry and order. We argue that the derivative −(∂ ln δ/∂T)P should behave roughly as the constant pressure specific heat CP(T), and we confirm this argument by detailed comparisons with literature values of CP(T) in the range 290–370 K. We find that −(∂ ln δ/∂T)P displays a pronounced maximum upon crossing the locus of maximum correlation length at ≈240 K, consistent with the liquid-liquid critical point hypothesis for water, which predicts that CP(T) displays a maximum on crossing the Widom line. PMID:18753633

  1. Hormonally induced modulation in the phosphate metabolites of breast cancer: analysis of in vivo 31P MRS signals with a modified prony method.

    PubMed

    Viti, V; Ragona, R; Guidoni, L; Barone, P; Furman, E; Degani, H

    1997-08-01

    A modified Prony method (MPM) was applied to analyze the main signals present in spatially resolved 31P NMR spectra of MCF7 breast tumors implanted in nude mice. First, the method was tested on synthetic data to establish its limits of reliability. Its performance with respect to peak identification and quantification of signal intensities was then exploited on data from three implanted tumors during hormonal manipulation with estrogen and the antiestrogenic drug tamoxifen. The phosphomonoester peak was resolved into phosphocholine (PC) and phosphoethanolamine (PE). Treatment with tamoxifen led to a significant reduction in the PE to PE+PC peak amplitude ratio in the tumors under consideration. MPM analysis also revealed the presence of two different inorganic phosphate pools: a larger acidic pool and a smaller alkaline pool during estrogen-induced growth and the reverse during tumor regression.

  2. Formation of Po isotopes in the reactions {sup 27}Al + {sup 175}Lu and {sup 31}P + {sup 169}Tm

    SciTech Connect

    Andreev, A.N.; Bogdanov, D.D.; Eremin, A.V.

    1995-05-01

    The excitation functions and the cross sections for the formation of {sup 192-198}Po isotopes in the reactions {sup 27}Al + {sup 175}Lu and {sup 31}P + {sup 169}Tm are measured. A comparison of the results obtained for these reactions with the data on the cross sections for the formation of Po isotopes in the reaction {sup 100}Mo + {sup 92-100}Mo leads to the conclusion that the characteristics of the evaporation channel do not depend on the mass of the bombarding ion up to the complete symmetry in the input channel. It is shown that the experimental data can be adequately described using the statistical approach to the deexcitation of a compound nucleus only under the assumption that the liquid-drop fission barrier is reduced significantly for neutron-deficient Po isotopes. 21 refs., 5 figs., 2 tabs.

  3. Interaction of epicatechin gallate with phospholipid membranes as revealed by solid-state NMR spectroscopy.

    PubMed

    Uekusa, Yoshinori; Kamihira-Ishijima, Miya; Sugimoto, Osamu; Ishii, Takeshi; Kumazawa, Shigenori; Nakamura, Kozo; Tanji, Ken-ichi; Naito, Akira; Nakayama, Tsutomu

    2011-06-01

    Epicatechin gallate (ECg), a green tea polyphenol, has various physiological effects. Our previous nuclear Overhauser effect spectroscopy (NOESY) study using solution NMR spectroscopy demonstrated that ECg strongly interacts with the surface of phospholipid bilayers. However, the dynamic behavior of ECg in the phospholipid bilayers has not been clarified, especially the dynamics and molecular arrangement of the galloyl moiety, which supposedly has an important interactive role. In this study, we synthesized [13C]-ECg, in which the carbonyl carbon of the galloyl moiety was labeled by 13C isotope, and analyzed it by solid-state NMR spectroscopy. Solid-state 31P NMR analysis indicated that ECg changes the gel-to-liquid-crystalline phase transition temperature of DMPC bilayers as well as the dynamics and mobility of the phospholipids. In the solid-state 13C NMR analysis under static conditions, the carbonyl carbon signal of the [13C]-ECg exhibited an axially symmetric powder pattern. This indicates that the ECg molecules rotate about an axis tilting at a constant angle to the bilayer normal. The accurate intermolecular-interatomic distance between the labeled carbonyl carbon of [13C]-ECg and the phosphorus of the phospholipid was determined to be 5.3±0.1 Å by 13C-(31)P rotational echo double resonance (REDOR) measurements. These results suggest that the galloyl moiety contributes to increasing the hydrophobicity of catechin molecules, and consequently to high affinity of galloyl-type catechins for phospholipid membranes, as well as to stabilization of catechin molecules in the phospholipid membranes by cation-π interaction between the galloyl ring and quaternary amine of the phospholipid head-group. PMID:21352801

  4. An advanced NMR protocol for the structural characterization of aluminophosphate glasses.

    PubMed

    van Wüllen, Leo; Tricot, Grégory; Wegner, Sebastian

    2007-10-01

    In this work a combination of complementary advanced solid-state nuclear magnetic resonance (NMR) strategies is employed to analyse the network organization in aluminophosphate glasses to an unprecedented level of detailed insight. The combined results from MAS, MQMAS and (31)P-{(27)Al}-CP-heteronuclear correlation spectroscopy (HETCOR) NMR experiments allow for a detailed speciation of the different phosphate and aluminate species present in the glass. The interconnection of these local building units to an extended three-dimensional network is explored employing heteronuclear dipolar and scalar NMR approaches to quantify P-O-Al connectivity by (31)P{(27)Al}-heteronuclear multiple quantum coherence (HMQC), -rotational echo adiabatic passage double resonance (REAPDOR) and -HETCOR NMR as well as (27)Al{(31)P}-rotational echo double resonance (REDOR) NMR experiments, complemented by (31)P-2D-J-RESolved MAS NMR experiments to probe P-O-P connectivity utilizing the through bond scalar J-coupling. The combination of the results from the various NMR approaches enables us to not only quantify the phosphate units present in the glass but also to identify their respective structural environments within the three-dimensional network on a medium length scale employing a modified Q notation, Q(n)(m),(AlO)(x), where n denotes the number of connected tetrahedral phosphate, m gives the number of aluminate species connected to a central phosphate unit and x specifies the nature of the bonded aluminate species (i.e. 4, 5 or 6 coordinate aluminium).

  5. Reduction of magnetic field fluctuations in powered magnets for NMR using inductive measurements and sampled-data feedback control.

    PubMed

    Li, Mingzhou; Schiano, Jeffrey L; Samra, Jenna E; Shetty, Kiran K; Brey, William W

    2011-10-01

    Resistive and hybrid (resistive/superconducting) magnets provide substantially higher magnetic fields than those available in low-temperature superconducting magnets, but their relatively low spatial homogeneity and temporal field fluctuations are unacceptable for high resolution NMR. While several techniques for reducing temporal fluctuations have demonstrated varying degrees of success, this paper restricts attention to methods that utilize inductive measurements and feedback control to actively cancel the temporal fluctuations. In comparison to earlier studies using analog proportional control, this paper shows that shaping the controller frequency response results in significantly higher reductions in temporal fluctuations. Measurements of temporal fluctuation spectra and the frequency response of the instrumentation that cancels the temporal fluctuations guide the controller design. In particular, we describe a sampled-data phase-lead-lag controller that utilizes the internal model principle to selectively attenuate magnetic field fluctuations caused by the power supply ripple. We present a quantitative comparison of the attenuation in temporal fluctuations afforded by the new design and a proportional control design. Metrics for comparison include measurements of the temporal fluctuations using Faraday induction and observations of the effect that the fluctuations have on nuclear resonance measurements.

  6. Cation substitution in β-tricalcium phosphate investigated using multi-nuclear, solid-state NMR

    NASA Astrophysics Data System (ADS)

    Grigg, Andrew T.; Mee, Martin; Mallinson, Phillip M.; Fong, Shirley K.; Gan, Zhehong; Dupree, Ray; Holland, Diane

    2014-04-01

    The substitution of aluminium, gallium and sodium cations into β-tricalcium phosphate (β-TCP; Ca3(PO4)2) has been investigated, and the Ca sites involved successfully determined, using a combination of 1D 31P, 27Al, 71Ga, 23Na and 43Ca (natural abundance) NMR and 2D 27Al{31P}, 71Ga{31P} and 23Na{31P} rotary-resonance-recoupled heteronuclear multiple-quantum correlation (R3-HMQC) NMR. Over the compositional range studied, substitution of Ca2+ by Al3+ or Ga3+ was observed only on the Ca(5) site, whilst substitution by Na+ was confined to the Ca(4) site. Some AlPO4 or GaPO4 second phase was observed at the highest doping levels in the Al3+ and Ga3+ substituted samples.

  7. NMR-Based Amide Hydrogen-Deuterium Exchange Measurements for Complex Membrane Proteins: Development and Critical Evaluation

    NASA Astrophysics Data System (ADS)

    Czerski, Lech; Vinogradova, Olga; Sanders, Charles R.

    2000-01-01

    A method for measuring site-specific amide hydrogen-deuterium exchange rates for membrane proteins in bilayers is reported and evaluated. This method represents an adaptation and extension of the approach of Dempsey and co-workers (Biophys. J. 70, 1777-1788 (1996)) and is based on reconstituting 15N-labeled membrane proteins into phospholipid bilayers, followed by lyophilization and rehydration with D2O or H2O (control). Following incubation for a time t under hydrated conditions, samples are again lyophilized and then solubilized in an organic solvent system, where 1H-15N HSQC spectra are recorded. Comparison of spectra from D2O-exposed samples to spectra from control samples yields the extent of the H-D exchange which occurred in the bilayers during time t. Measurements are site specific if specific 15N labeling is used. The first part of this paper deals with the search for a suitable solvent system in which to solubilize complex membrane proteins in an amide "exchange-trapped" form for NMR quantitation of amide peak intensities. The second portion of the paper documents application of the overall procedure to measuring site-specific amide exchange rates in diacylglycerol kinase, a representative integral membrane protein. Both the potential usefulness and the significant limitations of the new method are documented.

  8. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: insights from solid-state 13C NMR and solution 31P NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions...

  9. Pulse Electron Double Resonance Detected Multinuclear NMR Spectra of Distant and Low Sensitivity Nuclei and Its Application to the Structure of Mn(II) Centers in Organisms.

    PubMed

    Bruch, Eduardo M; Warner, Melissa T; Thomine, Sébastien; Tabares, Leandro C; Un, Sun

    2015-10-29

    The ability to characterize the structure of metal centers beyond their primary ligands is important to understanding their chemistry. High-magnetic-field pulsed electron double resonance detected NMR (ELDOR-NMR) is shown to be a very sensitive approach to measuring the multinuclear NMR spectra of the nuclei surrounding Mn(II) ions. Resolved spectra of intact organisms with resonances arising from (55)Mn, (31)P, (1)H, (39)K, (35)Cl, (23)Na, and (14)N nuclei surrounding Mn(2+) centers were obtained. Naturally abundant cellular (13)C could be routinely measured as well. The amplitudes of the (14)N and (2)H ELDOR-NMR spectra were found to be linearly dependent on the number of nuclei in the ligand sphere. The evolution of the Mn(II) ELDOR-NMR spectra as a function of excitation time was found to be best described by a saturation phenomenon rather than a coherently driven process. Mn(II) ELDOR-NMR revealed details about not only the immediate ligands to the Mn(II) ions but also more distant nuclei, providing a view of their extended structures. This will be important for understanding the speciation and chemistry of the manganese complexes as well as other metals found in organisms.

  10. Optimized (31)P MRS in the human brain at 7 T with a dedicated RF coil setup.

    PubMed

    van de Bank, Bart L; Orzada, Stephan; Smits, Frits; Lagemaat, Miriam W; Rodgers, Christopher T; Bitz, Andreas K; Scheenen, Tom W J

    2015-11-01

    The design and construction of a dedicated RF coil setup for human brain imaging ((1)H) and spectroscopy ((31)P) at ultra-high magnetic field strength (7 T) is presented. The setup is optimized for signal handling at the resonance frequencies for (1)H (297.2 MHz) and (31)P (120.3 MHz). It consists of an eight-channel (1)H transmit-receive head coil with multi-transmit capabilities, and an insertable, actively detunable (31)P birdcage (transmit-receive and transmit only), which can be combined with a seven-channel receive-only (31)P array. The setup enables anatomical imaging and (31)P studies without removal of the coil or the patient. By separating transmit and receive channels and by optimized addition of array signals with whitened singular value decomposition we can obtain a sevenfold increase in SNR of (31)P signals in the occipital lobe of the human brain compared with the birdcage alone. These signals can be further enhanced by 30 ± 9% using the nuclear Overhauser effect by B1-shimmed low-power irradiation of water protons. Together, these features enable acquisition of (31)P MRSI at high spatial resolutions (3.0 cm(3)  voxel) in the occipital lobe of the human brain in clinically acceptable scan times (~15 min). PMID:26492089

  11. NMR studies on polyphosphide Ce6Ni6P17

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Yamada, H.; Ueda, K.; Mito, T.; Aoyama, Y.; Nakano, T.; Takeda, N.

    2016-02-01

    We report the result of 31P nuclear magnetic resonance (NMR) studies on Ce6Ni6P17. The observed NMR spectra show a Lorentzian-type and an asymmetric shapes, reflecting the local symmetry around each P site in the cubic unit cell. We have identified the observed NMR lines corresponding to three inequivalent P sites and deduced the temperature dependence of the Knight shift for each site. The Knight shifts increase with decreasing temperature down to 1.5 K, indicating a localized spin system of Ce6Ni6P17. Antiferromagnetic correlation between 4f spins is suggested from the negative sign of the Weiss-temperature.

  12. Muscle metabolism and activation heterogeneity by combined 31P chemical shift and T2 imaging, and pulmonary O2 uptake during incremental knee-extensor exercise

    PubMed Central

    Cannon, Daniel T.; Howe, Franklyn A.; Whipp, Brian J.; Ward, Susan A.; McIntyre, Dominick J.; Ladroue, Christophe; Griffiths, John R.; Kemp, Graham J.

