Science.gov

Sample records for 31p nmr signals

  1. Surface coil localization of /sup 31/P NMR signals from orthotopic human kidney and liver

    SciTech Connect

    Jue, T.; Rothman, D.L.; Lohman, J.A.B.; Hughes, E.W.; Hanstock, C.C.; Shulman, R.G.

    1988-02-01

    By incorporating the hyperbolic secant inversion pulses with the image-selected in vivo spectroscopy localization technique and by applying a gradient-echo imaging method, the authors have selected only the /sup 31/P NMR signals from orthotopic human kidney and liver, using a single concentric /sup 1/H//sup 31/P surface coil. Corresponding to the experimental results on animal studies, the phosphocreatine signal is dramatically reduced in the localized spectra. The localization strategy also allows them to shim easily on the well-defined volume of interest and leads to high-resolution spectra that exhibit multiplet structure. The results indicate that they can obtain localized signals from deep small organs and point the way for other human metabolism studies.

  2. Mapping hypoxia-induced bioenergetic rearrangements and metabolic signaling by 18O-assisted 31P NMR and 1H NMR spectroscopy.

    PubMed

    Pucar, Darko; Dzeja, Petras P; Bast, Peter; Gumina, Richard J; Drahl, Carmen; Lim, Lynette; Juranic, Nenad; Macura, Slobodan; Terzic, Andre

    2004-01-01

    Brief hypoxia or ischemia perturbs energy metabolism inducing paradoxically a stress-tolerant state, yet metabolic signals that trigger cytoprotection remain poorly understood. To evaluate bioenergetic rearrangements, control and hypoxic hearts were analyzed with 18O-assisted 31P NMR and 1H NMR spectroscopy. The 18O-induced isotope shift in the 31P NMR spectrum of CrP, betaADP and betaATP was used to quantify phosphotransfer fluxes through creatine kinase and adenylate kinase. This analysis was supplemented with determination of energetically relevant metabolites in the phosphomonoester (PME) region of 31P NMR spectra, and in both aromatic and aliphatic regions of 1H NMR spectra. In control conditions, creatine kinase was the major phosphotransfer pathway processing high-energy phosphoryls between sites of ATP consumption and ATP production. In hypoxia, creatine kinase flux was dramatically reduced with a compensatory increase in adenylate kinase flux, which supported heart energetics by regenerating and transferring beta- and gamma-phosphoryls of ATP. Activation of adenylate kinase led to a build-up of AMP, IMP and adenosine, molecules involved in cardioprotective signaling. 31P and 1H NMR spectral analysis further revealed NADH and H+ scavenging by alpha-glycerophosphate dehydrogenase (alphaGPDH) and lactate dehydrogenase contributing to maintained glycolysis under hypoxia. Hypoxia-induced accumulation of alpha-glycerophosphate and nucleoside 5'-monophosphates, through alphaGPDH and adenylate kinase reactions, respectively, was mapped within the increased PME signal in the 31P NMR spectrum. Thus, 18O-assisted 31P NMR combined with 1H NMR provide a powerful approach in capturing rearrangements in cardiac bioenergetics, and associated metabolic signaling that underlie the cardiac adaptive response to stress. PMID:14977188

  3. Accurate calculation of (31)P NMR chemical shifts in polyoxometalates.

    PubMed

    Pascual-Borràs, Magda; López, Xavier; Poblet, Josep M

    2015-04-14

    We search for the best density functional theory strategy for the determination of (31)P nuclear magnetic resonance (NMR) chemical shifts, δ((31)P), in polyoxometalates. Among the variables governing the quality of the quantum modelling, we tackle herein the influence of the functional and the basis set. The spin-orbit and solvent effects were routinely included. To do so we analysed the family of structures α-[P2W18-xMxO62](n-) with M = Mo(VI), V(V) or Nb(V); [P2W17O62(M'R)](n-) with M' = Sn(IV), Ge(IV) and Ru(II) and [PW12-xMxO40](n-) with M = Pd(IV), Nb(V) and Ti(IV). The main results suggest that, to date, the best procedure for the accurate calculation of δ((31)P) in polyoxometalates is the combination of TZP/PBE//TZ2P/OPBE (for NMR//optimization step). The hybrid functionals (PBE0, B3LYP) tested herein were applied to the NMR step, besides being more CPU-consuming, do not outperform pure GGA functionals. Although previous studies on (183)W NMR suggested that the use of very large basis sets like QZ4P were needed for geometry optimization, the present results indicate that TZ2P suffices if the functional is optimal. Moreover, scaling corrections were applied to the results providing low mean absolute errors below 1 ppm for δ((31)P), which is a step forward in order to confirm or predict chemical shifts in polyoxometalates. Finally, via a simplified molecular model, we establish how the small variations in δ((31)P) arise from energy changes in the occupied and virtual orbitals of the PO4 group. PMID:25738630

  4. Determination of coordination modes and estimation of the 31P-31P distances in heterogeneous catalyst by solid state double quantum filtered 31P NMR spectroscopy.

    PubMed

    Zhang, Si-Yong; Wang, Mei-Tao; Liu, Qing-Hua; Hu, Bing-Wen; Chen, Qun; Li, He-Xing; Amoureux, Jean-Paul

    2011-04-01

    To overcome the separation difficulty of the palladium-based homogeneous catalyst, the palladium complex can be anchored on various supports such as silica. However, it is difficult to determine the amounts of the two coordination modes of the Pd nucleus, that is, Pd coordinates with one phosphorus atom and Pd coordinates with two phosphorus atoms. Here a (31)P double-quantum filtered (DQ-filtered) method in solid-state NMR is introduced for the palladium-based heterogenous catalyst system. With the DQ-filtered method, we can not only determine the amounts of the two different kinds of palladium coordination modes, we can also estimate the interatomic distance of two (31)P nuclei bonded to a palladium nucleus. With the help of this method, we can quickly estimate interatomic distances in our designed system and accurately re-design the palladium system to accommodate either one (31)P or two (31)P. PMID:21301702

  5. CD and 31P NMR studies of tachykinin and MSH neuropeptides in SDS and DPC micelles

    NASA Astrophysics Data System (ADS)

    Schneider, Sydney C.; Brown, Taylor C.; Gonzalez, Javier D.; Levonyak, Nicholas S.; Rush, Lydia A.; Cremeens, Matthew E.

    2016-02-01

    Secondary structural characteristics of substance P (SP), neurokinin A (NKA), neurokinin B (NKB), α-melanocyte stimulating hormone peptide (α-MSH), γ1-MSH, γ2-MSH, and melittin were evaluated with circular dichroism in phosphite buffer, DPC micelles, and SDS micelles. CD spectral properties of γ1-MSH and γ2-MSH as well as 31P NMR of DPC micelles with all the peptides are reported for the first time. Although, a trend in the neuropeptide/micelle CD data appears to show increased α-helix content for the tachykinin peptides (SP, NKA, NKB) and increased β-sheet content for the MSH peptides (α-MSH, γ1-MSH, γ2-MSH) with increasing peptide charge, the lack of perturbed 31P NMR signals for all neuropeptides could suggest that the reported antimicrobial activity of SP and α-MSH might not be related to a membrane disruption mode of action.

  6. Monitoring changes of paramagnetically-shifted 31P signals in phospholipid vesicles

    NASA Astrophysics Data System (ADS)

    Joyce, Rebecca E.; Williams, Thomas L.; Serpell, Louise C.; Day, Iain J.

    2016-03-01

    Phospholipid vesicles are commonly used as biomimetics in the investigation of the interaction of various species with cell membranes. In this letter we present a 31P NMR investigation of a simple vesicle system using a paramagnetic shift reagent to probe the inner and outer layers of the lipid bilayer. Time-dependent changes in the 31P NMR signal are observed, which differ whether the paramagnetic species is inside or outside the vesicle, and on the choice of buffer solution used. An interpretation of these results is given in terms of the interaction of the paramagnetic shift reagent with the lipids.

  7. In vivo 31P-NMR spectroscopy of right ventricle in pigs.

    PubMed

    Schwartz, G G; Steinman, S K; Weiner, M W; Matson, G B

    1992-06-01

    The energy metabolism of the right ventricle (RV) in vivo has been largely unexplored. The goal of this study was to develop and implement techniques for in vivo 31P nuclear magnetic resonance (NMR) spectroscopy of the RV free wall. A two-turn, crossover-design elliptical surface coil was constructed to provide high sensitivity across the thin RV wall but minimal sensitivity in the blood-filled RV cavity. In 36 open-chest, anesthetized pigs, 31P spectroscopy of the RV free wall was performed with this coil at a field strength of 2 Tesla. Spectra were obtained from 800 acquisitions in 24 min with an average signal-to-noise ratio of 13.2 for phosphocreatine (PCr). The PCr-to-ATP (PCr/ATP) ratio of porcine RV was 1.42 +/- 0.05 (mean +/- SE), uncorrected for saturation at a repetition time of 1.8 s. With the use of literature values of the time constant of longitudinal relaxation (T1) to correct for partial saturation, the RV PCr/ATP was estimated to lie between 1.7 and 2.3. Decreased RV PCr/ATP was observed during RV ischemia and pressure overload. Thus in vivo 31P spectroscopy of the RV is readily accomplished with an appropriate surface coil and can provide new information about RV energy metabolism. PMID:1621852

  8. Functional group analysis in coal by sup 31 P NMR spectroscopy

    SciTech Connect

    Verkade, J.G.

    1989-05-01

    The purpose of this research is to determine the labile-hydrogen functional group composition of coal and coal-derived materials by the nmr spectroscopy of their derivatives made with reagents containing the nmr-active nuclei {sup 31}P, {sup 119}Sn, or {sup 205}Tl. 7 refs.

  9. Ab initio and DFT study of 31P-NMR chemical shifts of sphingomyelin and dihydrosphingomyelin lipid molecule

    NASA Astrophysics Data System (ADS)

    Sugimori, K.; Kawabe, H.; Nagao, H.; Nishikawa, K.

    One of the phospholipids, sphingomyelin (SM, N-acyl-sphingosine-1-phosphorylcholine) is the most abundant component of mammalian membranes in brain, nervous tissues, and human ocular lens. It plays an important role for apoptosis, aging, and signal transduction. Recently, Yappert and coworkers have shown that human lens sphingomyelin and its hydrogenated derivative, dihydrosphingomyelin (DHSM) are interacted with Ca2+ ions to develop human cataracts. Previously, we have investigated conformational differences between an isolated SM/DHSM molecule and Ca2+-coordinated form by using density functional theory (DFT) for geometry optimization and normal mode analysis. As a result, one of stable conformers of SMs has a hydrogen bonding between hydroxyl group and phosphate group, whereas another conformer has a hydrogen bonding between hydroxyl and phosphate amide group. In this study, 31P-Nuclear Magnetic Resonance (NMR) shielding constants of the obtained conformers are investigated by using ab initio and DFT with NMR-gauge invariant atomic orbitals (NMR-GIAO) calculations. The experimental 31P-NMR chemical shifts of SMs and DHSMs have significant small value around 0.1 ppm. We consider the relative conformational changes between SMs and DHSMs affect the slight deviations of 31P-NMR chemical shifts, and discuss intramolecular hydrogen bondings and the solvent effect in relation to NMR experimental reference.

  10. Modified Prony Method to Resolve and Quantify in Vivo31P NMR Spectra of Tumors

    NASA Astrophysics Data System (ADS)

    Barone, P.; Guidoni, L.; Ragona, R.; Viti, V.; Furman, E.; Degani, H.

    Prony's method, successfully used in processing NMR signals, performs poorly at low signal-to-noise ratios. To overcome this problem, a statistical approach has been adopted by using Prony's method as a sampling device from the distribution associated with the true spectrum. Specifically, Prony's method is applied for each regression order p and number of data points n, both considered in a suitable range, and the estimates of frequencies, amplitudes, and decay factors are pooled separately. A histogram of the pooled frequencies is computed and, looking at the histogram, a lower and an upper frequency bound for each line of interest is determined. All frequency estimates in each of the determined intervals as well as associated decay factors and amplitudes are considered to be independent normal variates. A mean value and a corresponding 95% confidence interval are computed for each parameter. 31P NMR signals from MCF7 human breast cancer cells, inoculated into athymic mice and which developed into tumors, have been processed with traditional methods and with this modified Prony's method. The main components of the phosphomonoester peak, namely those deriving from phosphorylcholine and phosphorylethanolamine, are always well resolved with this new approach and their relative amplitudes can be consequently evaluated. Peak intensities of these two signals show different behavior during treatment of tumors with the antiestrogenic drug tamoxifen. The results of this new approach are compared with those obtainable with traditional techniques.

  11. sup 31 P NMR analysis of coal moieties bearing -OH, -NH, and -SH functions

    SciTech Connect

    Verkade, J.G.

    1991-08-31

    NMR reagents for the speciation and quantitation of labile-hydrogen functional groups and sulfur groups in coal ligands have been synthesized and evaluated. These reagents, which contain the NMR-active nuclei {sup 31}p, {sup 119}Sn or {sup 195}pt, were designed to possess improved chemical shift resolution over reagents reported in the literature. Our efforts were successful in the case of the new {sup 31}p and {sup 119}Sn reagents we developed, but the {sup 195}pt work on sulfur groups was only partially successful in as much as the grant came to a close and was not renewed. Our success with {sup 31}P and {sup 119}Sn NMR reagents came to the attention of Amoco and they have recently expressed interest in further supporting that work. A further measure of the success of our efforts can be seen in the nine publications supported by this grant which are cited in the reference list.

  12. Comparison of phosphorus forms in three extracts of dairy feces by solution 31P NMR analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using solution 31P NMR spectroscopy, we compared three extractants, deionized water, sodium acetate buffer (pH 5.0) with fresh sodium dithionite (NaAc-SD), and 0.25 M NaOH-0.05 M EDTA (NaOH-EDTA), for the profile of P compounds in two dairy fecal samples. Phosphorus extracted was 35% for water, and...

  13. Solid State FT-IR and (31)P NMR Spectral Features of Phosphate Compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid-state spectroscopic techniques, including Fourier transform infrared (FT-IR) and solid-state 31P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopies, are powerful tools for evaluating metal speciation and transformation mechanisms of P compounds in the environment. Studie...

  14. /sup 31/P NMR saturation-transfer and /sup 13/C NMR kinetic studies of glycolytic regulation during anaerobic and aerobic glycolysis

    SciTech Connect

    Campbell-Burk, S.L.; den Hollander, J.A.; Alger, J.R.; Shulman, R.G.

    1987-11-17

    /sup 31/P NMR saturation-transfer techniques have been employed in glucose-gown derepressed yeast to determine unidirectional fluxes in the upper part of the Embden-Meyerhof-Parnas pathway. The experiments were performed during anaerobic and aerobic glycolysis by saturating the ATP/sub ..gamma../ resonances and monitoring changes in the phosphomonoester signals from glucose 6-phosphate and fructose 1,6-bisphosphate. These experiments were supplemented with /sup 13/C NMR measurements of glucose utilization rates and /sup 13/C NMR label distribution studies. Combined with data obtained previously from radioisotope measurement, these /sup 31/P and /sup 13/C NMR kinetic studies allowed estimation of the net glycolytic flow in addition to relative flows through phosphofructokinase (PFK) and Fru-1,6-P/sub 2/ase during anaerobic and aerobic glycolysis. The /sup 31/P NMR saturation-transfer results are consistent with previous results obtained from measurements of metabolite levels, radioisotope data, and /sup 13/C NMR studies, providing additional support for in vivo measurement of the flows during glycolysis.

  15. Structure and motion of phospholipids in human plasma lipoproteins. A sup 31 P NMR study

    SciTech Connect

    Fenske, D.B.; Chana, R.S.; Parmar, Y.I.; Treleaven, W.D.; Cushley, R.J. )

    1990-04-24

    The structure and motion of phospholipids in human plasma lipoproteins have been studied by using {sup 31}P NMR. Lateral diffusion coefficients, D{sub T}, obtained from the viscosity dependence of the {sup 31}P NMR line widths, were obtained for very low density lipoprotein (VLDL), low-density lipoprotein (LDL), high-density lipoproteins (HDL{sub 2}, HDL{sub 3}), and egg PC/TO microemulsions at 25{degree}C, for VLDL at 40{degree}C, and for LDL at 45{degree}C. In order to prove the orientation and/or order of the phospholipid head-group, estimates of the residual chemical shift anistropy, {Delta}{sigma}, have been obtained for all the lipoproteins and the microemulsions from the viscosity and field dependence for the {sup 31}P NMR line widths. These results suggest differences in the orientation and/or ordering of the head-group in the HDLs. The dynamic behavior of the phosphate moiety in LDL and HDL{sub 3} has been obtained from the temperature dependence of the {sup 31}P spin-lattice relaxation rates. Values of the correlation time for phosphate group reorientation and the activation energy for the motion are nearly identical in LDL and HDL{sub 3} and are similar to values obtained for phospholipid bilayers. This argues against long-lived protein-lipid interactions being the source of either the slow diffusion in LDL or the altered head-group orientation in the HDLs.

  16. sup 31 P NMR analysis of coal moieties bearing -OH, -NH, and -SH functions

    SciTech Connect

    Verkade, J.G.

    1991-01-01

    The purpose of this research is to develop a convenient, reliable and rapid NMR method for the determination of labile-hydrogen functional groups and organic sulfur compounds which are components of coal and coal-derived materials. For this purpose, the former functional groups, including water molecules, are derivatized with reagents containing NMR-active nuclei such as {sup 31}P or {sup 119}Sn, while sulfur groups are derivatized with {sup 195}Pt NMR tagging reagents. Knowledge of the heteroatom composition of coals is necessary for the development of increasingly sophisticated coal processing technologies.

  17. Evaluation of Phosphorus Characterization in Ileal Digesta, Manure, and Litter Samples: 31P-NMR vs. HPLC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using 31-Phosphorus Nuclear Magnetic Resosonance Spectroscopy (31P-NMR) to characterize phosphorus (P) in manures and litter has become prevalent in the area of nutrient management. To date, there has been no published work evaluating P quantification in manure/litter samples with 31P-NMR compared ...

  18. Evaluation of Phosphorus Characterization in Broiler Ileal Digesta, Manure, and Litter Samples: 31P-NMR vs. HPLC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using 31-Phosphorus Nuclear Magnetic Resosonance Spectroscopy (31P-NMR) to characterize phosphorus (P) in manures and litter has become prevalent in the area of nutrient management. To date, there has been no published work evaluating P quantification in manure/litter samples with 31P-NMR compared t...

  19. 31P NMR study of magnetic phase transitions of MnP single crystal under 2 GPa pressure

    NASA Astrophysics Data System (ADS)

    Fan, GuoZhi; Zhao, Bo; Wu, Wei; Zheng, Ping; Luo, JianLin

    2016-05-01

    Superconductivity on the border of the long-range magnetic order has been discovered in MnP under high pressures. In order to investigate the nature of the magnetic properties adjacent to the superconducting state, we performed zero-field 31P NMR for MnP single crystal under ambient and hydrostatic pressure of 2 GPa, respectively. Radio frequency power level was used to determine whether NMR signal originates from a helical state or not. When 2 GPa pressure was applied, the signal from helical state exists even above 160 K, while that from the ferromagnetic phase was not observed. Our NMR results indicate that the magnetic phase which is adjacent to the superconducting state is in a helical magnetic structure.

  20. 31P MAS-NMR of human erythrocytes: independence of cell volume from angular velocity.

    PubMed

    Kuchel, P W; Bubb, W A; Ramadan, S; Chapman, B E; Philp, D J; Coen, M; Gready, J E; Harvey, P J; McLean, A J; Hook, J

    2004-09-01

    31P magic angle spinning NMR (MAS-NMR) spectra were obtained from suspensions of human red blood cells (RBCs) that contained the cell-volume-sensitive probe molecule, dimethyl methylphosphonate (DMMP). A mathematical representation of the spectral-peak shape, including the separation and width-at-half-height in the 31P NMR spectra, as a function of rotor speed, enabled us to explore the extent to which a change in cell volume would be reflected in the spectra if it occurred. We concluded that a fractional volume change in excess of 3% would have been detected by our experiments. Thus, the experiments indicated that the mean cell volume did not change by this amount even at the highest spinning rate of 7 kHz. The mean cell volume and intracellular 31P line-width were independent of the packing density of the cells and of the initial cell volume. The relationship of these conclusions to other non-NMR studies of pressure effects on cells is noted. PMID:15334588

  1. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by [sup 31]P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G. )

    1992-11-01

    In this study, Iowa State University researchers used [sub 31]P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850[degrees]F[sup +] distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.[sup 31]P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different [sup 31]P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a [sup 31]P-tagged reagent (ClPOCMe[sub 2]CMe[sub 2]O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  2. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by {sup 31}P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G.

    1992-11-01

    In this study, Iowa State University researchers used {sub 31}P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850{degrees}F{sup +} distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.{sup 31}P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different {sup 31}P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a {sup 31}P-tagged reagent (ClPOCMe{sub 2}CMe{sub 2}O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  3. Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and (31)P NMR analysis.

    PubMed

    Xu, Gang; Zhang, You; Shao, Hongbo; Sun, Junna

    2016-11-01

    Phosphorus (P) recycling or reuse by pyrolyzing crop residue has recently elicited increased research interest. However, the effects of feedstock and pyrolysis conditions on P species have not been fully understood. Such knowledge is important in identifying the agronomic and environmental uses of biochar. Residues of three main Chinese agricultural crops and the biochars (produced at 300°C-600°C) derived from these crops were used to determine P transformations during pyrolysis. Hedley sequential fractionation and (31)P NMR analyses were used in the investigation. Our results showed that P transformation in biochar was significantly affected by pyrolysis temperature regardless of feedstock (Wheat straw, maize straw and peanut husk). Pyrolysis treatment transformed water soluble P into a labile (NaHCO3-Pi) or semi-labile pool (NaOH-Pi) and into a stable pool (Dil. HCl P and residual-P). At the same time, organic P was transformed into inorganic P fractions which was identified by the rapid decomposition of organic P detected with solution (31)P NMR. The P transformation during pyrolysis process suggested more stable P was formed at a higher pyrolysis temperature. This result was also evidenced by the presence of less soluble or stable P species, such as such as poly-P, crandallite (CaAl3(OH)5(PO4)2) and Wavellite (Al3(OH)3(PO4)2·5H2O), as detected by solid-state (31)P NMR in biochars formed at a higher pyrolysis temperature. Furthermore, a significant proportion of less soluble pyrophosphate was identified by solution (2%-35%) and solid-state (8%-53%) (31)P NMR, which was also responsible for the stable P forms at higher pyrolysis temperature although their solubility or stability requires further investigation. Results suggested that a relatively lower pyrolysis temperature retains P availability regardless of feedstock during pyrolysis process. PMID:27343937

  4. [sup 31]P NMR study of immobilized artificial membrane surfaces. Structure and dynamics of immobilized phospholipids

    SciTech Connect

    Qiu, X.; Pidgeon, C. )

    1993-11-25

    Chromatography surfaces were prepared by immobilizing a single-chain ether phospholipid at approximately a monolayer density on silica particles. The chromatography particles are denoted as [sup ether]IAM.PC[sup C10/C3], and they are stable to all solvents. The structure and dynamics of the interphase created by immobilizing phospholipids on silica particles were studied by [sup 31]P NMR methods. [sup ether]IAM.PC[sup C10/C3] spontaneously wets when suspended in both aqueous and organic solvents, and [sup 31]P NMR spectra were obtained in water, methanol, chloroform, acetonitrile, and acetone. [sup 31]P NMR spectra were subjected to line-shape analysis. From line-shape analysis, the correlation times for rapid internal motion ([tau]-PLL) and wobbling ([tau]-PRP) of the phospholipid headgroup were calculated for each solvent. Immobilized phospholipid headgroups comprising the IAM interfacial region undergo rapid reorientation similar to the case of the phospholipids forming liposome membranes with [tau]-PLL approximately 1 ns. Phospholipids in liposome membranes exhibit slower wobbling motion ([tau]-PRP approximately 1 ms) in the plane of the membrane. However, the immobilized phospholipids on [sup ether]IAM.PC[sup C10/C3] surfaces wobble with correlation times [tau]-PRP that depend on the solvent bathing the [sup ether]IAM.PC[sup C10/C3] surface. 41 refs., 9 figs., 2 tabs.

  5. Exploring new Routes for Identifying Phosphorus Species in Terrestrial and Aquatic Ecosystems with 31P NMR

    NASA Astrophysics Data System (ADS)

    Vestergren, Johan; Persson, Per; Sundman, Annelie; Ilstedt, Ulrik; Giesler, Reiner; Schleucher, Jürgen; Gröbner, Gerhard

    2014-05-01

    Phosphorus (P) is the primary growth-limiting nutrient in some of the world's biomes. Rock phosphate is a non-renewable resource and the major source of agricultural fertilizers. Predictions of P consumption indicate that rock phosphate mining may peak within 35 years, with severe impacts on worldwide food production1. Organic P compounds constitute a major fraction of soil P, but little is known about the dynamics and bioavailability of organic P species. Our aim is to develop new liquid and solid state 31P-NMR (nuclear magnetic resonance) techniques to identify P-species in water and soils; information required for correlating P speciation with plant and soil processes2, and eventually to improve P use. Soil organic P is frequently extracted using NaOH/EDTA, followed by characterization of the extract by solution 31P-NMR. However, the obtained NMR spectra usually have poor resolution due to line broadening caused by the presence of paramagnetic ions. Therefore, we successfully developed an approach to avoid paramagnetic line broadening by precipitation of metal sulfides. Sulfide precipitation dramatically reduces NMR line widths for soil extracts, without affecting P-composition. The resulting highly improved resolution allowed us to apply for the first time 2D 1H,31P-NMR methods to identify different P monoesters in spectral regions which are extremely crowded in 1D NMR spectra.3 By exploiting 2D 1H-31P NMR spectra of soil extracts we were able to unambiguously identify individual organic P species by combining 31P and 1H chemical shifts and coupling constants. This approach is even suitable for a structural characterization of unknown P-components and for tracing degradation pathways between diesters and monoesters3,4.Currently we apply our approach on boreal4 and tropical soils with focus on Burkina Faso. In addition we also monitor P-species in aqueos ecosystems. For this purpose stream water from the Krycklan catchment in northern Sweden5 has been used to

  6. Decomposition of adsorbed VX on activated carbons studied by {sup 31}P MAS NMR

    SciTech Connect

    Ishay Columbus; Daniel Waysbort; Liora Shmueli; Ido Nir; Doron Kaplan

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-(2-(diisopropylamino)ethyl) methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. Four types of activated carbon were used, including coal-based BPL. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) ((DES){sub 2}). Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed. 17 refs., 6 figs., 3 tabs.

  7. Decomposition of adsorbed VX on activated carbons studied by 31P MAS NMR.

    PubMed

    Columbus, Ishay; Waysbort, Daniel; Shmueli, Liora; Nir, Ido; Kaplan, Doron

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) {(DES)2}. Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed. PMID:16830567

  8. Detoxification of organophosphorus pesticides and nerve agents through RSDL: efficacy evaluation by (31)P NMR spectroscopy.

    PubMed

    Elsinghorst, Paul W; Worek, Franz; Koller, Marianne

    2015-03-01

    Intoxication by organophosphorus compounds, especially by pesticides, poses a considerable risk to the affected individual. Countermeasures involve both medical intervention by means of antidotes as well as external decontamination to reduce the risk of dermal absorption. One of the few decontamination options available is Reactive Skin Decontamination Lotion (RSDL), which was originally developed for military use. Here, we present a (31)P NMR spectroscopy based methodology to evaluate the detoxification efficacy of RSDL with respect to a series of organophosphorus pesticides and nerve agents. Kinetic analysis of the obtained NMR data provided degradation half-lives proving that RSDL is also reasonably effective against organophosphorus pesticides. Unexpected observations of different RSDL degradation patterns are presented in view of its reported oximate-catalyzed mechanism of action. PMID:25597861

  9. In vivo 31P-NMR spectroscopy of chronically stimulated canine skeletal muscle.

    PubMed

    Clark, B J; Acker, M A; McCully, K; Subramanian, H V; Hammond, R L; Salmons, S; Chance, B; Stephenson, L W

    1988-02-01

    Chronic stimulation converts skeletal muscle of mixed fiber type to a uniform muscle made up of type I, fatigue-resistant fibers. Here, the bioenergetic correlates of fatigue resistance in conditioned canine latissimus dorsi are assessed with in vivo phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy. After chronic electrical stimulation, five dogs underwent 31P-NMR spectroscopic and isometric tension measurements on conditioned and contralateral control muscle during stimulation for 200, 300, 500, and 800 ms of an 1,100-ms duty cycle. With stimulation, phosphocreatine (PCr) fell proportional to the degree of stimulation in both conditioned and control muscle but fell significantly less in conditioned muscle at all but the least intense stimulation period (200 ms). Isometric tension, expressed as a tension time index per gram muscle, was significantly greater in the conditioned muscle at the two longest stimulation periods. The overall small change in PCr and the lack of a plateau in tension observed in the conditioned muscle are similar to that seen in cardiac muscle during increased energy demand. This study indicates that the conditioned muscle's markedly enhanced resistance to fatigue is in part the result of its increased capacity for oxidative phosphorylation. PMID:3348365

  10. In vivo sup 31 P-NMR spectroscopy of chronically stimulated canine skeletal muscle

    SciTech Connect

    Clark, B.J. III; McCully, A.K.; Subramanian, H.V.; Hammond, R.L.; Salmons, S.; Chance, B.; Stephenson, L.W. Univ. of Pennsylvania School of Medicine, Philadelphia Univ. of Birmingham )

    1988-02-01

    Chronic stimulation converts skeletal muscle of mixed fiber type to a uniform muscle made up of type I, fatigue-resistant fibers. Here, the bioenergetic correlates of fatigue resistance in conditioned canine latissimus dorsi are assessed with in vivo phosphorus-31 nuclear magnetic resonance ({sup 31}P-NMR) spectroscopy. After chronic electrical stimulation, five dogs underwent {sup 31}P-NMR spectroscopic and isometric tension measurements on conditioned and contralateral control muscle during stimulation for 200, 300, 500, and 800 ms of an 1,100-ms duty cycle. With stimulation, phosphocreatine (PCr) fell proportional to the degree of stimulation in both conditioned and control muscle but fell significantly less in conditioned muscle at all the least intense stimulation period (200 ms). Isometric tension, expressed as a tension time index per gram muscle, was significantly greater in the conditioned muscle at the two longest stimulation periods. The overall small change in PCr and the lack of a plateau in tension observed in the conditioned muscle are similar to that seen in cardiac muscle during increased energy demand. This study indicates that the conditioned muscle's markedly enhanced resistance to fatigue is in part the result of its increased capacity for oxidative phosphorylation.

  11. The intact muscle lipid composition of bulls: an investigation by MALDI-TOF MS and 31P NMR.

    PubMed

    Dannenberger, Dirk; Süss, Rosmarie; Teuber, Kristin; Fuchs, Beate; Nuernberg, Karin; Schiller, Jürgen

    2010-02-01

    The analysis of beef lipids is normally based on chromatographic techniques and/or gas chromatography in combination with mass spectrometry (GC/MS). Modern techniques of soft-ionization MS were so far scarcely used to investigate the intact lipids in muscle tissues of beef. The objective of the study was to investigate whether matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry and (31)P nuclear magnetic resonance (NMR) spectroscopy are useful tools to study the intact lipid composition of beef. For the MALDI-TOF MS and (31)P NMR investigations muscle samples were selected from a feeding experiment with German Simmental bulls fed different diets. Beside the triacylglycerols (TAGs), phosphatidylethanolamine (PE), phosphatidylcholine (PC) and phosphatidylinositol (PI) species the MALDI-TOF mass spectra of total muscle lipids gave also intense signals of cardiolipin (CL) species. The application of different matrix compounds, 2,5-dihydroxybenzoic acid (DHB) and 9-aminoacridine (9-AA), leads to completely different mass spectra: 9-AA is particularly useful for the detection of (polar) phospholipids, whereas apolar lipids, such as cholesterol and triacylglycerols, are exclusively detected if DHB is used. Finally, the quality of the negative ion mass spectra is much higher if 9-AA is used. PMID:19900429

  12. In vivo 31P and multilabel 13C NMR measurements for evaluation of plant metabolic pathways.

    PubMed

    Rijhwani, S K; Ho, C H; Shanks, J V

    1999-01-01

    Reliable measurements of intracellular metabolites are useful for effective plant metabolic engineering. This study explored the application of in situ 31P and 13C NMR spectroscopy for long-term measurements of intracellular pH and concentrations of several metabolites in glycolysis, glucan synthesis, and central carbon metabolic pathways in plant tissues. An NMR perfusion reactor system was designed to allow Catharanthus roseus hairy root cultures to grow for 3-6 weeks, during which time NMR spectroscopy was performed. Constant cytoplasmic pH (7.40+/-0.06), observed during the entire experiment, indicated adequate oxygenation. 13C NMR spectroscopy was performed on hairy root cultures grown in solutions containing 1-13C-, 2-13C-, and 3-13C-labeled glucose in separate experiments and the flow of label was monitored. Activities of pentose phosphate pathways, nonphotosynthetic CO2 fixation, and glucan synthesis pathways were evident from the experimental results. Scrambling of label in glucans also indicated recycling of triose phosphate and their subsequent conversion to hexose phosphates. PMID:10935751

  13. Metabolic engineering applications of in vivo sup 31 P and sup 13 C NMR studies of Saccharomyces cerevisiae

    SciTech Connect

    Shanks, J.V.

    1989-01-01

    With intent to quantify NMR measurements as much as possible, analysis techniques of the in vivo {sup 31}P NMR spectrum are developed. A systematic procedure is formulated for estimating the relative intracellular concentrations of the sugar phosphates in S. cerevisiae from the {sup 31}P NMR spectrum. In addition, in vivo correlation of inorganic phosphate chemical shift with the chemical shifts of 3-phosphoglycerate, {beta}-fructose 1,6-diphosphate, fructose 6-phosphate, and glucose 6-phosphate are determined. Also, a method was developed for elucidation of the cytoplasmic and vacuolar components of inorganic phosphate in the {sup 31}P NMR spectrum of S. cerevisiae. An in vivo correlation relating the inorganic phosphate chemical shift of the vacuole with the chemical shift of the resonance for pyrophosphate and the terminal phosphate of polyphosphate (PP{sub 1}) is established. Transient measurements provided by {sup 31}P NMR are applied to reg1 mutant and standard strains. {sup 31}P and {sup 13}C NMR measurements are used to analyze the performance of recombinant strains in which the glucose phosphorylation step had been altered.

  14. Determination of neo- and D-chiro-inositol hexakisphosphate in soils by solution 31P NMR spectroscopy.

    PubMed

    Turner, Benjamin L; Cheesman, Alexander W; Godage, H Yasmin; Riley, Andrew M; Potter, Barry V L

    2012-05-01

    The inositol phosphates are an abundant but poorly understood group of organic phosphorus compounds found widely in the environment. Four stereoisomers of inositol hexakisphosphate (IP(6)) occur, although for three of these (scyllo, neo, and D-chiro) the origins, dynamics, and biological function remain unknown, due in large part to analytical limitations in their measurement in environmental samples. We synthesized authentic neo- and D-chiro-IP(6) and used them to identify signals from these compounds in three soils from the Falkland Islands. Both compounds resisted hypobromite oxidation and gave quantifiable (31)P NMR signals at δ = 6.67 ppm (equatorial phosphate groups of the 4-equatorial/2-axial conformer of neo-IP(6)) and δ = 6.48 ppm (equatorial phosphate groups of the 2-equatorial/4-axial conformer of D-chiro-IP(6)) in soil extracts. Inositol hexakisphosphate accounted for 46-54% of the soil organic phosphorus, of which the four stereoisomers constituted, on average, 55.9% (myo), 32.8% (scyllo), 6.1% (neo), and 5.2% (D-chiro). Reappraisal of the literature based on the new signal assignments revealed that neo- and D-chiro-IP(6) occur widely in both terrestrial and aquatic ecosystems. These results confirm that the inositol phosphates can constitute a considerable fraction of the organic phosphorus in soils and reveal the prevalence of neo- and D-chiro-IP(6) in the environment. The hypobromite oxidation and solution (31)P NMR spectroscopy procedure allows the simultaneous quantification of all four IP(6) stereoisomers in environmental samples and provides a platform for research into the origins and ecological significance of these enigmatic compounds. PMID:22489788

  15. 31P NMR Study of Filled Skutterudite CeOs4P12

    NASA Astrophysics Data System (ADS)

    Magishi, K.; Sugawara, H.; Saito, T.; Koyama, K.

    2012-12-01

    We report the results of the electrical resistivity ρ(T) and the 31P-NMR measurements on filled skutterudite CeOs4P12 in order to investigate the magnetic properties at low temperatures from a microscopic point of view. For the polycrystalline sample synthesized under high pressure (HP), ρ(T) increases with decreasing temperature. On the other hand, for the single crystal (SC), ρ(T) reveals a positive temperature dependence between room temperature and 200 K, and increases with decreasing temperature below 200 K. Also, 1/T1 obeys the activated temperature dependence 1/T1 propto exp(-Δ/kBT) above 160 K with an energy gap Δ/fB ~ 500 K and 540 K for the HP and the SC samples, which are slightly larger than that of a previous report.

  16. Physiologic significance of the phosphorylation potential in isolated perfused rat hearts (31-P NMR)

    SciTech Connect

    Watters, T.; Wikman-Coffelt, J.; Wu, S.; Wendland, M.; James, T.; Sievers, R.; Botvinick, E.; Parmley, W.

    1986-03-05

    The authors assessed the metabolic and mechanical effects of changes in coronary perfusion pressure (CPP) and afterload (A) in isolated working apex-ejecting rat hearts perfused with Krebs-Henseleit solution containing an excess of O/sub 2/ and substrate. Log (phosphorylation potential) or log (ATP)/(ADP)x (Pi), designated (L), and log (PCR)/(Pi), designated (L*), were calculated from HPLC measurements after rapid freeze-clamping. Increasing CPP from 80-140 cm H/sub 2/O caused an increase in coronary flow (flow), developed pressure (DevP), O/sub 2/ consumption (VO/sub 2/), L, L*, and CO. L and L* were directly related to VO/sub 2/ and CO. Increasing A from 80-140 cm H/sub 2/O caused an increase in DevP and VO/sub 2/, but a decrease in L, L*, and CO. L and L* were inversely linearly related to VO/sub 2/ but were directly linearly related to CO. In both experiments, L and L* are directly related to CO, suggesting that determination of L* (which can be done with 31-P NMR spectroscopy) may be a useful non-invasive method for determining cardiac pump function curves. L and L* may be related to the Frank-Starling mechanism. In a separate experiment using 31-P NMR spectroscopy of isovolumic (left ventricular balloon) perfused rat hearts, increasing CPP caused a direct linear increase in flow, DevP, and L*, confirming the L* results reported above with CPP experiments using the rapid freeze-clamp technique.

  17. Physiologic significance of the phosphorylation potential in isolated perfused rat hearts (/sup 31/P NMR)

    SciTech Connect

    Watters, T.; Wikman-Coffelt, J.; Wu, S.; Wendland, M.; James, T.; Sievers, R.; Botvinick, E.; Parmley, W.

    1986-03-05

    The authors assessed the metabolic and mechanical effects of changes in coronary perfusion pressure (CPP) and afterload (A) in isolated working apex-ejecting rat hearts perfused with Krebs-Henseleit solution containing an excess of O/sub 2/ and substrate. Log(phosphorylation potential) or log (ATP)/(ADP)x (Pi), designated (L), and log (PCR)/(Pi), designated (L*), were calculated from HPLC measurements after rapid freeze-clamping. Increasing CPP from 80-140 cm H/sub 2/O caused an increase in coronary flow(flow), developed pressure(DevP), O/sub 2/ consumption (VO/sub 2/), L, L*, and CO. L and L* were directly related to VO/sub 2/ and CO. Increasing A from 80-140 cm H/sub 2/O caused an increase in DevP and VO/sub 2/, but a decrease in L, L*, and CO. L and L* were inversely linearly related to VO/sub 2/ but were directly linearly related to CO. In both experiments, L and L* are directly related to CO, suggesting that determination of L* (which can be done with /sup 31/P NMR spectroscopy) may be a useful non-invasive method for determining cardiac pump function curves. L and L* may be related to the Frank-Starling mechanism. In a separate experiment using /sup 31/P NMR spectroscopy of isovolumic (left ventricular balloon) perfused rat hearts, increasing CPP caused a direct linear increase in flow, DevP, and L*, confirming the L* results reported above with CPP experiments using the rapid freeze-clamp technique.

  18. Composition of phosphorus in wetland soils determined by SMT and solution 31P-NMR analyses.

    PubMed

    Zhang, Wenqiang; Jin, Xin; Ding, Yuekui; Zhu, Xiaolei; Rong, Nan; Li, Jie; Shan, Baoqing

    2016-05-01

    In Eastern China, wetlands are common in the lower reaches of catchments or in coastal zones. Wetlands are at risk from eutrophication because of the large quantities of phosphorus (P) they receive from rivers. They are also decreasing in size. In this contribution, we present information about the composition of P in wetland soils, obtained using the Standards, Measurements, and Testing (SMT) protocol and (31)P-nuclear magnetic resonance (NMR) spectroscopy. Average P concentrations varied in the different wetland soils and, in four of the five wetlands sampled, exceeded 500 mg∙kg(-1). HCl-inorganic P (Pi) was the main Pi fraction in wetland soils. The percentage contribution of Pi (89.7 %) to total P was the highest in the Yangtze River estuary wetland. Six P components were detected by (31)P-NMR analysis. Mono-P was the main organic P (Po) in wetland soils. Orthophosphate (Ortho-P) was positively and negatively related to NaOH-Pi (R (2) = 0.957, p < 0.001) and HCl-Pi (R (2) = -0.689, p < 0.001), respectively. Orthophosphate monoesters (Mono-P) were positively related to Po (R (2) = 0.617, p < 0.001) and ortho-P (R (2) = 0.624, p < 0.001), respectively. The main Po component was Mono-P, and it may be mineralized to ortho-P under the frequently changing redox conditions in wetland soils. The information from this study will support the development of robust scientific and effective policy for P management in wetlands. PMID:26832861

  19. 31P NMR study of daunorubicin-d(CGTACG) complex in solution. Evidence of the intercalation sites.

    PubMed

    Ragg, E; Mondelli, R; Battistini, C; Garbesi, A; Colonna, F P

    1988-08-15

    The interaction of daunorubicin with the self-complementary DNA fragment d(CGTACG) was studied by 31P NMR spectroscopy. The individual phosphates have been assigned for the nucleotide and the complex and signals from bound and free species in slow exchange at 19 degrees C were detected. In solution, the hexanucleotide binds two molecules of daunorubicin, which intercalate in the d(CG) sequence at both ends of the helix. Evidence for local deformations of the backbone at the sites of C5pG6, C1pG2 and G2pT3 phosphates is given. The binding constants for the stepwise equilibrium and the rate of dissociation of the intercalated duplex were also determined. PMID:3402614

  20. {sup 31}P NMR analysis of coal moieties bearing -OH, -NH, and -SH functions. Final technical report

    SciTech Connect

    Verkade, J.G.

    1991-08-31

    NMR reagents for the speciation and quantitation of labile-hydrogen functional groups and sulfur groups in coal ligands have been synthesized and evaluated. These reagents, which contain the NMR-active nuclei {sup 31}p, {sup 119}Sn or {sup 195}pt, were designed to possess improved chemical shift resolution over reagents reported in the literature. Our efforts were successful in the case of the new {sup 31}p and {sup 119}Sn reagents we developed, but the {sup 195}pt work on sulfur groups was only partially successful in as much as the grant came to a close and was not renewed. Our success with {sup 31}P and {sup 119}Sn NMR reagents came to the attention of Amoco and they have recently expressed interest in further supporting that work. A further measure of the success of our efforts can be seen in the nine publications supported by this grant which are cited in the reference list.

  1. {sup 31}P NMR study of the complexation of TBP with lanthanides and actinides in solution and in a clay matrix

    SciTech Connect

    Hartzell, C.J.

    1994-07-24

    Goal was to use NMR to study TBP/lanthanide complexes in the interlayer or on edge sites of clays. Work in this laboratory yielded details of the complexation of Eu(NO{sub 3}){sub 3} and Pr(NO{sub 3}){sub 3} with TBP in hexane solution; this information is crucial to interpretation of results of NMR studies of the complexes exchanged into clays. The solution {sup 31}P-chemical shift values were improved by repeating the studies on the lanthanide salts dissolved directly into neat TBP. NMR studies of these neat solutions of the Eu(NO{sub 3}){sub 3}{lg_bullet}3TBP-complex and the Pr(NO{sub 3}){sub 3}{lg_bullet}3TBP-complex show that the {sup 31}P chemical shift remains relatively constant for TBP: lanthanide ratios below 3: 1. At higher ratios, the chemical shift approaches that of free TBP, indicating rapid exchange of TBP between the free and complexed state. Exchange of these complexes into the clay hectorite yielded discrete {sup 31}P-NMR signals for the Eu{lg_bullet}TBP complex at -190 ppm and free TBP at -6 ppm. Adsorption of the Pr{lg_bullet}TBP complex yielded broad signals at 76 ppm for the complex and -6 ppm for free TBP. There was no evidence of exchange between the incorporated complex and the free TBP.

  2. 31P NMR spectroscopy of rat organs, in situ, using chronically implanted radiofrequency coils.

    PubMed Central

    Koretsky, A P; Wang, S; Murphy-Boesch, J; Klein, M P; James, T L; Weiner, M W

    1983-01-01

    A technique for making 31P NMR spectroscopic measurements in rat kidney, heart, and liver in vivo is presented. Two-turn solenoid coils were surgically implanted around the organ sufficiently in advance of NMR experiments to allow recovery of the animal. These chronically implanted coils allowed acquisition of high-resolution spectra at 40.5 and 97.3 MHz. No resolution improvement occurred at the higher field. Spectra were stable for up to 24 hr, during which time a variety of experiments could be performed. By accumulating spectra at 10-min intervals, the effects of intraperitoneal fructose injections were monitored; in kidney and liver, a rapid increase in sugar phosphates at the expense of Pi and ATP resulted. Fructose had no effect on heart metabolite levels. Spectra from the heart in vivo were obtained at systole and diastole by gating the spectrometer to the aortic pressure wave; no differences in phosphate metabolites were detected. Finally, saturation transfer techniques were used to monitor the rate of ATP synthesis in the kidney. The unidirectional rate constant for the conversion of Pi to ATP was 0.12 +/- 0.03 sec-1. Images PMID:6584867

  3. Temperature-dependent interconversion of phosphoramidite-Cu complexes detected by combined diffusion studies, 31P NMR, and low-temperature NMR spectroscopy.

    PubMed

    Schober, Katrin; Zhang, Hongxia; Gschwind, Ruth M

    2008-09-17

    For copper-catalyzed enantioselective conjugate additions, knowledge about the precatalytic and catalytic complexes has not yet been sufficiently developed to understand the strong influence of different temperatures on these famous reactions. Therefore, NMR experiments with four Cu(I) salts and two phosphoramidite ligands have been performed to elucidate the temperature dependence and the low-temperature structures of these copper complexes. The existence of the precatalytic binuclear complex with a mixed trigonal/tetrahedral coordination on copper is for the first time proven with direct NMR spectroscopic methods. Below 200 K, intermolecular interactions between free ligands and [Cu2X2L3] complexes induce binuclear [Cu2X2L4] complexes similar to the crystal structures. By combining diffusion experiments and (31)P integrals at different temperatures, it is for the first time possible to follow the formation of stoichiometrically different complexes, even under experimental conditions in which the (31)P signals of the complexes are spectroscopically not resolved due to exchange processes. This allows a first correlation between the complex species observed and the synthetic conditions reported. Furthermore, different preferences to build homo- or heterochiral complexes are detected for binaphthol and biphenol phosphoramidite complexes. PMID:18717560

  4. Chemical Characterization and Water Content Determination of Bio-Oils Obtained from Various Biomass Species using 31P NMR Spectroscopy

    SciTech Connect

    David, K.; Ben, H.; Muzzy, J.; Feik, C.; Iisa, K.; Ragauskas, A.

    2012-03-01

    Pyrolysis is a promising approach to utilize biomass for biofuels. One of the key challenges for this conversion is how to analyze complicated components in the pyrolysis oils. Water contents of pyrolysis oils are normally analyzed by Karl Fischer titration. The use of 2-chloro-4,4,5,5,-tetramethyl-1,3,2-dioxaphospholane followed by {sup 31}P NMR analysis has been used to quantitatively analyze the structure of hydroxyl groups in lignin and whole biomass. Results: {sup 31}P NMR analysis of pyrolysis oils is a novel technique to simultaneously characterize components and analyze water contents in pyrolysis oils produced from various biomasses. The water contents of various pyrolysis oils range from 16 to 40 wt%. The pyrolysis oils obtained from Loblolly pine had higher guaiacyl content, while that from oak had a higher syringyl content. Conclusion: The comparison with Karl Fischer titration shows that {sup 31}P NMR could also reliably be used to measure the water content of pyrolysis oils. Simultaneously with analysis of water content, quantitative characterization of hydroxyl groups, including aliphatic, C-5 substituted/syringyl, guaiacyl, p-hydroxyl phenyl and carboxylic hydroxyl groups, could also be provided by {sup 31}P NMR analysis.

  5. [ 31P]NMR measurements of hexokinase activity in intact red blood cells with 2-deoxyglucose as substrate

    NASA Astrophysics Data System (ADS)

    Halabi, F.; Seguin, J. P.; Fonroget, J.; Goethals, G.

    [ 31P] NMR spectroscopy is demonstrated to be a suitable tool to follow the time course of 2-deoxyglucose-6-phosphate in intact human erythrocytes incubated with 2-deoxyglucose. It allowed to determine hexokinase Vmax and K m in near physiological conditions.

  6. (31)P NMR phospholipid profiling of soybean emulsion recovered from aqueous extraction.

    PubMed

    Yao, Linxing; Jung, Stephanie

    2010-04-28

    The quantity and composition of phospholipids in full-fat soybean flour, flakes, and extruded flakes and in the cream fraction recovered after aqueous extraction (AEP) and enzyme-assisted aqueous extraction (EAEP) of these substrates were studied with (31)P NMR. Extruded flakes had significantly more phosphatidic acid (PA) than flakes and flour prior to aqueous extraction. The PA content of the cream recovered after AEP and EAEP of extruded flakes was similar to that of the starting material, whereas the PA content of the creams from flour and flakes significantly increased. Changes in the PA content could be explained by the action of phospholipase D during the processing step and aqueous extraction. Total phospholipids in the oil recovered from the creams varied from 0.09 to 0.75%, and free oil yield, which is an indicator of cream stability, varied from 6 to 78%. Total phospholipid did not correlate with emulsion stability when it was lower than 0.20%. Inactivation of phospholipase D prior to aqueous extraction of flour resulted in a cream emulsion less stable toward enzymatic demulsification and containing less PA and total phospholipids than untreated flour. The phospholipid distributions in the cream, skim, and insolubles obtained from AEP flour were 7, 51, and 42%, respectively. PMID:20329795

  7. Molybdenum modified phosphate glasses studied by 31P MAS NMR and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Szumera, Magdalena

    2015-02-01

    Glasses have been synthesized in the system P2O5sbnd SiO2sbnd K2Osbnd MgOsbnd CaO modified by addition of MoO3. Glasses were prepared by conventional fusion method from 40 g batches. The influence of Mo-cations on the analysed glass structure was investigated by means of Raman and 31P MAS-NMR techniques. It has been found that molybdate units can form Mo[MoO4/MoO6]sbnd Osbnd P and/or Mo[MoO4/MoO6]sbnd Osbnd Si bonds with non-bridging oxygens atoms of Q2 methaphosphate units, resulting in the transformation of chain methaphosphate structure into pyrophosphate and finally into orthophosphate structure. It has been also found that increasing amount of MoO3 in the structure of investigated glasses causes their gradual depolymerization and molybdenum ions in the analysed glass matrix act as modifying cations.

  8. 31P-NMR studies of isolated adult heart cells: effect of myoglobin inactivation.

    PubMed

    Gupta, R K; Wittenberg, B A

    1991-10-01

    31P nuclear magnetic resonance (NMR) studies of isolated adult rat heart cells revealed that the cells maintained high-energy phosphates for up to 6 h in polyamide hollow fibers perfused with well-oxygenated nutrient medium. Glucose plus pyruvate superfused heart cells maintained [phosphocreatine]/[ATP] at 1.4 +/- 0.1, internal pH at 7.09 +/- 0.04 (external pH = 7.25), and intracellular free Mg2+ at 0.51 +/- 0.04 mM. In glucose-containing media, hypoxia was accompanied by a reversible decrease in intracellular ATP and phosphocreatine of approximately 50% and 80%, respectively, while the intracellular free Mg2+ was reversibly increased by 40%. However, inhibition of glycolysis by iodoacetate in aerobic pyruvate-containing medium did not significantly alter high-energy phosphate content. Inactivation of intracellular myoglobin with 1-2 mM sodium nitrite, which reduces the steady-state respiratory oxygen consumption rate by 30%, caused a significant (30%) decrease in intracellular phosphocreatine peak, which was reversed upon removal of sodium nitrite. The nitrite-induced decrease in phosphocreatine was also observed in iodoacetate-treated myocytes but not in oligomycin-treated cells. These results indicate that functional myoglobin enhances high-energy phosphate synthesis in well-oxygenated myocytes. PMID:1928397

  9. Crystallinity and compositional changes in carbonated apatites: Evidence from {sup 31}P solid-state NMR, Raman, and AFM analysis

    SciTech Connect

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M.Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-15

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and {sup 31}P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse {sup 31}P NMR linewidth and inverse Raman PO{sub 4}{sup 3−}ν{sub 1} bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO{sub 3}{sup 2−} range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the {sup 31}P NMR chemical shift frequency and the Raman phosphate ν{sub 1} band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. - Graphical abstract: Carbonated apatite shows an abrupt change in spectral (NMR, Raman) and morphological (AFM) properties at a composition of about one carbonate substitution per unit cell. Display Omitted - Highlights: • Crystallinity (XRD), particle size (AFM) of carbonated apatites and bone mineral. • Linear relationships among crystallinity, {sup 31}P NMR and Raman inverse bandwidths. • Low and high carbonated apatites use different charge-balancing ion-loss mechanism.

  10. [31P-NMR analysis of high energy phosphorous compounds (ATP and phosphocreatine) in the living rat brain--effects of halothane anesthesia and a hypoxic condition].

    PubMed

    Yuasa, T; Miyatake, T; Kuwabara, T; Umeda, M; Eguchi, K

    1983-11-01

    31phosphorus nuclear magnetic resonance (31P-NMR) measurements have provided new and valuable insights for studying the metabolism of living systems. The aim of this paper is to introduce a technique of application of 31P-NMR measurements using a surface coil method, and to discuss the effects of halothane anesthesia and hypoxic hypoxia on the energetic metabolism of intact rat brains. All measurements were made using a JEOL FX 270 spectrometer with a super conducting magnet of 54-mm bore diameter. The magnetic field intensity of this machine is 6.3 tesla, and the resonance frequency used for 31P was 109.14 MHz. We remodelled an ordinary probe to take a live rat, and the animals were made to inhale anesthetic halothane or mixture of oxygen and nitrogen at various concentrations controlled by a flow regulator. The best conditions for measurements with our surface coil method were determined in this study as follows: (1) 90 degrees pulse width and selectivity, Fig. 1 shows signal selectivity in depthwise direction changed with 90 degrees pulse width, which was set to 20 microseconds. (2) Sensitivity and resolution; To obtain a spectrum of 31P-NMR from a rat brain 500 accumulations of free induction decays were considered suitable for both time and space resolution. Fig. 2 shows variations of signal intensity with pulse repetition time, which was set to 2 sec. It took about 17 min for averaging to get a spectrogram. (3) Quantitative accuracy and qualification; As shown in Fig. 3, a linear relationship was found between the signal intensity of beta-phosphate of ATP and the concentration of ATP solutions, thus proving the quantitative accuracy of our systems.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6661335

  11. Incorporation of phosphorus guest ions in the calcium silicate phases of Portland cement from 31P MAS NMR spectroscopy.

    PubMed

    Poulsen, Søren L; Jakobsen, Hans J; Skibsted, Jørgen

    2010-06-21

    Portland cements may contain small quantities of phosphorus (typically below 0.5 wt % P(2)O(5)), originating from either the raw materials or alternative sources of fuel used to heat the cement kilns. This work reports the first (31)P MAS NMR study of anhydrous and hydrated Portland cements that focuses on the phase and site preferences of the (PO(4))(3-) guest ions in the main clinker phases and hydration products. The observed (31)P chemical shifts (10 to -2 ppm), the (31)P chemical shift anisotropy, and the resemblance of the lineshapes in the (31)P and (29)Si MAS NMR spectra strongly suggest that (PO(4))(3-) units are incorporated in the calcium silicate phases, alite (Ca(3)SiO(5)) and belite (Ca(2)SiO(4)), by substitution for (SiO(4))(4-) tetrahedra. This assignment is further supported by a determination of the spin-lattice relaxation times for (31)P in alite and belite, which exhibit the same ratio as observed for the corresponding (29)Si relaxation times. From simulations of the intensities, observed in inversion-recovery spectra for a white Portland cement, it is deduced that 1.3% and 2.1% of the Si sites in alite and belite, respectively, are replaced by phosphorus. Charge balance may potentially be achieved to some extent by a coupled substitution mechanism where Ca(2+) is replaced by Fe(3+) ions, which may account for the interaction of the (31)P spins with paramagnetic Fe(3+) ions as observed for the ordinary Portland cements. A minor fraction of phosphorus may also be present in the separate phase Ca(3)(PO(4))(2), as indicated by the observation of a narrow resonance at delta((31)P) = 3.0 ppm for two of the studied cements. (31)P{(1)H} CP/MAS NMR spectra following the hydration of a white Portland cement show that the resonances from the hydrous phosphate species fall in the same spectral range as observed for (PO(4))(3-) incorporated in alite. This similarity and the absence of a large (31)P chemical shift ansitropy indicate that the hydrous (PO(4

  12. Development of a CP 31P NMR broadline simulation methodology for studying the interactions of antihypertensive AT1 antagonist losartan with phospholipid bilayers.

    PubMed

    Fotakis, Charalambos; Christodouleas, Dionisios; Chatzigeorgiou, Petros; Zervou, Maria; Benetis, Nikolas-Ploutarch; Viras, Kyriakos; Mavromoustakos, Thomas

    2009-03-18

    A cross-polarization (CP) (31)P NMR broadline simulation methodology was developed for studying the effects of drugs in phospholipids bilayers. Based on seven-parameter fittings, this methodology provided information concerning the conformational changes and dynamics effects of losartan in the polar region of the dipalmitoylphosphatidylcholine bilayers. The test molecule for this study was losartan, an antihypertensive drug known to exert its effect on AT(1) transmembrane receptors. The results were complemented and compared with those of differential scanning calorimetry, solid-state (13)C NMR spectroscopy, Raman spectroscopy, and electron spin resonance. More specifically, these physical chemical methodologies indicated that the amphipathic losartan molecule interacts with the hydrophilic-head zone of the lipid bilayers. The CP (31)P NMR broadline simulations showed that the lipid molecules in the bilayers containing losartan displayed greater collective tilt compared to the tilt displayed by the load-free bilayers, indicating improved packing. The Raman results displayed a decrease in the trans/gauche ratio and increased intermolecular interactions of the acyl chains in the liquid crystalline phase. Additional evidence, suggesting that losartan possibly anchors in the realm of the headgroup, was derived from upfield shift of the average chemical shift sigma(iso) of the (31)P signal in the presence of losartan and from shift of the observed peak at 715 cm(-1) attributed to C-N stretching in the Raman spectra. PMID:19289049

  13. 31P NMR study of erythrocytes from a patient with hereditary pyrimidine-5'-nucleotidase deficiency.

    PubMed Central

    Swanson, M S; Angle, C R; Stohs, S J; Wu, S T; Salhany, J M; Eliot, R S; Markin, R S

    1983-01-01

    The composition of phosphate metabolites and the intracellular pH in erythrocytes from a patient with hereditary pyrimidine-5'-nucleotidase deficiency were examined using 31P NMR spectroscopy. Several resonances were identified in spectra from intact cells and from extracts. The 2,3-bisphosphoglycerate line intensities were normal but the NTP resonances were about twice normal due to the presence of millimolar quantities of pyrimidine phosphates. Several intense resonances were also observed in the diphosphodiester region of the spectrum. One compound contributing to these lines has been identified as cytidine diphosphocholine. The resonances of NTPs were in a position indicating that the additional triphosphates were also bound by Mg2+. Direct measurement shows that there is a nearly proportional increase in total cell Mg2+ in the patient's cells, in agreement with the interpretation of the spectra. The intracellular pH was about 0.2 unit lower in the patient's erythrocytes. This lower pH is due to the elevation in intracellular fixed negative charges and the shift in permeable anions consequent to the Donnan equilibrium. We suggest that the lower intracellular pH may explain the lower oxygen affinity of these cells in the presence of otherwise normal 2,3-bisphosphoglycerate levels and the increased Mg2+ triphosphates level, because the Mg2+ form of NTPs is known not to alter the oxygen affinity of hemoglobin under physiologic conditions. Furthermore, the lower intracellular pH can also explain the abnormalities in glycolytic intermediates observed for these cells. PMID:6296865

  14. Application of (31P) NMR in analyzing the degradation efficiency of organic phosphorus degrading-bacteria.

    PubMed

    Lu, Yang; Sun, Xin; Ji, Si-Yao; Wang, Jian-Feng; Huang, Yao-Jian; Zhao, Yu-Fen; Xu, Peng-Xiang

    2007-07-01

    HPLC and HPLC-MS are the fastest and most accurate techniques for analysis of organic phosphorus pesticide (OPP) at the present time. Using these techniques, 14 strains of methamidopho (MAP) degrading-bacteria from the area contaminated with MAP have been identified. The results from HPLC and HPLC-MS analyses showed that the highest degradation rate was 73% after 7 days. In order to determine what metabolites will be formed after degradation, a key issue that has been neglected for a long time, we used ((31)P) NMR to track the degradation process. The results showed that different strains produced different metabolites. Ten strains were divided into three groups (groups A, B and C) by their metabolic profiling. Strains in group A degraded MAP into phosphor acid by breaking down all P-N, P-O and P-S bonds in 7 days. Strains in groups B and C had only broken down partially P-N and P-S bonds at the same time. Therefore, the bacterial strains in group A had a greater application potential than the other two groups. In addition, most metal phosphates are unsolvable in water. The analysis of X-ray showed, that the phosphate radicals generated by bacterial degradation induce crystallogenesis of heavy metal salts in water phase and also cause the chemical sedimentation of their crystals. Furthermore, these crystals are hydrogen phosphates. The results suggested that the MAP-degrading bacteria could be used for cleaning up not only the organic phosphorous pesticide contamination but also the phosphorous and heavy metal contamination in water environment simultaneously. PMID:17072553

  15. Distinguishing Bicontinuous Lipid Cubic Phases from Isotropic Membrane Morphologies Using 31P Solid-State NMR Spectroscopy

    PubMed Central

    Yang, Yu; Yao, Hongwei

    2015-01-01

    Nonlamellar lipid membranes are frequently induced by proteins that fuse, bend, and cut membranes. Understanding the mechanism of action of these proteins requires the elucidation of the membrane morphologies that they induce. While hexagonal phases and lamellar phases are readily identified by their characteristic solid-state NMR lineshapes, bicontinuous lipid cubic phases are more difficult to discern, since the static NMR spectra of cubic-phase lipids consist of an isotropic 31P or 2H peak, indistinguishable from the spectra of isotropic membrane morphologies such as micelles and small vesicles. To date, small-angle X-ray scattering is the only method to identify bicontinuous lipid cubic phases. To explore unique NMR signatures of lipid cubic phases, we first describe the orientation distribution of lipid molecules in cubic phases and simulate the static 31P chemical shift lineshapes of oriented cubic-phase membranes in the limit of slow lateral diffusion. We then show that 31P T2 relaxation times differ significantly between isotropic micelles and cubic-phase membranes: the latter exhibit two-orders-of magnitude shorter T2 relaxation times. These differences are explained by the different timescales of lipid lateral diffusion on the cubic-phase surface versus the timescales of micelle tumbling. Using this relaxation NMR approach, we investigated a DOPE membrane containing the transmembrane domain (TMD) of a viral fusion protein. The static 31P spectrum of DOPE shows an isotropic peak, whose T2 relaxation times correspond to that of a cubic phase. Thus, the viral fusion protein TMD induces negative Gaussian curvature, which is an intrinsic characteristic of cubic phases, to the DOPE membrane. This curvature induction has important implications to the mechanism of virus-cell fusion. This study establishes a simple NMR diagnostic probe of lipid cubic phases, which is expected to be useful for studying many protein-induced membrane remodeling phenomena in biology

  16. Protein analysis by 31p NMR spectroscopy in ionic liquid: quantitative determination of enzymatically created cross-links.

    PubMed

    Monogioudi, Evanthia; Permi, Perttu; Filpponen, Ilari; Lienemann, Michael; Li, Bin; Argyropoulos, Dimitris; Buchert, Johanna; Mattinen, Maija-Liisa

    2011-02-23

    Cross-linking of β-casein by Trichoderma reesei tyrosinase (TrTyr) and Streptoverticillium mobaraense transglutaminase (Tgase) was analyzed by (31)P nuclear magnetic resonance (NMR) spectroscopy in ionic liquid (IL). According to (31)P NMR, 91% of the tyrosine side chains were cross-linked by TrTyr at high dosages. When Tgase was used, no changes were observed because a different cross-linking mechanism was operational. However, this verified the success of the phosphitylation of phenolics within the protein matrix in the IL. Atomic force microscopy (AFM) in solid state showed that disk-shaped nanoparticles were formed in the reactions with average diameters of 80 and 20 nm for TrTyr and Tgase, respectively. These data further advance the current understanding of the action of tyrosinases on proteins on molecular and chemical bond levels. Quantitative (31)P NMR in IL was shown to be a simple and efficient method for the study of protein modification. PMID:21218836

  17. 31P-NMR analysis of congestive heart failure in the SHHF/Mcc-facp rat heart.

    PubMed

    Michael O'Donnell, J; Narayan, P; Bailey, M Q; Abduljalil, A M; Altschuld, R A; McCune, S A; Robitaille, P M

    1998-02-01

    31P-NMR was used to monitor myocardial bioenergetics in compensated and failing SHHF/MCC-fa(cp) (SHF) rat hearts. The SHHF/Mcc-fa(cp) (spontaneous hypertension and heart failure) rat is a relatively new genetic model in which all individuals spontaneously develop congestive heart failure, most during the second year of life. Failing SHF rat hearts displayed a pronounced decrease in resting PCr:ATP ratios (P<0.001), which was explained by a significant (P<0. 0001) drop in total creatine (47.2+/-3.1 nmol/mg protein) v age matched controls (106+/-3 nmol/mg protein). In end stage failure, NMR determined PCr was 2.9+/-0.1 micro mol/g wet weight under basal conditions. In contrast, 6- and 20-month-old controls and compensated SHFs had PCr values of 5.3+/-0.1, and 5.1+/-0.5 and 5. 1+/-0.2 micro mol/g wet weight. Both compensated and failing SHF hearts were metabolically compromised when the rate pressure product (RPP) was increased, as evidenced by an increase in Pi and a drop in PCr. Compensated SHF hearts, however, were able to increase rate pressure products (RRP, mmHg X beats/min) from 44.5+/-1.4 to 66.6+/-3. 4 K with dobutamine infusion, whereas hearts in end-stage failure were able to increase their RPP from baseline values of 27+/-4 K to only 37+/-7 K. The data indicate that a pronounced decline in PCr and total creatine signals the transition from compensatory hypertrophy to decompensation and failure in the SHF rat model of hypertensive cardiomyopathy. PMID:9515000

  18. A 13C{31P} REDOR NMR Investigation of the Role of Glutamic Acid Residues in Statherin-Hydroxyapatite Recognition

    PubMed Central

    Ndao, Moise; Ash, Jason T.; Breen, Nicholas F.; Goobes, Gil; Stayton, Patrick S.; Drobny, Gary P.

    2011-01-01

    The side chain carboxyl groups of acidic proteins found in the extra-cellular matrix (ECM) of mineralized tissues play a key role in promoting or inhibiting the growth of minerals such as hydroxyapatite (HAP), the principal mineral component of bone and teeth. Among the acidic proteins found in the saliva is statherin, a 43-residue tyrosine-rich peptide that is a potent lubricant in the salivary pellicle and an inhibitor of both HAP crystal nucleation and growth. Three acidic amino acids – D1, E4, and E5 – are located in the N-terminal 15 amino acid segment, with a fourth amino acid, E26, located outside the N-terminus. We have utilized 13C{31P} REDOR NMR to analyze the role played by acidic amino acids in the binding mechanism of statherin to the HAP surface by measuring the distance between the δ-carboxyl 13C spins of the three glutamic acid side chains of statherin (residues E4, E5, E26) and 31P spins of the phosphate groups at the HAP surface. 13C{31P} REDOR studies of glutamic-5-13C acid incorporated at positions E4 and E26 indicate a 13C–31P distance of more than 6.5 Å between the side chain carboxyl 13C spin of E4 and the closest 31P in the HAP surface. In contrast, the carboxyl 13C spin at E5 has a much shorter 13C–31P internuclear distance of 4.25±0.09 Å, indicating that the carboxyl group of this side chain interacts directly with the surface. 13C T1ρ and slow-spinning MAS studies indicate that the motions of the side chains of E4 and E5 are more restricted than that of E26. Together, these results provide further insight into the molecular interactions of statherin with HAP surfaces. PMID:19678690

  19. Intracellular pH of perfused single frog skin: combined 19F- and 31P-NMR analysis.

    PubMed

    Civan, M M; Lin, L E; Peterson-Yantorno, K; Taylor, J; Deutsch, C

    1984-11-01

    Intracellular pH (pHc) has been determined in frog skin by applying two different methods of pH measurement, 19F and 31P nuclear magnetic resonance (NMR) analysis, to the same tissues. Results from both NMR approaches confirm an observation by Lin, Shporer, and Civan [Am. J. Physiol. 248 (Cell Physiol. 17): 1985] that acidification of the extracellular medium reverses the sign of the pH gradient present under baseline conditions. The fluorinated probe, alpha-(difluoromethyl)-alanine methyl ester, was introduced into the epithelial cells by preincubating skins for 4.7-10.4 h at room temperature in Ringer solutions containing 1 mM ester. The free amino acid was subsequently released by intracellular esterase activity, thus providing a high enough probe concentration for NMR analysis to be practicable. From measurements of short-circuit current and transepithelial resistance under base-line and experimental conditions and the appearance of phosphocreatine (PCr) in the 31P spectrum of preloaded tissues, the fluorinated probe appears to be nontoxic to frog skin. Measurement of the chemical shift of methylphosphonate relative to PCr permitted calculation of extracellular pH. Estimation of the intracellular pH was performed both by measurement of the chemical shift of inorganic phosphate (Pi) relative to PCr and by measurement of the central peak spacing of the 19F spectrum. From four direct comparisons of the two techniques in two experiments, the difference in the estimated pH was only 0.03 +/- 0.07 pH units, supporting the concept that 31P-NMR analysis is a valid method of measuring pH in this tissue. PMID:6496729

  20. 2D 31P solid state NMR spectroscopy, electronic structure and thermochemistry of PbP7

    NASA Astrophysics Data System (ADS)

    Benndorf, Christopher; Hohmann, Andrea; Schmidt, Peer; Eckert, Hellmut; Johrendt, Dirk; Schäfer, Konrad; Pöttgen, Rainer

    2016-03-01

    Phase pure polycrystalline PbP7 was prepared from the elements via a lead flux. Crystalline pieces with edge-lengths up to 1 mm were obtained. The assignment of the previously published 31P solid state NMR spectrum to the seven distinct crystallographic sites was accomplished by radio-frequency driven dipolar recoupling (RFDR) experiments. As commonly found in other solid polyphosphides there is no obvious correlation between the 31P chemical shift and structural parameters. PbP7 decomposes incongruently under release of phosphorus forming liquid lead as remainder. The thermal decomposition starts at T>550 K with a vapor pressure almost similar to that of red phosphorus. Electronic structure calculations reveal PbP7 as a semiconductor according to the Zintl description and clearly shows the stereo-active Pb-6s2 lone pairs in the electron localization function ELF.