    2013-01-01

    The integration of skeletal muscle substrate depletion, metabolite accumulation, and fatigue during large muscle-mass exercise is not well understood. Measurement of intramuscular energy store degradation and metabolite accumulation is confounded by muscle heterogeneity. Therefore, to characterize regional metabolic distribution in the locomotor muscles, we combined 31P magnetic resonance spectroscopy, chemical shift imaging, and T2-weighted imaging with pulmonary oxygen uptake during bilateral knee-extension exercise to intolerance. Six men completed incremental tests for the following: 1) unlocalized 31P magnetic resonance spectroscopy; and 2) spatial determination of 31P metabolism and activation. The relationship of pulmonary oxygen uptake to whole quadriceps phosphocreatine concentration ([PCr]) was inversely linear, and three of four knee-extensor muscles showed activation as assessed by change in T2. The largest changes in [PCr], [inorganic phosphate] ([Pi]) and pH occurred in rectus femoris, but no voxel (72 cm3) showed complete PCr depletion at exercise cessation. The most metabolically active voxel reached 11 ± 9 mM [PCr] (resting, 29 ± 1 mM), 23 ± 11 mM [Pi] (resting, 7 ± 1 mM), and a pH of 6.64 ± 0.29 (resting, 7.08 ± 0.03). However, the distribution of 31P metabolites and pH varied widely between voxels, and the intervoxel coefficient of variation increased between rest (∼10%) and exercise intolerance (∼30–60%). Therefore, the limit of tolerance was attained with wide heterogeneity in substrate depletion and fatigue-related metabolite accumulation, with extreme metabolic perturbation isolated to only a small volume of active muscle (<5%). Regional intramuscular disturbances are thus likely an important requisite for exercise intolerance. How these signals integrate to limit muscle power production, while regional “recruitable muscle” energy stores are presumably still available, remains uncertain. PMID:23813534

  13. Structural Evolution and Li Dynamics in Nanophase Li3PS4 by Solid-State and Pulsed Field Gradient NMR

    SciTech Connect

    Gobet, Mallory; Greenbaum, Steve; Sahu, Gayatri; Liang, Chengdu

    2014-01-01

    The ceramic lithium ion conductor -Li3PS4 has a disordered and nanoporous structure that leads to an enhancement in ionic conductivity by some three orders of magnitude compared to the crystalline phase. The phase is prepared by thermal treatment of an inorganic-organic complex based on Li3PS4 and THF. Multinuclear (1H, 6,7Li, 31P) solid state NMR spectroscopy is used to characterize the structural phase evolution of the starting material at various steps in the thermal treatment. The phase formed after high temperature treatment is recognized as spectroscopically distinct from the bulk -Li3PS4 compound. Also formed is an amorphous lithium thiophosphate phase that is metastable as verified by annealing over an extended period. Lithium ion self-diffusion coefficients are measurable by standard pulsed gradient NMR methods at 100oC and with values consistent with the high ionic conductivity previously reported for this material.

  14. Measurement of the intracrystalline self-diffusion of xenon in zeolites by the NMR pulsed field gradient technique

    SciTech Connect

    Heink, W.; Kaerger, J.; Pfeifer, H.; Stallmach, F. )

    1990-03-14

    With use of {sup 129}Xe NMR, the NMR pulsed field gradient technique is applied to study the self-diffusion of xenon adsorbed on zeolites NaX, NaCaA, and ZSM-5. In their dependence on both the type of adsorbent and the sorbate concentration, the self-diffusion coefficients are found to follow the same patterns as previously determined for methane by {sup 1}H NMR. For NaCaA, the comparison of the present results with literature data reveals large discrepancies, while recent computer simulations of xenon self-diffusion in ZSM-5 are found to be in reasonable agreement.

  15. Sizing of reverse micelles in microemulsions using NMR measurements of diffusion.

    PubMed

    Law, Susan J; Britton, Melanie M

    2012-08-14

    This paper reports the size of reverse micelles (RMs) in AOT/octane/H(2)O and CTAB/hexanol/H(2)O microemulsions using magnetic resonance (MR) pulsed field gradient (PFG) measurements of diffusion. Diffusion data were measured using the pulsed gradient stimulated echo (PGSTE) experiment for surfactant molecules residing in the RM interface. Inverse Laplace transformation of these data generated diffusion coefficients for the RMs, which were converted into hydrodynamic radii using the Stokes-Einstein relation. This technique is complementary to those previously used to size RMs, such as dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), but also offers several advantages, which are discussed. RM sizes, determined using the PGSTE method, in the AOT (sodium bis(2-ethylhexyl) sulfosuccinate) and CTAB (cetyltrimethylammonium bromide) microemulsions were compared with previous DLS and SAXS data, showing good agreement. Methods for determining number distributions from the PGSTE data, through the use of scaling factors, were investigated. PMID:22794150

  16. Sizing of reverse micelles in microemulsions using NMR measurements of diffusion.

    PubMed

    Law, Susan J; Britton, Melanie M

    2012-08-14

    This paper reports the size of reverse micelles (RMs) in AOT/octane/H(2)O and CTAB/hexanol/H(2)O microemulsions using magnetic resonance (MR) pulsed field gradient (PFG) measurements of diffusion. Diffusion data were measured using the pulsed gradient stimulated echo (PGSTE) experiment for surfactant molecules residing in the RM interface. Inverse Laplace transformation of these data generated diffusion coefficients for the RMs, which were converted into hydrodynamic radii using the Stokes-Einstein relation. This technique is complementary to those previously used to size RMs, such as dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), but also offers several advantages, which are discussed. RM sizes, determined using the PGSTE method, in the AOT (sodium bis(2-ethylhexyl) sulfosuccinate) and CTAB (cetyltrimethylammonium bromide) microemulsions were compared with previous DLS and SAXS data, showing good agreement. Methods for determining number distributions from the PGSTE data, through the use of scaling factors, were investigated.

  17. The Inversion of NMR Log Data Sets with Different Measurement Errors

    NASA Astrophysics Data System (ADS)

    Dunn, Keh-Jim; LaTorraca, Gerald A.

    1999-09-01

    We present a composite-data processing method which simultaneously processes two or more data sets with different measurement errors. We examine the role of the noise level of the data in the singular value decomposition inversion process, the criteria for a proper cutoff, and its effect on the uncertainty of the solution. Examples of processed logs using the composite-data processing method are presented and discussed. The possible usefulness of the apparent T1/T2 ratio extracted from the logs is illustrated.

  18. The inversion of NMR log data sets with different measurement errors.

    PubMed

    Dunn, K J; LaTorraca, G A

    1999-09-01

    We present a composite-data processing method which simultaneously processes two or more data sets with different measurement errors. We examine the role of the noise level of the data in the singular value decomposition inversion process, the criteria for a proper cutoff, and its effect on the uncertainty of the solution. Examples of processed logs using the composite-data processing method are presented and discussed. The possible usefulness of the apparent T(1)/T(2) ratio extracted from the logs is illustrated. PMID:10479558

  19. Macromolecular Crowding Studies of Amino Acids Using NMR Diffusion Measurements and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Virk, Amninder; Stait-Gardner, Timothy; Willis, Scott; Torres, Allan; Price, William

    2015-02-01

    Molecular crowding occurs when the total concentration of macromolecular species in a solution is so high that a considerable proportion of the volume is physically occupied and therefore not accessible to other molecules. This results in significant changes in the solution properties of the molecules in such systems. Macromolecular crowding is ubiquitous in biological systems due to the generally high intracellular protein concentrations. The major hindrance to understanding crowding is the lack of direct comparison of experimental data with theoretical or simulated data. Self-diffusion is sensitive to changes in the molecular weight and shape of the diffusing species, and the available diffusion space (i.e., diffusive obstruction). Consequently, diffusion measurements are a direct means for probing crowded systems including the self-association of molecules. In this work, nuclear magnetic resonance measurements of the self-diffusion of four amino acids (glycine, alanine, valine and phenylalanine) up to their solubility limit in water were compared directly with molecular dynamics simulations. The experimental data were then analyzed using various models of aggregation and obstruction. Both experimental and simulated data revealed that the diffusion of both water and the amino acids were sensitive to the amino acid concentration. The direct comparison of the simulated and experimental data afforded greater insights into the aggregation and obstruction properties of each amino acid.

  20. Reduced rate of adenosine triphosphate synthesis by in vivo 31P nuclear magnetic resonance spectroscopy and downregulation of PGC-1beta in distal skeletal muscle following burn.

    PubMed

    Tzika, A Aria; Mintzopoulos, Dionyssios; Padfield, Katie; Wilhelmy, Julie; Mindrinos, Michael N; Yu, Hongue; Cao, Haihui; Zhang, Qunhao; Astrakas, Loukas G; Zhang, Jiangwen; Yu, Yong-Ming; Rahme, Laurence G; Tompkins, Ronald G

    2008-02-01

    Using a mouse model of burn trauma, we tested the hypothesis that severe burn trauma corresponding to 30% of total body surface area (TBSA) causes reduction in adenosine triphosphate (ATP) synthesis in distal skeletal muscle. We employed in vivo 31P nuclear magnetic resonance (NMR) in intact mice to assess the rate of ATP synthesis, and characterized the concomitant gene expression patterns in skeletal muscle in burned (30% TBSA) versus control mice. Our NMR results showed a significantly reduced rate of ATP synthesis and were complemented by genomic results showing downregulation of the ATP synthase mitochondrial F1 F0 complex and PGC-1beta gene expression. Our findings suggest that inflammation and muscle atrophy in burns are due to a reduced ATP synthesis rate that may be regulated upstream by PGC-1beta. These findings implicate mitochondrial dysfunction in distal skeletal muscle following burn injury. That PGC-1beta is a highly inducible factor in most tissues and responds to common calcium and cyclic adenosine monophosphate (cAMP) signaling pathways strongly suggests that it may be possible to develop drugs that can induce PGC-1beta.

  1. Review of NMR characterization of pyrolysis oils

    DOE PAGES

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  2. Regulation of intracellular pH in neuronal and glial tumour cells, studied by multinuclear NMR spectroscopy.

    PubMed

    Flögel, U; Willker, W; Leibfritz, D

    1994-06-01

    The effect of extracellular pH (pHe) on intracellular pH (pHi) and cellular metabolism was examined by multinuclear NMR spectroscopy of cells in vivo and in vitro. A decrease in pHe from 7.4 to 6.4 led to a significant drop in pHi, in both neuronal and glial tumour cells, as detected by in vivo 31P NMR of cells embedded in basement membrane gel threads. A more than 50% decrease in both the phosphocreatine (PCr) level and derivatives of glycolysis (i.e., glycerol 3-phosphate) was observed, concomitantly to the fall in pHi. A 50% decrease in intracellular lactate levels was seen in in vivo 1H NMR spectra under these conditions. Reperfusion with fresh medium (pHe 7.4) resulted in the full recovery of pHi, simultaneously with an increase in both PCr and intracellular lactate back to their control levels. Perchloric acid and lipid extract measurements confirmed the observations made by in vivo 31P and 1H NMR spectroscopy and further showed a decrease both in tricarboxylic acid cycle activity and phospholipid synthesis. The data revealed no significant differences between the neuronal and glial tumour cells investigated. pHi measurements in the presence of inhibitors of the various pH regulatory mechanisms showed that the Na+/H+ exchanger, the carbonic anhydrase and at least one of the bicarbonate-transport systems are involved in pH regulation of both cell types. The results suggest that Na+/H+ exchange is the preferred mechanism by which both neuronal and glial cells regulate their pHi after extracellular acidification.

  3. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small

  4. Autocorrelation spectra of an air-fluidized granular system measured by NMR

    NASA Astrophysics Data System (ADS)

    Lasic, S.; Stepisnik, J.; Mohoric, A.; Sersa, I.; Planinsic, G.

    2006-09-01

    A novel insight into the dynamics of a fluidized granular system is given by a nuclear magnetic resonance method that yields the spin-echo attenuation proportional to the spectrum of the grain positional fluctuation. Measurements of the air-fluidized oil-filled spheres and mustard seeds at different degrees of fluidization and grain volume fractions provide the velocity autocorrelation that differs from the commonly anticipated exponential Enskog decay. An empiric formula, which corresponds to the model of grain caging at collisions with adjacent beads, fits well to the experimental data. Its parameters are the characteristic collision time, the free path between collisions and the cage-breaking rate or the diffusion-like constant, which decreases with increasing grain volume fraction. Mean-squared displacements calculated from the correlation spectrum clearly show transitions from ballistic, through sub-diffusion and into diffusion regimes of grain motion.

  5. Rapid measurement of pseudocontact shifts in metalloproteins by proton-detected solid-state NMR spectroscopy.

    PubMed

    Knight, Michael J; Felli, Isabella C; Pierattelli, Roberta; Bertini, Ivano; Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido

    2012-09-12

    Pseudocontact shifts (PCSs) arise in paramagnetic systems in which the susceptibility tensor is anisotropic. PCSs depend upon the distance from the paramagnetic center and the position relative to the susceptibility tensor, and they can be used as structural restraints in protein structure determination. We show that the use of (1)H-detected solid-state correlations provides facile and rapid detection and assignment of site-specific PCSs, including resolved (1)H PCSs, in a large metalloprotein, Co(2+)-substituted superoxide dismutase (Co(2+)-SOD). With only 3 mg of sample and a small set of experiments, several hundred PCSs were measured and assigned, and these PCSs were subsequently used in combination with (1)H-(1)H distance and dihedral angle restraints to determine the protein backbone geometry with a precision paralleling those of state-of-the-art liquid-state determinations of diamagnetic proteins, including a well-defined active site.

  6. Measurement of Heteronuclear Dipolar Coupling by Transferred-Echo Double-Resonance NMR

    NASA Astrophysics Data System (ADS)

    Hing, A. W.; Vega, S.; Schaefer, J.

    A magic-angle spinning experiment called transferred-echo double resonance (TEDOR) has been introduced recently to measure the I-S dipolar coupling of heteronuclear I-S pairs of spin- {1}/{2} nuclei while eliminating unwanted background signals from uncoupled I and S spins via a coherence-transfer process. In this paper, a quantitative description of the TEDOR experiment is given in terms of the evolution of the density matrix for a pair of heteronuclear spins. The resulting equations provide a theoretical basis for evaluating the selectivity and sensitivity of TEDOR and suggest strategies for determining dipolar coupling constants directly from TEDOR data. Experimental examples illustrating these aspects of TEDOR are provided by studies performed on a range of 13C- 15N dipolar couplings found in double-labeled asparagine, alanine, glycine, and the linear peptide antibiotic, gramicidin.

  7. Investigation into the structural composition of hydroalcoholic solutions as basis for the development of multiple suppression pulse sequences for NMR measurement of alcoholic beverages.

    PubMed

    Monakhova, Yulia B; Mushtakova, Svetlana P; Kuballa, Thomas; Lachenmeier, Dirk W

    2014-12-01

    An eight-fold suppression pulse sequence was recently developed to improve sensitivity in (1) H NMR measurements of alcoholic beverages [Magn. Res. Chem. 2011 (49): 734-739]. To ensure that only one combined hydroxyl peak from water and ethanol appears in the spectrum, adjustment to a certain range of ethanol concentrations was required. To explain this observation, the structure of water-ethanol solutions was studied. Hydroalcoholic solutions showed extreme behavior at 25% vol, 46% vol, and 83% vol ethanol according to (1) H NMR experiments. Near-infrared spectroscopy confirmed the occurrence of four significant compounds ('individual' ethanol and water structures as well as two water-ethanol complexes of defined composition - 1 : 1 and 1 : 3). The successful multiple suppression can be achieved for every kind of alcoholic beverage with different alcoholic strengths, when the final ethanol concentration is adjusted to a range between 25% vol and 46% vol (e.g. using dilution or pure ethanol addition). In this optimum region, an individual ethanol peak was not detected, because the 'individual' water structure and the 1 : 1 ethanol-water complex predominate. The nature of molecular association in ethanol-water solutions is essential to elucidate NMR method development for measurement of alcoholic beverages. The presented approach can be used to optimize other NMR suppression protocols for binary water-organic solvent mixtures, where hydrogen bonding plays a dominant role.

  8. Development of an eight-channel NMR system using RF detection coils for measuring spatial distributions of current density and water content in the PEM of a PEFC.

    PubMed

    Ogawa, Kuniyasu; Yokouchi, Yasuo; Haishi, Tomoyuki; Ito, Kohei

    2013-09-01

    The water generation and water transport occurring in a polymer electrolyte fuel cell (PEFC) can be estimated from the current density generated in the PEFC, and the water content in the polymer electrolyte membrane (PEM). In order to measure the spatial distributions and time-dependent changes of current density generated in a PEFC and the water content in a PEM, we have developed an eight-channel nuclear magnetic resonance (NMR) system. To detect a NMR signal from water in a PEM at eight positions, eight small planar RF detection coils of 0.6 mm inside diameter were inserted between the PEM and the gas diffusion layer (GDL) in a PEFC. The local current density generated at the position of the RF detection coil in a PEFC can be calculated from the frequency shift of the obtained NMR signal due to an additional magnetic field induced by the local current density. In addition, the water content in a PEM at the position of the RF detection coil can be calculated by the amplitude of the obtained NMR signal. The time-dependent changes in the spatial distributions were measured at 4 s intervals when the PEFC was operated with supply gas under conditions of fuel gas utilization of 0.67 and relative humidity of the fuel gas of 70%RH. The experimental result showed that the spatial distributions of the local current density and the water content in the PEM within the PEFC both fluctuated with time.

  9. Strategies for diagnosing and alleviating artifactual attenuation associated with large gradient pulses in PGSE NMR diffusion measurements.

    PubMed

    Price, W S; Hayamizu, K; Ide, H; Arata, Y

    1999-08-01

    The generation of phase-based artifacts resulting from mismatch in the effective areas (i.e., the time integrals) of sequential gradient pulses is discussed in the context of large gradient pulsed-gradient spin-echo (PGSE) NMR diffusion measurements. Such effects result in artifactual attenuation and distortion in the spectra which, in the first instance, are similar to (and commonly mistaken for) the effects of eddy currents. Small degrees of mismatch cause "unphysical" concave downward curvature in PGSE attenuation plots of freely diffusing species. However, larger mismatches can result in artifactual diffraction peaks in the plots which could easily be confused for true restricted diffusion effects. Although "rectangular" gradient pulses are preferable from a theoretical viewpoint, we found that shaped gradient (e.g., half-sine) pulses, which due to their slower rise and fall times were more tractable for the current amplifier, were more sequentially reproducible. As well as generating fewer phase-based artifacts such shaped pulses also decrease the likelihood of vibration problems.

  10. Direct measurement of the Mn(II) hydration state in metal complexes and metalloproteins through 17O NMR line widths.

    PubMed

    Gale, Eric M; Zhu, Jiang; Caravan, Peter

    2013-12-11

    Here we describe a simple method to estimate the inner-sphere hydration state of the Mn(II) ion in coordination complexes and metalloproteins. The line width of bulk H2(17)O is measured in the presence and absence of Mn(II) as a function of temperature, and transverse (17)O relaxivities are calculated. It is demonstrated that the maximum (17)O relaxivity is directly proportional to the number of inner-sphere water ligands (q). Using a combination of literature data and experimental data for 12 Mn(II) complexes, we show that this method provides accurate estimates of q with an uncertainty of ±0.2 water molecules. The method can be implemented on commercial NMR spectrometers working at fields of 7 T and higher. The hydration number can be obtained for micromolar Mn(II) concentrations. We show that the technique can be extended to metalloproteins or complex:protein interactions. For example, Mn(II) binds to the multimetal binding site A on human serum albumin with two inner-sphere water ligands that undergo rapid exchange (1.06 × 10(8) s(-1) at 37 °C). The possibility of extending this technique to other metal ions such as Gd(III) is discussed.

  11. A Method for Helical RNA Global Structure Determination in Solution Using Small Angle X-ray Scattering and NMR Measurements

    PubMed Central

    Wang, Jinbu; Zuo, Xiaobing; Yu, Ping; Xu, Huan; Starich, Mary R.; Tiede, David M.; Shapiro, Bruce A.; Schwieters, Charles D.; Wang, Yun-Xing

    2009-01-01

    We report a “top-down” method that uses mainly duplexes' global orientations and overall molecular dimension and shape restraints, which were extracted from experimental NMR and small angle X-ray scattering (SAXS) data respectively, to determine global architectures of RNA molecules consisting of mostly A-form like duplexes. The method is implemented in the G2G (from Global measurement to Global Structure) toolkit of programs. We demonstrate the efficiency and accuracy of the method by determining the global structure of a 71-nucleotide RNA using experimental data. The backbone root-mean-square-deviation (RMSD) of the ensemble of the calculated global structures relative to the X-ray crystal structure using the experimental data is 3.0 ± 0.3 Å, and the RMSD is only 2.5 ± 0.2 Å for the three duplexes that were orientation-restrained during the calculation. The global structure simplifies interpretation of multi-dimensional nuclear Overhauser spectra for high resolution structure determination. The potential general application of the method for RNA structure determination is discussed. PMID:19666030

  12. Temperature dependence of the 31P chemical shifts of nucleic acids. A prode of phosphate ester torsional conformations.

    PubMed

    Gorenstein, D G; Findlay, J B; Momii, R K; Luxon, B A; Kar, D

    1976-08-24

    The temperature dependence of the 31P chemical shifts of the ribodinucleoside monophosphates, ApA, GpC, CpC, UpU, and ApU, of the deoxyribonucleic acids, d-ApT, TpT, d-ApA, and d-pApT, and of the homopolyribonucleic acids poly(G), poly(U), poly(A) is shown to provide information on the helix-coli transition in nucleic acids. The base stacked, helical structure with a gauche,gauche phosphate ester torsional conformation is 0.2-0.6 ppm upfield from the random coil conformation. In contrast, the 31P chemical shifts of dimethyl and diethyl phosphate do not change significantly with temperature. These results support our earlier hypothesis that 31P shifts are sensitive probes of torsional conformations with phosphate esters in gauche,gauche conformations having 31P shifts upfield from nongauche conformations.

  13. Structure and dynamics of water in tendon from NMR relaxation measurements.

    PubMed Central

    Peto, S; Gillis, P; Henri, V P

    1990-01-01

    Nuclear magnetic relaxation times were measured in collagen tissue when varying the orientation of the fiber with respect to the static field. T1 was found to be only slightly dependent on theta, the fiber-to-field angle, but T2 was very sensitive to the orientation, with a maximum value at the magic angle. The transverse decay curves were multiexponential. Their deconvolution displayed four components; the ones that decayed most slowly were almost independent of theta, but the two fastest ones showed a strong angular dependence that was interpreted with a cross-relaxation model. Quadrupolar dips were visible in the 1/T1 dispersion curves. These dips were independent of theta, so that the magnetization transfer could also be assumed to be independent of the fiber orientation. Finally, each component was assigned to a fraction of protons localized in the macromolecular structure and characterized by particular dynamics. The model of Woessner was applied to the water molecules tightly bound into the macromolecules, which resulted in a dynamical description of this water fraction. This description is compatible with the two-sites model of Ramachandran based on x-ray diffraction and with the extensive studies of Berendsen. However, the important indications obtained from the deconvolution lead to a less static representation of the tissue. PMID:2297563

  14. Approximation and noise errors of measured T/sub 1/ in NMR imaging

    SciTech Connect

    Persyk, D.E.

    1984-01-01

    Photomultiplier tubes (PMTs) of various types from four manufacturers were measured to determine their gain drift characteristics. This was in turn related to retuning frequency in Anger cameras. A well stabilized light source illuminated sets of thirty-seven PMTs, simulating ideal steady-state conditions in an Anger camera. Anode outputs were sampled at six minute intervals for periods of up to three weeks using a multichannel data logger. Data were analyzed off line. It was found that PMT gains diverged form their initial values at a rate which decreased with time. The standard deviation of the gain changes, called drift, was plotted versus time. Drift was found to generally obey a power law function: D(%) = 0.16 x t/sup 0.6/ where t is the elapsed time in hours. In testing thousands of PMTs the authors occasionally found ''flyers'' with drift rates considerably larger than the average. The authors conclude that with sets of carefully selected PMTs the frequency of tuning would generally decrease as the tubes age. They also conclude that the presence of an occasional ''flyer'' PMT in a camera would undoubtedly necessitate more frequent tuning, in some cases on a weekly basis. These findings support the observed wide variation in tuning frequency among Anger cameras without active PMT gain compensation.

  15. Effect of acute stresses on zebra fish (Danio rerio) metabolome measured by NMR-based metabolomics.

    PubMed

    Mushtaq, Mian Yahya; Marçal, Rosilene Moretti; Champagne, Danielle L; van der Kooy, Frank; Verpoorte, Robert; Choi, Young Hae

    2014-09-01

    We applied an acute stress model to zebra fish in order to measure the changes in the metabolome due to biological stress. This was done by submitting the fish to fifteen minutes of acute confinement (netting) stress, and then five minutes for the open field and light/dark field tests. A polar extract of the zebra fish was then subjected to (1)H nuclear magnetic spectroscopy. Multivariate data analysis of the spectra showed a clear separation associated to a wide range of metabolites between zebra fish that were submitted to open field and light/dark field tests. Alanine, taurine, adenosine, creatine, lactate, and histidine were high in zebra fish to which the light/dark field test was applied, regardless of stress, while acetate and isoleucine/lipids appeared to be higher in zebra fish exposed to the open field test. These results show that any change in the environment, even for a small period of time, has a noticeable physiological impact. This research provides an insight of how different mechanisms are activated under different environments to maintain the homeostasis of the body. It should also contribute to establish zebra fish as a model for metabolomics studies. PMID:25098933

  16. Measurement of State-Specific Association Constants in Allosteric Sensors through Molecular Stapling and NMR.

    PubMed

    Moleschi, Kody J; Akimoto, Madoka; Melacini, Giuseppe

    2015-08-26

    Allostery is a ubiquitous mechanism to control biological function and arises from the coupling of inhibitory and binding equilibria. The extent of coupling reflects the inactive vs active state selectivity of the allosteric effector. Hence, dissecting allosteric determinants requires quantification of state-specific association constants. However, observed association constants are typically population-averages, reporting on overall affinities but not on allosteric coupling. Here we propose a general method to measure state-specific association constants in allosteric sensors based on three key elements, i.e., state-selective molecular stapling through disulfide bridges, competition binding saturation transfer experiments and chemical shift correlation analyses to gauge state populations. The proposed approach was applied to the prototypical cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA-RIα), for which the structures of the inactive and active states are available, as needed to design the state-selective disulfide bridges. Surprisingly, the PKA-RIα state-specific association constants are comparable to those of a structurally homologous domain with ∼10(3)-fold lower cAMP-affinity, suggesting that the affinity difference arises primarily from changes in the position of the dynamic apo inhibitory equilibrium.

  17. Positional isotope exchange studies on enzyme using NMR spectroscopy

    SciTech Connect

    Matsunaga, T.O.

    1987-01-01

    The isotopically enriched compounds, /sup 18/O-..beta..,..gamma..-ATP and /sup 18/O bridge-labeled pyrophosphate, synthesized previously in this laboratory, were used to investigate and measure the exchange vs. turnover of substrates and products from their central complexes in four selected enzyme systems. Using hi-field /sup 31/P NMR, we were able to differentiate between /sup 18/O labeled in the bridge vs. the non-bridge positions by virtue of the isotope shift upon the phosphorus nuclei. The bridge to non-bridge scrambling of the label was quantitated and the exchange vs. turnover ratios under a variety of conditions was determined. Using the substrate inhibitor carboxycreatinine, PIX experiments with /sup 18/O-..beta..,..gamma..-ATP and creatine kinase were conducted. It was shown that carboxycreatinine and creatine kinase promoted exchange of the /sup 18/O label as determined by NMR. We have concluded that carboxycreatinine is either a substrate that catalyzes very slow turnover or it catalyzes exchange by a dissociative (SN/sub 1//sub P/) type of mechanism

  18. Changes in organic solutes, volume, energy state, and metabolism associated with osmotic stress in a glial cell line: a multinuclear NMR study.

    PubMed

    Flögel, U; Niendorf, T; Serkowa, N; Brand, A; Henke, J; Leibfritz, D

    1995-07-01

    Diffusion-weighted in vivo 1H-NMR spectroscopy of F98 glioma cells embedded in basement membrane gel threads showed that the initial cell swelling to about 180% of the original volume induced under hypotonic stress was followed by a regulatory volume decrease to nearly 100% of the control volume in Dulbecco's modified Eagle's medium (DMEM) but only to 130% in Krebs-Henseleit buffer (KHB, containing only glucose as a substrate) after 7 h. The initial cell shrinkage to approx. 70% induced by the hypertonic stress was compensated by a regulatory volume increase which after 7 h reached almost 100% of the control value in KHB and 75% in DMEM. 1H-, 13C- and 31P-NMR spectroscopy of perchloric acid extracts showed that these volume regulatory processes were accompanied by pronounced changes in the content of organic osmolytes. Adaptation of intra- to extracellular osmolarity was preferentially mediated by a decrease in the cytosolic taurine level under hypotonic stress and by an intracellular accumulation of amino acids under hypertonic stress. If these solutes were not available in sufficient quantities (as in KHB), the osmolarity of the cytosol was increasingly modified by biosynthesis of products and intermediates of essential metabolic pathways, such as alanine, glutamate and glycerophosphocholine in addition to ethanolamine. The cellular nucleoside triphosphate level measured by in vivo 31P-NMR spectroscopy indicated that the energy state of the cells was more easily sustained under hypotonic than hypertonic conditions.

  19. Water permeability of polyunsaturated lipid membranes measured by 17O NMR.

    PubMed

    Huster, D; Jin, A J; Arnold, K; Gawrisch, K

    1997-08-01

    Diffusion-controlled water permeation across bilayers of polyunsaturated phospholipids was measured by 17O nuclear magnetic resonance. In 100-nm extruded liposomes containing 50 mM MnCl2, water exchange between internal and external solutions was monitored via changes in the linewidth of the 17O water resonance of external water. Liposome size and shape were characterized by light scattering methods and determination of liposome trapped volume. At 25 degrees C, the following water permeability coefficients were determined: 18:0-18:1n-9 PC, 155 +/- 24 microns/s; 18:0-18:3n-3 PC, 330 +/- 88 microns/s; and 18:0-22:6n-3 PC, 412 +/- 91 microns/s. The addition of 1 M ethanol reduced permeability coefficients to 66 +/- 15 microns/s for 18:0-18:1n-9 PC and to 239 +/- 67 microns/s for 18:0-22:6n-3 PC. Furthermore, the addition of 50 mol% 18:1n-9-18:1n-9 PE reduced the water permeability from 122 +/- 21 microns/s for pure 18:1n-9-18:1n-9 PC to 74 +/- 15 microns/s for the mixture. The significant increase in water permeation for membranes with polyunsaturated hydrocarbon chains correlates with looser packing of polyunsaturated lipids at the lipid-water interface and the suggested deeper penetration of water into these bilayers. Ethanol may block water diffusion pathways by occupying points of water entry into bilayers at the interface. The addition of dioleoylphosphatidylethanolamine increases lipid packing density and, consequently, reduces permeation rates.