  1. Time course of myocardial sodium accumulation after burn trauma: a (31)P- and (23)Na-NMR study.

    PubMed

    Sikes, P J; Zhao, P; Maass, D L; Horton, J W

    2001-12-01

    In this study, (23)Na- and (31)P- nuclear magnetic resonance (NMR) spectra were examined in perfused rat hearts harvested 1, 2, 4, and 24 h after 40% total body surface area burn trauma and lactated Ringer resuscitation, 4 ml. kg(-1). %(-1) burn. (23)Na-NMR spectroscopy monitored myocardial intracellular Na+ using the paramagnetic shift reagent thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(methylenephosphonic acid). Left ventricular function, cardiac high-energy phosphates (ATP/PCr), and myocyte intracellular pH were studied by using (31)P NMR spectroscopy to examine the hypothesis that burn-mediated acidification of cardiomyocytes contributes to subsequent Na+ accumulation by this cell population. Intracellular Na+ accumulation was confirmed by sodium-binding benzofuran isophthalate loading and fluorescence spectroscopy in cardiomyocytes isolated 1, 2, 4, 8, 12, 18, and 24 h postburn. This myocyte Na+ accumulation as early as 2 h postburn occurred despite no changes in cardiac ATP/PCr and intracellular pH. Left ventricular function progressively decreased after burn trauma. Cardiomyocyte Na+ accumulation paralleled cardiac contractile dysfunction, suggesting that myocardial Na+ overload contributes, in part, to the progressive postburn decrease in ventricular performance. PMID:11717236

  2. Using 31P-NMR to investigate dynamics of soil phosphorus compounds in the Rothamsted Long Term Experiments

    NASA Astrophysics Data System (ADS)

    Blackwell, Martin; Turner, Ben; Granger, Steve; Hooper, Tony; Darch, Tegan; Hawkins, Jane; Yuan, Huimin; McGrath, Steve

    2015-04-01

    The technique of 31P-NMR spectroscopy has done more to advance the knowledge of phosphorus forms (especially organic phosphorus) in environmental samples than any other method. The technique has advanced such that specific compounds can be identified where previously only broad categories such as orthophosphate monoesters and diesters were distinguishable. The Soil Archive and Long Term Experiments at Rothamsted Research, UK, potentially provides an unequalled opportunity to use this technique to observe changes in soil phosphorus compounds with time and under different treatments, thereby enhancing our understanding of phosphorus cycling and use by plants. Some of the earliest work using this technique on soils was carried out by Hawkes et al. in 1984 and this used soils from two of the oldest Rothamsted Long Term Experiments, namely Highfield and Park Grass. Here we revisit the samples studied in this early work and reanalyse them using current methodology to demonstrate how the 31P-NMR technique has advanced. We also present results from a study on the phosphorus chemistry in soils along the Hoosfield acid strip (Rothamsted, UK), where a pH gradient from 3.7 to 7.8 occurs in a single soil with little variation in total phosphorus (mean ± standard deviation 399 ± 27 mg P kg-1). Soil pH was found to be an important factor in determining the proportion of phosphomonoesters and phosphodiesters in the soil organic phosphorus, although total organic phosphorus concentrations were a relatively consistent proportion of the total soil phosphorus (36 ± 2%) irrespective of soil pH. Key words. 31P-NMR, soil organic phosphorus, long term experiments, Hoosfield acid strip

  3. Assessment of membrane protection by /sup 31/P-NMR effects of lidocaine on calcium-paradox in myocardium

    SciTech Connect

    Sakai, Hirosumi; Yoshiyama, Minoru; Teragaki, Masakazu; Takeuchi, Kazuhide; Takeda, Takeda; Ikata, Mari; Ishikawa, Makoto; Miura, Iwao

    1989-01-01

    In studying calcium paradox, perfused rat hearts were used to investigate the myocardial protective effects of lidocaine. Intracellular contents of phosphates were measured using the /sup 31/P-NMR method. In hearts reexposed to calcium, following 3 minute calcium-free perfusion, a rapid contracture occurred, followed by rapid and complete disappearance of intracellular phosphates with no resumption of cardiac function. In hearts where lidocaine was administered from the onset of the calcium-free perfusion until 2 minutes following the onset of reexposure to calcium, both intracellular phosphates and cardiac contractility were maintained. Therefore, it can be said that cell membranes were protected by lidocaine.

  4. [sup 31]P and [sup 27]Al NMR investigations of highly acidic, aqueous solutions containing aluminum and phosphorus

    SciTech Connect

    Mortlock, R.F.; Bell, A.T.; Radke, C.J. Univ. of California, Berkeley )

    1993-01-21

    [sup 31]P and [sup 27]Al NMR spectroscopies have been used to characterize acidic, aqueous solutions of orthophosphoric acid, aluminum chloride, and tetramethylammonium (TMA) hydroxide. The final compositions of the solutions range from 0.1 to 1 mol % P, 0.0 to 20 mol % HCl, P/Al = 0.1 to 20, and P/(TMA)[sub 2]O = 2 to 20. Soluble aluminophosphate cations form reactions of hexaaqua Al monomeric cations, [Al(H[sub 2]O)[sub 6

  5. sup 13 C and sup 31 P NMR studies of myocardial metabolism

    SciTech Connect

    Laughlin, M.R.

    1988-01-01

    The fluxes through two enzyme systems have been measured in perfused or in in vivo heart using NMR: phosphocreatine kinase, and glycogen synthase and phosphorylase. The rates of synthesis and degradation of glycogen were monitored in vivo in fed, fasted, and diabetic rat heart during infusions of {sup 13}C-1-glucose and insulin using proton-decoupled {sup 13}C-NMR at 1.9 and 4.7 tesla. The enzyme activities of glycogen synthase and glycogen phosphorylase were also measured in this tissue which had been freeze clamped at the end of the experiment, for comparison with the synthetic rates. For normal fed, fasted, and diabetic animals, synthesis rates were 0.28, 0.16, and 0.15 {mu}mol/min.gww respectively. Glycogen synthase i activity was 0.23, 0.14, and 0.14 {mu}mol/min.gww in these hearts at the end of the experiment, when measured at appropriate substrate and activator concentrations, and follow activation time courses that are consistent with being the main rate determinant for net synthesis in all cases. Turnover of glycogen was studied by observing the preformed {sup 13}C-1-glycogen signal during infusion of {sup 12}C-glucose and insulin, and was found to be close to zero. Extracted phosphorylase a activity was approximately ten times that of synthase i under these circumstances. In order to fully interpret the turnover studies, glycogenolysis of preformed {sup 13}C-glycogen was observed after a bolus of glucagon. The glycogen had either been synthesized from {sup 13}C-1-glucose for a single hour, or during an hour of {sup 13}C-glucose and a subsequent hour of {sup 12}C-glucose infusion. The author observed that breakdown follows an exponential time course related to the phosphorylase a activation state and that the last synthesized glycogen breaks down at the rate of 2.5 {mu}mol/min.gww, five times faster than that synthesized an hour earlier.

  6. 2D exchange 31P NMR spectroscopy of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1995-01-01

    Two-dimensional (2D) exchange 31P nuclear magnetic resonance spectroscopy is used to study the slow overall motion of the rod-shaped viruses M13 and tobacco mosaic virus in concentrated gels. Even for short mixing times, observed diagonal spectra differ remarkably from projection spectra and one-dimensional spectra. Our model readily explains this to be a consequence of the T2e anisotropy caused by slow overall rotation of the viruses about their length axis. 2D exchange spectra recorded for 30% (w/w) tobacco mosaic virus with mixing times < 1 s do not show any off-diagonal broadening, indicating that its overall motion occurs in the sub-Hz frequency range. In contrast, the exchange spectra obtained for 30% M13 show significant off-diagonal intensity for mixing times of 0.01 s and higher. A log-gaussian distribution around 25 Hz of overall diffusion coefficients mainly spread between 1 and 10(3) Hz faithfully reproduces the 2D exchange spectra of 30% M13 recorded at various mixing times in a consistent way. A small but notable change in diagonal spectra at increasing mixing time is not well accounted for by our model and is probably caused by 31P spin diffusion. PMID:7756532

  7. Intrauterine fetal brain NMR spectroscopy: 1H and 31P studies in rats

    SciTech Connect

    Nakada, T.; Kwee, I.L.; Suzuki, N.; Houkin, K. )

    1989-11-01

    Fetal brain metabolism was investigated in utero noninvasively using multinuclear nuclear magnetic resonance spectroscopy in rats at two representative prenatal stages: early (17-18 days) and late (20-21 days) stages. Phosphorus-31 (31P) spectroscopy revealed that phosphocreatine is significantly lower in the early stage and increases to the level of early neonates by the late prenatal stage. Intracellular pH at the early stage was found to be strikingly high (7.52 +/- 0.21) and decreased to a level similar to that of neonates by the late stage (7.29 +/- 0.07). Phosphomonoester levels at both stages were similar to the values reported for early neonates. Water-suppressed proton (1H) spectroscopy demonstrated a distinctive in vivo fetal brain spectral pattern characterized by low levels of N-acetyl aspartate and high levels of taurine. High-resolution proton spectroscopy and homonuclear chemical-shift correlate spectroscopy of brain perchloric acid extracts confirmed these in vivo findings. In vitro 31P spectroscopy of acidified chloroform methanol extracts showed the characteristic membrane phospholipid profiles of fetal brain. The phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) ratio (PE/PC) did not show significant changes between the two stages at 0.40 +/- 0.11, a value similar to that of early neonates.

  8. A solid-state 31P-NMR investigation of the allosteric transition in glycogen phosphorylase b.

    PubMed Central

    Challoner, R; McDowell, C A; Stirtan, W; Withers, S G

    1993-01-01

    The catalytic role of the cofactor phosphate moiety at the active site of glycogen phosphorylase has been the subject of many investigations including solution-state high-resolution 31P-NMR studies. In this study the pyridoxal phosphate moiety in both the inactive and active forms of microcrystalline phosphorylase b has been investigated by high-resolution 31P magic-angle spinning NMR. The symmetry of the shielding tensor in model compounds at varying degrees of ionization is investigated and the results indicate a marked difference between the dianionic and monoanionic model compounds. Consequently the observed similarity in the principal tensor components describing the shielding tensor of the phosphorus nuclei present at the active site of both the R- and T-state conformations suggests that there is no change in ionization site upon activation in contrast to suggestions based upon isotropic shifts. Since previous relaxation measurements have pointed to the need to consider motional influences in such systems, several plausible models are considered. Subject to the assumption of congruency between the principal axis system describing the shielding interaction and molecular frame determined by the molecular symmetry axes, we conclude that the phosphate cofactor is dianionic in both forms. PMID:8457672

  9. /sup 31/P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells

    SciTech Connect

    Lopez, A.; Rols, M.P.; Teissie, J.

    1988-02-23

    Chinese hamster ovary (CHO) cells were reversibly permeabilized by submitting them to short, high-intensity, square wave pulses (1.8 kV/cm, 100 ..mu..s). The cells remained in a permeable state without loss of viability for several hours at 4/sup 0/C. A new anisotropic peak with respect to control cells was observed on /sup 31/P NMR spectroscopic analysis of the phospholipid components. This peak is only present when the cells are permeable, and normal anisotropy is recovered after resealing. Taking into account the fusogenicity of electropermeabilized cells, comparative studies were performed on 5% poly(ethylene glycol) treated cells. The /sup 31/P NMR spectra of the phospholipids displayed the same anisotropic peak as in the case of the electropermeabilized cells. In the two cases, this anisotropic peak was located downfield from the main peak associated to the phospholipids when organized in bilayers. The localization of this anisotropic peak is very different from the one of a hexagonal phase. The authors proposed a reorganization of the polar head group region leading to a weakening of the hydration layer to account for these observations. This was also thought to explain the electric field induced fusogenicity of these cells.

  10. FTIR and {sup 31}P-NMR spectroscopic analyses of surface species in phosphate-catalyzed lactic acid conversion

    SciTech Connect

    Gunter, G.C.; Tam, M.S.; Miller, D.J.

    1996-11-01

    The surface species present on silica/alumina-supported sodium phosphates, active catalysts for the conversion of lactic acid to acrylic acid and 2,3-pentanedione, are examined by pre- and postreaction MAS {sup 31}P-NMR and FTIR spectroscopies. Species present following lactic acid conversion are identified by transmission FTIR of phosphates supported on silicon disks (as a model catalyst system) and verified by {sup 31}P-NMR and diffuse reflectance IR spectroscopy of actual catalysts used in reaction. Monosodium phosphate (NaH{sub 2}PO{sub 4}) condenses to a mixture of sodium polyphosphate (NaPO{sub 3}){sub n} and sodium trimetaphosphate (Na{sub 3}P{sub 3}O{sub 9}), which exhibit little catalytic activity for converting lactic acid to desired products. Disodium phosphate (Na{sub 2}HPO{sub 4}) condenses to tetrasodium pyrophosphate (Na{sub 4}P{sub 2}O{sub 7}), and proton transfer from lactic acid to pyrophosphate results in the formation of sodium lactate. Trisodium phosphate (Na{sub 3}PO{sub 4}) accepts a proton from lactic acid to form sodium lactate and disodium phosphate, which condenses to pyrophosphate. The presence of pyrophosphate and sodium lactate on supported disodium and trisodium phosphates explains their similar catalytic properties; the larger quantity of sodium lactate present on trisodium phosphate leads to higher conversions at lower temperatures. 40 refs., 14 figs., 2 tabs.

  11. Local structure of spin Peierls compound TiPO4: 47/49Ti and 31P NMR study

    NASA Astrophysics Data System (ADS)

    Stern, Raivo; Heinmaa, Ivo; Leitmäe, Alexander; Joon, Enno; Tsirlin, Alexander; Kremer, Reinhard; Glaum, Robert

    TiPO4 structure is made of slightly corrugated TiO2 ribbon chains of edge-sharing TiO6 octahedra. The almost perfect 1D spin 1/2 Ti3 + chains are well separated by PO4 tetrahedra. By magnetic susceptibility and MAS-NMR measurements [1] it was shown that TiPO4 has nonmagnetic singlet ground state with remarkably high Spin-Peierls (SP) transition temperature. The high-T magnetic susceptibility of TiPO4 follows well that of a S =1/2 Heisenberg chain with very strong nearest-neighbor AF spin-exchange coupling constant of J =965K. On cooling TiPO4 shows two successive phase transitions at 111K and 74K, with incommensurate (IC) SP phase between them. We studied local structure and dynamics in TiPO4 single crystal using 47/49Ti and 31P NMR in the temperature range 40K to 300K, and determined the principal values and orientation of the magnetic shift tensors for 31P and 47,49Ti nuclei. Since 47,49Ti (S =5/2 and S =7/2, respectively) have quadrupolar moments, we also found the principal axis values and orientations of the electric field gradient (efg) tensor in SP phase and at 295K. In SP phase the structure contains 2 magnetically inequivalent P sites and only one Ti site. From the T-dependence of the relaxation rate of 31P and 47Ti nuclei we determined activation energy Ea = 550 K for spin excitations in SP phase. J. Law et al ., PRB 83, 180414(R) (2011).

  12. Analysis of 31P MAS NMR spectra and transversal relaxation of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1994-01-01

    Phosphorus magic angle spinning nuclear magnetic resonance (NMR) spectra and transversal relaxation of M13 and TMV are analyzed by use of a model, which includes both local backbone motions of the encapsulated nucleic acid molecules and overall rotational diffusion of the rod-shaped virions about their length axis. Backbone motions influence the sideband intensities by causing a fast restricted reorientation of the phosphodiesters. To evaluate their influence on the observed sideband patterns, we extend the model that we used previously to analyze nonspinning 31P NMR lineshapes (Magusin, P.C.M.M., and M. A. Hemminga. 1993a. Biophys. J. 64:1861-1868) to magic angle spinning NMR experiments. Backbone motions also influence the conformation of the phosphodiesters, causing conformational averaging of the isotropic chemical shift, which offers a possible explanation for the various linewidths of the centerband and the sidebands observed for M13 gels under various conditions. The change of the experimental lineshape of M13 as a function of temperature and hydration is interpreted in terms of fast restricted fluctuation of the dihedral angles between the POC and the OCH planes on both sides of the 31P nucleus in the nucleic acid backbone. Backbone motions also seem to be the main cause of transversal relaxation measured at spinning rates of 4 kHz or higher. At spinning rates less than 2 kHz, transversal relaxation is significantly faster. This effect is assigned to slow, overall rotation of the rod-shaped M13 phage about its length axis. Equations are derived to simulate the observed dependence of T2e on the spinning rate. PMID:8038391

  13. An efficient 1H/31P double-resonance solid-state NMR probe that utilizes a scroll coil

    PubMed Central

    Grant, Christopher V.; Sit, Siu-Ling; De Angelis, Anna A.; Khuong, Kelli S.; Wu, Chin H.; Plesniak, Leigh A.; Opella, Stanley J.

    2007-01-01

    The construction and performance of a scroll coil double-resonance probe for solid-state NMR on stationary samples is described. The advantages of the scroll coil at the high resonance frequencies of 1H and 31P include: high efficiency, minimal perturbations of tuning by a wide range of samples, minimal RF sample heating of high dielectric samples of biopolymers in aqueous solution, and excellent RF homogeneity. The incorporation of a cable tie cinch for mechanical stability of the scroll coil is described. Experimental results obtained on a Hunter Killer Peptide 1 (HKP1) interacting with phospholipid bilayers of varying lipid composition demonstrate the capabilities of this probe on lossy aqueous samples. PMID:17719813

  14. An efficient (1)H/(31)P double-resonance solid-state NMR probe that utilizes a scroll coil.

    PubMed

    Grant, Christopher V; Sit, Siu-Ling; De Angelis, Anna A; Khuong, Kelli S; Wu, Chin H; Plesniak, Leigh A; Opella, Stanley J

    2007-10-01

    The construction and performance of a scroll coil double-resonance probe for solid-state NMR on stationary samples is described. The advantages of the scroll coil at the high resonance frequencies of (1)H and (31)P include: high efficiency, minimal perturbations of tuning by a wide range of samples, minimal RF sample heating of high dielectric samples of biopolymers in aqueous solution, and excellent RF homogeneity. The incorporation of a cable tie cinch for mechanical stability of the scroll coil is described. Experimental results obtained on a Hunter Killer Peptide 1 (HKP1) interacting with phospholipid bilayers of varying lipid composition demonstrate the capabilities of this probe on lossy aqueous samples. PMID:17719813

  15. /sup 31/P NMR probes of sipunculan erythrocytes containing the O/sub 2/-carying protein hemerythrin

    SciTech Connect

    Robitaille, P.M.L.; Kurtz, D.M. Jr

    1988-06-14

    Reported are the first examinations by /sup 31/P NMR of erythrocytes containing the non-heme iron O/sub 2/ carrying protein hemerythrin (Hr). Intact coelomic erythrocytes from the sipunculids Phascolopsis gouldii and Themiste zostericola were shown by /sup 31/P NMR to contain O-phosphorylethanolamine and 2-amino-ethylphosphonate as the major soluble phosphorus metabolites. This combination of major metabolites appears to be unique to sipunculan erythrocytes. Nucleoside triphosphates and mannose 1-phosphate were present in lower concentrations. The concentration of O-phosphorylethanolamine within P. gouldii erythrocytes was established to be > 20 mM. T. zostericola erythrocytes contained relatively high levels of 2-amino-ethylphosphonate and lower levels of O-phosphorylethanolamine compared with those of P. gouldii. For P. gouldii and T. zostericola the intracellular pHs were determined to be 7.2 +/- 0.1 and 7.1 +/- 0.1, respectively, in air-equilibrated erythrocytes, and 6.5 +/- 0.1 in anaerobic P. gouldii erythrocytes. O-Phosphorylethanolamine was found to bind weakly to P. gouldii metHr. This interaction is best characterized by either negative cooperativity or nonspecific binding. O-phosphorylethanolamine strongly inhibits azide binding to the iron site of P. gouldii metHr at pH 7.2. The rate of azide binding decreases by approx. 85-fold in the presence of 0.33 M O-phosphorylethanolamine. However, neither O-phosphorylethanolamine nor 2-aminoethylphosphonate at 0.33 M was found to have any significant effect on O/sub 2/ affinity of P. gouldii deoxyHr. Alternative functions for the two metabolites are suggested.

  16. /sup 31/P NMR studies of ATP synthesis and hydrolysis kinetics in the intact myocardium

    SciTech Connect

    Kingsley-Hickman, P.B.; Sako, E.Y.; Mohanakrishnan, P.; Robitaille, P.M.L.; From, A.H.L.; Foker, J.E.; Ugurbil, K.

    1987-11-17

    The origin of the nuclear magnetic resonance (NMR)-measurable ATP in equilibrium P/sub i/ exchange and whether it can be used to determine net oxidative ATP synthesis rates in the intact myocardium were examined by detailed measurements of ATP in equilibrium P/sub i/ exchange rates in both directions as a function of the myocardial oxygen consumption rate (MVO/sub 2/) in (1) glucose-perfused, isovolumic rat hearts with normal glycolytic activity and (2) pyruvate-perfused hearts where glycolytic activity was reduced or eliminated either by depletion of their endogenous glycogen or by use of the inhibitor iodoacetate. In glucose-perfused hearts, the P/sub i/ ..-->.. ATP rate measured by the conventional two-site saturation transfer (CST) technique remained constant while MVO2 was increased approximately 2-fold. When the glycolytic activity was reduced, the P/sub i/ ..-->.. ATP rate decreased significantly, demonstrating the existence of a significant glycolytic contribution. The ATP ..-->.. P/sub i/ rates and rate:MVO ratios measured by the multiple-site saturation transfer method at two MVO/sub 2/ levels were equal to the corresponding P/sub i/..-->.. ATP rates and rate:MVO ratios obtained in the absence of a glycolytic contribution. The following conclusions are drawn from these studies: (1) unless the glycolytic contribution to the ATP in equilibrium P/sub i/ exchange is inhibited or is specifically shown not to exist, the myocardial P/sub i/ in equilibrium ATP exchange due to oxidative phosphorylation cannot be studied by NMR; (2) at moderate MVO/sub 2/ levels, the reaction catalyzed by the two glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase is near equilibrium; (3) the ATP synthesis by the mitochondrial H/sup +/-ATPase occurs unidirectionally (i.e., the reaction is far out of equilibrium); (4) the operative P:O ratio in the intact myocardium under our conditions is significantly less than the canonically accepted value

  17. (31)P Solid-State NMR study of the chemical setting process of a dual-paste injectable brushite cements.

    PubMed

    Legrand, A P; Sfihi, H; Lequeux, N; Lemaître, J

    2009-10-01

    The composition and evolution of a brushite-type calcium phosphate cement was investigated by Solid-State NMR and X-ray during the setting process. The cement is obtained by mixing beta-tricalcium phosphate [Ca(3)(PO(4))(2), beta-TCP] and monocalcium phosphate monohydrate [Ca(H(2)PO(4))(2).H(2)O, MCPM] in presence of water, with formation of dicalcium phosphate dihydrate or brushite [CaHPO(2).2H(2)O, DCPD]. Analysis of the initial beta-TCP paste has shown the presence of beta-calcium pyrophosphate [Ca(2)P(2)O(7), beta-CPy] and that of the initial MCPM a mixture of MCPM and dicalcium phosphate [CaHPO(4), DCP]. Follow-up of the chemical composition by (31)P Solid-State NMR enables to show that the chemical setting process appeared to reach an end after 20 min. The constant composition observed at the end of the process was similarly determined. PMID:19365821

  18. Hetergeneous tumour response to photodynamic therapy assessed by in vivo localised 31P NMR spectroscopy.

    PubMed Central

    Ceckler, T. L.; Gibson, S. L.; Kennedy, S. D.; Hill, R.; Bryant, R. G.

    1991-01-01

    Photodynamic therapy (PDT) is efficacious in the treatment of small malignant lesions when all cells in the tumour receive sufficient drug, oxygen and light to induce a photodynamic effect capable of complete cytotoxicity. In large tumours, only partial effectiveness is observed presumably because of insufficient light penetration into the tissue. The heterogeneity of the metabolic response in mammary tumours following PDT has been followed in vivo using localised phosphorus NMR spectroscopy. Alterations in nucleoside triphosphates (NTP), inorganic phosphate (Pi) and pH within localised regions of the tumour were monitored over 24-48 h following PDT irradiation of the tumour. Reduction of NTP and increases in Pi were observed at 4-6 h after PDT irradiation in all regions of treated tumours. The uppermost regions of the tumours (those nearest the skin surface and exposed to the greatest light fluence) displayed the greatest and most prolonged reduction of NTP and concomitant increase in Pi resulting in necrosis. The metabolite concentrations in tumour regions located towards the base of the tumour returned a near pre-treatment levels by 24-48 h after irradiation. The ability to follow heterogeneous metabolic responses in situ provides one means to assess the degree of metabolic inhibition which subsequently leads to tumour necrosis. Images Figure 4 PMID:1829953

  19. 31P NMR analysis of intracellular pH of Swiss Mouse 3T3 cells: effects of extracellular Na+ and K+ and mitogenic stimulation.

    PubMed

    Civan, M M; Williams, S R; Gadian, D G; Rozengurt, E

    1986-01-01

    Swiss mouse 3T3 cells grown on microcarrier beads were superfused with electrolyte solution during continuous NMR analysis. Conventional 31P and 19F probes of intracellular pH (pHc) were found to be impracticable. Cells were therefore superfused with 1 to 4 mM 2-deoxyglucose, producing a large intracellular, pH-sensitive signal of 2-deoxyglucose phosphate (2DGP). The intracellular incorporation of 2DGP inhibited the Embden-Meyerhof pathway. However, intracellular ATP was at least in part retained and the cellular responsivity to changes in extracellular ionic composition and to the application of growth factors proved intact. Transient replacement of external Na+ with choline or K+ reversibly acidified the intracellular fluids. Quiescent cells and mitogenically stimulated cells displayed the same dependence of shifts in pHc on external Na+ concentration (CoNa). PHc also depended on intracellular Na+ concentration (CcNa). Increasing ccNa by withdrawing external K+ (thereby inhibiting the Na,K-pump) caused reversible intracellular acidification; subsequently reducing CoNa produced a larger acid shift in pHc than with external K+ present. Comparison of separate preparations indicated that pHc was higher in stimulated than in quiescent cells. Transient administration of mitogens also reversibly alkalinized quiescent cells studied continuously. This study documents the feasibility of monitoring pHc of Swiss mouse 3T3 cells using 31P NMR analysis of 2DGP. The results support the concept of a Na/H antiport operative in these cells, both in quiescence and after mitogenic stimulation. The data document by an independent technique that cytoplasmic alkalinization is an early event in mitogenesis, and that full activity of the Embden-Meyerhof pathway is not required for the expression of this event. PMID:3543375

  20. 31P NMR spectroscopy of hypertrophied rat heart: effect of graded global ischemia.

    PubMed

    Clarke, K; Sunn, N; Willis, R J

    1989-12-01

    To investigate the cause for the greater susceptibility of hypertrophied hearts to ischemic injury, we determined the interrelations of total work output, contractile function and energy metabolism in isolated, perfused normal and hypertrophied rat hearts subjected to graded global ischemia. Cardiac hypertrophy was induced by giving rats seven daily injections of either triiodothyronine (0.2 mg/kg) or isoproterenol (5 mg/kg). All hearts were perfused at an aortic pressure of 100 mmHg in the isovolumic mode in an NMR spectrometer (7.05 Tesla). Heart rate, developed pressure, and coronary flow were monitored simultaneously with changes in pH, creatine phosphate, ATP and inorganic phosphate. During pre-ischemic perfusion, the total work output (rate-pressure product) of hyperthyroid hearts was 28% higher than that of control hearts, whereas hearts from isoproterenol-treated animals showed no difference. However, when related to unit muscle mass, work was normal in hyperthyroid hearts and 26% lower after isoproterenol. Contractile function per unit myocardium (developed pressure/g wet weight) was lower in the hypertrophied hearts. ATP content was the same in all groups. Creatine phosphate decreased 41% after triiodothyronine and 25% after isoproterenol. Inorganic phosphate levels and intracellular pH were similar in control and isoproterenol-treated rat hearts, but were higher in the hyperthyroid rat hearts. The phosphorylation potential and the free energy change of ATP hydrolysis were lowered by hypertrophy, the levels correlating with the depressed contractile function. At each ischemic flow rate, both work and contractile function per unit myocardium were the same for all hearts, but the relations between flow and phosphorylation potential were different for each type of heart. Thus, at low flow rates, hypertrophied hearts perform the same amount of work and have the same contractile function as control hearts, but with abnormal changes in energy metabolism

  1. Direct Speciation of Phosphorus in Alum-Amended Poultry Litter: Solid-State 31P NMR Investigation

    SciTech Connect

    Hunger, Stefan; Cho, Herman M.; Sims, James T.; Sparks, Donald L.

    2004-02-01

    Amending poultry litter (PL) with aluminum sulfate (alum) has proven to be effective in reducing water-soluble phosphorus (P) in the litter and in runoff from fields that have received PL applications; it has therefore been suggested as a best management practice. Although its effectiveness has been demonstrated on a macroscopic scale in the field, little is known about P speciation in either alumamended or unamended litter. This knowledge is important for the evaluation of the long-term stability and bioavailability of P, which is a necessary prerequisite for the assessment of the sustainability of intensive poultry operations. Both solid state MAS and CP-MAS {sup 31}P NMR as well as {sup 31}P({sup 27}Al) TRAPDOR were used to investigate P speciation in alumamended and unamended PL. The results indicate the presence of a complex mixture of organic and inorganic orthophosphate phases. A calcium phosphate phase, probably a surface precipitate on calcium carbonate, could be identified in both unamended and alum-amended PL, as well as physically bound HPO{sub 4}{sup 2-}. Phosphate associated with Al was found in the alum-amended PL, most probably a mixture of a poorly ordered wavellite and phosphate surface complexes on aluminum hydroxide that had been formed by the hydrolysis of alum. However, a complex mixture of organic and inorganic phosphate species could not be resolved. Phosphate associated with Al comprised on average 40{+-}14% of the total P in alum-amended PL, whereas calcium phosphate phases comprised on average 7{+-}4% in the alum-amended PL and 14{+-}5% in the unamended PL.

  2. Interactions of ciprofloxacin with DPPC and DPPG: fluorescence anisotropy, ATR-FTIR and 31P NMR spectroscopies and conformational analysis.

    PubMed

    Bensikaddour, Hayet; Snoussi, Karim; Lins, Laurence; Van Bambeke, Françoise; Tulkens, Paul M; Brasseur, Robert; Goormaghtigh, Erik; Mingeot-Leclercq, Marie-Paule

    2008-11-01

    The interactions between a drug and lipids may be critical for the pharmacological activity. We previously showed that the ability of a fluoroquinolone antibiotic, ciprofloxacin, to induce disorder and modify the orientation of the acyl chains is related to its propensity to be expelled from a monolayer upon compression [1]. Here, we compared the binding of ciprofloxacin on DPPC and DPPG liposomes (or mixtures of phospholipids [DOPC:DPPC], and [DOPC:DPPG]) using quasi-elastic light scattering and steady-state fluorescence anisotropy. We also investigated ciprofloxacin effects on the transition temperature (T(m)) of lipids and on the mobility of phosphate head groups using Attenuated Total Reflection Fourier Transform Infrared-Red Spectroscopy (ATR-FTIR) and (31)P Nuclear Magnetic Resonance (NMR) respectively. In the presence of ciprofloxacin we observed a dose-dependent increase of the size of the DPPG liposomes whereas no effect was evidenced for DPPC liposomes. The binding constants K(app) were in the order of 10(5) M(-1) and the affinity appeared dependent on the negative charge of liposomes: DPPG>DOPC:DPPG (1:1; M:M)>DPPC>DOPC:DPPC (1:1; M:M). As compared to the control samples, the chemical shift anisotropy (Deltasigma) values determined by (31)P NMR showed an increase of 5 and 9 ppm for DPPC:CIP (1:1; M:M) and DPPG:CIP (1:1; M:M) respectively. ATR-FTIR experiments showed that ciprofloxacin had no effect on the T(m) of DPPC but increased the order of the acyl chains both below and above this temperature. In contrast, with DPPG, ciprofloxacin induced a marked broadening effect on the transition with a decrease of the acyl chain order below its T(m) and an increase above this temperature. Altogether with the results from the conformational analysis, these data demonstrated that the interactions of ciprofloxacin with lipids depend markedly on the nature of their phosphate head groups and that ciprofloxacin interacts preferentially with anionic lipid compounds

  3. Singlet-triplet separations measured by [sup 31]P[l brace][sup 1]H[r brace] NMR: Applications to quadruply bonded dimolybdenum and ditungsten complexes

    SciTech Connect

    Cotton, F.A.; Eglin, J.L.; Bo Hong; James, C.A. )

    1993-05-12

    A series of quadruply bonded dimolybdenum and ditungsten compounds M[sub 2]X[sub 4](PP)[sub 2] (M = Mo, W; PP = bidentate phosphine ligands; X = Cl, Br, I) with internal rotational angles [chi] varying from 0.0 to 69.4[degrees] have been studied. Their [sup 31]P[l brace][sup 1]H[r brace] NMR spectra are characterized by their temperature-dependent shifts and line widths that broaden with increasing temperature. A nonlinear, least-squares fit of this temperature dependence of the paramagnetic shifts for their NMR signals allows the evaluation of the singlet-triplet energy separation ([minus]2J), the diamagnetic shift (H[sub dia]), and the electron-nucleus hyperfine coupling constant (A). The singlet-triplet energy separations for all the compounds investigated are found to be in the range 1200-3000 cm[sup [minus]1]. It is now clearly established that the ground state remains [sup 1]A[sub 1g] ([delta][sup 2]) even at [chi] = 45[degrees], where [sup 3]A[sub 2u] ([delta][delta]*) lies 1230 cm[sup [minus]1] above it. The [delta]-bond energy and electronic [delta]-barrier can also be experimentally estimated as 13.8[+-]0.5 kcal mol[sup [minus]1] and 10.3[+-]0.5 kcal mol[sup [minus]1], respectively. 32 refs., 3 figs., 1 tab.

  4. Effect of Ca:Mg ratio on precipitated P species identified using 31P solid state NMR

    NASA Astrophysics Data System (ADS)

    Manimel Wadu, M.

    2009-04-01

    M.C.W. Manimel Wadu1, O.O Akinremi1, S. Kroeker2 1Department of Soil Science, University of Manitoba, Winnipeg, R3T 2N2, Canada 2Department of Chemistry, University of Manitoba, Winnipeg, R3T 2N2, Canada Agronomic efficiency of added P fertilizer is reduced by the precipitation reactions with the exchangeable Ca and Mg in calcareous soils. We hypothesized that the ratio of Ca to Mg on the soil exchange complex will affect the species of P that is precipitated and its solubility in the soil. A laboratory experiment was conducted using a model calcareous soil system which was composed of resin (Amberlite IRP69) and sand coated with CaCO3 packed into a column. The resin was pre saturated with Ca and Mg in order to achieve five different saturation ratios of Ca:Mg approximately as 100:0, 70:30, 50:50, 30:70 and 0:100. Monoammonium Phosphate was applied to the soil surface to simulate one-dimensional diffusive transport. The column was then incubated for 2 weeks. Chemical analysis for water and acid soluble P, pH, NH4, Ca and Mg was performed on 2mm sections of the soil to a depth of 10 cm. This paper will present and discuss the distribution of P along the soil column. Unlike similar studies that have speculated on the precipitation of P, this study will identify and quantify the P species that is formed using 31P solid state NMR technique. Such knowledge will be helpful in understanding the effect of Ca and Mg on P availability in calcareous system and the role of each cation on P precipitation. Key words: P fertilizers, Ca, Mg, model system, solid state NMR

  5. Modulation of 2,3-diphosphoglycerate 31P-NMR resonance positions by red cell membrane shape.

    PubMed

    Fossel, E T; Solomon, A K

    1976-06-17

    Na+ transport in the red cells of the dog is dependent on cell volume, a 20% change in cell volume leading to a 25-fold increase in apparent Na+ flux; the effect is dependent upon metabolic energy. We have found that swelling and shrinking dog red cells causes a shift in the 31P-NMR peak of 2,3-diphosphoglycerate, which is present in dog red cells at 5.5 mM. Control experiments indicate that the 2,3-diphosphoglycerate resonance peak shifts may not be attributed to: interaction with hemoglobin, changes in cell pH, ionic strength, diamagnetic susceptibility or small changes in the Mg2+/2,3-diphosphoglycerate ratio. Experiments with chlorpromazine and pentanol which alter red cell membrane area by a mechanism different from osmotic swelling suggest that 2,3-diphosphoglycerate interacts with a binding site in the cell that is dependent upon the physical condition of the dog red cell membrane. PMID:1276226

  6. Phospholipid fingerprints of milk from different mammalians determined by 31P NMR: towards specific interest in human health.

    PubMed

    Garcia, Cyrielle; Lutz, Norbert W; Confort-Gouny, Sylviane; Cozzone, Patrick J; Armand, Martine; Bernard, Monique

    2012-12-01

    Our objective was to identify and quantify phospholipids in milk from different species (human HM, cow CoM, camel CaM, and mare MM) using an optimised (31)P NMR spectroscopy procedure. The phospholipid fingerprints were species-specific with a broader variety of classes found in HM and MM; HM and CaM were richer in sphingomyelin (78.3 and 117.5μg/ml) and plasmalogens (27.3 and 24μg/ml), possibly important for infant development. Total phospholipid content was higher in CaM (0.503mM) and lower in MM (0.101mM) compared to HM (0.324mM) or CoM (0.265mM). Our optimised method showed good sensitivity, high resolution, and easy sample preparation with minimal loss of target molecules. It is suitable for determining the accurate composition of a large number of bioactive phospholipids with putative health benefits, including plasmalogens, and should aid in selecting appropriate ingredient sources for infant milk substitutes or fortifiers, and for functional foods dedicated to adults. PMID:22953921

  7. 13C/31P NMR studies on the role of glucose transport/phosphorylation in human glycogen supercompensation.

    PubMed

    Price, T B; Laurent, D; Petersen, K F

    2003-05-01

    This study measured muscle glycogen during a 7-day carbohydrate loading protocol. Twenty healthy subjects (12 male, 8 female) performed 1 hr treadmill/toe-raise exercise immediately before a 3-day low carbohydrate (LoCHO) diet (20 % carbohydrate, 60 % fat, 20 % protein). On day 3 they repeated the exercise and began a 4-day high carbohydrate (HiCHO) diet (90 % carbohydrate, 2 % fat, 8 % protein). The order of administration of the diet was reversed in a subpopulation (n = 3). Interleaved natural abundance 13C/ 31P NMR spectra were obtained before and immediately after exercise, and each day during the controlled diets in order to determine concentrations of glycogen (GLY), glucose-6-phosphate (G6P), and muscle pH. Following exercise, muscle GLY and pH were reduced (p < 0.001) while muscle G6P was elevated (p

  8. ¹¹³Cd NMR experiments reveal an unusual metal cluster in the solution structure of the yeast splicing protein Bud31p.

    PubMed

    van Roon, Anne-Marie M; Yang, Ji-Chun; Mathieu, Daniel; Bermel, Wolfgang; Nagai, Kiyoshi; Neuhaus, David

    2015-04-13

    Establishing the binding topology of structural zinc ions in proteins is an essential part of their structure determination by NMR spectroscopy. Using (113)Cd NMR experiments with (113)Cd-substituted samples is a useful approach but has previously been limited mainly to very small protein domains. Here we used (113)Cd NMR spectroscopy during structure determination of Bud31p, a 157-residue yeast protein containing an unusual Zn3Cys9 cluster, demonstrating that recent hardware developments make this approach feasible for significantly larger systems. PMID:25703931

  9. 113Cd NMR Experiments Reveal an Unusual Metal Cluster in the Solution Structure of the Yeast Splicing Protein Bud31p**

    PubMed Central

    van Roon, Anne-Marie M; Yang, Ji-Chun; Mathieu, Daniel; Bermel, Wolfgang; Nagai, Kiyoshi; Neuhaus, David

    2015-01-01

    Establishing the binding topology of structural zinc ions in proteins is an essential part of their structure determination by NMR spectroscopy. Using 113Cd NMR experiments with 113Cd-substituted samples is a useful approach but has previously been limited mainly to very small protein domains. Here we used 113Cd NMR spectroscopy during structure determination of Bud31p, a 157-residue yeast protein containing an unusual Zn3Cys9 cluster, demonstrating that recent hardware developments make this approach feasible for significantly larger systems. PMID:25703931

  10. {sup 31}P NMR analysis of coal moieties bearing -OH, -NH, and -SH functions. Quarterly report, June 1, 1991--August 31, 1991

    SciTech Connect

    Verkade, J.G.

    1991-12-31

    The purpose of this research is to develop a convenient, reliable and rapid NMR method for the determination of labile-hydrogen functional groups and organic sulfur compounds which are components of coal and coal-derived materials. For this purpose, the former functional groups, including water molecules, are derivatized with reagents containing NMR-active nuclei such as {sup 31}P or {sup 119}Sn, while sulfur groups are derivatized with {sup 195}Pt NMR tagging reagents. Knowledge of the heteroatom composition of coals is necessary for the development of increasingly sophisticated coal processing technologies.

  11. sup 31 P NMR saturation-transfer study of the in situ kinetics of the mitochondrial adenine nucleotide translocase

    SciTech Connect

    Masiakos, P.T.; Williams, G.D.; Berkich, D.A.; Smith, M.B.; LaNoue, K.F. )

    1991-08-27

    The exchange of intramitochondrial ATP (ATP{sub in}) for extramitochondrial ATP (ATP{sub out}) was measured by using {sup 31}P NMR spectroscopy over a range of temperatures in isolated rat liver mitochondria oxidizing glutamate and succinate in the presence of external ATP but no added ADP (state 4). The rate of this exchange is more than an order of magnitude faster than rates reported previously that were determined by using isotopic techniques in the presence of oligomycin, the potent ATPase inhibitor. Differences are ascribed in part to the low levels of matrix ATP present in oligomycin-treated mitochondrial. Intramitochondrial ATP content regulates the rate of the ATP{sub in}/ATP{sub out} exchange. At 18C, the concentration of internal ATP that produces half-maximal transport rate is 6.6{plus minus}0.12 nmol/mg of mitochondrial protein. The relationship between substrate concentration and flux is sigmoidal and is 90% saturated at 11.3{plus minus}0.18 nmol/mg of mitochondrial protein. Since the measured rates of exchange of ATP{sub in} for ATP{sub out} are almost 10 times faster than the ATP synthase (ATP/P{sub i}) exchange rates, the translocase cannot limit net ATP/P{sub i} exchange in state 4. It may, nonetheless, limit net synthesis of ATP under other conditions when matrix ATP concentration is lower than in state 4 and when external ADP is present at higher concentrations than in these experiments.

  12. The effect of ethanol on hydroxyl and carbonyl groups in biopolyol produced by hydrothermal liquefaction of loblolly pine: (31)P-NMR and (19)F-NMR analysis.

    PubMed

    Celikbag, Yusuf; Via, Brian K; Adhikari, Sushil; Buschle-Diller, Gisela; Auad, Maria L

    2016-08-01

    The goal of this study was to investigate the role of ethanol and temperature on the hydroxyl and carbonyl groups in biopolyol produced from hydrothermal liquefaction of loblolly pine (Pinus spp.) carried out at 250, 300, 350 and 390°C for 30min. Water and water/ethanol mixture (1/1, wt/wt) were used as liquefying solvent in the HTL experiments. HTL in water and water/ethanol is donated as W-HTL and W/E-HTL, respectively. It was found that 300°C and water/ethanol solvent was the optimum liquefaction temperature and solvent, yielding up to 68.1wt.% bio-oil and 2.4wt.% solid residue. (31)P-NMR analysis showed that biopolyol produced by W-HTL was rich in phenolic OH while W/E-HTL produced more aliphatic OH rich biopolyols. Moreover, biopolyols with higher hydroxyl concentration were produced by W/E-HTL. Carbonyl groups were analyzed by (19)F-NMR, which showed that ethanol reduced the concentration of carbonyl groups. PMID:27126078

  13. Modeling Ti/Ge Distribution in LiTi2-xGex(PO4)3 NASICON Series by (31)P MAS NMR and First-Principles DFT Calculations.

    PubMed

    Diez-Gómez, Virginia; Arbi, Kamel; Sanz, Jesús

    2016-08-01

    Ti/Ge distribution in rhombohedral LiTi2-xGex(PO4)3 NASICON series has been analyzed by (31)P magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and first-principles density functional theory (DFT) calculations. Nuclear magnetic resonance is an excellent probe to follow Ti/Ge disorder, as it is sensitive to the atomic scale environment without long-range periodicity requirements. In the samples considered here, PO4 units are surrounded by four Ti/Ge octahedra, and then, five different components ascribed to P(OTi)4, P(OTi)3(OGe), P(OTi)2(OGe)2, P(OTi)(OGe)3, and P(OGe)4 environments are expected in (31)P MAS NMR spectra of R3̅c NASICON samples. However, (31)P MAS NMR spectra of analyzed series display a higher number of signals, suggesting that, although the overall symmetry remains R3̅c, partial substitution causes a local decrement in symmetry. With the aid of first-principles DFT calculations, 10 detected (31)P NMR signals have been assigned to different Ti4-nGen arrangements in the R3 subgroup symmetry. In this assignment, the influence of octahedra of the same or different R2(PO4)3 structural units has been considered. The influence of bond distances, angles and atom charges on (31)P NMR chemical shieldings has been discussed. Simulation of the LiTi2-xGex(PO4)3 series suggests that detection of 10 P environments is mainly due to the existence of two oxygen types, O1 and O2, whose charges are differently affected by Ge and Ti occupation of octahedra. From the quantitative analysis of detected components, a random Ti/Ge distribution has been deduced in next nearest neighbor (NNN) sites that surround tetrahedral PO4 units. This random distribution was supported by XRD data displaying Vegard's law. PMID:27373306

  14. Structural characterization of chemical warfare agent degradation products in decontamination solutions with proton band-selective (1)H-(31)P NMR spectroscopy.

    PubMed

    Koskela, Harri; Hakala, Ullastiina; Vanninen, Paula

    2010-06-15

    Decontamination solutions, which are usually composed of strong alkaline chemicals, are used for efficient detoxification of chemical warfare agents (CWAs). The analysis of CWA degradation products directly in decontamination solutions is challenging due to the nature of the matrix. Furthermore, occasionally an unforeseen degradation pathway can result in degradation products which could be eluded to in standard analyses. Here, we present the results of the application of proton band-selective (1)H-(31)P NMR spectroscopy, i.e., band-selective 1D (1)H-(31)P heteronuclear single quantum coherence (HSQC) and band-selective 2D (1)H-(31)P HSQC-total correlation spectroscopy (TOCSY), for ester side chain characterization of organophosphorus nerve agent degradation products in decontamination solutions. The viability of the approach is demonstrated with a test mixture of typical degradation products of nerve agents sarin, soman, and VX. The proton band-selective (1)H-(31)P NMR spectroscopy is also applied in characterization of unusual degradation products of VX in GDS 2000 solution. PMID:20507069

  15. Assessment of Preparation Methods for Organic Phosphorus Analysis in Phosphorus-Polluted Fe/Al-Rich Haihe River Sediments Using Solution 31P-NMR

    PubMed Central

    Zhang, Wenqiang; Shan, Baoqing; Zhang, Hong; Tang, Wenzhong

    2013-01-01

    Fe/Al-rich river sediments that were highly polluted with phosphorus (P) were used in tests to determine the optimum preparation techniques for measuring organic P (Po) using solution 31P nuclear magnetic resonance spectroscopy (31P-NMR). The optimum pre-treatment, extraction time, sediment to solution ratio and sodium hydroxide-ethylenediaminetetraacetic acid (NaOH-EDTA) extractant solution composition were determined. The total P and Po recovery rates were higher from freeze- and air-dried samples than from fresh samples. An extraction time of 16 h was adequate for extracting Po, and a shorter or longer extraction time led to lower recoveries of total P and Po, or led to the degradation of Po. An ideal P recovery rate and good-quality NMR spectra were obtained at a sediment:solution ratio of 1∶10, showing that this ratio is ideal for extracting Po. An extractant solution of 0.25 M NaOH and 50 mM EDTA was found to be more appropriate than either NaOH on its own, or a more concentrated NaOH-EDTA mixture for 31P-NMR analysis, as this combination minimized interference from paramagnetic ions and was appropriate for the detected range of Po concentrations. The most appropriate preparation method for Po analysis, therefore, was to extract the freeze-dried and ground sediment sample with a 0.25 M NaOH and 50 mM EDTA solution at a sediment:solution ratio of 1∶10, for 16 h, by shaking. As lyophilization of the NaOH-EDTA extracts proved to be an optimal pre-concentration method for Po analysis in the river sediment, the extract was lyophilized as soon as possible, and analyzed by 31P-NMR. PMID:24143192

  16. Phosphorus speciation in agro-industrial byproducts: sequential fractionation, solution (31)P NMR, and P K- and L(2,3)-edge XANES spectroscopy.

    PubMed

    Negassa, Wakene; Kruse, Jens; Michalik, Dirk; Appathurai, Narayana; Zuin, Lucia; Leinweber, Peter

    2010-03-15

    Little is known about P species in agro-industrial byproducts from developing countries, which may be either pollutants or valuable soil amendments. The present study speciated P in dry (COD) and wet (COW) coffee, sisal (SIS), barley malt (BEB) and sugar cane processing (FIC) byproducts, and filter cakes of linseed (LIC) and niger seed (NIC)with sequential fractionation, solution (31)P nuclear magnetic resonance (NMR) spectroscopy, and P K- and L(2,3)-edge X-ray absorption near-edge structure (XANES) spectroscopy. The sequential P fractionation recovered 59% to almost 100% of total P (P(t)), and more than 50% of P(t) was extracted by H(2)O and NaHCO(3) in five out of seven samples. Similarly, the NaOH + EDTA extraction for solution (31)P NMR recovered 48-94% of P(t). The (31)P NMR spectra revealed orthophosphate (6-81%), pyrophosphate (0-10%), and orthophosphate monoesters (6-94%). Orthophosphate predominated in COD, COW, SIS, and FIC, whereas BEB, UC, and NIC were rich in orthophosphate monoesters. The concentrations of P(i), and P(o) determined in the sequential and NaOH + EDTA extractions and (31)P NMR spectra were strongly and positively correlated (r = 0.88-1.00). Furthermore, the P K- and L(2,3)-edge XANES confirmed the H(2)SO(4)--P(i) detected in the sequential fractionation by unequivocal identification of Ca--P phases in a few samples. The results indicate that the combined use of all four analytical methods is crucial for comprehensive P speciation in environmental samples and the application of these byproducts to soil. PMID:20146464

  17. Vacuolar glyphosate-sequestration correlates with glyphosate resistance in ryegrass (Lolium spp.) from Australia, South America, and Europe: a 31P NMR investigation.

    PubMed

    Ge, Xia; d'Avignon, D André; Ackerman, Joseph J H; Collavo, Alberto; Sattin, Maurizio; Ostrander, Elizabeth L; Hall, Erin L; Sammons, R Douglas; Preston, Christopher

    2012-02-01

    Lolium spp., ryegrass, variants from Australia, Brazil, Chile, and Italy showing differing levels of glyphosate resistance were examined by (31)P NMR. Extents of glyphosate (i) resistance (LD(50)), (ii) inhibition of 5-enopyruvyl-shikimate-3-phosphate synthase (EPSPS) activity (IC(50)), and (iii) translocation were quantified for glyphosate-resistant (GR) and glyphosate-sensitive (GS) Lolium multiflorum Lam. variants from Chile and Brazil. For comparison, LD(50) and IC(50) data for Lolium rigidum Gaudin variants from Italy were also analyzed. All variants showed similar cellular uptake of glyphosate by (31)P NMR. All GR variants showed glyphosate sequestration within the cell vacuole, whereas there was minimal or no vacuole sequestration in the GS variants. The extent of vacuole sequestration correlated qualitatively with the level of resistance. Previous (31)P NMR studies of horseweed ( Conyza canadensis (L.) Cronquist) revealed that glyphosate sequestration imparted glyphosate resistance. Data presented herein suggest that glyphosate vacuolar sequestration is strongly contributing, if not the major contributing, resistance mechanism in ryegrass as well. PMID:22224711

  18. Interaction of Lipopolysaccharide and Phospholipid in Mixed Membranes: Solid-State 31P-NMR Spectroscopic and Microscopic Investigations

    PubMed Central

    Nomura, Kaoru; Inaba, Takehiko; Morigaki, Kenichi; Brandenburg, Klaus; Seydel, Ulrich; Kusumoto, Shoichi

    2008-01-01

    Lipopolysaccharide (LPS), which constitutes the outermost layer of Gram-negative bacterial cells as a typical component essential for their life, induces the first line defense system of innate immunity of higher animals. To understand the basic mode of interaction between bacterial LPS and phospholipid cell membranes, distribution patterns were studied by various physical methods of deep rough mutant LPS (ReLPS) of Escherichia coli incorporated in phospholipid bilayers as simple models of cell membranes. Solid-state 31P-NMR spectroscopic analysis suggested that a substantial part of ReLPS is incorporated into 1,2-dimyristoyl-sn-glycero-3-phosphocholine lipid bilayers when multilamellar vesicles were prepared from mixtures of these. In egg L-α-phosphatidylcholine (egg-PC)-rich membranes, ReLPS undergoes micellization. In phosphatidylethanolamine-rich membranes, however, micellization was not observed. We studied by microscopic techniques the location of ReLPS in membranes of ReLPS/egg-PC (1:10 M/M) and ReLPS/egg-PC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (1:9:1 M/M/M). The influence of ReLPS on the physicochemical properties of the membranes was studied as well. Microscopic images of both giant unilamellar vesicles and supported planar lipid bilayers showed that LPS was uniformly incorporated in the egg-PC lipid bilayers. In the egg-PC/POPG (9:1 M/M) lipid bilayers, however, ReLPS is only partially incorporated and becomes a part of the membrane in a form of aggregates (or as mixed aggregates with the lipids) on the bilayer surface. The lipid lateral diffusion coefficient measurements at various molar ratios of ReLPS/egg-PC/POPG indicated that the incorporated ReLPS reduces the diffusion coefficients of the phospholipids in the membrane. The retardation of diffusion became more significant with increasing POPG concentrations in the membrane at high ReLPS/phospholipid ratios. This work demonstrated that the phospholipid composition has critical

  19. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state (13)C NMR and solution (31)P NMR spectroscopy.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Meng, Wei; He, Zhongqi; Feng, Weiying; Zhang, Chen; Giesy, John P

    2016-02-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state (13)C NMR and solution (31)P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes. PMID:26624522

  20. Phosphatidylinositol-specific phospholipase C from Bacillus cereus combines intrinsic phosphotransferase and cyclic phosphodiesterase activities: A sup 31 P NMR study

    SciTech Connect

    Shashidhar, M.S.; Kuppe, A. ); Volwerk, J.J.; Griffith, O.H.

    1990-09-04

    The inositol phosphate products formed during the cleavage of phosphatidylinositol by phosphatidylinositol-specific phospholipase C from Bacillus cereus were analyzed by {sup 31}P NMR. {sup 31}P NMR spectroscopy can distinguish between the inositol phosphate species and phosphatidylinositol. Chemical shift values (with reference to phosphoric acid) observed are {minus}0.41, 3.62, 4.45, and 16.30 ppm for phosphatidylinositol, myo-inositol 1-monophosphate, myo-inositol 2-monophosphate, and myo-inositol 1,2-cyclic monophosphate, respectively. It is shown that under a variety of experimental conditions this phospholipase C cleaves phosphatidylinositol via an intramolecular phosphotransfer reaction producing diacylglycerol and D-myo-inositol 1,2-cyclic monophosphate. The authors also report the new and unexpected observation that the phosphatidylinositol-specific phospholipase C from B. cereus is able to hydrolyze the inositol cyclic phosphate to form D-myo-inositol 1-monophosphate. The enzyme, therefore, possesses phosphotransferase and cyclic phosphodiesterase activities. The second reaction requires thousandfold higher enzyme concentrations to be observed by {sup 31}P NMR. This reaction was shown to be regiospecific in that only the 1-phosphate was produced and stereospecific in that only D-myo-inositol 1,2-cyclic monophosphate was hydrolyzed. Inhibition with a monoclonal antibody specific for the B.cereus phospholipase C showed that the cyclic phosphodiesterase activity is intrinsic to the bacterial enzyme. They propose a two-step mechanism for the phosphatidyl-inositol-specific phospholipase C from B. cereus involving sequential phosphotransferase and cyclic phosphodiesterase activities. This mechanism bears a resemblance to the well-known two-step mechanism of pancreatic ribonuclease, RNase A.

  1. Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization.

    PubMed

    Wu, Y; Ackerman, J L; Strawich, E S; Rey, C; Kim, H-M; Glimcher, M J

    2003-05-01

    Previous 31P cross-polarization and differential cross-polarization magic angle spinning (CP/MAS and DCP/MAS) solid-state NMR spectroscopy studies of native bone and of the isolated crystals of the calcified matrix synthesized by osteoblasts in cell culture identified and characterized the major PO(-3)(4) phosphate components of the mineral phase. The isotropic and anisotropic chemical shift parameters of the minor HPO(-2)(4) component in bone mineral and in mineral deposited in osteoblast cell cultures were found to differ significantly from those of brushite, octacalcium phosphate, and other synthetic calcium phosphates. However, because of in vivo and in vitro evidence that phosphoproteins may play a significant role in the nucleation of the solid mineral phase of calcium phosphate in bone and other vertebrate calcified tissues, the focus of the current solid-state 31P NMR experiments was to detect the possible presence of and characterize the phosphoryl groups of phosphoproteins in bone at the very earliest stages of bone mineralization, as well as the possible presence of calcium-phosphoprotein complexes. The present study demonstrates that by far the major phosphate components identified by solid-state 31P NMR in the very earliest stages of mineralization are protein phosphoryl groups which are not complexed with calcium. However, very small amounts of calcium-complexed protein phosphoryl groups as well as even smaller, trace amounts of apatite crystals were also present at the earliest phases of mineralization. These data support the hypothesis that phosphoproteins complexed with calcium play a significant role in the initiation of bone calcification. PMID:12724829

  2. Effects of decreased pH on membrane structural organization of Escherichia coli grown in different fatty acid-supplemented media: a 31P NMR study.

    PubMed

    Ianzini, F; Guidoni, L; Simone, G; Viti, V; Yatvin, M B

    1990-04-01

    Total membranes from Escherichia coli cells grown in different fatty acid-supplemented media have been examined by 31P NMR at different pH values. The isolated inner and outer membranes were also studied and compared to the liposomes formed with the corresponding extracted lipids. While the liposomes show structures that are correlated with lipid composition, degree of fatty acid unsaturation, and pH, the membrane structure is mainly bilayer. The presence of two bilayer phases characterized by different chemical shift anisotropy values (delta nu csa) is detectable at neutral pH; a perturbation of the bilayer phase characterized by the smallest delta nu csa is produced by low pH. Moreover, an isotropic peak is always present in the membrane NMR spectra: its attribution to cardiolipin molecules is discussed on the basis of digestion experiments with phospholipase C. PMID:2181934

  3. Hydration behaviour of POPC/C(12)-Bet mixtures investigated by sorption gravimetry, (31)P NMR spectroscopy and X-ray diffraction.

    PubMed

    Pfeiffer, H; Weichert, H; Klose, G; Heremans, K

    2012-02-01

    The hydration behaviour of mixtures of the zwitterionic phospholipid 1-palmitoyl-2-oleolyl-sn-glycero-3-phosphocholine (POPC) and the zwitterionic surfactant N,N-dimethyl-N-dodecyl-betain (C(12)-Bet) was investigated by sorption gravimetry, solid-state (31)P NMR-spectroscopy and small angle X-ray diffraction (SAXD). Negative excess hydration (dehydration) was found for almost all hydration degrees investigated. This behaviour is explained by the formation of an inner salt between the dipoles of phospholipid and surfactant headgroups that show a reverse sequence of partial charges with respect to the hydrocarbon backbone. The formation of an inner-salt most probably reduces potential water binding sites. Moreover, NMR data suggest that the incorporation of the zwitterionic surfactant into the phospholipid membrane is correlated with reorientation of the phosphate axis towards the membrane director as well as with reduced lateral and wobbling diffusion. PMID:22285958

  4. Combined (Super 31)P and (Super 1)H NMR Experiments in the Structural Elucidation of Polynuclear Thiolate Complexes

    ERIC Educational Resources Information Center

    Cerrada, Elena; Laguna, Mariano

    2005-01-01

    A facile synthesis of two gold(I) complexes with 1,2-benzenedithiolate ligand and two different bidentate phosphines are described. A detailed sequence of NMR experiments is suggested to determine the structure of the compounds.

  5. Studies of uptake and suppresion of Mn/sup 2 +/ migration in highly vacuolated sycamore (Acer pseudoplatanus L) cells by /sup 31/P NMR

    SciTech Connect

    Roby, C.; Bligny, R.; Douce, R.; Pfeffer, P.E.

    1987-04-01

    Recent /sup 31/P NMR studies have demonstrated that Mn/sup 2 +/ appears to invade the cells of heterogeneous excised tissue of corn root tips sequentially, first entering the cytoplasmic compartment, where it complexes with nucleotides and P/sub i/. Under aerobic conditions, further migration across the tonoplast, followed by vacoule trapping was visualized through paramagnetic broadening of the vacoular P/sub i/ resonance. Cultured cells such as Acer pseudoplatanus L offer better opportunities for studying cellular activity by /sup 31/P NMR because of their homogeneity and uniformly rapid response to various metabolic disturbances. In contrast to excised root tissue, Mn/sup 2 +/ showed no measurable accumulation in the cytoplasmic compartments of these cells under aerobic conditions. However, a rapid crossing of the large tonoplast resulted in immediate vacuolar metal ion sequestration. Anoxia did not foster leakage of Mn/sup 2 +/ from the vacuole to the cytoplasm, while hypoxia completely halted all movement of Mn/sup 2 +/ across the plasmalema. This disparity in terms of cell and tissue morphology, membrane permeability and possible tissue trapping of metal ions will be discussed.

  6. Trimethylphosphine-Assisted Surface Fingerprinting of Metal Oxide Nanoparticle by (31)P Solid-State NMR: A Zinc Oxide Case Study.

    PubMed

    Peng, Yung-Kang; Ye, Lin; Qu, Jin; Zhang, Li; Fu, Yingyi; Teixeira, Ivo F; McPherson, Ian James; He, Heyong; Tsang, Shik Chi Edman

    2016-02-24

    Nano metal oxides are becoming widely used in industrial, commercial and personal products (semiconductors, optics, solar cells, catalysts, paints, cosmetics, sun-cream lotions, etc.). However, the relationship of surface features (exposed planes, defects and chemical functionalities) with physiochemical properties is not well studied primarily due to lack of a simple technique for their characterization. In this study, solid state (31)P MAS NMR is used to map surfaces on various ZnO samples with the assistance of trimethylphosphine (TMP) as a chemical probe. As similar to XRD giving structural information on a crystal, it is demonstrated that this new surface-fingerprint technique not only provides qualitative (chemical shift) but also quantitative (peak intensity) information on the concentration and distribution of cations and anions, oxygen vacancies and hydroxyl groups on various facets from a single deconvoluted (31)P NMR spectrum. On the basis of this technique, a new mechanism for photocatalytic •OH radical generation from direct surface-OH oxidation is revealed, which has important implications regarding the safety of using nano oxides in personal care products. PMID:26812527

  7. 31P NMR characterization and efficiency of new types of water-insoluble phosphate fertilizers to supply plant-available phosphorus in diverse soil types.

    PubMed

    Erro, Javier; Baigorri, Roberto; Yvin, Jean-Claude; Garcia-Mina, Jose M

    2011-03-01

    Hydroponic plant experiments demonstrated the efficiency of a type of humic acid-based water-insoluble phosphate fertilizers, named rhizosphere controlled fertilizers (RCF), to supply available phosphorus (P) to different plant species. This effect was well correlated to the root release of specific organic acids. In this context, the aims of this study are (i) to study the chemical nature of RCF using solid-state (31)P NMR and (ii) to evaluate the real efficiency of RCF matrix as a source of P for wheat plants cultivated in an alkaline and acid soil in comparison with traditional water-soluble (simple superphosphate, SSP) and water-insoluble (dicalcium phosphate, DCP) P fertilizers. The (31)P NMR study revealed the formation of multimetal (double and triple, MgZn and/or MgZnCa) phosphates associated with chelating groups of the humic acid through the formation of metal bridges. With regard to P fertilizer efficiency, the results obtained show that the RCF matrix produced higher plant yields than SSP in both types of soil, with DCP and the water-insoluble fraction from the RCF matrix (WI) exhibiting the best results in the alkaline soil. By contrast, in the acid soil, DCP showed very low efficiency, WI performed on a par with SSP, and RCF exhibited the highest efficiency, thus suggesting a protector effect of humic acid from soil fixation. PMID:21254775

  8. Coupling of Li motion and structural distortions in olivine LiMnPO4 from 7Li and 31P NMR

    NASA Astrophysics Data System (ADS)

    Rudisch, Christian; Grafe, Hans-Joachim; Geck, Jochen; Partzsch, Sven; Zimmermann, M. v.; Wizent, Nadja; Klingeler, Rüdiger; Büchner, Bernd

    2013-08-01

    We present a detailed 7Li- and 31P-NMR study on single crystalline LiMnPO4 in the paramagnetic and antiferromagnetic phase (AFM, TN˜34 K). This allows us to determine the spin directions in the field-induced spin-flop phase. In addition, the anisotropic dipolar hyperfine coupling tensor of the 7Li and 31P nuclei is also fully determined by orientation and temperature-dependent NMR experiments and compared to the calculated values from crystal structure data. Deviations of the experimental values from the theoretical ones are discussed in terms of Mn disorder which is induced by Li disorder. In fact, the disorder in the Mn sublattice is directly revealed by diffuse x-ray scattering data. The present results provide experimental evidence for the Li diffusion strongly coupling to structural distortions within the MnPO4 host, which is expected to significantly affect the Li mobility as well as the performance of batteries based on this material.

  9. The contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the 31P NMR spectra of oxygenated erythrocyte suspensions.

    PubMed

    Kirk, K; Kuchel, P W

    1988-01-01

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single 31P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular 31P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied), it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference in the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved. PMID:3275636

  10. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae

    NASA Astrophysics Data System (ADS)

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud

    2016-02-01

    31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ.

  11. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae.

    PubMed

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P; Ferrier-Pagès, Christine; Grover, Renaud

    2016-01-01

    (31)P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on (31)P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ. PMID:26902733

  12. Formations of hydroxyapatite and inositol hexakisphosphate in poultry litter during the composting period: sequential fractionation, P K-edge XANES and solution (31)P NMR investigations.

    PubMed

    Hashimoto, Yohey; Takamoto, Akira; Kikkawa, Ren; Murakami, Keiichi; Yamaguchi, Noriko

    2014-05-20

    Little is known about how the solubility and chemical speciation of phosphorus (P) in poultry litters are altered during the composting period. This study investigated the quantitative and qualitative changes in organic P (Po) and inorganic P (Pi) compositions in poultry litters during the seven-day composting period using sequential extraction in combination with P K-edge X-ray absorption near-edge structure (XANES) and solution (31)P nuclear magnetic resonance (NMR) spectroscopy. The result of sequential extraction illustrated that the significant decrease of H2O-P by 55% in poultry litters occurred concomitantly with the increase of HCl-Pi and HCl-Po during the composting period (p < 0.05). X-ray diffraction results for poultry litter samples showed three distinct peaks indicative of hydroxyapatite. Phosphorus K-edge XANES confirmed the increase of hydroxyapatite during the composting period, corresponding to the increase of HCl-Pi determined by the sequential extraction. The NaOH-EDTA extraction for solution (31)P NMR revealed that myo-inositol hexakisphosphate (IHP) constituted about 80% of phosphate monoesters and was increased from 16 to 28% in the poultry litter during the composting period. The combined applications of chemical extraction and molecular-spectroscopic techniques determined that water-soluble P in poultry litter was transformed into less soluble phases, primarily hydroxyapatite and IHP, during the composting period. PMID:24735189

  13. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae

    PubMed Central

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud

    2016-01-01

    31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ. PMID:26902733

  14. Contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the /sup 31/P NMR spectra of oxygenated erythrocyte suspensions

    SciTech Connect

    Kirk, K.; Kuchel, P.W.

    1988-01-05

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single /sup 31/P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular /sup 31/P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied) it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference is the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved.

  15. Carbon-13, sup 15 N, and sup 31 P NMR studies on 6-hydroxy-L-nicotine oxidase from Arthrobacter oxidans

    SciTech Connect

    Pust, S.; Vervoort, J.; Decker, K.; Bacher, A.; Mueller, F. )

    1989-01-24

    The interaction between the apoprotein of 6-hydroxy-L-nicotine oxidase from Arthrobacter oxidans and the prosthetic group FAD has been investigated by {sup 13}C, {sup 15}N and {sup 31}P NMR techniques. The FAD prosthetic group was selectively enriched in {sup 13}C and {sup 15}N isotopes by adding isotopically labeled riboflavin derivatives to the growth medium of riboflavin-requiring mutant cells. In the oxidized state the chemical shift of the C(7) and C(8) atoms indicates that the xylene moiety of the isoalloxazine ring is embedded in a hydrophobic environment. The binding of the competitive inhibitor, 6-hydroxy-D-nicotine, influences the resonances of the C(4a) and the N(5) atom strongly. It is suggested that these shifts are due to a strong hydrogen-bonding interaction between the N(5) atom and the inhibitor. On reduction all resonances, except those of the C(10a) and the N(1) atoms, shift upfield, indicating the increased electron density in the ring system. It can unambiguously be concluded from the chemical shift of the N(1) atom that the reduced flavin is anionic. The doublet character of the N(3) and N(5) resonances suggests that bulk water has no access to the active center. The strong downfield shift of the N(1) position indicates that this atom is embedded in a polar environment, but it does not indicate the presence of a positively charged residue. The {sup 31}P NMR spectra show that the resonances of the pyrophosphate group of the bound FAD differ slightly from those of free FAD. Besides the {sup 31}P resonances from FAD, four peaks around 0 ppm are observed that belongs to bound phosphorus residues. The residues are not located close to the isoalloxazine ring.

  16. Effect of Oxygen Concentration on Viability and Metabolism in a Fluidized-Bed Bioartificial Liver Using 31P and 13C NMR Spectroscopy

    PubMed Central

    Jeffries, Rex E.; Gamcsik, Michael P.; Keshari, Kayvan R.; Pediaditakis, Peter; Tikunov, Andrey P.; Young, Gregory B.; Lee, Haakil; Watkins, Paul B.

    2013-01-01

    Many oxygen mass-transfer modeling studies have been performed for various bioartificial liver (BAL) encapsulation types; yet, to our knowledge, there is no experimental study that directly and noninvasively measures viability and metabolism as a function of time and oxygen concentration. We report the effect of oxygen concentration on viability and metabolism in a fluidized-bed NMR-compatible BAL using in vivo 31P and 13C NMR spectroscopy, respectively, by monitoring nucleotide triphosphate (NTP) and 13C-labeled nutrient metabolites, respectively. Fluidized-bed bioreactors eliminate the potential channeling that occurs with packed-bed bioreactors and serve as an ideal experimental model for homogeneous oxygen distribution. Hepatocytes were electrostatically encapsulated in alginate (avg. diameter, 500 μm; 3.5×107 cells/mL) and perfused at 3 mL/min in a 9-cm (inner diameter) cylindrical glass NMR tube. Four oxygen treatments were tested and validated by an in-line oxygen electrode: (1) 95:5 oxygen:carbon dioxide (carbogen), (2) 75:20:5 nitrogen:oxygen:carbon dioxide, (3) 60:35:5 nitrogen:oxygen:carbon dioxide, and (4) 45:50:5 nitrogen:oxygen:carbon dioxide. With 20% oxygen, β-NTP steadily decreased until it was no longer detected at 11 h. The 35%, 50%, and 95% oxygen treatments resulted in steady β-NTP levels throughout the 28-h experimental period. For the 50% and 95% oxygen treatment, a 13C NMR time course (∼5 h) revealed 2-13C-glycine and 2-13C-glucose to be incorporated into [2-13C-glycyl]glutathione (GSH) and 2-13C-lactate, respectively, with 95% having a lower rate of lactate formation. 31P and 13C NMR spectroscopy is a noninvasive method for determining viability and metabolic rates. Modifying tissue-engineered devices to be NMR compatible is a relatively easy and inexpensive process depending on the bioreactor shape. PMID:22835003

  17. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy.

    PubMed

    Li, Wei; Joshi, Sunendra R; Hou, Guangjin; Burdige, David J; Sparks, Donald L; Jaisi, Deb P

    2015-01-01

    Nutrient contamination has been one of the lingering issues in the Chesapeake Bay because the bay restoration is complicated by temporally and seasonally variable nutrient sources and complex interaction between imported and regenerated nutrients. Differential reactivity of sedimentary phosphorus (P) pools in response to imposed biogeochemical conditions can record past sediment history and therefore a detailed sediment P speciation may provide information on P cycling particularly the stability of a P pool and the formation of one pool at the expense of another. This study examined sediment P speciation from three sites in the Chesapeake Bay: (i) a North site in the upstream bay, (ii) a middle site in the central bay dominated by seasonally hypoxic bottom water, and (iii) a South site at the bay-ocean boundary using a combination of sequential P extraction (SEDEX) and spectroscopic techniques, including (31)P NMR, P X-ray absorption near edge structure spectroscopy (XANES), and Fe extended X-ray absorption fine structure (EXAFS). Results from sequential P extraction reveal that sediment P is composed predominantly of ferric Fe-bound P and authigenic P, which was further confirmed by solid-state (31)P NMR, XANES, and EXAFS analyses. Additionally, solution (31)P NMR results show that the sediments from the middle site contain high amounts of organic P such as monoesters and diesters, compared to the other two sites, but that these compounds rapidly decrease with sediment depth indicating remineralized P could have precipitated as authigenic P. Fe EXAFS enabled to identify the changes in Fe mineral composition and P sinks in response to imposed redox condition in the middle site sediments. The presence of lepidocrocite, vermiculite, and Fe smectite in the middle site sediments indicates that some ferric Fe minerals can still be present along with pyrite and vivianite, and that ferric Fe-bound P pool can be a major P sink in anoxic sediments. These results provide

  18. In vivo /sup 31/P NMR studies of corn root tissue and its uptake of toxic metals. [Zea mays L

    SciTech Connect

    Pfeffer, P.E.; Tu, S.I.; Gerasimowicz, W.V.; Cavanaugh, J.R.

    1986-01-01

    Excised corn root tissue has been evaluated for its viability, integrity of compartmentation, intracellular pH gradients, total mobile phosphorus content and nucleotide concentrations under different levels of acidity, and mineral stresses using in vivo /sup 31/P nuclear magnetic resonance spectroscopy at 21 to 23/sup 0/C. Perfusion with Al/sup 3 +/ ion at low pH (4.0) for 20 hours caused the overall concentration of nucleotides in the cytoplasm to decrease significantly relative to the control. Respiratory activity as measured by O/sub 2/ uptake decreased by a comparable amount over this time period. The addition of glucose to the Al-containing perfusate negated the inhibitory effects on the respiratory system. Treatment of the tissue with paramagnetic manganese ion while perfusing in the presence of O/sub 2/ allowed for the observation of the sequence of events leading to the irreversible trapping of Mn/sup 2 +/ in the vacuole. Pretreatment of the roots with Mg/sup 2 +/ prevented Mn/sup 2 +/ migration to the vacuole over the time period of this experiment. Hypoxia prevented all but a limited uptake of Mn/sup 2 +/ into the cytoplasm of the root tips. No evidence of Mn/sup 2 +/ complexation of either cytoplasmic or vacuole Pi suggests that the energy derived from O/sub 2/ consuming processes is necessary for the facilitated movement of this divalent cation.

  19. Combining solid-state and solution-state 31P NMR to study in vivo phosphorus metabolism.

    PubMed Central

    Cholli, A L; Yamane, T; Jelinski, L W

    1985-01-01

    Otherwise unavailable information concerning the distribution of phosphorylated compounds in biological systems is obtained by a combined solid-state/solution-state NMR approach, illustrated here for oocytes from Rana pipiens. General methodology is developed, and further extensions are proposed. The following conclusions pertain to the specific system under examination. (i) Nucleoside phosphates can be observed by magic-angle sample spinning of the lyophilized material. (ii) The solid-state NMR technique of dipolar decoupling provides no additional resolution of the phospholipid and phosphoprotein components of the yolk. However, cellular death produces sufficient pH changes to cause the phospholipid and protein phosphate peaks to become resolvable. The concentration of nucleoside phosphates also decreases. (iii) The phospholipid and phosphoprotein components are shown by computer simulation to be present in a ratio of 40:60, respectively. (iv) The amounts of inorganic phosphate, nucleoside phosphates, and sugar phosphates are determined by solution-state NMR observation of the perchloric acid extract of the oocytes. PMID:3871524

  20. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples. PMID:23913630

  1. Roles of Arginine and Lysine Residues in the Translocation of a Cell-Penetrating Peptide from 13C, 31P and 19F Solid-State NMR

    PubMed Central

    Su, Yongchao; Doherty, Tim; Waring, Alan J.; Ruchala, Piotr; Hong, Mei

    2009-01-01

    Cell-penetrating peptides (CPPs) are small cationic peptides that cross the cell membrane while carrying macromolecular cargoes. We use solid-state NMR to investigate the structure and lipid interaction of two cationic residues, Arg10 and Lys13, in the CPP penetratin. 13C chemical shifts indicate that Arg10 adopts a rigid β-strand conformation in the liquid-crystalline state of anionic lipid membranes. This behavior contrasts with all other residues observed so far in this peptide, which adopt a dynamic β-turn conformation with coil-like chemical shifts at physiological temperature. Low-temperature 13C-31P distances between the peptide and the lipid phosphates indicate that both the Arg10 guanidinium Cζ and the Lys13 Cε lie in close proximity to the lipid 31P (4.0 - 4.2 Å), proving the existence of charge-charge interaction for both Arg10 and Lys13 in the gel-phase membrane. However, since lysine substitution in CPPs are known to reduce their translocation ability, we propose that low temperature stabilizes both lysine and arginine interactions with the phosphates, whereas at high temperature the lysine-phosphate interaction is much weaker than the arginine-phosphate interaction. This is supported by the unusually high rigidity of the Arg10 sidechain and its β-strand conformation at high temperature. The latter is proposed to be important for ion pair formation by allowing close approach of the lipid headgroups to guanidinium sidechains. 19F and 13C spin diffusion experiments indicate that penetratin is oligomerized into β-sheets in gel-phase membranes. These solid-state NMR data indicate that guanidinium-phosphate interactions exist in penetratin, and guanidinium groups play a stronger structural role than ammonium groups in the lipid-assisted translocation of CPPs across liquid-crystalline cell membranes. PMID:19364134

  2. Phosphide oxides RE2AuP2O (RE = La, Ce, Pr, Nd): synthesis, structure, chemical bonding, magnetism, and 31P and 139La solid state NMR.

    PubMed

    Bartsch, Timo; Wiegand, Thomas; Ren, Jinjun; Eckert, Hellmut; Johrendt, Dirk; Niehaus, Oliver; Eul, Matthias; Pöttgen, Rainer

    2013-02-18

    Polycrystalline samples of the phosphide oxides RE(2)AuP(2)O (RE = La, Ce, Pr, Nd) were obtained from mixtures of the rare earth elements, binary rare earth oxides, gold powder, and red phosphorus in sealed silica tubes. Small single crystals were grown in NaCl/KCl fluxes. The samples were studied by powder X-ray diffraction, and the structures were refined from single crystal diffractometer data: La(2)AuP(2)O type, space group C2/m, a = 1515.2(4), b = 424.63(8), c = 999.2(2) pm, β = 130.90(2)°, wR2 = 0.0410, 1050 F(2) values for Ce(2)AuP(2)O, and a = 1503.6(4), b = 422.77(8), c = 993.0(2) pm, β = 130.88(2)°, wR2 = 0.0401, 1037 F(2) values for Pr(2)AuP(2)O, and a = 1501.87(5), b = 420.85(5), c = 990.3(3) pm, β = 131.12(1)°, wR2 = 0.0944, 1143 F(2) values for Nd(2)AuP(2)O with 38 variables per refinement. The structures are composed of [RE(2)O](4+) polycationic chains of cis-edge-sharing ORE(4/2) tetrahedra and polyanionic strands [AuP(2)](4-), which contain gold in almost trigonal-planar phosphorus coordination by P(3-) and P(2)(4-) entities. The isolated phosphorus atoms and the P(2) pairs in La(2)AuP(2)O could clearly be distinguished by (31)P solid state NMR spectroscopy and assigned on the basis of a double quantum NMR technique. Also, the two crystallographically inequivalent La sites could be distinguished by static (139)La NMR in conjunction with theoretical electric field gradient calculations. Temperature-dependent magnetic susceptibility measurements show diamagnetic behavior for La(2)AuP(2)O. Ce(2)AuP(2)O and Pr(2)AuP(2)O are Curie-Weiss paramagnets with experimental magnetic moments of 2.35 and 3.48 μ(B) per rare earth atom, respectively. Their solid state (31)P MAS NMR spectra are strongly influenced by paramagnetic interactions. Ce(2)AuP(2)O orders antiferromagnetically at 13.1(5) K and shows a metamagnetic transition at 11.5 kOe. Pr(2)AuP(2)O orders ferromagnetically at 7.0 K. PMID:23374070

  3. Use of superfused rat skeletal muscle for metabolic studies: assessment of pH by 31P n.m.r.

    PubMed Central

    Meynial-Denis, D; Mignon, M; Foucat, L; Bonnet, Y; Bielicki, G; Renou, J P; Lacourt, P; Lacourt, A; Arnal, M

    1993-01-01

    We developed a muscle superfusion system suitable for metabolic studies of small isolated rat muscle ex vivo in real time and in a non-destructive manner by n.m.r. spectroscopy. In order to determine biochemical stability of superfused extensor digitorum longus (EDL) muscle (from fasted 45 and 100 g rats), the energy state and the pH of muscle were continuously monitored by 31P n.m.r. spectroscopy. ATP and phosphocreatine remained stable during 2 h whatever the muscle size (20 or 45 mg). Neither metabolite was a sensitive probe of possible metabolic compartmentation within muscle under our experimental conditions. By contrast, the chemical shift of Pi by its sensitivity to pH was a discriminant factor in the assessment of muscle stability. Indeed, heterogeneity of pH was observed only in the 45 mg EDL muscle resulting from a core region with loss of glycogen. Together, these observations suggest deviations of energy metabolism to supply ATP. Consequently, pH may be considered as a new real-time criterion for monitoring a metabolic heterogeneity due to changes in energy metabolism of muscle preparations ex vivo. Images Figure 1 PMID:8343121

  4. Studies of vanadium-phosphorus-oxygen selective oxidation catalysts by sup 31 P and sup 51 V NMR spin-echo and volume susceptibility measurements

    SciTech Connect

    Li, Juan.

    1991-10-01

    The purpose of this work is to characterize the vanadium-phosphorous oxide (V-P-O) catalysts for the selective oxidation of n-butane and 1-butene to maleic anhydride. The utility of solid state nuclear magnetic resonance as an analytical tool in this investigation lies in its sensitivity to the electronic environment surrounding the phosphorous and vanadium nuclei, and proximity of paramagnetic species. Spin-echo mapping NMR of {sup 31}p and {sup 51}v and volume magnetic susceptibility measurements were used as local microscopic probes of the presence of V{sup 5+}, V{sup 4+}, V{sup 3+} species in the model compounds: {beta}-VOPO{sub 4}, {beta}-VOPO{sub 4} treated with n-butane/1-butene, (VO){sub 2}P{sub 2}O{sub 7} treated with n-butane/1-butene; and industrial catalysts with P/V (phosphorus to vanadium) ratio of 0.9, 1.0 and 1.1, before and after treatment with n-butane and 1-butene. The NMR spectra provide a picture of how the oxidation states of vanadium are distributed in these catalysts. 73 refs., 32 figs., 8 tabs.

  5. Solid state 31P MAS NMR spectroscopy and conductivity measurements on NbOPO4 and H3PO4 composite materials

    NASA Astrophysics Data System (ADS)

    Risskov Sørensen, Daniel; Nielsen, Ulla Gro; Skou, Eivind M.

    2014-11-01

    A systematic study of composite powders of niobium oxide phosphate (NbOPO4) and phosphoric acid (H3PO4) has been performed in order to characterize the material's ability to perform as an electrolyte material in medium temperature fuel cells and electrolyzers. Powders of H3PO4 contents between 13.1 and 74.2 M% were produced and characterized with powder X-ray diffraction, 31P MAS NMR and impedance spectroscopy. NMR revealed that a significant degree of dehydration and vaporization of H3PO4 takes place above 200 °C, and increases with temperature. At 500 °C the NbOPO4 and H3PO4 has reacted to form niobium pyrophosphate (Nb2P4O15). Impedance spectroscopy showed an increase in conductivity with increasing acid concentration, whereas the conductivity decreased slightly with increasing temperature. The highest conductivity measured was 2.5·10-3 S/cm for a sample containing 74.2 M% of H3PO4. Lastly, it was shown that NbOPO4 has no significant conductivity of its own.

  6. A sup 31 P NMR study of mitochondrial inorganic phosphate visibility: Effects of Ca sup 2+ , Mn sup 2+ , and the pH gradient

    SciTech Connect

    Hutson, S.M.; Williams, G.D.; Berkich, D.A.; LaNoue, K.F.; Briggs, R.W. )

    1992-02-11

    The effects of external pH, temperature, and Ca{sup 2+} and Mn{sup 2+} concentrations on the compartmentation and NMR visibility of inorganic phosphate (P{sub i}) were studied in isolated rat liver mitochondria respiring on succinate and glutamate. Mitochondrial matrix P{sub i} is totally visible by NMR at 8C and at low external concentrations of P{sub i}. However, when the external P{sub i} concentration is increased above 7 mM, the pH gradient decreases, the amount of matrix P{sub i} increases, and the fraction not observed by NMR increases. Raising the temperature to 25C also decreases the pH gradient and the P{sub i} fraction observed by NMR. At physiologically relevant concentrations, Ca{sup 2+} and Mn{sup 2+} do not seem to play a major role in matrix P{sub i} NMR invisibility. For Ca{sup 2+} concentrations above 30 nmol/mg of protein, formation of insoluble complexes will cause loss of P{sub i} signal intensity. For Mn{sup 2+} concentrations above 2 nmol/mg of protein, the P{sub i} peak can be broadened sufficiently to preclude detection of a high-resolution signal. The results indicate that mitochondrial matrix P{sub i} should be mostly observable up to 25C by high-resolution NMR. While the exact nature of the NMR-invisible phosphate in perfused or in vivo liver is yet to be determined, better success at detecting and resolving both P{sub i} pools by NMR is indicated at high field, low temperature, and optimized pulsing conditions.

  7. Outcome-related metabolomic patterns from 1H/31P NMR after mild hypothermia treatments of oxygen–glucose deprivation in a neonatal brain slice model of asphyxia

    PubMed Central

    Liu, Jia; Litt, Lawrence; Segal, Mark R; Kelly, Mark J S; Yoshihara, Hikari A I; James, Thomas L

    2011-01-01

    Human clinical trials using 72 hours of mild hypothermia (32°C–34°C) after neonatal asphyxia have found substantially improved neurologic outcomes. As temperature changes differently modulate numerous metabolite fluxes and concentrations, we hypothesized that 1H/31P nuclear magnetic resonance (NMR) spectroscopy of intracellular metabolites can distinguish different insults, treatments, and recovery stages. Three groups of superfused neonatal rat brain slices underwent 45 minutes oxygen–glucose deprivation (OGD) and then were: treated for 3 hours with mild hypothermia (32°C) that began with OGD, or similarly treated with hypothermia after a 15-minute delay, or not treated (normothermic control group, 37°C). Hypothermia was followed by 3 hours of normothermic recovery. Slices collected at different predetermined times were processed, respectively, for 14.1 Tesla NMR analysis, enzyme-linked immunosorbent assay (ELISA) cell-death quantification, and superoxide production. Forty-nine NMR-observable metabolites underwent a multivariate analysis. Separated clustering in scores plots was found for treatment and outcome groups. Final ATP (adenosine triphosphate) levels, severely decreased at normothermia, were restored equally by immediate and delayed hypothermia. Cell death was decreased by immediate hypothermia, but was equally substantially greater with normothermia and delayed hypothermia. Potentially important biomarkers in the 1H spectra included PCr-1H (phosphocreatine in the 1H spectrum), ATP-1H (adenosine triphosphate in the 1H spectrum), and ADP-1H (adenosine diphosphate in the 1H spectrum). The findings suggest a potential role for metabolomic monitoring during therapeutic hypothermia. PMID:20717124

  8. Outcome-related metabolomic patterns from 1H/31P NMR after mild hypothermia treatments of oxygen-glucose deprivation in a neonatal brain slice model of asphyxia.

    PubMed

    Liu, Jia; Litt, Lawrence; Segal, Mark R; Kelly, Mark J S; Yoshihara, Hikari A I; James, Thomas L

    2011-02-01

    Human clinical trials using 72 hours of mild hypothermia (32°C-34°C) after neonatal asphyxia have found substantially improved neurologic outcomes. As temperature changes differently modulate numerous metabolite fluxes and concentrations, we hypothesized that (1)H/(31)P nuclear magnetic resonance (NMR) spectroscopy of intracellular metabolites can distinguish different insults, treatments, and recovery stages. Three groups of superfused neonatal rat brain slices underwent 45 minutes oxygen-glucose deprivation (OGD) and then were: treated for 3 hours with mild hypothermia (32°C) that began with OGD, or similarly treated with hypothermia after a 15-minute delay, or not treated (normothermic control group, 37°C). Hypothermia was followed by 3 hours of normothermic recovery. Slices collected at different predetermined times were processed, respectively, for 14.1 Tesla NMR analysis, enzyme-linked immunosorbent assay (ELISA) cell-death quantification, and superoxide production. Forty-nine NMR-observable metabolites underwent a multivariate analysis. Separated clustering in scores plots was found for treatment and outcome groups. Final ATP (adenosine triphosphate) levels, severely decreased at normothermia, were restored equally by immediate and delayed hypothermia. Cell death was decreased by immediate hypothermia, but was equally substantially greater with normothermia and delayed hypothermia. Potentially important biomarkers in the (1)H spectra included PCr-(1)H (phosphocreatine in the (1)H spectrum), ATP-(1)H (adenosine triphosphate in the (1)H spectrum), and ADP-(1)H (adenosine diphosphate in the (1)H spectrum). The findings suggest a potential role for metabolomic monitoring during therapeutic hypothermia. PMID:20717124

  9. 31P MAS-NMR study of flux-grown rare-earth element orthophosphate (monazite/xenotime) solid solutions: Evidence of random cation distribution from paramagnetically shifted NMR resonances

    SciTech Connect

    Palke, A. C.; Stebbins, J. F.; Boatner, Lynn A

    2013-01-01

    We present 31P magic angle spinning nuclear magnetic resonance (MAS-NMR) spectra of flux-grown solid solutions of La1-xCexPO4 ( x between 0.027 and 0.32) having the monoclinic monazite structure, and of Y1-xMxPO4 (M = Vn+, Ce3+, Nd3+, x between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted NMR resonances are observed in all samples due to the presence of paramagnetic Vn+, Ce3+, and Nd3+ in the diamagnetic LaPO4 or YPO4. As a first-order observation, the number and relative intensity of these peaks is related to the symmetry and structure of the diamagnetic host phase. The presence of paramagnetic shifts allows for increased resolution between NMR resonances for distinct atomic species which leads to the observation of low intensity peaks related to PO4 species having more than one paramagnetic neighbor two or four atomic bonds away. Through careful analysis of peak areas and comparison with predictions for simple models, it was determined that solid solutions in the systems examined here are characterized by complete disorder (random distribution) of diamagnetic La3+ or Y3+ with the paramagnetic substitutional species Ce3+ and Nd3+. The increased resolution given by the paramagnetic interactions also leads to the observation of splitting of specific resonances in the 31P NMR spectra that may be caused by local, small-scale distortions from the substitution of ions having dissimilar ionic radii.

  10. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling

    PubMed Central

    Barabás, Orsolya; Németh, Veronika; Bodor, Andrea; Perczel, András; Rosta, Edina; Kele, Zoltán; Zagyva, Imre; Szabadka, Zoltán; Grolmusz, Vince I.; Wilmanns, Matthias; Vértessy, Beáta G.

    2013-01-01

    Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason–Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy (31P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme–product complex structure. PMID:23982515

  11. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling.

    PubMed

    Barabás, Orsolya; Németh, Veronika; Bodor, Andrea; Perczel, András; Rosta, Edina; Kele, Zoltán; Zagyva, Imre; Szabadka, Zoltán; Grolmusz, Vince I; Wilmanns, Matthias; Vértessy, Beáta G

    2013-12-01

    Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason-Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy ((31)P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme-product complex structure. PMID:23982515

  12. /sup 31/P NMR saturation-transfer measurements in Saccharomyces cerevisiae: characterization of phosphate exchange reactions by iodoacetate and antimycin A inhibition

    SciTech Connect

    Campbell-Burk, S.L.; Jones, K.A.; Shulman, R.G.

    1987-11-17

    /sup 31/P nuclear magnetic resonance (NMR) saturation-transfer (ST) techniques have been used to measure steady-state flows through phosphate-adenosine 5'-triphosphate (ATP) exchange reactions in glucose-grown derepressed yeast. The results have revealed that the reactions catalyzed by glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase (GAPDH/PGK) and by the mitochondrial ATPase contribute to the observed ST. Contributions from these reactions were evaluated by performing ST studies under various metabolic conditions in the presence and absence of either iodoacetate, a specific inhibitor of GAPDH, or the respiratory chain inhibitor antimycin A. Intracellular phosphate (P/sub i/) longitudinal relaxation times were determined by performing inversion recovery experiments during steady-state ATP/sub lambda/ saturation and were used in combination with ST data to determine P/sub i/ consumption rates. /sup 13/C NMR and O/sub 2/ electrode measurements were also conducted to monitor changes in rates of glucose consumption and O/sub 2/ consumption, respectively, under the various metabolic conditions examined. The results suggest that GAPDH/PGK-catalyzed P/sub i/-ATP exchange is responsible for antimycin-resistant saturation transfer observed in anaerobic and aerobic glucose-fed yeast. Kinetics through GAPDH/PGK were found to depend on metabolic conditions. The coupled system appears to operate in a unidirectional manner during anaerobic glucose metabolism and bidirectionally when the cells are respiring on exogenously supplied ethanol. Additionally, mitochondrial ATPase activity appears to be responsible for the transfer observed in iodoacetate-treated aerobic cells supplied with either glucose or ethanol, with synthesis of ATP occurring unidirectionally.

  13. Skeletal muscle intracellular pH and levels of high energy phosphates during hypercapnia in intact lizards by /sup 31/P NMR

    SciTech Connect

    Johnson, D.C.; Hitzig, B.M.; Elmden, K.; McFarland, E.; Koutcher, J.; Kazemi, H.

    1986-03-05

    Lizards have been shown to reduce ventilation during CO/sub 2/ breathing. This is thought to be detrimental to the maintenance of intracellular pH (pHi) and levels of high energy phosphates. The authors subjected chameleons (n=4) to 5% CO/sub 2/ breathing and made serial measurements of tail (skeletal) muscle pHi, levels of phosphocreatine (PCr), and ATP utilizing high resolution /sup 31/P NMR. pHi was unchanged from controls (7.27 +/- 0.06 units) (mean +/- SE) during 30 minutes of hypercapnia (7.19 +/- 0.09 units) (p>.2) demonstrating effective regulation of skeletal muscle pHi; however, there were significant decreases in the PCr/ATP ratios to 65% +/- 5% (p<.05) of control. The reduced PCr/ATP ratio does not appear due to decreased O/sub 2/ availability because there were no increases in the levels of glycolytic intermediates and inorganic phosphate which would indicate tissue hypoxia. It is possible that an active process requiring ATP is required for the maintenance of pHi in the presence of hypercapnia and that the reduction of PCr/ATP ratio is a reflection of an increased utilization of ATP.

  14. Uptake of metal ions by a new chelating ion exchange resin. Part 3: Protonation constants via potentiometric titration and solid state [sup 31]P NMR spectroscopy

    SciTech Connect

    Nash, K.L.; Rickert, P.G.; Muntean, J.V.; Alexandratos, S.D.

    1994-01-01

    A new chelating ion exchange resin which incorporates methylenediphosphonate, carboxylate, and sulfonate functional groups in a polystyrene-divinylbenzene matrix has been prepared. This resin exhibits exceptionally high affinity for polyvalent cations even from moderately acidic aqueous media. Metal ion coordination occurs primarily at the diphosphonate group with the secondary binding sites contributing to charge neutralization when necessary and possible, and to increasing hydrophilicity of the resin pores. In the present investigation, the protonation equilibria of the phosphonate groups in the resin are investigated via potentiometric titration and solid-state [sup 31]P NMR spectroscopy of the resin. Intrinsic equilibrium constants for the first two diphosphonate protonation reactions are pK[sub 4] = 10.47 and pK[sub 3] = 7.24. The last two protons added to the diphosphonate group are acidic having pK[sub a] values less than 2.5. These protonation constants are consistent with those reported previously for monomer analog 1,1-diphosphonic acids. This result implies that thermodynamic data available in the literature can be used to predict the relative affinity of the resin for polyvalent cations. 17 refs., 2 figs., 3 tabs.

  15. Thin-layer chromatography combined with MALDI-TOF-MS and 31P-NMR to study possible selective bindings of phospholipids to silica gel.

    PubMed

    Teuber, Kristin; Riemer, Thomas; Schiller, Jürgen

    2010-12-01

    High-performance thin-layer chromatography (HPTLC) is a highly established separation method in the field of lipid and (particularly) phospholipid (PL) research. HPTLC is not only used to identify certain lipids in a mixture but also to isolate lipids (preparative TLC). To do this, the lipids are separated and subsequently re-eluted from the silica gel. Unfortunately, it is not yet known whether all PLs are eluted to the same extent or whether some lipids bind selectively to the silica gel. It is also not known whether differences in the fatty acyl compositions affect the affinities to the stationary phase. We have tried to clarify these questions by using a readily available extract from hen egg yolk as a selected example of a lipid mixture. After separation, the complete lanes or selected spots were eluted from the silica gel and investigated by a combination of MALDI-TOF MS and (31)P NMR spectroscopy. The data obtained were compared with the composition of the total extract (without HPTLC). Although there were significant, solvent-dependent losses in the amount of each lipid, the relative composition of the mixture remained constant; there were also only very slight changes in the fatty acyl compositions of the individual PL classes. Therefore, lipid isolation by TLC may be used without any risk of major sample alterations. PMID:20694807

  16. [sup 31]P and [sup 27]Al NMR investigations of the effects of pH on aqueous solutions containing aluminum and phosphorus

    SciTech Connect

    Mortlock, R.F.; Bell, A.T.; Radke, C.J. Univ. of California, Berkeley )

    1993-01-21

    [sup 31]P and [sup 27]Al NMR spectroscopies are used to characterize the distribution of soluble aluminophosphate species in aqueous solutions of tetramethylammonium (TMA) hydroxide, phosphoric acid, and aluminum chloride. Solution compositions range from 0.1 to 1 mol % P, P/Al = 0.1-5, P/(TMA)[sub 2]O = 0.37-10. For solutions of 1 mol % P, a phase diagram is constructed for various concentrations of TMAOH and Al. The phase diagram is divided into three regions: a high-pH region (pH [ge] 6), a medium-pH range (2 [le] pH [le] 10) in which stable solid phases exist, and a low-pH region (pH [le] 2). In the low-pH region, soluble aluminophosphate complexes form between P species (H[sub 3]PO[sub 4] acid dimers, H[sub 3]PO[sub 4] molecules, and H[sub 2]PO[sub 4][sup [minus

  17. Early estrogen-induced metabolic changes and their inhibition by actinomycin D and cycloheximide in human breast cancer cells: sup 31 P and sup 13 C NMR studies

    SciTech Connect

    Neeman, M.; Degani, H. )

    1989-07-01

    Metabolic changes following estrogen stimulation and the inhibition of these changes in the presence of actinomycin D and cycloheximide were monitored continuously in perfused human breast cancer T47D clone 11 cells with {sup 31}P and {sup 13}C NMR techniques. The experiments were performed by estrogen rescue of tamoxifen-treated cells. Immediately after perfusion with estrogen-containing medium, a continuous enhancement in the rates of glucose consumption, lactate production by glycolysis, and glutamate synthesis by the Krebs cycle occurred with a persistent 2-fold increase at 4 hr. Pretreatment with either actinomycin D or cycloheximide, at concentrations known to inhibit mRNA and protein synthesis, respectively, and simultaneous treatment with estrogen and each inhibitor prevented the estrogen-induced changes in glucose metabolism. This suggested that the observed estrogen stimulation required synthesis of mRNA and protein. These inhibitors also modulated several metabolic activities that were not related to estrogen stimulation. The observed changes in the in vivo kinetics of glucose metabolism may provide a means for the early detection of the response of human breast cancer cells to estrogen versus tamoxifen treatment.

  18. Neutral zinc(II) O,O-di-alkyldithiopho- sphates-variable temperature 31P NMR and quantum chemical study of the ZDDP monomer-dimer equilibrium.

    PubMed

    Harrison, J J; Chan, C Y; Onopchenko, A; Pradhan, A R; Petersen, M

    2008-02-01

    A full line-shape analysis of the VT 31P NMR spectra was carried out for the monomer-dimer equilibrium of neutral ZDDP. The energy surface and the energetics of the monomer-dimer equilibrium (DeltaH degrees , DeltaG degrees , Ea, DeltaH(not equal), and DeltaG(not equal)) are reported for three variants wherein the alkyl groups in the ZDDP are 2-ethylhexyl, isopropyl, and isobutyl. We explored a reaction pathway between the monomer and dimer form by means of density functional theory (DFT). The linear combination of atomic orbitals (LCAO) code DMol3 was used together with a synchronous transient method to effectively locate transition states. Vibrational eigenmodes of all intermediates were computed to capture finite temperature effects. Methyl and ethyl were considered as alkyl groups. Two novel intermediates were located-a four-membered ring and a six-membered ring intermediate along the reaction coordinate. Comparison of the experimentally derived and computed energy surfaces was carried out. PMID:18098153

  19. Effect of sugars on headgroup mobility in freeze-dried dipalmitoylphosphatidylcholine bilayers: solid-state 31P NMR and FTIR studies.

    PubMed

    Tsvetkova, N M; Phillips, B L; Crowe, L M; Crowe, J H; Risbud, S H

    1998-12-01

    The effect of the carbohydrates trehalose, glucose, and hydroxyethyl starch (HES) on the motional properties of the phosphate headgroup of freeze-dried dipalmitoylphosphatidylcholine (DPPC) liposomes was studied by means of 31P NMR, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The results show that trehalose, which is a strong glass former (Tg = 115 degreesC), elevates the onset of the lipid headgroup rotations and preserves some rotational mobility of the phosphate headgroups after cooling from the liquid-crystalline state. Glucose (Tg = 30 degreesC), a very effective depressant of the phase transition temperature of freeze-dried DPPC, markedly elevates the initiation of the temperature of headgroup rotations. On the other hand, the monosaccharide does not preserve the headgroup disordering when cooled from the liquid-crystalline state. These effects are consistent with formation of hydrogen bonds between the OH groups of the sugar and the polar headgroups of DPPC. They show, however, that hydrogen bonding is not sufficient for preservation of the dynamic properties of freeze-dried DPPC. HES, although a very good glass former (Tg > 110 degreesC), does not depress the phase transition temperature and affects only slightly the rotational properties of freeze-dried DPPC. This lack of effect of HES is associated with the absence of direct interactions with the lipid phosphates, as evidenced by the FTIR results. These data show that vitrification of the additive is not sufficient to affect the dynamic properties of dried DPPC. PMID:9826615

  20. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    SciTech Connect

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S.

    2012-11-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup −}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup −} deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup −} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup −} deer mouse model. Analysis of NMR data of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs) were

  1. Solid state {sup 31}P MAS NMR spectroscopy and conductivity measurements on NbOPO{sub 4} and H{sub 3}PO{sub 4} composite materials

    SciTech Connect

    Risskov Sørensen, Daniel; Nielsen, Ulla Gro; Skou, Eivind M.

    2014-11-15

    A systematic study of composite powders of niobium oxide phosphate (NbOPO{sub 4}) and phosphoric acid (H{sub 3}PO{sub 4}) has been performed in order to characterize the material's ability to perform as an electrolyte material in medium temperature fuel cells and electrolyzers. Powders of H{sub 3}PO{sub 4} contents between 13.1 and 74.2 M% were produced and characterized with powder X-ray diffraction, {sup 31}P MAS NMR and impedance spectroscopy. NMR revealed that a significant degree of dehydration and vaporization of H{sub 3}PO{sub 4} takes place above 200 °C, and increases with temperature. At 500 °C the NbOPO{sub 4} and H{sub 3}PO{sub 4} has reacted to form niobium pyrophosphate (Nb{sub 2}P{sub 4}O{sub 15}). Impedance spectroscopy showed an increase in conductivity with increasing acid concentration, whereas the conductivity decreased slightly with increasing temperature. The highest conductivity measured was 2.5·10{sup −3} S/cm for a sample containing 74.2 M% of H{sub 3}PO{sub 4}. Lastly, it was shown that NbOPO{sub 4} has no significant conductivity of its own. - Graphical abstract: Conductivity of NbOPO{sub 4}/H{sub 3}PO{sub 4} composites as a function of equivalent P{sub 2}O{sub 5} content. The conductivity is insignificant for pure NbOPO{sub 4}. - Highlights: • Composites have been made from NbOPO{sub 4} and H{sub 3}PO{sub 4}. • The composites composition has been investigated with solid state NMR. • The composites have shown clear signs of acid dehydration upon heating. • The conductivity of the composites increases for increasing acid content. • NbOPO{sub 4} has no significant conductivity of its own.

  2. 31P magic angle spinning NMR study of flux-grown rare-earth element orthophosphate (monazite/xenotime) solid solutions: evidence of random cation distribution from paramagnetically shifted NMR resonances.

    PubMed

    Palke, Aaron C; Stebbins, Jonathan F; Boatner, Lynn A

    2013-11-01

    We present (31)P magic angle spinning nuclear magnetic resonance spectra of flux-grown solid solutions of La(1-x)Ce(x)PO4 (x between 0.027 and 0.32) having the monoclinic monazite structure, and of Y(1-x)M(x)PO4 (M = V(n+), Ce(3+), Nd(3+), x between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted NMR resonances are observed in all samples due to the presence of paramagnetic V(n+), Ce(3+), and Nd(3+) in the diamagnetic LaPO4 or YPO4. As a first-order observation, the number and relative intensities of these peaks are related to the symmetry and structure of the diamagnetic host phase. The presence of paramagnetic shifts allows for increased resolution between NMR resonances for distinct atomic species which leads to the observation of low intensity peaks related to PO4 species having more than one paramagnetic neighbor two or four atomic bonds away. Through careful analysis of peak areas and comparison with predictions for simple models, it was determined that solid solutions in the systems examined here are characterized by complete disorder (random distribution) of diamagnetic La(3+) or Y(3+) with the paramagnetic substitutional species Ce(3+) and Nd(3+). The increased resolution given by the paramagnetic interactions also leads to the observation of splitting of specific resonances in the (31)P NMR spectra that may be caused by local, small-scale distortions from the substitution of ions having dissimilar ionic radii. PMID:24131129

  3. Large NMR signals and polarization asymmetries.

    SciTech Connect

    Penttila, S. I.

    1998-11-25

    A large modulation in the series Q-meter can lead to nonlinear NMR signals and asymmetric polarization values. With a careful circuit analysis the nonlinearity can be estimated and corrections to polarization can be determined as a function of the strength of the modulation. We describe the recent LAMPF polarized proton target experiment, its NMR measurement and corrections to the measured polarizations.

  4. Characterization of soil phosphorus in a fire-affected forest Cambisol by chemical extractions and (31)P-NMR spectroscopy analysis.

    PubMed

    Turrion, María-Belén; Lafuente, Francisco; Aroca, María-José; López, Olga; Mulas, Rafael; Ruipérez, Cesar

    2010-07-15

    This study was conducted to investigate the long-term effects of fire on soil phosphorus (P) and to determine the efficiency of different procedures in extracting soil P forms. Different P forms were determined: labile forms (Olsen-P, Bray-P, and P extracted by anion exchange membranes: AEM-P); moderately labile inorganic and organic P, obtained by NaOH-EDTA extraction after removing the AEM-P fraction; and total organic and inorganic soil P. (31)P-NMR spectroscopy was used to characterize the structure of alkali-soluble P forms (orthophosphate, monoester, pyrophosphate, and DNA). The studied area was a Pinus pinaster forest located at Arenas de San Pedro (southern Avila, Spain). The soils were Dystric Cambisols over granites. Soil samples were collected at 0-2 cm, 2-5 cm, and 10-15 cm depths, two years after a fire in the burned area and in an adjacent unburned forest area. Fire increased the total N, organic C, total P, and organic and inorganic P content in the surface soil layer. In burned soil, the P extracted by the sequential procedure (AEM and NaOH+EDTA) was about 95% of the total P. Bray extraction revealed a fire-induced increase in the sorption surfaces. Analysis by chemical methods overestimated the organic P fraction in the EDTA-NaOH extract in comparison with the determination by ignition procedure. This overestimation was more important in the burned than unburned soil samples, probably due to humification promoted by burning, which increased P sorption by soil particles. The fire-induced changes on the structure of alkali-soluble P were an increase in orthophosphate-P and a decrease in monoester-P and DNA-P. PMID:20452650

  5. Structural investigations of silicate-phosphate glasses containing MoO3 by FTIR, Raman and 31P MAS NMR spectroscopies.

    PubMed

    Szumera, M

    2014-09-15

    Molybdenum is a transition metal (refers to the "d" block of the periodic table) whose atom has an incomplete d sub-shell. It is known that in silicate glasses molybdenum may exist under four oxidation states: Mo6+, Mo5+, Mo4+ and Mo3+, simultaneously molybdenum cations, depending on their content in the glass network, may either be a glass forming component, or act as a modifier. The contemporary literature data show studies conducted mostly on the structure of silicate, phosphate, borate and borosilicate glasses containing molybdenum ions, but not silicate-phosphate glasses. Therefore, the author has undertaken detailed studies using FTIR, Raman and 31P MAS NMR techniques in order to examine the effect of MoO3 addition into the structure of silicate-phosphate glasses from SiO2P2O5K2OCaOMgO system. On the basis of obtained results it was concluded that molybdenum ions in the analysed glasses act as a modifier, which follows from the gradual breakage of oxygen bridges, i.e. POP, SiOSi, and SiOP, and the following formation of connections such as Mo[MoO4]OSi and/or Mo[MoO4]OP. In summary, it is concluded that the increase of MoO3 content (up to 4.4 mol.%) in the structure of glasses of SiO2P2O5K2OMgOCaO system results in weakening of the structure and gradual increase of the degree of silico-oxygen and phosphor-oxygen frameworks depolymerisation. PMID:24759778

  6. 31P NMR lineshapes of beta-P (ATP) in the presence of Mg2+ and Ca2+: estimate of exchange rates.

    PubMed

    Vasavada, K V; Ray, B D; Nageswara Rao, B D

    1984-08-01

    The 31P NMR chemical shift of beta-P of adenosine triphosphate (ATP) undergoes a substantial change (approximately 2-3 ppm) upon chelation of divalent ions such as Mg2+ or Ca2+. In the presence of nonsaturating amounts of Mg2+ or Ca2+, the lineshape of this resonance depends on the characteristic association and dissociation rates of these metal-ATP complexes. A procedure for computer simulation of this lineshape is outlined. A comparison of computer-simulated lineshapes with the experimental lineshapes obtained at 121 MHz was used to determine the following dissociation rate of Mg2+ and Ca2+ from their ATP complexes at 20 degrees C and pH 8.0: Ca2+, greater than 3 X 10(5) s-1 (Hepes buffer); Mg2+, 1200 s-1 (no buffer), 1000 s-1 (Tris buffer) and 2100 s-1 (Hepes buffer). The limits of error are +/- 10% in these values. For the Mg2+ complexes, the rates were determined as a function of temperature to obtain activation energies (with a maximum deviation of 10% in the least-squares fit): 8.1 Kcal/mole (no buffer and Hepes buffer) and 6.8 kcal/mole (Tris buffer). Lineshapes of the beta-P resonance simulated as a function of Mg2+ concentration, using 2100 s-1 for the dissociation rate, are also presented. The computer simulation of lineshapes offers a reliable and straightforward method for the determination of exchange rates of diamagnetic cations from their ATP complexes, under a variety of sample conditions. PMID:6332879

  7. Influence of muscle temperature during fatiguing work with the first dorsal interosseous muscle in man: a 31P-NMR spectroscopy study.

    PubMed

    Wade, A J; Broadhead, M W; Cady, E B; Llewelyn, M E; Tong, H N; Newham, D J

    2000-02-01

    Six healthy subjects rapidly lifted and lowered a small (250 g) weight with the first dorsal interosseous muscle (FDI) of one hand while the work performed was recorded continuously until fatigue (defined as losing the ability to continue lifting). Work was recorded in units of chart recorder trace displacement from baseline (centimeters) as an isotonic transducer followed the movement of the weight. In all experiments, the temperature of the hand was first adjusted by immersion in a controlled-temperature water bath. In the warmest condition, the skin surface temperature over the FDI was 30.5(0.30) degrees C [mean (SE)]. After moderate cooling, this surface temperature was 21.5(0.16) degrees C. Cooling significantly reduced the time taken to reach fatigue and more than halved the work capacity. An intermediate degree of cooling was also used in four subjects, showing that most of the effects seen were changing incrementally. Before work, and at fatigue, intracellular metabolic conditions in the FDI were studied by phosphorus nuclear magnetic resonance (31P-NMR) spectroscopy, with occlusion of the blood flow maintained during measurements. The mean intracellular pH of the FDI was also calculated. The changes observed were all consistent with the fact that intense work requires energy which must be derived largely from intracellular stores of phosphocreatine and glycogen. Less work made less demand upon reserves, and created lower concentrations of waste products and by-products. The observations did not, however, allow us to explain why fatigue occurred at a particular point or why work capacity was reduced by cooling. PMID:10638378

  8. Interaction Study of an Amorphous Solid Dispersion of Cyclosporin A in Poly-Alpha-Cyclodextrin with Model Membranes by 1H-, 2H-, 31P-NMR and Electron Spin Resonance

    PubMed Central

    Debouzy, Jean-Claude; Bourbon, Fréderic; Lahiani-Skiba, Malika; Skiba, Mohamed

    2014-01-01

    The properties of an amorphous solid dispersion of cyclosporine A (ASD) prepared with the copolymer alpha cyclodextrin (POLYA) and cyclosporine A (CYSP) were investigated by 1H-NMR in solution and its membrane interactions were studied by 1H-NMR in small unilamellar vesicles and by 31P 2H NMR in phospholipidic dispersions of DMPC (dimyristoylphosphatidylcholine) in comparison with those of POLYA and CYSP alone. 1H-NMR chemical shift variations showed that CYSP really interacts with POLYA, with possible adduct formation, dispersion in the solid matrix of the POLYA, and also complex formation. A coarse approach to the latter mechanism was tested using the continuous variations method, indicating an apparent 1 : 1 stoichiometry. Calculations gave an apparent association constant of log Ka = 4.5. A study of the interactions with phospholipidic dispersions of DMPC showed that only limited interactions occurred at the polar head group level (31P). Conversely, by comparison with the expected chain rigidification induced by CYSP, POLYA induced an increase in the fluidity of the layer while ASD formation led to these effects almost being overcome at 298 K. At higher temperature, while the effect of CYSP seems to vanish, a resulting global increase in chain fluidity was found in the presence of ASD. PMID:24883210

  9. The solubilisation of boar sperm membranes by different detergents - a microscopic, MALDI-TOF MS, 31P NMR and PAGE study on membrane lysis, extraction efficiency, lipid and protein composition

    PubMed Central

    2009-01-01

    Background Detergents are often used to isolate proteins, lipids as well as "detergent-resistant membrane domains" (DRMs) from cells. Different detergents affect different membrane structures according to their physico-chemical properties. However, the effects of different detergents on membrane lysis of boar spermatozoa and the lipid composition of DRMs prepared from the affected sperm membranes have not been investigated so far. Results Spermatozoa were treated with the selected detergents Pluronic F-127, sodium cholate, CHAPS, Tween 20, Triton X-100 and Brij 96V. Different patterns of membrane disintegration were observed by light and electron microscopy. In accordance with microscopic data, different amounts of lipids and proteins were released from the cells by the different detergents. The biochemical methods to assay the phosphorus and cholesterol contents as well as 31P NMR to determine the phospholipids were not influenced by the presence of detergents since comparable amounts of lipids were detected in the organic extracts from whole cell suspensions after exposure to each detergent. However, matrix-assisted laser desorption and ionization time-of-flight mass spectrometry applied to identify phospholipids was essentially disturbed by the presence of detergents which exerted particular suppression effects on signal intensities. After separation of the membrane fractions released by detergents on a sucrose gradient only Triton X-100 and sodium cholate produced sharp turbid DRM bands. Only membrane solubilisation by Triton X-100 leads to an enrichment of cholesterol, sphingomyelin, phosphatidylinositol and phosphatidylethanolamine in a visible DRM band accompanied by a selective accumulation of proteins. Conclusion The boar sperm membranes are solubilised to a different extent by the used detergents. Particularly, the very unique DRMs isolated after Triton X-100 exposure are interesting candidates for further studies regarding the architecture of sperm. PMID

  10. Characteristics and assessment of biogenic phosphorus in sediments from the multi-polluted Haihe River, China, using phosphorus fractionation and phosphorus-31 nuclear magnetic resonance (31P-NMR)

    NASA Astrophysics Data System (ADS)

    Zhang, W. Q.; Zhang, H.; Tang, W. Z.; Shan, B. Q.

    2013-10-01

    We studied the phosphorus (P) pollution, as described by concentrations, distribution and transformation potential, of sediments of the water scarce and heavily polluted Fuyang River, a tributary of the Haihe River, using P fractionation and phosphorus-31 nuclear magnetic resonance (31P-NMR).The sediments of the Fuyang River accumulate significant amounts of inorganic phosphorus (Pi) and organic phosphorus (Po) from industrial and domestic wastewater and agricultural non-point pollution. In terms of their contribution to total phosphorus, the rank order of the P fractions was as follows: H2SO4-P > NaOH-Pi > Res-P > NaOH-Po > KCl-P and their average relative proportions were 69.7:47.5:15.9:2.9:1.0 (the proportion was based on the average proportion of the KCl-P). Seven P compounds were detected by the 31P-NMR analysis. Orthophosphate (Ortho-P: 45.2-92.4%) and orthophosphate monoesters (mono-P: 6.6-45.7%) were the dominant forms. Smaller amounts of pyrophosphates (pyro-P: 0.1-6.6%), deoxyribonucleic acid (DNA-P: 0.3-3.9%), phosphonates (phon-P: 0-3.3%), phospholipids (lipids-P: 0-2.7%) and polyphosphate (poly-P: 0-0.04%) were observed in the sediments. Results of P fractionation and 31P-NMR analysis showed that 35% of Pi was labile P, including KCl-P and NaOH-Pi (Fe-P and Al-P). Biogenic-P accounted for 24% of P in the sediments. Analysis of the relationships between P species and water quality indicated that the Po compounds would mineralize to form ortho-P and would be potentially bioavailable for recycling to surface water, supporting further growth of phytoplankton and leading to algal blooms.

  11. Pyridoxal phosphate binding sites are similar in human heme-dependent and yeast heme-independent cystathionine beta-synthases. Evidence from 31P NMR and pulsed EPR spectroscopy that heme and PLP cofactors are not proximal in the human enzyme.

    PubMed

    Kabil, O; Toaka, S; LoBrutto, R; Shoemaker, R; Banerjee, R

    2001-06-01

    Two classes of cystathionine beta-synthases have been identified in eukaryotes, the heme-independent enzyme found in yeast and the heme-dependent form found in mammals. Both classes of enzymes catalyze a pyridoxal phosphate (PLP)-dependent condensation of serine and homocysteine to produce cystathionine. The role of the heme in the human enzyme and its location relative to the PLP in the active site are unknown. (31)P NMR spectroscopy revealed that spin-lattice relaxation rates of the phosphorus nucleus in PLP are similar in both the paramagnetic ferric (T(1) = 6.34 +/- 0.01 s) and the diamagnetic ferrous (T(1) = 5.04 +/- 0.06 s) enzyme, suggesting that the two cofactors are not proximal to each other. This is also supported by pulsed EPR studies that do not provide any evidence for strong or weak coupling between the phosphorus nucleus and the ferric iron. However, the (31)P signal in the reduced enzyme moved from 5.4 to 2.2 ppm, and the line width decreased from 73 to 16 Hz, providing the first structural evidence for transmission to the active site of an oxidation state change in the heme pocket. These results are consistent with a regulatory role for the heme as suggested by previous biochemical studies from our laboratory. The (31)P chemical shifts of the resting forms of the yeast and human enzymes are similar, suggesting that despite the difference in their heme content, the microenvironment of the PLP is similar in the two enzymes. The addition of the substrate, serine, resulted in an upfield shift of the phosphorus resonance in both enzymes, signaling formation of reaction intermediates. The resting enzyme spectra were recovered following addition of excess homocysteine, indicating that both enzymes retained catalytic activity during the course of the NMR experiment. PMID:11278994

  12. 1H and 31P NMR and HPLC studies of mouse L1210 leukemia cell extracts: the effect of Au(I) and Cu(I) diphosphine complexes on the cell metabolism.

    PubMed

    Berners-Price, S J; Sant, M E; Christopherson, R I; Kuchel, P W

    1991-03-01

    The effect of the antitumor complex [Au(dppe)2]Cl (where dppe is Ph2P(CH2)2PPh2) on the overall metabolism of cultured mouse L1210 leukemia cells was investigated by comparing 1H and 31P NMR spectra of perchloric acid extracts of cells incubated for 1 h in the presence and absence of 2 microM [Au(dppe)2]Cl. There were marked (ca. two-fold) increases in the levels of lactate and almost all detectable amino acids suggesting a drug-induced increase in the rate of glycolysis and inhibition of protein synthesis. The levels of taurine and phosphorylcholine were significantly decreased and 31P NMR spectra revealed a depletion of nucleoside triphosphates (NTP). The effect on nucleotide metabolism was investigated further by separating purine and pyrimidine nucleotides and precursors by anion-exchange HPLC. NTP levels were depleted by ca. 70-90% and there was a ca. three- to four-fold increase in nucleoside di- and monophosphates. The effect is postulated to be the result of uncoupling of mitochondrial oxidative phosphorylation. The Cu(I) complex [Cu(Ph2PCH = CHPPh2)2]Cl produced a similar effect on the cellular metabolism but was more potent. The water-soluble complex [Cu(Ph2P(CH2)PEt2)2]Cl caused the accumulation of cellular amino acids at a concentration that did not significantly deplete ATP levels. PMID:2062226

  13. Multiple Antiferromagnetic Spin Fluctuations and Novel Evolution of Tc in Iron-Based Superconductors LaFe(As1‑xPx)(O1‑yFy) Revealed by 31P-NMR Studies

    NASA Astrophysics Data System (ADS)

    Shiota, Takayoshi; Mukuda, Hidekazu; Uekubo, Masahiro; Engetsu, Fuko; Yashima, Mitsuharu; Kitaoka, Yoshio; Lai, Kwing To; Usui, Hidetomo; Kuroki, Kazuhiko; Miyasaka, Shigeki; Tajima, Setsuko

    2016-05-01

    We report on 31P-NMR studies of LaFe(As1‑xPx)(O1‑yFy) over wide compositions for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 0.14, which provide clear evidence that antiferromagnetic spin fluctuations (AFMSFs) are one of the indispensable elements for enhancing Tc. Systematic 31P-NMR measurements revealed two types of AFMSFs in the temperature evolution, that is, one is the AFMSFs that develop rapidly down to Tc with low-energy characteristics, and the other, with relatively higher energy than the former, develops gradually upon cooling from high temperature. The low-energy AFMSFs in low y (electron doping) over a wide x (pnictogen height suppression) range are associated with the two orbitals of dxz/yz, whereas the higher-energy ones for a wide y region around low x originate from the three orbitals of dxy and dxz/yz. We remark that the nonmonotonic variation of Tc as a function of x and y in LaFe(As1‑xPx)(O1‑yFy) is attributed to these multiple AFMSFs originating from degenerated multiple 3d orbitals inherent to Fe-pnictide superconductors.

  14. 31P NMR 2D Mapping of Creatine Kinase Forward Flux Rate in Hearts with Postinfarction Left Ventricular Remodeling in Response to Cell Therapy.

    PubMed

    Gao, Ling; Cui, Weina; Zhang, Pengyuan; Jang, Albert; Zhu, Wuqiang; Zhang, Jianyi

    2016-01-01

    Utilizing a fast 31P magnetic resonance spectroscopy (MRS) 2-dimensional chemical shift imaging (2D-CSI) method, this study examined the heterogeneity of creatine kinase (CK) forward flux rate of hearts with postinfarction left ventricular (LV) remodeling. Immunosuppressed Yorkshire pigs were assigned to 4 groups: 1) A sham-operated normal group (SHAM, n = 6); 2) A 60 minutes distal left anterior descending coronary artery ligation and reperfusion (MI, n = 6); 3) Open patch group; ligation injury plus open fibrin patch over the site of injury (Patch, n = 6); and 4) Cell group, hiPSCs-cardiomyocytes, -endothelial cells, and -smooth muscle cells (2 million, each) were injected into the injured myocardium pass through a fibrin patch (Cell+Patch, n = 5). At 4 weeks, the creatine phosphate (PCr)/ATP ratio, CK forward flux rate (Flux PCr→ATP), and k constant of CK forward flux rate (kPCr→ATP) were severely decreased at border zone myocardium (BZ) adjacent to MI. Cell treatment results in significantly increase of PCr/ATP ratio and improve the value of kPCr→ATP and Flux PCr→ATP in BZ myocardium. Moreover, the BZ myocardial CK total activity and protein expression of CK mitochondria isozyme and CK myocardial isozyme were significantly reduced, but recovered in response to cell treatment. Thus, cell therapy results in improvement of BZ bioenergetic abnormality in hearts with postinfarction LV remodeling, which is accompanied by significantly improvements in BZ CK activity and CK isozyme expression. The fast 2D 31P MR CSI mapping can reliably measure the heterogeneity of bioenergetics in hearts with post infarction LV remodeling. PMID:27606901

  15. Feasibility Evaluation of Detecting Hydroxymethylphosphine Oxide In Vivo by (31)P-MRS.

    PubMed

    Doblas, Sabrina; Pathuri, Gopal; Towner, Rheal A; Gali, Hariprasad

    2010-09-01

    Application of organophosphorus compounds in biomedicine is attractive because the (31)P nucleus is very amenable to study by nuclear magnetic resonance (NMR) techniques, particularly, by in vivo (31)P magnetic resonance spectroscopy ((31)P-MRS). The water-soluble organophosphorus compounds that are non-toxic, exhibit metabolic stability, and show a unique resonance peak in (31)P NMR spectroscopy, which could be ideal to be used as probes for (31)P-MRS. Here we evaluated the in vivo feasibility of potentially using a hydroxymethylphosphine oxide as a novel probe for (31)P-MRS studies using tris (hydroxymethyl) phosphine oxide (THPO) as an example. THPO was synthesized, injected in the normal CF1 mice, and (31)P spectra were acquired before and after injection with the coil located on the regions of interest. The NMR signal from the region of interest appeared within one minute of THPO injection. The compound was stable in vivo as no metabolites of THPO were observed. No toxicity was observed after THPO injection in mice. The peak concentrations of THPO in liver and kidney were reached within 15 min and 60 min respectively. THPO was excreted exclusively in urine without undergoing any metabolism indicating that it is very stable under in vivo conditions. These initial studies in normal CF1 mice clearly demonstrate that THPO possess the essential characteristics required for a potential MRS probe. Based on the current preliminary results, we suggest that HMPs, when incorporated into targeted drugs (peptides, proteins, antibodies, etc.), may serve as novel (31)P probes for monitoring the drug distribution in vivo by MRS. PMID:23675197

  16. Electrochemical lithiation/delithiation of SnP2O7 observed by in situ XRD and ex situ(7)Li/(31)P NMR, and (119)Sn Mössbauer spectroscopy.

    PubMed

    Bezza, Ilham; Kaus, Maximilian; Riekehr, Lars; Pfaffmann, Lukas; Doyle, Stephen; Indris, Sylvio; Ehrenberg, Helmut; Solhy, Abderrahim; Saadoune, Ismael

    2016-04-21

    SnP2O7 was prepared by a sol-gel route. The structural changes of tin pyrophosphate during the electrochemical lithiation were followed by using in situ XRD measurements that reveal the existence of a crystalline phase at the beginning of the discharge process. Nevertheless, it becomes amorphous after the full discharge as a result of a conversion reaction leading to the formation of LixSny alloys. The electrochemical tests show a high capacity with high retention upon cycling. To better understand the reaction mechanism of SnP2O7 with Li, several techniques were applied, such as ex situ(119)Sn Mössbauer and ex situ(7)Li and (31)P NMR spectroscopies with which we can follow the changes in the local environment of each element during cycling. PMID:27029601

  17. Mechanochemical and solution synthesis, X-ray structure and IR and 31P solid state NMR spectroscopic studies of copper(I) thiocyanate adducts with bulky monodentate tertiary phosphine ligands.

    PubMed

    Bowmaker, Graham A; Hanna, John V; Hart, Robert D; Healy, Peter C; King, Scott P; Marchetti, Fabio; Pettinari, Claudio; Skelton, Brian W; Tabacaru, Aurel; White, Allan H

    2012-07-01

    A number of adducts of copper(I) thiocyanate with bulky tertiary phosphine ligands, and some nitrogen-base solvates, were synthesized and structurally and spectroscopically characterised. CuSCN:PCy3 (1:2), as crystallized from pyridine, is shown by a single crystal X-ray study to be a one-dimensional polymer ...(Cy3P)2CuSCN(Cy3P)2CuSCN... (1) with the four-coordinate copper atoms linked end-on by S-SCN-N bridging thiocyanate groups. A second form (2), obtained from acetonitrile, was also identified and shown by IR and 31P CPMAS NMR spectroscopy to be mononuclear, with the magnitude of the dν(Cu) parameter measured from the 31P CPMAS and the ν(CN) value from the IR clearly establishing this compound as three-coordinate [(Cy3P)2CuNCS]. Two further CuSCN/PCy3 compounds CuSCN:PCy3 (1:1) (3), and CuSCN:PCy3:py (1:1:1) (4) were also characterized spectroscopically, with the dν(Cu) parameters indicating three- and four-coordinate copper sites, respectively. Attempts to obtain a 1:2 adduct with tri-t-butylphosphine have yielded, from pyridine, the 1:1 adduct as a dimer [(Bu(t)3P)((SCN)(NCS))Cu(PBu(t)3)] (5), while similar attempts with tri-o-tolylphosphine (from acetonitrile and pyridine (= L)) resulted in solvated 1:1:1 CuSCN:P(o-tol)3:L forms as dimeric [{(o-tol)3P}LCu((SCN)(NCS))CuL{P(o-tol)3}] (6 and 8). The solvent-free 1:1 CuSCN:P(o-tol)3 adduct (7), obtained by desolvation of 6, was characterized spectroscopically and dν(Cu) measurements from the 31P CPMAS NMR data are consistent with the decrease in coordination number of the copper atom from four (for 6) (P,N(MeCN)Cu,S,N) to three (for 7) (PCuS,N) upon loss of the acetonitrile of solvation. These results are compared with those previously reported for mononuclear and binuclear PPh3 adducts which demonstrate a clear tendency for the copper centre to remain four-coordinate. The IR spectroscopic measurements on these compounds show that bands in the far-IR spectra provide a much more definitive criterion for

  18. Optimized 31P MRS in the human brain at 7 T with a dedicated RF coil setup

    PubMed Central

    van de Bank, Bart L.; Orzada, Stephan; Smits, Frits; Lagemaat, Miriam W.; Rodgers, Christopher T.; Bitz, Andreas K.

    2015-01-01

    The design and construction of a dedicated RF coil setup for human brain imaging (1H) and spectroscopy (31P) at ultra‐high magnetic field strength (7 T) is presented. The setup is optimized for signal handling at the resonance frequencies for 1H (297.2 MHz) and 31P (120.3 MHz). It consists of an eight‐channel 1H transmit–receive head coil with multi‐transmit capabilities, and an insertable, actively detunable 31P birdcage (transmit–receive and transmit only), which can be combined with a seven‐channel receive‐only 31P array. The setup enables anatomical imaging and 31P studies without removal of the coil or the patient. By separating transmit and receive channels and by optimized addition of array signals with whitened singular value decomposition we can obtain a sevenfold increase in SNR of 31P signals in the occipital lobe of the human brain compared with the birdcage alone. These signals can be further enhanced by 30 ± 9% using the nuclear Overhauser effect by B 1‐shimmed low‐power irradiation of water protons. Together, these features enable acquisition of 31P MRSI at high spatial resolutions (3.0 cm3 voxel) in the occipital lobe of the human brain in clinically acceptable scan times (~15 min). © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26492089

  19. Hydrothermal synthesis, X-ray structure refinement, 31P NMR spectra and vibrational study of NaLa(HPO4)2

    NASA Astrophysics Data System (ADS)

    Ben Hassen, C.; Boujelbene, M.; Mhiri, T.

    2013-10-01

    NaLa(HPO4)2 was obtained by hydrothermal synthesis. The structure of NaLa(HPO4)2 was determined by X-ray powder diffraction methods. The results of Rietveld refinement revealed a space group P21/c (No. 14), with lattice parameters of a = 9.7151(17) Å, b = 8.320(12) Å, c = 9.83(2) Å, beta = 114.65(17)°, V = 722 (8) Å3 and Z = 4. Final refinement led to RF = 4.86% and RB = 12.35%.The existence of bound O-H and bound P-O in the structure has been confirmed by IR and Raman spectroscopy. The existence of two crystallographically independent phosphorus atoms in the structure has been confirmed by NMR spectrum. The structure is characterized by LaO6 octahedra which are solely connected to six adjacent HPO4 tetrahedra via common O-corners. This structure contains twelve- and four-membered rings forming channels along [1 1¯ 1]. The cross sections of the channels are given by twelve-membered rings consisting of four lanthanum coordination octahedral and eight hydrogenphosphate groups as well as four-membered rings consisting of two lanthanum coordination octahedra and two hydrogenphosphate tetrahedra. Sodium ions are located within those channels of the twelve-membered rings.

  20. Effect of aging on phosphate metabolites of rat brain as revealed by the in vivo and in vitro sup 31 P NMR measurements

    SciTech Connect

    Liu, Hsiuchih; Chi, Chinwen; Liu, Tsungyun; Liu, Lianghui ); Luh, Wenming; Hsieh, Changhuain; Wu, Wenguey )

    1991-01-01

    Changes of phosphate metabolism in brains of neonate, weaning and adult rats were compared using both in vivo and in vitro nuclear magnetic resonance spectra. Ratios of phosphocreatine/nucleoside triphosphate (PCr/NTP) were the same in neonatal brain in both in vivo and in vitro studies, but not in weaning and adult brains. This discrepancy may have resulted from extended cerebral hypoxia due to slowed freezing of the brain by the increased skull thickness and brain mass in the weaning and adult rats. Variations of in vitro extraction condition for this age-related study may lead to systematic errors in the adult rats. Nevertheless, the phosphomonoester/nucleoside triphosphate (PME/NTP) ratios in extracts of brain from neonatal rats were higher than those obtained in vivo. In addition, the glycerophosphorylethanolamine plus glycerophosphorylcholine/nucleoside triphosphate (GPE+GPC/NTP) ratios, which were not measurable in vivo, showed age-dependent increase in extracts of rat brain. Some of the phosphomonoester and phosphodiester molecules in rat brain may be undetectable in in vivo NMR analysis because of their interaction with cellular components. The total in vitro GPE and GPC concentration in brain from neonatal rat was estimated to be 0.34 mmole/g wet tissue.

  1. Interplay between Fe 3d and Ce 4f magnetism and Kondo interaction in CeFeAs(1-x)P(x)O probed by 75As and 31P NMR.

    PubMed

    Sarkar, R; Baenitz, M; Jesche, A; Geibel, C; Steglich, F

    2012-04-01

    A detailed (31)P (I = 1/2) and (75)As (I = 3/2) NMR study on polycrystalline CeFeAs(1-x)P(x)O alloys is presented. The magnetism of CeFeAsO changes drastically upon P substitution on the As site. CeFePO is a heavy fermion system without long-range order whereas CeFeAsO exhibits an Fe 3d SDW type of ordering accompanied by a structural transition from tetragonal (TT) to orthorhombic (OT) structure. Furthermore, Ce 4f(1) orders antiferromagnetically (AFM) at low temperature. At the critical concentration where the Fe magnetism is diminished the Ce-Ce interaction changes to a ferromagnetic (FM) type of ordering. Three representative samples of the CeFeAs(1-x)P(x)O (x = 0.05, 0.3 and 0.9) series are systematically investigated. (1) For the x = 0.05 alloy a drastic change of the linewidth at 130 K indicates the AFM-SDW type of ordering of Fe and the structural change from the TT to the OT phase. The linewidth roughly measures the internal field in the ordered state and the transition is most likely first order. The small and nearly constant shift from (31)P and (75)As NMR suggests the presence of competing hyperfine interactions between the nuclear spins and the 4f and 3d ions of Ce and Fe. (2) For the x = 0.3 alloy, the evolution of the Fe-SDW type of order takes place at around 70 K corroborating the results of bulk measurement and μSR. Here we found evidence for phase separation of paramagnetic and magnetic SDW phases. (3) In contrast to the heavy fermion CeFePO for the x = 0.9 alloy a phase transition is found at 2 K. The field-dependent NMR shift gives evidence of FM ordering. Above the ordering the spin-lattice relaxation rate (31)(1/T(1)) shows unconventional, non-Korringa-like behaviour which indicates a complex interplay of Kondo and FM fluctuations. PMID:22407024

  2. The Effect of a C-Terminal Peptide of Surfactant Protein B (SP-B) on Oriented Lipid Bilayers, Characterized by Solid-State 2H- and 31P-NMR

    PubMed Central

    Yang, Tran-Chin; McDonald, Mark; Morrow, Michael R.; Booth, Valerie

    2009-01-01

    SP-BCTERM, a cationic, helical peptide based on the essential lung surfactant protein B (SP-B), retains a significant fraction of the function of the full-length protein. Solid-state 2H- and 31P-NMR were used to examine the effects of SP-BCTERM on mechanically oriented lipid bilayer samples. SP-BCTERM modified the multilayer structure of bilayers composed of POPC, POPG, POPC/POPG, or bovine lipid extract surfactant (BLES), even at relatively low peptide concentrations. The 31P spectra of BLES, which contains ∼1% SP-B, and POPC/POPG with 1% SP-BCTERM, look very similar, supporting a similarity in lipid interactions of SP-BCTERM and its parent protein, full-length SP-B. In the model systems, although the peptide interacted with both the oriented and unoriented fractions of the lipids, it interacted differently with the two fractions, as demonstrated by differences in lipid headgroup structure induced by the peptide. On the other hand, although SP-BCTERM induced similar disruptions in overall bilayer orientation in BLES, there was no evidence of lipid headgroup conformational changes in either the oriented or the unoriented fractions of the BLES samples. Notably, in the model lipid systems the peptide did not induce the formation of small, rapidly tumbling lipid structures, such as micelles, or of hexagonal phases, the observation of which would have provided support for functional mechanisms involving peptide-induced lipid flip-flop or stabilization of curved lipid structures, respectively. PMID:19413982

  3. 31P NMR studies of enzyme-bound substrate complexes of yeast 3-phosphoglycerate kinase: III. Two ADP binding sites and their Mg(II) affinity; effects of vanadate and arsenate on enzymic complexes with ADP and 3-P-glycerate.