  20. “CLASSIC NMR”: An In-Situ NMR Strategy for Mapping the Time-Evolution of Crystallization Processes by Combined Liquid-State and Solid-State Measurements**

    PubMed Central

    Hughes, Colan E; Williams, P Andrew; Harris, Kenneth D M

    2014-01-01

    A new in-situ NMR strategy (termed CLASSIC NMR) for mapping the evolution of crystallization processes is reported, involving simultaneous measurement of both liquid-state and solid-state NMR spectra as a function of time. This combined strategy allows complementary information to be obtained on the evolution of both the solid and liquid phases during the crystallization process. In particular, as crystallization proceeds (monitored by solid-state NMR), the solution state becomes more dilute, leading to changes in solution-state speciation and the modes of molecular aggregation in solution, which are monitored by liquid-state NMR. The CLASSIC NMR experiment is applied here to yield new insights into the crystallization of m-aminobenzoic acid. PMID:25044662

  1. Preclinical study of treatment response in HCT-116 cells and xenografts with (1) H-decoupled (31) P MRS.

    PubMed

    Darpolor, Moses M; Kennealey, Peter T; Le, H Carl; Zakian, Kristen L; Ackerstaff, Ellen; Rizwan, Asif; Chen, Jin-Hong; Sambol, Elliot B; Schwartz, Gary K; Singer, Samuel; Koutcher, Jason A

    2011-11-01

    The topoisomerase I inhibitor, irinotecan, and its active metabolite SN-38 have been shown to induce G(2) /M cell cycle arrest without significant cell death in human colon carcinoma cells (HCT-116). Subsequent treatment of these G(2) /M-arrested cells with the cyclin-dependent kinase inhibitor, flavopiridol, induced these cells to undergo apoptosis. The goal of this study was to develop a noninvasive metabolic biomarker for early tumor response and target inhibition of irinotecan followed by flavopiridol treatment in a longitudinal study. A total of eleven mice bearing HCT-116 xenografts were separated into two cohorts where one cohort was administered saline and the other treated with a sequential course of irinotecan followed by flavopiridol. Each mouse xenograft was longitudinally monitored with proton ((1) H)-decoupled phosphorus ((31) P) magnetic resonance spectroscopy (MRS) before and after treatment. A statistically significant decrease in phosphocholine (p = 0.0004) and inorganic phosphate (p = 0.0103) levels were observed in HCT-116 xenografts following treatment, which were evidenced within twenty-four hours of treatment completion. Also, a significant growth delay was found in treated xenografts. To discern the underlying mechanism for the treatment response of the xenografts, in vitro HCT-116 cell cultures were investigated with enzymatic assays, cell cycle analysis, and apoptotic assays. Flavopiridol had a direct effect on choline kinase as measured by a 67% reduction in the phosphorylation of choline to phosphocholine. Cells treated with SN-38 alone underwent 83 ± 5% G(2) /M cell cycle arrest compared to untreated cells. In cells, flavopiridol alone induced 5 ± 1% apoptosis while the sequential treatment (SN-38 then flavopiridol) resulted in 39 ± 10% apoptosis. In vivo (1) H-decoupled (31) P MRS indirectly measures choline kinase activity. The decrease in phosphocholine may be a potential indicator of early tumor response to

  2. sup 31 P saturation transfer and phosphocreatine imaging in the monkey brain

    SciTech Connect

    Mora, B.; Narasimhan, P.T.; Ross, B.D. California Inst. of Tech., Pasadena ); Allman, J. ); Barker, P.B. )

    1991-10-01

    {sup 31}P magnetic resonance imaging with chemical-shift discrimination by selective excitation has been employed to determine the phosphocreatine (PCr) distribution in the brains of three juvenile macaque monkeys. PCr images were also obtained while saturating the resonance of the {gamma}-phosphate of ATP, which allowed the investigation of the chemical exchange between PCr and the {gamma}-phosphate of ATP catalyzed by creatine kinase. Superposition of the PCr images over the proton image of the same monkey brain revealed topological variations in the distribution of PCr and creatine kinase activity. PCr images were also obtained with and without visual stimulation. In two out of four experiments, an apparently localized decrease in PCr concentration was noted in visual cortex upon visual stimulation. This result is interpreted in terms of a possible role for the local ADP concentration in stimulating the accompanying metabolic response.

  3. Solid State NMR Measurements for Preliminary Lifetime Assessments in gamma-Irradiated and Thermally Aged Siloxane Elastomers

    SciTech Connect

    Chinn, S C; Herberg, J L; Sawvel, A M; Maxwell, R S

    2004-11-29

    Siloxanes have a wide variety of applications throughout the aerospace industry which take advantage of their exceptional insulating and adhesive properties and general resilience. They also offer a wide range of tailorable engineering properties with changes in composition and filler content. They are, however, subject to degradation in radiatively and thermally harsh environments. We are using solid state nuclear magnetic resonance techniques to investigate changes in network and interfacial structure in siloxane elastomers and their correlations to changes in engineering performance in a series of degraded materials. NMR parameters such as transverse ( T{sub 2}) relaxation times, cross relaxation rates, and residual dipolar coupling constants provide excellent probes of changes crosslink density and motional dynamics of the polymers caused by multi-mechanism degradation. The results of NMR studies on aged siloxanes are being used in conjunction with other mechanical tests to provide insight into component failure and degradation kinetics necessary for preliminary lifetime assessments of these materials as well as into the structure-property relationships of the polymers. NMR and MRI results obtained both from high resolution NMR spectrometers as well as low resolution benchtop NMR screening tools will be presented.

  4. Solid State NMR Measurements for Preliminary Lifetime Assessments in (gamma)-Irradiated and Thermally Aged Siloxane Elastomers

    SciTech Connect

    Chinn, S C; Herberg, J L; Sawvel, A M; Maxwell, R S

    2005-02-03

    Siloxanes have a wide variety of applications throughout the aerospace industry which take advantage of their exceptional insulating and adhesive properties and general resilience. They also offer a wide range of tailorable engineering properties with changes in composition and filler content. They are, however, subject to degradation in radiatively and thermally harsh environments. We are using solid state nuclear magnetic resonance techniques to investigate changes in network and interfacial structure in siloxane elastomers and their correlations to changes in engineering performance in a series of degraded materials. Nuclear magnetic resonance (NMR) parameters such as transverse (T{sub 2}) relaxation times, cross relaxation rates, and residual dipolar coupling constants provide excellent probes of changes crosslink density and motional dynamics of the polymers caused by multi-mechanism degradation. The results of NMR studies on aged siloxanes are being used in conjunction with other mechanical tests to provide insight into component failure and degradation kinetics necessary for preliminary lifetime assessments of these materials as well as into the structure-property relationships of the polymers. NMR and magnetic resonance imaging (MRI) results obtained both from high resolution NMR spectrometers as well as low resolution benchtop NMR screening tools will be presented.

  5. Measuring small compartment dimensions by probing diffusion dynamics via Non-uniform Oscillating-Gradient Spin-Echo (NOGSE) NMR

    NASA Astrophysics Data System (ADS)

    Shemesh, Noam; Álvarez, Gonzalo A.; Frydman, Lucio

    2013-12-01

    Noninvasive measurements of microstructure in materials, cells, and in biological tissues, constitute a unique capability of gradient-assisted NMR. Diffusion-diffraction MR approaches pioneered by Callaghan demonstrated this ability; Oscillating-Gradient Spin-Echo (OGSE) methodologies tackle the demanding gradient amplitudes required for observing diffraction patterns by utilizing constant-frequency oscillating gradient pairs that probe the diffusion spectrum, D(ω). Here we present a new class of diffusion MR experiments, termed Non-uniform Oscillating-Gradient Spin-Echo (NOGSE), which dynamically probe multiple frequencies of the diffusion spectral density at once, thus affording direct microstructural information on the compartment's dimension. The NOGSE methodology applies N constant-amplitude gradient oscillations; N - 1 of these oscillations are spaced by a characteristic time x, followed by a single gradient oscillation characterized by a time y, such that the diffusion dynamics is probed while keeping (N - 1)x + y ≡ TNOGSE constant. These constant-time, fixed-gradient-amplitude, multi-frequency attributes render NOGSE particularly useful for probing small compartment dimensions with relatively weak gradients - alleviating difficulties associated with probing D(ω) frequency-by-frequency or with varying relaxation weightings, as in other diffusion-monitoring experiments. Analytical descriptions of the NOGSE signal are given, and the sequence's ability to extract small compartment sizes with a sensitivity towards length to the sixth power, is demonstrated using a microstructural phantom. Excellent agreement between theory and experiments was evidenced even upon applying weak gradient amplitudes. An MR imaging version of NOGSE was also implemented in ex vivo pig spinal cords and mouse brains, affording maps based on compartment sizes. The effects of size distributions on NOGSE are also briefly analyzed.

  6. Comparison of surface NMR with non-invasive and in-situ measurements of soil water content at a floodplain field site

    NASA Astrophysics Data System (ADS)

    Dietrich, P.; Werban, U.; Schrön, M.; Walsh, D. O.; Grunewald, E. D.; Pohle, M.; Kathage, S.

    2015-12-01

    Quantification of soil water content is a very relevant issue in soil and environmental studies. There is a broad spectrum of methods applied for measuring soil water content in the field either deployed in situ or non-invasively from the surface. For many reasons the latter is preferred in field studies. Nuclear Magnetic Resonance (NMR) is one of the rare methods that measure the water content directly. Whereas others, e.g. geophysical methods, make use of proximal relationships for determination of soil water content. We applied a new single-sided NMR sensor to non-invasively measure in-situ soil moisture profiles at several points along two transects in a floodplain. The field site exhibits variations in soil water content due to morphology, e.g. flood channels and alluvial fan structures. Furthermore we applied at the same transects (1) in situ methods: soil sampling for gravimetrical analysis and TDR and (2) non-invasive methods: electromagnetical induction, mobile cosmic-ray neutron sensing with a rover and gamma-ray spectrometry. We will present results that confirm agreement of NMR and gravimetrical analysis from soil sampling and discuss issues that arise when using non-unique proxy methods and relationships for determination of soil water content.

  7. Comparison of surface NMR with non-invasive and in-situ measurements of soil water content at a floodplain field site

    NASA Astrophysics Data System (ADS)

    Werban, Ulrike; Schrön, Martin; Dietrich, Peter; Walsh, David; Grunewald, Elliot; Pohle, Marco; Kathage, Susanne

    2016-04-01

    Quantification of soil water content is a very relevant issue in soil and environmental studies. There is a broad spectrum of methods applied for measuring soil water content in the field either deployed in situ or non-invasively from the surface. For many reasons the latter is preferred in field studies. Nuclear Magnetic Resonance (NMR) is one of the rare methods that measure the water content directly. Whereas others, e.g. geophysical methods, make use of proximal relationships for determination of soil water content. We applied a new single-sided NMR sensor to non-invasively measure in-situ soil moisture profiles at several points along two transects in a floodplain. The field site exhibits variations in soil water content due to morphology, e.g. flood channels and alluvial fan structures. Furthermore we applied at the same transects (1) in situ methods: soil sampling for gravimetrical analysis and TDR and (2) non-invasive methods: electromagnetical induction, mobile cosmic-ray neutron sensing with a rover and gamma-ray spectrometry. We will present results that confirm agreement of NMR and gravimetrical analysis from soil sampling and discuss issues that arise when using non-unique proxy methods and relationships for determination of soil water content.

  8. A preliminary 31P MRS study of autism: evidence for undersynthesis and increased degradation of brain membranes.

    PubMed

    Minshew, N J; Goldstein, G; Dombrowski, S M; Panchalingam, K; Pettegrew, J W

    In this pilot study, brain high energy phosphate and membrane phospholipid metabolism were investigated in the dorsal prefrontal cortex of 11 high-functioning autistic adolescent and young adult men (the age range is 12-36 years) and 11 age-, gender-, IQ, race- and socioeconomic status-matched normal controls using in vivo 31P nuclear magnetic resonance spectroscopy (MRS). The autistic group had decreased levels of phosphocreatine and esterified ends (alpha ATP + alpha ADP + dinucleotides + diphosphosugars) compared to the controls. When the metabolite levels were compared within each subject group with neuropsychologic and language test scores, a common pattern of correlations was observed across measures in the autistic group, but not in the control group. As test performance declined in the autistic subjects, levels of the most labile high energy phosphate compound and of membrane building blocks decreased, and levels of membrane breakdown products increased. No significant correlations were present with age in either group or with IQ in the control group, suggesting that these findings were not the consequence of age or IQ effects. This pilot study provides tentative evidence of alterations in brain energy and phospholipid metabolism in autism that correlate with the neuropsychologic and language deficits. The findings are consistent with a hypermetabolic energy state and undersynthesis of brain membranes and may relate to the neurophysiologic and neuropathologic abnormalities in autism. PMID:8373914

  9. Compartment syndrome: A quantitative study of high-energy phosphorus compounds using sup 31 P-magnetic resonance spectroscopy

    SciTech Connect

    Heppenstall, R.B.; Sapega, A.A.; Izant, T.; Fallon, R.; Shenton, D.; Park, Y.S.; Chance, B. )

    1989-08-01

    The purpose of this study was to quantitate the intracellular high-energy phosphate compounds during 6 hours of tissue ischemia in the anterior tibial compartment of beagles subjected to an induced traumatized compartment syndrome. The goal of this work was to provide clinicians with objective criteria to augment clinical judgment regarding surgical intervention in the impending compartment syndrome. A beagle model was utilized in which the Delta pressure (difference between the mean arterial pressure and compartment pressure) could be controlled. The model, in conjunction with {sup 31}P-magnetic resonance spectroscopy (MRS), allowed a measure of high-energy phosphate compounds and pH in the compartment at various Delta pressures. The extent of ischemic metabolic insult in the compartment was then quantitated. Our data suggest the following: (1) lower Delta pressures result in a proportionally greater drop in the intracellular phosphocreatine ratio and pH; (2) at lower Delta pressures, there is proportionally greater decline in the percentage recovery post-fasciotomy; (3) blood pressure is extremely important and periods of hypotension may result in increased muscle damage at lower compartment pressures.

  10. Metabolism of D-glucose in a wall-less mutant of Neurospora crassa examined by /sup 13/C and /sup 31/P nuclear magnetic resonances: effects of insulin

    SciTech Connect

    Greenfield, N.J.; McKenzie, M.A.; Adebodun, F.; Jordan, F.; Lenard, J.

    1988-11-15

    /sup 13/C NMR and /sup 31/P NMR have been used to investigate the metabolism of glucose by a wall-less strain of Neurospora crassa (slime), grown in a supplemented nutritionally defined medium and harvested in the early stationary stage of growth. With D-(1-/sup 13/C)- or D-(6-/sup 13/C)glucose as substrates, the major metabolic products identified from /sup 13/C NMR spectra were (2-/sup 13/C)ethanol, (3-/sup 13/C)alanine, and C/sub 1/- and C/sub 6/-labeled trehalose. Several observations suggested the existence of a substantial hexose monophosphate (HMP) shunt: (i) a 70% greater yield of ethanol from C/sub 6/- than from C/sub 1/-labeled glucose; (ii) C/sub 1/-labeled glucose yielded 19% C/sub 6/-labeled trehalose, while C/sub 6/-labeled glucose yielded only 4% C/sub 1/-labeled trehalose; (iii) a substantial transfer of /sup 13/C from C/sub 2/-labeled glucose to the C/sub 2/-position of ethanol. /sup 31/P NMR spectra showed millimolar levels of intracellular inorganic phosphate (P/sub i/), phosphodiesters, and diphosphates including sugar diphosphates and polyphosphate. Addition of glucose resulted in a decrease in cytoplasmic P/sub i/ and an increase in sugar monophosphates, which continued for at least 30 min. Phosphate resonances corresponding to metabolic intermediates of both the glycolytic and HMP pathways were identified in cell extracts. Addition of insulin (100 nM) with the glucose had the following effects relative to glucose alone: (i) a 24% increase in the rate of ethanol production; (ii) a 38% increase in the rate of alanine production; (iii) a 27% increase in the rate of glucose disappearance. Insulin thus increases the rates of production of ethanol and alanine in these cells, in addition to increasing production of CO/sub 2/ and glycogen, as previously shown.