    PubMed

    Ray, B D; Moore, J M; Rao, B D

    1990-09-01

    31P nuclear magnetic resonance (NMR) measurements (at 121.5 MHz and 5 degrees C) were made on complexes of 3-phosphoglycerate kinase with ADP and 3-P-glycerate. Addition of Mg(II) to E.ADP shifts the alpha-P signal downfield by 3.8 ppm such that the alpha-P signal superimposes that for beta-P(E.MgADP). Such a shift is atypical among the Mg(II)-nucleotide complexes with other ATP-utilizing enzymes. This shift allowed the determination that enzyme bound ADP is saturated with Mg(II) for [Mg(II)]/[ADP] = 3.0--similar to that reported for ATP complexes with this enzyme (B.D. Ray and B.D. Nageswara Rao, Biochemistry 27, 5574 (1988]. This parallel behavior suggests that ADP binds at two sites on the enzyme as does ATP with disparate Mg(II) affinities. 31P relaxation times in E.MnADP.vanadate.3-P-glycerate and E.CoADP.vanadate.3-P-glycerate complexes indicate that these are long-lived, tightly bound complexes. 31P chemical shift measurements on diamagnetic complexes (with Mg(II] revealed three signals in the 2-5 ppm region (attributable to 3-P-glycerate) only upon addition of all the components necessary to form the E.MgADP.vanadate.3-P-glycerate complex. Subsequent sequestration of Mg(II) from the complex with excess EDTA reversed the Mg(II) induced effects on the ADP signals but did not cause coalescence of the three signals seen in the 2-5 ppm region. Addition of excess sulfate to dissociate these complexes from the enzyme resulted in a single resonance of 3-P-glycerate. The use of arsenate in place of vanadate yielded very similar results. These results suggest that, in the presence of MgADP, vanadate or arsenate, and 3-P-glycerate, the enzyme catalyzed the formation of multiple structurally distinguishable complexes that are stable on the enzyme and labile off the enzyme. PMID:2283509

  4. Quantitative analysis of ³¹P NMR spectra of soil extracts--dealing with overlap of broad and sharp signals.

    PubMed

    Doolette, Ashlea L; Smernik, Ronald J

    2015-09-01

    Solution (31)P NMR analysis following extraction with a mixture of sodium hydroxide and ethylenediaminetetraacetic acid is the most widely used method for detailed characterization of soil organic P. However, quantitative analysis of the (31)P NMR spectra is complicated by severe spectral overlap in the monoester region. Various deconvolution procedures have been developed for the task, yet none of these are widely accepted or implemented. In this mini-review, we first describe and compare these varying approaches. We then review approaches to similar issues of spectral overlap in biomedical science applications including NMR-based metabolic profiling and analyzing (31)P magnetic resonance spectra of ex vivo and in vivo intact tissues. The greater maturity and resourcing of this biomedical research means that a wider variety of approaches has been developed. Of particular relevance are approaches to dealing with overlap of broad and sharp signals. Although the existence of this problem is still debated in the context of soil analyses, not only is it well-recognized in biomedical applications, but multiple approaches have been developed to deal with it, including T2 editing and time-domain fitting. Perhaps the most transferable concept is the incorporation of 'prior knowledge' in the fitting of spectra. This is well established in biomedical applications but barely touched in soil analyses. We argue that shortcuts to dealing with overlap in the monoester region (31)P NMR soil spectra are likely to be found in the biomedical literature, although some degree of adaptation will be necessary. PMID:25854619

  5. Cumulative “roof effect” in high-resolution in vivo 31P NMR spectra of human calf muscle and the Clebsch Gordan coefficients of ATP at 1.5 T

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2005-05-01

    NMR spectra of non-weakly coupled spin systems exhibit asymmetries in line intensities known as "roof effect" in 1D spectroscopy. Due to limited spectral resolution, this effect has not been paid much attention so far in in vivo spectroscopy. But when high-quality spectra are obtained, this effect should be taken into account to explain the quantum-mechanical fine structure of the system. Adenosine 5'-triphosphate (ATP) represents a 31P spin system with multiple line splittings which are caused by J-couplings of medium strength at 1.5 T. We analyzed the ATP roof effect in vivo, especially for the β-ATP multiplet. The intensities of its outer resonances deviate by ca. 12.5% from a symmetrical triplet. As this asymmetry reflects the transition from Paschen-Back to Zeeman effect with total spin that is largely broken up, the Clebsch-Gordan coefficients of the system can be indicated in analogy to the hyperfine structure of hydrogen. Taking the roof effect into account, the χ2 of fitting in vivo ATP resonances is reduced by ca. 9% ( p < 0.005).

  6. Enhancement of superconducting transition temperature due to antiferromagnetic spin fluctuations in iron pnictides LaFe(As1-xPx)(O1-yFy): 31P-NMR studies

    NASA Astrophysics Data System (ADS)

    Mukuda, H.; Engetsu, F.; Yamamoto, K.; Lai, K. T.; Yashima, M.; Kitaoka, Y.; Takemori, A.; Miyasaka, S.; Tajima, S.

    2014-02-01

    Systematic 31P-NMR studies on LaFe(As1-xPx)(O1-yFy) with y =0.05 and 0.1 have revealed that the antiferromagnetic spin fluctuations (AFMSFs) at low energies are markedly enhanced around x =0.6 and 0.4, respectively, and as a result, Tc exhibits respective peaks at 24 and 27 K against the P substitution for As. This result demonstrates that the AFMSFs are responsible for the increase in Tc for LaFe(As1-xPx)(O1-yFy) as a primary mediator of the Cooper pairing. From a systematic comparison of AFMSFs with a series of (La1-zYz)FeAsOδ compounds in which Tc reaches 50 K for z =0.95, we remark that a moderate development of AFMSFs causes Tc to increase up to 50 K under the condition that the local lattice parameters of the FeAs tetrahedron approach those of the regular tetrahedron. We propose that Tc of Fe-pnictides exceeding 50 K is maximized under an intimate collaboration of the AFMSFs and other factors originating from the optimization of the local structure.

  7. Measurement of the lateral diffusion of dipalmitoylphosphatidylcholine adsorbed on silica beads in the absence and presence of melittin: a 31P two-dimensional exchange solid-state NMR study.

    PubMed Central

    Picard, F; Paquet, M J; Dufourc, E J; Auger, M

    1998-01-01

    31P two-dimensional exchange solid-state NMR spectroscopy was used to measure the lateral diffusion, D(L), in the fluid phase of dipalmitoylphosphatidylcholine (DPPC) in the presence and absence of melittin. The use of a spherical solid support with a radius of 320 +/- 20 nm, on which lipids and peptides are adsorbed together, and a novel way of analyzing the two-dimensional exchange patterns afforded a narrow distribution of D(L) centered at a value of (8.8 +/- 0.5) x 10(-8) cm2/s for the pure lipid system and a large distribution of D(L) spanning 1 x 10(-8) to 10 x 10(-8) cm2/s for the lipids in the presence of melittin. In addition, the determination of D(L) for nonsupported DPPC multilamellar vesicles (MLVs) suggests that the support does not slow down the lipid diffusion and that the radii of the bilayers vary from 300 to 800 nm. Finally, the DPPC-melittin complex is stabilized at the surface of the silica beads in the gel phase, opening the way to further study of the interaction between melittin and DPPC. PMID:9533697

  8. Constraints on the structure and dynamics of the β-cristobalite polymorphs of SiO2 and AlPO4 from 31P, 27Al and 29Si NMR spectroscopy to 770 K

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Thompson, John G.; Xiao, Yuehui; Kirkpatrick, R. James

    1993-10-01

    Nuclear magnetic resonance spectroscopic data are presented for the cristobalite polymorphs of AlPO4 and SiO2 from RT to 770 K, through their respective α- β transitions. The nuclear magnetic resonance (NMR) data include chemical shifts for 31P, 27Al, and 29Si, 27Al quadrupole coupling parameters, and 31P and 27Al spin-lattice relaxation rates. Also presented are electron diffraction patterns of β-cristobalite AlPO4 that show diffuse scattering similar to that reported previously for SiO2. For the α-phases of both AlPO4 and SiO2, the chemical shifts decrease approximately linearly with increasing temperature from RT to Tc and discontinuously by -2 to -3 ppm from α to β. This result is consistent with a small, continuous increase in the mean T-O-T angle (<θ>) of the α-phases with increasing T and an increase of <θ> by about 4° across the α- β transition for both cristobalite and its AlPO4 analogue. Based on the 29Si chemical shifts, the mean Si-O-Si angle for β-cristobalite is 152.7±1° near Tc. For AlPO4-cristobalite, the 27Al nuclear quadrupole coupling constant (CQ) decreases approximately linearly from 1.2 MHz at RT to 0.94 MHz near Tc (493±10 K). At the α- β transition the 27Al CQ approaches zero, in agreement with the cubic average structure observed by diffraction. The satellite transitions retain a small frequency distribution above the α- β transition from electric field gradients attributed to defects. The short-range cubic symmetry of the Al-site and non-linear Al-O-P angle support a dynamically disordered model of the β-cristobalite structure. Complete averaging of the 27Al quadrupole coupling in the β-phase indicates that the lifetime of any short-range ordered domains must be shorter than about 1 μs.

  9. Theoretical Studies on the Fe-M Interactions and 31P NMR in Fe(CO)3(EtPhPpy)2MX2 (X = NCS, SCN, Cl; M = Zn, Cd, Hg)

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-xuan; Xu, Xuan; Xie, Mei-xiang

    2008-10-01

    To study the Fe-M interactions and their effects on 31P NMR, the structures of Fe(CO)3(EtPhPpy)2 1, Fe(CO)3(EtPhPpy)2M(NCS)2 (2: M = Zn, 3: M = Cd, 4: M = Hg) and Fe(CO)3(EtPhPpy)2CdX2 (5: X = C1, 6: X = SCN) were investigated by density functional theory (DFT) PBE0 method. The stabilities S of complexes follow S(2)>S(3)>S(4) and S(3)approxS(6)>S(5), indicating that 6 is stable and may be synthesized. The complexes with thiocyanate are more stable than that with chloride in Fe(CO)3(EtPhPpy)2CdX2. The strength / of Fe-M interactions follows I(2)approxI(3)31P chemical shifts are caused (compared with mononuclear complex 1).

  10. Direct evidence for a role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in the stimulated rat heart. Studies using 31P n.m.r. and ruthenium red.

    PubMed Central

    Unitt, J F; McCormack, J G; Reid, D; MacLachlan, L K; England, P J

    1989-01-01

    1. The concentrations of free ATP, phosphocreatine (PCr), Pi, H+ and ADP (calculated) were monitored in perfused rat hearts by 31P n.m.r. before and during positive inotropic stimulation. Data were accumulated in 20 s blocks. 2. Administration of 0.1 microM-(-)-isoprenaline resulted in no significant changes in ATP, transient decreases in PCr, and transient increases in ADP and Pi. However, the concentrations of all of these metabolites returned to pre-stimulated values within 1 min, whereas cardiac work and O2 uptake remained elevated. 3. In contrast, in hearts perfused continuously with Ruthenium Red (2.5 micrograms/ml), a potent inhibitor of mitochondrial Ca2+ uptake, administration of isoprenaline caused significant decreases in ATP, and also much larger and more prolonged changes in the concentrations of ADP, PCr and Pi. In this instance values did not fully return to pre-stimulated concentrations. Administration of Ruthenium Red alone to unstimulated hearts had minor effects. 4. It is proposed that, in the absence of Ruthenium Red, the transmission of changes in cytoplasmic Ca2+ across the mitochondrial inner membrane is able to maintain the phosphorylation potential of the heart during positive inotropic stimulation, through activation of the Ca2+-sensitive intramitochondrial dehydrogenases (pyruvate, NAD+-isocitrate and 2-oxoglutarate dehydrogenases) leading to enhanced NADH production. 5. This mechanism is unavailable in the presence of Ruthenium Red, and oxidative phosphorylation must be stimulated primarily by a fall in phosphorylation potential, in accordance with the classical concept of respiratory control. However, the full oxidative response of the heart to stimulation may not be achievable under such circumstances. PMID:2479373

  11. Magnetism of the spin-trimer compound CaNi 3(P 2O 7)2: Microscopic insight from combined 31P NMR and first-principles studies

    NASA Astrophysics Data System (ADS)

    Majumder, M.; Kanungo, S.; Ghoshray, A.; Ghosh, M.; Ghoshray, K.

    2015-03-01

    Magnetization, 31P nuclear magnetic resonance study, and first-principles electronic structure calculations have been performed in the spin-1 trimer chain compound CaNi3(P2O7 )2. Two separate spectra arising from magnetically and crystallographically inequivalent P sites are observed. In the ordered state, the resonance lines for both the P sites (P1 and P2) are found to be split into two, which is clear microscopic evidence of the development of two-sublattice AFM order below TM. A nonnegligible contribution of ferromagnetic hyperfine field and dipolar field have also been seen in the ordered state. The first-principles calculations show that the intratrimer (J1) and intertrimer interactions (J2) are of weak ferromagnetic type with the values 2.85 and 1.49 meV, respectively, whereas the interchain interaction (J3) is of strong antiferromagnetic type with a value of 5.63 meV. The anisotropy of the imaginary part of dynamical spin susceptibility around TM along with the exponential decrement of 1 /T1 below TM indicate the probable participation of the Ni -3 d electron's orbital degrees of freedom in the ferrimagnetic transition. The dominance of orbital fluctuations over the spin fluctuations seems to be responsible for showing low value of the binding energy u of the local spin configuration (estimated from local spin models) and an unusually weak exponent in the power-law behavior of 1 /T1 below 50 K, in the paramagnetic state. Electronic structure calculations also reveal the importance of orbital degrees of freedom of Ni -3 d moments, which is consistent with our NMR data analysis.

  12. Identification by stopped-exchange solution /sup 31/P NMR spectroscopy of the stepwise formation of (AgL/sub n/)PF/sub 6/ (n = 1-4). Comparison of metal-phosphorus coupling constants for triphenylphosphine and 5-phenyldibenzophosphole

    SciTech Connect

    Alyea, E.C.; Malito, J.; Nelson, J.H.

    1987-12-16

    The coordination properties of 5-phenyldibenzophosphate (PhDBP) have been studied extensively. The stepwise formation of (L/sub n/Ag)/sup +/PF/sub 6//sup -/ (n = 1-4) for L = PhDBP and PhP/sub 3/ observed in situ by stopped-exchange solution /sup 31/P NMR spectroscopy is reported herein. The relative coordinating properties of PhDBP and PhP/sub 3/ are compared. 21 references, 1 figure, 2 tables.

  13. Erythrocytes in muscular dystrophy. Investigation with 31P nuclear magnetic resonance spectroscopy

    SciTech Connect

    Sarpel, G.; Lubansky, H.J.; Danon, M.J.; Omachi, A.

    1981-05-01

    Phosphorus 31 nuclear magnetic resonance (31P NMR) signals were recorded from intact human erythrocytes for 16 hours. Total phosphate concentration, which was estimated as the sum of the individual 31P signals, was 25% lower in erythrocytes from men with myotonic dystrophy than in control erythrocytes. The inorganic-phosphate fraction contained the highest average phosphate concentration over the 16-hour period, and made the major contribution to the difference in total phosphate between the two groups. This result was not observed in erythrocytes from either women with myotonic dystrophy or patients with Duchenne's dystrophy and may be due to a change in cell membrane permeability to inorganic phosphate, which lead to lower steady-state concentrations of the intracellular phosphates.

  14. Erythrocytes in muscular dystrophy. Investigation with /sup 31/P nuclear magnetic resonance spectroscopy

    SciTech Connect

    Sarpel, G.; Lubansky, H.J.; Danon, M.J.; Omachi, A.

    1981-05-01

    Phosphorus 31 nuclear magnetic resonance (/sup 31/P NMR) signals were recorded from intact human erythrocytes for 16 hours. Total phosphate concentration, which was estimated as the sum of the individual /sup 31/P signals, was 25% lower in erythrocytes from men with myotonic dystrophy than in control erythrocytes. The inorganic-phosphate fraction contained the highest average phosphate concentration over the 16-hour period, and made the major contribution to the difference in total phosphate between the two groups. This result was not observed in erythrocytes from either women with myotonic dystrophy or patients with Duchenne's dystrophy and may be due to a change in cell membrane permeability to inorganic phosphate, which leads to lower steady-state concentrations of the intracellular phosphates.

  15. sup 31 P and sup 1 H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: Relaxation measurements with Mn(II) and Co(II)

    SciTech Connect

    Jarori, G.K.; Ray, B.D.; Rao, B.D.N. )

    1989-11-28

    The paramagnetic effects of Mn(II) and Co(II) on the spin-lattice relaxation rates of {sup 31}P nuclei of ATP and ADP and of Mn(II) on the spin-lattice relaxation rate of the {delta} protons of arginine bound to arginine kinase from lobster tail muscle have been measured. Temperature variation of {sup 31}P relaxation rates in E-MnADP and E-MnATP yields activation energies ({Delta}E) in the range 6-10 kcal/mol. Thus, the {sup 31}P relaxation rates in these complexes are exchange limited and cannot provide structural information. However, the relaxation rates in E-CoADP and E-CoATP exhibit frequency dependence and {Delta}E values in the range 1-2 kcal/mol; i.e., these rates depend upon {sup 31}P-Co(II) distances. These distances were calculated to be in the range 3.2-4.5 {angstrom}, appropriate for direct coordination between Co(II) and the phosphoryl groups. The paramagnetic effect of Mn(II) on the {sup 1}H spin-lattice relaxation rate of the {delta} protons of arginine in the E-MnADP-Arg complex was also measured at three frequencies. From the frequency dependence of the relaxation rate an effective {tau}{sub C} of 0.6 ns has also been calculated, which is most likely to be the electron spin relaxation rate ({tau}{sub S1}) for Mn(II) in this complex. The distance estimated on the basis of the reciprocal sixth root of the average relaxation rate of the {delta} protons was 10.9 {plus minus} 0.3 {angstrom}.

  16. Elimination of surface signals by a surface-spoiling magnetic field gradient. Theoretical optimization and application to human in vivo NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Jehenson, P.; Bloch, G.

    W. Chen and J. J. H. Ackerman ( J. Magn. Reson.82, 655, 1989; NMR Biomed.2, 267, 1989) used a superficial magnetic field gradient to eliminate surface signals when observing rat liver in vivo. We have developed a method for computing the optimal gradient coil for a given in vivo application. An analytical solution for the magnetic field created by a planar array of antiparallel current elements was derived for the calculations. The surface-signal suppression obtained by gradient coils of various sizes is presented in a synthetic plot which directly provides the electrical and geometrical parameters of the optimal coil as well as the residual signal in the deep-lying region of interest. This approach was applied to in vivo31P and 31C spectroscopy of the human liver. Hepatic glycogen was detected by natural-abundance 13C NMR without contamination from muscle glycogen, and physiological variation during starvation could be observed.

  17. Nanoscale Catalysts for NMR Signal Enhancement by Reversible Exchange

    PubMed Central

    Shi, Fan; Coffey, Aaron M.; Waddell, Kevin W.; Chekmenev, Eduard Y.; Goodson, Boyd M.

    2015-01-01

    Two types of nanoscale catalysts were created to explore NMR signal enhancement via reversible exchange (SABRE) at the interface between heterogeneous and homogeneous conditions. Nanoparticle and polymer comb variants were synthesized by covalently tethering Ir-based organometallic catalysts to support materials comprised of TiO2/PMAA (poly methacrylic acid) and PVP (polyvinyl pyridine), respectively, and characterized by AAS, NMR, and DLS. Following parahydrogen (pH2) gas delivery to mixtures containing one type of “nano-SABRE” catalyst particles, a target substrate, and ethanol, up to ~(−)40-fold and ~(−)7-fold 1H NMR signal enhancements were observed for pyridine substrates using the nanoparticle and polymer comb catalysts, respectively, following transfer to high field (9.4 T). These enhancements appear to result from intact particles and not from any catalyst molecules leaching from their supports; unlike the case with homogeneous SABRE catalysts, high-field (in situ) SABRE effects were generally not observed with the nanoscale catalysts. The potential for separation and reuse of such catalyst particles is also demonstrated. Taken together, these results support the potential utility of rational design at molecular, mesoscopic, and macroscopic/engineering levels for improving SABRE and HET-SABRE (heterogeneous-SABRE) for applications varying from fundamental studies of catalysis to biomedical imaging. PMID:26185545

  18. In Vivo 31P Echo-Planar Spectroscopic Imaging of Human Calf Muscle

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Bachert, Peter

    2001-03-01

    Localized phosphorus-31 NMR spectra of human calf muscle in vivo were obtained by means of echo-planar spectroscopic imaging (EPSI) with a 1.5-T whole-body scanner. The technique permits the measurement of two-dimensional 31P SI data at a minimum acquisition time of 2.4 s (8×8 voxels, TR=300 ms). With 9.4 min measurement time (TR=1100 ms, 64 averages) and 25×25×40 mm spatial resolution in vivo the 31P NMR signal-to-noise ratio (S/N) of the phosphocreatine (PCr) resonance was about 45; the multiplets of nucleoside 5‧-triphosphates were resolved. Spectral quality permits quantitative assessment of the PCr signal in a measurement time that is shorter by a factor of 2 or more than the minimum measurement time feasible with chemical-shift imaging. In a functional EPSI study with a time resolution of 20.5 s on the calf muscle of volunteers, spectra showed a 40% decrease of the PCr signal intensity (at rest: S/N≅12) upon exertion of the muscle.

  19. Structural models for covalent non-oxidic glasses: Atomic distribution and local order in CdGeAs2-xPx glasses studied by use of 31P and 113Cd spin-echo and 31-113Cd spin-echo double-resonance NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Franke, Deanna; Maxwell, Robert; Lathrop, David; Banks, Kesha; Eckert, Hellmut

    1992-10-01

    The structure of glasses in the system CdGeAs2-xPx is discussed on the basis of complementary solid-state NMR experiments, including 31P and 113Cd magic-angle spinning (MAS) and spin-echo techniques, as well as 31-113Cd spin-echo double resonance (SEDOR) NMR. Computer simulations of atomic distribution models and experimental studies on crystalline model systems are used to quantify the results. The analysis reveals striking differences in the short-range order between the glassy and the stoichiometrically analogous crystalline materials. The structure of glasses in the system CdGeAs2-xPx is characterized by the presence of a substantial fraction of homopolar pnictogen-pnictogen bonds and by a distribution of cadmium relative to phosphorus that is close to random. These results lend credence to the bond-switching model invoked for the structural description of amorphous tetrahedral semiconductors.

  20. Supramolecular self-organisation and conformational isomerism of a binuclear O,O'-dipropyl dithiophosphate gold(I) complex, [Au2{S2P(OC3H7)2}2]: Synthesis, (13)C and (31)P CP/MAS NMR spectroscopy, single-crystal X-ray diffraction study and thermal behaviour.

    PubMed

    Rodina, Tatyana A; Korneeva, Eugenia V; Antzutkin, Oleg N; Ivanov, Alexander V

    2015-10-01

    Crystalline one-dimensional polymeric catena-poly[bis(μ2-O,O'-dipropyldithiophosphato-S,S')digold(I)] (Au-Au) (1) was prepared and studied using (13)C and (31)P CP/MAS NMR spectroscopy and single-crystal X-ray diffraction. To elucidate the structural function of Dtph ligands in crystalline gold(I) O,O'-dipropyl dithiophosphate, the chemical shift anisotropy parameters (δaniso and η) were calculated from spinning sideband manifolds in (31)P MAS NMR spectra. A novel structure of the gold(I) compound comprises two isomeric, non-centrosymmetric binuclear molecules of [Au2{S2P(OC3H7)2}2] (isomers 'A' and 'B'), whose four Dtph groups display structural inequivalence. In each isomeric binuclear molecule of 1, a pair of μ2-bridging dipropyl Dtph ligands almost symmetrically links two neighbouring gold atoms, forming an extensive eight-membered metallocycle [Au2S4P2], while the intramolecular aurophilic Au⋯Au bond additionally stabilises this central cyclic moiety. At the supramolecular level of complex 1, intermolecular aurophilic Au⋯Au bonds yield almost linear infinite polymeric chains (⋯'A'⋯'B'⋯'A'⋯'B'⋯)n. The thermal behaviour of this compound was studied by the simultaneous thermal analysis (STA) technique (a combination of TG and DSC) under an argon atmosphere. PMID:26004097

  1. Solution (31)P NMR Study of the Acid-Catalyzed Formation of a Highly Charged {U24Pp12} Nanocluster, [(UO2)24(O2)24(P2O7)12](48-), and Its Structural Characterization in the Solid State Using Single-Crystal Neutron Diffraction.

    PubMed

    Dembowski, Mateusz; Olds, Travis A; Pellegrini, Kristi L; Hoffmann, Christina; Wang, Xiaoping; Hickam, Sarah; He, Junhong; Oliver, Allen G; Burns, Peter C

    2016-07-13

    The first neutron diffraction study of a single crystal containing uranyl peroxide nanoclusters is reported for pyrophosphate-functionalized Na44K6[(UO2)24(O2)24(P2O7)12][IO3]2·140H2O (1). Relative to earlier X-ray studies, neutron diffraction provides superior information concerning the positions of H atoms and lighter counterions. Hydrogen positions have been assigned and reveal an extensive network of H-bonds; notably, most O atoms present in the anionic cluster accept H-bonds from surrounding H2O molecules, and none of the surface-bound O atoms are protonated. The D4h symmetry of the cage is consistent with the presence of six encapsulated K cations, which appear to stabilize the lower symmetry variant of this cluster. (31)P NMR measurements demonstrate retention of this symmetry in solution, while in situ (31)P NMR studies suggest an acid-catalyzed mechanism for the assembly of 1 across a wide range of pH values. PMID:27322657

  2. Nuclear Spin Polarization of Phosphorus Donors in Silicon. Direct Evidence from 31P-Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Gumann, Patryk; Ramanathan, Chandrasekhar; Patange, Om; Moussa, Osama; Thewalt, Mike; Riemann, Helge; Abrosimov, Nikolay; Becker, Peter; Pohl, Hans-Joachim; Itoh, Kohei; Cory, David G.

    2014-03-01

    We experimentally demonstrate the optical hyperpolarization and coherent control of 31P, nuclear spins in single crystal silicon via the inductive readout of the nuclear magnetic resonance (NMR) signal of 31P at a concentration of 1.5 x 1015 cc-1. The obtained polarization is sufficient the 31P spin polarization of 1.17 x 1015 in a 10 mm x 10 mm sample, observed in one FID with signal-to-noise ration of 113. The linewidth is 800 Hz. The Hahn echo pulse sequence reveals a 31P T2 time of 0.42 s at 1.6 K, which was extended by the Carr Purcell cycle to 1.2 s at the same temperature. The maximum build-up of the nuclear polarization was achieved within ~577 seconds, at 4.2 K, in 6.7 T, using optical excitations provided by an infra-red laser. This work has been supported by CERC Canada.

  3. Extraction of quadrature phase information from multiple pulse NMR signals

    NASA Technical Reports Server (NTRS)

    Rhim, W.-K.; Burum, D. P.; Vaughan, R. W.

    1976-01-01

    A multiple pulse sequence (8-pulse sequence) used for high-resolution solid state NMR is analyzed with regard to the information available from each of the four wide sampling windows. It is demonstrated that full quadrature phase information can be obtained using only a single phase detector and that, for the commonly encountered situation where the spectral width is much less than the folding frequency, the signals from the various windows can be combined easily using standard complex Fourier transform software. An improvement in the signal-to-noise ratio equal to the square root of 3 is obtained over either standard single or quadrature phase detection schemes. Procedures for correcting spectral distortions are presented.

  4. Direct and simultaneous quantification of ATP, ADP and AMP by (1)H and (31)P Nuclear Magnetic Resonance spectroscopy.

    PubMed

    Lian, Yakun; Jiang, Hua; Feng, Jinzhou; Wang, Xiaoyan; Hou, Xiandeng; Deng, Pengchi

    2016-04-01

    ATP, ADP and AMP are energy substances with vital biological significance. Based on the structural differences, a simple, rapid and comprehensive method has been established by (1)H and (31)P Nuclear Magnetic Resonance ((1)H-NMR and (31)P-NMR) spectroscopies. Sodium 3-(trimethylsilyl) propionate-2,2,3,3-d4 (TMSP) and anhydrous disodium hydrogen phosphate (Na2HPO4) were selected as internal standards for (1)H-NMR and (31)P-NMR, respectively. Those three compounds and corresponding internal standards can be easily distinguished both by (1)H-NMR and (31)P-NMR. In addition, they all have perfect linearity in a certain range: 0.1-100mM for (1)H-NMR and 1-75mM for (31)P-NMR. To validate the precision of this method, mixed samples of different concentrations were measured. Recovery experiments were conducted in serum (91-113% by (1)H-NMR and 89-113% by (31)P-NMR). PMID:26838434

  5. Solid-state distortions of nominally square-planar palladium and platinum (R sub 3 P) sub 2 MX sub 2 complexes as determined by a combination of sup 13 C( sup 1 H) and sup 31 P( sup 31 H) NMR spectroscopy

    SciTech Connect

    Rahn, J.A.; Nelson, J.H. ); O'Donnell, D.J.; Pamer, A.R. )

    1989-06-28

    Phosphorus-31 and carbon-13 NMR spectra have been obtained for a series of 20 (R{sub 3}P){sub 2}MX{sub 2} complexes (R{sub 3}P = MePh{sub 2}P and Me{sub 2}PhP; M = Pd, Pt; X = Cl, Br, I, CN, N{sub 3}) in the solid state by cross-polarization and magic-angle-spinning (CP/MAS) techniques. Comparison of these data with spectral data obtained at 300 K in CDCl{sub 3} solutions was made in order to investigate the influence of local symmetry on {sup 31}P and {sup 13}C chemical shifts in the solid state. It was found that most of these compounds, which have regular square-planar geometries in solution, are distorted in the solid state. The solid-state distortions are evidenced by additional {sup 31}P and {sup 13}C resonances in the CP/MAS spectra as compared to the solution spectra. The nature and degree of these distortions are discussed. 25 refs., 2 figs., 6 tabs.

  6. Phosphorus speciation by (31)P NMR spectroscopy in bracken (Pteridium aquilinum (L.) Kuhn) and bluebell (Hyacinthoides non-scripta (L.) Chouard ex Rothm.) dominated semi-natural upland soil.

    PubMed

    Ebuele, Victor O; Santoro, Anna; Thoss, Vera

    2016-10-01

    Access to P species is a driver for plant community composition based on nutrient acquisition. Here we investigated the distribution and accumulation of soil inorganic P (Pi) and organic P (Po) forms in a bracken and bluebell dominated upland soil for the period between bluebell above ground dominance until biomass is formed from half bluebells and half bracken. Chemical characterisation and (31)P Nuclear Magnetic Resonance spectroscopy was used to determine the organic and inorganic P species. Total P concentration in soils was 0.87gkg(-1), while in plants (above- and below-ground parts) total P ranged between 0.84-4.0gkg(-1) and 0.14-2.0gkg(-1) for bluebell and bracken, respectively. The P speciation in the plant samples was reflected in the surrounding soil. The main forms of inorganic P detected in the NaOH-EDTA soil extracts were orthophosphate (20.0-31.5%), pyrophosphate (0.6-2.5%) and polyphosphate (0.4-7.0%). Phytate (myo-IP6) was the most dominant organic P form (23.6-40.0%). Other major peaks were scyllo-IP6 and α- and β- glycerophosphate (glyP). In bluebells and bracken the main P form detected was orthophosphate ranging from (21.7-80.4%) and 68.5-81.1%, in above-ground and below-ground biomass, respectively. Other detected forms include α-glyP (4.5-14.4%) and β-glyP (0.9-7.7%) in bluebell, while in bracken they were detected only in stripe and blade in ranges of 2.5-5.5% and 4.4-9.6%, respectively. Pyrophosphate, polyphosphate, scyllo-IP6, phosphonates, found in soil samples, were not detected in any plant parts. In particular, the high abundance of phytate in the soil and in bluebell bulbs, may be related to a mechanism through which bluebells create a recalcitrant phosphorus store which form a key part of their adaptation to nutrient poor conditions. PMID:27288285

  7. Nuclear magnetic resonance characterization of a paramagnetic DNA-drug complex with high spin cobalt; assignment of the 1H and 31P NMR spectra, and determination of electronic, spectroscopic and molecular properties.

    PubMed

    Gochin, M

    1998-08-01

    The proton NMR spectrum of the ternary complex between the octamer duplex d(TTGGCCAA)2, two molecules of the drug chromomycin-A3, and a divalent cobalt ion has been assigned. Assignment procedures used standard two-dimensional techniques and relied upon the expected NOE contacts observed in the equivalent diamagnetic complex containing zinc. The magnetic susceptibility tensor for the cobalt was determined and used to calculate shifts for all nuclei, aiding in the assignment process and verification. Relaxation, susceptibility, temperature and field dependence studies of the paramagnetic spectrum enabled determination of electronic properties of the octahedral cobalt complex. The electronic relaxation tau(s) was determined to be 2.5 +/- 1.5 ps; the effective isotropic g value was found to be 2.6 +/- 0.2, indicating strong spin-orbit coupling. The magnetic susceptibility tensor was determined to be chi(xx) = 8.9 x 10(-3) cm3/mol, chi(yy) = 9.5 x 10(-3) cm3/mol, chi(zz) = 12.8 * 10(-3) cm3/mol. A tentative rotational correlation time of 8 ns was obtained for the complex. Both macroscopic and microscopic susceptibility measurements revealed deviations from Curie behavior over the temperature range accessible in the study. Non-selective relaxation rates were found to be inaccurate for defining distances from the metal center. However, pseudocontact shifts could be calculated with high accuracy using the dipolar shift equation. Isotropic hyperfine shifts were factored into contact and dipolar terms, revealing that the dipolar shift predominates and that contact shifts are relatively small. PMID:9751997

  8. Human cardiac 31P magnetic resonance spectroscopy at 7 tesla

    PubMed Central

    Rodgers, Christopher T; Clarke, William T; Snyder, Carl; Vaughan, J Thomas; Neubauer, Stefan; Robson, Matthew D

    2014-01-01

    Purpose Phosphorus magnetic resonance spectroscopy (31P-MRS) affords unique insight into cardiac energetics but has a low intrinsic signal-to-noise ratio (SNR) in humans. Theory predicts an increased 31P-MRS SNR at 7T, offering exciting possibilities to better investigate cardiac metabolism. We therefore compare the performance of human cardiac 31P-MRS at 7T to 3T, and measure T1s for 31P metabolites at 7T. Methods Matched 31P-MRS data were acquired at 3T and 7T, on nine normal volunteers. A novel Look-Locker CSI acquisition and fitting approach was used to measure T1s on six normal volunteers. Results T1s in the heart at 7T were: phosphocreatine (PCr) 3.05 ± 0.41s, γ-ATP 1.82 ± 0.09s, α-ATP 1.39 ± 0.09s, β-ATP 1.02 ± 0.17s and 2,3-DPG (2,3-diphosphoglycerate) 3.05 ± 0.41s (N = 6). In the field comparison (N = 9), PCr SNR increased 2.8× at 7T relative to 3T, the Cramer-Ráo uncertainty (CRLB) in PCr concentration decreased 2.4×, the mean CRLB in PCr/ATP decreased 2.7× and the PCr/ATP SD decreased 2×. Conclusion Cardiac 31P-MRS at 7T has higher SNR and the spectra can be quantified more precisely than at 3T. Cardiac 31P T1s are shorter at 7T than at 3T. We predict that 7T will become the field strength of choice for cardiac 31P-MRS. Magn Reson Med 72:304–315, 2014. © 2013 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited. PMID:24006267

  9. Cell signaling, post-translational protein modifications and NMR spectroscopy

    PubMed Central

    Theillet, Francois-Xavier; Smet-Nocca, Caroline; Liokatis, Stamatios; Thongwichian, Rossukon; Kosten, Jonas; Yoon, Mi-Kyung; Kriwacki, Richard W.; Landrieu, Isabelle; Lippens, Guy

    2016-01-01

    Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy. PMID:23011410

  10. Recovering Invisible Signals by Two-Field NMR Spectroscopy.

    PubMed

    Cousin, Samuel F; Kadeřávek, Pavel; Haddou, Baptiste; Charlier, Cyril; Marquardsen, Thorsten; Tyburn, Jean-Max; Bovier, Pierre-Alain; Engelke, Frank; Maas, Werner; Bodenhausen, Geoffrey; Pelupessy, Philippe; Ferrage, Fabien

    2016-08-16

    Nuclear magnetic resonance (NMR) studies have benefited tremendously from the steady increase in the strength of magnetic fields. Spectacular improvements in both sensitivity and resolution have enabled the investigation of molecular systems of rising complexity. At very high fields, this progress may be jeopardized by line broadening, which is due to chemical exchange or relaxation by chemical shift anisotropy. In this work, we introduce a two-field NMR spectrometer designed for both excitation and observation of nuclear spins in two distinct magnetic fields in a single experiment. NMR spectra of several small molecules as well as a protein were obtained, with two dimensions acquired at vastly different magnetic fields. Resonances of exchanging groups that are broadened beyond recognition at high field can be sharpened to narrow peaks in the low-field dimension. Two-field NMR spectroscopy enables the measurement of chemical shifts at optimal fields and the study of molecular systems that suffer from internal dynamics, and opens new avenues for NMR spectroscopy at very high magnetic fields. PMID:27417269

  11. Posttranslational modification of Klebsiella pneumoniae flavodoxin by covalent attachment of coenzyme A, shown by sup 31 P NMR and electrospray mass spectrometry, prevents electron transfer from the nifJ protein to nitrogenase. A possible new regulatory mechanism for biological nitrogen fixation

    SciTech Connect

    Thorneley, R.N.F.; Ashby, G.A.; Drummond, M.H.; Eady, R.R.; Huff, S.; Macdonald, C.J. ); Abell, C.; Schneier, A. )

    1992-02-04

    A strain of Escherichia coli (71-18) that produces ca. 15% of its soluble cytoplasmic protein as a flavodoxin, the Klebsiella pneumoniae nifF gene product, has been constructed. The flavodoxin was purified using FPLC and resolved into two forms, designated KpFldI and KpFldII, which were shown to have identical N-terminal amino acid sequences (30 residues) in agreement with that predicted by the K. pneumoniae nifF DNA sequence. {sup 31}P NMR, electrospray mass spectrometry, UV-visible spectra, and thiol group estimations showed that the single cysteine residue (position 68) of KpFldI is posttranslationally modified in KpFldII by the covalent, mixed disulfide, attachment of coenzyme A. KpFldII was inactive as an electron carrier between the K. pneumoniae nifJ product (a pyruvate-flavodoxin oxidoreductase) and K. pneumoniae nifH product (the Fe-protein of nitrogenase). This novel posttranslational modification of a flavodoxin is discussed in terms of the regulation of nitrogenase activity in vivo in response to the level of dissolved O{sub 2} and the carbon status of diazotrophic cultures.

  12. Compatibility of Superparamagnetic Iron Oxide Nanoparticle Labeling for 1H MRI Cell Tracking with 31P MRS for Bioenergetic Measurements

    PubMed Central

    Zhang, Zhuoli; Hancock, Brynne; Leen, Stephanie; Ramaswamy, Sharan; Sollott, Steven J.; Boheler, Kenneth R.; Juhaszova, Magdalena; Lakatta, Edward G.; Spencer, Richard G.; Fishbein, Kenneth W.

    2011-01-01

    Labeling of cells with superparamagnetic iron oxide nanoparticles permits cell tracking by 1H MRI while 31P MRS allows non-invasive evaluation of cellular bioenergetics. We evaluated the compatibility of these two techniques by obtaining 31P NMR spectra of iron-labeled and unlabeled immobilized C2C12 myoblast cells in vitro. Broadened but usable 31P spectra were obtained, and peak area ratios of resonances corresponding to intracellular metabolites showed no significant differences between labeled and unlabeled cell populations. We conclude that 31P NMR spectra can be obtained from cells labeled with sufficient iron to permit visualization by 1H imaging protocols and that these spectra have sufficient quality to be used in assessing metabolic status. This result introduces the possibility of using localized 31P MRS to evaluate the viability of iron-labeled therapeutic cells as well as surrounding host tissue in vivo. PMID:20853523

  13. New adamantane-like mercury-chalcogen cages. Synthetic and multinuclear (/sup 31/P, /sup 77/Se, /sup 199/Hg) NMR study of ((. mu. -ER)/sub 6/(HgL)/sub 4/)/sup 2 +/ (E = S or Se; L = tertiary phosphine or arsine) and related species with mixed ligands

    SciTech Connect

    Dean, P.A.W.; Vittal, J.J.; Trattner, M.H.

    1987-12-16

    Reaction between HgL/sub 2/(ClO/sub 4/)/sub 2/, Hg(ER)/sub 2/, and L in a 1:3:2 ratio produces the isolable salts ((..mu..-ER)/sub 6/(HgL)/sub 4/)(ClO/sub 4/)/sub 2/ (L = PPh/sub 3/, ER = SePh, SPh, SMe, or SEt; L = AsPh/sub 3/, ER = SPh; L = PEt/sub 3/, ER = SePh or SPh). Multinuclear (/sup 31/P, /sup 77/Se, /sup 199/Hg) NMR was used to demonstrate the adamantanoid structure of the cations in these salts as well as in those with L = PPh/sub 3/ and ER = S-n-Pr, S-n-Bu, or S-n-C/sub 5/H/sub 11/, which were studied in situ. To confirm that the new cations contain the hitherto unobserved (..mu..-ER)/sub 6/Hg/sub 4/ core, several series of clusters with mixed ligands were investigated (as ClO/sub 4//sup -/ salts) by the multinuclear NMR technique also. The systems ((..mu..-ER)/sub 6/(HgL)/sub 4/)/sup 2 +/-((..mu..-ER)/sub 6/(HgL')/sub 4/)/sup 2 +/ (ER = SePh, L = PPh/sub 3/, L' = PEt/sub 3/; ER = SPh, L = PPh/sub 3/, L' = PEt/sub 3/ or AsPh/sub 3/) give the series ((..mu..-ER)/sub 6/(HgL)/sub 4-n/(HgL')/sub n/)/sup 2 +/ (n = 0-4). The related species ((..mu..-SPh)/sub 6/(HgPPh/sub 3/)/sub 4-n/(HgSbPh/sub 3/)/sub n/)/sup 2 +/ (n = 0-2 and possibly 3) were produced from Hg(PPhh/sub 3/)/sub 2/(ClO/sub 4/)/sub 2/, Hg(SPh)/sub 2/, and SbPh/sub 3/. From the notably rich /sup 31/P and /sup 199/Hg NMR spectra of the system ((..mu..-SPh)/sub 6/(HgPPh/sub 3/)/sub 4/)/sup 2 +/-((..mu..-SePh)/sub 6/(HgPPh/sub 3/)/sub 4/)/sup 2 +/ it was possible to demonstrate the existence of every possible mixed-chalcogen core in the series ((..mu..-SPh)/sub 6-m/(..mu..-SePh)/sub m/(HgPPh/sub 3/)/sub 4/)/sup 2 +/ (m = 0-6). The new (..mu..-SR)/sub 6/Hg/sub 4/ cages are possible models for the proposed Hg/sub 4/(Cys)/sub 11/ cluster in Hg/sub 7/-metallothionein. 46 references, 3 figures, 2 tables.

  14. Maximum entropy signal processing in practical NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sibisi, Sibusiso; Skilling, John; Brereton, Richard G.; Laue, Ernest D.; Staunton, James

    1984-10-01

    NMR spectroscopy is intrinsically insensitive, a frequently serious limitation especially in biochemical applications where sample size is limited and compounds may be too insoluble or unstable for data to be accumulated over long periods. Fourier transform (FT) NMR was developed by Ernst1 to speed up the accumulation of useful data, dramatically improving the quality of spectra obtained in a given observing time by recording the free induction decay (FID) data directly in time, at the cost of requiring numerical processing. Ernst also proposed that more information could be obtained from the spectrum if the FID was multiplied by a suitable apodizing function before being Fourier transformed. For example (see ref. 2), an increase in sensitivity can result from the use of a matched filter1, whereas an increase in resolution can be achieved by the use of gaussian multiplication1,3, application of sine bells4-8 or convolution difference9. These methods are now used routinely in NMR data processing. The maximum entropy method (MEM)10 is theoretically capable of achieving simultaneous enhancement in both respects11, and this has been borne out in practice in other fields where it has been applied. However, this technique requires relatively heavy computation. We describe here the first practical application of MEM to NMR, and we analyse 13C and 1H NMR spectra of 2-vinyl pyridine. Compared with conventional spectra, MEM gives considerable suppression of noise, accompanied by significant resolution enhancement. Multiplets in the 1H spectra are resolved better leading to improved visual clarity.

  15. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy

    PubMed Central

    Lu, Yi; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2016-01-01

    NMR measurements do not require separation and chemical modification of samples and therefore rapidly and directly provide non-targeted information on chemical components in complex mixtures. In this study, one-dimensional (1H, 13C, and 31P) and two-dimensional (1H-13C and 1H-31P) NMR spectroscopy were conducted to analyze yogurt without any pretreatment. 1H, 13C, and 31P NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose were separately observed in the 1H NMR spectra. In addition, the signals from the acyl chains of milk fats were also successfully identified but overlapped with many other signals. Quantitative difference spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the quantitative 1H NMR spectra. This method allowed us to eliminate interference on the overlaps; therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat could be determined directly without separation. Moreover, the 1H-31P HMBC spectra revealed for the first time that N-acetyl-d-glucosamine-1-phosphate is contained in yogurt. PMID:27322339

  16. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy.

    PubMed

    Lu, Yi; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2016-01-01

    NMR measurements do not require separation and chemical modification of samples and therefore rapidly and directly provide non-targeted information on chemical components in complex mixtures. In this study, one-dimensional (¹H, (13)C, and (31)P) and two-dimensional (¹H-(13)C and ¹H-(31)P) NMR spectroscopy were conducted to analyze yogurt without any pretreatment. ¹H, (13)C, and (31)P NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose were separately observed in the ¹H NMR spectra. In addition, the signals from the acyl chains of milk fats were also successfully identified but overlapped with many other signals. Quantitative difference spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the quantitative ¹H NMR spectra. This method allowed us to eliminate interference on the overlaps; therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat could be determined directly without separation. Moreover, the ¹H-(31)P HMBC spectra revealed for the first time that N-acetyl-d-glucosamine-1-phosphate is contained in yogurt. PMID:27322339

  17. Production and NMR signal optimization of hyperpolarized 13C-labeled amino acids

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Ferguson, Sarah; Kiswandhi, Andhika; Lumata, Lloyd

    Amino acids are targeted nutrients for consumption by cancers to sustain their rapid growth and proliferation. 13C-enriched amino acids are important metabolic tracers for cancer diagnostics using nuclear magnetic resonance (NMR) spectroscopy. Despite this diagnostic potential, 13C NMR of amino acids however is hampered by the inherently low NMR sensitivity of the 13C nuclei. In this work, we have employed a physics technique known as dynamic nuclear polarization (DNP) to enhance the NMR signals of 13C-enriched amino acids. DNP works by transferring the high polarization of electrons to the nuclear spins via microwave irradiation at low temperature and high magnetic field. Using a fast dissolution method in which the frozen polarized samples are dissolved rapidly with superheated water, injectable solutions of 13C-amino acids with highly enhanced NMR signals (by at least 5,000-fold) were produced at room temperature. Factors that affect the NMR signal enhancement levels such as the choice of free radical polarizing agents and sample preparation will be discussed along with the thermal mixing physics model of DNP. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  18. Producing >60,000-fold room-temperature 89Y NMR signal enhancement

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Jindal, Ashish; Merritt, Matthew; Malloy, Craig; Sherry, A. Dean; Kovacs, Zoltan

    2011-03-01

    89 Y in chelated form is potentially valuable in medical imaging because its chemical shift is sensitive to local factors in tumors such as pH. However, 89 Y has a low gyromagnetic ratio γn thus its NMR signal is hampered by low thermal polarization. Here we show that we can enhance the room-temperature NMR signal of 89 Y up to 65,000 times the thermal signal, which corresponds to 10 % nuclear polarization, via fast dissolution dynamic nuclear polarization (DNP). The relatively long spin-lattice relaxation time T1 (~ 500 s) of 89 Y translates to a long polarization lifetime. The 89 Y NMR enhancement is optimized by varying the glassing matrices and paramagnetic agents as well as doping the samples with a gadolinium relaxation agent. Co-polarization of 89 Y-DOTA with a 13 C sample shows that both nuclear spin species acquire the same spin temperature Ts , consistent with thermal mixing mechanism of DNP. The high room-temperature NMR signal enhancement places 89 Y, one of the most challenging nuclei to detect by NMR, in the list of viable magnetic resonance imaging (MRI) agents when hyperpolarized under optimized conditions. This work is supported in part by the National Institutes of Health grant numbers 1R21EB009147-01 and RR02584.

  19. Lithological control on gas hydrate saturation as revealed by signal classification of NMR logging data

    NASA Astrophysics Data System (ADS)

    Bauer, Klaus; Kulenkampff, Johannes; Henninges, Jan; Spangenberg, Erik

    2015-09-01

    In this paper, nuclear magnetic resonance (NMR) downhole logging data are analyzed with a new strategy to study gas hydrate-bearing sediments in the Mackenzie Delta (NW Canada). In NMR logging, transverse relaxation time (T2) distribution curves are usually used to determine single-valued parameters such as apparent total porosity or hydrocarbon saturation. Our approach analyzes the entire T2 distribution curves as quasi-continuous signals to characterize the rock formation. We apply self-organizing maps, a neural network clustering technique, to subdivide the data set of NMR curves into classes with a similar and distinctive signal shape. The method includes (1) preparation of data vectors, (2) unsupervised learning, (3) cluster definition, and (4) classification and depth mapping of all NMR signals. Each signal class thus represents a specific pore size distribution which can be interpreted in terms of distinct lithologies and reservoir types. A key step in the interpretation strategy is to reconcile the NMR classes with other log data not considered in the clustering analysis, such as gamma ray, hydrate saturation, and other logs. Our results defined six main lithologies within the target zone. Gas hydrate layers were recognized by their low signal amplitudes for all relaxation times. Most importantly, two subtypes of hydrate-bearing shaly sands were identified. They show distinct NMR signals and differ in hydrate saturation and gamma ray values. An inverse linear relationship between hydrate saturation and clay content was concluded. Finally, we infer that the gas hydrate is not grain coating, but rather, pore filling with matrix support is the preferred growth habit model for the studied formation.

  20. Contraction and recovery of living muscles studied by 31p nuclear magnetic resonance

    PubMed Central

    Gadian, D. G.; Dawson, M. Joan; Wilkie, D. R.

    1977-01-01

    1. Phosphorus nuclear magnetic resonance (31P NMR) can be used to measure the concentrations of phosphorus-containing metabolites within living tissue. We have developed methods for maintaining muscles in physiological condition, stimulating them and recording tension while at the same time accumulating their 31P NMR spectra. Experiments were performed on frog sartorii and frog and toad gastrocnemii at 4° C. 2. The NMR signals from 31P (the naturally occurring phosphorus) is weak, and signal averaging is required. In order to follow the time course of reactions it is necessary to maintain the muscles in a steady state for many hours while they are undergoing repeated contractions. Signals were accumulated in separate computer bins according to time after initiation of contraction. By these means spectra were obtained which corresponded to the different intervals during the contraction and recovery cycle. 3. In the absence of stimulation, the spectra of frog sartorius muscles and of their extracts indicated concentrations of adenosine triphosphate (ATP), phosphoryl creatine (PCr), inorganic orthophosphate (Pi) and sugar phosphates (sugar P) which are in reasonable agreement with the values obtained by chemical analysis. 4. We have confirmed that unidentified resonances representing unknown compounds appear in the spectra of both frog and toad muscle; one of these is much larger in spectra from toad than from frog. We have found an additional small, unidentified resonance which appears to be specific to toad muscle. 5. Spectra accumulated during actual contractions (1 s tetani every 2 min) did not differ dramatically from those accumulated throughout the 2 min cycle of contraction and partial recovery. 6. Following 25 s tetanii, approximately 20% of the PCr had been hydrolysed; it was then rebuilt exponentially with a half-time of about 10 min. The increase in [Pi] immediately after contraction and the time course of its disappearance corresponded to the changes in

  1. NMR Signal Amplification by Reversible Exchange of Sulfur-Heterocyclic Compounds Found In Petroleum

    PubMed Central

    Coffey, Aaron M.; Goodson, Boyd M.; Chekmenev, Eduard Y.

    2016-01-01

    NMR hyperpolarization via Signal Amplification by Reversible Exchange (SABRE) was employed to investigate the feasibility of enhancing the NMR detection sensitivity of sulfur-heterocycles (specifically 2-methylthiophene and dibenzothiophenes), a family of compounds typically found in petroleum and refined petroleum products. SABRE hyperpolarization of sulfur-heterocycles (conducted in seconds) offers potential advantages of providing structural information about sulfur-containing contaminants in petroleum, thereby informing petroleum purification and refining to minimize sulfur content in refined products such as gasoline. Moreover, NMR spectroscopy sensitivity gains endowed by hyperpolarization potentially allows for performing structural assays using inexpensive, low-magnetic-field (ca. 1 T) high-resolution NMR spectrometers ideally suited for industrial applications in the field. PMID:27500206

  2. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime.

    PubMed

    Yablonskiy, D A; Haacke, E M

    1994-12-01

    This paper is devoted to a theory of the NMR signal behavior in biological tissues in the presence of static magnetic field inhomogeneities. We have developed an approach that analytically describes the NMR signal in the static dephasing regime where diffusion phenomena may be ignored. This approach has been applied to evaluate the NMR signal in the presence of a blood vessel network (with an application to functional imaging), bone marrow (for two specific trabecular structures, asymmetrical and columnar) and a ferrite contrast agent. All investigated systems have some common behavior. If the echo time TE is less than a known characteristic time tc for a given system, then the signal decays exponentially with an argument which depends quadratically on TE. This is equivalent to an R2* relaxation rate which is a linear function of TE. In the opposite case, when TE is greater than tc, the NMR signal follows a simple exponential decay and the relaxation rate does not depend on the echo time. For this time interval, R2* is a linear function of a) volume fraction sigma occupied by the field-creating objects, b) magnetic field Bo or just the objects' magnetic moment for ferrite particles, and c) susceptibility difference delta chi between the objects and the medium. PMID:7869897

  3. Lithological controls on gas hydrate saturation: Insights from signal classification of NMR downhole data

    NASA Astrophysics Data System (ADS)

    Bauer, Klaus; Kulenkampff, Johannes; Henninges, Jan; Spangenberg, Erik

    2016-04-01

    Nuclear magnetic resonance (NMR) downhole data are analyzed with a new strategy to study gas hydrate-bearing sediments in the Mackenzie Delta (NW Canada). NMR logging is a powerful tool to study geological reservoir formations. The measurements are based on interactions between the magnetic moments of protons in geological formation water and an external magnetic field. Inversion of the measured raw data provides so-called transverse relaxation time (T2) distribution curves or spectra. Different parts of the T2 curve are related with distinct pore radii and corresponding fluid components. A common practice in the analysis of T2 distribution curves is to extract single-valued parameters such as apparent total porosity. Moreover, the derived total NMR apparent porosity and the gamma-gamma density log apparent porosity can be combined to estimate gas hydrate saturation in hydrate-bearing sediments. To avoid potential loss of information, in our new approach we analyze the entire T2 distribution curves as quasi-continuous signals to characterize the rock formation. The approach is applied to NMR data measured in gas hydrate research well Mallik 5L-38. We use self-organizing maps, a neural network clustering technique, to subdivide the data set of NMR T2 distribution curves into classes with a similar and distinctive signal shape. The method includes (1) preparation of data vectors, (2) unsupervised learning, (3) cluster definition, and (4) classification and depth mapping of all NMR signals. Each signal class thus represents a specific pore size distribution which can be interpreted in terms of distinct lithologies and reservoir types. A key step in the interpretation strategy is to reconcile the NMR classes with other log data not considered in the clustering analysis, such as gamma ray, photo-electric factor, hydrate saturation, and other logs. Our results defined six main lithologies within the target zone. Gas hydrate layers were recognized by their low signal

  4. Comparison of (31)P saturation and inversion magnetization transfer in human liver and skeletal muscle using a clinical MR system and surface coils.

    PubMed

    Buehler, Tania; Kreis, Roland; Boesch, Chris

    2015-02-01

    (31)P MRS magnetization transfer ((31)P-MT) experiments allow the estimation of exchange rates of biochemical reactions, such as the creatine kinase equilibrium and adenosine triphosphate (ATP) synthesis. Although various (31)P-MT methods have been successfully used on isolated organs or animals, their application on humans in clinical scanners poses specific challenges. This study compared two major (31)P-MT methods on a clinical MR system using heteronuclear surface coils. Although saturation transfer (ST) is the most commonly used (31)P-MT method, sequences such as inversion transfer (IT) with short pulses might be better suited for the specific hardware and software limitations of a clinical scanner. In addition, small NMR-undetectable metabolite pools can transfer MT to NMR-visible pools during long saturation pulses, which is prevented with short pulses. (31)P-MT sequences were adapted for limited pulse length, for heteronuclear transmit-receive surface coils with inhomogeneous B1 , for the need for volume selection and for the inherently low signal-to-noise ratio (SNR) on a clinical 3-T MR system. The ST and IT sequences were applied to skeletal muscle and liver in 10 healthy volunteers. Monte-Carlo simulations were used to evaluate the behavior of the IT measurements with increasing imperfections. In skeletal muscle of the thigh, ATP synthesis resulted in forward reaction constants (k) of 0.074 ± 0.022 s(-1) (ST) and 0.137 ± 0.042 s(-1) (IT), whereas the creatine kinase reaction yielded 0.459 ± 0.089 s(-1) (IT). In the liver, ATP synthesis resulted in k = 0.267 ± 0.106 s(-1) (ST), whereas the IT experiment yielded no consistent results. ST results were close to literature values; however, the IT results were either much larger than the corresponding ST values and/or were widely scattered. To summarize, ST and IT experiments can both be implemented on a clinical body scanner with heteronuclear transmit-receive surface coils; however, ST results are

  5. Parameterized signal calibration for NMR cryoporometry experiment without external standard

    NASA Astrophysics Data System (ADS)

    Stoch, Grzegorz; Krzyżak, Artur T.

    2016-08-01

    In cryoporometric experiments non-linear effects associated with the sample and the probehead bring unwanted contributions to the total signal along with the change of temperature. The elimination of these influences often occurs with the help of an intermediate measurement of a separate liquid sample. In this paper we suggest an alternative approach under certain assumptions, solely based on data from the target experiment. In order to obtain calibration parameters the method uses all of these raw data points. Its reliability is therefore enhanced as compared to other methods based on lesser number of data points. Presented approach is automatically valid for desired temperature range. The need for intermediate measurement is removed and parameters for such a calibration are naturally adapted to the individual sample-probehead combination.

  6. Suppressing background signals in solid state NMR via the Electronic Mixing-Mediated Annihilation (EMMA) method

    NASA Astrophysics Data System (ADS)

    Mollica, Giulia; Ziarelli, Fabio; Tintaru, Aura; Thureau, Pierre; Viel, Stéphane

    2012-05-01

    A simple procedure to effectively suppress background signals arising from various probe head components (e.g. stator, rotors, inserts) in solid state NMR is presented. Similarly to the ERETIC™ method, which uses an electronic signal as an internal standard for quantification, the proposed scheme is based on an electronically generated time-dependent signal that is injected into the receiver coil of the NMR probe head during signal acquisition. More specifically, the line shape, width and frequency of this electronic signal are determined by deconvoluting the background signal in the frequency domain. This deconvoluted signal is then converted into a time-dependent function through inverse Fourier Transform, which is used to generate the shaped pulse that is fed into the receiver coil during the acquisition of the Free Induction Decay. The power of the shaped pulse is adjusted to match the intensity of the background signal, and its phase is shifted by 180° with respect to the receiver reference phase. This so-called Electronic Mixing-Mediated Annihilation (EMMA) methodology is demonstrated here with a 13C Single Pulse Magic Angle Spinning spectrum of an isotopically enriched 13C histidine solid sample recorded under quantitative conditions.

  7. Temporal characteristics of NMR signals from spin 3/2 nuclei of incompletely disordered systems.

    PubMed

    Woessner, D E; Bansal, N

    1998-07-01

    Anisotropic nuclear quadrupole interactions can produce residual quadrupole splitting in the NMR spectra of rapidly moving quadrupolar nuclei in incompletely disordered aqueous heterogeneous systems. Such systems may include hydrated sodium nuclei in biological tissue and biopolymer gels. To describe the NMR signals from such samples, we use a domain model in which each domain is characterized by a quadrupole frequency and a residence time of the nucleus. We show that the signals from each domain after one pulse, the quadrupole echo sequence, and the various multiple quantum filters (MQFs) can be expressed as a linear combination of five different phase coherences. To simulate the effect of various distributions (Pake powder pattern, Gaussian, etc.) of quadrupole frequencies for different domains on the NMR signal, we have written the computer program CORVUS. CORVUS also includes the effects of exchange between different domains using diffusion and random jump models. The results of computer simulations show that the Gaussian and Pake powder pattern quadrupole frequency distributions produce very different phase coherences and observable NMR signals when the exchange rate (1/taue) between different domains is slow. When 1/taue is similar to the root mean square quadrupole frequency (final sigma), the signals from the two distributions are similar. When 1/taue is an order of magnitude greater than final sigma, there is no apparent evidence of quadrupole splitting in the shape of the signal following one pulse, but the residual effects of the quadrupole splitting make a significant contribution to the fast transverse relaxation rate. Therefore, in this case, it is inappropriate to use the observed biexponential relaxation rates to obtain a single correlation time. The quadrupole echo and the various MQF signals contain an echo from the satellite transitions in the presence of quadrupole splitting. The peak of this echo is very sensitive to 1/taue. The time domain

  8. /sup 31/P nuclear magnetic resonance measurements of intracellular pH in giant barnacle muscle

    SciTech Connect

    Hamm, J.R.; Yue, G.M.

    1987-01-01

    The accuracy of intracellular pH (pH/sub i/) measurements by /sup 31/P nuclear magnetic resonance (NMR) spectroscopy was examined in single muscle fibers from the giant barnacle, Balanus nubilis. The pH/sub i/ was derived from the chemical shifts of 2-deoxy-D-glucose-6-phosphate and inorganic phosphate. In fibers superfused with sea water at pH 7.7, pH/sub i/ = 7.30 +/- 0.02 at 20/sup 0/C. Experimentally induced pH/sub i/ changes were followed with a time resolution of 3 min. Intracellular alkalinization was induced by exposure to NH/sub 3/Cl and intracellular acidification followed when NH/sub 3/ was removed. Then acid extrusion was stimulated by exposure to bicarbonate containing sea water. In single muscle fibers /sup 31/P NMR results were in excellent agreement with microelectrode studies over the pH range of 6.5 to 8.0. The initial acid extrusion rate was 1.7 +/- 0.3 mmol x 1/sup -1/ x min/sup -1/ at pH/sub i/ 6.75. The authors results showed that /sup 31/P NMR is a reliable in vivo pH probe.

  9. 31P nuclear magnetic resonance measurements of intracellular pH in giant barnacle muscle.

    PubMed

    Hamm, J R; Yue, G M

    1987-01-01

    The accuracy of intracellular pH (pHi) measurements by 31P nuclear magnetic resonance (NMR) spectroscopy was examined in single muscle fibers from the giant barnacle, Balanus nubilis. The pHi was derived from the chemical shifts of 2-deoxy-D-glucose-6-phosphate and inorganic phosphate. In fibers superfused with sea water at pH 7.7, pHi = 7.30 +/- 0.02 at 20 degrees C. Experimentally induced pHi changes were followed with a time resolution of 3 min. Intracellular alkalinization was induced by exposure to NH4Cl and intracellular acidification followed when NH3 was removed. Then acid extrusion was stimulated by exposure to bicarbonate containing sea water. In single muscle fibers 31P NMR results were in excellent agreement with microelectrode studies over the pH range of 6.5 to 8.0. The initial acid extrusion rate was 1.7 +/- 0.3 mmol X l-1 X min-1 at pHi 6.75. Our results showed that 31P NMR is a reliable in vivo pH probe. PMID:3812665

  10. Pore size distribution calculation from 1H NMR signal and N2 adsorption-desorption techniques

    NASA Astrophysics Data System (ADS)

    Hassan, Jamal

    2012-09-01

    The pore size distribution (PSD) of nano-material MCM-41 is determined using two different approaches: N2 adsorption-desorption and 1H NMR signal of water confined in silica nano-pores of MCM-41. The first approach is based on the recently modified Kelvin equation [J.V. Rocha, D. Barrera, K. Sapag, Top. Catal. 54(2011) 121-134] which deals with the known underestimation in pore size distribution for the mesoporous materials such as MCM-41 by introducing a correction factor to the classical Kelvin equation. The second method employs the Gibbs-Thompson equation, using NMR, for melting point depression of liquid in confined geometries. The result shows that both approaches give similar pore size distribution to some extent, and also the NMR technique can be considered as an alternative direct method to obtain quantitative results especially for mesoporous materials. The pore diameter estimated for the nano-material used in this study was about 35 and 38 Å for the modified Kelvin and NMR methods respectively. A comparison between these methods and the classical Kelvin equation is also presented.

  11. Optimized (31)P MRS in the human brain at 7 T with a dedicated RF coil setup.

    PubMed

    van de Bank, Bart L; Orzada, Stephan; Smits, Frits; Lagemaat, Miriam W; Rodgers, Christopher T; Bitz, Andreas K; Scheenen, Tom W J

    2015-11-01

    The design and construction of a dedicated RF coil setup for human brain imaging ((1)H) and spectroscopy ((31)P) at ultra-high magnetic field strength (7 T) is presented. The setup is optimized for signal handling at the resonance frequencies for (1)H (297.2 MHz) and (31)P (120.3 MHz). It consists of an eight-channel (1)H transmit-receive head coil with multi-transmit capabilities, and an insertable, actively detunable (31)P birdcage (transmit-receive and transmit only), which can be combined with a seven-channel receive-only (31)P array. The setup enables anatomical imaging and (31)P studies without removal of the coil or the patient. By separating transmit and receive channels and by optimized addition of array signals with whitened singular value decomposition we can obtain a sevenfold increase in SNR of (31)P signals in the occipital lobe of the human brain compared with the birdcage alone. These signals can be further enhanced by 30 ± 9% using the nuclear Overhauser effect by B1-shimmed low-power irradiation of water protons. Together, these features enable acquisition of (31)P MRSI at high spatial resolutions (3.0 cm(3)  voxel) in the occipital lobe of the human brain in clinically acceptable scan times (~15 min). PMID:26492089

  12. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small

  13. Molecular Dynamics Underlie the Nature of MRI Signals: The NMR Shutter-Speed

    NASA Astrophysics Data System (ADS)

    Springer, Charles S., Jr.

    2007-03-01

    Motions of the spin-bearing molecules can have profound effects on the very nature (the exponentiality) of the macroscopic NMR signal. Quantitative mechanistic protocols often involve varying the equilibrium molecular kinetics (usually by temperature change) relative to the ``NMR time-scale'' (SS-1), usually ill-defined as the absolute difference of resonance frequencies [|δφ|] in sites between which spins are exchanged. This holds true for the equilibrium water molecule exchange between tissue compartments and distinct populations. However, in vivo studies must [by regulation] be isothermal, and the tissue ^1H2O MRI signals remain essentially isochronous [δφ = 0]. In NMR, an equilibrium process is manifest in the context of its ``exchange condition.'' It only ``appears'' to be fast or slow by comparison of its actual rate constant with its system ``shutter-speed'' (SS). [A nonzero δφ is the first, but not only, SS: its dimension is reciprocal time.] The process kinetics can be measured only if its NMR condition is varied at least partway between the fast- and slow exchange limits. In an isothermal study with no catalyst, this can be accomplished only by varying the pertinent SS. An MRI contrast reagent (CR) increases the laboratory frame ^1H2O relaxation rate constant, Ri [≡ (Ti)-1; i = 1,2]. For an isochronous exchange process, the SS is the intrinsic |δRi| for the sites. In quantitative dynamic-contrast-enhanced (DCE) studies, analytical pharmacokinetic modeling is accomplished on region-of-interest (ROI) or pixel by pixel ^1H2O signal time-courses following bolus CR injections. Accounting for the equilibrium transendothelial and transcytolemmal water interchange processes (a three-site exchange situation) is crucial for modeling accuracy: the relevant SS values vary during the CR bolus passage. This is so for DCE studies of cancer, multiple sclerosis, and myocardial blood flow variation. It is necessary for the successful discrimination of malignant

  14. Practical aspects of NMR signal assignment in larger and challenging proteins

    PubMed Central

    Frueh, Dominique P.

    2014-01-01

    NMR has matured into a technique routinely employed for studying proteins in near physiological conditions. However, applications to larger proteins are impeded by the complexity of the various correlation maps necessary to assign NMR signals. This article reviews the data analysis techniques traditionally employed for resonance assignment and describes alternative protocols necessary for overcoming challenges in large protein spectra. In particular, simultaneous analysis of multiple spectra may help overcome ambiguities or may reveal correlations in an indirect manner. Similarly, visualization of orthogonal planes in a multidimensional spectrum can provide alternative assignment procedures. We describe examples of such strategies for assignment of backbone, methyl, and nOe resonances. We describe experimental aspects of data acquisition for the related experiments and provide guidelines for preliminary studies. Focus is placed on large folded monomeric proteins and examples are provided for 37, 48, 53, and 81 kDa proteins. PMID:24534088

  15. Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization

    NASA Astrophysics Data System (ADS)

    Johnson, Robert L.; Schmidt-Rohr, Klaus

    2014-02-01

    A simple new method is presented that yields quantitative solid-state magic-angle spinning (MAS) 13C NMR spectra of organic materials with good signal-to-noise ratios. It achieves long (>10 ms) cross polarization (CP) from 1H without significant magnetization losses due to relaxation and with a moderate duty cycle of the radio-frequency irradiation, by multiple 1-ms CP periods alternating with 1H spin-lattice relaxation periods that repolarize the protons. The new method incorporates previous techniques that yield less distorted CP/MAS spectra, such as a linear variation (“ramp”) of the radio-frequency field strength, and it overcomes their main limitation, which is T1ρ relaxation of the spin-locked 1H magnetization. The ramp of the radio-frequency field strength and the asymptotic limit of cross polarization makes the spectral intensity quite insensitive to the exact field strengths used. The new multiCP pulse sequence is a “drop-in” replacement for previous CP methods and produces no additional data-processing burden. Compared to the only reliable quantitative 13C NMR method for unlabeled solids previously available, namely direct-polarization NMR, the measuring time is reduced by more than a factor of 50, enabling higher-throughput quantitative NMR studies. The new multiCP technique is validated with 14-kHz MAS on amino-acid derivatives, plant matter, a highly aromatic humic acid, and carbon materials made by low-temperature pyrolysis.

  16. The registration of signals from the nuclei other than protons at 0.5 T MRI scanner

    NASA Astrophysics Data System (ADS)

    Anisimov, N.; Volkov, D.; Gulyaev, M.; Pavlova, O.; Pirogov, Yu

    2016-02-01

    The practical aspects of the adaptation of the medical MRI scanner for multinuclear applications are considered. Examples of high resolution NMR spectra for nuclei 19F, 31P, 23Na, 11B, 13C, 2H, and also NQR spectrum for 35Cl are given. Possibilities of MRI for nuclei 19F, 31P, 23Na, 11B are shown. Experiments on registration of signals 19F from the fluorocarbons injected in laboratory animals are described.

  17. Distinguishing Phosphate Structural Defects From Inclusions in Calcite and Aragonite by NMR Spectroscopy (Invited)

    NASA Astrophysics Data System (ADS)

    Phillips, B. L.; Mason, H. E.

    2010-12-01

    Variations in the concentration of minor and trace elements are being studied extensively for potential use as proxies to infer environmental conditions at the time of mineral deposition. Such proxies rely fundamentally on a relationship between the activities in the solution and in the solid that would seem to be simple only in the case that the species substitutes into the mineral structure. Other incorporation mechanisms are possible, including inclusions (both mineral and fluid) and occlusion of surface adsorbate complexes, that might be sensitive to other factors, such as crystallization kinetics, and difficult to distinguish analytically. For example, it is known from mineral adsorption studies that surface precipitates can be nanoscopic, and might not be apparent at resolutions typical of microchemical analysis. Techniques by which a structural relationship between the substituting element and the host mineral structure are needed to provide a sound basis for geochemical proxies. NMR spectroscopy offers methods for probing such spatial relationship. We are using solid-state NMR spectroscopy to investigate phosphate incorporation in calcium carbonate minerals, including calcite speleothems and coral skeletal aragonite, at concentrations of the order 100 μg P g -1. In 31P NMR spectra of most samples, narrow peaks arising from crystalline inclusions can be resolved, including apatite in coral aragonite and an unidentified phase in calcite. All samples studied yield also a broad 31P signal, centered near chemical shifts of +3 to +4 ppm, that could be assigned to phosphate defects in the host mineral and from which the fraction of P occurring in the carbonate mineral structure can be determined. To test this assignment we applied rotational-echo double-resonance (REDOR) NMR techniques that probe the molecular-scale proximity of carbonate groups to the phosphate responsible for the broad 31P peak. This method measures dipole-dipole coupling between 31P of

  18. Intermolecular (119)Sn,(31)P Through-Space Spin-Spin Coupling in a Solid Bivalent Tin Phosphido Complex.

    PubMed

    Arras, Janet; Eichele, Klaus; Maryasin, Boris; Schubert, Hartmut; Ochsenfeld, Christian; Wesemann, Lars

    2016-05-01

    A bivalent tin complex [Sn(NP)2] (NP = [(2-Me2NC6H4)P(C6H5)](-)) was prepared and characterized by X-ray diffraction and solution and solid-state nuclear magnetic resonance (NMR) spectroscopy. In agreement with the X-ray structures of two polymorphs of the molecule, (31)P and (119)Sn CP/MAS NMR spectra revealed one crystallographic phosphorus and tin site with through-bond (1)J((117/119)Sn,(31)P) and through-space (TS)J((117/119)Sn,(31)P) spin-spin couplings. Density functional theory (DFT) calculations of the NMR parameters confirm the experimental data. The observation of through-space (TS)J((117/119)Sn,(31)P) couplings was unexpected, as the distances of the phosphorus atoms of one molecule and the tin atom of the neighboring molecule (>4.6 Å) are outside the sum of the van der Waals radii of the atoms P and Sn (4.32 Å). The intermolecular Sn···P separations are clearly too large for bonding interactions, as supported by a natural bond orbital (NBO) analysis. PMID:27071033

  19. Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI

    PubMed Central

    Seifert, Alan C.; Li, Cheng; Rajapakse, Chamith S.; Bashoor- Zadeh, Mahdieh; Bhagat, Yusuf A.; Wright, Alexander C.; Zemel, Babette S.; Zavaliangos, Antonios; Wehrli, Felix W.

    2014-01-01

    Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-CT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression. Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: R2 = 0.32, p < 0.005; BW: R2 = 0.63, p < 0.0005) and age (31P: R2 = 0.39, p < 0.05; BW: R2 = 0.70, p < 0.0001), and positively with pQCT density (31P: R2 = 0.46, p < 0.05; BW: R2 = 0.50, p < 0.005). In contrast, the bone mineralization ratio (expressed here as the ratio of 31P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware. PMID:24846186

  20. Signal enhancement in protein NMR using the spin-noise tuning optimum.

    PubMed

    Nausner, Martin; Goger, Michael; Bendet-Taicher, Eli; Schlagnitweit, Judith; Jerschow, Alexej; Müller, Norbert

    2010-11-01

    We have assessed the potential of an alternative probe tuning strategy based on the spin-noise response for application in common high-resolution multi-dimensional biomolecular NMR experiments with water signal suppression on aqueous and salty samples. The method requires the adjustment of the optimal tuning condition, which may be offset by several 100 kHz from the conventional tuning settings using the noise response of the water protons as an indicator. Although the radio frequency-pulse durations are typically longer under such conditions, signal-to-noise gains of up to 22% were achieved. At salt concentrations up to 100 mM a substantial sensitivity gain was observed. PMID:20924647

  1. Non-Linear Signal Detection Improvement by Radiation Damping in Single-Pulse NMR Spectra

    PubMed Central

    Schlagnitweit, Judith; Morgan, Steven W; Nausner, Martin; Müller, Norbert; Desvaux, Hervé

    2012-01-01

    When NMR lines overlap and at least one of them is affected by radiation damping, the resonance line shapes of all lines are no longer Lorentzian. We report the appearance of narrow signal distortions, which resemble hole-burnt spectra. This new experimental phenomenon facilitates the detection of tiny signals hidden below the main resonance. Theoretical analysis based on modified Maxwell–Bloch equations shows that the presence of strong transverse magnetization creates a feedback through the coil, which influences the magnetization of all spins with overlapping resonance lines. In the time domain this leads to cross-precession terms between magnetization densities, which ultimately cause non-linear behavior. Numerical simulations corroborate this interpretation. PMID:22266720

  2. Measuring the Longitudinal NMR Relaxation Rates of Fast Relaxing Nuclei Using a Signal Eliminating Relaxation Filter

    NASA Astrophysics Data System (ADS)

    Hansen, D. Flemming; Led, Jens J.

    2001-08-01

    A new experiment for selective determination of the relaxation rates of fast relaxing NMR signals is presented. The experiment is derived from the conventional inversion recovery experiment by substituting the 180° inversion pulse of this experiment with a signal eliminating relaxation filter (SERF) consisting of three 180° pulses separated by two variable delays, Δ1 and Δ2. The SERF experiment allows a selective suppression of signals with relaxation rates below a given limit while monitoring the relaxation of faster relaxing signals. The experiment was tested on a sample of 20% oxidized plastocyanin from Anabaena variabilis, where the fast exchange of an electron between the reduced (diamagnetic) and the oxidized (paramagnetic) form results in a series of average signals with widely different relaxation rates. To ensure an optimum extraction of information from the experimental data, the relaxation rates were obtained from the SERF experiment by a simultaneous analysis of all the FIDs of the experiment using a fast linear prediction model method developed previously. The reliability of the relaxation rates obtained from the SERF experiment was confirmed by a comparison of the rates with the corresponding rates obtained from a conventional inversion recovery experiment.

  3. Prediction of 31P nuclear magnetic resonance chemical shifts for phosphines

    NASA Astrophysics Data System (ADS)

    Tong, Jianbo; Liu, Shuling; Zhang, Shengwan; Li, Shengshi Z.

    2007-07-01

    Quantitative relationships of the 31P NMR chemical shifts of the phosphorus atoms in 291 phosphines with the atomic ionicity index (INI) and stereoscopic effect parameters ( ɛα, ɛβ, ɛγ) were primarily investigated in this paper for modeling some fundamental quantitative structure-spectroscopy relationships (QSSR). The results indicated that the 31P NMR chemical shifts of phosphines can be described as the quantitative equation by multiple linear regression (MLR): δp (ppm) = -174.0197 - 2.6724 INI + 40.4755 ɛα + 15.1141 ɛβ - 3.1858 ɛγ, correlation coefficient R = 0.9479, root mean square error (rms) = 13.9, and cross-validated predictive correlation coefficient was found by using the leave-one-out procedure to be Q2 = 0.8919. Furthermore, through way of random sampling, the estimative stability and the predictive power of the proposed MLR model were examined by constructing data set randomly into both the internal training set and external test set of 261 and 30 compounds, respectively, and then the chemical shifts were estimated and predicted with the training correlation coefficient R = 0.9467 and rms = 13.4 and the external predicting correlation coefficient Qext = 0.9598 and rms = 10.8. A partial least square model was developed that produced R = 0.9466, Q = 0.9407 and Qext = 0.9599, respectively. Those good results provided a new, simple, accurate and efficient methodology for calculating 31P NMR chemical shifts of phosphines.

  4. Irreversible Catalyst Activation Enables Hyperpolarization and Water Solubility for NMR Signal Amplification by Reversible Exchange

    PubMed Central

    2015-01-01

    Activation of a catalyst [IrCl(COD)(IMes)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene; COD = cyclooctadiene)] for signal amplification by reversible exchange (SABRE) was monitored by in situ hyperpolarized proton NMR at 9.4 T. During the catalyst-activation process, the COD moiety undergoes hydrogenation that leads to its complete removal from the Ir complex. A transient hydride intermediate of the catalyst is observed via its hyperpolarized signatures, which could not be detected using conventional nonhyperpolarized solution NMR. SABRE enhancement of the pyridine substrate can be fully rendered only after removal of the COD moiety; failure to properly activate the catalyst in the presence of sufficient substrate can lead to irreversible deactivation consistent with oligomerization of the catalyst molecules. Following catalyst activation, results from selective RF-saturation studies support the hypothesis that substrate polarization at high field arises from nuclear cross-relaxation with hyperpolarized 1H spins of the hydride/orthohydrogen spin bath. Importantly, the chemical changes that accompanied the catalyst’s full activation were also found to endow the catalyst with water solubility, here used to demonstrate SABRE hyperpolarization of nicotinamide in water without the need for any organic cosolvent—paving the way to various biomedical applications of SABRE hyperpolarization methods. PMID:25372972

  5. Signal Selection in High-Resolution NMR by Pulsed Field Gradients. I. Geometrical Analysis

    NASA Astrophysics Data System (ADS)

    Mitschang, Lorenz

    1999-03-01

    A geometrical description for the selection of coherence transfer pathways in high resolution NMR by the application of pulsed field gradients along three orthogonal directions in space is presented. The response of the spin system is one point of the three-dimensional Fourier transform of the sample volume affected by a sequence of field gradients. The property that a pathway is retained (or suppressed) when a sequence of field gradients is applied is expressed by the property of vectors, representing the pathway and the sequence, respectively, to be orthogonal (or not orthogonal). Ignoring imperfections of RF pulses, and with the exception of sensitivity enhanced experiments and experiments where the relevant coherence order is zero while field gradients are applied, it is shown that at most only half of the relevant pathways, as compared to a phase cycled experiment, are retained when field gradients are used for signal selection.

  6. Differences in Lysine pKa Values May Be Used to Improve NMR Signal Dispersion in Reductively Methylated Proteins

    PubMed Central

    Abraham, Sherwin J.; Kobayashi, Tomoyoshi; Solaro, R. John; Gaponenko, Vadim

    2009-01-01

    Summary Reductive methylation of lysine residues in proteins offers a way to introduce 13C methyl groups into otherwise unlabeled molecules. The 13C methyl groups on lysines possess favorable relaxation properties that allow highly sensitive NMR signal detection. One of the major limitations in the use of reductive methylation in NMR is the signal overlap of 13C methyl groups in NMR spectra. Here we show that the uniform influence of the solvent on chemical shifts of exposed lysine methyl groups could be overcome by adjusting the pH of the buffering solution closer to the pKa of lysine side chains. Under these conditions, due to variable pKa values of individual lysine side chains in the protein of interest different levels of lysine protonation are observed. These differences are reflected in the chemical shift differences of methyl groups in reductively methylated lysines. We show that this approach is successful in four different proteins including Ca2+-bound Calmodulin, Lysozyme, Ca2+-bound Troponin C, and Glutathione S-Transferase. In all cases significant improvement in NMR spectral resolution of methyl signals in reductively methylated proteins was obtained. The increased spectral resolution helps with more precise characterization of protein structural rearrangements caused by ligand binding as shown by studying binding of Calmodulin antagonist trifluoperazine to Calmodulin. Thus, this approach may be used to increase resolution in NMR spectra of 13C methyl groups on lysine residues in reductively methylated proteins that enhances the accuracy of protein structural assessment. PMID:19280122

  7. Hypophosphite ion as a 31P nuclear magnetic resonance probe of membrane potential in erythrocyte suspensions.

    PubMed Central

    Kirk, K; Kuchel, P W; Labotka, R J

    1988-01-01

    Hypophosphorus acid has a single pKa of 1.1 and at physiological pH values it is therefore present almost entirely as the univalent hypophosphite ion. When added to a red cell suspension the ion crosses the cell membrane rapidly, via the anion exchange protein, and the intra- and extracellular populations of the ion give rise to separate 31P NMR resonances. From a single 31P NMR spectrum it was possible to determine the relative amounts of hypophosphite in the intra- and extracellular compartments and thereby estimate the corresponding concentrations. The ratio of intracellular to extracellular hypophosphite concentration was independent of the total hypophosphite concentration for cells suspended in NaCl solutions and was independent of hematocrit. The hypophosphite distribution ratio increased as extracellular NaCl was replaced iso-osmotically with citrate or sucrose, through it remained very similar to the corresponding hydrogen ion distribution ratio. Incorporation of the hypophosphite distribution ratio into the Nernst equation yielded an estimate of the membrane potential. For cells suspended in NaCl solutions the estimated potential was consistently around -10 mV. PMID:3207824

  8. Comprehensive signal assignment of 13C-labeled lignocellulose using multidimensional solution NMR and 13C chemical shift comparison with solid-state NMR.

    PubMed

    Komatsu, Takanori; Kikuchi, Jun

    2013-09-17

    A multidimensional solution NMR method has been developed using various pulse programs including HCCH-COSY and (13)C-HSQC-NOESY for the structural characterization of commercially available (13)C labeled lignocellulose from potatoes (Solanum tuberosum L.), chicory (Cichorium intybus), and corn (Zea mays). This new method allowed for 119 of the signals in the (13)C-HSQC spectrum of lignocelluloses to be assigned and was successfully used to characterize the structures of lignocellulose samples from three plants in terms of their xylan and xyloglucan structures, which are the major hemicelluloses in angiosperm. Furthermore, this new method provided greater insight into fine structures of lignin by providing a high resolution to the aromatic signals of the β-aryl ether and resinol moieties, as well as the diastereomeric signals of the β-aryl ether. Finally, the (13)C chemical shifts assigned in this study were compared with those from solid-state NMR and indicated the presence of heterogeneous dynamics in the polysaccharides where rigid cellulose and mobile hemicelluloses moieties existed together. PMID:24010724

  9. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor.

    PubMed

    Isogai, Shin; Deupi, Xavier; Opitz, Christian; Heydenreich, Franziska M; Tsai, Ching-Ju; Brueckner, Florian; Schertler, Gebhard F X; Veprintsev, Dmitry B; Grzesiek, Stephan

    2016-02-11

    G protein-coupled receptors (GPCRs) are physiologically important transmembrane signalling proteins that trigger intracellular responses upon binding of extracellular ligands. Despite recent breakthroughs in GPCR crystallography, the details of ligand-induced signal transduction are not well understood owing to missing dynamical information. In principle, such information can be provided by NMR, but so far only limited data of functional relevance on few side-chain sites of eukaryotic GPCRs have been obtained. Here we show that receptor motions can be followed at virtually any backbone site in a thermostabilized mutant of the turkey β1-adrenergic receptor (β1AR). Labelling with [(15)N]valine in a eukaryotic expression system provides over twenty resolved resonances that report on structure and dynamics in six ligand complexes and the apo form. The response to the various ligands is heterogeneous in the vicinity of the binding pocket, but gets transformed into a homogeneous readout at the intracellular side of helix 5 (TM5), which correlates linearly with ligand efficacy for the G protein pathway. The effect of several pertinent, thermostabilizing point mutations was assessed by reverting them to the native sequence. Whereas the response to ligands remains largely unchanged, binding of the G protein mimetic nanobody NB80 and G protein activation are only observed when two conserved tyrosines (Y227 and Y343) are restored. Binding of NB80 leads to very strong spectral changes throughout the receptor, including the extracellular ligand entrance pocket. This indicates that even the fully thermostabilized receptor undergoes activating motions in TM5, but that the fully active state is only reached in presence of Y227 and Y343 by stabilization with a G protein-like partner. The combined analysis of chemical shift changes from the point mutations and ligand responses identifies crucial connections in the allosteric activation pathway, and presents a general experimental

  10. Hyperpolarization of “Neat” Liquids by NMR Signal Amplification by Reversible Exchange

    PubMed Central

    2016-01-01

    We report NMR Signal Amplification by Reversible Exchange (SABRE) hyperpolarization of the rare isotopes in “neat” liquids, each composed only of an otherwise pure target compound with isotopic natural abundance (n.a.) and millimolar concentrations of dissolved catalyst. Pyridine (Py) or Py derivatives are studied at 0.4% isotopic natural abundance 15N, deuterated, 15N enriched, and in various combinations using the SABRE-SHEATH variant (microTesla magnetic fields to permit direct 15N polarization from parahydrogen via reversible binding and exchange with an Ir catalyst). We find that the dilute n.a. 15N spin bath in Py still channels spin order from parahydrogen to dilute 15N spins, without polarization losses due to the presence of 14N or 2H. We demonstrate P15N ≈ 1% (a gain of 2900 fold relative to thermal polarization at 9.4 T) at high substrate concentrations. This fundamental finding has a significant practical benefit for screening potentially hyperpolarizable contrast agents without labeling. The capability of screening at n.a. level of 15N is demonstrated on examples of mono- and dimethyl-substituted Py (picolines and lutidines previously identified as promising pH sensors), showing that the presence of a methyl group in the ortho position significantly decreases SABRE hyperpolarization. PMID:26029349

  11. Time-Domain Frequency Correction Method for Averaging Low-Field NMR Signals Acquired in Urban Laboratory Environment

    NASA Astrophysics Data System (ADS)

    Qiu, Long-Qing; Liu, Chao; Dong, Hui; Xu, Lu; Zhang, Yi; Hans-Joachim, Krause; Xie, Xiao-Ming; Andreas, Offenhäusser

    2012-10-01

    Using a second-order helium-cooled superconducting quantum interference device gradiometer as the detector, ultra-low-field nuclear magnetic resonance (ULF-NMR) signals of protons are recorded in an urban environment without magnetic shielding. The homogeneity and stability of the measurement field are investigated. NMR signals of protons are studied at night and during working hours. The Larmor frequency variation caused by the fluctuation of the external magnetic field during daytime reaches around 5 Hz when performing multiple measurements for about 10 min, which seriously affects the results of averaging. In order to improve the performance of the averaged data, we suggest the use of a data processor, i.e. the so-called time-domain frequency correction (TFC). For a 50-times averaged signal spectrum, the signal-to-noise ratio is enhanced from 30 to 120 when applying TFC while preserving the NMR spectrum linewidth. The TFC is also applied successfully to the measurement data of the hetero-nuclear J-coupling in 2,2,2-trifluoroethanol.

  12. A practical guide for the setup of a 1H-31P-13C double cross-polarization (DCP) experiment.

    PubMed

    Ciesielski, Wlodzimierz; Kassassir, Hassan; Potrzebowski, Marek J

    2011-01-01

    O-phospho-L-threonine is a convenient sample to setup a (1)H-(31)P-(13)C double cross-polarization (DCP) Hartmann-Hahn match. The (1)H-(31)P-(13)C technique is extremely sensitive to the rate of the sample spinning. Both zero-quantum (ZQ) and double-quantum (DQ) cross-polarization operate at an average spinning rate (6-7 kHz). At higher spinning rates (10 kHz), the DQCP mechanism dominates and leads to a reduction of signal intensity, in particular for lower (31)P RF field strength. The application of two shape pulses during the second cross-polarization greatly improves the signal to noise ratio allowing the recording of better quality spectra. (31)P-(13)C spectrally induced filtering in combination with cross-polarization (SPECIFIC-CP) experiments can be carried out under ZQCP and DQCP conditions if careful attention is paid to the choice of RF field amplitudes and carriers Ω. Application of 1D and 2D (1)H-(31)P-(13)C experiments is demonstrated on model samples; disodium ATP hydrate and O-phospho-L-tyrosine. PMID:21440422

  13. (14)N overtone NMR under MAS: signal enhancement using symmetry-based sequences and novel simulation strategies.

    PubMed

    Haies, Ibraheem M; Jarvis, James A; Bentley, Harry; Heinmaa, Ivo; Kuprov, Ilya; Williamson, Philip T F; Carravetta, Marina

    2015-03-01

    Overtone (14)N NMR spectroscopy is a promising route for the direct detection of (14)N signals with good spectral resolution. Its application is currently limited, however, by the absence of efficient polarization techniques for overtone signal enhancement and the lack of efficient numerical simulation techniques to aid in both the development of new methods and the analysis and interpretation of experimental data. In this paper we report a novel method for the transfer of polarization from (1)H to the (14)N overtone using symmetry-based R-sequences that overcome many of the limitations of adiabatic approaches that have worked successfully on static samples. Refinement of these sequences and the analysis of the resulting spectra have been facilitated through the development of an efficient simulation strategy for (14)N overtone NMR spectroscopy of spinning samples, using effective Hamiltonians on top of Floquet and Fokker-Planck equations. PMID:25662410

  14. 1H and 13C NMR signal assignment of cucurbitacin derivatives from Citrullus colocynthis (L.) Schrader and Ecballium elaterium L. (Cucurbitaceae).

    PubMed

    Seger, Christoph; Sturm, Sonja; Mair, Maria-Elisabeth; Ellmerer, Ernst P; Stuppner, Hermann

    2005-06-01

    2D NMR-derived 1H and 13C NMR signal assignments of six structurally closely related cucurbitacin derivatives are presented. The investigated 2-O-beta-D-glucopyranosylcucurbitacins I, J, K, and L were obtained from Citrullus colocynthis (L.) Schrader whereas the aglyca cucurbitacin E and I were isolated from Ecballium elaterium L. PMID:15772995

  15. Characterization of phosphorus in sludges and sludge amended soils using /sup 31/P nuclear magnetic resonance spectroscopy

    SciTech Connect

    Hinedi, Z.R.

    1987-01-01

    /sup 31/P NMR spectroscopy was an effective tool in the characterization of phosphorus (P) in municipal sewage sludges and sludge amended soils. Waste activated and aerobically digested sludges contained higher percentages of organic P than anaerobically digested sludges. The /sup 31/P Cross Polarization Magic Angle Spinning (/sup 31/P CP MAS) spectrum of an aerobically digested sludge indicated the presence of a significant organic P fraction over the inorganic P fraction. The /sup 31/P NMR spectra of sludge-borne phospholipids dissolved in cholate, to which a complexing agent was added, were found to be better resolved than those dissolved in chloroform. Phytic acid and ribonucleic acid were shown to be constituents of organic P in sludges based upon their susceptibility to different phosphoric ester hydrolases. Sludge amended soils were incubated to examine the transformations of sludge-borne P in soils. It was found that soil pH affected the biodegradation of organic P as well as that of pyrophosphate. Phosphorus-monoesters and pyrophosphates hydrolyzed after 70 days of incubation under alkaline soil condition while they persisted beyond 140 days of incubation under acid soil condition. The P-diesters completely hydrolyzed after 28 days of incubation under acid and alkaline soil conditions. The solubility study showed that the P in a sludge amended soil was undersaturated with respect to Ca-P, Fe-P and Al-P minerals considered. The finding suggested that the activity of the P solid phase under study might be less than unity which would be indicative of a coprecipitated solid solution.

  16. Phosphorus-31 NMR spectra of ethidium, quinacrine, and daunomycin complexes with poly(adenylic acid)ter dot poly(uridylic acid) RNA duplex and calf thymus DNA

    SciTech Connect

    Gorenstein, D.G.; Lai, K. )

    1989-04-04

    {sup 31}P NMR provides a convenient monitor of the phosphate ester backbone conformational changes upon binding of the intercalating drugs ethidium, quinacrine, and daunomycin to sonicated poly(A){center dot}poly(U) and calf thymus DNA. {sup 31}P chemical shifts can also be used to assess differences in the duplex unwinding angles in the presence of the drug. Thus a new {sup 31}P signal, 1.8-2.2 ppm downfield from the double-stranded helix signals, is observed in the ethidium ion-poly(A){center dot}poly(U) complex. This signal arises from phosphates which are in perturbed environments due to intercalation of the drug. This is in keeping with the hypothesis that the P-O ester torsional angle in phosphates linking the intercalated base pairs is more trans-like. Similar though smaller deshielding of the {sup 31}P signals is observed in sonicated poly(A){center dot}poly(U)-quinacrine complexes as well as in the daunomycin complexes. The effect of added ethidium ion, quinacrine, and daunomycin on the {sup 31}P spectra of sonicated calf thymus DNA is consistent with Wilson and Jones' (1982) earlier study. In these drug-DNA complexes the drug produces a gradual downfield shift in the DNA {sup 31}P signal without the appearance of a separate downfield peak. These differences are attributed to differences in the rate of chemical exchange of the drug between free and bound duplex states. The previous correlation of {sup 31}P chemical shift with drug duplex unwinding angle is confirmed for both the RNA and DNA duplexes.

  17. Dynamic and structural aspects of PEGylated liposomes monitored by NMR.

    PubMed

    Leal, Cecília; Rögnvaldsson, Sibylla; Fossheim, Sigrid; Nilssen, Esben A; Topgaard, Daniel

    2008-09-15

    Proton-detected NMR diffusion and (31)P NMR chemical shifts/bandwidths measurements were used to investigate a series of liposomal formulations where size and PEGylation extent need to be controlled for ultrasound mediated drug release. The width of the (31)P line is sensitive to aggregate size and shape and self-diffusion (1)H NMR conveys information about diffusional motion, size, and PEGylation extent. Measurements were performed on the formulations at their original pH, osmolality, and lipid concentration. These contained variable amounts of PEGylated phospholipid (herein referred to as PEG-lipid) and cholesterol. At high levels of PEG-lipid (11.5 and 15 mol%) the self-diffusion (1)H NMR revealed the coexistence of two entities with distinct diffusion coefficients: micelles (1.3 to 3x10(-11) m(2)/s) and liposomes (approximately 5x10(-12) m(2)/s). The (31)P spectra showed a broad liposome signal and two distinct narrow lines that were unaffected by temperature. The narrow lines arise from mixed micelles comprising both PEG-lipids and phospholipids. The echo decay in the diffusion experiments could be described as a sum of exponentials revealing that the exchange of PEG-lipid between liposomes and micellar aggregates is slower than the experimental observation time. For low amounts of PEG-lipid (1 and 4.5 mol%) the (31)P spectra consisted of a broad signal typically obtained for liposomes and the diffusion data were best described by a single exponential decay attributed solely to liposomes. For intermediate amounts of PEG-lipid (8 mol%), micellization started to occur and the diffusion data could no longer be fitted to a single or bi-exponential decay. Instead, the data were best described by a log-normal distribution of diffusion coefficients. The most efficient PEG-lipid incorporation in liposomes (about 8 mol%) was achieved for lower molecular weight PEG (2000 Da vs 5000 Da) and when the PEG-lipid acyl chain length matched the acyl chain length of the

  18. A View into the Blind Spot: Solution NMR Provides New Insights into Signal Transduction Across the Lipid Bilayer

    PubMed Central

    Call, Matthew E.; Chou, James J.

    2011-01-01

    One of the most fundamental problems in cell biology concerns how cells communicate with their surroundings through surface receptors. The last few decades have seen major advances in understanding the mechanisms of receptor-ligand recognition and the biochemical consequences of such encounters. This review describes the emergence of solution nuclear magnetic resonance (NMR) spectroscopy as a powerful tool for the structural characterization of membrane-associated protein domains involved in transmembrane signaling. We highlight particularly instructive examples from the fields of immunoreceptor biology, growth hormone signaling, and cell adhesion. These signaling complexes comprise multiple subunits each spanning the membrane with a single helical segment that links extracellular ligand-binding domains to the cell interior. The apparent simplicity of this domain organization belies the complexity involved in cooperative assembly of functional structures that translate information across the cellular boundary. PMID:21134635

  19. Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Pecher, Oliver; Bayley, Paul M.; Liu, Hao; Liu, Zigeng; Trease, Nicole M.; Grey, Clare P.

    2016-04-01

    We have developed and explored the use of a new Automatic Tuning Matching Cycler (ATMC) in situ NMR probe system to track the formation of intermediate phases and investigate electrolyte decomposition during electrochemical cycling of Li- and Na-ion batteries (LIBs and NIBs). The new approach addresses many of the issues arising during in situ NMR, e.g., significantly different shifts of the multi-component samples, changing sample conditions (such as the magnetic susceptibility and conductivity) during cycling, signal broadening due to paramagnetism as well as interferences between the NMR and external cycler circuit that might impair the experiments. We provide practical insight into how to conduct ATMC in situ NMR experiments and discuss applications of the methodology to LiFePO4 (LFP) and Na3V2(PO4)2F3 cathodes as well as Na metal anodes. Automatic frequency sweep 7Li in situ NMR reveals significant changes of the strongly paramagnetic broadened LFP line shape in agreement with the structural changes due to delithiation. Additionally, 31P in situ NMR shows a full separation of the electrolyte and cathode NMR signals and is a key feature for a deeper understanding of the processes occurring during charge/discharge on the local atomic scale of NMR. 31P in situ NMR with "on-the-fly" re-calibrated, varying carrier frequencies on Na3V2(PO4)2F3 as a cathode in a NIB enabled the detection of different P signals within a huge frequency range of 4000 ppm. The experiments show a significant shift and changes in the number as well as intensities of 31P signals during desodiation/sodiation of the cathode. The in situ experiments reveal changes of local P environments that in part have not been seen in ex situ NMR investigations. Furthermore, we applied ATMC 23Na in situ NMR on symmetrical Na-Na cells during galvanostatic plating. An automatic adjustment of the NMR carrier frequency during the in situ experiment ensured on-resonance conditions for the Na metal and

  20. Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries.

    PubMed

    Pecher, Oliver; Bayley, Paul M; Liu, Hao; Liu, Zigeng; Trease, Nicole M; Grey, Clare P

    2016-04-01

    We have developed and explored the use of a new Automatic Tuning Matching Cycler (ATMC) in situ NMR probe system to track the formation of intermediate phases and investigate electrolyte decomposition during electrochemical cycling of Li- and Na-ion batteries (LIBs and NIBs). The new approach addresses many of the issues arising during in situ NMR, e.g., significantly different shifts of the multi-component samples, changing sample conditions (such as the magnetic susceptibility and conductivity) during cycling, signal broadening due to paramagnetism as well as interferences between the NMR and external cycler circuit that might impair the experiments. We provide practical insight into how to conduct ATMC in situ NMR experiments and discuss applications of the methodology to LiFePO4 (LFP) and Na3V2(PO4)2F3 cathodes as well as Na metal anodes. Automatic frequency sweep (7)Li in situ NMR reveals significant changes of the strongly paramagnetic broadened LFP line shape in agreement with the structural changes due to delithiation. Additionally, (31)P in situ NMR shows a full separation of the electrolyte and cathode NMR signals and is a key feature for a deeper understanding of the processes occurring during charge/discharge on the local atomic scale of NMR. (31)P in situ NMR with "on-the-fly" re-calibrated, varying carrier frequencies on Na3V2(PO4)2F3 as a cathode in a NIB enabled the detection of different P signals within a huge frequency range of 4000ppm. The experiments show a significant shift and changes in the number as well as intensities of (31)P signals during desodiation/sodiation of the cathode. The in situ experiments reveal changes of local P environments that in part have not been seen in ex situ NMR investigations. Furthermore, we applied ATMC (23)Na in situ NMR on symmetrical Na-Na cells during galvanostatic plating. An automatic adjustment of the NMR carrier frequency during the in situ experiment ensured on-resonance conditions for the Na metal and

  1. Differential cross sections measurement of 31P(p,pγ1)31P reaction for PIGE applications

    NASA Astrophysics Data System (ADS)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.

    2016-09-01

    Differential cross sections of proton induced gamma-ray emission from the 31P(p,pγ1)31P (Eγ = 1266 keV) nuclear reaction were measured in the proton energy range of 1886-3007 keV at the laboratory angle of 90°. For these measurements a thin Zn3P2 target evaporated onto a self-supporting C film was used. The gamma-rays and backscattered protons were detected simultaneously. An HPGe detector placed at an angle of 90° with respect to the beam direction was employed to collect gamma-rays while an ion implanted Si detector placed at a scattering angle of 165° was used to detect backscattered protons. Simultaneous collection of gamma-rays and RBS spectra is a great advantage of this approach which makes differential cross-section measurements independent on the collected beam charge. The obtained cross-sections were compared with the previously only measured data in the literature. The validity of the measured differential cross sections was verified through a thick target benchmarking experiment. The overall systematic uncertainty of cross section values was estimated to be better than ±9%.

  2. 31P magnetization transfer measurements of Pi→ATP flux in exercising human muscle

    PubMed Central

    Savage, David B.; Williams, Guy B.; Porter, David; Carpenter, T. Adrian; Brindle, Kevin M.; Kemp, Graham J.

    2016-01-01

    Fundamental criticisms have been made over the use of 31P magnetic resonance spectroscopy (MRS) magnetization transfer estimates of inorganic phosphate (Pi)→ATP flux (VPi-ATP) in human resting skeletal muscle for assessing mitochondrial function. Although the discrepancy in the magnitude of VPi-ATP is now acknowledged, little is known about its metabolic determinants. Here we use a novel protocol to measure VPi-ATP in human exercising muscle for the first time. Steady-state VPi-ATP was measured at rest and over a range of exercise intensities and compared with suprabasal oxidative ATP synthesis rates estimated from the initial rates of postexercise phosphocreatine resynthesis (VATP). We define a surplus Pi→ATP flux as the difference between VPi-ATP and VATP. The coupled reactions catalyzed by the glycolytic enzymes GAPDH and phosphoglycerate kinase (PGK) have been shown to catalyze measurable exchange between ATP and Pi in some systems and have been suggested to be responsible for this surplus flux. Surplus VPi-ATP did not change between rest and exercise, even though the concentrations of Pi and ADP, which are substrates for GAPDH and PGK, respectively, increased as expected. However, involvement of these enzymes is suggested by correlations between absolute and surplus Pi→ATP flux, both at rest and during exercise, and the intensity of the phosphomonoester peak in the 31P NMR spectrum. This peak includes contributions from sugar phosphates in the glycolytic pathway, and changes in its intensity may indicate changes in downstream glycolytic intermediates, including 3-phosphoglycerate, which has been shown to influence the exchange between ATP and Pi catalyzed by GAPDH and PGK. PMID:26744504

  3. 31P MRSI and 1H MRS at 7 T: initial results in human breast cancer.

    PubMed

    Klomp, Dennis W J; van de Bank, Bart L; Raaijmakers, Alexander; Korteweg, Mies A; Possanzini, Cecilia; Boer, Vincent O; van de Berg, Cornelius A T; van de Bosch, Maurice A A J; Luijten, Peter R

    2011-12-01

    This study demonstrates the feasibility of the noninvasive determination of important biomarkers of human (breast) tumor metabolism using high-field (7-T) MRI and MRS. (31) P MRSI at this field strength was used to provide a direct method for the in vivo detection and quantification of endogenous biomarkers. These encompass phospholipid metabolism, phosphate energy metabolism and intracellular pH. A double-tuned, dual-element transceiver was designed with focused radiofrequency fields for unilateral breast imaging and spectroscopy tuned for optimized sensitivity at 7 T. T(1) -weighted three-dimensional MRI and (1) H MRS were applied for the localization and quantification of total choline compounds. (31) P MRSI was obtained within 20 min per subject and mapped in three dimensions over the breast with pixel volumes of 10 mL. The feasibility of monitoring in vivo metabolism was demonstrated in two patients with breast cancer during neoadjuvant chemotherapy, validated by ex vivo high-resolution magic angle spinning NMR and compared with data from an age-matched healthy volunteer. Concentrations of total choline down to 0.4 mM could be detected in the human breast in vivo. Levels of adenosine and other nucleoside triphosphates, inorganic phosphate, phosphocholine, phosphoethanolamine and their glycerol diesters detected in glandular tissue, as well as in tumor, were mapped over the entire breast. Altered levels of these compounds were observed in patients compared with an age-matched healthy volunteer; modulation of these levels occurred in breast tumors during neoadjuvant chemotherapy. To our knowledge, this is the first comprehensive MRI and MRS study in patients with breast cancer, which reveals detailed information on the morphology and phospholipid metabolism from volumes as small as 10 mL. This endogenous metabolic information may provide a new method for the noninvasive assessment of prognostic and predictive biomarkers in breast cancer treatment. PMID

  4. 31P-NMR study of different hypothyroid states in rat leg muscle.

    PubMed

    Kaminsky, P; Klein, M; Robin-Lherbier, B; Walker, P; Escanye, J M; Brunotte, F; Robert, J; Duc, M

    1991-12-01

    Using phosphorus nuclear magnetic resonance spectroscopy, this study was undertaken to determine the effects of experimental hypothyroidism on muscle bioenergetics. The peaks of phosphocreatine (PCr), Pi, phosphodiesters (PDE), sugar phosphomonoesters, and ATP were obtained at rest, during a 2-Hz hindleg muscle stimulation, and during a subsequent recovery period from four groups of anesthetized rats as follows: one control and three hypothyroid (HT) groups treated by propylthyouracil during 2, 4, and 6 wk, respectively. Resting spectra showed a significant rise in Pi by 30% and decreased intracellular pH and PCr/Pi in all three HT groups. PDE progressively increased to 200% of its initial value with hypothyroidism duration. Muscle stimulation did not lead to significant differences in PCr depletion. The percentage of PCr recovery is less in HT muscle than in control muscle. An abnormal H+ metabolism is obvious in all three HT groups. These results indicate abnormal bioenergetics in HT muscle and suggest an impairment of mitochondrial metabolism and of the H+ efflux. They also evoke a high sensitivity of cellular energetics to thyroid deficiency. PMID:1767830

  5. A Wet-Lab Approach to Stereochemistry Using [superscript 31]P NMR Spectroscopy

    ERIC Educational Resources Information Center

    Fenton, Owen S.; Sculimbrene, Bianca R.

    2011-01-01

    Understanding stereochemistry is an important and difficult task for students to master in organic chemistry. In both introductory and advanced courses, students are encouraged to explore the spatial relationships between molecules, but this exploration is often limited either to the lecture hall or the confines of the library. As such, we sought…

  6. Phosphitylation and Quantitative 31P-NMR Analysis of Partially Substituted Biodiesel Glycerols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a constant need for new and improved analytical techniques to monitor the quality of incoming feedstocks and their respective conversion products in the biofuels industry. Current analytical methods in the biodiesel industry include high performance liquid chromatography, gas chromatography...

  7. In vivo effects of photosynthesis inhibitors in Synechococcus as determined by /sup 31/P NMR spectroscopy

    SciTech Connect

    Thoma, W.J.; Gleason, F.K.

    1987-05-05

    Phosphorus-31 nuclear magnetic resonance spectra were obtained from darkened cells of the unicellular cyanobacterium Synechococcus sp. Resonance peaks were assigned to intracellular pools of sugar-phosphates, inorganic phosphate (P/sub i/), nucleotides, and polyphosphate. An internal pH of 7.2 was estimated from the chemical shift of the P/sub i/ resonance. Cells were then illuminated at 1600 ..mu..E m/sup -2/ s/sup -1/ photosynthetically active radiation by a fiber optic cable immersed in the cell sample. Spectra obtained after approximately 15 min of illumination showed an increase in nucleotide pools and an increase in the cytoplasmic pH to 7.6. In the presence of 0.3 mM dinitrophenol (DNP), an uncoupler of phosphorylation, spectra of illuminated cells showed an immediate decline in nucleotide pools while sugar-phosphate levels remained constant. Addition of the photosystem II (PS II) electron-transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) (7.2 ..mu..M) did not affect nucleotide levels in the cells during the time course of the experiment (15-30 min). However, an abrupt rise in the resonance in the sugar-phosphate region was noted. Spectra of DCMU-treated cells extracts indicated that one metabolite was principally responsible for the change in pool size. The metabolite was identified as 3-phosphoglyceric acid. Spectra of illuminated cells were also obtained in the presence of the natural herbicide cyanobacterin. Unlike results obtained with DNP or DCMU, spectra of cyanobacterin-treated cells showed no major changes in nucleotide or sugar-phosphate resonances. A slow decline in cytoplasmic pH was seen in the presence of cyanobacterin, indicating that the natural product affects the proton pumping mechanism in PS II.

  8. Nuclear-Overhauser-enhanced MR imaging of (31)P-containing metabolites: multipoint-Dixon vs. frequency-selective excitation.

    PubMed

    Rink, Kristian; Berger, Moritz C; Korzowski, Andreas; Breithaupt, Mathies; Biller, Armin; Bachert, Peter; Nagel, Armin M

    2015-12-01

    The purpose of this study is to develop nuclear-Overhauser-enhanced (NOE) [(1)H]-(31)P magnetic resonance imaging (MRI) based on 3D fully-balanced steady-state free precession (fbSSFP). Therefore, two implementations of a 3D fbSSFP sequence are compared using frequency-selective excitation (FreqSel) and multipoint-Dixon (MP-Dixon). (31)P-containing model solutions and four healthy volunteers were examined at field strengths of B0=3T and 7T. Maps of the distribution of phosphocreatine (PCr), inorganic phosphate (Pi), and adenosine 5´-triphosphate (ATP) in the human calf were obtained with an isotropic resolution of 1.5cm (1.0cm) in an acquisition time of 5min (10min). NOE-pulses had the highest impact on the PCr acquisitions enhancing the signal up to (82 ± 13) % at 3T and up to (37 ± 9) % at 7T. An estimation of the level of PCr in muscle tissue from [(1)H]-(31)P MRI data yielded a mean value of (33 ± 8) mM. In conclusion, direct [(1)H]-(31)P imaging using FreqSel as well as MP-Dixon is possible in clinically feasible acquisition times. FreqSel should be preferred for measurements where only a single metabolite resonance is considered. MP-Dixon performs better in terms of SNR if a larger spectral width is of interest. PMID:26248272

  9. Measurement of delta(1)J((199)Hg, (31)P) in [HgPCy3(OAc)2]2 and relativistic ZORA DFT investigations of mercury-phosphorus coupling tensors.

    PubMed

    Bryce, David L; Courchesne, Noémie Manuelle Dorval; Perras, Frédéric A

    2009-12-01

    Using 31P solid-state NMR spectroscopy, anisotropy in the indirect 199Hg-31P spin-spin coupling tensor (DeltaJ) for powdered [HgPCy3(OAc)2]2 (1) has been measured as 4700 +/- 300 Hz. Zeroth-order regular approximation (ZORA) density functional theory (DFT) calculations, including scalar and spin-orbit relativistic effects, performed on 1 and a series of other related compounds show that DeltaJ(199Hg, (31)P) arises entirely from the ZORA Fermi-contact-spin-dipolar cross term. The calculations validate assumptions made in the spectral analysis of 1 and in previous determinations of DeltaJ in powder samples, namely that J is axially symmetric and shares its principal axis system with the direct dipolar coupling tensor (D). Agreement between experiment and theory for various 199Hg, 31P spin-spin coupling anisotropies is reasonable; however, experimental values of 1J(199Hg, 31P)(iso) are significantly underestimated by the calculations. The most important improvements in the agreement were obtained as a result of including more of the crystal lattice in the model used for the calculations, e.g., a change of 43% was noted for 1J(199Hg, 31P)(iso) in [HgPPh3(NO3)2]2 depending on whether the two or three nearest nitrate ions are included in the model. Finally, we have written a computer program to simulate the effects of non-axial symmetry in J and of non-coincidence of the J and D on powder NMR spectra. Simulations clearly show that both of these effects have a pronounced impact on the 31P NMR spectrum of 199Hg-31P spin pairs, suggesting that the effects should be observable experimentally if a suitable compound can be identified. PMID:20056396

  10. Quantitative evaluation of the lactate signal loss and its spatial dependence in press localized (1)H NMR spectroscopy.

    PubMed

    Jung, W I; Bunse, M; Lutz, O

    2001-10-01

    Localized (1)H NMR spectroscopy using the 90 degrees -t(1)-180 degrees -t(1)+t(2)-180 degrees -t(2)-Acq. PRESS sequence can lead to a signal loss for the lactate doublet compared with signals from uncoupled nuclei which is dependent on the choice of t(1) and t(2). The most striking signal loss of up to 78% of the total signal occurs with the symmetrical PRESS sequence (t(1)=t(2)) at an echo time of 2/J (approximately 290 ms). Calculations have shown that this signal loss is related to the pulse angle distributions produced by the two refocusing pulses which leads to the creation of single quantum polarization transfer (PT) as well as to not directly observable states (NDOS) of the lactate AX(3) spin system: zero- and multiple-quantum coherences, and longitudinal spin orders. In addition, the chemical shift dependent voxel displacement (VOD) leads to further signal loss. By calculating the density operator for various of the echo times TE=n/J, n=1, 2, 3,..., we calculated quantitatively the contributions of these effects to the signal loss as well as their spatial distribution. A maximum signal loss of 75% can be expected from theory for the symmetrical PRESS sequence and TE=2/J for Hamming filtered sinc pulses, whereby 47% are due to the creation of NDOS and up to 28% arise from PT. Taking also the VOD effect into account (2 mT/m slice selection gradients, 20-mm slices) leads to 54% signal loss from NDOS and up to 24% from PT, leading to a maximum signal loss of 78%. Using RE-BURP pulses with their more rectangular pulse angle distributions reduces the maximum signal loss to 44%. Experiments at 1.5 T using a lactate solution demonstrated a maximum lactate signal loss for sinc pulses of 82% (52% NDOS, 30% PT) at TE=290 ms using the symmetrical PRESS sequence. The great signal loss and its spatial distribution is of importance for investigations using a symmetrical PRESS sequence at TE=2/J. PMID:11567573

  11. Quantitative Evaluation of the Lactate Signal Loss and Its Spatial Dependence in PRESS Localized 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jung, Wulf-Ingo; Bunse, Michael; Lutz, Otto

    2001-10-01

    Localized 1H NMR spectroscopy using the 90°-t1-180°-t1+t2-180°-t2-Acq. PRESS sequence can lead to a signal loss for the lactate doublet compared with signals from uncoupled nuclei which is dependent on the choice of t1 and t2. The most striking signal loss of up to 78% of the total signal occurs with the symmetrical PRESS sequence (t1=t2) at an echo time of 2/J (≃290 ms). Calculations have shown that this signal loss is related to the pulse angle distributions produced by the two refocusing pulses which leads to the creation of single quantum polarization transfer (PT) as well as to not directly observable states (NDOS) of the lactate AX3 spin system: zero- and multiple-quantum coherences, and longitudinal spin orders. In addition, the chemical shift dependent voxel displacement (VOD) leads to further signal loss. By calculating the density operator for various of the echo times TE=n/J, n=1, 2, 3, …, we calculated quantitatively the contributions of these effects to the signal loss as well as their spatial distribution. A maximum signal loss of 75% can be expected from theory for the symmetrical PRESS sequence and TE=2/J for Hamming filtered sinc pulses, whereby 47% are due to the creation of NDOS and up to 28% arise from PT. Taking also the VOD effect into account (2 mT/m slice selection gradients, 20-mm slices) leads to 54% signal loss from NDOS and up to 24% from PT, leading to a maximum signal loss of 78%. Using RE-BURP pulses with their more rectangular pulse angle distributions reduces the maximum signal loss to 44%. Experiments at 1.5 T using a lactate solution demonstrated a maximum lactate signal loss for sinc pulses of 82% (52% NDOS, 30% PT) at TE=290 ms using the symmetrical PRESS sequence. The great signal loss and its spatial distribution is of importance for investigations using a symmetrical PRESS sequence at TE=2/J.

  12. Whole-body radiofrequency coil for (31) P MRSI at 7 T.

    PubMed

    Löring, J; van der Kemp, W J M; Almujayyaz, S; van Oorschot, J W M; Luijten, P R; Klomp, D W J

    2016-06-01

    Widespread use of ultrahigh-field (31) P MRSI in clinical studies is hindered by the limited field of view and non-uniform radiofrequency (RF) field obtained from surface transceivers. The non-uniform RF field necessitates the use of high specific absorption rate (SAR)-demanding adiabatic RF pulses, limiting the signal-to-noise ratio (SNR) per unit of time. Here, we demonstrate the feasibility of using a body-sized volume RF coil at 7 T, which enables uniform excitation and ultrafast power calibration by pick-up probes. The performance of the body coil is examined by bench tests, and phantom and in vivo measurements in a 7-T MRI scanner. The accuracy of power calibration with pick-up probes is analyzed at a clinical 3-T MR system with a close to identical (1) H body coil integrated at the MR system. Finally, we demonstrate high-quality three-dimensional (31) P MRSI of the human body at 7 T within 5 min of data acquisition that includes RF power calibration. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27037615

  13. Quantitative NMR Analysis of Partially Substituted Biodiesel Glycerols

    SciTech Connect

    Nagy, M.; Alleman, T. L.; Dyer, T.; Ragauskas, A. J.

    2009-01-01

    Phosphitylation of hydroxyl groups in biodiesel samples with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane followed by 31P-NMR analysis provides a rapid quantitative analytical technique for the determination of substitution patterns on partially esterified glycerols. The unique 31P-NMR chemical shift data was established with a series mono and di-substituted fatty acid esters of glycerol and then utilized to characterize an industrial sample of partially processed biodiesel.

  14. Labeling strategy and signal broadening mechanism of Protein NMR spectroscopy in Xenopus laevis oocytes.

    PubMed

    Ye, Yansheng; Liu, Xiaoli; Chen, Yanhua; Xu, Guohua; Wu, Qiong; Zhang, Zeting; Yao, Chendie; Liu, Maili; Li, Conggang

    2015-06-01

    We used Xenopus laevis oocytes, a paradigm for a variety of biological studies, as a eukaryotic model system for in-cell protein NMR spectroscopy. The small globular protein GB1 was one of the first studied in Xenopus oocytes, but there have been few reports since then of high-resolution spectra in oocytes. The scarcity of data is at least partly due to the lack of good labeling strategies and the paucity of information on resonance broadening mechanisms. Here, we systematically evaluate isotope enrichment and labeling methods in oocytes injected with five different proteins with molecular masses of 6 to 54 kDa. (19) F labeling is more promising than (15) N, (13) C, and (2) H enrichment. We also used (19) F NMR spectroscopy to quantify the contribution of viscosity, weak interactions, and sample inhomogeneity to resonance broadening in cells. We found that the viscosity in oocytes is only about 1.2 times that of water, and that inhomogeneous broadening is a major factor in determining line width in these cells. PMID:25965532

  15. The Interaction between tRNALys3 and the Primer Activation Signal Deciphered by NMR Spectroscopy

    PubMed Central

    Brachet, Franck; Tisne, Carine

    2013-01-01

    The initiation of reverse transcription of the human immunodeficiency virus type 1 (HIV-1) requires the opening of the three-dimensional structure of the primer tRNALys3 for its annealing to the viral RNA at the primer binding site (PBS). Despite the fact that the result of this rearrangement is thermodynamically more stable, there is a high-energy barrier that requires the chaperoning activity of the viral nucleocapsid protein. In addition to the nucleotide complementarity to the PBS, several regions of tRNALys3 have been described as interacting with the viral genomic RNA. Among these sequences, a sequence of the viral genome called PAS for “primer activation signal” was proposed to interact with the T-arm of tRNALys3, this interaction stimulating the initiation of reverse transcription. In this report, we investigate the formation of this additional interaction with NMR spectroscopy, using a simple system composed of the primer tRNALys3, the 18 nucleotides of the PBS, the PAS (8 nucleotides) encompassed or not in a hairpin structure, and the nucleocapsid protein. Our NMR study provides molecular evidence of the existence of this interaction and highlights the role of the nucleocapsid protein in promoting this additional RNA-RNA annealing. This study presents the first direct observation at a single base-pair resolution of the PAS/anti-PAS association, which has been proposed to be involved in the chronological regulation of the reverse transcription. PMID:23762248

  16. Imaging of the B1 distribution and background signal in a MAS NMR probehead using inhomogeneous B0 and B1 fields.

    PubMed

    Odedra, Smita; Wimperis, Stephen

    2013-06-01

    Several widely used methods for suppressing the "background" signal in (1)H magic angle spinning (MAS) NMR spectroscopy are based on the assumption of a significant difference between the B1 radiofrequency field experienced by the sample (within the MAS rotor) and that felt by static components of the probehead (where the background signal is believed to originate). In this work, a two-dimensional correlation experiment employing inhomogeneous B0 and B1 fields is used to image the B1 distribution in a MAS NMR probehead. The experiment, which can be performed on any spectrometer, allows the distribution of the B1 field to be measured and also correlated with the spatial location of the NMR signal within the probehead. The method can also readily be combined with various "depth pulse" techniques for background suppression, allowing their performances to be more rigorously evaluated. PMID:23644349

  17. On the suppression of background signals originating from NMR hardware components. Application to zero echo time imaging and relaxation time analysis.

    PubMed

    Dreher, Wolfgang; Bardenhagen, Ingo; Huang, Li; Bäumer, Marcus

    2016-04-01

    Modern NMR imaging systems used for biomedical research are equipped with B0 gradient systems with strong maximum gradient strength and short switching time enabling (1)H NMR measurements of samples with very short transverse relaxation times. However, background signal originating from non-optimized RF coils may hamper experiments with ultrashort delays between RF excitation and signal reception. We demonstrate that two simple means, outer volume suppression and the use of shaped B0 fields produced by higher-order shim coils, allow a considerable suppression of disturbing background signals. Thus, the quality of NMR images acquired at ultrashort or zero echo time is improved and systematic errors in quantitative data evaluation are avoided. Fields of application comprise MRI with ultrashort echo time or relaxation time analysis, for both biomedical research and characterizing porous media filled with liquids or gases. PMID:26597837

  18. NMR signal for particles diffusing under potentials: From path integrals and numerical methods to a model of diffusion anisotropy

    NASA Astrophysics Data System (ADS)

    Yolcu, Cem; Memiç, Muhammet; Şimşek, Kadir; Westin, Carl-Fredrik; Özarslan, Evren

    2016-05-01

    We study the influence of diffusion on NMR experiments when the molecules undergo random motion under the influence of a force field and place special emphasis on parabolic (Hookean) potentials. To this end, the problem is studied using path integral methods. Explicit relationships are derived for commonly employed gradient waveforms involving pulsed and oscillating gradients. The Bloch-Torrey equation, describing the temporal evolution of magnetization, is modified by incorporating potentials. A general solution to this equation is obtained for the case of parabolic potential by adopting the multiple correlation function (MCF) formalism, which has been used in the past to quantify the effects of restricted diffusion. Both analytical and MCF results were found to be in agreement with random walk simulations. A multidimensional formulation of the problem is introduced that leads to a new characterization of diffusion anisotropy. Unlike the case of traditional methods that employ a diffusion tensor, anisotropy originates from the tensorial force constant, and bulk diffusivity is retained in the formulation. Our findings suggest that some features of the NMR signal that have traditionally been attributed to restricted diffusion are accommodated by the Hookean model. Under certain conditions, the formalism can be envisioned to provide a viable approximation to the mathematically more challenging restricted diffusion problems.

  19. Quantitative study of atomic ordering in Ga0.5In0.5P thin films by 31P nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Tycko, Robert; Dabbagh, Gary; Kurtz, Sarah R.; Goral, John P.

    1992-06-01

    We use 31P nuclear-magnetic-resonance (NMR) spectra to measure the degree of cation ordering in thin films of the semiconductor alloy Ga0.5In0.5P grown by organometallic vapor-phase epitaxy. We show that the five possible GanIn4-nP clusters in GaxIn1-xP give rise to resolved NMR lines under magic-angle spinning, allowing a determination of the degree of cation ordering from the relative areas of the five lines. The ordering is shown to be weak (order parameter <=0.6) even in films that appear highly ordered in transmission electron microscopy.

  20. NMR signal analysis to characterize solid, aqueous, and lipid phases in baked cakes.

    PubMed

    Le Grand, F; Cambert, M; Mariette, F

    2007-12-26

    Proton mobility was studied in molecular fractions of some model systems and of cake using a 1H nuclear magnetic resonance (NMR) relaxation technique. For cake, five spin-spin relaxation times (T2) were obtained from transverse relaxation curves: T2 (1) approximately 20 micros, T2 (2) approximately 0.2 ms, T2 (3) approximately 3 ms, T2 (4) approximately 50 ms, and T2 (2) approximately 165 ms. The faster component was attributed to the solid phase, components 2 and 3 were associated with the aqueous phase, and the two slowest components were linked to the lipid phase. After cooking, the crust contained more fat but less water than the center part of the cake. The amount of gelatinized starch was lower in the crust, and water was more mobile due to less interaction with macromolecules. This preliminary study revealed different effects of storage on the center and crust. PMID:18044835

  1. 4 T Actively detuneable double-tuned 1H/31P head volume coil and four-channel 31P phased array for human brain spectroscopy.

    PubMed

    Avdievich, N I; Hetherington, H P

    2007-06-01

    Typically 31P in vivo magnetic resonance spectroscopic studies are limited by SNR considerations. Although phased arrays can improve the SNR; to date 31P phased arrays for high-field systems have not been combined with 31P volume transmit coils. Additionally, to provide anatomical reference for the 31P studies, without removal of the coil or patient from the magnet, double-tuning (31P/1H) of the volume coil is required. In this work we describe a series of methods for active detuning and decoupling enabling use of phased arrays with double-tuned volume coils. To demonstrate these principles we have built and characterized an actively detuneable 31P/1H TEM volume transmit/four-channel 31P phased array for 4 T magnetic resonance spectroscopic imaging (MRSI) of the human brain. The coil can be used either in volume-transmit/array-receive mode or in TEM transmit/receive mode with the array detuned. Threefold SNR improvement was obtained at the periphery of the brain using the phased array as compared to the volume coil. PMID:17379554

  2. Simple Resolution of Enantiomeric NMR Signals of α-Amino Acids by Using Samarium(III) Nitrate With L-Tartarate.

    PubMed

    Aizawa, Sen-Ichi; Kidani, Takahiro; Takada, Sayuri; Ofusa, Yumika

    2015-05-01

    Readily available L-tartaric acid, which is a bidentate ligand with two chiral centers forming a seven-membered chelate ring, was applied to the chiral ligand for the chiral nuclear magnetic resonance (NMR) shift reagent of samarium(III) formed in situ. This simple method does not cause serious signal broadening in the high magnetic field. Enantiomeric (13)C and (1)H NMR signals and enantiotopic (1)H NMR signals of α-amino acids were successfully resolved at pH 8.0 and the 1:3 molar ratio of Sm(NO3)3:L-tartaric acid. It is elucidated that the enantiomeric signal resolution is attributed to the anisotropic magnetic environment for the enantiomers induced by the chiral L-tartarato samarium(III) complex rather than differences in stability of the diastereomeric substrate adducts. The present (13)C NMR signal resolution was also effective for the practical simultaneous analysis of plural kinds of DL-amino acids. PMID:25847749

  3. Structural analysis of a signal peptide inside the ribosome tunnel by DNP MAS NMR.

    PubMed

    Lange, Sascha; Franks, W Trent; Rajagopalan, Nandhakishore; Döring, Kristina; Geiger, Michel A; Linden, Arne; van Rossum, Barth-Jan; Kramer, Günter; Bukau, Bernd; Oschkinat, Hartmut

    2016-08-01

    Proteins are synthesized in cells by ribosomes and, in parallel, prepared for folding or targeting. While ribosomal protein synthesis is progressing, the nascent chain exposes amino-terminal signal sequences or transmembrane domains that mediate interactions with specific interaction partners, such as the signal recognition particle (SRP), the SecA-adenosine triphosphatase, or the trigger factor. These binding events can set the course for folding in the cytoplasm and translocation across or insertion into membranes. A distinction of the respective pathways depends largely on the hydrophobicity of the recognition sequence. Hydrophobic transmembrane domains stabilize SRP binding, whereas less hydrophobic signal sequences, typical for periplasmic and outer membrane proteins, stimulate SecA binding and disfavor SRP interactions. In this context, the formation of helical structures of signal peptides within the ribosome was considered to be an important factor. We applied dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance to investigate the conformational states of the disulfide oxidoreductase A (DsbA) signal peptide stalled within the exit tunnel of the ribosome. Our results suggest that the nascent chain comprising the DsbA signal sequence adopts an extended structure in the ribosome with only minor populations of helical structure. PMID:27551685

  4. Structural analysis of a signal peptide inside the ribosome tunnel by DNP MAS NMR

    PubMed Central

    Lange, Sascha; Franks, W. Trent; Rajagopalan, Nandhakishore; Döring, Kristina; Geiger, Michel A.; Linden, Arne; van Rossum, Barth-Jan; Kramer, Günter; Bukau, Bernd; Oschkinat, Hartmut

    2016-01-01

    Proteins are synthesized in cells by ribosomes and, in parallel, prepared for folding or targeting. While ribosomal protein synthesis is progressing, the nascent chain exposes amino-terminal signal sequences or transmembrane domains that mediate interactions with specific interaction partners, such as the signal recognition particle (SRP), the SecA–adenosine triphosphatase, or the trigger factor. These binding events can set the course for folding in the cytoplasm and translocation across or insertion into membranes. A distinction of the respective pathways depends largely on the hydrophobicity of the recognition sequence. Hydrophobic transmembrane domains stabilize SRP binding, whereas less hydrophobic signal sequences, typical for periplasmic and outer membrane proteins, stimulate SecA binding and disfavor SRP interactions. In this context, the formation of helical structures of signal peptides within the ribosome was considered to be an important factor. We applied dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance to investigate the conformational states of the disulfide oxidoreductase A (DsbA) signal peptide stalled within the exit tunnel of the ribosome. Our results suggest that the nascent chain comprising the DsbA signal sequence adopts an extended structure in the ribosome with only minor populations of helical structure. PMID:27551685

  5. Transport of phosphocholine in higher plant cells: sup 31 P nuclear magnetic resonance studies

    SciTech Connect

    Gout, E.; Bligny, R.; Roby, C.; Douce, R. )

    1990-06-01

    Phosphocholine (PC) is an abundant primary form of organic phosphate that is transported in plant xylem sap. Addition of PC to the perfusate of compressed P{sub i}-starved sycamore cells monitored by {sup 31}P NMR spectroscopy resulted in an accumulation of PC and all the other phosphate esters in the cytoplasmic compartment. Addition of hemicholinium-3, an inhibitor of choline uptake, to the perfusate inhibited PC accumulation but not inorganic phosphate (P{sub i}). When the P{sub i}-starved cells were perfused with a medium containing either P{sub i} or PC, the resulting P{sub i} distribution in the cell was the same. Addition of choline instead of PC to the perfusate of compressed cells resulted in an accumulation of PC in the cytoplasmic compartment from choline kinase activity. In addition, PC phosphatase activity has been discovered associated with the cell wall. These results indicate that PC was rapidly hydrolyzed outside the cell and that choline and P{sub i} entered the cytosolic compartment where choline kinase re-forms PC.

  6. 31P-nuclear magnetic resonance studies of chronic myocardial ischemia in the Yucatan micropig.

    PubMed

    Rath, D P; Bailey, M; Zhang, H; Jiang, Z; Abduljalil, A M; Weisbrode, S; Hamlin, R L; Robitaille, P M

    1995-01-01

    In this work, an x-irradiation/high fat/high cholesterol diet-induced atherogenic model was invoked to examine the effects of severe diffuse atherosclerosis on myocardial metabolism in the in vivo porcine heart. This model was studied using spatially localized 31P-nuclear magnetic resonance (NMR) to monitor pH and the levels of inorganic phosphate, phosphomonoesters, creatine phosphate, and adenosine triphosphate as a function of workload transmurally in control swine and in animals suffering from chronic ischemic heart disease. These preliminary studies revealed that the development of severe atherosclerosis and the accompanying chronically diseased state produce changes in high energy phosphates and that increases in rate pressure products result in demonstrable signs of ischemia in the myocardium which span the entire left ventricular wall. Ischemic changes include a global increase in inorganic phosphate and corresponding decreases in creatine phosphate, ATP, and pH. Importantly, changes in intracellular pH are noted with even the slightest increase in workload suggesting that these diseased hearts display elevated glycolytic activity. By challenging these animals with increased cardiac workload, we directly visualize how the chronically compromised heart responds to severe oxygen challenges in a clinically relevant model of this situation. PMID:7814609

  7. 31P-nuclear magnetic resonance studies of chronic myocardial ischemia in the Yucatan micropig.

    PubMed Central

    Rath, D P; Bailey, M; Zhang, H; Jiang, Z; Abduljalil, A M; Weisbrode, S; Hamlin, R L; Robitaille, P M

    1995-01-01

    In this work, an x-irradiation/high fat/high cholesterol diet-induced atherogenic model was invoked to examine the effects of severe diffuse atherosclerosis on myocardial metabolism in the in vivo porcine heart. This model was studied using spatially localized 31P-nuclear magnetic resonance (NMR) to monitor pH and the levels of inorganic phosphate, phosphomonoesters, creatine phosphate, and adenosine triphosphate as a function of workload transmurally in control swine and in animals suffering from chronic ischemic heart disease. These preliminary studies revealed that the development of severe atherosclerosis and the accompanying chronically diseased state produce changes in high energy phosphates and that increases in rate pressure products result in demonstrable signs of ischemia in the myocardium which span the entire left ventricular wall. Ischemic changes include a global increase in inorganic phosphate and corresponding decreases in creatine phosphate, ATP, and pH. Importantly, changes in intracellular pH are noted with even the slightest increase in workload suggesting that these diseased hearts display elevated glycolytic activity. By challenging these animals with increased cardiac workload, we directly visualize how the chronically compromised heart responds to severe oxygen challenges in a clinically relevant model of this situation. Images PMID:7814609

  8. Solid-State Quantitative (1)H and (31)P MRI of Cortical Bone in Humans.

    PubMed

    Seifert, Alan C; Wehrli, Felix W

    2016-06-01

    Magnetic resonance imaging (MRI) plays a pivotal role for assessment of the musculoskeletal system. It is currently the clinical modality of choice for evaluation of soft tissues including cartilage, ligaments, tendons, muscle, and bone marrow. By comparison, the study of calcified tissue by MRI is still in its infancy. In this article, we review the potential of the modality for assessment of cortical bone properties known to be affected in degenerative bone disease, with focus on parameters related to matrix and mineral densities, and porosity, by means of emerging solid-state (1)H and (31)P MRI techniques. In contrast to soft tissues, the MRI signal in calcified tissues has very short lifetime, on the order of 100 μs to a few milliseconds, demanding customized imaging approaches that allow capture of the signal almost immediately after excitation. The technologies described are suited for quantitatively imaging human cortical bone in specimens as well as in vivo in patients on standard clinical imagers, yielding either concentrations in absolute units when measured against a reference standard, or more simply, in the form of surrogate biomarkers. The two major water fractions in cortical bone are those of collagen-bound and pore water occurring at an approximately 3:1 ratio. Collagen-bound water density provides a direct quantitative measure of osteoid density. While at an earlier stage of development, quantification of mineral phosphorus by (31)P MRI yields mineral density and, together with knowledge of matrix density, should allow quantification of the degree of bone mineralization. PMID:27048472

  9. Signal enhancement of J-HMQC experiments in solid-state NMR involving half-integer quadrupolar nuclei.

    PubMed

    Wang, Qiang; Trébosc, Julien; Li, Yixuan; Xu, Jun; Hu, Bingwen; Feng, Ningdong; Chen, Qun; Lafon, Oliver; Amoureux, Jean-Paul; Deng, Feng

    2013-07-28

    We show that for half-integer quadrupolar nuclei, the manipulation of the satellite transitions can accelerate and enhance coherence transfer to other isotopes. This novel strategy is demonstrated to improve the sensitivity of (31)P-{(27)Al} J-HMQC experiments for a layered aluminophosphate Mu-4. PMID:23770976

  10. Solid-state NMR strategies for the structural characterization of paramagnetic NO adducts of Frustrated Lewis Pairs (FLPs).

    PubMed

    Wiegand, Thomas; Sajid, Muhammad; Kehr, Gerald; Erker, Gerhard; Eckert, Hellmut

    2014-01-01

    By N,N addition of NO to the norbonane annulated borane-phosphane Frustrated Lewis pair (FLP) 1 a five-membered heterocyclic persistent aminoxyl radical 2 and its diamagnetic hydroxylamine reduction product 3 are prepared, and the comprehensive multinuclear solid state NMR characterization ((1)H, (11)B, (19)F, (31)P) of these FLP adducts is reported. Signal quantification experiments using a standard addition method reveal that the (11)B and (31)P NMR signals observed in 2 actually arise from molecular impurities of 3 embedded in the paramagnetic crystal. In contrast analogous quantification experiments reveal that the (1)H and (19)F MAS-NMR spectra originate from spin-carrying molecules. Peak assignments are based on DFT-calculated Mulliken spin densities, which lead to the surprising result that the largest paramagnetic shift affecting a proton NMR resonance in 2 originates from intermolecular interactions. For the (19)F nuclei, experiments and calculations indicate that paramagnetic shift effects are very small. In this case, assignments are based on DFT chemical shift calculations carried out on diamagnetic 3 and (19)F((11)B) Rotational Echo Adiabatic Passage DOuble Resonance (REAPDOR) experiments. The set of experiments described here defines an efficient strategy for the structural analysis of paramagnetic FLP adducts. PMID:24815176

  11. 13C and 31P chemical shielding tensors of a single crystal of dipotassium α- D-glucose-1-phosphate dihydrate. An application of a 13C-{ 1H, 31P} triple-resonance technique

    NASA Astrophysics Data System (ADS)

    McDowell, C. A.; Naito, A.; Sastry, D. L.; Takegoshi, K.

    The 13C NMR spectra of a single crystal of dipotassium α- D-glucose-l-phosphate dehydrate for different orientations in the external magnetic field, were recorded by using 1H and 31P double nuclear decoupling. To overcome difficulties encountered because of the high 13C RF power required to achieve the Hartmann-Hahn condition, a new cross-polarization method (K. Takegoshi and C. A. McDowell, J. Magn. Reson.67, 356 (1986)) was used. The directions of the most shielded principal value of the 13C chemical shielding tensors for the C2-C6 carbon nuclei in the glucose group were along the CO bond, and that for the CI carbon nucleus made an angle of 42† with the C1-O5 bond direction in the O1-C1-O5 plane. The 31P chemical shielding tensors are axially symmetric and the direction of the least shielded principal value is almost parallel to the P-O1(R) bond, which is the longest among the four PO bonds in the phosphate moiety.

  12. Ultraviolet radiation induces stress in etiolated Landoltia punctata, as evidenced by the presence of alanine, a universal stress signal: a ¹⁵N NMR study.

    PubMed

    Monselise, E B-I; Levkovitz, A; Kost, D

    2015-01-01

    Analysis with (15) N NMR revealed that alanine, a universal cellular stress signal, accumulates in etiolated duckweed plants exposed to 15-min pulsed UV light, but not in the absence of UV irradiation. The addition of 10 mm vitamin C, a radical scavenger, reduced alanine levels to zero, indicating the involvement of free radicals. Free D-alanine was detected in (15) N NMR analysis of the chiral amino acid content, using D-tartaric acid as solvent. The accumulation of D-alanine under stress conditions presents a new perspective on the biochemical processes taking place in prokaryote and eukaryote cells. PMID:24889211

  13. Phosphorus-31, sup 15 N, and sup 13 C NMR of glyphosate: Comparison of pH titrations to the herbicidal dead-end complex with 5-enolpyruvoylshikimate-3-phosphate synthase

    SciTech Connect

    Castellino, S.; Leo, G.C.; Sammons, R.D.; Sikorski, J.A. )

    1989-05-02

    The herbicidal dead-end ternary complex (E{sup S3P}{sub Glyph}) of glyphosate (N-(phosphonomethyl)glycine) with 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS) and the substrate shikimate 3-phosphate (S3P) has been characterized by {sup 31}P, {sup 15}N, and {sup 13}C NMR. The NMR spectra of EPSPS-bound glyphosate show unique chemical shifts ({delta}) for each of the three nuclei. By {sup 31}P NMR, glyphosate in the dead-end complex is a distinct species 3.5 ppm downfield from free glyphosate. The {sup 13}C signal of glyphosate in the dead-end complex is shifted 4 ppm downfield from that of free glyphosate. The {sup 15}N signal for glyphosate (99%) in the dead-end complex is 5 ppm further downfield than that of any free zwitterionic species and 10 ppm downfield from that of the average free species at pH 10.1. The structures of each ionic state of glyphosate are modeled with force field calculations by using MacroModel. A correlation is made for the {sup 31}P {delta} and the C-P-O bond angle, and the {sup 13}C and {sup 15}N {delta} values are postulated to be related to C-C-O and C-N-C bond angles, respectively. The downfield {sup 31}P chemical shift perturbation for S3P in the EPSPS binary complex is consistent with ionization of the 3-phosphate of S3P upon binding. Comparison with the S3P {sup 31}P {delta} vs pH titration curve specifies predominantly the dianion of the 3-phosphate in the E{sup S3P} binary complex, while the E{sup S3P}{sub Glyph} complex indicates net protonation at the 3-phosphate. Chemical shift perturbations of this latter type may be explained by changes in the O-P-O bond angle.