  11. In vivo (1)H MRS and (31)P MRSI of the response to cyclocreatine in transgenic mouse liver expressing creatine kinase.

    PubMed

    Cui, Min-Hui; Jayalakshmi, Kamaiah; Liu, Laibin; Guha, Chandan; Branch, Craig A

    2015-12-01

    Hepatocyte transplantation has been explored as a therapeutic alternative to liver transplantation, but a means to monitor the success of the procedure is lacking. Published findings support the use of in vivo (31)P MRSI of creatine kinase (CK)-expressing hepatocytes to monitor proliferation of implanted hepatocytes. Phosphocreatine tissue level depends upon creatine (Cr) input to the CK enzyme reaction, but Cr measurement by (1)H MRS suffers from low signal-to-noise ratio (SNR). We examine the possibility of using the Cr analog cyclocreatine (CCr, a substrate for CK), which is quickly phosphorylated to phosphocyclocreatine (PCCr), as a higher SNR alternative to Cr. (1)H MRS and (31)P MRSI were employed to measure the effect of incremental supplementation of CCr upon PCCr, γ-ATP, pH and Pi /ATP in the liver of transgenic mice expressing the BB isoform of CK (CKBB) in hepatocytes. Water supplementation with 0.1% CCr led to a peak total PCCr level of 17.15 ± 1.07 mmol/kg wet weight by 6 weeks, while adding 1.0% CCr led to a stable PCCr liver level of 18.12 ± 3.91 mmol/kg by the fourth day of feeding. PCCr was positively correlated with CCr, and ATP concentration and pH declined with increasing PCCr. Feeding with 1% CCr in water induced an apparent saturated level of PCCr, suggesting that CCr quantization may not be necessary for quantifying expression of CK in mice. These findings support the possibility of using (31)P MRS to noninvasively monitor hepatocyte transplant success with CK-expressing hepatocytes. PMID:26451872

  12. Gray Matter-Specific Changes in Brain Bioenergetics after Acute Sleep Deprivation: A 31P Magnetic Resonance Spectroscopy Study at 4 Tesla

    PubMed Central

    Plante, David T.; Trksak, George H.; Jensen, J. Eric; Penetar, David M.; Ravichandran, Caitlin; Riedner, Brady A.; Tartarini, Wendy L.; Dorsey, Cynthia M.; Renshaw, Perry F.; Lukas, Scott E.; Harper, David G.

    2014-01-01

    Study Objectives: A principal function of sleep may be restoration of brain energy metabolism caused by the energetic demands of wakefulness. Because energetic demands in the brain are greater in gray than white matter, this study used linear mixed-effects models to examine tissue-type specific changes in high-energy phosphates derived using 31P magnetic resonance spectroscopy (MRS) after sleep deprivation and recovery sleep. Design: Experimental laboratory study. Setting: Outpatient neuroimaging center at a private psychiatric hospital. Participants: A total of 32 MRS scans performed in eight healthy individuals (mean age 35 y; range 23-51 y). Interventions: Phosphocreatine (PCr) and β-nucleoside triphosphate (NTP) were measured using 31P MRS three dimensional-chemical shift imaging at high field (4 Tesla) after a baseline night of sleep, acute sleep deprivation, and 2 nights of recovery sleep. Novel linear mixed-effects models were constructed using spectral and tissue segmentation data to examine changes in bioenergetics in gray and white matter. Measurements and Results: PCr increased in gray matter after 2 nights of recovery sleep relative to sleep deprivation with no significant changes in white matter. Exploratory analyses also demonstrated that increases in PCr were associated with increases in electroencephalographic slow wave activity during recovery sleep. No significant changes in β-NTP were observed. Conclusions: These results demonstrate that sleep deprivation and subsequent recovery-induced changes in high-energy phosphates primarily occur in gray matter, and increases in phosphocreatine after recovery sleep may be related to sleep homeostasis. Citation: Plante DT, Trksak GH, Jensen JE, Penetar DM, Ravichandran C, Riedner BA, Tartarini WL, Dorsey CM, Renshaw PF, Lukas SE, Harper DG. Gray matter-specific changes in brain bioenergetics after acute sleep deprivation: a 31P magnetic resonance spectroscopy study at 4 Tesla. SLEEP 2014

  13. In vivo (1)H MRS and (31)P MRSI of the response to cyclocreatine in transgenic mouse liver expressing creatine kinase.

    PubMed

    Cui, Min-Hui; Jayalakshmi, Kamaiah; Liu, Laibin; Guha, Chandan; Branch, Craig A

    2015-12-01

    Hepatocyte transplantation has been explored as a therapeutic alternative to liver transplantation, but a means to monitor the success of the procedure is lacking. Published findings support the use of in vivo (31)P MRSI of creatine kinase (CK)-expressing hepatocytes to monitor proliferation of implanted hepatocytes. Phosphocreatine tissue level depends upon creatine (Cr) input to the CK enzyme reaction, but Cr measurement by (1)H MRS suffers from low signal-to-noise ratio (SNR). We examine the possibility of using the Cr analog cyclocreatine (CCr, a substrate for CK), which is quickly phosphorylated to phosphocyclocreatine (PCCr), as a higher SNR alternative to Cr. (1)H MRS and (31)P MRSI were employed to measure the effect of incremental supplementation of CCr upon PCCr, γ-ATP, pH and Pi /ATP in the liver of transgenic mice expressing the BB isoform of CK (CKBB) in hepatocytes. Water supplementation with 0.1% CCr led to a peak total PCCr level of 17.15 ± 1.07 mmol/kg wet weight by 6 weeks, while adding 1.0% CCr led to a stable PCCr liver level of 18.12 ± 3.91 mmol/kg by the fourth day of feeding. PCCr was positively correlated with CCr, and ATP concentration and pH declined with increasing PCCr. Feeding with 1% CCr in water induced an apparent saturated level of PCCr, suggesting that CCr quantization may not be necessary for quantifying expression of CK in mice. These findings support the possibility of using (31)P MRS to noninvasively monitor hepatocyte transplant success with CK-expressing hepatocytes.

  14. Acceleration of Natural-Abundance Solid-State MAS NMR Measurements on Bone by Paramagnetic Relaxation from Gadolinium-DTPA

    PubMed Central

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-01-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylenetriamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. PMID:24881032

  15. In vivo measurement of the size of oil bodies in plant seeds using a simple and robust pulsed field gradient NMR method.

    PubMed

    Gromova, Marina; Guillermo, Armel; Bayle, Pierre-Alain; Bardet, Michel

    2015-04-01

    An easy to implement and convenient method to measure the mean size of oil bodies (OBs) in plant seeds is proposed using a pulsed field gradient nuclear magnetic resonance (PFGNMR) approach. PFGNMR is a well-known technique used to study either free or restricted diffusion of molecules. As triacylglycerols (TAG) are confined in OBs, analysis of their diffusion properties is a well-suited experimental approach to determine OB sizes. In fact, at long diffusion time, TAG mean squared displacement is limited by the size of the domain where these molecules are confined. In order to access the OB size distribution, strong intensities of magnetic field gradients are generally required. In this work we demonstrate for the first time that a standard liquid-phase NMR probe equipped with a weak-intensity gradient coil can be used to determine the mean size of OBs. Average sizes were measured for several seeds, and OB diameters obtained by PFGNMR were fully consistent with previously published values obtained by microscopy techniques. Moreover, this approach provided evidence of TAG transfer through the network of interconnected OBs, which is dependent on the ability of adjacent membranes to open diffusion routes between OBs. The main advantage of the NMR method is that it does not require any sample preparation and experiments are performed with whole seeds directly introduced in a standard NMR tube.

  16. Suppression of electron correlations in the collapsed tetragonal phase of CaFe2As2 under ambient pressure demonstrated by As75 NMR/NQR measurements

    NASA Astrophysics Data System (ADS)

    Furukawa, Y.; Roy, B.; Ran, S.; Bud'ko, S. L.; Canfield, P. C.

    2014-03-01

    The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magnetic susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.

  17. The structure investigations of dehydroacetic acid and 1,8-diaminonaphthalene condensation product by NMR, MS, and X-ray measurements

    NASA Astrophysics Data System (ADS)

    Kołodziej, B.; Morawiak, M.; Kamieński, B.; Schilf, W.

    2016-05-01

    A new unexpected product of condensation reaction of 1,8-diaminonaphthalene (DAN) and carbonyl compound (here: dehydroacetic acid (dha)) was synthesized. Discussion about the molecular structure of possible products of this reaction was done on the base of NMR studies. The structure of the titled product in both DMSO solution and in the solid state was resolved by analysis of its spectral data (X-ray structure analysis, multinuclear NMR in solution and solid state spectra) and MS measurements. The presented studies provided clear evidence that the titled product exists in diluted DMSO solution as the mixture of two kinetic free ionic species whereas in concentrated DMSO solution as well as in the solid state this system forms associated ionic pairs bonded together by hydrogen bonds.

  18. Dual Species NMR Oscillator

    NASA Astrophysics Data System (ADS)

    Weber, Joshua; Korver, Anna; Thrasher, Daniel; Walker, Thad

    2016-05-01

    We present progress towards a dual species nuclear magnetic oscillator using synchronous spin exchange optical pumping. By applying the bias field as a sequence of alkali 2 π pulses, we generate alkali polarization transverse to the bias field. The alkali polarization is then modulated at the noble gas resonance so that through spin exchange collisions the noble gas becomes polarized. This novel method of NMR suppresses the alkali field frequency shift by at least a factor of 2500 as compared to longitudinal NMR. We will present details of the apparatus and measurements of dual species co-magnetometry using this method. Research supported by the NSF and Northrop-Grumman Corp.

  19. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and 125Te NMR measurements in complex tellurides

    NASA Astrophysics Data System (ADS)

    Levin, E. M.

    2016-06-01

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S , depends on the free (mobile) carrier concentration, n , and effective mass, m*, as S ˜m*/n2 /3 . The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1 /T1 , depends on both n and m* as 1 /T1˜(m*)3/2n (within classical Maxwell-Boltzmann statistics) or as 1 /T1˜(m*)2n2 /3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown that the combination of the Seebeck coefficient and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study A gxS bxG e50-2xT e50 , well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.

  20. Transport properties investigation of aqueous protic ionic liquid solutions through conductivity, viscosity, and NMR self-diffusion measurements.

    PubMed

    Anouti, Mérièm; Jacquemin, Johan; Porion, Patrice

    2012-04-12

    We present a study on the transport properties through conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of two pure protic ionic liquids--pyrrolidinium hydrogen sulfate, [Pyrr][HSO(4)], and pyrrolidinium trifluoroacetate, [Pyrr][CF(3)COO]--and their mixtures with water over the whole composition range at 298.15 K and atmospheric pressure. Based on these experimental results, transport mobilities of ions have been then investigated in each case through the Stokes-Einstein equation. From this, the proton conduction in these PILs follows a combination of Grotthuss and vehicle-type mechanisms, which depends also on the water composition in solution. In each case, the displacement of the NMR peak attributed to the labile proton on the pyrrolidinium cation with the PILs concentration in aqueous solution indicates that this proton is located between the cation and the anion for a water weight fraction lower than 8%. In other words, for such compositions, it appears that this labile proton is not solvated by water molecules. However, for higher water content, the labile protons are in solution as H(3)O(+). This water weight fraction appears to be the solvation limit of the H(+) ions by water molecules in these two PILs solutions. However, [Pyrr][HSO(4)] and [Pyrr][CF(3)COO] PILs present opposed comportment in aqueous solution. In the case of [Pyrr][CF(3)COO], η, σ, D, and the attractive potential, E(pot), between ions indicate clearly that the diffusion of each ion is similar. In other words, these ions are tightly bound together as ion pairs, reflecting in fact the importance of the hydrophobicity of the trifluoroacetate anion, whereas, in the case of the [Pyrr][HSO(4)], the strong H-bond between the HSO(4)(-) anion and water promotes a drastic change in the viscosity of the aqueous solution, as well as on the conductivity which is up to 187 mS·cm(-1) for water weight fraction close to 60% at 298 K.

  1. Hyperpolarization of 29Si by Resonant Nuclear Spin Transfer from Optically Hyperpolarized 31P Donors

    NASA Astrophysics Data System (ADS)

    Dluhy, Phillip; Salvail, Jeff; Saeedi, Kamyar; Thewalt, Mike; Simons, Stephanie

    2014-03-01

    Recent developments in nanomedicine have allowed nanoparticles of silicon containing hyperpolarized 29Si to be imaged in vivo using magnetic resonance imaging. The extremely long relaxation times and isotropy of the Si lattice make polarized 29Si isotopes ideal for these sorts of imaging methods. However, one of the major difficulties standing in the path of widespread adoption of these techniques is the slow rate at which the 29Si is hyperpolarized and the limited maximum hyperpolarization achievable. In this talk, I will describe an effective method for hyperpolarization of the 29Si isotopes using resonant optical pumping of the donor bound exciton transitions to polarize the 31P donor nuclei, and a choice of static magnetic field that conserves energy during spin flip flops between donor nuclear and 29Si spins to facilitate diffusion of this polarization. Using this method, we are able to polarize greater than 10% of the 29Si centers in 64 hours without seeing saturation of the 29Si polarization.

  2. Advanced NMR characterization of zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Welsh, L. B.

    1985-04-01

    The program discussed in this report is a two-year two-phase joint UOP-University of Illinois study of the application of improved high resolution solid state nuclear magnetic resonance (NMR) techniques to the characterization of zeolite catalysts. During the first phase of this program very pure, and in some cases isotopically enriched faujasites will be prepared and studied by magic angle sample spinning NMR (MASS NMR) and variable engine sample spinning NMR (VASS NMR) on 500 and 360 MHz (proton frequency) NMR spectrometers. The NMR techniques that will be emphasized are the measurement and analysis of the (17)O NMR properties, (27)Al NMR intensity quantitation, and (27)Al and (29)Si NMR relaxation rates. During the second phase of this program these NMR techniques will be used to study the effects of impurity concentration, dealumination treatments and cation exchange on the NMR properties of faujasites. The initial emphasis of this program during Phase I is on the preparation and measurement of the NMR properties of (17)O enriched Na-Y faujasties.