  14. Site-assignment of 17O-NMR signals in itinerant metamagnetic compound Sr 3Ru 2O 7

    NASA Astrophysics Data System (ADS)

    Kitagawa, Kentaro; Ishida, Kenji; Perry, Robin S.; Maeno, Yoshiteru

    2006-05-01

    We have performed an 17O-NMR measurement in the bilayered perovskite ruthenate Sr 3Ru 2O 7 which shows itinerant metamagnetism at low temperatures. Three oxygen sites are identified in the 17O-NMR spectrum. NMR lines arising from the outer-apical O site are observable in the vicinity of a metamagnetic quantum critical point in spite of strong spin fluctuations. The field dependence of the Knight shift scales with the bulk magnetization.

  15. (31)P-MRS of healthy human brain: ATP synthesis, metabolite concentrations, pH, and T1 relaxation times.

    PubMed

    Ren, Jimin; Sherry, A Dean; Malloy, Craig R

    2015-11-01

    The conventional method for measuring brain ATP synthesis is (31)P saturation transfer (ST), a technique typically dependent on prolonged pre-saturation with γ-ATP. In this study, ATP synthesis rate in resting human brain is evaluated using EBIT (exchange kinetics by band inversion transfer), a technique based on slow recovery of γ-ATP magnetization in the absence of B1 field following co-inversion of PCr and ATP resonances with a short adiabatic pulse. The unidirectional rate constant for the Pi → γ-ATP reaction is 0.21 ± 0.04 s(-1) and the ATP synthesis rate is 9.9 ± 2.1 mmol min(-1)  kg(-1) in human brain (n = 12 subjects), consistent with the results by ST. Therefore, EBIT could be a useful alternative to ST in studying brain energy metabolism in normal physiology and under pathological conditions. In addition to ATP synthesis, all detectable (31)P signals are analyzed to determine the brain concentration of phosphorus metabolites, including UDPG at around 10 ppm, a previously reported resonance in liver tissues and now confirmed in human brain. Inversion recovery measurements indicate that UDPG, like its diphosphate analogue NAD, has apparent T1 shorter than that of monophosphates (Pi, PMEs, and PDEs) but longer than that of triphosphate ATP, highlighting the significance of the (31)P-(31)P dipolar mechanism in T1 relaxation of polyphosphates. Another interesting finding is the observation of approximately 40% shorter T1 for intracellular Pi relative to extracellular Pi, attributed to the modulation by the intracellular phosphoryl exchange reaction Pi ↔ γ-ATP. The sufficiently separated intra- and extracellular Pi signals also permit the distinction of pH between intra- and extracellular environments (pH 7.0 versus pH 7.4). In summary, quantitative (31)P MRS in combination with ATP synthesis, pH, and T1 relaxation measurements may offer a promising tool to detect biochemical alterations at early stages of brain dysfunctions and diseases

  16. Correlation of the antimicrobial activity of salicylaldehydes with broadening of the NMR signal of the hydroxyl proton. Possible involvement of proton exchange processes in the antimicrobial activity.

    PubMed

    Elo, Hannu; Kuure, Matti; Pelttari, Eila

    2015-03-01

    Certain substituted salicylaldehydes are potent antibacterial and antifungal agents and some of them merit consideration as potential chemotherapeutic agents against Candida infections, but their mechanism of action has remained obscure. We report here a distinct correlation between broadening of the NMR signal of the hydroxyl proton of salicylaldehydes and their activity against several types of bacteria and fungi. When proton NMR spectra of the compounds were determined using hexadeuterodimethylsulfoxide as solvent and the height of the OH proton signal was measured, using the signal of the aldehyde proton as an internal standard, it was discovered that a prerequisite of potent antimicrobial activity is that the proton signal is either unobservable or relatively very low, i.e. that it is extremely broadened. Thus, none of the congeners whose OH proton signal was high were potent antimicrobial agents. Some congeners that gave a very low OH signal were, however, essentially inactive against the microbes, indicating that although drastic broadening of the OH signal appears to be a prerequisite, also other (so far unknown) factors are needed for high antimicrobial activity. Because broadening of the hydroxyl proton signal is related to the speed of the proton exchange process(es) involving that proton, proton exchange may be involved in the mechanism of action of the compounds. Further studies are needed to analyze the relative importance of different factors (such as electronic effects, strength of the internal hydrogen bond, co-planarity of the ring and the formyl group) that determine the rates of those processes. PMID:25621992

  17. Dynamic interleaved 1H/31P STEAM MRS at 3 Tesla using a pneumatic force-controlled plantar flexion exercise rig

    PubMed Central

    Meyerspeer, M.; Krššák, M.; Kemp, G.J.; Roden, M.; Moser, E.

    2016-01-01

    1 Objective To develop a measurement method for interleaved acquisition of 1H and 31P STEAM localised spectra of exercising human calf muscle. 2 Materials and Methods A nonmagnetic exercise rig with a pneumatic piston and sensors for force and pedal angle was constructed to enable plantar flexion measured in the 3 Tesla MR scanner, which holds the dual tuned (1H,31P) surface coil used for signal transmission and reception. 3 Results 31P spectra acquired in interleaved mode benefit from higher SNR (factor of 1.34± 0.06 for PCr) compared to standard acquisition due to the Nuclear Overhauser effect (NOE) and substantial PCr/Pi changes during exercise can be observed in 31P spectra. 1H spectral quality is equal to that in single mode experiments and allows Cr2 changes to be monitored. 4 Conclusion The feasibility of dynamic interleaved localised 1H and 31P spectroscopy during plantar flexion exercise has been demonstrated using a custom-built pneumatic system for muscle activation. This opens the possibility of studying the dynamics of metabolism with multi nuclear MRS in a single run. PMID:16320091

  18. Characterization of phosphorus forms in lake macrophytes and algae by solution (31)P nuclear magnetic resonance spectroscopy.

    PubMed

    Feng, Weiying; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; Giesy, John P; He, Zhongqi; Song, Lirong; Fan, Mingle

    2016-04-01

    Debris from aquatic macrophytes and algae are important recycling sources of phosphorus (P), which can result in continuing blooms of algae by recycling bioavailable P in the eutrophic lakes. However, knowledge of forms of P in aquatic macrophytes and algae and their contribution to internal loads of P in lakes is limited. Without such knowledge, it is difficult to develop appropriate strategies to remediate and or restore aquatic ecosystems that have become eutrophic. Therefore, in this work, P was extracted from six types of aquatic macrophytes and algae collected from Tai Lake of China and characterized by use of solution (31)P-nuclear magnetic resonance (NMR) spectroscopy. When extracted by 0.5 M NaOH-25 mM EDTA, extraction recovery of total P(TP) and organic P(Po) exceeded 90 %. Concentrations of Po in algae and aquatic macrophytes were 5552 mg kg(-1) and 1005 mg kg(-1) and accounted for 56.0 and 47.2 % of TP, respectively. When Po, including condensed P, was characterized by solution (31)P-NMR Po in algae included orthophosphate monoesters (79.8 %), pyrophosphate (18.2 %), and orthophosphate diester (2.0 %), and Po in aquatic macrophytes included orthophosphate monoesters (90.3 %), pyrophosphate (4.2 %), and orthophosphate diester (5.5 %). Additionally, orthophosphate monoesters in algal debris mainly included β-glycerophosphate (44.1 %), α-glycerophosphate (13.5 %), and glucose 6-phosphate (13.5 %). Orthophosphate monoesters in aquatic macrophytes mainly included β-glycerophosphate (27.9 %), α-glycerophosphate (24.6 %), and adenosine 5' monophosphate (8.2 %). Results derived from this study will be useful in better understanding nutrient cycling, relevant eutrophication processes, and pollution control for freshwater lakes. PMID:26681323

  19. Comparison of phytate and other organic P forms in Mehlich-3 and Alkaline-EDTA matrices by ICP, NMR and mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The favored method of organic P identification over the last few decades has been 31P NMR. While this technique has the distinct advantage of speciating the organic P fraction, it has a relatively poor detection threshold (0.05 mg/ml), which typically limits 31P NMR to qualitative or confirmative ap...

  20. Independent component analysis (ICA) algorithms for improved spectral deconvolution of overlapped signals in 1H NMR analysis: application to foods and related products.

    PubMed

    Monakhova, Yulia B; Tsikin, Alexey M; Kuballa, Thomas; Lachenmeier, Dirk W; Mushtakova, Svetlana P

    2014-05-01

    The major challenge facing NMR spectroscopic mixture analysis is the overlapping of signals and the arising impossibility to easily recover the structures for identification of the individual components and to integrate separated signals for quantification. In this paper, various independent component analysis (ICA) algorithms [mutual information least dependent component analysis (MILCA); stochastic non-negative ICA (SNICA); joint approximate diagonalization of eigenmatrices (JADE); and robust, accurate, direct ICA algorithm (RADICAL)] as well as deconvolution methods [simple-to-use-interactive self-modeling mixture analysis (SIMPLISMA) and multivariate curve resolution-alternating least squares (MCR-ALS)] are applied for simultaneous (1)H NMR spectroscopic determination of organic substances in complex mixtures. Among others, we studied constituents of the following matrices: honey, soft drinks, and liquids used in electronic cigarettes. Good quality spectral resolution of up to eight-component mixtures was achieved (correlation coefficients between resolved and experimental spectra were not less than 0.90). In general, the relative errors in the recovered concentrations were below 12%. SIMPLISMA and MILCA algorithms were found to be preferable for NMR spectra deconvolution and showed similar performance. The proposed method was used for analysis of authentic samples. The resolved ICA concentrations match well with the results of reference gas chromatography-mass spectrometry as well as the MCR-ALS algorithm used for comparison. ICA deconvolution considerably improves the application range of direct NMR spectroscopy for analysis of complex mixtures. PMID:24604756

  1. On Neglecting Chemical Exchange Effects When Correcting in Vivo 31P MRS Data for Partial Saturation

    NASA Astrophysics Data System (ADS)

    Ouwerkerk, Ronald; Bottomley, Paul A.

    2001-02-01

    Signal acquisition in most MRS experiments requires a correction for partial saturation that is commonly based on a single exponential model for T1 that ignores effects of chemical exchange. We evaluated the errors in 31P MRS measurements introduced by this approximation in two-, three-, and four-site chemical exchange models under a range of flip-angles and pulse sequence repetition times (TR) that provide near-optimum signal-to-noise ratio (SNR). In two-site exchange, such as the creatine-kinase reaction involving phosphocreatine (PCr) and γ-ATP in human skeletal and cardiac muscle, errors in saturation factors were determined for the progressive saturation method and the dual-angle method of measuring T1. The analysis shows that these errors are negligible for the progressive saturation method if the observed T1 is derived from a three-parameter fit of the data. When T1 is measured with the dual-angle method, errors in saturation factors are less than 5% for all conceivable values of the chemical exchange rate and flip-angles that deliver useful SNR per unit time over the range T1/5 ≤ TR ≤ 2T1. Errors are also less than 5% for three- and four-site exchange when TR ≥ T1*/2, the so-called "intrinsic" T1's of the metabolites. The effect of changing metabolite concentrations and chemical exchange rates on observed T1's and saturation corrections was also examined with a three-site chemical exchange model involving ATP, PCr, and inorganic phosphate in skeletal muscle undergoing up to 95% PCr depletion. Although the observed T1's were dependent on metabolite concentrations, errors in saturation corrections for TR = 2 s could be kept within 5% for all exchanging metabolites using a simple interpolation of two dual-angle T1 measurements performed at the start and end of the experiment. Thus, the single-exponential model appears to be reasonably accurate for correcting 31P MRS data for partial saturation in the presence of chemical exchange. Even in systems where

  2. Ascorbic acid prolongs the viability and stability of isolated perfused lungs: A mechanistic study using 31P and hyperpolarized 13C nuclear magnetic resonance.

    PubMed

    Shaghaghi, Hoora; Kadlecek, Stephen; Siddiqui, Sarmad; Pourfathi, Mehrdad; Hamedani, Hooman; Clapp, Justin; Profka, Harrilla; Rizi, Rahim

    2015-12-01

    Ex vivo lung perfusion (EVLP) has recently shown promise as a means of more accurately gauging the health of lung grafts and improving graft performance post-transplant. However, reperfusion of ischemic lung promotes the depletion of high-energy compounds and a progressive loss of normal mitochondrial function, and it remains unclear how and to what extent the EVLP approach contributes to this metabolic decline. Although ascorbate has been used to mitigate the effects of ischemia-reperfusion injury, the nature of its effects during EVLP are also not clear. To address these uncertainties, this study monitored the energy status of lungs during EVLP and after the administration of ascorbate using (31)P and hyperpolarized (13)C NMR (nuclear magnetic resonance). Our experiments demonstrated that the oxidative phosphorylation capacity and pyruvate dehydrogenase flux of lungs decline during ex vivo perfusion. The addition of ascorbate to the perfusate prolonged lung viability by 80% and increased the hyperpolarized (13)C bicarbonate signal by a factor of 2.7. The effect of ascorbate is apparently due not to its antioxidant quality but rather to its ability to energize cellular respiration given that it increased the lung's energy charge significantly, whereas other antioxidants (glutathione and α-lipoic acid) did not alter energy metabolism. During ascorbate administration, inhibition of mitochondrial complex I with rotenone depressed energy charge and shifted the metabolic state of the lung toward glycolysis; reenergizing the electron transport chain with TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) recovered metabolic activity. This indicates that ascorbate slows the decline of the ex vivo perfused lung's mitochondrial activity through an independent interaction with the electron transport chain complexes. PMID:26165188

  3. Fragment Assembly Approach Based on Graph/Network Theory with Quantum Chemistry Verifications for Assigning Multidimensional NMR Signals in Metabolite Mixtures.

    PubMed

    Ito, Kengo; Tsutsumi, Yu; Date, Yasuhiro; Kikuchi, Jun

    2016-04-15

    The abundant observation of chemical fragment information for molecular complexities is a major advantage of biological NMR analysis. Thus, the development of a novel technique for NMR signal assignment and metabolite identification may offer new possibilities for exploring molecular complexities. We propose a new signal assignment approach for metabolite mixtures by assembling H-H, H-C, C-C, and Q-C fragmental information obtained by multidimensional NMR, followed by the application of graph and network theory. High-speed experiments and complete automatic signal assignments were achieved for 12 combined mixtures of (13)C-labeled standards. Application to a (13)C-labeled seaweed extract showed 66 H-C, 60 H-H, 326 C-C, and 28 Q-C correlations, which were successfully assembled to 18 metabolites by the automatic assignment. The validity of automatic assignment was supported by quantum chemical calculations. This new approach can predict entire metabolite structures from peak networks of biological extracts. PMID:26789380

  4. Magic-angle-spinning NMR studies of zeolite SAPO-5

    NASA Astrophysics Data System (ADS)

    Freude, D.; Ernst, H.; Hunger, M.; Pfeifer, H.; Jahn, E.

    1988-01-01

    SAPO-5 was synthesized using triethylamine as template. Magic-angle-spinning (MAS) NMR of 1H, 27Al, 29Si and 31P was used to study the silicon incorporation into the framework and the nature of the Brønsted sites. 1H MAS NMR shows two types of bridging hydroxyl groups. 29Si MAS NMR indicates that silicon substitutes mostly for phosphorus and that there is a small amount of crystalline SiO 2 in the zeolite powder.

  5. Characterization of the phosphoserine of pepsinogen using /sup 31/P nuclear magnetic resonance: corroboration of X-ray crystallographic results

    SciTech Connect

    Williams, S.P.; Bridger, W.A.; James, M.N.G.

    1986-10-21

    The endogenous phosphoserine residue in porcine pepsinogen has been titrated with use of phosphorus-31 nuclear magnetic resonance (/sup 31/P NMR). It has an observed pK/sub a/sub 2// of 6.7 and a narrow line width (approx. =10 Hz). The phosphate can be readily removed by an acid phosphatase from potato; however, it is resistant to hydrolysis by several alkaline phosphatases. The X-ray crystal structure of porcine pepsinogen at 1.8-A resolution shows a rather weak and diffuse region of electron density in the vicinity of the phosphorylated serine residue. This suggests considerable dynamic mobility or conformational disorder of the phosphate. In order to define more fully this behavior the NMR data have been used to corroborate these crystallographic results. All these physical data are consistent with a highly mobile phosphoserine residue on the surface of the zymogen and freely exposed to solvent. In addition, certain properties of this phosphoserine moiety on pepsinogen are similar to those of one of the phosphorylated residues of ovalbumin. The possible significance of this is discussed.

  6. The effects of pregnancy and parturition on phosphorus metabolites in rat uterus studied by 31P nuclear magnetic resonance.

    PubMed Central

    Dawson, M J; Wray, S

    1985-01-01

    Concentrations of phosphorus metabolites and intracellular pH have been measured in non-pregnant, late-pregnant and post-partum rat uterus using 31P nuclear magnetic resonance (31P n.m.r.). Intact uterine tissue was superfused with oxygenated de-Jalon solution at 4, 20 or 37 degrees C while inside the n.m.r. spectrometer. The phosphocreatine concentration [PCr], was higher and the inorganic phosphate concentration [Pi], lower than values determined by chemical analysis of extracts from both pregnant and non-pregnant rat uterus. [PCr] was 1.4-fold greater in late-pregnant than in non-pregnant rat uterus. Following parturition, large changes were observed in [PCr], [Pi] and in an unidentified metabolite in the phosphomonoester (PME) region of the n.m.r. spectrum. The time course of the recovery of these metabolites to prepregnant values was determined. The [PCr] remained below the non-pregnant value for at least 1 week post-partum and the [Pi] was elevated, compared to the non-pregnant value, during this period. More rapid changes were seen in the [PME], which doubled on day 0 post-partum but almost returned to its non-pregnant value on day 1 post-partum. No significant difference was observed between intracellular pH values in late-pregnant and non-pregnant rat uterus; however, there was a large acid shift following parturition. Intracellular pH depended upon the temperature at which the tissue was maintained. The effect of muscular work during parturition was investigated by comparing Caesarian-sectioned uteri with uteri which had undergone normal parturition. Uteri examined 1 day after Caesarian operation showed no differences in metabolite levels from normal, 1 day post-partum uteri. We conclude that concentrations of phosphorus metabolites depend upon the physiological state of the uterus. We suggest that the changes following parturition are not a consequence of the mechanical work performed by the uterus, but must be caused by some other event associated with

  7. 31P-nuclear magnetic resonance spectroscopy in vivo of six human melanoma xenograft lines: tumour bioenergetic status and blood supply.

    PubMed Central

    Lyng, H.; Olsen, D. R.; Southon, T. E.; Rofstad, E. K.

    1993-01-01

    Six human melanoma xenograft lines grown s.c. in BALB/c-nu/nu mice were subjected to 31P-nuclear magnetic resonance (31P-NMR) spectroscopy in vivo. The following resonances were detected: phosphomonoesters (PME), inorganic phosphate (Pi), phosphodiesters (PDE), phosphocreatine (PCr) and nucleoside triphosphate gamma, alpha and beta (NTP gamma, alpha and beta). The main purpose of the work was to search for possible relationships between 31P-NMR resonance ratios and tumour pH on the one hand and blood supply per viable tumour cell on the other. The latter parameter was measured by using the 86Rb uptake method. Tumour bioenergetic status [the (PCr + NTP beta)/Pi resonance ratio], tumour pH and blood supply per viable tumour cell decreased with increasing tumour volume for five of the six xenograft lines. The decrease in tumour bioenergetic status was due to a decrease in the (PCr + NTP beta)/total resonance ratio as well as an increase in the Pi/total resonance ratio. The decrease in the (PCr + NTP beta)/total resonance ratio was mainly a consequence of a decrease in the PCr/total resonance ratio for two lines and mainly a consequence of a decrease in the NTP beta/total resonance ratio for three lines. The magnitude of the decrease in the (PCr + NTP beta)/total resonance ratio and the magnitude of the decrease in tumour pH were correlated to the magnitude of the decrease in blood supply per viable tumour cell. Tumour pH decreased with decreasing tumour bioenergetic status, and the magnitude of this decrease was larger for the tumour lines showing a high than for those showing a low blood supply per viable tumour cell. No correlations across the tumour lines were found between tumour pH and tumour bioenergetic status or any other resonance ratio on the one hand and blood supply per viable tumour cell on the other. The differences in the 31P-NMR spectrum between the tumour lines were probably caused by differences in the intrinsic biochemical properties of the tumour

  8. In vivo mouse myocardial (31)P MRS using three-dimensional image-selected in vivo spectroscopy (3D ISIS): technical considerations and biochemical validations.

    PubMed

    Bakermans, Adrianus J; Abdurrachim, Desiree; van Nierop, Bastiaan J; Koeman, Anneke; van der Kroon, Inge; Baartscheer, Antonius; Schumacher, Cees A; Strijkers, Gustav J; Houten, Sander M; Zuurbier, Coert J; Nicolay, Klaas; Prompers, Jeanine J

    2015-10-01

    (31)P MRS provides a unique non-invasive window into myocardial energy homeostasis. Mouse models of cardiac disease are widely used in preclinical studies, but the application of (31)P MRS in the in vivo mouse heart has been limited. The small-sized, fast-beating mouse heart imposes challenges regarding localized signal acquisition devoid of contamination with signal originating from surrounding tissues. Here, we report the implementation and validation of three-dimensional image-selected in vivo spectroscopy (3D ISIS) for localized (31)P MRS of the in vivo mouse heart at 9.4 T. Cardiac (31)P MR spectra were acquired in vivo in healthy mice (n = 9) and in transverse aortic constricted (TAC) mice (n = 8) using respiratory-gated, cardiac-triggered 3D ISIS. Localization and potential signal contamination were assessed with (31)P MRS experiments in the anterior myocardial wall, liver, skeletal muscle and blood. For healthy hearts, results were validated against ex vivo biochemical assays. Effects of isoflurane anesthesia were assessed by measuring in vivo hemodynamics and blood gases. The myocardial energy status, assessed via the phosphocreatine (PCr) to adenosine 5'-triphosphate (ATP) ratio, was approximately 25% lower in TAC mice compared with controls (0.76 ± 0.13 versus 1.00 ± 0.15; P < 0.01). Localization with one-dimensional (1D) ISIS resulted in two-fold higher PCr/ATP ratios than measured with 3D ISIS, because of the high PCr levels of chest skeletal muscle that contaminate the 1D ISIS measurements. Ex vivo determinations of the myocardial PCr/ATP ratio (0.94 ± 0.24; n = 8) confirmed the in vivo observations in control mice. Heart rate (497 ± 76 beats/min), mean arterial pressure (90 ± 3.3 mmHg) and blood oxygen saturation (96.2 ± 0.6%) during the experimental conditions of in vivo (31)P MRS were within the normal physiological range. Our results show that respiratory-gated, cardiac-triggered 3D ISIS allows for non-invasive assessments of in vivo

  9. Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i

    PubMed Central

    Eykyn, Thomas R.; Aksentijević, Dunja; Aughton, Karen L.; Southworth, Richard; Fuller, William; Shattock, Michael J.

    2015-01-01

    We investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32 ± 6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. PMID:26196304

  10. Differentiating and characterizing geminal silanols in silicas by (29)Si NMR spectroscopy.

    PubMed

    Murray, David K

    2010-12-01

    Single and geminal hydroxyl species in silicas have been characterized using solid-state (29)Si NMR spectroscopy. Differentiating hydroxyl types is important in understanding their roles in chemical toxicity mechanisms for inhaled crystalline silicas responsible for silicosis. (1)H-(29)Si cross polarization NMR spectroscopy has been employed to obtain (29)Si NMR chemical shift data and signal accrual and relaxation characteristics. Spectral deconvolution is used to examine relative single and geminal hydroxyl resonance areas for a series of representative silicas and silica gels. Silicon-containing materials examined include 1878a quartz, and 1879a cristobalite from the National Institute for Science and Technology, kaolin, and several widely used respirable silicas and silica gels. Geminal hydroxyls were observed in every case, with relative resonance areas accounting for 21-65% of total hydroxyl signals. Factors affecting relative areas measured as a function of contact time, relaxation, and surface area are discussed. Subsequent (29)Si and (31)P NMR studies of a silica coated with various sodium hydrogen phosphates show preferential single silanol-phosphate interaction for basic phosphates, and oligomerization products for acidic phosphates. Geminal hydroxyl resonance areas displayed significant error (4-17%) for low surface area silicas, limiting this method to studies exhibiting major changes in chemical or spectroscopic properties. PMID:20825948

  11. Advancement of 31P Magnetic Resonance Spectroscopy Using GRAPPA Reconstruction on a 3D Volume

    NASA Astrophysics Data System (ADS)

    Clevenger, Tony

    The overall objective of this research is to improve currently available metabolic imaging techniques for clinical use in monitoring and predicting treatment response to radiation therapy in liver cancer. Liver metabolism correlates with inflammatory and neoplastic liver diseases, which alter the intracellular concentration of phosphorus- 31 (31P) metabolites [1]. It is assumed that such metabolic changes occur prior to physical changes of the tissue. Therefore, information on regional changes of 31P metabolites in the liver, obtained by Magnetic Resonance Spectroscopic Imaging (MRSI) [1,2], can help in diagnosis and follow-up of various liver diseases. Specifically, there appears to be an immediate need of this technology for both the assessment of tumor response in patients with Hepatocellular Carcinoma (HCC) treated with Stereotactic Body Radiation Therapy (SBRT) [3--5], as well as assessment of radiation toxicity, which can result in worsening liver dysfunction [6]. Pilot data from our lab has shown that 31P MRSI has the potential to identify treatment response five months sooner than conventional methods [7], and to assess the biological response of liver tissue to radiation 24 hours post radiation therapy [8]. While this data is very promising, commonly occurring drawbacks for 31P MRSI are patient discomfort due to long scan times and prone positioning within the scanner, as well as reduced data quality due to patient motion and respiration. To further advance the full potential of 31P MRSI as a clinical diagnostic tool in the management of liver cancer, this PhD research project had the following aims: I) Reduce the long acquisition time of 3D 31P MRS by formulating and imple- menting an appropriate GRAPPA undersampling scheme and reconstruction on a clinical MRI scanner II) Testing and quantitative validation of GRAPPA reconstruction on 3D 31P MRSI on developmental phantoms and healthy volunteers At completion, this work should considerably advance 31P MRSI

  12. Rotation of Lipids in Membranes: Molecular Dynamics Simulation, 31P Spin-Lattice Relaxation, and Rigid-Body Dynamics

    PubMed Central

    Klauda, Jeffery B.; Roberts, Mary F.; Redfield, Alfred G.; Brooks, Bernard R.; Pastor, Richard W.

    2008-01-01

    Molecular dynamics simulations and 31P-NMR spin-lattice (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}R_{1}\\end{equation*}\\end{document}) relaxation rates from 0.022 to 21.1 T of fluid phase dipalmitoylphosphatidylcholine bilayers are compared. Agreement between experiment and direct prediction from simulation indicates that the dominant slow relaxation (correlation) times of the dipolar and chemical shift anisotropy spin-lattice relaxation are ∼10 ns and 3 ns, respectively. Overall reorientation of the lipid body, consisting of the phosphorus, glycerol, and acyl chains, is well described within a rigid-body model. Wobble, with \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}D_{{\\bot}}=\\end{equation*}\\end{document} 1–2 × 108 s−1, is the primary component of the 10 ns relaxation; this timescale is consistent with the tumbling of a lipid-sized cylinder in a medium with the viscosity of liquid hexadecane. The value for \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}D_{{\\Vert}},\\end{equation*}\\end{document} the diffusion constant for rotation about the long axis of the lipid body, is difficult to determine precisely because of averaging by fast motions and wobble; it is tentatively estimated to be 1 × 107 s−1. The resulting D‖/D⊥

  13. Inter- and intramolecular spin transfer in molecular magnetic materials. Solid-state NMR spectroscopy of paramagnetic metallocenium ions.

    PubMed

    Heise, Henrike; Köhler, Frank H; Herker, Martin; Hiller, Wolfgang

    2002-09-11

    To shed light on the interaction in molecule-based magnetic materials, the decamethylmetallocenium hexafluorophosphates, [(C(5)Me(5))(2)M](+) [PF(6)](-) with M = Cr, Mn, Fe, Co, and Ni, as well as the tetracyanoethenides, [(C(5)Me(5))(2)M](+) [TCNE](-) with M = Cr, Mn, Fe, and Co, have been investigated in the solid state by using (1)H, (13)C, (19)F, and (31)P NMR spectroscopy under magic angle spinning (MAS). The isotropic (13)C and (1)H NMR signals cover ranges of about 1300 and 500 ppm, respectively. From the shift anisotropies of the ring carbon signal of the [(C(5)Me(5))(2)M](+) cations, the total unpaired electron spin density in the ligand pi orbitals has been calculated; it amounts up to 36% (M = Ni) and is negative for M = Cr, Mn, and Fe. The radical anion of [(C(5)Me(5))(2)M](+) [TCNE](-) shifts the (13)C NMR signals of all [(C(5)Me(5))(2)M](+) cations to high frequency, which establishes transfer of positive spin density from the anions to the cations. The (19)F and (31)P NMR signals of the paramagnetic salts [(C(5)Me(5))(2)M](+) [PF(6)](-) are shifted up to 13.5 ppm relative to diamagnetic [(C(5)Me(5))(2)Co](+) [PF(6)](-). The signs of these shifts are the same as those of the pi spin density in [(C(5)Me(5))(2)M](+). After consideration of interionic ligand- and metal-centered dipolar shifts, this establishes cation-anion spin delocalization. The mixed crystals [(C(5)Me(5))(2)M(x)Co(1-x)](+)[PF(6)](-) have been prepared for M = Cr and Ni. They are isostructural with [(C(5)Me(5))(2)Co](+) [PF(6)](-) whose single-crystal structure has been determined by X-ray diffraction. The (13)C, (19)F, and (31)P MAS NMR spectra of the mixed crystals show that the respective two closest paramagnetic ions in the lattice delocalize spin density to [(C(5)Me(5))(2)Co](+), [(C(5)Me(5))(2)Ni](+), and [PF(6)](-). In [(C(5)Me(5))(2)M](+), about 10(-4) au per carbon atom are transferred. PMID:12207538

  14. Moving NMR

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard; Casanova, Federico; Danieli, Ernesto; Gong, Qingxia; Greferath, Marcus; Haber, Agnes; Kolz, Jürgen; Perlo, Juan

    2008-12-01

    Initiated by the use of NMR for well logging, portable NMR instruments are being developed for a variety of novel applications in materials testing and process analysis and control. Open sensors enable non-destructive testing of large objects, and small, cup-size magnets become available for high throughput analysis by NMR relaxation and spectroscopy. Some recent developments of mobile NMR are reviewed which delineate the direction into which portable NMR is moving.

  15. Decreased energy requirement of toad retina during light adaptation as demonstrated by 31P nuclear magnetic resonance.

    PubMed Central

    Apte, D V; Ebrey, T G; Dawson, M J

    1993-01-01

    1. The effect of light and dark adaptation on the levels of phosphorus metabolites (nucleotide di- and triphosphates, phosphocreatine, pyridine nucleotide, inorganic phosphate, phosphodiesters, phosphomonoesters, and uridine diphosphate-glucose) in the toad (Bufo marinus) retina and retinal extracts was studied by 31P nuclear magnetic resonance (NMR) spectroscopy. 2. Spectra were acquired using an NMR probe specifically designed for superfusion and illumination of a single retina. Retinae were maintained at a steady state for up to 10 h in an electrolyte solution containing 10 mM Hepes buffer and bubbled with 98% O2-2% CO2, pH 7.8 at 20 degrees C. 3. The intracellular concentrations of the phosphorus metabolites were measured in total darkness or during prolonged exposure to light. The concentration of nucleoside triphosphates (NTP) in the dark-adapted retina was about 1.5 mM and that of phosphocreatine (PCr) was about 0.7 mM. 4. In saturating levels of light, 6.0 x 10(11) or 1.5 x 10(13) quanta s-1 cm-2 at 520 nm, the levels of PCr and phosphomonoesters rose, the levels of NTP and protons (pH) were maintained, and the levels of pyridine nucleotides and nucleotide diphosphates (NDP) fell. 5. A rise in the level of PCr in the presence of an unchanged level of NTP in the light-adapted retina indicates that the energy consumption of the retina is greater in the dark. 6. These results are in agreement with the results of oxygen consumption, glucose dependence, and electrophysiological studies which also indicate that the metabolic energy requirement of the retina decreases in light. PMID:8229802

  16. Construction and 13C NMR signal-amplification efficiency of a dynamic nuclear polarizer at 6.4 T and 1.4 K

    NASA Astrophysics Data System (ADS)

    Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Ferguson, Sarah; Taylor, David; McDonald, George; Lumata, Lloyd

    Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging technique in biomedical and metabolic imaging since it amplifies the liquid-state nuclear magnetic resonance (NMR) and imaging (MRI) signals by >10,000-fold. Originally used in nuclear scattering experiments, DNP works by creating a non-Boltzmann nuclear spin distribution by transferring the high electron (γ = 28,000 MHz/T) thermal polarization to the nuclear spins via microwave irradiation of the sample at high magnetic field and low temperature. A dissolution device is used to rapidly dissolve the frozen sample and consequently produces an injectable ``hyperpolarized'' liquid at physiologically-tolerable temperature. Here we report the construction and performance evaluation of a dissolution DNP hyperpolarizer at 6.4 T and 1.4 K using a continuous-flow cryostat. The solid and liquid-state 13C NMR signal enhancement levels of 13C acetate samples doped with trityl OX063 and 4-oxo-TEMPO free radicals will be discussed and compared with the results from the 3.35 T commercial hyperpolarizer. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  17. Investigation of the Curvature Induction and Membrane Localization of the Influenza Virus M2 Protein Using Static and Off-Magic-Angle Spinning Solid-State NMR of Oriented Bicelles

    PubMed Central

    Wang, Tuo; Hong, Mei

    2015-01-01

    A wide variety of membrane proteins induce membrane curvature for function, thus it is important to develop new methods to simultaneously determine membrane curvature and protein binding sites in membranes with multiple curvatures. We introduce solid-state NMR methods based on magnetically oriented bicelles and off-magic-angle spinning (OMAS) to measure membrane curvature and the binding site of proteins in mixed-curvature membranes. We demonstrate these methods on the influenza virus M2 protein, which not only acts as a proton channel but also mediates virus assembly and membrane scission. An M2 peptide encompassing the transmembrane (TM) domain and an amphipathic helix, M2(21-61), was studied and compared with the TM peptide (M2TM). Static 31P NMR spectra of magnetically oriented DMPC/DHPC bicelles exhibit a temperature-independent isotropic chemical shift in the presence of M2(21-61) but not M2TM, indicating that the amphipathic helix confers the peptide with the ability to generate a high-curvature phase. 2D 31P spectra indicate that this high-curvature phase is associated with the DHPC bicelle edges, suggestive of the structure of budding viruses from the host cell. 31P- and 13C-detected 1H relaxation times of the lipids indicate that the majority of M2(21-61) is bound to the high-curvature phase. Using OMAS experiments, we resolved the 31P signals of lipids with identical headgroups based on their distinct chemical shift anisotropies. Based on this resolution, 2D 1H-31P correlation spectra show that the amide protons in M2(21-61) correlate with the DMPC but not the DHPC 31P signal of the bicelle, indicating that a small percentage of M2(21-61) partitions into the planar region of the bicelles. These results show that the M2 amphipathic helix induces high membrane curvature and localizes the protein to this phase, in excellent agreement with the membrane-scission function of the protein. These bicelle-based relaxation and OMAS solid-state NMR techniques are

  18. Accuracy and precision of quantitative 31P-MRS measurements of human skeletal muscle mitochondrial function.

    PubMed

    Layec, Gwenael; Gifford, Jayson R; Trinity, Joel D; Hart, Corey R; Garten, Ryan S; Park, Song Y; Le Fur, Yann; Jeong, Eun-Kee; Richardson, Russell S

    2016-08-01

    Although theoretically sound, the accuracy and precision of (31)P-magnetic resonance spectroscopy ((31)P-MRS) approaches to quantitatively estimate mitochondrial capacity are not well documented. Therefore, employing four differing models of respiratory control [linear, kinetic, and multipoint adenosine diphosphate (ADP) and phosphorylation potential], this study sought to determine the accuracy and precision of (31)P-MRS assessments of peak mitochondrial adenosine-triphosphate (ATP) synthesis rate utilizing directly measured peak respiration (State 3) in permeabilized skeletal muscle fibers. In 23 subjects of different fitness levels, (31)P-MRS during a 24-s maximal isometric knee extension and high-resolution respirometry in muscle fibers from the vastus lateralis was performed. Although significantly correlated with State 3 respiration (r = 0.72), both the linear (45 ± 13 mM/min) and phosphorylation potential (47 ± 16 mM/min) models grossly overestimated the calculated in vitro peak ATP synthesis rate (P < 0.05). Of the ADP models, the kinetic model was well correlated with State 3 respiration (r = 0.72, P < 0.05), but moderately overestimated ATP synthesis rate (P < 0.05), while the multipoint model, although being somewhat less well correlated with State 3 respiration (r = 0.55, P < 0.05), most accurately reflected peak ATP synthesis rate. Of note, the PCr recovery time constant (τ), a qualitative index of mitochondrial capacity, exhibited the strongest correlation with State 3 respiration (r = 0.80, P < 0.05). Therefore, this study reveals that each of the (31)P-MRS data analyses, including PCr τ, exhibit precision in terms of mitochondrial capacity. As only the multipoint ADP model did not overstimate the peak skeletal muscle mitochondrial ATP synthesis, the multipoint ADP model is the only quantitative approach to exhibit both accuracy and precision. PMID:27302751

  19. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    ERIC Educational Resources Information Center

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  20. A theoretical study of rotational diffusion models for rod-shaped viruses. The influence of motion on 31P nuclear magnetic resonance lineshapes and transversal relaxation.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1993-01-01

    Information about the interaction between nucleic acids and coat proteins in intact virus particles may be obtained by studying the restricted backbone dynamics of the incapsulated nucleic acids using 31P nuclear magnetic resonance (NMR) spectroscopy. In this article, simulations are carried out to investigate how reorientation of a rod-shaped virus particle as a whole and isolated nucleic acid motions within the virion influence the 31P NMR lineshape and transversal relaxation dominated by the phosphorus chemical shift anisotropy. Two opposite cases are considered on a theoretical level. First, isotropic rotational diffusion is used as a model for mobile nucleic acids that are loosely or partially bound to the protein coat. The effect of this type of diffusion on lineshape and transversal relaxation is calculated by solving the stochastic Liouville equation by an expansion in spherical functions. Next, uniaxial rotational diffusion is assumed to represent the mobility of phosphorus in a virion that rotates as a rigid rod about its length axis. This type of diffusion is approximated by an exchange process among discrete sites. As turns out from these simulations, the amplitude and the frequency of the motion can only be unequivocally determined from experimental data by a combined analysis of the lineshape and the transversal relaxation. In the fast motional region both the isotropic and the uniaxial diffusion model predict the same transversal relaxation as the Redfield theory. For very slow motion, transversal relaxation resembles the nonexponential relaxation as observed for water molecules undergoing translational diffusion in a magnetic field gradient. In this frequency region T2e is inversely proportional to the cube root of the diffusion coefficient. In addition to the isotropic and uniaxial diffusion models, a third model is presented, in which fast restricted nucleic acid backbone motions dominating the lineshape are superimposed on a slow rotation of the

  1. NMR studies of bond arrangements in alkali phosphate glasses

    SciTech Connect

    Alam, T.M.; Brow, R.K.

    1998-01-01

    Solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy has become a powerful tool for the investigation of local structure and medium range order in glasses. Previous {sup 31}P MAS NMR studies have detailed the local structure for a series of phosphate glasses. Phosphate tetrahedra within the glass network are commonly described using the Q{sup n} notation, where n = 0, 1, 2, 3 and represents the number of bridging oxygens attached to the phosphate. Using {sup 31}P MAS NMR different phosphate environments are readily identified and quantified. In this paper, the authors present a brief description of recent one dimensional (1D) {sup 6}Li, {sup 7}Li and {sup 31}P MAS experiments along with two-dimensional (2D) {sup 31}P exchange NMR experiments for a series of lithium ultraphosphate glasses. From the 2D exchange experiments the connectivities between different Q{sup n} phosphate tetrahedra were directly measured, while the 1D experiments provided a measure of the P-O-P bond angle distribution and lithium coordination number as a function of Li{sub 2}O concentration.

  2. Using "On/Off" (19)F NMR/Magnetic Resonance Imaging Signals to Sense Tyrosine Kinase/Phosphatase Activity in Vitro and in Cell Lysates.

    PubMed

    Zheng, Zhen; Sun, Hongbin; Hu, Chen; Li, Gongyu; Liu, Xiaomei; Chen, Peiyao; Cui, Yusi; Liu, Jing; Wang, Junfeng; Liang, Gaolin

    2016-03-15

    Tyrosine kinase and phosphatase are two important, antagonistic enzymes in organisms. Development of noninvasive approach for sensing their activity with high spatial and temporal resolution remains challenging. Herein, we rationally designed a hydrogelator Nap-Phe-Phe(CF3)-Glu-Tyr-Ile-OH (1a) whose supramolecular hydrogel (i.e., Gel 1a) can be subjected to tyrosine kinase-directed disassembly, and its phosphate precursor Nap-Phe-Phe(CF3)-Glu-Tyr(H2PO3)-Ile-OH (1b), which can be subjected to alkaline phosphatase (ALP)-instructed self-assembly to form supramolecular hydrogel Gel 1b, respectively. Mechanic properties and internal fibrous networks of the hydrogels were characterized with rheology and cryo transmission electron microscopy (cryo-TEM). Disassembly/self-assembly of their corresponding supramolecular hydrogels conferring respective "On/Off" (19)F NMR/MRI signals were employed to sense the activity of these two important enzymes in vitro and in cell lysates for the first time. We anticipate that our new (19)F NMR/magnetic resonance imaging (MRI) method would facilitate pharmaceutical researchers to screen new inhibitors for these two enzymes without steric hindrance. PMID:26901415

  3. Ab Initio Calculation of Nuclear Magnetic Resonance Chemical Shift Anisotropy Tensors 1. Influence of Basis Set on the Calculation of 31P Chemical Shifts

    SciTech Connect

    Alam, T.M.

    1998-09-01

    The influence of changes in the contracted Gaussian basis set used for ab initio calculations of nuclear magnetic resonance (NMR) phosphorous chemical shift anisotropy (CSA) tensors was investigated. The isotropic chemical shitl and chemical shift anisotropy were found to converge with increasing complexity of the basis set at the Hartree-Fock @IF) level. The addition of d polarization function on the phosphorous nucIei was found to have a major impact of the calculated chemical shi~ but diminished with increasing number of polarization fimctions. At least 2 d polarization fimctions are required for accurate calculations of the isotropic phosphorous chemical shift. The introduction of density fictional theory (DFT) techniques through tie use of hybrid B3LYP methods for the calculation of the phosphorous chemical shift tensor resulted in a poorer estimation of the NMR values, even though DFT techniques result in improved energy and force constant calculations. The convergence of the W parametem with increasing basis set complexity was also observed for the DFT calculations, but produced results with consistent large deviations from experiment. The use of a HF 6-31 l++G(242p) basis set represents a good compromise between accuracy of the simulation and the complexity of the calculation for future ab initio calculations of 31P NMR parameters in larger complexes.

  4. In vivo (31) P MRS assessment of intracellular NAD metabolites and NAD(+) /NADH redox state in human brain at 4 T.

    PubMed

    Lu, Ming; Zhu, Xiao-Hong; Chen, Wei

    2016-07-01

    NAD(+) and NADH play key roles in cellular respiration. Intracellular redox state defined by the NAD(+) /NADH ratio (RX) reflects the cellular metabolic and physiopathological status. By taking advantage of high/ultrahigh magnetic field strengths, we have recently established a novel in vivo (31) P MRS-based NAD assay for noninvasive and quantitative measurements of intracellular NAD concentrations and redox state in animal and human brains at 16.4 T, 9.4 T and 7 T. To explore its potential for clinical application, in this study we investigated the feasibility of assessing the NAD metabolism and redox state in human brain at a lower field of 4 T by incorporating the (1) H-decoupling technique with the in vivo (31) P NAD assay. The use of (1) H decoupling significantly narrowed the linewidths of NAD and α-ATP resonances, resulting in higher sensitivity and better spectral resolution as compared with the (1) H-coupled (31) P spectrum. These improvements made it possible to reliably quantify cerebral NAD concentrations and RX, consistent with previously reported results obtained from similar age human subjects at 7 T. In summary, this work demonstrates the capability and utility of the (1) H-decoupled (31) P MRS-based NAD assay at lower field strength; thus, it opens new opportunities for studying intracellular NAD metabolism and redox state in human brain at clinical settings. This conclusion is supported by the simulation results, indicating that similar performance and reliability as observed at 4T can be achieved at 3 T with the same signal-to-noise ratio. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27257783

  5. Muscle metabolism and activation heterogeneity by combined 31P chemical shift and T2 imaging, and pulmonary O2 uptake during incremental knee-extensor exercise

    PubMed Central

    Cannon, Daniel T.; Howe, Franklyn A.; Whipp, Brian J.; Ward, Susan A.; McIntyre, Dominick J.; Ladroue, Christophe; Griffiths, John R.; Kemp, Graham J.

    2013-01-01

    The integration of skeletal muscle substrate depletion, metabolite accumulation, and fatigue during large muscle-mass exercise is not well understood. Measurement of intramuscular energy store degradation and metabolite accumulation is confounded by muscle heterogeneity. Therefore, to characterize regional metabolic distribution in the locomotor muscles, we combined 31P magnetic resonance spectroscopy, chemical shift imaging, and T2-weighted imaging with pulmonary oxygen uptake during bilateral knee-extension exercise to intolerance. Six men completed incremental tests for the following: 1) unlocalized 31P magnetic resonance spectroscopy; and 2) spatial determination of 31P metabolism and activation. The relationship of pulmonary oxygen uptake to whole quadriceps phosphocreatine concentration ([PCr]) was inversely linear, and three of four knee-extensor muscles showed activation as assessed by change in T2. The largest changes in [PCr], [inorganic phosphate] ([Pi]) and pH occurred in rectus femoris, but no voxel (72 cm3) showed complete PCr depletion at exercise cessation. The most metabolically active voxel reached 11 ± 9 mM [PCr] (resting, 29 ± 1 mM), 23 ± 11 mM [Pi] (resting, 7 ± 1 mM), and a pH of 6.64 ± 0.29 (resting, 7.08 ± 0.03). However, the distribution of 31P metabolites and pH varied widely between voxels, and the intervoxel coefficient of variation increased between rest (∼10%) and exercise intolerance (∼30–60%). Therefore, the limit of tolerance was attained with wide heterogeneity in substrate depletion and fatigue-related metabolite accumulation, with extreme metabolic perturbation isolated to only a small volume of active muscle (<5%). Regional intramuscular disturbances are thus likely an important requisite for exercise intolerance. How these signals integrate to limit muscle power production, while regional “recruitable muscle” energy stores are presumably still available, remains uncertain. PMID:23813534

  6. Excitation functions for actinides produced in the interactions of sup 31 P with sup 248 Cm

    SciTech Connect

    Leyba, J.D.; Henderson, R.A.; Hall, H.L.; Czerwinski, K.R.; Kadkhodayan, B.A.; Kreek, S.A.; Brady, E.K.; Gregorich, K.E.; Lee, D.M.; Nurmia, M.J.; Hoffman, D.C. Nuclear Science Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California )

    1991-11-01

    Excitation functions have been measured for the production of various isotopes of Bk, Cf, Es, and Fm from the interactions of 174- and 239-MeV {sup 31}P projectiles with {sup 248}Cm. The isotopic distributions were symmetric and displayed full widths at half maximum of 2.5, 2.5, and 2.25 mass units for Bk, Cf, and Fm, respectively. The maxima of the isotopic distributions occur for those reaction channels which involve the exchange of the fewest number of nucleons between the target and projectile for which the calculated excitation energy is a positive quantity. The maxima of the excitation functions occur at those projectile energies which are consistent with the calculated reaction barriers based upon a binary reaction mechanism. The effects of the odd proton in the {sup 31}P projectile on the final isotopic distributions are discussed.

  7. Noninvasive quantitation of phosphorus metabolites in human tissue by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Roth, K.; Hubesch, B.; Meyerhoff, D. J.; Naruse, S.; Gober, J. R.; Lawry, T. J.; Boska, M. D.; Matson, G. B.; Weiner, M. W.

    Quantitation of metabolite concentrations by NMR spectroscopy is complicated by the need to determine the volume from which signals are detected, and by the need to obtain the relative sensitivity of detection within this volume. The use of coils with inhomogeneous B1 fields further complicates these problems. In order to quantify metabolite concentrations using 31P NMR spectroscopy, an external reference of hexamethyl phosphoroustriamide was used. Studies were performed on phantoms, using either a surface coil or a Helmholtz head coil to confirm the accuracy of both the ISIS volume selection technique and the use of an external reference. The limitations of this method are related to contamination and signal loss inherent in the ISIS technique and difficulties with integration of broad overlapping peaks. The method was applied to seven normal human subjects. The integrals for metabolite signals in normal brain and calf muscle were determined by using NMRI software. The T1 values of the signals of all phosphorus metabolites in the selected volume were measured in order to correct for saturation effects. The concentrations for PCr, P i, and ATP were 4.9, 2.0, and 2.5 m M in brain and 36.5, 5.7, and 7.3 m M in muscle. These results are in good agreement with those reported for animals, demonstrating the validity of this quantitation technique.

  8. Summary of Miniature NMR Development

    SciTech Connect

    Friedman, Gennady; Feinerman, Alan

    2000-12-31

    The effort in this project has been in 3 distinct directions: (1) First, they focused on development of miniature microfabricated micro-coil NMR detectors with maximum Signal-to-Noise (SNR) ratio. (2) Secondly, they focused on design of miniature micro-coil NMR detectors that have minimal effect on the NMR spectrum distortions. (3) Lastly they focused on the development of a permanent magnet capable of generating fields on the order of 1 Tesla with better than 10 ppm uniformity.

  9. Dietary fat modulation of mammary tumor growth and metabolism demonstrated by /sup 31/P-nuclear magnetic resonance

    SciTech Connect

    Erickson, K.L.; Buckman, D.K.; Hubbard, N.E.; Ross, B.

    1986-03-05

    The relationship of dietary fat concentration and saturation on the growth and metabolic activity of line 168 was studied using syngeneic mice fed 6 experimental diets before and during tumor growth. Tumor latency was significantly greater for mice fed a diet containing the minimum of essential fatty acids (EFA, 0.5% corn oil) or 8% coconut oil (SF) than for mice fed 8 or 20% safflower oil (PUF) or 20% SF. Changes in dietary fat resulted in alterations of tumor cell and serum fatty acid composition but not the number of inflammatory cells infiltrating the tumor. /sup 31/P-surface coil NMR was used to measure possible changes in tumor metabolism in vivo. Although pH decreased from 7.2 to 6.6 as the tumor volume increased, there was no difference in pH among dietary groups. There was an inverse relationship between both sugar phosphate (SP)/Pi and ATP/Pi ratios and tumor volume; those ratios for mice fed an EFA deficient or minimal EFA diet decreased at a different rate than ratios for mice fed diets with additional fat. Tumors of mice fed diets containing no or a low level (0.3%) of 18:2 had higher SP/ATP ratios than mice fed diets containing a moderate level (approx. 4%) of 18:2. Thus, high levels of dietary fat had a significant effect on promotion of mammary tumors during early stages of tumor growth. Differences in tumor volume associated with dietary fat may be related to changes in the levels of high energy phosphate metabolites.

  10. Tautomeric states of the active-site histidines of phosphorylated and unphosphorylated IIIGlc, a signal-transducing protein from Escherichia coli, using two-dimensional heteronuclear NMR techniques.

    PubMed Central

    Pelton, J. G.; Torchia, D. A.; Meadow, N. D.; Roseman, S.

    1993-01-01

    IIIGlc is an 18.1-kDa signal-transducing phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system from Escherichia coli. The 1H, 15N, and 13C histidine ring NMR signals of both the phosphorylated and unphosphorylated forms of IIIGlc have been assigned using two-dimensional 1H-15N and 1H-13C heteronuclear multiple-quantum coherence (HMQC) experiments and a two-dimensional 13C-13C-1H correlation spectroscopy via JCC coupling experiment. The data were acquired on uniformly 15N-labeled and uniformly 15N/13C-labeled protein samples. The experiments rely on one-bond and two-bond J couplings that allowed for assignment of the signals without the need for the analysis of through-space (nuclear Overhauser effect spectroscopy) correlations. The 15N and 13C chemical shifts were used to determine that His-75 exists predominantly in the N epsilon 2-H tautomeric state in both the phosphorylated and unphosphorylated forms of IIIGlc, and that His-90 exists primarily in the N delta 1-H state in the unphosphorylated protein. Upon phosphorylation of the N epsilon 2 nitrogen of His-90, the N delta 1 nitrogen remains protonated, resulting in the formation of a charged phospho-His-90 moiety. The 1H, 15N, and 13C signals of the phosphorylated and unphosphorylated proteins showed only minor shifts in the pH range from 6.0 to 9.0. These data indicate that the pK alpha values for both His-75 and His-90 in IIIGlc and His-75 in phospho-IIIGlc are less than 5.0, and that the pK alpha value for phospho-His-90 is greater than 10. The results are presented in relation to previously obtained structural data on IIIGlc, and implications for proposed mechanisms of phosphoryl transfer are discussed. PMID:8518729

  11. NMR studies on polyphosphide Ce6Ni6P17

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Yamada, H.; Ueda, K.; Mito, T.; Aoyama, Y.; Nakano, T.; Takeda, N.

    2016-02-01

    We report the result of 31P nuclear magnetic resonance (NMR) studies on Ce6Ni6P17. The observed NMR spectra show a Lorentzian-type and an asymmetric shapes, reflecting the local symmetry around each P site in the cubic unit cell. We have identified the observed NMR lines corresponding to three inequivalent P sites and deduced the temperature dependence of the Knight shift for each site. The Knight shifts increase with decreasing temperature down to 1.5 K, indicating a localized spin system of Ce6Ni6P17. Antiferromagnetic correlation between 4f spins is suggested from the negative sign of the Weiss-temperature.

  12. Chromatographic NMR in NMR solvents

    NASA Astrophysics Data System (ADS)

    Carrara, Caroline; Viel, Stéphane; Delaurent, Corinne; Ziarelli, Fabio; Excoffier, Grégory; Caldarelli, Stefano

    2008-10-01

    Recently, it was demonstrated that pseudo-chromatographic NMR experiments could be performed using typical chromatographic solids and solvents. This first setup yielded improved separation of the spectral components of the NMR spectra of mixtures using PFG self-diffusion measurements. The method (dubbed Chromatographic NMR) was successively shown to possess, in favorable cases, superior resolving power on non-functionalized silica, compared to its LC counterpart. To further investigate the applicability of the method, we studied here the feasibility of Chromatographic NMR in common deuterated solvents. Two examples are provided, using deuterated chloroform and water, for homologous compounds soluble in these solvents, namely aromatic molecules and alcohols, respectively.

  13. Enantiodiscrimination by NMR spectroscopy.

    PubMed

    Uccello-Barretta, Gloria; Balzano, Federica; Salvadori, Piero

    2006-01-01

    The analysis of enantiorecognition processes involves the detection of enantiomeric species as well as the study of chiral discrimination mechanisms. In both fields Nuclear Magnetic Resonance (NMR) spectroscopy plays a fundamental role, providing several tools, based on the use of suitable chiral auxiliaries, for observing distinct signals of enantiomers and for investigating the complexation phenomena involved in enantiodiscrimination processes. PMID:17100610

  14. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: insights from solid-state 13C NMR and solution 31P NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions...

  15. NMR imaging of materials

    SciTech Connect

    Vinegar, H.J.; Rothwell, W.P.

    1988-03-01

    A method for obtaining at least one petrophysical property of a porous material containing therein at least one preselected fluid, is described, comprising: NMR imaging the material to generate signals dependent upon both M(0) and T/sub 1/ and M(0) and T/sub 2/, generating separate M(0), T/sub 1/ and T/sub 2/ images from the signals, and determining at least one petrophysical property from at least one of the images.

  16. Centerband-only analysis of rotor-unsynchronized spin echo for measurement of lipid (31) P chemical shift anisotropy.

    PubMed

    Umegawa, Yuichi; Yamaguchi, Toshiyuki; Murata, Michio; Matsuoka, Shigeru

    2015-07-01

    Structural diversity and molecular flexibility of phospholipids are essential for biological membranes to play key roles in numerous cellular processes. Uncovering the behavior of individual lipids in membrane dynamics is crucial for understanding the molecular mechanisms underlying biological functions of cell membranes. In this paper, we introduce a simple method to investigate dynamics of lipid molecules in multi-component systems by measuring the (31) P chemical shift anisotropy (CSA) under magic angle spinning (MAS) conditions. For achieving both signal separation and CSA determination, we utilized a centerband-only analysis of rotor-unsynchronized spin echo (COARSE). This analysis is based on the curve fitting of periodic modulation of centerband intensity along the interpulse delay time in rotor-unsynchronized spin-echo experiments. The utility of COARSE was examined by using phospholipid vesicles, a three-component lipid raft model system, and archaeal purple membranes. We found that the apparent advantages of this method are high resolution and high sensitivity given by the moderate MAS speed and the one-dimensional acquisition with short spin-echo delays. COARSE provides an alternative method for CSA measurement that is effective in the investigation of lipid polymorphologies. PMID:26017552

  17. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  18. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  19. Nuclear spin decoherence of neutral 31P donors in silicon: Effect of environmental 29Si nuclei

    NASA Astrophysics Data System (ADS)

    Petersen, Evan S.; Tyryshkin, A. M.; Morton, J. J. L.; Abe, E.; Tojo, S.; Itoh, K. M.; Thewalt, M. L. W.; Lyon, S. A.

    2016-04-01

    Spectral diffusion arising from 29Si nuclear spin flip-flops, known to be a primary source of electron spin decoherence in silicon, is also predicted to limit the coherence times of neutral donor nuclear spins in silicon. Here, the impact of this mechanism on 31P nuclear spin coherence is measured as a function of 29Si concentration using X -band pulsed electron nuclear double resonance. The 31P nuclear spin echo decays show that decoherence is controlled by 29Si flip-flops resulting in both fast (exponential) and slow (nonexponential) spectral diffusion processes. The decay times span a range from 100 ms in crystals containing 50% 29Si to 3 s in crystals containing 1% 29Si. These nuclear spin echo decay times for neutral donors are orders of magnitude longer than those reported for ionized donors in natural silicon. The electron spin of the neutral donors "protects" the donor nuclear spins by suppressing 29Si flip-flops within a "frozen core," as a result of the detuning of the 29Si spins caused by their hyperfine coupling to the electron spin.

  20. Review of NMR characterization of pyrolysis oils

    DOE PAGESBeta

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  1. The A31P missense mutation in cardiac myosin binding protein C alters protein structure but does not cause haploinsufficiency.

    PubMed

    van Dijk, Sabine J; Bezold Kooiker, Kristina; Mazzalupo, Stacy; Yang, Yuanzhang; Kostyukova, Alla S; Mustacich, Debbie J; Hoye, Elaine R; Stern, Joshua A; Kittleson, Mark D; Harris, Samantha P

    2016-07-01

    Mutations in MYBPC3, the gene encoding cardiac myosin binding protein C (cMyBP-C), are a major cause of hypertrophic cardiomyopathy (HCM). While most mutations encode premature stop codons, missense mutations causing single amino acid substitutions are also common. Here we investigated effects of a single proline for alanine substitution at amino acid 31 (A31P) in the C0 domain of cMyBP-C, which was identified as a natural cause of HCM in cats. Results using recombinant proteins showed that the mutation disrupted C0 structure, altered sensitivity to trypsin digestion, and reduced recognition by an antibody that preferentially recognizes N-terminal domains of cMyBP-C. Western blots detecting A31P cMyBP-C in myocardium of cats heterozygous for the mutation showed a reduced amount of A31P mutant protein relative to wild-type cMyBP-C, but the total amount of cMyBP-C was not different in myocardium from cats with or without the A31P mutation indicating altered rates of synthesis/degradation of A31P cMyBP-C. Also, the mutant A31P cMyBP-C was properly localized in cardiac sarcomeres. These results indicate that reduced protein expression (haploinsufficiency) cannot account for effects of the A31P cMyBP-C mutation and instead suggest that the A31P mutation causes HCM through a poison polypeptide mechanism that disrupts cMyBP-C or myocyte function. PMID:26777460

  2. Optical hyperpolarization and inductive readout of 31P donor nuclei in natural abundance single crystal 29Si

    NASA Astrophysics Data System (ADS)

    Alexander, Thomas; Haas, Holger; Deshpande, Rahul; Gumann, Patryk; Cory, David

    2016-05-01

    We optically polarize and inductively detect 31P donor nuclei in single crystal silicon at high magnetic fields (6 . 7T). Samples include both natural abundance 29Si and an isotopically purified 28Si sample. We observe dipolar order in the 29Si nuclear spins through a spin-locking measurement. This provides a means of characterizing spin transport in the vicinity of the 31P donors.

  3. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence*

    PubMed Central

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L.; Embrey, Kevin J.; Golovanov, Alexander P.

    2016-01-01

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026

  4. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence.

    PubMed

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L; Embrey, Kevin J; Golovanov, Alexander P

    2016-01-22

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly (15)N-labeled Ras as well as [(13)C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026

  5. Solid-state NMR investigations of bulk and nanocrystalline indium phosphide

    NASA Astrophysics Data System (ADS)

    de Graw, David Thomas

    Second-rank indirect couplings in bulk InP. The heteronuclear J-coupling tensor between nearest neighbor 31P and 113In spins in undoped InP is investigated by means of 113 In → 31P polarization transfer under rapid magic angle spinning (MAS). The scalar contribution can be measured directly and is found to have the value |Jiso(31 P-113,115In)| = (225 +/- 10) Hz. The principal value of the traceless anisotropic J-coupling tensor (pseudodipolar coupling) is determined to be Janiso(31P- 113,115In) = 2/3(J∥|(31P- 113,115In)-J⊥(31P- 113,115In)) = (813 +/- 50) Hz or (1733 +/- 50) Hz, assuming axial symmetry with the principal axis parallel to the In-P bond. Our values deviate from those reported previously (Phys. Rev. B 5, 3395, 1972), (based on a moment analysis of the 31P resonance |J iso(31P-113,115In)| = 350 Hz and Janiso(31P-113,115 In) = 1273 Hz), but confirm the that the nearest neighbor 31P-113,115In magnetic dipolar and pseudodipolar interactions are of the same order of magnitude and partially cancel each other out. Surface structure and size effects in nanocrystalline InP. The assignment of 31P NMR spectra on trioctylphosphine oxide (TOPO) passivated InP quantum dots is made using 2D correlation and multinuclear (1H → 13C → 31P) polarization transfer techniques. The spectra show distinct surface-capping sites as well as two crystallite In31P surface components, implying a manifold of crystal-ligand bonding configurations and electronic environments. In a previous NMR study (Phys. Rev. Lett. 60, 2673, 1988) on Cd 77Se nanocrystals it was shown that the first moment of the resonance line showed an upfield shift with decreasing particle size. However, the resonance line also displayed a significant amount of inhomogeneous broadening. We have shown that with decreasing size, the nanocrystal core resonance displays an increasing upfield chemical shift related to the overall size dependence of the InP electronic structure.

  6. Homonuclear and Heteronuclear NMR Studies of a Statherin Fragment Bound to Hydroxyapatite Crystals

    SciTech Connect

    Raghunathan, Vinodhkumar; Gibson, James M.; Goobes, Gil; Popham, Jennifer M.; Louie, Elizabeth; Stayton, Patrick; Drobny, Gary P.

    2006-05-11

    Acidic proteins found in mineralized tissues act as nature's crystal engineers, where they play a key role in promoting or inhibiting the growth of minerals such as hydroxyapatite (HAP), Ca10(PO4)6(OH)2, the main mineral component of bone and teeth. Key to understanding the structural basis of protein-crystal recognition and protein control of hard tissue growth is the nature of interactions between the protein side chains and the crystal surface. In an earlier work we have measured the proximity of the lysine (K6) side chain in an SN-15 peptide fragment of the salivary protein statherin adsorbed to the Phosphorus-rich surface of HAP using solid-state NMR recoupling experiments. 15N(31P) rotational echo double resonance (REDOR) NMR data on the side-chain nitrogen in K6 gave rise to three different models of protein-surface interaction to explain the experimental data acquired. In this work we extend the analysis of the REDOR data by examining the contribution of interactions between surface phosphorus atoms to the observed 15N REDOR decay. We performed 31P-31P recoupling experiments in HAP and (NH4)2HPO4 (DHP) to explore the nature of dipolar coupled 31P spin networks. These studies indicate that extensive networks of dipolar coupled 31P spins can be represented as stronger effective dipolar couplings, the existence of which must be included in the analysis of REDOR data. We carried out 15N(31P) REDOR in the case of DHP to determine how the size of the dephasing spin network influences the interpretation of the REDOR data. Although use of an extended 31P coupled spin network simulates the REDOR data well, a simplified 31P dephasing system composed of two spins with a larger dipolar coupling also simulates the REDOR data and only perturbs the heteronuclear couplings very slightly. The 31P-31P dipolar couplings between phosphorus nuclei in HAP can be replaced by an effective dipolar interaction of 600 Hz between two 31P spins. We incorporated this coupling and

  7. Characterizing mixed phosphonic acid ligand capping on CdSe/ZnS quantum dots using ligand exchange and NMR spectroscopy.

    PubMed

    Davidowski, Stephen K; Lisowski, Carmen E; Yarger, Jeffery L

    2016-03-01

    The ligand capping of phosphonic acid functionalized CdSe/ZnS core-shell quantum dots (QDs) was investigated with a combination of solution and solid-state (31) P nuclear magnetic resonance (NMR) spectroscopy. Two phosphonic acid ligands were used in the synthesis of the QDs, tetradecylphosphonic acid and ethylphosphonic acid. Both alkyl phosphonic acids showed broad liquid and solid-state (31) P NMR resonances for the bound ligands, indicative of heterogeneous binding to the QD surface. In order to quantify the two ligand populations on the surface, ligand exchange facilitated by phenylphosphonic acid resulted in the displacement of the ethylphosphonic acid and tetradecylphosphonic acid and allowed for quantification of the free ligands using (31) P liquid-state NMR. After washing away the free ligand, two broad resonances were observed in the liquids' (31) P NMR corresponding to the alkyl and aromatic phosphonic acids. The washed samples were analyzed via solid-state (31) P NMR, which confirmed the ligand populations on the surface following the ligand exchange process. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26639792

  8. In vivo (1)H MRS and (31)P MRSI of the response to cyclocreatine in transgenic mouse liver expressing creatine kinase.

    PubMed

    Cui, Min-Hui; Jayalakshmi, Kamaiah; Liu, Laibin; Guha, Chandan; Branch, Craig A

    2015-12-01

    Hepatocyte transplantation has been explored as a therapeutic alternative to liver transplantation, but a means to monitor the success of the procedure is lacking. Published findings support the use of in vivo (31)P MRSI of creatine kinase (CK)-expressing hepatocytes to monitor proliferation of implanted hepatocytes. Phosphocreatine tissue level depends upon creatine (Cr) input to the CK enzyme reaction, but Cr measurement by (1)H MRS suffers from low signal-to-noise ratio (SNR). We examine the possibility of using the Cr analog cyclocreatine (CCr, a substrate for CK), which is quickly phosphorylated to phosphocyclocreatine (PCCr), as a higher SNR alternative to Cr. (1)H MRS and (31)P MRSI were employed to measure the effect of incremental supplementation of CCr upon PCCr, γ-ATP, pH and Pi /ATP in the liver of transgenic mice expressing the BB isoform of CK (CKBB) in hepatocytes. Water supplementation with 0.1% CCr led to a peak total PCCr level of 17.15 ± 1.07 mmol/kg wet weight by 6 weeks, while adding 1.0% CCr led to a stable PCCr liver level of 18.12 ± 3.91 mmol/kg by the fourth day of feeding. PCCr was positively correlated with CCr, and ATP concentration and pH declined with increasing PCCr. Feeding with 1% CCr in water induced an apparent saturated level of PCCr, suggesting that CCr quantization may not be necessary for quantifying expression of CK in mice. These findings support the possibility of using (31)P MRS to noninvasively monitor hepatocyte transplant success with CK-expressing hepatocytes. PMID:26451872

  9. 14N overtone NMR under MAS: signal enhancement using symmetry-based sequences and novel simulation strategies† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cp03994g Click here for additional data file.

    PubMed Central

    Haies, Ibraheem M.; Jarvis, James A.; Bentley, Harry; Heinmaa, Ivo; Kuprov, Ilya; Williamson, Philip T. F.

    2015-01-01

    Overtone 14N NMR spectroscopy is a promising route for the direct detection of 14N signals with good spectral resolution. Its application is currently limited, however, by the absence of efficient polarization techniques for overtone signal enhancement and the lack of efficient numerical simulation techniques to aid in both the development of new methods and the analysis and interpretation of experimental data. In this paper we report a novel method for the transfer of polarization from 1H to the 14N overtone using symmetry-based R-sequences that overcome many of the limitations of adiabatic approaches that have worked successfully on static samples. Refinement of these sequences and the analysis of the resulting spectra have been facilitated through the development of an efficient simulation strategy for 14N overtone NMR spectroscopy of spinning samples, using effective Hamiltonians on top of Floquet and Fokker–Planck equations. PMID:25662410

  10. sup 31 P saturation transfer and phosphocreatine imaging in the monkey brain

    SciTech Connect

    Mora, B.; Narasimhan, P.T.; Ross, B.D. California Inst. of Tech., Pasadena ); Allman, J. ); Barker, P.B. )

    1991-10-01

    {sup 31}P magnetic resonance imaging with chemical-shift discrimination by selective excitation has been employed to determine the phosphocreatine (PCr) distribution in the brains of three juvenile macaque monkeys. PCr images were also obtained while saturating the resonance of the {gamma}-phosphate of ATP, which allowed the investigation of the chemical exchange between PCr and the {gamma}-phosphate of ATP catalyzed by creatine kinase. Superposition of the PCr images over the proton image of the same monkey brain revealed topological variations in the distribution of PCr and creatine kinase activity. PCr images were also obtained with and without visual stimulation. In two out of four experiments, an apparently localized decrease in PCr concentration was noted in visual cortex upon visual stimulation. This result is interpreted in terms of a possible role for the local ADP concentration in stimulating the accompanying metabolic response.