  3. Achievement of 1020MHz NMR.

    PubMed

    Hashi, Kenjiro; Ohki, Shinobu; Matsumoto, Shinji; Nishijima, Gen; Goto, Atsushi; Deguchi, Kenzo; Yamada, Kazuhiko; Noguchi, Takashi; Sakai, Shuji; Takahashi, Masato; Yanagisawa, Yoshinori; Iguchi, Seiya; Yamazaki, Toshio; Maeda, Hideaki; Tanaka, Ryoji; Nemoto, Takahiro; Suematsu, Hiroto; Miki, Takashi; Saito, Kazuyoshi; Shimizu, Tadashi

    2015-07-01

    We have successfully developed a 1020MHz (24.0T) NMR magnet, establishing the world's highest magnetic field in high resolution NMR superconducting magnets. The magnet is a series connection of LTS (low-Tc superconductors NbTi and Nb3Sn) outer coils and an HTS (high-Tc superconductor, Bi-2223) innermost coil, being operated at superfluid liquid helium temperature such as around 1.8K and in a driven-mode by an external DC power supply. The drift of the magnetic field was initially ±0.8ppm/10h without the (2)H lock operation; it was then stabilized to be less than 1ppb/10h by using an NMR internal lock operation. The full-width at half maximum of a (1)H spectrum taken for 1% CHCl3 in acetone-d6 was as low as 0.7Hz (0.7ppb), which was sufficient for solution NMR. On the contrary, the temporal field stability under the external lock operation for solid-state NMR was 170ppb/10h, sufficient for NMR measurements for quadrupolar nuclei such as (17)O; a (17)O NMR measurement for labeled tri-peptide clearly demonstrated the effect of high magnetic field on solid-state NMR spectra. PMID:25978708

  4. Cation substitution in β-tricalcium phosphate investigated using multi-nuclear, solid-state NMR

    SciTech Connect

    Grigg, Andrew T.; Mee, Martin; Mallinson, Phillip M.; Fong, Shirley K.; Gan, Zhehong; Dupree, Ray; Holland, Diane

    2014-04-01

    The substitution of aluminium, gallium and sodium cations into β-tricalcium phosphate (β-TCP; Ca{sub 3}(PO{sub 4}){sub 2}) has been investigated, and the Ca sites involved successfully determined, using a combination of 1D {sup 31}P, {sup 27}Al, {sup 71}Ga, {sup 23}Na and {sup 43}Ca (natural abundance) NMR and 2D {sup 27}Al({sup 31}P), {sup 71}Ga({sup 31}P) and {sup 23}Na({sup 31}P) rotary-resonance-recoupled heteronuclear multiple-quantum correlation (R{sup 3}-HMQC) NMR. Over the compositional range studied, substitution of Ca{sup 2+} by Al{sup 3+} or Ga{sup 3+} was observed only on the Ca(5) site, whilst substitution by Na{sup +} was confined to the Ca(4) site. Some AlPO{sub 4} or GaPO{sub 4} second phase was observed at the highest doping levels in the Al{sup 3+} and Ga{sup 3+} substituted samples. - Graphical abstract: 2D contour plots with skyline projections showing recoupling of {sup 27}Al, {sup 71}Ga and {sup 23}Na to different {sup 31}P sites. - Highlights: • β-Ca{sub 3}(PO{sub 4}){sub 2} has been prepared pure and also with Al{sup 3+}, Ga{sup 3+} and Na{sup +} substituents. • Multi-nuclear 1D NMR and heteronuclear X({sup 31}P) recoupling have been used. • Models for substitution correctly predict site preference and occupancy. • Progressive changes in {sup 31}P spectra have been explained. • Al{sup 3+} and Ga{sup 3+} substitute onto the Ca(5) site, and Na{sup +} onto the Ca(4) site.

  5. In vivo assessment of free magnesium concentration in human brain by 31P MRS. A new calibration curve based on a mathematical algorithm.

    PubMed

    Iotti, S; Frassineti, C; Alderighi, L; Sabatini, A; Vacca, A; Barbiroli, B

    1996-02-01

    Free cytosolic [Mg2+] can be assessed in vivo by 31P MRS from the chemical shift of beta-ATP which in turn depends on the fraction of total ATP complexed to Mg2+ ions. The reliability of these in vivo measurements depends on the availability of an appropriate in vitro calibration to determine the limits of chemical shifts of unbound ATP and Mg-ATP complexes, using solutions that mimic the in vivo cytosolic conditions as far as possible. We used an algorithm and software to allow a quantitative definition of the Mg(2+)-binding molecules to build a semi-empirical equation that correlates the chemical shift of the beta-ATP signal to the [Mg2+] taking into account the amount of Mg2+ bound to all other constituents in solution. Our experiments resulted in a simple and reliable equation directly usable to assess in vivo the free cytosolic magnesium concentration of human brain by 31P MRS. Our method is also flexible enough to make it suitable for in vivo measurements of [Mg2+] in other organs and tissues.

  6. Coal structure at reactive sites by sup 1 H- sup 13 C- sup 19 F double cross polarization (DCP)/MAS sup 13 C NMR spectroscopy

    SciTech Connect

    Hagaman, E.W.; Woody, M.C. )

    1989-01-01

    The solid state NMR technique, {sup 1}H-{sup 13}C-{sup 31}P double cross polarization (DCP)/MAS {sup 13}C-NMR spectroscopy, uses the direct dipolar interaction between {sup 13}C-{sup 31}P spin pairs in organophosphorus substances to identify the subset of carbons within a spherical volume element of 0.4 nm radius centered on the {sup 31}P atom. In combination with chemical manipulation of coals designed to introduce phosphorus containing functionality into the organic matrix, the NMR experiment becomes a method to examine selectively the carbon bonding network at the reactive sites in the coal. This approach generates a statistical structure description of the coal at the reaction centers in contrast to bulk carbon characterization using conventional {sup 1}H-{sup 13}C CP/MAS {sup 13}C NMR spectroscopy. 3 refs.

  7. NMR of a Phospholipid: Modules for Advanced Laboratory Courses

    NASA Astrophysics Data System (ADS)

    Gaede, Holly C.; Stark, Ruth E.

    2001-09-01

    A laboratory project is described that builds upon the NMR experience undergraduates receive in organic chemistry with a battery of NMR experiments that investigate egg phosphatidylcholine (egg PC). This material, often labeled in health food stores as lecithin, is a major constituent of mammalian cell membranes. The NMR experiments may be used to make resonance assignments, to study molecular organization in model membranes, to test the effects of instrumental parameters, and to investigate the physics of nuclear spin systems. A suite of modular NMR exercises is described, so that the instructor may tailor the laboratory sessions to biochemistry, instrumental analysis, or physical chemistry. The experiments include solution-state one-dimensional (1D) 1H, 13C, and 31P experiments; two-dimensional (2D) TOtal Correlated SpectroscopY (TOCSY); and the spectral editing technique of Distortionless Enhancement by Polarization Transfer (DEPT). To demonstrate the differences between solution and solid-state NMR spectroscopy and instrumentation, a second set of experiments generates 1H, 13C, and 31P spectra of egg PC dispersed in aqueous solution, under both static and magic-angle spinning conditions.

  8. Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated ten soils from six states in United States to determine the relationship between potentiometric titration derived soil surface charge and Phosphorus-31 (P) nuclear magnetic resonance (NMR) speciation with the concentration of water-extractable P (WEP). The surface charge value at the...

  9. Alkyl phosphotriester modified oligodeoxyribonucleotides. VI. NMR and UV spectroscopic studies of ethyl phosphotriester (Et) modified Rp-Rp and Sp-Sp duplexes, (d[GGAA(Et)TTCC])2.

    PubMed Central

    Summers, M F; Powell, C; Egan, W; Byrd, R A; Wilson, W D; Zon, G

    1986-01-01

    1H NMR chemical shift assignments for the title compounds were made for all but a few H5' and H5" signals using two-dimensional nuclear Overhauser effect (2D-NOE) data, which was also used for the first time to assign absolute configuration at phosphorus. The chemical shifts were, in general, similar to those reported [Broido, M.S., et al. (1985) Eur. J. Biochem. 150, 117-128] for the B-like conformation of the unmodified, parent duplex, [d(GGAATTCC)]2. Differences in chemical shifts for corresponding protons were mostly localized to the AA(Et)TT region, and showed some stereochemical dependence. Unambiguous assignment of the phosphotriester 31P signals was achieved in a novel way using selective insensitive nucleus enhancement by polarization transfer (selective INEPT) NMR. The Rp-Rp duplex melted ca. 11 degrees C lower than either the Sp-Sp or parent duplexes, as evidenced by Tm and variable temperature 1H/31P NMR measurements. The 2D-NOE data for the Rp-Rp duplex suggested possible steric interactions between the ethyl group and the H3' of the flanking A residue. At low ionic strength, the Sp-Sp and parent duplexes had similar stability but at high ionic strength the Sp-Sp duplex was less stable. Images PMID:3763408

  10. Regional Differences of Metabolic Response During Dynamic Incremental Exercise by (31)P-CSI.

    PubMed

    Kaneko, Yasuhisa; Kime, Ryotaro; Hongo, Yoshinori; Ohno, Yusuke; Sakamoto, Ayumi; Katsumura, Toshihito

    2016-01-01

    The aim of this study was to detect the differences in muscle metabolic response of the quadriceps during incremental dynamic knee exercise using regional (31)Phosphorus Chemical Shift Imaging ((31)P-CSI). Sixteen healthy men participated in this study (age 28 ± 5 years, height 171.4 ± 3.9 cm, weight 67.1 ± 9.8 kg). The experiments were carried out with a 1.5-T superconducting magnet with a 5-in. diameter circular surface coil. The subjects performed isometric unilateral knee extension exercise to detect their maximum voluntary contraction (MVC) in prone position. Then they performed dynamic unilateral knee extension exercise in the magnet at 10, 20, 30 and 40 % of their MVC with the transmit-receive coil placed under the right quadriceps. The subjects pulled down a rope with the adjusted weight attached to the ankle at a frequency of 0.5 Hz for 380 s. Intracellular pH (pHi) was calculated from the median chemical shift of the inorganic phosphate (Pi) peak relative to phosphocreatine (PCr). The quadriceps were divided into three regions, (1) medial, (2) anterior, (3) lateral, and in comparison, there was no significant difference in Pi/PCr nor in pHi between regions, except Pi/PCr of the medial region was significantly higher than the anterior region at maximum intensity (p < 0.05). These results suggest that regional muscle metabolic response is similar in the quadriceps except at maximum intensity. PMID:27526153

  11. Tracer diffusion measurements in solid lithium: a test case for the comparison between NMR in static and pulsed magnetic field gradients after upgrading a standard solid state NMR spectrometer.

    PubMed

    Marion Fischer, D; Duwe, Peter; Indris, Sylvio; Heitjans, Paul

    2004-09-01

    This paper reports on the upgrading of a standard solid state NMR spectrometer, which has been used in combination with a field variable 7 T cryomagnet, to a low-cost combined SFG and PFG NMR spectrometer. Both methods are applied to solid lithium as a simple test case. The results show that under the given conditions SFG NMR and PFG NMR can provide tracer diffusion coefficients for 7 Li diffusion down to about 10(-14) and 10(-13) m2/s, respectively. SFG and PFG NMR are complementary methods. The paper demonstrates advantages and disadvantages of each method with a concrete example and why it is desirable to be able to apply both methods to the same sample.

  12. Two GTPase isoforms, Ypt31p and Ypt32p, are essential for Golgi function in yeast.

    PubMed Central

    Benli, M; Döring, F; Robinson, D G; Yang, X; Gallwitz, D

    1996-01-01

    In eukaryotic cells, monomeric GTPases of the Ypt/Rab family function as regulators at defined steps of vesicular transport in exo- and endocytosis. Here we report on the isolation and characterization of two genes (YPT31 and YPT32) of the yeast Saccharomyces cerevisiae which encode members of the Ypt family exhibiting >80% sequence identity. Whereas the disruption of one of the two genes was phenotypically neutral, the disruption of both YPT31 and YPT32 led to lethality. Depletion of wild-type Ypt31p or of a short-lived ubiquitin-Ypt31p in a ypt32 null background led to a massive accumulation of Golgi-like membranes, an inhibition of invertase secretion and defects in vacuolar protein maturation. Similar alterations were observed in a conditional-lethal ypt31-1 mutant at 30 min after shift to the non-permissive temperature. According to subcellular fractionation, a significant part of Ypt31p appeared to be located in Golgi-enriched membrane fractions. In accordance with this, indirect immunofluorescence using affinity-purified anti-Ypt31p antibodies gave a punctate staining similar to that observed with Golgi-located proteins. From the phenotypic alterations observed in ypt31 and ypt32 mutants, it seems likely that the two GTPases are involved in intra-Golgi transport or in the formation of transport vesicles at the most distal Golgi compartment. Images PMID:8978673

  13. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  14. Mapping membrane protein backbone dynamics: a comparison of site-directed spin labeling with NMR 15N-relaxation measurements.

    PubMed

    Lo, Ryan H; Kroncke, Brett M; Solomon, Tsega L; Columbus, Linda

    2014-10-01

    The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane proteins, the nitroxide appears to have more interactions with the protein surface, potentially hindering the sensitivity to backbone motions. To determine whether membrane protein backbone dynamics could be mapped with SDSL, a nitroxide was introduced at 55 independent sites in a model polytopic membrane protein, TM0026. Electron paramagnetic resonance spectral parameters were compared with NMR (15)N-relaxation data. Sequential scans revealed backbone dynamics with the same trends observed for the R1 relaxation rate, suggesting that nitroxide dynamics remain coupled to the backbone on membrane proteins.

  15. Proton clouds to measure long-range contacts between nonexchangeable side chain protons in solid-state NMR.

    PubMed

    Sinnige, Tessa; Daniëls, Mark; Baldus, Marc; Weingarth, Markus

    2014-03-26

    We show that selective labeling of proteins with protonated amino acids embedded in a perdeuterated matrix, dubbed 'proton clouds', provides general access to long-range contacts between nonexchangeable side chain protons in proton-detected solid-state NMR, which is important to study protein tertiary structure. Proton-cloud labeling significantly improves spectral resolution by simultaneously reducing proton line width and spectral crowding despite a high local proton density in clouds. The approach is amenable to almost all canonical amino acids. Our method is demonstrated on ubiquitin and the β-barrel membrane protein BamA.

  16. A multiple pulse zero crossing NMR technique, and its application to F-19 chemical shift measurements in solids

    NASA Technical Reports Server (NTRS)

    Burum, D. P.; Elleman, D. D.; Rhim, W.-K.

    1978-01-01

    A simple multiple-pulse 'zero crossing technique' for accurately determining the first moment of a solid-state NMR spectrum is introduced. This technique was applied to obtain the F-19 chemical shift versus pressure curves up to 5 kbar for single crystals of CaF2 (0.29 + or - 0.02 ppm/kbar) and BaF2 (0.62 + or - 0.05 ppm/kbar). Results at ambient temperature and pressure are also reported for a number of other fluorine compounds. Because of its high data rate, this technique is potentially several orders of magnitude more sensitive than similar CW methods.

  17. Absolute nutrient concentration measurements in cell culture media: (1)H q-NMR spectra and data to compare the efficiency of pH-controlled protein precipitation versus CPMG or post-processing filtering approaches.