  11. Abnormal skeletal muscle oxidative capacity after lung transplantation by 31P-MRS.

    PubMed

    Evans, A B; Al-Himyary, A J; Hrovat, M I; Pappagianopoulos, P; Wain, J C; Ginns, L C; Systrom, D M

    1997-02-01

    Although lung transplantation improves exercise capacity by removal of a ventilatory limitation, recipients' postoperative maximum oxygen uptake (VO2max) remains markedly abnormal. To determine if abnormal skeletal muscle oxidative capacity contributes to this impaired aerobic capacity, nine lung transplant recipients and eight healthy volunteers performed incremental quadriceps exercise to exhaustion with simultaneous measurements of pulmonary gas exchange, minute ventilation, blood lactate, and quadriceps muscle pH and phosphorylation potential by 31P-magnetic resonance spectroscopy (31P-MRS). Five to 38 mo after lung transplantation, peak VO2 was decreased compared with that of normal control subjects (6.7 +/- 0.4 versus 12.3 +/- 1.0 ml/min/kg, p < 0.001), even after accounting for differences in age and lean body weight. Neither ventilation, arterial O2 saturation nor mild anemia could account for the decrease in aerobic capacity. Quadriceps muscle intracellular pH (pH(i)) was more acidic at rest (7.07 +/- 0.01 versus 7.12 +/- 0.01 units, p < 0.05) and fell during exercise from baseline values at a lower metabolic rate (282 +/- 21 versus 577 +/- 52 ml/min, p < 0.001). Regressions for pH(i) versus VO2, phosphocreatine/inorganic phosphate ratio (PCr/Pi) versus VO2, and blood lactate versus pH(i) were not different. Among transplant recipients, the metabolic rate at which pH(i) fell correlated closely with VO2max (r = 0.87, p < 0.01). The persistent decrease in VO2max after lung transplantation may be related to abnormalities of skeletal muscle oxidative capacity. PMID:9032203

  12. Mitochondrial NAD(P)H In vivo: Identifying Natural Indicators of Oxidative Phosphorylation in the 31P Magnetic Resonance Spectrum

    PubMed Central

    Conley, Kevin E.; Ali, Amir S.; Flores, Brandon; Jubrias, Sharon A.; Shankland, Eric G.

    2016-01-01

    Natural indicators provide intrinsic probes of metabolism, biogenesis and oxidative protection. Nicotinamide adenine dinucleotide metabolites (NAD(P)) are one class of indicators that have roles as co-factors in oxidative phosphorylation, glycolysis, and anti-oxidant protection, as well as signaling in the mitochondrial biogenesis pathway. These many roles are made possible by the distinct redox states (NAD(P)+ and NAD(P)H), which are compartmentalized between cytosol and mitochondria. Here we provide evidence for detection of NAD(P)+ and NAD(P)H in separate mitochondrial and cytosol pools in vivo in human tissue by phosphorus magnetic resonance spectroscopy (31P MRS). These NAD(P) pools are identified by chemical standards (NAD+, NADP+, and NADH) and by physiological tests. A unique resonance reflecting mitochondrial NAD(P)H is revealed by the changes elicited by elevation of mitochondrial oxidation. The decline of NAD(P)H with oxidation is matched by a stoichiometric rise in the NAD(P)+ peak. This unique resonance also provides a measure of the improvement in mitochondrial oxidation that parallels the greater phosphorylation found after exercise training in these elderly subjects. The implication is that the dynamics of the mitochondrial NAD(P)H peak provides an intrinsic probe of the reversal of mitochondrial dysfunction in elderly muscle. Thus, non-invasive detection of NAD(P)+ and NAD(P)H in cytosol vs. mitochondria yields natural indicators of redox compartmentalization and sensitive intrinsic probes of the improvement of mitochondrial function with an intervention in human tissues in vivo. These natural indicators hold the promise of providing mechanistic insight into metabolism and mitochondrial function in vivo in a range of tissues in health, disease and with treatment. PMID:27065875

  13. NMR and MRI apparatus and method

    DOEpatents

    Clarke, John; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Myers, Whittier; McDermott, Robert; ten Haken, Bernard; Pines, Alexander; Trabesinger, Andreas

    2007-03-06

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. Additional signal to noise benefits are obtained by use of a low noise polarization coil, comprising litz wire or superconducting materials. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  14. Ex vivo identification of atherosclerotic plaque calcification by a 31P solid-state magnetic resonance imaging technique.

    PubMed

    Hallock, Kevin J; Hamilton, James A

    2006-12-01

    Calcified tissue is a common component of atherosclerotic plaques, and occurs most often in mature plaques. The process of calcification is a poorly understood risk factor that may contribute to a plaque's vulnerability to sudden rupture. In this study a solid-state imaging sequence, termed single-point imaging (SPI), was used to observe calcification directly in ex vivo atherosclerotic plaques. Standards were used to validate the ability of (31)P SPI to detect and differentiate calcification from crystalline cholesterol, phospholipids, and other plaque components. After suitable experimental parameters were found, human carotid specimens obtained by endarterectomy were imaged ex vivo by (31)P solid-state imaging and standard (1)H methods. In contrast to (1)H imaging methods, (31)P imaging detected only the calcification in the plaque. PMID:17089379

  15. 31P magnetic resonance phospholipid profiles of neoplastic human breast tissues.

    PubMed Central

    Merchant, T. E.; Meneses, P.; Gierke, L. W.; Den Otter, W.; Glonek, T.

    1991-01-01

    Phospholipids from malignant, benign and noninvolved human breast tissues were extracted by chloroform-methanol (2:1) and analysed by 31P MR spectroscopy at 202.4 MHz. Thirteen phospholipids were identified as constituents of the profiles obtained among the 55 tissue specimens analysed. Observed patterns in phospholipid tissues profiles were distinct, allowing qualitative characterisation of the three tissue groups. Multivariate analysis of lysophosphatidylcholine (LPC) and an uncharacterised phospholipid were shown to be independently significant in predicting benign tissue histology as either fibrocystic disease or fibroadenoma in 92% of cases. Univariate analysis of relative mole-percentage of phosphorus concentrations of individual phospholipids using the Scheffé comparison procedure revealed that in malignant tissues, phosphatidylethanolamine was significantly elevated compared to benign (+ 32%) and noninvolved tissues (+ 22%). Phosphatidylinositol (+ 33%) and phosphatidylcholine plasmalogen (PC plas) (+ 25%) were increased in malignant compared to benign and LPC was decreased (-44%) in malignant compared to noninvolved. LPC was significantly depressed (-39%) in benign tissue compared to normal. Phospholipid indices computed to further characterise the three tissue groups showed PC plas/PC elevated in malignant tissue compared to benign and PE plas/PE depressed in malignant tissue compared to noninvolved. These findings support previous investigations reporting that the alkyl-phospholipid analogues of phosphatidylcholine are released by malignant tissues and that levels of ethanolamine are elevated in malignant tissues. Indices describing the choline-containing phospholipids showed that these lipids are depressed significantly in malignant tissue relative to healthy tissue. PMID:2039694

  16. Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated ten soils from six states in United States to determine the relationship between potentiometric titration derived soil surface charge and Phosphorus-31 (P) nuclear magnetic resonance (NMR) speciation with the concentration of water-extractable P (WEP). The surface charge value at the...

  17. Squid detected NMR and MRI at ultralow fields

    SciTech Connect

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2007-05-15

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  18. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-05-30

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  19. SQUID detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-10-03

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  20. Squid detected NMR and MRI at ultralow fields

    SciTech Connect

    Clarke, John; Pines, Alexander; McDermott, Robert F.; Trabesinger, Andreas H.

    2008-12-16

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  1. Macroscopic orientation effects in broadline NMR-spectra of model membranes at high magnetic field strength

    PubMed Central

    Brumm, T.; Möps, A.; Dolainsky, C.; Brückner, S.; Bayerl, T. M.

    1992-01-01

    The partial orientation of multilamellar vesicles (MLV) in high magnetic fields has been studied and a method to prevent such effects is herewith proposed. The orientation effect was measured with 2H-, 31P-NMR and electron microscopy on MLVs of dipalmitoyl phosphatidylcholine with 30 mol% cholesterol. We present the first freeze—etch electron microscopy data obtained from MLV samples that were frozen directly in the NMR magnet at a field strength of 9.4 Tesla. These experiments clearly show that the MLVs adopt an ellipsoidal (but not a cylindrical) shape in the magnetic field. Best fit 31P-NMR lineshape calculations assuming an ellipsoidal distribution of molecular director axes to the experimentally obtained spectra provide a quantitative measure of the average semiaxis ratio of the ellipsoidal MLVs and its change with temperature. The application of so-called spherical supported vesicles (SSV) is found to prevent any partial orientation effects so that undistorted NMR powder pattern of the bilayer can be measured independently of magnetic field strength and temperature. The usefulness of SSVs is further demonstrated by a direct comparison of spectral data such as 31P-and 2H-NMR lineshapes and relaxation times as well as 2H-NMR dePaked spectra obtained for both model systems. These experiments show that spectral data obtained from partially oriented MLVs are not unambiguous to interpret, in particular, if an external parameter such as temperature is varied. ImagesFIGURE 1 PMID:19431822

  2. Topographical analysis of regulatory and metal ion binding sites on glutamine synthetase from Escherichia coli: 13C and 31P nuclear magnetic resonance and fluorescence energy transfer study

    PubMed Central

    Villafranca, J. J.; Rhee, S. G.; Chock, P. B.

    1978-01-01

    The paramagnetic effect of Mn(II) on 13C and 31P nuclear magnetic resonance signals from the [2-13C]ATP adenylylated glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming); EC 6.3.1.2] from Escherichia coli was measured. This effect permitted the determination of distances from the 2-C position and the phosphorus of covalently bound AMP to the two Mn(II) binding sites, n1 and n2. Binding of Mn(II) to the n1 site converts an inactive apo-enzyme to its active form, while the metal ion bound at n2 occupies the metal-nucleotide substrate site. The distances from Mn(II) at the n1 and n2 sites to phosphorus are ∼10 and ∼7 Å and to the 2-C position of the adenine ring are ∼12 and ∼11 Å, respectively. The fluorescence energy transfer method was used to determine distances between Co(II) at n1 and n2 and the adenylyl site. For this experiment the enzyme was adenylylated with ε-ATP. The distances between ε-adenine and Co(II) at n1 and n2 are ∼13 and ∼11 Å, respectively. Quantitation of the paramagnetic effect due to Co(II) on the 31P nuclear magnetic resonance signal yielded values of 8 and 6 Å for the distances between the phosphorus of the covalently bound AMP and the n1 and n2 sites, respectively. The results reveal that the covalent modification site is very close to the catalytic center of the enzyme. In this study both nuclear magnetic resonance and fluorescence energy transfer techniques have been used to determine distances between the same set of sites on an enzyme surface. PMID:26053

  3. Regional Differences of Metabolic Response During Dynamic Incremental Exercise by (31)P-CSI.

    PubMed

    Kaneko, Yasuhisa; Kime, Ryotaro; Hongo, Yoshinori; Ohno, Yusuke; Sakamoto, Ayumi; Katsumura, Toshihito

    2016-01-01

    The aim of this study was to detect the differences in muscle metabolic response of the quadriceps during incremental dynamic knee exercise using regional (31)Phosphorus Chemical Shift Imaging ((31)P-CSI). Sixteen healthy men participated in this study (age 28 ± 5 years, height 171.4 ± 3.9 cm, weight 67.1 ± 9.8 kg). The experiments were carried out with a 1.5-T superconducting magnet with a 5-in. diameter circular surface coil. The subjects performed isometric unilateral knee extension exercise to detect their maximum voluntary contraction (MVC) in prone position. Then they performed dynamic unilateral knee extension exercise in the magnet at 10, 20, 30 and 40 % of their MVC with the transmit-receive coil placed under the right quadriceps. The subjects pulled down a rope with the adjusted weight attached to the ankle at a frequency of 0.5 Hz for 380 s. Intracellular pH (pHi) was calculated from the median chemical shift of the inorganic phosphate (Pi) peak relative to phosphocreatine (PCr). The quadriceps were divided into three regions, (1) medial, (2) anterior, (3) lateral, and in comparison, there was no significant difference in Pi/PCr nor in pHi between regions, except Pi/PCr of the medial region was significantly higher than the anterior region at maximum intensity (p < 0.05). These results suggest that regional muscle metabolic response is similar in the quadriceps except at maximum intensity. PMID:27526153

  4. Multimodal neuroimaging provides a highly consistent picture of energy metabolism, validating 31P MRS for measuring brain ATP synthesis

    PubMed Central

    Chaumeil, Myriam M.; Valette, Julien; Guillermier, Martine; Brouillet, Emmanuel; Boumezbeur, Fawzi; Herard, Anne-Sophie; Bloch, Gilles; Hantraye, Philippe; Lebon, Vincent

    2009-01-01

    Neuroimaging methods have considerably developed over the last decades and offer various noninvasive approaches for measuring cerebral metabolic fluxes connected to energy metabolism, including PET and magnetic resonance spectroscopy (MRS). Among these methods, 31P MRS has the particularity and advantage to directly measure cerebral ATP synthesis without injection of labeled precursor. However, this approach is methodologically challenging, and further validation studies are required to establish 31P MRS as a robust method to measure brain energy synthesis. In the present study, we performed a multimodal imaging study based on the combination of 3 neuroimaging techniques, which allowed us to obtain an integrated picture of brain energy metabolism and, at the same time, to validate the saturation transfer 31P MRS method as a quantitative measurement of brain ATP synthesis. A total of 29 imaging sessions were conducted to measure glucose consumption (CMRglc), TCA cycle flux (VTCA), and the rate of ATP synthesis (VATP) in primate monkeys by using 18F-FDG PET scan, indirect 13C MRS, and saturation transfer 31P MRS, respectively. These 3 complementary measurements were performed within the exact same area of the brain under identical physiological conditions, leading to: CMRglc = 0.27 ± 0.07 μmol·g−1·min−1, VTCA = 0.63 ± 0.12 μmol·g−1·min−1, and VATP = 7.8 ± 2.3 μmol·g−1·min−1. The consistency of these 3 fluxes with literature and, more interestingly, one with each other, demonstrates the robustness of saturation transfer 31P MRS for directly evaluating ATP synthesis in the living brain. PMID:19234118

  5. Solid state NMR investigation of intact human bone quality: balancing issues and insight into the structure at the organic-mineral interface

    PubMed Central

    Nikel, Ondrej; Laurencin, Danielle; Bonhomme, Christian; Sroga, Grażyna E.; Besdo, Silke; Lorenz, Anna; Vashishth, Deepak

    2012-01-01

    Age-related bone fragility fractures present a significant problem for public health. Measures of bone quality are increasingly recognized to complement the conventional bone mineral density (BMD) based assessment of fracture risk. The ability to probe and understand bone quality at the molecular level is desirable in order to unravel how the structure of organic matrix and its association with mineral contribute to the overall mechanical properties. The 13C{31P} REDOR MAS NMR (Rotational Echo Double Resonance Magic Angle Spinning Nuclear Magnetic Resonance) technique is uniquely suited for the study of the structure of the organic-mineral interface in bone. For the first time, we have applied it successfully to analyze the structure of intact (non-powdered) human cortical bone samples, from young healthy and old osteoporotic donors. Loading problems associated with the rapid rotation of intact bone were solved using a Finite Element Analysis (FEA) approach, and a method allowing osteoporotic samples to be balanced and spun reproducibly is described. REDOR NMR parameters were set to allow insight into the arrangement of the amino acids at the mineral interface to be accessed, and SVD (Singular Value Decomposition) was applied to enhance the signal to noise ratio and enable a better analysis of the data. From the REDOR data, it was found that carbon atoms belonging to citrate/glucosaminoglycans (GAGs) are closest to the mineral surface regardless of age or site. In contrast, the arrangement of the collagen backbone at the interface varied with site and age. The relative proximity of two of the main amino acids in bone matrix proteins, hydroxyproline and alanine, with respect to the mineral phase was analyzed in more detail, and discussed in view of glycation measurements which were carried out on the tissues. Overall, this work shows that the 13C{31P} REDOR NMR approach could be used as a complementary technique to assess a novel aspect of bone quality, the organic

  6. Probing the interaction of U(vi) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy.

    PubMed

    Uribe, Eva C; Mason, Harris E; Shusterman, Jennifer A; Bruchet, Anthony; Nitsche, Heino

    2016-06-21

    The fundamental interaction of U(vi) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U(vi) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse (31)P NMR on U(vi) contacted samples revealed that U(vi) only interacts with a fraction of the ligands present on the surface. At pH 4 the U(vi) extraction capacity of the material is limited to 27-37% of the theoretical capacity, based on ligand loading. We combined single pulse (31)P NMR on U(vi)-contacted samples with batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U(vi) binds to deprotonated phosphonate and/or silanol sites. We use (31)P-(31)P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U(vi)-complexed and non-complexed ligand environments. These measurements reveal that U(vi) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex. PMID:27265020

  7. Off-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabolite rotational diffusion in bovine lens homogenates

    SciTech Connect

    Caines, G.H.; Schleich, T.; Morgan, C.F. ); Farnsworth, P.N. )

    1990-08-21

    The rotational diffusion behavior of phosphorus metabolites present in calf lens cortical and nuclear homogenates was investigated by the NMR technique of {sup 31}P off-resonance rotating frame spin-lattice relaxation as a means of assessing the occurrence and extent of phosphorus metabolite-lens protein interactions. {sup 31}P NMR spectra of calf lens homogenates were obtained at 10 and 18{degree}C at 7.05 T. Effective rotational correlation times ({tau}{sub 0,eff}) for the major phosphorus metabolites present in cortical and nuclear bovine calf lens homogenates were derived from nonlinear least-squares analysis of R vs {omega}{sub e} data with the assumption of isotropic reorientational motion. Intramolecular dipole-dipole ({sup 1}H-{sup 31}P, {sup 31}P-{sup 31}P), chemical shift anisotropy (CSA), and solvent (water) translational intermolecular dipole-dipole ({sup 1}H-{sup 31}P) relaxation contributions were assumed in the analyses. A fast-exchange model between free and bound forms, was employed in the analysis of the metabolite R vs {omega}{sub e} curves to yield the fraction of free (unbound) metabolite ({Theta}{sub free}). The results of this study establish the occurrence of significant temperature-dependent (above and below the cold cataract phase transition temperature) binding of ATP (cortex) and PME (nucleus) and p{sub i} (nucleus) in calf lens.

  8. Superiority of blood over saline resuscitation from hemorrhagic shock: a 31P magnetic resonance spectroscopy study.

    PubMed Central

    Mann, D V; Robinson, M K; Rounds, J D; DeRosa, E; Niles, D A; Ingwall, J S; Wilmore, D W; Jacobs, D O

    1997-01-01

    OBJECTIVE: To study the relation between blood and saline administration, postresuscitation hematocrit (Hct) level, and metabolic recovery after hemorrhagic shock. SUMMARY BACKGROUND DATA: It is generally believed that crystalloid can be substituted, in whole or in part, for blood during resuscitation of hemorrhagic shock. This is based on the belief that Hct can be safely reduced but should not fall below a critical level. METHODS: Male rats weighing 200 g were subjected to an isobaric hemorrhagic shock at a mean arterial pressure of 30 mmHg for 14 minutes, after which they were randomized to one of three resuscitation regimens. Control group (n = 36) were resuscitated by return of all shed blood. Mid-Hct (n = 39) and low-Hct (n = 60) groups were depleted of one third and one half of their circulating blood volumes, respectively, and were resuscitated with three times that volume of normal saline. Skeletal muscle intracellular energetics and pH were measured serially using 31P magnetic resonance spectroscopy at baseline, during shock, and after resuscitation. Arterial blood was sampled at the same time points. The number of surviving animals in each group at 24 hours was recorded. RESULTS: After resuscitation, surviving rats in the low-Hct group demonstrated a greater consumption of high-energy phosphocreatine stores than did the other groups (control = 0.479 +/- 0.003, mid-Hct = 0.465 +/- 0.004, low-Hct = 0.457 +/- 0.007, mean +/- standard error of the mean; p < 0.01 low-Hct vs. other groups by analysis of variance). The rats that received saline resuscitation developed a relative intracellular acidosis (control = 7.29 +/- 0.02, mid-Hct = 7.25 +/- 0.02, low-Hct = 7.23 +/- 0.02; p < 0.05 controls vs. other groups by analysis of variance). At 24 hours, the death rates were significantly different among the groups: control = 1 of 36 rats (2.8%), mid-Hct = 6 of 39 (15.4%), and low-Hct = 14 of 60 (23.3%) (p < 0.05 by chi square analysis). CONCLUSION: The oxygen

  9. Solid-State Nuclear Magnetic Resonance Measurements of HIV Fusion Peptide 13CO to Lipid 31P Proximities Support Similar Partially Inserted Membrane Locations of the α Helical and β Sheet Peptide Structures

    NASA Astrophysics Data System (ADS)

    Gabrys, Charles M.; Qiang, Wei; Sun, Yan; Xie, Li; Schmick, Scott D.; Weliky, David P.

    2013-10-01

    Fusion of the human immunodeficiency virus (HIV) membrane and the host cell membrane is an initial step of infection of the host cell. Fusion is catalyzed by gp41, which is an integral membrane protein of HIV. The fusion peptide (FP) is the -25 N-terminal residues of gp41 and is a domain of gp41 that plays a key role in fusion catalysis likely through interaction with the host cell membrane. Much of our understanding of the FP domain has been accomplished with studies of -HFP-, i.e., a -25-residue peptide composed of the FP sequence but lacking the rest of gp41. HFP catalyzes fusion between membrane vesicles and serves as a model system to understand fusion catalysis. HFP binds to membranes and the membrane location of HFP is likely a significant determinant of fusion catalysis perhaps because the consequent membrane perturbation reduces the fusion activation energy. In the present study, many HFPs were synthesized and differed in the residue position that was 13CO backbone labeled. Samples were then prepared that each contained a singly 13CO labeled HFP incorporated into membranes that lacked cholesterol. HFP had distinct molecular populations with either α helical or oligomeric - sheet structure. Proximity between the HFP 13CO nuclei and 31P nuclei in the membrane headgroups was probed by solid-state NMR (SSNMR) rotational-echo double-resonance (REDOR) measurements. For many samples, there were distinct 13CO shifts for the α helical and - sheet structures so that the proximities to 31P nuclei could be determined for each structure. Data from several differently labeled HFPs were then incorporated into a membrane location model for the particular structure. In addition to the 13CO labeled residue position, the HFPs also differed in sequence and/or chemical structure. -HFPmn- was a linear peptide that contained the 23 N-terminal residues of gp41. -HFPmn_V2E- contained the V2E mutation that for HIV leads to greatly reduced extent of fusion and infection. The

  10. 31P MR spectroscopy and computational modeling identify a direct relation between Pi content of an alkaline compartment in resting muscle and phosphocreatine resynthesis kinetics in active muscle in humans.

    PubMed

    van Oorschot, Joep W M; Schmitz, Joep P J; Webb, Andrew; Nicolay, Klaas; Jeneson, Jeroen A L; Kan, Hermien E

    2013-01-01

    The assessment of mitochondrial properties in skeletal muscle is important in clinical research, for instance in the study of diabetes. The gold standard to measure mitochondrial capacity non-invasively is the phosphocreatine (PCr) recovery rate after exercise, measured by (31)P Magnetic Resonance spectroscopy ((31)P MRS). Here, we sought to expand the evidence base for an alternative method to assess mitochondrial properties which uses (31)P MRS measurement of the Pi content of an alkaline compartment attributed to mitochondria (Pi2; as opposed to cytosolic Pi (Pi1)) in resting muscle at high magnetic field. Specifically, the PCr recovery rate in human quadriceps muscle was compared with the signal intensity of the Pi2 peak in subjects with varying mitochondrial content of the quadriceps muscle as a result of athletic training, and the results were entered into a mechanistic computational model of mitochondrial metabolism in muscle to test if the empirical relation between Pi2/Pi1 ratio and the PCr recovery was consistent with theory. Localized (31)P spectra were obtained at 7T from resting vastus lateralis muscle to measure the intensity of the Pi2 peak. In the endurance trained athletes a Pi2/Pi1 ratio of 0.07 ± 0.01 was found, compared to a significantly lower (p<0.05) Pi2/Pi1 ratio of 0.03 ± 0.01 in the normally active group. Next, PCr recovery kinetics after in magnet bicycle exercise were measured at 1.5T. For the endurance trained athletes, a time constant τPCr 12 ± 3 s was found, compared to 24 ± 5s in normally active subjects. Without any parameter optimization the computational model prediction matched the experimental data well (r(2) of 0.75). Taken together, these results suggest that the Pi2 resonance in resting human skeletal muscle observed at 7T provides a quantitative MR-based functional measure of mitochondrial density. PMID:24098796

  11. Mitochondrial, acidic, and cytosolic pHs determination by ³¹P NMR spectroscopy: design of new sensitive targeted pH probes.

    PubMed

    Culcasi, Marcel; Thétiot-Laurent, Sophie; Atteia, Ariane; Pietri, Sylvia

    2015-01-01

    (31)P nuclear magnetic resonance (NMR) is a unique technique to monitor noninvasively the energetics of living systems at real time through the detection of a variety of phosphorylated metabolites. Using adequately designed α-aminophosphonates as external probes, we have shown earlier that (31)P NMR can also give access simultaneously to the accurate pH of cytosolic and acidic compartments in normal and stressed cultured cells or isolated perfused organs, a feature that was not possible using endogenous inorganic phosphate as the probe. More recently, we obtained a series of derivatives of these new pH probes that incorporate a triphenylphosphonium cation as a specific vector to the mitochondrion. Here, we describe the synthesis, (31)P NMR pH titrating properties in buffers, and application in cultures of the green alga Chlamydomonas reinhardtii of two of these mitochondria-targeted pH probes in comparison with one nonvectorized, yet still informative α-aminophosphonate. PMID:25634273

  12. NMR Relaxation and Petrophysical Properties

    NASA Astrophysics Data System (ADS)

    Fleury, Marc

    2011-03-01

    NMR relaxation is routinely used in the field of geosciences to give basic petrophysical properties such as porosity, pore size distribution, saturation etc. In this tutorial, we focus on the pore size distribution deduced from NMR. We recall the basic principle used in the interpretation of the NMR signal and compare the results with other standard petrophysical techniques such as mercury pore size distribution, BET specific surface measurements, thin section visualizations. The NMR pore size distribution is a unique information available on water saturated porous media and can give similar results as MICP in certain situations. The scaling of NMR relaxation time distribution (s) into pore sizes (μm) requires the knowledge of the surface relaxivity (μm/s) and we recommend using specific surface measurements as an independent determination of solid surface areas. With usual surface relaxivities, the NMR technique can explore length-scales starting from nano-meters and ending around 100 μm. Finally, we will introduce briefly recent techniques sensitive to the pore to pore diffusional exchange, providing new information on the connectivity of the pore network, but showing another possibility of discrepancy in the determination of pore size distribution with standard techniques.

  13. The NMR phased array.

    PubMed

    Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M

    1990-11-01

    We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm). PMID:2266841

  14. Proton 1H- and Phosphorus 31P-MR spectroscopy (MRS) in asymptomatic HIV-positive patients

    PubMed Central

    Schuettfort, Gundolf; Hattingen, Elke; Pilatus, Ulrich; Stephan, Christoph; Wolf, Timo; Goepel, Siri; Haberl, Annette; Blasel, Stella; Zanella, Freidhelm; Brodt, Hans-Reinhard; Bickel, Markus

    2014-01-01

    Introduction HIV infection is accompanied by a variety of neurological disorders. Depression of cell-mediated immunity is followed by the development of central nervous system opportunistic infections/tumours, and frequently by the occurrence of the AIDS dementia complex (ADC). However, the pathophysiology of the emergence of neuro-AIDS is still unknown. Despite the development of cognitive impairments, the early diagnosis, objectification and quantification of the existence and extent of this impairment during infection are difficult to recognize in each individual case. To support the early diagnosis of ADC, there is a need for additional, non-invasive diagnostic methods. In this study, it is of interest to answer the clinically relevant question of whether magnetic resonance spectroscopy can detect changes in the cerebral metabolism of asymptomatic HIV-positive patients and is possibly suitable for the early diagnosis and prevention of HIV encephalopathy. Methods A group of 13 asymptomatic, HIV-positive patients with combined antiretroviral therapy (cART) and 13 healthy controls were examined with 2D 1H-MRS and 3D 31P-MRS at 3T. The patients were treated with cART for at least 12 months. Changes in the absolute concentrations of phosphorylated metabolites (ATP), N-acetyl-aspartate, creatine, myo-Isonitol, glutamate/glutamine and choline-containing compounds were compared with that of control subjects. Results Asymptomatic HIV-positive patients had significantly lower N-acetyl-aspartate in the white matter in a frontal and parietal target region. The other evaluated metabolites in the 1H MRS showed no significant difference between the HIV-positive patients and healthy controls. The 31P-MRS detected significant elevated values regarding the choline-containing compounds PEth, GPE and PCho. Conclusions This spectroscopic study revealed a significantly lower N-acetyl-aspartate in the white matter in a frontal and parietal cerebral target region in asymptomatic, HIV

  15. Analysis of Metabolism in Dormant Spores of Bacillus Species by 31P Nuclear Magnetic Resonance Analysis of Low-Molecular-Weight Compounds

    PubMed Central

    Ghosh, Sonali; Korza, George; Maciejewski, Mark

    2014-01-01

    This work was undertaken to obtain information on levels of metabolism in dormant spores of Bacillus species incubated for weeks at physiological temperatures. Spores of Bacillus megaterium and Bacillus subtilis strains were harvested shortly after release from sporangia and incubated under various conditions, and dormant spore metabolism was monitored by 31P nuclear magnetic resonance (NMR) analysis of molecules including 3-phosphoglyceric acid (3PGA) and ribonucleotides. Incubation for up to 30 days at 4, 37, or 50°C in water, at 37 or 50°C in buffer to raise the spore core pH from ∼ 6.3 to 7.8, or at 4°C in spent sporulation medium caused no significant changes in ribonucleotide or 3PGA levels. Stage I germinated spores of Bacillus megaterium that had slightly increased core water content and a core pH of 7.8 also did not degrade 3PGA and accumulated no ribonucleotides, including ATP, during incubation for 8 days at 37°C in buffered saline. In contrast, spores incubated for up to 30 days at 37 or 50°C in spent sporulation medium degraded significant amounts of 3PGA and accumulated ribonucleotides, indicative of RNA degradation, and these processes were increased in B. megaterium spores with a core pH of ∼7.8. However, no ATP was accumulated in these spores. These data indicate that spores of Bacillus species stored in water or buffer at low or high temperatures exhibited minimal, if any, metabolism of endogenous compounds, even when the spore core pH was 7.8 and core water content was increased somewhat. However, there was some metabolism in spores stored in spent sporulation medium. PMID:25548246

  16. Computer systems for laboratory networks and high-performance NMR.

    PubMed

    Levy, G C; Begemann, J H

    1985-08-01

    Modern computer technology is significantly enhancing the associated tasks of spectroscopic data acquisition and data reduction and analysis. Distributed data processing techniques, particularly laboratory computer networking, are rapidly changing the scientist's ability to optimize results from complex experiments. Optimization of nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) experimental results requires use of powerful, large-memory (virtual memory preferred) computers with integrated (and supported) high-speed links to magnetic resonance instrumentation. Laboratory architectures with larger computers, in order to extend data reduction capabilities, have facilitated the transition to NMR laboratory computer networking. Examples of a polymer microstructure analysis and in vivo 31P metabolic analysis are given. This paper also discusses laboratory data processing trends anticipated over the next 5-10 years. Full networking of NMR laboratories is just now becoming a reality. PMID:3840171

  17. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  18. Theory of NMR 1 /T1 relaxation in a quantum spin nematic in an applied magnetic field

    NASA Astrophysics Data System (ADS)

    Smerald, Andrew; Shannon, Nic

    2016-05-01

    There is now strong theoretical evidence that a wide range of frustrated magnets should support quantum spin-nematic order in an applied magnetic field. Nonetheless, the fact that spin-nematic order does not break time-reversal symmetry makes it very difficult to detect in experiment. In this article, we continue the theme begun in Phys. Rev. B 88, 184430 (2013), 10.1103/PhysRevB.88.184430, of exploring how spin-nematic order reveals itself in the spectrum of spin excitations. Building on an earlier analysis of inelastic neutron scattering [Phys. Rev. B 91, 174402 (2015), 10.1103/PhysRevB.91.174402], we show how the NMR 1 /T1 relaxation rate could be used to identify a spin-nematic state in an applied magnetic field. We emphasize the characteristic universal features of 1 /T1 using a symmetry-based description of the spin-nematic order parameter and its fluctuations. Turning to the specific case of spin-1/2 frustrated ferromagnets, we show that the signal from competing spin-wave excitations can be suppressed through a judicious choice of nuclear site and field direction. As a worked example, we show how 31P NMR in the square lattice frustrated ferromagnet BaCdVO (PO4)2 is sensitive to spin-nematic order.

  19. Analysis of 31P MR spectroscopy data using artificial neural networks for longitudinal evaluation of muscle diseases: dermatomyositis.

    PubMed

    Park, J H; Kari, S; King, L E; Olsen, N J

    1998-01-01

    Classical myopathic dermatomyositis (DM) is a chronic autoimmune disease characterized by an erythematous rash and severe, proximal muscle weakness. A disease variant, amyopathic DM, presents with the typical rash but without clinical evidence of muscle weakness. Prednisone and immunosuppressive drugs alleviate symptoms in many patients. Accurate longitudinal evaluations of patients are important to limit serious side effects of these drugs, including osteoporosis, cataracts, and growth inhibition. Metabolic abnormalities detected with 31P magnetic resonance spectroscopy (MRS) provide the best quantitative data for evaluating these patients. With 31P MRS, the levels of inorganic phosphate (Pi), phosphocreatine (PCr), ATP, and phosphodiesters (PDE) were determined in the quadricep muscles of patients during rest and exercise. Artificial neural network (ANN) analyses of these data were previously used for accurate classification of patients with myopathic or amyopathic DM and normal controls. In the present investigation, an artificial neural network was employed for further analysis of the 31P metabolite levels in quantitative, longitudinal evaluations of the extent (percent) of clinical improvement or deterioration during treatment with prednisone and immunosuppressive drugs. The ANN results showed that adult patients in a severe myopathic state could improve with treatment to a clinical status of amyopathic DM. In contrast, severely weak juvenile patients in the myopathic state recovered to normal status. One juvenile patient did not improve and remained in the myopathic state. Additionally, a serious clinical relapse in an amyopathic patient was predicted with serial ANN analyses well in advance of the actual clinical event. These network analyses show potential utility for clinical applications in muscle diseases. PMID:9719579

  20. NMR methodologies for studying mitochondrial bioenergetics.

    PubMed

    Alves, Tiago C; Jarak, Ivana; Carvalho, Rui A

    2012-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a technique with an increasing importance in the study of metabolic diseases. Its initial important role in the determination of chemical structures (1, 2) has been considerably overcome by its potential for the in vivo study of metabolism (3-5). The main characteristic that makes this technique so attractive is its noninvasiveness. Only nuclei capable of transitioning between energy states, in the presence of an intense and constant magnetic field, are studied. This includes abundant nuclei such as proton ((1)H) and phosphorous ((31)P), as well as stable isotopes such as deuterium ((2)H) and carbon 13 ((13)C). This allows a wide range of applications that vary from the determination of water distribution in tissues (as obtained in a magnetic resonance imaging scan) to the calculation of metabolic fluxes under ex vivo and in vivo conditions without the need to use radioactive tracers or tissue biopsies (as in a magnetic resonance spectroscopy (MRS) scan). In this chapter, some technical aspects of the methodology of an NMR/MRS experiment as well as how it can be used to study mitochondrial bioenergetics are overviewed. Advantages and disadvantages of in vivo MRS versus high-resolution NMR using proton high rotation magic angle spinning (HRMAS) of tissue biopsies and tissue extracts are also discussed. PMID:22057574

  1. Measurement of changes in high-energy phosphates in the cardiac cycle using gated 31P nuclear magnetic renonance.

    PubMed Central

    Fossel, E T; Morgan, H E; Ingwall, J S

    1980-01-01

    Levels of the high-energy phosphate-containing compounds, ATP and creatine phosphate, and of inorganic phosphate (Pi) were measured as a function of position in the cardiac cycle. Measurements were made on isolated, perfused, working rat hearts through the use of gated 31P nuclear magnetic resonance spectroscopy. Levels of ATP and creatine phosphate were found to vary during the cardiac cycle and were maximal at minimal aortic pressure and minimal at maximal aortic pressure. Pi varied inversely with the high-energy phosphates. PMID:6932041

  2. Influence of Ca/sup 2 +/ concentration on phosphate metabolism of isolated rat hearts investigated with /sup 31/P NMR spectroscopy

    SciTech Connect

    Hannigan, J.J.; Omachi, A.; Labotka, R.J.

    1986-03-05

    Calcium ions are intimately involved in the production of myocardial damage during experimental cardioplegia and reperfusion. In the present study, isolated rat (Langendorff) hearts were perfused with Krebs-Henseleit (KH) medium containing 0.25, 1 or 3 mM Ca/sup 2 +/ at 34/sup 0/. Midway during a 45 min period of K/sup +/ cardioplegia, no phosphocreatine (PC) was evident but immediately after reperfusion with KH medium, PC increased and ultimately reached 85% of the original values in 20-40 min. The ..beta..-P of ATP decreased during ischemia but showed no further change during reperfusion, the final values being 15% of the original values with 3 mM of 60% with lower Ca/sup 2 +/ levels (0.25 and 1 mM). P/sub i/ values appeared to plateau during ischemia except for the final point with 3 mM Ca/sup 2 +/ when P/sub i/ was abruptly higher. This appeared to correspond with a sharp decrease in total adenine nucleotide. During reperfusion, P/sub i/ levels declined to near preischemic values with the two lower Ca/sup 2 +/ groups but remained elevated in the 3 mM Ca/sup 2 +/ group. The total P at the end of the experiments averaged 95% of the original values for all groups indicating that there was no significant loss of P during the course of these studies. Studies with the normothermic Langendorff preparation may clearly reveal the influence of Ca/sup 2 +/ in the metabolic disturbances seen during experimental cardioplegia and reperfusion.

  3. Action of melittin on the DPPC-cholesterol liquid-ordered phase: a solid state 2H-and 31P-NMR study.

    PubMed Central

    Pott, T; Dufourc, E J

    1995-01-01

    Solid-state deuterium and phosphorus-31 nuclear magnetic resonance studies of deuterium-labeled beta--[2,2',3,4,4',6-2H6]-cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine have been undertaken to monitor the action of melittin on model membranes containing 30 mol% cholesterol, both at the molecular and macroscopic level. Cholesterol totally inhibits the toxin-triggered formation of large unilamellar vesicles and strongly restricts the appearance of small discs. The latter remain stable over a wide temperature range (20-60 degrees C) because of an increase in their cholesterol content as the temperature increases. This process is related to a constant disc hydrophobic thickness of approximately 29 A. The system, when not in the form of discs, appears to be composed of very large vesicles on which melittin promotes magnetically induced ellipsoidal deformation. This deformation is the greatest when the maximum of discs is observed. A model to describe both the disc formation and stability is proposed. PMID:7756559

  4. Nanoscale NMR spectroscopy and imaging of multiple nuclear species

    NASA Astrophysics Data System (ADS)

    Devience, Stephen J.; Pham, Linh M.; Lovchinsky, Igor; Sushkov, Alexander O.; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L.

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ˜100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species (1H, 19F, 31P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (˜20 mT) using two complementary sensor modalities.

  5. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about

  6. Time Averaging and Fitting of Nonlinear Metabolic Changes: The Issue of the Time Index Choice Applied to 31P MRS Investigation of Muscle Energetics

    NASA Astrophysics Data System (ADS)

    Simond, G.; Bendahan, D.; Cozzone, P. J.

    2001-03-01

    We present an exact analytical method dedicated to fitting time-dependent exponential-like changes in MR spectra. As an illustration, this method has been applied to fitting metabolic changes recorded by 31P MRS in human skeletal muscle occurring during a rest-exercise-recovery protocol. When recording metabolic changes with the accumulative method, the time averaging of the MR signals implies the choice of a time index for fitting any changes in the features of the associated MR spectra. A critical examination of the different ways (constant, linear, and exponential) of choosing the time index is reported. By numerical analysis, we have calculated the errors generated by the three methods and we have compared their sensitivity to noise. In the case of skeletal muscle, both constant and linear methods introduce large and uncontrolled errors for the whole set of metabolic parameters derived from [PCr] changes. In contrast, the exponential method affords a reliable estimation of critical parameters in muscle bioenergetics in both normal and pathological situations. This method is very easy to implement and provides an exact analytical solution to fitting changes in MR spectra recorded by the accumulative method.

  7. Muscle phosphoglycerate mutase (PGAM) deficiency in the first Caucasian patient: biochemistry, muscle culture and 31P-MR spectroscopy.

    PubMed

    Vita, G; Toscano, A; Bresolin, N; Meola, G; Fortunato, F; Baradello, A; Barbiroli, B; Frassineti, C; Zaniol, P; Messina, C

    1994-03-01

    Muscle phosphoglycerate mutase (PGAM) deficiency has been so far identified in only six patients, five of these being African Americans. We report the results of clinical, morphological, biochemical, muscle culture and 31P-MR spectroscopy studies in the first Caucasian patient with muscle PGAM deficiency. A 23-year-old man had a 10-year history of cramps after physical exertion with one episode of pigmenturia. Neurological examination and EMG study were normal. ECG and echocardiography revealed hypertrophy of the interventricular septum and slight dilation of the left chambers of the heart. Muscle biopsy revealed increased glycogen content and some accumulation of mitochondria. Muscle PGAM activity was markedly decreased (6.5% and 9.7% of control value in two different biopsies). Citrate synthase and other mitochondrial respiratory chain enzyme activities were much higher than normal. In contrast to the marked decrease of PGAM activity observed in muscle biopsy, total enzyme activity in the patient's aneural muscle culture was normal, being represented exclusively by BB isoenzyme. The deficiency of PGAM-MM isoenzyme was reproduced in the patient's innervated muscle culture. Muscle 31P-MR spectroscopy showed accumulation of phosphomonoesters only on fast "glycolytic" exercise. On "aerobic" exercise, Vmax, calculated from the work-energy cost transfer function, showed an increase consistent with the morphological and biochemical evidence of mitochondrial proliferation. This might represent a sort of compensatory aerobic effort in an attempt to restore muscle power. PMID:8006681

  8. Characterization of the testicular cell types present in the rat by in vivo 31P magnetic resonance spectroscopy

    SciTech Connect

    van der Grond, J.; Van Pelt, A.M.; van Echteld, C.J.; Dijkstra, G.; Grootegoed, J.A.; de Rooij, D.G.; Mali, W.P. )

    1991-07-01

    Testes of vitamin A-deficient Wistar rats before and after vitamin A replacement, of rats irradiated in utero, and of control rats were investigated by in vivo 31P magnetic resonance (MR) spectroscopy. The testicular phosphomonoester/ATP (PM/ATP) ratio ranged from 0.79 {plus minus} 0.05 for testes that contained only interstitial tissue and Sertoli cells to 1.64 {plus minus} 0.04 for testes in which spermatocytes were the most advanced cell types present. When new generations of spermatids entered the seminiferous epithelium, this ratio decreased. The testicular phosphodiester/ATP (PD/ATP) ratio amounted to 0.16 {plus minus} 0.06 for testes in which Sertoli cells, spermatogonia, or spermatocytes were the most advanced cell type present. When new generations of spermatids entered the seminiferous epithelium, the PD/ATP ratio rapidly increased and finally reached a value of 0.71 {plus minus} 0.06 for fully developed testes. Taken together, specific patterns of the PM/ATP ratio, the PD/ATP ratio, and pH were obtained that were correlated to the presence of spermatogonia, spermatocytes, round spermatids, and elongated spermatids or to the absence of spermatogenic cells. Hence, a good impression of the status of the seminiferous epithelium in the rat can be obtained by in vivo 31P MR spectroscopy.

  9. Analysis of the bond-valence method for calculating (29) Si and (31) P magnetic shielding in covalent network solids.

    PubMed

    Holmes, Sean T; Alkan, Fahri; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil

    2016-07-01

    (29) Si and (31) P magnetic-shielding tensors in covalent network solids have been evaluated using periodic and cluster-based calculations. The cluster-based computational methodology employs pseudoatoms to reduce the net charge (resulting from missing co-ordination on the terminal atoms) through valence modification of terminal atoms using bond-valence theory (VMTA/BV). The magnetic-shielding tensors computed with the VMTA/BV method are compared to magnetic-shielding tensors determined with the periodic GIPAW approach. The cluster-based all-electron calculations agree with experiment better than the GIPAW calculations, particularly for predicting absolute magnetic shielding and for predicting chemical shifts. The performance of the DFT functionals CA-PZ, PW91, PBE, rPBE, PBEsol, WC, and PBE0 are assessed for the prediction of (29) Si and (31) P magnetic-shielding constants. Calculations using the hybrid functional PBE0, in combination with the VMTA/BV approach, result in excellent agreement with experiment. © 2016 Wiley Periodicals, Inc. PMID:27117609

  10. Lateralization effects of image-guided 31P magnetoresonance spectroscopic parameters in the frontal lobe of schizophrenics and healthy controls

    NASA Astrophysics Data System (ADS)

    Huebner, Gabriele; Volz, Hans-Peter; Riehemann, Stefan; Wenda, Berit; Roessger, Grit; Rzanny, Reinhard; Sauer, Heinrich

    1999-05-01

    Phosphorus-31 magnetic resonance spectroscopy (31P-MRS) has gained much interest in schizophrenia research in the last years since it allows the non-invasive measurement of high- energy phosphates and phospholipids in vivo. We investigated hemispherical differences of the concentrations of different phosphorus compounds in the frontal lobes. For this purpose, well defined volumes in the dorsolateral prefrontal cortex of 32 healthy controls and 51 schizophrenic patients were examined. Schizophrenic patients showed significant lateralization effects of phosphodiesters (PDE) and the intracellular pH-value. Differences in the lateralization of 31P-MRS parameters between patients and healthy volunteers were only detected for the pH-value. While healthy controls exhibit lower pH-values in the left frontal lobe (6.96), in schizophrenic patients we found lower pH-values in the right (6.89). Detailed examinations showed that this effect is mainly based on the subgroup of schizophrenics who received atypical neuroleptic medication.

  11. Evaluation of [sup 31]P magnetic resonance spectroscopy localization techniques in human myocardium and soft-tissue sarcomas

    SciTech Connect

    Li, Chun-Wei.

    1993-01-01

    The overall goals of this thesis are to establish and evaluate [sup 31]P MR spectroscopy localization techniques for their application to the study of human myocardium and sarcomas. Several localization techniques which include 1D-CSI, ISIS, ISIS/CSI, and 2D-CSI were evaluated in the myocardial muscle of normal subjects and patients receiving 5-fluorouracil (5-FU) chemotherapy. Among these localization techniques, 2D-CSI is recommended since it shows good selectivity, good flexibility and a good compromise between sensitivity patient toleration limits. These localization techniques were also evaluated in patients with osteosarcoma and soft-tissue sarcomas. Among these localization techniques, 1D-CSI is recommended for big and superficial tumors. Further definition of the voxel is provided by using 2D-CSI or 3D-CSI in the case of small or deep seated tumors. Several techniques that should improve the [sup 31]P MR spectroscopic study of patients in the future are evaluated on the phantom. These include the presaturation of the chest wall muscle for improved myocardial spectral using the CSI sequence, implementation of the BIR-4 pulse for variable angle adjustable pulse, and the proton decoupling technique for improved resolution and sensitivity. The good performance of the phantoms studies show that these techniques can be further extended to the normal subject and patient studies.

  12. Fructose-induced aberration of metabolism in familial gout identified by sup 31 P magnetic resonance spectroscopy

    SciTech Connect

    Seegmiller, J.E. Univ. of California, San Diego ); Dixon, R.M.; Kemp, G.J.; Rajagopalan, B.; Radda, G.K. ); Angus, P.W. Austin Hospital, Heidelburg, Victoria ); McAlindon, T.E.; Dieppe, P. )

    1990-11-01

    The hyperuricemia responsible for the development of gouty arthritis results from a wide range of environmental factors and underlying genetically determined aberrations of metabolism. {sup 31}P magnetic resonance spectroscopy studies of children with hereditary fructose intolerance revealed a readily detectable rise in phosphomonoesters with a marked fall in inorganic phosphate in their liver in vivo and a rise in serum urate in response to very low doses of oral fructose. Parents and some family members heterozygous for this enzyme deficiency showed a similar pattern when given a substantially larger dose of fructose. Three of the nine heterozygotes thus identified also had clinical gout, suggesting the possibility of this defect being a fairly common cause of gout. In the present study this same noninvasive technology was used to identify the same spectral pattern in 2 of the 11 families studied with hereditary gout. In one family, the index patient's three brothers and his mother all showed the fructose-induced abnormality of metabolism, in agreement with the maternal inheritance of metabolism, in agreement with the maternal inheritance of the gout in this family group. The test dose of fructose used produced a significantly larger increment in the concentration of serum urate in the patients showing the changes in {sup 31}P magnetic resonance spectra than in the other patients with familial gout or in nonaffected members, thus suggesting a simpler method for initial screening for the defect.

  13. Probing the interaction of U(VI) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy

    DOE PAGESBeta

    Uribe, Eva C.; Mason, Harris E.; Shusterman, Jennifer A.; Bruchet, Anthony; Nitsche, Heino

    2016-05-30

    The fundamental interaction of U(VI) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U(VI) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse 31P NMR on U(VI) contacted samples revealed that U(VI)only interacts with a fraction of the ligands present on the surface. At pH 4 the U(VI) extraction capacity of the material is limited to 27–37% of the theoretical capacity, based on ligand loading. We combined single pulse 31P NMR on U(VI)-contacted samples withmore » batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U(VI) binds to deprotonated phosphonate and/or silanol sites. We use 31P–31P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U(VI)-complexed and non-complexed ligand environments. Furthermore, these measurements reveal that U(VI) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.« less

  14. NMR Studies of Spin Decoherence in Phosphorus-doped Silicon

    NASA Astrophysics Data System (ADS)

    Li, D.; Dementyev, A. E.; Liu, M.; Barrett, S. E.

    2002-03-01

    Understanding nuclear spin dynamics in Si:P is an important step(B.E. Kane, quant-ph/0003031.) towards the realization of semiconductor spin-based qubits(B.E. Kane, Nature 393, 133 (1998).). We present measurements of NMR spectra and relaxation times for both ^29Si and ^31P, in fields up to 15.3 Tesla. Our progress towards Optically Pumped Nuclear Magnetic Resonance(A.E. Dementyev, P.Khandelwal, N.N. Kuzma, S.E. Barrett, L.N. Pfeiffer, K.W.West, Solid State Commun. 119, 217 (2001).) (OPNMR) of Si:P will be described.

  15. Cold-adaptation in sea-water-borne signal proteins: sequence and NMR structure of the pheromone En-6 from the Antarctic ciliate Euplotes nobilii.

    PubMed

    Pedrini, Bill; Placzek, William J; Koculi, Eda; Alimenti, Claudio; LaTerza, Antonietta; Luporini, Pierangelo; Wüthrich, Kurt

    2007-09-14

    Ciliates of Euplotes species constitutively secrete pleiotropic protein pheromones, which are capable to function as prototypic autocrine growth factors as well as paracrine inducers of mating processes. This paper reports the amino acid sequence and the NMR structure of the pheromone En-6 isolated from the antarctic species Euplotes nobilii. The 63-residue En-6 polypeptide chain forms three alpha-helices in positions 18-25, 36-40 and 46-56, which are arranged in an up-down-up three-helix bundle forming the edges of a distorted trigonal pyramid. The base of the pyramid is covered by the N-terminal heptadecapeptide segment, which includes a 3(10)-turn of residues 3-6. This topology is covalently anchored by four long-range disulfide bonds. Comparison with the smaller pheromones of E. raikovi, a closely related species living in temperate waters, shows that the two-pheromone families have the same three-helix bundle architecture. It then appears that cold-adaptation of the En proteins is primarily related to increased lengths of the chain-terminal peptide segments and the surface-exposed loops connecting the regular secondary structures, and to the presence of solvent-exposed clusters of negatively charged side-chains. PMID:17663000

  16. Caught in the act: ATP hydrolysis of an ABC-multidrug transporter followed by real-time magic angle spinning NMR.

    PubMed

    Hellmich, Ute A; Haase, Winfried; Velamakanni, Saroj; van Veen, Hendrik W; Glaubitz, Clemens

    2008-10-15

    The ATP binding cassette (ABC) transporter LmrA from Lactococcus lactis transports cytotoxic molecules at the expense of ATP. Molecular and kinetic details of LmrA can be assessed by solid-state nuclear magnetic resonance (ssNMR), if functional reconstitution at a high protein-lipid ratio can be achieved and the kinetic rate constants are small enough. In order to follow ATP hydrolysis directly by 31P-magic angle spinning (MAS) nuclear magnetic resonance (NMR), we generated such conditions by reconstituting LmrA-dK388, a mutant with slower ATP turnover rate, at a protein-lipid ration of 1:150. By analysing time-resolved 31P spectra, protein activity has been directly assessed. These data demonstrate the general possibility to perform ssNMR studies on a fully active full length ABC transporter and also form the foundation for further kinetic studies on LmrA by NMR. PMID:18817774

  17. Skeletal muscle ATP turnover by 31P magnetic resonance spectroscopy during moderate and heavy bilateral knee extension

    PubMed Central

    Cannon, Daniel T; Bimson, William E; Hampson, Sophie A; Bowen, T Scott; Murgatroyd, Scott R; Marwood, Simon; Kemp, Graham J; Rossiter, Harry B

    2014-01-01

    During constant-power high-intensity exercise, the expected increase in oxygen uptake () is supplemented by a  slow component (), reflecting reduced work efficiency, predominantly within the locomotor muscles. The intracellular source of inefficiency is postulated to be an increase in the ATP cost of power production (an increase in P/W). To test this hypothesis, we measured intramuscular ATP turnover with 31P magnetic resonance spectroscopy (MRS) and whole-body during moderate (MOD) and heavy (HVY) bilateral knee-extension exercise in healthy participants (n = 14). Unlocalized 31P spectra were collected from the quadriceps throughout using a dual-tuned (1H and 31P) surface coil with a simple pulse-and-acquire sequence. Total ATP turnover rate (ATPtot) was estimated at exercise cessation from direct measurements of the dynamics of phosphocreatine (PCr) and proton handling. Between 3 and 8 min during MOD, there was no discernable (mean ± SD, 0.06 ± 0.12 l min−1) or change in [PCr] (30 ± 8 vs. 32 ± 7 mm) or ATPtot (24 ± 14 vs. 17 ± 14 mm min−1; each P = n.s.). During HVY, the was 0.37 ± 0.16 l min−1 (22 ± 8%), [PCr] decreased (19 ± 7 vs. 18 ± 7 mm, or 12 ± 15%; P < 0.05) and ATPtot increased (38 ± 16 vs. 44 ± 14 mm min−1, or 26 ± 30%; P < 0.05) between 3 and 8 min. However, the increase in ATPtot (ΔATPtot) was not correlated with the during HVY (r2 = 0.06; P = n.s.). This lack of relationship between ΔATPtot and , together with a steepening of the [PCr]– relationship in HVY, suggests that reduced work efficiency during heavy exercise arises from both contractile (P/W) and mitochondrial sources (the O2 cost of ATP resynthesis; P/O). PMID:25281731

  18. Skeletal muscle ATP turnover by 31P magnetic resonance spectroscopy during moderate and heavy bilateral knee extension.

    PubMed

    Cannon, Daniel T; Bimson, William E; Hampson, Sophie A; Bowen, T Scott; Murgatroyd, Scott R; Marwood, Simon; Kemp, Graham J; Rossiter, Harry B

    2014-12-01

    During constant-power high-intensity exercise, the expected increase in oxygen uptake (V̇O2) is supplemented by a V̇O2 slow component (V̇O2 sc ), reflecting reduced work efficiency, predominantly within the locomotor muscles. The intracellular source of inefficiency is postulated to be an increase in the ATP cost of power production (an increase in P/W). To test this hypothesis, we measured intramuscular ATP turnover with (31)P magnetic resonance spectroscopy (MRS) and whole-body V̇O2 during moderate (MOD) and heavy (HVY) bilateral knee-extension exercise in healthy participants (n = 14). Unlocalized (31)P spectra were collected from the quadriceps throughout using a dual-tuned ((1)H and (31)P) surface coil with a simple pulse-and-acquire sequence. Total ATP turnover rate (ATPtot) was estimated at exercise cessation from direct measurements of the dynamics of phosphocreatine (PCr) and proton handling. Between 3 and 8 min during MOD, there was no discernable V̇O2 sc (mean ± SD, 0.06 ± 0.12 l min(-1)) or change in [PCr] (30 ± 8 vs. 32 ± 7 mm) or ATPtot (24 ± 14 vs. 17 ± 14 mm min(-1); each P = n.s.). During HVY, the V̇O2 sc was 0.37 ± 0.16 l min(-1) (22 ± 8%), [PCr] decreased (19 ± 7 vs. 18 ± 7 mm, or 12 ± 15%; P < 0.05) and ATPtot increased (38 ± 16 vs. 44 ± 14 mm min(-1), or 26 ± 30%; P < 0.05) between 3 and 8 min. However, the increase in ATPtot (ΔATPtot) was not correlated with the V̇O2 sc during HVY (r(2) = 0.06; P = n.s.). This lack of relationship between ΔATPtot and V̇O2 sc , together with a steepening of the [PCr]-V̇O2 relationship in HVY, suggests that reduced work efficiency during heavy exercise arises from both contractile (P/W) and mitochondrial sources (the O2 cost of ATP resynthesis; P/O). PMID:25281731

  19. Solid-State NMR Characterization of Mixed Phosphonic Acid Ligand Binding and Organization on Silica Nanoparticles.

    PubMed

    Davidowski, Stephen K; Holland, Gregory P

    2016-04-01

    As ligand functionalization of nanomaterials becomes more complex, methods to characterize the organization of multiple ligands on surfaces is required. In an effort to further the understanding of ligand-surface interactions, a combination of multinuclear ((1)H, (29)Si, (31)P) and multidimensional solid-state nuclear magnetic resonance (NMR) techniques was utilized to characterize the phosphonic acid functionalization of fumed silica nanoparticles using methylphosphonic acid (MPA) and phenylphosphonic acid (PPA). (1)H → (29)Si cross-polarization (CP)-magic angle spinning (MAS) solid-state NMR was used to selectively detect silicon atoms near hydrogen atoms (primarily surface species); these results indicate that geminal silanols are preferentially depleted during the functionalization with phosphonic acids. (1)H → (31)P CP-MAS solid-state NMR measurements on the functionalized silica nanoparticles show three distinct resonances shifted upfield (lower ppm) and broadened compared to the resonances of the crystalline ligands. Quantitative (31)P MAS solid-state NMR measurements indicate that ligands favor a monodentate binding mode. When fumed silica nanoparticles were functionalized with an equal molar ratio of MPA and PPA, the MPA bound the nanoparticle surface preferentially. Cross-peaks apparent in the 2D (1)H exchange spectroscopy (EXSY) NMR measurements of the multiligand sample at short mixing times indicate that the MPA and PPA are spatially close (≤5 Å) on the surface of the nanostructure. Furthermore, (1)H-(1)H double quantum-single quantum (DQ-SQ) back-to-back (BABA) 2D NMR spectra further confirmed that MPA and PPA are strongly dipolar coupled with observation of DQ intermolecular contacts between the ligands. DQ experimental buildup curves and simulations indicate that the average distance between MPA and PPA is no further than 4.2 ± 0.2 Å. PMID:26914738

  20. Hyperpolarized 131Xe NMR spectroscopy

    PubMed Central

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented. PMID:21051249

  1. Formation of Po isotopes in the reactions {sup 27}Al + {sup 175}Lu and {sup 31}P + {sup 169}Tm

    SciTech Connect

    Andreev, A.N.; Bogdanov, D.D.; Eremin, A.V.

    1995-05-01

    The excitation functions and the cross sections for the formation of {sup 192-198}Po isotopes in the reactions {sup 27}Al + {sup 175}Lu and {sup 31}P + {sup 169}Tm are measured. A comparison of the results obtained for these reactions with the data on the cross sections for the formation of Po isotopes in the reaction {sup 100}Mo + {sup 92-100}Mo leads to the conclusion that the characteristics of the evaporation channel do not depend on the mass of the bombarding ion up to the complete symmetry in the input channel. It is shown that the experimental data can be adequately described using the statistical approach to the deexcitation of a compound nucleus only under the assumption that the liquid-drop fission barrier is reduced significantly for neutron-deficient Po isotopes. 21 refs., 5 figs., 2 tabs.

  2. sup 31 P nuclear magnetic resonance study of the effect of azide on xylose fermentation by Candida tropicalis

    SciTech Connect

    Lohmeier-Vogel, E.; Vogel, H. ); Skoog, K.; Hahn-Haegerdal, B. )

    1989-08-01

    Maximal ethanol production by Candida tropicalis grown on xylose was obtained at an oxygen transfer rate of 5 to 7 mmol/liter per h. Addition of 0.2 mM azide increased the ethanol yield by a factor of 3 to 4, based on the cell mass produced, and decreased the formation of the by-product xylitol by 80%. In the presence of azide, ethanol was reassimilated before the carbon source was depleted. At all oxygenation levels studied, azide caused 25 to 60% of the carbon to be lost, most probable as carbon dioxide. Identical spectra were obtained with {sup 31}P nuclear magnetic resonance spectroscopy performed on extracts of C. tropicalis grown on xylose in the absence and presence of azide. Azide lowered the levels of sugar phosphates. Enzymatic analysis showed extremely low levels of fructose 1,6-diphosphate compared with the levels obtained in the absence of azide, while the level of malate, a citric acid cycle intermediate, was not influenced by azide. {sup 31}P nuclear magnetic resonance spectroscopy performed on xylose-grown whole cells of C. tropicalis showed that azide lowered the intracellular pH, inhibited the uptake of external P{sub i}, and decreased the buildup of polyphosphate in relation to results with untreated cells. Similar results were obtained with the uncoupler of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone (CCCP), except that CCCP treatment led to extremely high levels of internal P{sub i}. The dual effect of azide as a respiratory inhibitor and as an uncoupler is discussed with respect to the metabolism and product formation in xylose-assimilating C. tropicalis.

  3. Analysis of 31P nuclear magnetic resonance lineshapes and transversal relaxation of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1993-01-01

    The experimentally observed 31P lineshapes and transversal relaxation of 15% (wt/wt) M13, 30% M13, and 30% tobacco mosaic virus (TMV) are compared with lineshapes and relaxation curves that are simulated for various types of rotational diffusion using the models discussed previously (Magusin, P. C. M. M., and M. A. Hemminga. 1993. Biophys. J. 64:1851-1860). It is found that isotropic diffusion cannot explain the observed lineshape effects. A rigid rod diffusion model is only successful in describing the experimental data obtained for 15% M13. For 30% M13 the experimental lineshape and relaxation curve cannot be interpreted consistently and the TMV lineshape cannot even be simulated alone, indicating that the rigid rod diffusion model does not generally apply. A combined diffusion model with fast isolated motions of the encapsulated nucleic acid dominating the lineshape and a slow overall rotation of the virion as a whole, which mainly is reflected in the transversal relaxation, is able to provide a consistent picture for the 15 and 30% M13 samples, but not for TMV. Strongly improved lineshape fits for TMV are obtained assuming that there are three binding sites with different mobilities. The presence of three binding sites is consistent with previous models of TMV. The best lineshapes are simulated for a combination of one mobile and two static sites. Although less markedly, the assumption that two fractions of DNA with different mobilities exist within M13 also improves the simulated lineshapes. The possible existence of two 31P fractions in M13 sheds new light on the nonintegral ratio 2.4:1 between the number of nucleotides and protein coat subunits in the phage: 83% of the viral DNA is less mobile, suggesting that the binding of the DNA molecule to the protein coat actually occurs at the integral ratio of two nucleotides per protein subunit. PMID:8369412

  4. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  5. NMR temperature measurements using a paramagnetic lanthanide complex.

    PubMed

    Zuo, C S; Metz, K R; Sun, Y; Sherry, A D

    1998-07-01

    NMR thermometry has previously suffered from poor thermal resolution owing to the relatively weak dependence of chemical shift on temperature in diamagnetic molecules. In contrast, the shifts of nuclear spins near a paramagnetic center exhibit strong temperature dependencies. The chemical shifts of the thulium 1,4,7, 10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) complex (TmDOTP5-) have been studied as a function of temperature, pH, and Ca2+ concentration over ranges which may be encountered in vivo. The results demonstrate that the 1H and 31P shifts in TmDOTP5- are highly sensitive to temperature and may be used for NMR thermometry with excellent accuracy and resolution. A new technique is also described which permits simultaneous measurements of temperature and pH changes from the shifts of multiple TmDOTP5- spectral lines. PMID:9654468

  6. Evaluation of recombinant CXCL8(3-73)K11R/G31P in muscle fibrosis and Trichinella larvae encapsulation in a murine model of trichinellosis.

    PubMed

    Yan, Wenhui; Li, Fang; Qin, Yuanhua; Ren, Yixin; Zheng, Lili; Dai, Xiaodong; Mao, Weifeng; Cui, Yu

    2016-06-01

    Trichinella spiralis (T. spiralis) larvae in raw or inadequately cooked meat can cause chronic infections in a wide range of hosts including humans. During the development inside the skeletal muscles, T. spiralis larvae infect muscle cells accompanying with the infiltration of host inflammatory cells, eventually create a new type of cell known as nurse cell developing a surrounding vascular network to support the larvae development. Controlling of host inflammatory responses and angiogenesis influences both the nurse cell differentiation and the parasite larvae development. CXCL8 is a chemokine that acts on G-protein coupled receptors, of which activation contributes to fibrosis and angiogenesis. CXCL8(3-73)K11R/G31P (G31P) has been reported as a CXCL8 analogue. The aim of this study is to investigate the effect of G31P in inflammatory responses and the development of T. spiralis larvae in muscle tissues of mice infected with T. spiralis. The level of inflammatory factors and the morphology of T. spiralis larvae in infected tissues were investigated through ELISA and electron-microscopy analysis. G31P up-regulated IFN-γ and down-regulated CXCL8 level, and impaired the encapsulation of T. spiralis larvae in vivo. The results showed that G31P influenced the development of T. spiralis larvae in muscle tissues. PMID:27089392

  7. NMR and mass spectrometry of phosphorus in wetlands

    USGS Publications Warehouse

    El-Rifai, H.; Heerboth, M.; Gedris, T.E.; Newman, S.; Orem, W.; Cooper, W.T.

    2008-01-01

    There is at present little information on the long-term stability of phosphorus sequestered in wetlands. Phosphorus sequestered during high loading periods may be relatively unstable and easily remobilized following changes in nutrient status or hydrological regime, but the chemical forms of sequestered phosphorus that do remobilize are largely unknown at this time. A lack of suitable analytical techniques has contributed to this dearth of knowledge regarding the stability of soil organic phosphorus. We analysed phosphorus in soils from the 'head' of Rescue Strand tree island and an adjacent marsh in the Florida Everglades by 31P nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Tree islands are important areas of biodiversity within the Everglades and offer a unique opportunity to study phosphorus sequestration because they are exposed to large phosphorus loads and appear to be natural nutrient sinks. The 31P NMR profiling of extracts from surface and sediment samples in the tree island indicates that phosphorus input to Rescue Strand tree island soils is mostly in the form of inorganic ortho-phosphate and is either refractory when deposited or rapidly recycled by the native vegetation into a stable phosphorus pool largely resistant to re-utilization by plants or microbes. Mass spectrometry revealed the presence of inositol hexakisphosphate, a common organic monophosphate ester not previously observed in Everglades' soils. ?? 2008 The Authors.

  8. Epitope mapping by solution NMR spectroscopy.

    PubMed

    Bardelli, M; Livoti, E; Simonelli, L; Pedotti, M; Moraes, A; Valente, A P; Varani, L

    2015-06-01

    Antibodies play an ever more prominent role in basic research as well as in the biotechnology and pharmaceutical sectors. Characterizing their epitopes, that is, the region that they recognize on their target molecule, is useful for purposes ranging from molecular biology research to vaccine design and intellectual property protection. Solution NMR spectroscopy is ideally suited to the atomic level characterization of intermolecular interfaces and, as a consequence, to epitope discovery. Here, we illustrate how NMR epitope mapping can be used to rapidly and accurately determine protein antigen epitopes. The basic concept is that differences in the NMR signal of an antigen free or bound by an antibody will identify epitope residues. NMR epitope mapping provides more detailed information than mutagenesis or peptide mapping and can be much more rapid than X-ray crystallography. Advantages and drawbacks of this technique are discussed together with practical considerations. PMID:25726811

  9. Magic-angle spinning solid-state multinuclear NMR on low-field instrumentation

    NASA Astrophysics Data System (ADS)

    Sørensen, Morten K.; Bakharev, Oleg; Jensen, Ole; Jakobsen, Hans J.; Skibsted, Jørgen; Nielsen, Niels Chr.

    2014-01-01

    Mobile and cost-effective NMR spectroscopy exploiting low-field permanent magnets is a field of tremendous development with obvious applications for arrayed large scale analysis, field work, and industrial screening. So far such demonstrations have concentrated on relaxation measurements and lately high-resolution liquid-state NMR applications. With high-resolution solid-state NMR spectroscopy being increasingly important in a broad variety of applications, we here introduce low-field magic-angle spinning (MAS) solid-state multinuclear NMR based on a commercial ACT 0.45 T 62 mm bore Halbach magnet along with a homebuilt FPGA digital NMR console, amplifiers, and a modified standard 45 mm wide MAS probe for 7 mm rotors. To illustrate the performance of the instrument and address cases where the low magnetic field may offer complementarity to high-field NMR experiments, we demonstrate applications for 23Na MAS NMR with enhanced second-order quadrupolar coupling effects and 31P MAS NMR where reduced influence from chemical shift anisotropy at low field may facilitate determination of heteronuclear dipole-dipole couplings.

  10. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    PubMed Central

    Nishiyama, Yusuke; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka

    2015-01-01

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems. PMID:25856081

  11. Nano-mole scale side-chain signal assignment by 1H-detected protein solid-state NMR by ultra-fast magic-angle spinning and stereo-array isotope labeling.