    PubMed

    Goldoni, Luca; Beringhelli, Tiziana; Rocchia, Walter; Realini, Natalia; Piomelli, Daniele

    2016-09-01

    The NMR spectra and data reported in this article refer to the research article titled "A simple and accurate protocol for absolute polar metabolite quantification in cell cultures using q-NMR" [1]. We provide the (1)H q-NMR spectra of cell culture media (DMEM) after removal of serum proteins, which show the different efficiency of various precipitating solvents, the solvent/DMEM ratios, and pH of the solution. We compare the data of the absolute nutrient concentrations, measured by PULCON external standard method, before and after precipitation of serum proteins and those obtained using CPMG (Carr-Purcell-Meiboom-Gill) sequence or applying post-processing filtering algorithms to remove, from the (1)H q-NMR spectra, the proteins signal contribution. For each of these approaches, the percent error in the absolute value of every measurement for all the nutrients is also plotted as accuracy assessment. PMID:27331118

  18. Non-invasive assessment of phosphate metabolism and oxidative capacity in working skeletal muscle in healthy young Chinese volunteers using 31P Magnetic Resonance Spectroscopy

    PubMed Central

    Wang, Huiting; Wu, Wenbo; Zhang, Xin; Tian, Chuanshuai; Yu, Haiping; Liu, Renyuan; Zhu, Bin

    2016-01-01

    Background. Generally, males display greater strength and muscle capacity than females while performing a task. Muscle biopsy is regarded as the reference method of evaluating muscle functions; however, it is invasive and has sampling errors, and is not practical for longitudinal studies and dynamic measurement during excise. In this study, we built an in-house force control and gauge system for quantitatively applying force to quadriceps while the subjects underwent 31P Magnetic Resonance Spectroscopy (31P-MRS); our aim was to investigate if there is a sex difference of phosphate metabolite change in working muscles in young heathy Chinese volunteers. Methods. Volunteers performed knee-extending excises using a force control and gauge system while lying prone in a Philips 3T Magnetic Resonance (MR) scanner. The 31P-MRS coil was firmly placed under the middle of the quadriceps . 31P-MRS measurements of inorganic phosphate (Pi), phosphocreatine (PCr) and adenosine triphosphate (ATP) were acquired from quadriceps while subjects were in a state of pre-, during- and post-exercise. The PCr, Pi, PCr/Pi, PCr/ATP, pH, work/energy cost ratio (WE), kPCr and oxidative capacity were compared between males and females. Results. A total of 17 volunteers underwent the study. Males: N = 10, age = 23.30 ± 1.25years; females: N = 7, age = 23.57 ± 0.79 years. In this study, males had significantly greater WE (16.33 ± 6.46 vs. 7.82 ± 2.16, p = 0.002) than females. Among PCr, Pi, PCr/Pi, PCr/ATP, pH, kPCr and oxidative capacity at different exercise status, only PCr/Pi (during-exercise, males = 5.630 ± 1.647, females = 4.014 ± 1.298, p = 0.047), PCr/ATP (during-exercise, males =1.273 ± 0.219, females = 1.523 ± 0.167, p = 0.025), and ATP (post-exercise, males = 24.469 ± 3.911 mmol/kg, females = 18.353 ± 4.818 mmol/kg, p = 0.035) had significant sex differences. Males had significantly greater PCr/Pi, but less PCr/ATP than females during exercise, suggesting males had higher

  19. Non-invasive assessment of phosphate metabolism and oxidative capacity in working skeletal muscle in healthy young Chinese volunteers using (31)P Magnetic Resonance Spectroscopy.

    PubMed

    Li, Ming; Chen, Fei; Wang, Huiting; Wu, Wenbo; Zhang, Xin; Tian, Chuanshuai; Yu, Haiping; Liu, Renyuan; Zhu, Bin; Zhang, Bing; Dai, Zhenyu

    2016-01-01

    Background. Generally, males display greater strength and muscle capacity than females while performing a task. Muscle biopsy is regarded as the reference method of evaluating muscle functions; however, it is invasive and has sampling errors, and is not practical for longitudinal studies and dynamic measurement during excise. In this study, we built an in-house force control and gauge system for quantitatively applying force to quadriceps while the subjects underwent (31)P Magnetic Resonance Spectroscopy ((31)P-MRS); our aim was to investigate if there is a sex difference of phosphate metabolite change in working muscles in young heathy Chinese volunteers. Methods. Volunteers performed knee-extending excises using a force control and gauge system while lying prone in a Philips 3T Magnetic Resonance (MR) scanner. The (31)P-MRS coil was firmly placed under the middle of the quadriceps . (31)P-MRS measurements of inorganic phosphate (Pi), phosphocreatine (PCr) and adenosine triphosphate (ATP) were acquired from quadriceps while subjects were in a state of pre-, during- and post-exercise. The PCr, Pi, PCr/Pi, PCr/ATP, pH, work/energy cost ratio (WE), kPCr and oxidative capacity were compared between males and females. Results. A total of 17 volunteers underwent the study. Males: N = 10, age = 23.30 ± 1.25years; females: N = 7, age = 23.57 ± 0.79 years. In this study, males had significantly greater WE (16.33 ± 6.46 vs. 7.82 ± 2.16, p = 0.002) than females. Among PCr, Pi, PCr/Pi, PCr/ATP, pH, kPCr and oxidative capacity at different exercise status, only PCr/Pi (during-exercise, males = 5.630 ± 1.647, females = 4.014 ± 1.298, p = 0.047), PCr/ATP (during-exercise, males =1.273 ± 0.219, females = 1.523 ± 0.167, p = 0.025), and ATP (post-exercise, males = 24.469 ± 3.911 mmol/kg, females = 18.353 ± 4.818 mmol/kg, p = 0.035) had significant sex differences. Males had significantly greater PCr/Pi, but less PCr/ATP than females during exercise, suggesting males had

  20. The effects of cholera enterotoxin on intestinal tissue water as measured by nuclear magnetic resonance (NMR) spectroscopy.

    PubMed

    Udall, J N; Alvarez, L A; Nichols, B L; Hazlewood, C F

    1975-01-01

    Cholera enterotoxin has been postulated to change the configuration of the intracellular protein-water system, altering the permeability of the cell to water. Using nuclear magnetic resonance (NMR) spectroscopy, this protein-water relationship can be examined. Small intestinal loops in the rat were injected with 0.5 ml of either Schwarz/Mann cholera enterotoxin (40 mug/cc saline solution) or normal saline. Full thickness segments of intestine from each loop were taken and percentage water (using a gravimetric procedure which includes a correction for fat) and NMR relaxation times were determined. The mean value +/- S.D. for tissue water was 79.49 +/- 2.65% in the controls and 84.52 +/- 2.01% in the cholera specimens (p less than .001). T1 (spin-lattice) relaxation times were 521.22 +/- 69.5 msec in the controls and 667.96 +/- 119.25 msec in cholera tissue (p less than .001). T2 (spin-spin) relaxation times were 62.34 +/- 9.59 msec in controls and 80.35 +/- 21.46 msec in cholera tissue (p less than .02). These findings are consistent with the theory that cholera enterotoxin acts to alter intracellular protein-water relationship.

  1. In situ measurement of magnesium carbonate formation from CO2 using static high-pressure and -temperature 13C NMR.

    PubMed

    Surface, J Andrew; Skemer, Philip; Hayes, Sophia E; Conradi, Mark S

    2013-01-01

    We explore a new in situ NMR spectroscopy method that possesses the ability to monitor the chemical evolution of supercritical CO(2) in relevant conditions for geological CO(2) sequestration. As a model, we use the fast reaction of the mineral brucite, Mg(OH)(2), with supercritical CO(2) (88 bar) in aqueous conditions at 80 °C. The in situ conversion of CO(2) into metastable and stable carbonates is observed throughout the reaction. After more than 58 h of reaction, the sample was depressurized and analyzed using in situ Raman spectroscopy, where the laser was focused on the undisturbed products through the glass reaction tube. Postreaction, ex situ analysis was performed on the extracted and dried products using Raman spectroscopy, powder X-ray diffraction, and magic-angle spinning (1)H-decoupled (13)C NMR. These separate methods of analysis confirmed a spatial dependence of products, possibly caused by a gradient of reactant availability, pH, and/or a reaction mechanism that involves first forming hydroxy-hydrated (basic, hydrated) carbonates that convert to the end-product, anhydrous magnesite. This carbonation reaction illustrates the importance of static (unmixed) reaction systems at sequestration-like conditions. PMID:22676479

  2. Regional Differences in Muscle Energy Metabolism in Human Muscle by 31P-Chemical Shift Imaging.

    PubMed

    Kime, Ryotaro; Kaneko, Yasuhisa; Hongo, Yoshinori; Ohno, Yusuke; Sakamoto, Ayumi; Katsumura, Toshihito

    2016-01-01

    Previous studies have reported significant region-dependent differences in the fiber-type composition of human skeletal muscle. It is therefore hypothesized that there is a difference between the deep and superficial parts of muscle energy metabolism during exercise. We hypothesized that the inorganic phosphate (Pi)/phosphocreatine (PCr) ratio of the superficial parts would be higher, compared with the deep parts, as the work rate increases, because the muscle fiber-type composition of the fast-type may be greater in the superficial parts compared with the deep parts. This study used two-dimensional 31Phosphorus Chemical Shift Imaging (31P-CSI) to detect differences between the deep and superficial parts of the human leg muscles during dynamic knee extension exercise. Six healthy men participated in this study (age 27±1 year, height 169.4±4.1 cm, weight 65.9±8.4 kg). The experiments were carried out with a 1.5-T superconducting magnet with a 5-in. diameter circular surface coil. The subjects performed dynamic one-legged knee extension exercise in the prone position, with the transmit-receive coil placed under the right quadriceps muscles in the magnet. The subjects pulled down an elastic rubber band attached to the ankle at a frequency of 0.25, 0.5 and 1 Hz for 320 s each. The intracellular pH (pHi) was calculated from the median chemical shift of the Pi peak relative to PCr. No significant difference in Pi/PCr was observed between the deep and the superficial parts of the quadriceps muscles at rest. The Pi/PCr of the superficial parts was not significantly increased with increasing work rate. Compared with the superficial areas, the Pi/PCr of the deep parts was significantly higher (p<0.05) at 1 Hz. The pHi showed no significant difference between the two parts. These results suggest that muscle oxidative metabolism is different between deep and superficial parts of quadriceps muscles during dynamic exercise. PMID:26782194

  3. Muscle energetics changes throughout maturation: a quantitative 31P-MRS analysis

    PubMed Central

    Tonson, Anne; Ratel, Sébastien; Le Fur, Yann; Vilmen, Christophe; Cozzone, Patrick J.

    2010-01-01

    We quantified energy production in 7 prepubescent boys (11.7 ± 0.6 yr) and 10 men (35.6 ± 7.8 yr) using 31P-magnetic resonance spectroscopy to investigate whether development affects muscle energetics, given that resistance to fatigue has been reported to be larger before puberty. Each subject performed a finger flexions exercise at 0.7 Hz against a weight adjusted to 15% of their maximal voluntary strength for 3 min, followed by a 15-min recovery period. The total energy cost was similar in both groups throughout the exercise bout, whereas the interplay of the different metabolic pathways was different. At the onset of exercise, children exhibited a higher oxidative contribution (50 ± 15% in boys and 25 ± 8% in men, P < 0.05) to ATP production, whereas the phosphocreatine breakdown contribution was reduced (40 ± 10% in boys and 53 ± 12% in men, P < 0.05), likely as a compensatory mechanism. The anaerobic glycolysis activity was unaffected by maturation. The recovery phase also disclosed differences regarding the rates of proton efflux (6.2 ± 2.5 vs. 3.8 ± 1.9 mM·pH unit−1·min−1, in boys and men, respectively, P < 0.05), and phosphocreatine recovery, which was significantly faster in boys than in men (rate constant of phosphocreatine recovery: 1.3 ± 0.5 vs. 0.7 ± 0.4 min−1; Vmax: 37.5 ± 14.5 vs. 21.1 ± 12.2 mM/min, in boys and men, respectively, P < 0.05). Our results obtained in vivo clearly showed that maturation affects muscle energetics. Children relied more on oxidative metabolism and less on creatine kinase reaction to meet energy demand during exercise. This phenomenon can be explained by a greater oxidative capacity, probably linked to a higher relative content in slow-twitch fibers before puberty. PMID:20847131

  4. Muscle energetics changes throughout maturation: a quantitative 31P-MRS analysis.

    PubMed

    Tonson, Anne; Ratel, Sébastien; Le Fur, Yann; Vilmen, Christophe; Cozzone, Patrick J; Bendahan, David

    2010-12-01

    We quantified energy production in 7 prepubescent boys (11.7 ± 0.6 yr) and 10 men (35.6 ± 7.8 yr) using (31)P-magnetic resonance spectroscopy to investigate whether development affects muscle energetics, given that resistance to fatigue has been reported to be larger before puberty. Each subject performed a finger flexions exercise at 0.7 Hz against a weight adjusted to 15% of their maximal voluntary strength for 3 min, followed by a 15-min recovery period. The total energy cost was similar in both groups throughout the exercise bout, whereas the interplay of the different metabolic pathways was different. At the onset of exercise, children exhibited a higher oxidative contribution (50 ± 15% in boys and 25 ± 8% in men, P < 0.05) to ATP production, whereas the phosphocreatine breakdown contribution was reduced (40 ± 10% in boys and 53 ± 12% in men, P < 0.05), likely as a compensatory mechanism. The anaerobic glycolysis activity was unaffected by maturation. The recovery phase also disclosed differences regarding the rates of proton efflux (6.2 ± 2.5 vs. 3.8 ± 1.9 mM · pH unit(-1) · min(-1), in boys and men, respectively, P < 0.05), and phosphocreatine recovery, which was significantly faster in boys than in men (rate constant of phosphocreatine recovery: 1.3 ± 0.5 vs. 0.7 ± 0.4 min(-1); V(max): 37.5 ± 14.5 vs. 21.1 ± 12.2 mM/min, in boys and men, respectively, P < 0.05). Our results obtained in vivo clearly showed that maturation affects muscle energetics. Children relied more on oxidative metabolism and less on creatine kinase reaction to meet energy demand during exercise. This phenomenon can be explained by a greater oxidative capacity, probably linked to a higher relative content in slow-twitch fibers before puberty. PMID:20847131

  5. Regional Differences in Muscle Energy Metabolism in Human Muscle by 31P-Chemical Shift Imaging.

    PubMed

    Kime, Ryotaro; Kaneko, Yasuhisa; Hongo, Yoshinori; Ohno, Yusuke; Sakamoto, Ayumi; Katsumura, Toshihito

    2016-01-01

    Previous studies have reported significant region-dependent differences in the fiber-type composition of human skeletal muscle. It is therefore hypothesized that there is a difference between the deep and superficial parts of muscle energy metabolism during exercise. We hypothesized that the inorganic phosphate (Pi)/phosphocreatine (PCr) ratio of the superficial parts would be higher, compared with the deep parts, as the work rate increases, because the muscle fiber-type composition of the fast-type may be greater in the superficial parts compared with the deep parts. This study used two-dimensional 31Phosphorus Chemical Shift Imaging (31P-CSI) to detect differences between the deep and superficial parts of the human leg muscles during dynamic knee extension exercise. Six healthy men participated in this study (age 27±1 year, height 169.4±4.1 cm, weight 65.9±8.4 kg). The experiments were carried out with a 1.5-T superconducting magnet with a 5-in. diameter circular surface coil. The subjects performed dynamic one-legged knee extension exercise in the prone position, with the transmit-receive coil placed under the right quadriceps muscles in the magnet. The subjects pulled down an elastic rubber band attached to the ankle at a frequency of 0.25, 0.5 and 1 Hz for 320 s each. The intracellular pH (pHi) was calculated from the median chemical shift of the Pi peak relative to PCr. No significant difference in Pi/PCr was observed between the deep and the superficial parts of the quadriceps muscles at rest. The Pi/PCr of the superficial parts was not significantly increased with increasing work rate. Compared with the superficial areas, the Pi/PCr of the deep parts was significantly higher (p<0.05) at 1 Hz. The pHi showed no significant difference between the two parts. These results suggest that muscle oxidative metabolism is different between deep and superficial parts of quadriceps muscles during dynamic exercise.

  6. Simultaneous 31P MRS of the soleus and gastrocnemius in Sherpas during graded calf muscle exercise.

    PubMed

    Allen, P S; Matheson, G O; Zhu, G; Gheorgiu, D; Dunlop, R S; Falconer, T; Stanley, C; Hochachka, P W

    1997-09-01

    The observation that the amount of lactate formed during hypobaric hypoxia decreases with the severity of hypoxia has become known as the "lactate paradox." We used noninvasive 31P magnetic resonance spectroscopy (MRS) to further probe this problem and explore the nature of muscle metabolism during rest-exercise-recovery transitions in Sherpas indigenous to the high Himalayas of Nepal. MRS data were obtained using a whole body 1-m bore, 1.5-T Phillips Gyroscan spectrometer. Muscle-specific localization of MRS data acquisition was achieved by means of a modified image-selected in vivo spectroscopy sequence (ISIS). The spectra acquired from the medial and lateral gastrocnemius muscle, rich in fast-twitch fibers, were well constrained by selective excitation and by the boundary of the leg. The spectra from a third region contained signals predominantly from the soleus, a muscle formed mainly of slow-twitch fibers. We quantified relative concentration changes in phosphocreatine (PCr), Pi, and ATP during a series of calf muscle work bouts; free ADP concentrations were calculated on the assumption that the creatine phosphokinase reaction was always essentially at equilibrium. Hydrogen ion concentrations were calculated from the chemical shift of Pi, which represents the equilibrium between mono- and diprotonated phosphate. Plantar flexion was quantified using a calf muscle ergometer designed for operation within a 1-m whole body magnet. We found that the concentration of ATP was rigorously regulated and thus did not change despite large changes in ATP turnover rates required through exercise. The relative concentrations of PCr and Pi were linear functions of the percent maximum work rate of the lateral and medial gastrocnemius, but on transition to exercise the fractional concentration changes in these metabolites were much less than the fractional change in muscle ATP turnover rates. The relationship between muscle ATP turnover rate and free ADP concentration was

  7. Achievement of a 920-MHz High Resolution NMR

    NASA Astrophysics Data System (ADS)

    Hashi, Kenjiro; Shimizu, Tadashi; Goto, Atsushi; Kiyoshi, Tsukasa; Matsumoto, Shinji; Wada, Hitoshi; Fujito, Teruaki; Hasegawa, Ken-ichi; Yoshikawa, Masatoshi; Miki, Takashi; Ito, Satoshi; Hamada, Mamoru; Hayashi, Seiji

    2002-06-01

    We have developed a 920-MHz NMR system and performed the proton NMR measurement of H 2O and ethylbenzene using the superconducting magnet operating at 21.6 T (920 MHz for proton), which is the highest field produced by a superconducting NMR magnet in the persistent mode. From the NMR measurements, it is verified that both homogeneity and stability of the magnet have a specification sufficient for a high resolution NMR.

  8. Fully-Automated High-Throughput NMR System for Screening of Haploid Kernels of Maize (Corn) by Measurement of Oil Content.

    PubMed

    Wang, Hongzhi; Liu, Jin; Xu, Xiaoping; Huang, Qingming; Chen, Shanshan; Yang, Peiqiang; Chen, Shaojiang; Song, Yiqiao

    2016-01-01

    One of the modern crop breeding techniques uses doubled haploid plants that contain an identical pair of chromosomes in order to accelerate the breeding process. Rapid haploid identification method is critical for large-scale selections of double haploids. The conventional methods based on the color of the endosperm and embryo seeds are slow, manual and prone to error. On the other hand, there exists a significant difference between diploid and haploid seeds generated by high oil inducer, which makes it possible to use oil content to identify the haploid. This paper describes a fully-automated high-throughput NMR screening system for maize haploid kernel identification. The system is comprised of a sampler unit to select a single kernel to feed for measurement of NMR and weight, and a kernel sorter to distribute the kernel according to the measurement result. Tests of the system show a consistent accuracy of 94% with an average screening time of 4 seconds per kernel. Field test result is described and the directions for future improvement are discussed. PMID:27454427

  9. Quantitative measurement of major secoiridoid derivatives in olive oil using qNMR. Proof of the artificial formation of aldehydic oleuropein and ligstroside aglycon isomers.

    PubMed

    Karkoula, Evangelia; Skantzari, Angeliki; Melliou, Eleni; Magiatis, Prokopios

    2014-01-22

    A previously developed method for measurement of oleocanthal and oleacein in olive oil by quantitative (1)H NMR was expanded to include the measurement of the monoaldehydic forms of oleuropein and ligstroside aglycons. The method was validated and applied to the study of 340 monovarietal Greek and Californian olive oils from 23 varieties and for a 3-year period. A wide variation concerning the concentrations of all four secoiridoids was recorded. The concentration of each one ranged from nondetectable to 711 mg/kg and the sum of the four major secoiridoids (named as D3) ranged from nondetectable to 1534 mg/kg. Examination of the NMR profile of the olive oil extract before and after contact with normal or reversed stationary chromatography phase proved the artificial formation of the 5S,8S,9S aldehydic forms of oleuropein and ligstroside aglycon isomers during chromatography. Finally, methyl elenolate was identified for the first time as a minor constituent of olive oil. PMID:24384036

  10. Fully-Automated High-Throughput NMR System for Screening of Haploid Kernels of Maize (Corn) by Measurement of Oil Content

    PubMed Central

    Xu, Xiaoping; Huang, Qingming; Chen, Shanshan; Yang, Peiqiang; Chen, Shaojiang; Song, Yiqiao

    2016-01-01

    One of the modern crop breeding techniques uses doubled haploid plants that contain an identical pair of chromosomes in order to accelerate the breeding process. Rapid haploid identification method is critical for large-scale selections of double haploids. The conventional methods based on the color of the endosperm and embryo seeds are slow, manual and prone to error. On the other hand, there exists a significant difference between diploid and haploid seeds generated by high oil inducer, which makes it possible to use oil content to identify the haploid. This paper describes a fully-automated high-throughput NMR screening system for maize haploid kernel identification. The system is comprised of a sampler unit to select a single kernel to feed for measurement of NMR and weight, and a kernel sorter to distribute the kernel according to the measurement result. Tests of the system show a consistent accuracy of 94% with an average screening time of 4 seconds per kernel. Field test result is described and the directions for future improvement are discussed. PMID:27454427

  11. 31P MR Spectroscopy and Computational Modeling Identify a Direct Relation between Pi Content of an Alkaline Compartment in Resting Muscle and Phosphocreatine Resynthesis Kinetics in Active Muscle in Humans

    PubMed Central

    van Oorschot, Joep W. M.; Schmitz, Joep P. J.; Webb, Andrew; Nicolay, Klaas; Jeneson, Jeroen A. L.; Kan, Hermien E.

    2013-01-01

    The assessment of mitochondrial properties in skeletal muscle is important in clinical research, for instance in the study of diabetes. The gold standard to measure mitochondrial capacity non-invasively is the phosphocreatine (PCr) recovery rate after exercise, measured by 31P Magnetic Resonance spectroscopy (31P MRS). Here, we sought to expand the evidence base for an alternative method to assess mitochondrial properties which uses 31P MRS measurement of the Pi content of an alkaline compartment attributed to mitochondria (Pi2; as opposed to cytosolic Pi (Pi1)) in resting muscle at high magnetic field. Specifically, the PCr recovery rate in human quadriceps muscle was compared with the signal intensity of the Pi2 peak in subjects with varying mitochondrial content of the quadriceps muscle as a result of athletic training, and the results were entered into a mechanistic computational model of mitochondrial metabolism in muscle to test if the empirical relation between Pi2/Pi1 ratio and the PCr recovery was consistent with theory. Localized 31P spectra were obtained at 7T from resting vastus lateralis muscle to measure the intensity of the Pi2 peak. In the endurance trained athletes a Pi2/Pi1 ratio of 0.07 ± 0.01 was found, compared to a significantly lower (p<0.05) Pi2/Pi1 ratio of 0.03 ± 0.01 in the normally active group. Next, PCr recovery kinetics after in magnet bicycle exercise were measured at 1.5T. For the endurance trained athletes, a time constant τPCr 12 ± 3 s was found, compared to 24 ± 5s in normally active subjects. Without any parameter optimization the computational model prediction matched the experimental data well (r2 of 0.75). Taken together, these results suggest that the Pi2 resonance in resting human skeletal muscle observed at 7T provides a quantitative MR-based functional measure of mitochondrial density. PMID:24098796

  12. Formation of κ-carrageenan-gelatin polyelectrolyte complexes studied by (1)H NMR, UV spectroscopy and kinematic viscosity measurements.

    PubMed

    Voron'ko, Nicolay G; Derkach, Svetlana R; Vovk, Mikhail A; Tolstoy, Peter M

    2016-10-20

    The intermolecular interactions between an anionic polysaccharide from the red algae κ-carrageenan and a gelatin polypeptide, forming stoichiometric polysaccharide-polypeptide (bio)polyelectrolyte complexes in the aqueous phase, were examined. The major method of investigation was high-resolution (1)H NMR spectroscopy. Additional data were obtained by UV absorption spectroscopy, light scattering dispersion and capillary viscometry. Experimental data were interpreted in terms of the changing roles of electrostatic interactions, hydrophobic interactions and hydrogen bonds when κ-carrageenan-gelatin complexes are formed. At high temperatures, when biopolymer macromolecules in solution are in the state of random coil, hydrophobic interactions make a major contribution to complex stabilization. At the temperature of gelatin's coil→helix conformational transition and at lower temperatures, electrostatic interactions and hydrogen bonds play a defining role in complex formation. A proposed model of the κ-carrageenan-gelatin complex is discussed. PMID:27474666

  13. Off-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabolite rotational diffusion in bovine lens homogenates

    SciTech Connect

    Caines, G.H.; Schleich, T.; Morgan, C.F. ); Farnsworth, P.N. )

    1990-08-21

    The rotational diffusion behavior of phosphorus metabolites present in calf lens cortical and nuclear homogenates was investigated by the NMR technique of {sup 31}P off-resonance rotating frame spin-lattice relaxation as a means of assessing the occurrence and extent of phosphorus metabolite-lens protein interactions. {sup 31}P NMR spectra of calf lens homogenates were obtained at 10 and 18{degree}C at 7.05 T. Effective rotational correlation times ({tau}{sub 0,eff}) for the major phosphorus metabolites present in cortical and nuclear bovine calf lens homogenates were derived from nonlinear least-squares analysis of R vs {omega}{sub e} data with the assumption of isotropic reorientational motion. Intramolecular dipole-dipole ({sup 1}H-{sup 31}P, {sup 31}P-{sup 31}P), chemical shift anisotropy (CSA), and solvent (water) translational intermolecular dipole-dipole ({sup 1}H-{sup 31}P) relaxation contributions were assumed in the analyses. A fast-exchange model between free and bound forms, was employed in the analysis of the metabolite R vs {omega}{sub e} curves to yield the fraction of free (unbound) metabolite ({Theta}{sub free}). The results of this study establish the occurrence of significant temperature-dependent (above and below the cold cataract phase transition temperature) binding of ATP (cortex) and PME (nucleus) and p{sub i} (nucleus) in calf lens.

  14. Measurement of Internal Acyl Migration Reaction Kinetics Using Directly Coupled HPLC-NMR:  Application for the Positional Isomers of Synthetic (2-Fluorobenzoyl)-d-glucopyranuronic Acid.

    PubMed

    Sidelmann, U G; Hansen, S H; Gavaghan, C; Carless, H A; Lindon, J C; Farrant, R D; Wilson, I D; Nicholson, J K

    1996-08-01

    Ester glucuronides (1-O-acyl-β-d-glucopyranuronates) of many drugs may undergo internal acyl migration reactions, resulting in the formation of new positional isomers with both α- and β-anomers. We illustrate here a novel approach for the direct investigation of the acyl migration kinetics of ester glucuronides and show the application with respect to the isomers of synthetic (2-fluorobenzoyl)-d-glucopyranuronic acid. Individual isomers were separated from an equilibrium mixture containing the β-1-O-acyl, α- and β-2-O-acyl, α- and β-3-O-acyl, and α- and β-4-O-acyl isomers at pH 7.4 in 20 mM phosphate buffer. The interconverting isomers were separated using reversed-phase HPLC and pumped directly into a dedicated on-line NMR flow probe in a 600 MHz NMR spectrometer. The flow was stopped with each isomer in the NMR flow probe, and sequential NMR spectra were collected at 25 °C, allowing direct measurement of the production of positional isomers from each selectively isolated glucuronide isomer. All of the positional isomers and anomers were characterized, and relative quantities determined, and a kinetic model describing the rearrangement reactions was constructed. The acyl migration reaction kinetics were simulated using a theoretical approach using nine first-order rate constants determined for the acyl migration reactions and six first-order rate constants describing the mutarotation each of the 2-, 3-, and 4-positional isomers. The rate constants (in h(-)(1)) for the rearrangement reactions of the 2-fluorobenzoyl glucuronide isomers were as follows:  β-1-O-acyl, 0.29 ± 0.01; α-2-O-acyl, 0.11 ± 0.01; β-2-O-acyl, 0.07 ± 0.01; α-3-O-acyl, 0.10 ± 0.01; β-3-O-acyl, 0.09 ± 0.01; α-4-O-acyl, 0.09 ± 0.01; and β-4-O-acyl, 0.06 ± 0.01. The α- and β-anomerization rates were estimated on the basis of the kinetics model; the anomerization rates of the 4-O-acyl isomers were additionally determined experimentally using directly coupled HPLC-NMR. The

  15. The intrinsic mechanics of B-DNA in solution characterized by NMR

    PubMed Central

    Imeddourene, Akli Ben; Xu, Xiaoqian; Zargarian, Loussiné; Oguey, Christophe; Foloppe, Nicolas; Mauffret, Olivier; Hartmann, Brigitte

    2016-01-01

    Experimental characterization of the structural couplings in free B-DNA in solution has been elusive, because of subtle effects that are challenging to tackle. Here, the exploitation of the NMR measurements collected on four dodecamers containing a substantial set of dinucleotide sequences provides new, consistent correlations revealing the DNA intrinsic mechanics. The difference between two successive residual dipolar couplings (ΔRDCs) involving C6/8-H6/8,