    PubMed

    Wang, Songlin; Parthasarathy, Sudhakar; Nishiyama, Yusuke; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka

    2015-01-01

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52-57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems. PMID:25856081

  12. Metabolic responses to forced dives in Pekin duck measured by indirect calorimetry and 31P-MRS.

    PubMed

    Stephenson, R; Jones, D R

    1992-12-01

    We tested the hypothesis that forced-dived ducks experience a reduction in metabolic rate during prolonged submergence. Unidirectionally ventilated conscious ducks were subjected to forced dives by temporarily stopping the airflow in the ventilation system and simultaneously filling a face mask with cold water. A typical cardiovascular response to submergence was observed: bradycardia and maintained arterial blood pressure. Phosphorylated metabolite concentrations in the pectoral muscle were measured noninvasively by phosphorus magnetic resonance spectroscopy (31P-MRS). ATP content was constant, and phosphocreatine was depleted via the creatine kinase reaction at a rate similar to the resting rate of ATP turnover, which was estimated to be 0.9 mumol.min-1 x g-1 in resting perfused pectoral muscle of pentobarbital-anesthetized ducks. Oxygen from myoglobin supplied at most 12% of the ATP required by the resting muscle during dives. Whole animal postdive excess oxygen consumption and blood lactic acid accumulation suggested that the shortfall in aerobic metabolism during forced dives was compensated by an increase in anaerobic metabolism. PMID:1481944

  13. Skeletal muscle ATP synthesis and cellular H+ handling measured by localized 31P-MRS during exercise and recovery

    PubMed Central

    Fiedler, Georg B.; Schmid, Albrecht I.; Goluch, Sigrun; Schewzow, Kiril; Laistler, Elmar; Niess, Fabian; Unger, Ewald; Wolzt, Michael; Mirzahosseini, Arash; Kemp, Graham J.; Moser, Ewald; Meyerspeer, Martin

    2016-01-01

    31P magnetic resonance spectroscopy (MRS) is widely used for non-invasive investigation of muscle metabolism dynamics. This study aims to extend knowledge on parameters derived from these measurements in detail and comprehensiveness: proton (H+) efflux, buffer capacity and the contributions of glycolytic (L) and oxidative (Q) rates to ATP synthesis were calculated from the evolutions of phosphocreatine (PCr) and pH. Data are reported for two muscles in the human calf, for each subject and over a wide range of exercise intensities. 22 subjects performed plantar flexions in a 7T MR-scanner, leading to PCr changes ranging from barely noticeable to almost complete depletion, depending on exercise protocol and muscle studied by localized MRS. Cytosolic buffer capacity was quantified for the first time non-invasively and individually, as was proton efflux evolution in early recovery. Acidification started once PCr depletion reached 60–75%. Initial and end-exercise L correlated with end-exercise levels of PCr and approximately linear with pH. Q calculated directly from PCr and pH derivatives was plausible, requiring fewer assumptions than the commonly used ADP-model. In conclusion, the evolution of parameters describing cellular energy metabolism was measured over a wide range of exercise intensities, revealing a relatively complete picture of muscle metabolism. PMID:27562396

  14. Skeletal muscle ATP synthesis and cellular H(+) handling measured by localized (31)P-MRS during exercise and recovery.

    PubMed

    Fiedler, Georg B; Schmid, Albrecht I; Goluch, Sigrun; Schewzow, Kiril; Laistler, Elmar; Niess, Fabian; Unger, Ewald; Wolzt, Michael; Mirzahosseini, Arash; Kemp, Graham J; Moser, Ewald; Meyerspeer, Martin

    2016-01-01

    (31)P magnetic resonance spectroscopy (MRS) is widely used for non-invasive investigation of muscle metabolism dynamics. This study aims to extend knowledge on parameters derived from these measurements in detail and comprehensiveness: proton (H(+)) efflux, buffer capacity and the contributions of glycolytic (L) and oxidative (Q) rates to ATP synthesis were calculated from the evolutions of phosphocreatine (PCr) and pH. Data are reported for two muscles in the human calf, for each subject and over a wide range of exercise intensities. 22 subjects performed plantar flexions in a 7T MR-scanner, leading to PCr changes ranging from barely noticeable to almost complete depletion, depending on exercise protocol and muscle studied by localized MRS. Cytosolic buffer capacity was quantified for the first time non-invasively and individually, as was proton efflux evolution in early recovery. Acidification started once PCr depletion reached 60-75%. Initial and end-exercise L correlated with end-exercise levels of PCr and approximately linear with pH. Q calculated directly from PCr and pH derivatives was plausible, requiring fewer assumptions than the commonly used ADP-model. In conclusion, the evolution of parameters describing cellular energy metabolism was measured over a wide range of exercise intensities, revealing a relatively complete picture of muscle metabolism. PMID:27562396

  15. Effects of chloramphenicol on brain energy metabolism using 31P spectroscopy: influences on sleep-wake states in rat.

    PubMed

    Chahboune, Halima; Mahdjoub, Rachid; Desgoutte, Pierre; Rousset, Colette; Briguet, André; Cespuglio, Raymond

    2008-08-01

    Effects of chloramphenicol (antibiotic inhibiting complex-1 of respiratory chain) and thioamphenicol (TAP, a structural analog of CAP inactive on complex-1) were examined on cerebral energy metabolites and sleep-wake cycle architecture in rat. In the first group, animals were chronically equipped with a cranial surface resonator and (31)P spectroscopic measurements were performed using a 2 T magnetic resonance spectrometer (operating frequency 34.46 MHz). CAP administration (400 mg/kg, tail vein, light period) induced deficits in phosphocreatine (-30%, p < 0.01) and ATP (-40%, p < 0.01), whereas TAP (400 mg/kg) had no effect. In the second group, animals were chronically implanted with polygraphic electrodes for EEG and electromyogram recordings. CAP administered intraperitoneally at light-onset reduced rapid-eye movement (REM) sleep (-60% in the first 6 h of light period, p < 0.01), increased waking state (+65% in the first 6 h of light period, p < 0.01), and slightly affected slow-wave sleep (SWS). During waking state, theta and sigma power bands of the EEG were, respectively, increased and decreased (p < 0.05). During SWS, delta power band was reinforced (p < 0.05), while theta, alpha, and sigma bands were decreased (p < 0.05). No changes occurred during REM sleep. TAP had no effect on sleep-wake states and spectral components of the EEG. Overall, these data indicate that REM sleep occurrence is linked to an aerobic production of ATP. PMID:18507739

  16. Simple and effective exercise design for assessing in vivo mitochondrial function in clinical applications using 31P magnetic resonance spectroscopy

    PubMed Central

    Sleigh, Alison; Lupson, Victoria; Thankamony, Ajay; Dunger, David B.; Savage, David B.; Carpenter, T. Adrian; Kemp, Graham J.

    2016-01-01

    The growing recognition of diseases associated with dysfunction of mitochondria poses an urgent need for simple measures of mitochondrial function. Assessment of the kinetics of replenishment of the phosphocreatine pool after exercise using 31P magnetic resonance spectroscopy can provide an in vivo measure of mitochondrial function; however, the wider application of this technique appears limited by complex or expensive MR-compatible exercise equipment and protocols not easily tolerated by frail participants or those with reduced mental capacity. Here we describe a novel in-scanner exercise method which is patient-focused, inexpensive, remarkably simple and highly portable. The device exploits an MR-compatible high-density material (BaSO4) to form a weight which is attached directly to the ankle, and a one-minute dynamic knee extension protocol produced highly reproducible measurements of post-exercise PCr recovery kinetics in both healthy subjects and patients. As sophisticated exercise equipment is unnecessary for this measurement, our extremely simple design provides an effective and easy-to-implement apparatus that is readily translatable across sites. Its design, being tailored to the needs of the patient, makes it particularly well suited to clinical applications, and we argue the potential of this method for investigating in vivo mitochondrial function in new cohorts of growing clinical interest. PMID:26751849

  17. NMR studies of cation transport across membranes

    SciTech Connect

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  18. Two dimensional NMR spectroscopy

    SciTech Connect

    Schram, J.; Bellama, J.M.

    1988-01-01

    Two dimensional NMR represents a significant achievement in the continuing effort to increase solution in NMR spectroscopy. This book explains the fundamentals of this new technique and its analytical applications. It presents the necessary information, in pictorial form, for reading the ''2D NMR,'' and enables the practicing chemist to solve problems and run experiments on a commercial spectrometer by using the software provided by the manufacturer.

  19. X-ray CT and NMR imaging of rocks

    SciTech Connect

    Vinegar, H.J.

    1986-03-01

    In little more than a decade, X-ray computerized tomography (CT) and nuclear magnetic resonance (NMR) imaging have become the premier modalities of medical radiology. Both of these imaging techniques also promise to be useful tools in petrophysics and reservoir engineering, because CT and NMR can nondestructively image a host of physical and chemical properties of porous rocks and multiple fluid phases contained within their pores. The images are taken within seconds to minutes, at reservoir temperatures and pressures, with spatial resolution on the millimeter and submillimeter level. The physical properties imaged by the two techniques are complementary. CT images bulk density and effective atomic number. NMR images the nuclide concentration, M/sub 0/, of a variety of nuclei (/sup 1/H, /sup 19/F, /sup 23/Na, /sup 31/P, etc.), their longitudinal and transverse relaxation-time curves (t/sub 1/ and t/sub 2/), and their chemical shift spectra. In rocks, CT images both rock matrix and pore fluids, while NMR images only mobile fluids and the interactions of these mobile fluids with the confining surfaces of the pores.

  20. Background suppression in MAS NMR

    NASA Astrophysics Data System (ADS)

    White, Jeffery L.; Beck, Larry W.; Ferguson, David B.; Haw, James F.

    Pulse sequences for suppressing background signals from spinning modules used in magic-angle spinning NMR are described. These pulse sequences are based on spatially selective composite 90° pulses originally reported by Bax, which provide for no net excitation of spins outside the homogeneous region of the coil. We have achieved essentially complete suppression of background signals originating from our Vespel spinning module (which uses a free-standing coil) in both 1H and 13C spectra without notable loss in signal intensity. Successful modification of both Bloch decay and cross-polarization pulse sequences to include spatially selective pulses was essential to acquire background-free spectra for weak samples. Background suppression was also found to be particularly valuable for both T1 and T1 ϱ, relaxation measurements.

  1. Lipoarabinomannans: characterization of the multiacylated forms of the phosphatidyl-myo-inositol anchor by NMR spectroscopy.

    PubMed Central

    Nigou, J; Gilleron, M; Puzo, G

    1999-01-01

    Lipoarabinomannans, which exhibit a large spectrum of immunological activities, emerge as the major antigens of mycobacterial envelopes. The lipoarabinomannan structure is based on a phosphatidyl-myo-inositol anchor whose integrity has been shown to be crucial for lipoarabinomannan biological activity and particularly for presentation to CD4/CD8 double-negative alphabetaT cells by CD1 molecules. In this report, an analytical approach was developed for high-resolution 31P-NMR analysis of native, i.e. multiacylated, lipoarabinomannans. The one-dimensional 31P spectrum of cellular lipoarabinomannans, from Mycobacterium bovis Bacillus Calmette-Guérin, exhibited four 31P resonances typifying four types of lipoarabinomannans. Two-dimensional 1H-31P heteronuclear multiple-quantum-correlation/homonuclear Hartmann-Hahn analysis of the native molecules showed that these four types of lipoarabinomannan differed in the number and localization of fatty acids (from 1 to 4) esterifying the anchor. Besides the three acylation sites previously described, i.e. positions 1 and 2 of glycerol and 6 of the mannosyl unit linked to the C-2 of myo-inositol, we demonstrate the existence of a fourth acylation position at the C-3 of myo-inositol. We report here the first structural study of native multiacylated lipoarabinomannans, establishing the structure of the intact phosphatidyl-myo-inositol anchor. Our findings would help gain more understanding of the molecular basis of lipoarabinomannan discrimination in the binding process to CD1 molecules. PMID:9895288

  2. Brief Report: Approaches to [Superscript 31]P-MRS in Awake, Non-Sedated Children with and without Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Erickson, Laura C.; Scott-Van Zeeland, Ashley A.; Hamilton, Gavin; Lincoln, Alan; Golomb, Beatrice A.

    2012-01-01

    We piloted a suite of approaches aimed to facilitate a successful series of up to four brain and muscle [superscript 31]Phosphorus-Magnetic Resonance Spectroscopy ([superscript 31]P-MRS) scans performed in one session in 12 "awake", non-sedated subjects (ages 6-18), 6 with autism spectrum disorders (ASD) and 6 controls. We targeted advanced…

  3. Partial trisomy 2q due to a maternal balanced translocation t(2;22) (q31;p12)

    SciTech Connect

    Steinberg, L.S.; Bleiman, M.; Punnett, H.H.

    1994-09-01

    Features consistent among reported patients with 2q duplications due to familial translocations or de novo duplications include pre- and postnatal growth failure, ocular defects such as congenital glaucoma, cardiac defects, micrognathia, urogenital defects, renal defects, connective tissue laxity, neurologic defects, and dermatologic abnormalities. Genotype/phenotype correlations of patients with trisomy 2q due to familial translocations are complicated by the presence of the deletions of the other chromosome involved. We have had the opportunity to observe `pure` trisomy 2q31-qter resulting from adjacent-1 segregation from 46,XX,t(2;22)(q31;p12) in a carrier mother with apparent loss of the 22 NOR region. He was the 2453 gm product of a gestation complicated by gestational diabetes to a 29-year-old G1 P0 mother and a 30-year-old father. At birth, he was noted to have hypotonia, micrognathia, microphthalmia, left cryptorchidism, hypospadias, bilateral clinodactyly of the fifth digits, mild hyperextensibility of the joints, dry skin disorder, and bilateral hydronephrosis by ultrasound. He was treated for hypoglycemia in the nursery and had a vesicostomy at two months for vesicoureteral reflux. A hearing test at two months found moderate hearing loss in the right ear and mild to moderate hearing loss in the left ear. At 3 months he had surgery for a PDA and bilateral glaucoma and was treated for periods of hypothermia and type IV renal tubular acidosis. This patient and others with unbalanced translocations involving the NOR region of an acrocentric chromosome allow for genotype/phenotype correlation of the `pure` trisomic region.

  4. 31P nuclear magnetic resonance studies of the association of basic proteins with multilayers of diacyl phosphatidylserine.

    PubMed

    Smith, R; Cornell, B A; Keniry, M A; Separovic, F

    1983-08-10

    Lysozyme, cytochrome c, poly(L-lysine), myelin basic protein and ribonuclease were used to form multilayer dispersions containing about 50% protein (by weight) with bovine brain diacyl phosphatidylserine (PS). 31P nuclear magnetic resonance shift anisotropies, spin-spin (T2) and spin-lattice (T1) relaxation times for the lipid headgroup phosphorus were measured at 36.44 MHz. At pH 7.5, lysozyme, cytochrome c, poly(L-lysine) and ribonuclease were shown to increase the chemical shift anisotropy of PS by between 12-20%. Myelin basic protein altered the shape of the phosphate resonance, suggesting the presence of two lipid components, one of which had a modified headgroup conformation. The presence of cytochrome c led to the formation of a narrow spike at the isotropic shift position of the spectrum. Of the various proteins or peptides we have studied, only poly(L-lysine) and cytochrome c had any effect on the T1 of PS (1050 ms). Both caused a 20-30% decrease in T1 of the lamellar-phase phosphate peak. The narrow peak in the presence of cytochrome c had a very short T1 of 156 ms. The possibility is considered that the cytochrome Fe3+ contributes to the phosphate relaxation in this case. The effect of all proteins on the T2 of the phosphorus resonance was to cause an increase from the value for pure PS (1.6 ms) to between 2 and 5 ms. The results obtained with proteins are compared with the effects of small ions and intrinsic membrane proteins on the order and motion of the headgroups of lipids in bilayers. PMID:6191774

  5. Dodecylphosphocholine micelles as a membrane-like environment: new results from NMR relaxation and paramagnetic relaxation enhancement analysis.

    PubMed

    Beswick, V; Guerois, R; Cordier-Ochsenbein, F; Coïc, Y M; Tam, H D; Tostain, J; Noël, J P; Sanson, A; Neumann, J M

    1999-01-01

    To further examine to what extent a dodecyl-phosphocholine (DPC) micelle mimics a phosphatidylcholine bilayer environment, we performed 13C, 2H, and 31P NMR relaxation measurements. Our data show that the dynamic behavior of DPC phosphocholine groups at low temperature (12 degrees C) corresponds to that of a phosphatidylcholine interface at high temperature (51 degrees C). In the presence of helical peptides, a PMP1 fragment, or an annexin fragment, the DPC local dynamics are not affected whereas the DPC aggregation number is increased to match an appropriate area/volume ratio for accommodating the bound peptides. We also show that quantitative measurements of paramagnetic relaxation enhancements induced by small amounts of spin-labeled phospholipids on peptide proton signals provide a meaningful insight on the location of both PMP1 and annexin fragments in DPC micelles. The paramagnetic contributions to the relaxation were extracted from intra-residue cross-peaks of NOESY spectra for both peptides. The location of each peptide in the micelles was found consistent with the corresponding relaxation data. As illustrated by the study of the PMP1 fragment, paramagnetic relaxation data also allow us to supply the missing medium-range NOEs and therefore to complete a standard conformational analysis of peptides in micelles. PMID:9933923

  6. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  7. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  8. NMR spectral analysis using prior knowledge

    NASA Astrophysics Data System (ADS)

    Kasai, Takuma; Nagata, Kenji; Okada, Masato; Kigawa, Takanori

    2016-03-01

    Signal assignment is a fundamental step for analyses of protein structure and dynamics with nuclear magnetic resonance (NMR). Main-chain signal assignment is achieved with a sequential assignment method and/or an amino-acid selective stable isotope labeling (AASIL) method. Combinatorial selective labeling (CSL) methods, as well as our labeling strategy, stable isotope encoding (SiCode), were developed to reduce the required number of labeled samples, since one of the drawbacks of AASIL is that many samples are needed. Signal overlapping in NMR spectra interferes with amino-acid determination by CSL and SiCode. Since spectral deconvolution by peak fitting with a gradient method cannot resolve closely overlapped signals, we developed a new method to perform both peak fitting and amino acid determination simultaneously, with a replica exchange Monte Carlo method, incorporating prior knowledge of stable-isotope labeling ratios and the amino-acid sequence of the protein.

  9. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  10. Silver and Gold NMR

    PubMed Central

    Zangger, Klaus

    1999-01-01

    Silver and gold, together with copper, form the transition metal group IB elements in the periodic table and possess very different nuclear magnetic resonance (NMR) spectroscopic properties. While there is only one gold isotope (197Au), which has a spin of 3/2 and therefore a quadrupole moment, silver occurs in two isotopic forms (109Ag and 109Au), both of which have a spin 1/2 and similar NMR spectroscopic properties. The unfavorable properties of gold have prevented its NMR spectroscopic investigation thus far. On the other hand, there are several reports of silver NMR. However, the low sensitivity of silver, combined with its long relaxation times have rendered the direct detection of silver possible only with concentrations greater than a few tenth molar. Reviewed here are the general limitations of silver NMR and some techniques to partially overcome these limitations, as well as a summary of currently available chemical shift and scalar coupling data on 109Ag. PMID:18475898

  11. NMR study of some coumarins and furocoumarins methylated

    NASA Astrophysics Data System (ADS)

    Miranda, R.; Santana, L.; Uriarte, E.; Zagotto, G.

    1994-01-01

    The 1H and 13C NMR spectra of various methylcoumarins and methylfurocoumarins are reported. All signals were assigned and the influence on chemical shifts of methylation at various positions was determined.

  12. NMR of Membrane Proteins: Beyond Crystals.

    PubMed

    Rajesh, Sundaresan; Overduin, Michael; Bonev, Boyan B

    2016-01-01

    Membrane proteins are essential for the flow of signals, nutrients and energy between cells and between compartments of the cell. Their mechanisms can only be fully understood once the precise structures, dynamics and interactions involved are defined at atomic resolution. Through advances in solution and solid state NMR spectroscopy, this information is now available, as demonstrated by recent studies of stable peripheral and transmembrane proteins. Here we highlight recent cases of G-protein coupled receptors, outer membrane proteins, such as VDAC, phosphoinositide sensors, such as the FAPP-1 pleckstrin homology domain, and enzymes including the metalloproteinase MMP-12. The studies highlighted have resulted in the determination of the 3D structures, dynamical properties and interaction surfaces for membrane-associated proteins using advanced isotope labelling strategies, solubilisation systems and NMR experiments designed for very high field magnets. Solid state NMR offers further insights into the structure and multimeric assembly of membrane proteins in lipid bilayers, as well as into interactions with ligands and targets. Remaining challenges for wider application of NMR to membrane structural biology include the need for overexpression and purification systems for the production of isotope-labelled proteins with fragile folds, and the availability of only a few expensive perdeuterated detergents.Step changes that may transform the field include polymers, such as styrene maleic acid, which obviate the need for detergent altogether, and allow direct high yield purification from cells or membranes. Broader demand for NMR may be facilitated by MODA software, which instantly predicts membrane interactive residues that can subsequently be validated by NMR. In addition, recent developments in dynamic nuclear polarization NMR instrumentation offer a remarkable sensitivity enhancement from low molarity samples and cell surfaces. These advances illustrate the current

  13. An optical NMR spectrometer for Larmor-beat detection and high-resolution POWER NMR

    NASA Astrophysics Data System (ADS)

    Kempf, J. G.; Marohn, J. A.; Carson, P. J.; Shykind, D. A.; Hwang, J. Y.; Miller, M. A.; Weitekamp, D. P.

    2008-06-01

    Optical nuclear magnetic resonance (ONMR) is a powerful probe of electronic properties in III-V semiconductors. Larmor-beat detection (LBD) is a sensitivity optimized, time-domain NMR version of optical detection based on the Hanle effect. Combining LBD ONMR with the line-narrowing method of POWER (perturbations observed with enhanced resolution) NMR further enables atomically detailed views of local electronic features in III-Vs. POWER NMR spectra display the distribution of resonance shifts or line splittings introduced by a perturbation, such as optical excitation or application of an electric field, that is synchronized with a NMR multiple-pulse time-suspension sequence. Meanwhile, ONMR provides the requisite sensitivity and spatial selectivity to isolate local signals within macroscopic samples. Optical NMR, LBD, and the POWER method each introduce unique demands on instrumentation. Here, we detail the design and implementation of our system, including cryogenic, optical, and radio-frequency components. The result is a flexible, low-cost system with important applications in semiconductor electronics and spin physics. We also demonstrate the performance of our systems with high-resolution ONMR spectra of an epitaxial AlGaAs /GaAs heterojunction. NMR linewidths down to 4.1Hz full width at half maximum were obtained, a 103-fold resolution enhancement relative any previous optically detected NMR experiment.

  14. Hyperpolarized Xenon for NMR and MRI Applications

    PubMed Central

    Witte, Christopher; Kunth, Martin; Döpfert, Jörg; Rossella, Federica; Schröder, Leif

    2012-01-01

    Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) suffer from intrinsic low sensitivity because even strong external magnetic fields of ~10 T generate only a small detectable net-magnetization of the sample at room temperature 1. Hence, most NMR and MRI applications rely on the detection of molecules at relative high concentration (e.g., water for imaging of biological tissue) or require excessive acquisition times. This limits our ability to exploit the very useful molecular specificity of NMR signals for many biochemical and medical applications. However, novel approaches have emerged in the past few years: Manipulation of the detected spin species prior to detection inside the NMR/MRI magnet can dramatically increase the magnetization and therefore allows detection of molecules at much lower concentration 2. Here, we present a method for polarization of a xenon gas mixture (2-5% Xe, 10% N2, He balance) in a compact setup with a ca. 16000-fold signal enhancement. Modern line-narrowed diode lasers allow efficient polarization 7 and immediate use of gas mixture even if the noble gas is not separated from the other components. The SEOP apparatus is explained and determination of the achieved spin polarization is demonstrated for performance control of the method. The hyperpolarized gas can be used for void space imaging, including gas flow imaging or diffusion studies at the interfaces with other materials 8,9. Moreover, the Xe NMR signal is extremely sensitive to its molecular environment 6. This enables the option to use it as an NMR/MRI contrast agent when dissolved in aqueous solution with functionalized molecular hosts that temporarily trap the gas 10,11. Direct detection and high-sensitivity indirect detection of such constructs is demonstrated in both spectroscopic and imaging mode. PMID:22986346

  15. Analysis of ZDDP Content and Thermal Decomposition in Motor Oils Using NAA and NMR

    NASA Astrophysics Data System (ADS)

    Ferguson, S.; Johnson, J.; Gonzales, D.; Hobbs, C.; Allen, C.; Williams, S.

    Zinc dialkyldithiophosphates (ZDDPs) are one of the most common anti-wear additives present in commercially-available motor oils. The ZDDP concentrations of motor oils are most commonly determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). As part of an undergraduate research project, we have determined the Zn concentrations of eight commercially-available motor oils and one oil additive using neutron activation analysis (NAA), which has potential for greater accuracy and less sensitivity to matrix effects as compared to ICP-AES. The 31P nuclear magnetic resonance (31P-NMR) spectra were also obtained for several oil additive samples which have been heated to various temperatures in order to study the thermal decomposition of ZDDPs.

  16. Hyperpolarized NMR Probes for Biological Assays

    PubMed Central

    Meier, Sebastian; Jensen, Pernille R.; Karlsson, Magnus; Lerche, Mathilde H.

    2014-01-01

    During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized) molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments. PMID:24441771

  17. A compilation of information on the {sup 31}P(p,{alpha}){sup 28}Si reaction and properties of excited levels in the compound nucleus {sup 32}S

    SciTech Connect

    Miller, R.E.; Smith, D.L.

    1997-11-01

    This report documents a survey of the literature, and provides a compilation of data contained therein, for the {sup 31}P(p,{alpha}){sup 28}Si reaction. Attention is paid here to resonance states in the compound-nuclear system {sup 32}S formed by {sup 31}P + p, with emphasis on the alpha-particle decay channels, {sup 28}Si + {alpha} which populate specific levels in {sup 28}Si. The energy region near the proton separation energy for {sup 32}S is especially important in this context for applications in nuclear astrophysics. Properties of the excited states in {sup 28}Si are also considered. Summaries of all the located references are provided and numerical data contained in them are compiled in EXFOR format where applicable.

  18. NMR Microscopy - Micron-Level Resolution.

    NASA Astrophysics Data System (ADS)

    Kwok, Wing-Chi Edmund

    1990-01-01

    Nuclear Magnetic Resonance Imaging (MRI) has been developed into a powerful and widely used diagnostic tool since the invention of techniques using linear magnetic field gradients in 1973. The variety of imaging contrasts obtainable in MRI, such as spin density, relaxation times and flow rate, gives MRI a significant advantage over other imaging techniques. For common diagnostic applications, image resolutions have been in the order of millimeters with slice thicknesses in centimeters. For many research applications, however, resolutions in the order of tens of microns or smaller are needed. NMR Imaging in these high resolution disciplines is known as NMR microscopy. Compared with conventional microscopy, NMR microscopy has the advantage of being non-invasive and non-destructive. The major obstacles of NMR microscopy are low signal-to-noise ratio and effects due to spin diffusion. To overcome these difficulties, more sensitive RF probes and very high magnetic field gradients have to be used. The most effective way to increase sensitivity is to build smaller probes. Microscope probes of different designs have been built and evaluated. Magnetic field gradient coils that can produce linear field gradients up to 450 Gauss/cm were also assembled. In addition, since microscope probes often employ remote capacitors for RF tuning, the associated signal loss in the transmission line was studied. Imaging experiments have been carried out in a 2.1 Tesla small bore superconducting magnet using the typical two-dimensional spin warp imaging technique. Images have been acquired for both biological and non-biological samples. The highest resolution was obtained in an image of a nerve bundle from the spinal cord of a racoon and has an in-plane resolution of 4 microns. These experiments have demonstrated the potential application of NMR microscopy to pathological research, nervous system study and non -destructive testings of materials. One way to further improve NMR microscopy is

  19. REDOR NMR Characterization of DNA Packaging in Bacteriophage T4

    PubMed Central

    Yu, Tsyr-Yan; Schaefer, Jacob

    2008-01-01

    Bacteriophage T4 is a large-tailed E. coli virus whose capsid is 120 × 86 nm. ATP-driven DNA packaging of the T4 capsid results in the loading of a 171-kb genome in less than 5 minutes during viral infection. We have isolated 50-mg quantities of uniform 15N and [ε-15N]lysine-labeled bacteriophage T4. We have also introduced 15NH4+ into filled, unlabeled capsids from synthetic medium by exchange. We have examined lyo- and cryoprotected lyophilized T4 using 15N{31P} and 31P{15N} rotational-echo double resonance. The results of these experiments have shown that: (i) packaged DNA is in an unperturbed duplex B-form conformation; (ii) the DNA phosphate negative charge is balanced by lysyl amines (3.2%), polyamines (5.8%), and monovalent cations (40%); and (iii) 11% of lysyl amines, 40% of –NH2 groups of polyamines, and 80% of monovalent cations within the lyophilized T4 capsid, are involved in the DNA charge balance. The NMR evidence suggests that DNA enters the T4 capsid in a charge-unbalanced state. We propose that electrostatic interactions may provide free energy to supplement the nanomotor-driven T4 DNA packaging. PMID:18703073

  20. Understanding NMR relaxometry of partially water-saturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Jorand, R.; Nordlund, C.; Klitzsch, N.

    2015-06-01

    Nuclear magnetic resonance (NMR) relaxometry measurements are commonly used to characterize the storage and transport properties of water-saturated rocks. Estimations of these properties are based on the direct link of the initial NMR signal amplitude to porosity (water content) and of the NMR relaxation time to pore size. Herein, pore shapes are usually assumed to be spherical or cylindrical. However, the NMR response at partial water saturation for natural sediments and rocks may differ strongly from the responses calculated for spherical or cylindrical pores, because these pore shapes do not account for water menisci remaining in the corners of desaturated angular pores. Therefore, we consider a bundle of pores with triangular cross sections. We introduce analytical solutions of the NMR equations at partial saturation of these pores, which account for water menisci of desaturated pores. After developing equations that describe the water distribution inside the pores, we calculate the NMR response at partial saturation for imbibition and drainage based on the deduced water distributions. For this pore model, the NMR amplitudes and NMR relaxation times at partial water saturation strongly depend on pore shape, i.e., arising from the capillary pressure and pore shape-dependent water distribution in desaturated pores with triangular cross sections. Even so, the NMR relaxation time at full saturation only depends on the surface-to-volume ratio of the pore. Moreover, we show the qualitative agreement of the saturation-dependent relaxation-time distributions of our model with those observed for rocks and soils.

  1. Functional group analysis in coal and on coal surfaces by NMR spectroscopy

    SciTech Connect

    Verkade, J.G.

    1990-01-01

    An accurate knowledge of the oxygen-bearing labile hydrogen functional groups (e.g., carboxylic acids, phenols and alcohols) in coal is required for today's increasingly sophisticated coal cleaning and beneficiation processes. Phospholanes (compounds having the general structure -POCH{sub 2}CH{sub 2}O (1)) are being investigated as reagents for the tagging of liable hydrogen functional groups in coal materials with the NMR-active {sup 31}P nucleus. Of twelve such reagents investigated so far, 2 (2-chloro-1,3-dioxaphospholane, ClPOCH{sub 2}CH{sub 2}O) and 8 (2-chloro-1,3-dithiaphospholane, ClPSCH{sub 2}CH{sub 2}S) have been found to be useful in identifying and quantitating, by {sup 31}P NMR spectroscopy, labile hydrogen functional groups in an Illinois No. 6 coal condensate. Reagent 2 has also been used to quantitate moisture in pyridine extracts of Argonne Premium Coal Samples. Preliminary {sup 119}Sn NMR spectroscopic results on model compounds with the new reagent CF{sub 3}C(O)NHSnMe{sub 3} (N-trimethylstannyltrifluoroacetamide, 14) suggest that labile hydrogen functional groups in coal materials may be more precisely identified with 14 than with phospholanes. 14 refs., 2 figs., 2 tabs.

  2. Remote NMR/MRI detection of laser polarized gases

    DOEpatents

    Pines, Alexander; Saxena, Sunil; Moule, Adam; Spence, Megan; Seeley, Juliette A.; Pierce, Kimberly L.; Han, Song-I; Granwehr, Josef

    2006-06-13

    An apparatus and method for remote NMR/MRI spectroscopy having an encoding coil with a sample chamber, a supply of signal carriers, preferably hyperpolarized xenon and a detector allowing the spatial and temporal separation of signal preparation and signal detection steps. This separation allows the physical conditions and methods of the encoding and detection steps to be optimized independently. The encoding of the carrier molecules may take place in a high or a low magnetic field and conventional NMR pulse sequences can be split between encoding and detection steps. In one embodiment, the detector is a high magnetic field NMR apparatus. In another embodiment, the detector is a superconducting quantum interference device. A further embodiment uses optical detection of Rb--Xe spin exchange. Another embodiment uses an optical magnetometer using non-linear Faraday rotation. Concentration of the signal carriers in the detector can greatly improve the signal to noise ratio.

  3. An on-line NMR technique with a programmable processor

    SciTech Connect

    Razazian, K.; Dieckman, S.L.; Raptis, A.C.

    1995-07-01

    Nuclear magnetic resonance (NMR) spectroscopy is used to determine molecular content of materials, mainly in laboratory measurements. The reduced cost of fast computer processors, together with recent break throughs in digital signal processor technology, has facilitated the on-line use of NMR by allowing modifications of the available technology. This paper describes a system and an algorithm for improving the on-line operations. It is base on the time-domain NMR signal detected by the controller and some prior knowledge of chemical signal patterns. The desired signal can be separated from a composite signal by using an adaptive line enhancer (ALE) filter. This technique would be useful for upgrading process procedures in on-line manufacturing.

  4. Performance Assessment in Fingerprinting and Multi Component Quantitative NMR Analyses.

    PubMed

    Gallo, Vito; Intini, Nicola; Mastrorilli, Piero; Latronico, Mario; Scapicchio, Pasquale; Triggiani, Maurizio; Bevilacqua, Vitoantonio; Fanizzi, Paolo; Acquotti, Domenico; Airoldi, Cristina; Arnesano, Fabio; Assfalg, Michael; Benevelli, Francesca; Bertelli, Davide; Cagliani, Laura R; Casadei, Luca; Cesare Marincola, Flaminia; Colafemmina, Giuseppe; Consonni, Roberto; Cosentino, Cesare; Davalli, Silvia; De Pascali, Sandra A; D'Aiuto, Virginia; Faccini, Andrea; Gobetto, Roberto; Lamanna, Raffaele; Liguori, Francesca; Longobardi, Francesco; Mallamace, Domenico; Mazzei, Pierluigi; Menegazzo, Ileana; Milone, Salvatore; Mucci, Adele; Napoli, Claudia; Pertinhez, Thelma; Rizzuti, Antonino; Rocchigiani, Luca; Schievano, Elisabetta; Sciubba, Fabio; Sobolev, Anatoly; Tenori, Leonardo; Valerio, Mariacristina

    2015-07-01

    An interlaboratory comparison (ILC) was organized with the aim to set up quality control indicators suitable for multicomponent quantitative analysis by nuclear magnetic resonance (NMR) spectroscopy. A total of 36 NMR data sets (corresponding to 1260 NMR spectra) were produced by 30 participants using 34 NMR spectrometers. The calibration line method was chosen for the quantification of a five-component model mixture. Results show that quantitative NMR is a robust quantification tool and that 26 out of 36 data sets resulted in statistically equivalent calibration lines for all considered NMR signals. The performance of each laboratory was assessed by means of a new performance index (named Qp-score) which is related to the difference between the experimental and the consensus values of the slope of the calibration lines. Laboratories endowed with a Qp-score falling within the suitable acceptability range are qualified to produce NMR spectra that can be considered statistically equivalent in terms of relative intensities of the signals. In addition, the specific response of nuclei to the experimental excitation/relaxation conditions was addressed by means of the parameter named NR. NR is related to the difference between the theoretical and the consensus slopes of the calibration lines and is specific for each signal produced by a well-defined set of acquisition parameters. PMID:26020452

  5. Membrane topology of a 14-mer model amphipathic peptide: a solid-state NMR spectroscopy study.

    PubMed

    Ouellet, Marise; Doucet, Jean-Daniel; Voyer, Normand; Auger, Michèle

    2007-06-01

    We have investigated the interaction between a synthetic amphipathic 14-mer peptide and model membranes by solid-state NMR. The 14-mer peptide is composed of leucines and phenylalanines modified by the addition of crown ethers and forms a helical amphipathic structure in solution and bound to lipid membranes. To shed light on its membrane topology, 31P, 2H, 15N solid-state NMR experiments have been performed on the 14-mer peptide in interaction with mechanically oriented bilayers of dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), and dipalmitoylphosphatidylcholine (DPPC). The 31P, 2H, and 15N NMR results indicate that the 14-mer peptide remains at the surface of the DLPC, DMPC, and DPPC bilayers stacked between glass plates and perturbs the lipid orientation relative to the magnetic field direction. Its membrane topology is similar in DLPC and DMPC bilayers, whereas the peptide seems to be more deeply inserted in DPPC bilayers, as revealed by the greater orientational and motional disorder of the DPPC lipid headgroup and acyl chains. 15N{31P} rotational echo double resonance experiments have also been used to measure the intermolecular dipole-dipole interaction between the 14-mer peptide and the phospholipid headgroup of DMPC multilamellar vesicles, and the results indicate that the 14-mer peptide is in contact with the polar region of the DMPC lipids. On the basis of these studies, the mechanism of membrane perturbation of the 14-mer peptide is associated to the induction of a positive curvature strain induced by the peptide lying on the bilayer surface and seems to be independent of the bilayer hydrophobic thickness. PMID:17487978

  6. OPENCORE NMR: open-source core modules for implementing an integrated FPGA-based NMR spectrometer.

    PubMed

    Takeda, Kazuyuki

    2008-06-01

    A tool kit for implementing an integrated FPGA-based NMR spectrometer [K. Takeda, A highly integrated FPGA-based nuclear magnetic resonance spectrometer, Rev. Sci. Instrum. 78 (2007) 033103], referred to as the OPENCORE NMR spectrometer, is open to public. The system is composed of an FPGA chip and several peripheral boards for USB communication, direct-digital synthesis (DDS), RF transmission, signal acquisition, etc. Inside the FPGA chip have been implemented a number of digital modules including three pulse programmers, the digital part of DDS, a digital quadrature demodulator, dual digital low-pass filters, and a PC interface. These FPGA core modules are written in VHDL, and their source codes are available on our website. This work aims at providing sufficient information with which one can, given some facility in circuit board manufacturing, reproduce the OPENCORE NMR spectrometer presented here. Also, the users are encouraged to modify the design of spectrometer according to their own specific needs. A home-built NMR spectrometer can serve complementary roles to a sophisticated commercial spectrometer, should one comes across such new ideas that require heavy modification to hardware inside the spectrometer. This work can lower the barrier of building a handmade NMR spectrometer in the laboratory, and promote novel and exciting NMR experiments. PMID:18374613

  7. SQUID detected NMR in microtesla magnetic fields

    NASA Astrophysics Data System (ADS)

    Matlachov, Andrei N.; Volegov, Petr L.; Espy, Michelle A.; George, John S.; Kraus, Robert H.

    2004-09-01

    We have built an NMR system that employs a superconducting quantum interference device (SQUID) detector and operates in measurement fields of 2-25 μT. The system uses a pre-polarizing field from 4 to 30 mT generated by simple room-temperature wire-wound coils that are turned off during measurements. The instrument has an open geometry with samples located outside the cryostat at room-temperature. This removes constraints on sample size and allows us to obtain signals from living tissue. We have obtained 1H NMR spectra from a variety of samples including water, mineral oil, and a live frog. We also acquired gradient encoded free induction decay (FID) data from a water-plastic phantom in the μT regime, from which simple projection images were reconstructed. NMR signals from samples inside metallic containers have also been acquired. This is possible because the penetration skin depth is much greater at the low operating frequencies of this system than for conventional systems. Advantages to ultra-low field NMR measurements include lower susceptibility artifacts caused by high strength polarizing and measurement fields, and negligible line width broadening due to measurement field inhomogeneity, reducing the burden of producing highly homogeneous fields.

  8. Picoliter H-1 NMR Spectroscopy

    SciTech Connect

    Minard, Kevin R. ); Wind, Robert A. )

    2002-02-01

    A RF probe that fits inside the bore of a small gradient coil package is described for routine 1H-NMR microscopy measurements on small samples. The probe operates at 500 MHz and houses a 267-um-diameter solenoid transceiver. When used in three dimensional chemical shift imaging (3D-CSI) experiments, the measured signal-to-noise ratio (SNR) is shown to be within 20-30 percent of theoretical limits formulated by only considering the solenoid's resistive losses. This is illustrated using a 100-um-diameter globule of triacylglycerols ({approx}900mM) that may be an oocyte precursor in young Xenopus Laevis frogs, and water sample containing choline at a concentration often found in live cells ({approx}33mM). In chemical shift images generated using a few thousand scans, the choline methyl line is found to have an acceptable SNR in resolved from just 5 picoliters in the Xenopus globule. It is concluded that the probe's sensitivity is sufficient for performing 1H-NMR on picoliter-scale volumes in biological cells and tissues.

  9. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  10. Sensitivity of nonuniform sampling NMR.

    PubMed

    Palmer, Melissa R; Suiter, Christopher L; Henry, Geneive E; Rovnyak, James; Hoch, Jeffrey C; Polenova, Tatyana; Rovnyak, David

    2015-06-01

    Many information-rich multidimensional experiments in nuclear magnetic resonance spectroscopy can benefit from a signal-to-noise ratio (SNR) enhancement of up to about 2-fold if a decaying signal in an indirect dimension is sampled with nonconsecutive increments, termed nonuniform sampling (NUS). This work provides formal theoretical results and applications to resolve major questions about the scope of the NUS enhancement. First, we introduce the NUS Sensitivity Theorem in which any decreasing sampling density applied to any exponentially decaying signal always results in higher sensitivity (SNR per square root of measurement time) than uniform sampling (US). Several cases will illustrate this theorem and show that even conservative applications of NUS improve sensitivity by useful amounts. Next, we turn to a serious limitation of uniform sampling: the SNR by US decreases for extending evolution times, and thus total experimental times, beyond 1.26T2 (T2 = signal decay constant). Thus, SNR and resolution cannot be simultaneously improved by extending US beyond 1.26T2. We find that NUS can eliminate this constraint, and we introduce the matched NUS SNR Theorem: an exponential sampling density matched to the signal decay always improves the SNR with additional evolution time. Though proved for a specific case, broader classes of NUS densities also improve SNR with evolution time. Applications of these theoretical results are given for a soluble plant natural product and a solid tripeptide (u-(13)C,(15)N-MLF). These formal results clearly demonstrate the inadequacies of applying US to decaying signals in indirect nD-NMR dimensions, supporting a broader adoption of NUS. PMID:25901905

  11. Nuclear spin noise in NMR revisited

    SciTech Connect

    Ferrand, Guillaume; Luong, Michel

    2015-09-07

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.

  12. Nuclear spin noise in NMR revisited

    NASA Astrophysics Data System (ADS)

    Ferrand, Guillaume; Huber, Gaspard; Luong, Michel; Desvaux, Hervé

    2015-09-01

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a "bump" or as a "dip" superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.

  13. Dual Species NMR Oscillator

    NASA Astrophysics Data System (ADS)

    Weber, Joshua; Korver, Anna; Thrasher, Daniel; Walker, Thad

    2016-05-01

    We present progress towards a dual species nuclear magnetic oscillator using synchronous spin exchange optical pumping. By applying the bias field as a sequence of alkali 2 π pulses, we generate alkali polarization transverse to the bias field. The alkali polarization is then modulated at the noble gas resonance so that through spin exchange collisions the noble gas becomes polarized. This novel method of NMR suppresses the alkali field frequency shift by at least a factor of 2500 as compared to longitudinal NMR. We will present details of the apparatus and measurements of dual species co-magnetometry using this method. Research supported by the NSF and Northrop-Grumman Corp.

  14. Oligodeoxyribonucleoside methylphosphonates. NMR and UV spectroscopic studies of Rp-Rp and Sp-Sp methylphosphonate (Me) modified duplexes of (d[GGAATTCC])2.

    PubMed Central

    Bower, M; Summers, M F; Powell, C; Shinozuka, K; Regan, J B; Zon, G; Wilson, W D

    1987-01-01

    1H NMR chemical shift assignments for the title compounds were made for most of the 1H signals using two-dimensional nuclear Overhauser effect (2D-NOE) data, which were also used to establish the absolute configuration at the modified phosphorus. The chemical shifts were similar to those reported [Broido, M.S., et al. (1985) Eur. J. Biochem. 150, 117-128] for the unmodified, parent, B-type duplex [d(GGAATTCC)]2. Differences in chemical shifts were mostly localized to the nucleotides on the 5'- and 3'-sides of the modified phosphorus. The Rp-Rp isomers exhibited UV-derived Tm values similar to that of the parent duplex. On the other hand, the Sp-Sp isomers generally exhibited lower Tm values which correlated with P-CH3--H3' (n-1 nucleotide) cross peak intensities and 31P spectral parameters. The combined data argue for increased steric interactions with the Sp-P-Me methyl group as the modification position is moved toward the center of the oligomer. All of the Tm results can be explained in terms of three factors which result from replacement of a phosphate by a methylphosphonate group: reduction of oligomer charge; electronic and other substituent effects; steric interactions. PMID:3601658

  15. BOOK REVIEW: NMR Imaging of Materials

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2003-09-01

    spectroscopic methods to weight or filter the spin signals represents the core of the book. This is a subject where Blümich is deeply involved with substantial contributions. The chapter includes a lot of ideas to provide MR contrast between different regions based on their mobility, diffusion, spin couplings or NMR spectra. After describing NMR imaging methods for solids with broad lines, Blümich spends time on applications in the last two chapters of the book. This part is really fun to read. It underlines the effort to bring NMR into many kinds of manufacturing. Car tyres and high-voltage cables are just two such areas. Elastomeric materials, green-state ceramics and food science represent other interesting fields of applications. This part of the book represents a personal but nevertheless extensive compilation of modern applications. As a matter of course the MOUSE is presented, a portable permanent-magnet based NMR developed by Blümich and his co-workers. Thus the book is not only of interest to NMR spectroscopists but also to people in material science and chemical engineering. The bibliography and indexing are excellent and may serve as an attractive reference source for NMR spectroscopists. The book is the first on the subject and likely to become the standard text for NMR imaging of materials as the books by Abragam, Slicher and Ernst et al are for NMR spectroscopy. The purchase of this beautiful book for people dealing with NMR spectroscopy or medical MRI is highly recommended. Ralf Ludwig

  16. NMR imaging of components and materials for DOE application

    SciTech Connect

    Richardson, B.R.

    1993-12-01

    The suitability for using NMR imaging to characterize liquid, polymeric, and solid materials was reviewed. The most attractive applications for NMR imaging appear to be liquid-filled porous samples, partially cured polymers, adhesives, and potting compounds, and composite polymers/high explosives containing components with widely varying thermal properties. Solid-state NMR line-narrowing and signal-enhancing markedly improve the imaging possibilities of true solid and materials. These techniques provide unique elemental and chemical shift information for highly complex materials and complement images with similar spatial resolution, such as X-ray computed tomography (CT).

  17. NMR studies of metallic tin confined within porous matrices

    SciTech Connect

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-04-01

    {sup 119}Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown.

  18. Gray Matter-Specific Changes in Brain Bioenergetics after Acute Sleep Deprivation: A 31P Magnetic Resonance Spectroscopy Study at 4 Tesla

    PubMed Central

    Plante, David T.; Trksak, George H.; Jensen, J. Eric; Penetar, David M.; Ravichandran, Caitlin; Riedner, Brady A.; Tartarini, Wendy L.; Dorsey, Cynthia M.; Renshaw, Perry F.; Lukas, Scott E.; Harper, David G.

    2014-01-01

    Study Objectives: A principal function of sleep may be restoration of brain energy metabolism caused by the energetic demands of wakefulness. Because energetic demands in the brain are greater in gray than white matter, this study used linear mixed-effects models to examine tissue-type specific changes in high-energy phosphates derived using 31P magnetic resonance spectroscopy (MRS) after sleep deprivation and recovery sleep. Design: Experimental laboratory study. Setting: Outpatient neuroimaging center at a private psychiatric hospital. Participants: A total of 32 MRS scans performed in eight healthy individuals (mean age 35 y; range 23-51 y). Interventions: Phosphocreatine (PCr) and β-nucleoside triphosphate (NTP) were measured using 31P MRS three dimensional-chemical shift imaging at high field (4 Tesla) after a baseline night of sleep, acute sleep deprivation, and 2 nights of recovery sleep. Novel linear mixed-effects models were constructed using spectral and tissue segmentation data to examine changes in bioenergetics in gray and white matter. Measurements and Results: PCr increased in gray matter after 2 nights of recovery sleep relative to sleep deprivation with no significant changes in white matter. Exploratory analyses also demonstrated that increases in PCr were associated with increases in electroencephalographic slow wave activity during recovery sleep. No significant changes in β-NTP were observed. Conclusions: These results demonstrate that sleep deprivation and subsequent recovery-induced changes in high-energy phosphates primarily occur in gray matter, and increases in phosphocreatine after recovery sleep may be related to sleep homeostasis. Citation: Plante DT, Trksak GH, Jensen JE, Penetar DM, Ravichandran C, Riedner BA, Tartarini WL, Dorsey CM, Renshaw PF, Lukas SE, Harper DG. Gray matter-specific changes in brain bioenergetics after acute sleep deprivation: a 31P magnetic resonance spectroscopy study at 4 Tesla. SLEEP 2014

  19. Discrete analysis of stochastic NMR.II

    NASA Astrophysics Data System (ADS)

    Wong, S. T. S.; Rods, M. S.; Newmark, R. D.; Budinger, T. F.

    Stochastic NMR is an efficient technique for high-field in vivo imaging and spectroscopic studies where the peak RF power required may be prohibitively high for conventional pulsed NMR techniques. A stochastic NMR experiment excites the spin system with a sequence of RF pulses where the flip angles or the phases of the pulses are samples of a discrete stochastic process. In a previous paper the stochastic experiment was analyzed and analytic expressions for the input-output cross-correlations, average signal power, and signal spectral density were obtained for a general stochastic RF excitation. In this paper specific cases of excitation with random phase, fixed flip angle, and excitation with two random components in quadrature are analyzed. The input-output cross-correlation for these two types of excitations is shown to be Lorentzian. Line broadening is the only spectral distortion as the RF excitation power is increased. The systematic noise power is inversely proportional to the number of data points N used in the spectral reconstruction. The use of a complete maximum length sequence (MLS) may improve the signal-to-systematic-noise ratio by 20 dB relative to random binary excitation, but peculiar features in the higher-order autocorrelations of MLS cause noise-like distortion in the reconstructed spectra when the excitation power is high. The amount of noise-like distortion depends on the choice of the MLS generator.

  20. New applications and perspectives of fast field cycling NMR relaxometry.

    PubMed

    Steele, Rebecca M; Korb, Jean-Pierre; Ferrante, Gianni; Bubici, Salvatore

    2016-06-01

    The field cycling NMR relaxometry method (also known as fast field cycling (FFC) when instruments employing fast electrical switching of the magnetic field are used) allows determination of the spin-lattice relaxation time (T1 ) continuously over five decades of Larmor frequency. The method can be exploited to observe the T1 frequency dependence of protons, as well as any other NMR-sensitive nuclei, such as (2) H, (13) C, (31) P, and (19) F in a wide range of substances and materials. The information obtained is directly correlated with the physical/chemical properties of the compound and can be represented as a 'nuclear magnetic resonance dispersion' curve. We present some recent academic and industrial applications showing the relevance of exploiting FFC NMR relaxometry in complex materials to study the molecular dynamics or, simply, for fingerprinting or quality control purposes. The basic nuclear magnetic resonance dispersion features are outlined in representative examples of magnetic resonance imaging (MRI) contrast agents, porous media, proteins, and food stuffs. We will focus on the new directions and perspectives for the FFC technique. For instance, the introduction of the latest Wide Bore FFC NMR relaxometers allows probing, for the first time, of the dynamics of confined surface water contained in the macro-pores of carbonate rock cores. We also evidence the use of the latest field cycling technology with a new cryogen-free variable-field electromagnet, which enhances the range of available frequencies in the 2D T1 -T2 correlation spectrum for separating oil and water in crude oil. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25855084

  1. Understanding the directed ortho lithiation of (R)-Ph₂P(=NCO₂Me)NHCH(Me)Ph. NMR spectroscopic and computational study of the structure of the N-lithiated species.

    PubMed

    Casimiro, M; García-López, J; Iglesias, M J; López-Ortiz, F

    2014-10-14

    A multinuclear magnetic resonance ((1)H, (7)Li, (13)C, (15)N, (31)P) and DFT computational study at the M06-2X(SMD,THF)/6-311+G(d,p)//B3LYP/6-31G(d) level of the structure of a N-lithiated phosphinimidic amide (R)-Ph2P(=NCO2Me)NHCH(Me)Ph 13 has been performed. In THF solution it exists as an equilibrium mixture of monomers and dimers. The monomers consist of a six-membered ring formed by coordination of the lithium atom with the deprotonated nitrogen and the oxygen atom of the carbonyl group. This coordination mode is in contrast to the standard N,N-chelation observed in N-lithiated N,N'-bis(trimethylsilyl)phosphinimidic amides. The calculations showed that the metallacycle adopts a twist-boat conformation and that the lithium atom is in a tetrahedral environment involving O,N-chelation by the ligand and coordination to two/one THF molecules in the monomer/dimer. Dimerization takes place through O-Li bridges. For all species two series of isomers have been identified, which originated by restricted rotation of the methoxy group and ring inversion. The twist-boat conformational interconversion seems to be operating for explaining the pattern of signals observed in the (7)Li and (31)P NMR spectra. The structure found for the most stable dimer is analogous to the molecular structure reported for a related C(α)-lithiated phosphazene 20. The structural study revealed that the chiral side-arm of the N-lithiated species is oriented to the outer face of the pro-S P-phenyl ring, which shows one ortho-proton very close to the nitrogen atom of the carbamate moiety. In this conformation, proton abstraction by a base is highly favoured, in agreement with the experimental results. PMID:24849316

  2. Magic-angle-spinning NMR on solid biological systems. Analysis Of the origin of the spectral linewidths

    NASA Astrophysics Data System (ADS)

    Hemminga, M. A.; de Jager, P. A.; Krüse, J.; Lamerichs, R. M. J. N.

    Magic-angle-spinning (MAS) high-power 1H-decoupled 13C and 31P NMR has been applied to solid biological materials to obtain information about the mechanisms that determine the spectral linewidths. The line broadening in MAS 31P NMR spectra of solid tobacco mosaic virus (TMV) has been investigated by selective saturation and T2 measurements. About 90 Hz stems from homogeneous effects, whereas the inhomogeneous contribution is approximately 100 Hz. The inhomogeneous line broadening is assigned to macroscopic inhomogeneities in the sample and not to variations in the nucleotide bases along the RNA strand in TMV. It is concluded that sample preparation is of vital importance for obtaining well-resolved spectra. Under optimal preparation techniques the isotropic values of the chemical shift of the different 31P sites have been determined to obtain information about the secondary structure of the viral RNA. The chemical shift anisotropy has been determined from the relative intensities of the spinning side bands in the spectra. The chemical shift information is used to make a tentative assignment of the resonance in terms of the three structurally distinguishable phosphate groups in TMV. The origin of the linewidths in MAS NMR has been examined further by 13C NMR of approximately 10% 13C-enriched coat protein of cowpea chlorotic mottle virus, using selective excitation and saturation techniques, as well as measurements of the relaxation times T1 γ and T2. The CO resonance in the spectrum is composed of an inhomogeneous and homogeneous part with a total linewidth of 700 Hz. The homogeneous linewidth, contributing with 200 Hz, is found to arise from slow molecular motions in the solid on a millisecond timescale.

  3. Saturation-Transfer Difference (STD) NMR: A Simple and Fast Method for Ligand Screening and Characterization of Protein Binding

    ERIC Educational Resources Information Center

    Viegas, Aldino; Manso, Joao; Nobrega, Franklin L.; Cabrita, Eurico J.

    2011-01-01

    Saturation transfer difference (STD) NMR has emerged as one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. The success of this technique is a consequence of its robustness and the fact that it is focused on the signals of the ligand, without any need of processing NMR information about the receptor…

  4. Screening proteins for NMR suitability

    PubMed Central

    Yee, Adelinda A.; Semesi, Anthony; Garcia, Maite; Arrowsmith, Cheryl H.

    2014-01-01

    Summary NMR spectroscopy is an invaluable tool in structural genomics. Identification of protein samples that are amenable to structure determination by NMR spectroscopy requires efficient screening. Here, we describe how we prepare multiple samples in parallel and screen by NMR. The method described here is applicable to large structural genomics projects but can easily be scaled down for application to small structural biology projects since all the equipments used are those commonly found in any NMR structural biology laboratory. PMID:24590717

  5. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  6. Glyphosate complexation to aluminium(III). An equilibrium and structural study in solution using potentiometry, multinuclear NMR, ATR-FTIR, ESI-MS and DFT calculations.

    PubMed

    Purgel, Mihály; Takács, Zoltán; Jonsson, Caroline M; Nagy, Lajos; Andersson, Ingegärd; Bányai, István; Pápai, Imre; Persson, Per; Sjöberg, Staffan; Tóth, Imre

    2009-11-01

    The stoichiometries and stability constants of a series of Al(3+)-N-phosponomethyl glycine (PMG/H(3)L) complexes have been determined in acidic aqueous solution using a combination of precise potentiometric titration data, quantitative (27)Al and (31)P NMR spectra, ATR-FTIR spectrum and ESI-MS measurements (0.6M NaCl, 25 degrees C). Besides the mononuclear AlH(2)L(2+), Al(H(2)L)(HL), Al(HL)(2)(-) and Al(HL)L(2-), dimeric Al(2)(HL)L(+) and trinuclear Al(3)H(5)L(4)(2+) complexes have been postulated. (1)H and (31)P NMR data show that different isomers co-exist in solution and the isomerization reactions are slow on the (31)P NMR time scale. The geometries of monomeric and dimeric complexes likely double hydroxo bridged and double phosphonate bridged isomers have been optimized using DFT ab initio calculations starting from rational structural proposals. Energy calculations using the PCM solvation method also support the co-existence of isomers in solutions. PMID:19766319

  7. A high-resolution phosphorus-31 nuclear magnetic resonance (NMR) spectroscopic method for the non-phosphorus markers of chemical warfare agents.

    PubMed

    Mazumder, Avik; Kumar, Ajeet; Purohit, Ajay K; Dubey, Devendra K

    2012-02-01

    A high-resolution phosphorus-31 nuclear magnetic resonance (NMR) spectroscopic method has been developed for detection, identification and quantification of non-phosphorus markers of toxic nerve agents (soman and V-class), vesicants (HD, HN-2, HN-3), and incapacitating agent (Bz). These analytes were converted to phosphorus-containing derivatives via phosphitylation reaction of their hydroxyl and sulfhydryl functions (using 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane). This was followed by (31)P{(1)H} and (31)P NMR analysis of these derivatives. The chemical shifts (δ) and coupling constants ((3)J(P-H)) of derivatives were used for their specific detection and identification. The method allowed clear distinction between the alcohols and thiols. The lower limits of detection of these analytes were found to be between 12 and 28 μg obtained from 128 transients of (31)P{(1)H} quantitative NMR experiments. Utility of the method was ensured by the detection and identification of triethanolamine present (at an original concentration of 5 μg/mL) in an aqueous sample from 28th OPCW Official Proficiency Tests. PMID:22160203

  8. NMR analysis on microfluidic devices by remote detection

    SciTech Connect

    McDonnell, Erin E.; Han, SongI; Hilty, Christian; Pierce,Kimberly; Pines, Alexander

    2005-08-15

    We present a novel approach to perform high-sensitivity NMR imaging and spectroscopic analysis on microfluidic devices. The application of NMR, the most information rich spectroscopic technique, to microfluidic devices remains a challenge because the inherently low sensitivity of NMR is aggravated by small fluid volumes leading to low NMR signal, and geometric constraints resulting in poor efficiency for inductive detection. We address the latter by physically separating signal detection from encoding of information with remote detection. Thereby, we use a commercial imaging probe with sufficiently large diameter to encompass the entire device, enabling encoding of NMR information at any location on the chip. Because large-diameter coils are too insensitive for detection, we store the encoded information as longitudinal magnetization and flow it into the outlet capillary. There, we detect the signal with optimal sensitivity using a solenoidal microcoil, and reconstruct the information encoded in the fluid. We present a generally applicable design for a detection-only microcoil probe that can be inserted into the bore of a commercial imaging probe. Using hyperpolarized 129Xe gas, we show that this probe enables sensitive reconstruction of NMR spectroscopic information encoded by the large imaging probe while keeping the flexibility of a large coil.

  9. A Solid-State NMR Study of Selenium Substitution into Nanocrystalline Hydroxyapatite

    PubMed Central

    Kolmas, Joanna; Kuras, Marzena; Oledzka, Ewa; Sobczak, Marcin

    2015-01-01

    The substitution of selenium oxyanions in the hydroxyapatite structure was examined using multinuclear solid-state resonance spectroscopy (ssNMR). The study was supported by powder X-ray diffractometry (PXRD) and wavelength dispersion X-ray fluorescence (WD-XRF). Samples of pure hydroxyapatite (HA300) and selenate (HA300-1.2SeO4) or selenite (HA300-1.2SeO3) substituted hydroxyapatites were synthesized using the standard wet method and heated at 300 °C to remove loosely bonded water. PXRD data showed that all samples are single-phase, nanocrystalline hydroxyapatite. The incorporation of selenite and selenate ions affected the lattice constants. In selenium-containing samples the concentration of Se was very similar and amounted to 9.55% and 9.64%, for HA300-1.2SeO4 and HA300-1.2SeO3, respectively. PXRD and ssNMR data showed that the selenite doping significantly decreases the crystallite size and crystallinity degree. 31P and 1H NMR experiments demonstrated the developed surface hydrated layer in all samples, especially in HA300-1.2SeO3. 1H NMR studies showed the dehydroxylation of HA during the selenium oxyanions substitution and the existence of hydrogen bonding in structural hydroxyl group channels. 1H→77Se cross polarization NMR experiments indicated that selenites and selenates are located in the crystal lattice and on the crystal surface. PMID:25997001

  10. Detecting and Quantifying Organic Contaminants in Sediments with NMR

    NASA Astrophysics Data System (ADS)

    Fay, E. L.; Knight, R. J.

    2015-12-01

    Nuclear magnetic resonance (NMR) methods have the potential to detect and monitor free-phase organic contaminants in sediments, both in the laboratory and in the field. NMR directly detects signal from hydrogen-bearing fluids; the signal amplitude is proportional to the total amount of hydrogen present, while the signal decay rate provides information about fluid properties and interactions with the surrounding sediments. Contrasting relaxation times (T2) or diffusion coefficients (D) allow the separation of water signal from contaminant signal. In this work, we conduct a laboratory study to assess the use of NMR measurements to detect and quantify diesel, gasoline, crude oil, and tri-chloroethylene in sediments. We compare the T2 distributions for sediments containing only water, only contaminant, and both water and contaminant, confirming that the identification and quantification of contaminants using T2 data alone is limited by overlapping water and contaminant T2 distributions in some sediments. We leverage the contrast between the diffusion coefficient of water and that of diesel and crude oil to separate contaminant signal from water signal in D-T2 maps. D-T2 distributions are measured both using a pulsed gradient method and a static gradient method similar to methods used with logging tools, allowing us to compare the ability of each method to quantify diesel and crude oil when water is also present. There is the potential to apply these methods to characterize and monitor contaminated sites using commercially available NMR logging tools.

  11. High-temperature behavior of NH4H2PO4 studied by single-crystal and MAS NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Lee, Kwang-Sei

    2013-07-01

    To confirm a high-temperature behavior of NH4H2PO4, the temperature dependences of the line-width, resonance frequency, and spin-lattice relaxation times in the laboratory frame, T1, and in the rotating frame, T1ρ, were investigated using a Fourier transform NMR spectrometer. The hydrogen bonds both in O-H-O between two PO4 groups and in N-H-O between NH4 and PO4 were distinguished, and the T1 values of both types of hydrogen-bond proton and 31P ions were described by the Bloembergen-Purcell-Pound theory. In addition, the T1ρ values of both types of hydrogen-bond proton and of 31P ions exhibited strong temperature dependences at high temperature; the changes in T1ρ at high temperature were related to variations in the symmetry.

  12. A solid-state NMR investigation of the structure of mesoporous silica nanoparticle supported rhodium catalysts

    SciTech Connect

    Rapp, Jennifer; Huang, Yulin; Natella, Michael; Cai, Yang; Lin, Victor S.-Y.; Pruski, Marek

    2009-01-04

    A detailed study of the chemical structure of mesoporous silica catalysts containing rhodium ligands and nanoparticles (RhP-MSN) was carried out by multi-dimensional solid-state NMR techniques. The degree of functionalization of the rhodium-phosphinosilyl complex to the surface of the RhP-MSN channels was determined by {sup 29}Si NMR experiments. The structural assignments of the rhodium-phosphinosilyl complex were unambiguously determined by employing the novel, indirectly detected heteronuclear correlation ({sup 13}C-{sup 1}H and {sup 31}P-{sup 1}H idHETCOR) techniques, which indicated that oxidation of the attached phosphinosilyl groups and detachment of Rh was enhanced upon syngas conversion.

  13. Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR.

    PubMed

    Ullrich, Sandra J; Hellmich, Ute A; Ullrich, Stefan; Glaubitz, Clemens

    2011-05-01

    The simultaneous observation of interdependent reactions within different phases as catalyzed by membrane-bound enzymes is still a challenging task. One such enzyme, the Escherichia coli integral membrane protein diacylglycerol kinase (DGK), is a key player in lipid regulation. It catalyzes the generation of phosphatidic acid within the membrane through the transfer of the γ-phosphate from soluble MgATP to membrane-bound diacylglycerol. We demonstrate that time-resolved (31)P magic angle spinning NMR offers a unique opportunity to simultaneously and directly detect both ATP hydrolysis and diacylglycerol phosphorylation. This experiment demonstrates that solid-state NMR provides a general approach for the kinetic analysis of coupled reactions at the membrane interface regardless of their compartmentalization. The enzymatic activity of DGK was probed with different lipid substrates as well as ATP analogs. Our data yield conclusions about intersubunit cooperativity, reaction stoichiometries and phosphoryl transfer mechanism and are discussed in the context of known structural data. PMID:21423170

  14. In vivo 31P nuclear magnetic resonance spectroscopy of experimental murine tumours and human tumour xenografts: effects of blood flow modification.

    PubMed Central

    Bremner, J. C.; Counsell, C. J.; Adams, G. E.; Stratford, I. J.; Wood, P. J.; Dunn, J. F.; Radda, G. K.

    1991-01-01

    The effect of hydralazine on tumours appears to vary depending on tumour type. Blood flow and radiation sensitivity decrease more in murine tumours than human tumour xenografts. In this study a comparison between various tumour types has been made using in vivo 31P nuclear magnetic resonance spectroscopy (NMRS) to follow the metabolic responses occurring after clamping or intravenous administration of hydralazine (5 mg kg-1). Large increases in the Pi/total phosphate ratio were found with the murine sarcomas, KHT and RIF-1 implanted into C3H/He mice. However little or no effect was seen for the two human xenografted tumours, HX118 and HT29 implanted in MFI nu/nu/01a mice. An intermediate response was observed for KHT tumours grown in nu/nu mice. All tumours showed a large response to clamping. The anaesthetic Hypnorm/Hypnovel has a great influence on the response of the tumour metabolism to hydralazine appearing to both prolong and increase the changes induced. There is evidence to support the theory that the changes in 31P spectra are related to the oxygen status of the tumours. PMID:1931606

  15. In Vivo 31P-Nuclear Magnetic Resonance Studies of Glyphosate Uptake, Vacuolar Sequestration, and Tonoplast Pump Activity in Glyphosate-Resistant Horseweed1[W

    PubMed Central

    Ge, Xia; d’Avignon, D. André; Ackerman, Joseph J.H.; Sammons, R. Douglas

    2014-01-01

    Horseweed (Conyza canadensis) is considered a significant glyphosate-resistant (GR) weed in agriculture, spreading to 21 states in the United States and now found globally on five continents. This laboratory previously reported rapid vacuolar sequestration of glyphosate as the mechanism of resistance in GR horseweed. The observation of vacuole sequestration is consistent with the existence of a tonoplast-bound transporter. 31P-Nuclear magnetic resonance experiments performed in vivo with GR horseweed leaf tissue show that glyphosate entry into the plant cell (cytosolic compartment) is (1) first order in extracellular glyphosate concentration, independent of pH and dependent upon ATP; (2) competitively inhibited by alternative substrates (aminomethyl phosphonate [AMPA] and N-methyl glyphosate [NMG]), which themselves enter the plant cell; and (3) blocked by vanadate, a known inhibitor/blocker of ATP-dependent transporters. Vacuole sequestration of glyphosate is (1) first order in cytosolic glyphosate concentration and dependent upon ATP; (2) competitively inhibited by alternative substrates (AMPA and NMG), which themselves enter the plant vacuole; and (3) saturable. 31P-Nuclear magnetic resonance findings with GR horseweed are consistent with the active transport of glyphosate and alternative substrates (AMPA and NMG) across the plasma membrane and tonoplast in a manner characteristic of ATP-binding cassette transporters, similar to those that have been identified in mammalian cells. PMID:25185124

  16. Non-invasive assessment of phosphate metabolism and oxidative capacity in working skeletal muscle in healthy young Chinese volunteers using (31)P Magnetic Resonance Spectroscopy.

    PubMed

    Li, Ming; Chen, Fei; Wang, Huiting; Wu, Wenbo; Zhang, Xin; Tian, Chuanshuai; Yu, Haiping; Liu, Renyuan; Zhu, Bin; Zhang, Bing; Dai, Zhenyu

    2016-01-01

    Background. Generally, males display greater strength and muscle capacity than females while performing a task. Muscle biopsy is regarded as the reference method of evaluating muscle functions; however, it is invasive and has sampling errors, and is not practical for longitudinal studies and dynamic measurement during excise. In this study, we built an in-house force control and gauge system for quantitatively applying force to quadriceps while the subjects underwent (31)P Magnetic Resonance Spectroscopy ((31)P-MRS); our aim was to investigate if there is a sex difference of phosphate metabolite change in working muscles in young heathy Chinese volunteers. Methods. Volunteers performed knee-extending excises using a force control and gauge system while lying prone in a Philips 3T Magnetic Resonance (MR) scanner. The (31)P-MRS coil was firmly placed under the middle of the quadriceps . (31)P-MRS measurements of inorganic phosphate (Pi), phosphocreatine (PCr) and adenosine triphosphate (ATP) were acquired from quadriceps while subjects were in a state of pre-, during- and post-exercise. The PCr, Pi, PCr/Pi, PCr/ATP, pH, work/energy cost ratio (WE), kPCr and oxidative capacity were compared between males and females. Results. A total of 17 volunteers underwent the study. Males: N = 10, age = 23.30 ± 1.25years; females: N = 7, age = 23.57 ± 0.79 years. In this study, males had significantly greater WE (16.33 ± 6.46 vs. 7.82 ± 2.16, p = 0.002) than females. Among PCr, Pi, PCr/Pi, PCr/ATP, pH, kPCr and oxidative capacity at different exercise status, only PCr/Pi (during-exercise, males = 5.630 ± 1.647, females = 4.014 ± 1.298, p = 0.047), PCr/ATP (during-exercise, males =1.273 ± 0.219, females = 1.523 ± 0.167, p = 0.025), and ATP (post-exercise, males = 24.469 ± 3.911 mmol/kg, females = 18.353 ± 4.818 mmol/kg, p = 0.035) had significant sex differences. Males had significantly greater PCr/Pi, but less PCr/ATP than females during exercise, suggesting males had

  17. Non-invasive assessment of phosphate metabolism and oxidative capacity in working skeletal muscle in healthy young Chinese volunteers using 31P Magnetic Resonance Spectroscopy

    PubMed Central

    Wang, Huiting; Wu, Wenbo; Zhang, Xin; Tian, Chuanshuai; Yu, Haiping; Liu, Renyuan; Zhu, Bin

    2016-01-01

    Background. Generally, males display greater strength and muscle capacity than females while performing a task. Muscle biopsy is regarded as the reference method of evaluating muscle functions; however, it is invasive and has sampling errors, and is not practical for longitudinal studies and dynamic measurement during excise. In this study, we built an in-house force control and gauge system for quantitatively applying force to quadriceps while the subjects underwent 31P Magnetic Resonance Spectroscopy (31P-MRS); our aim was to investigate if there is a sex difference of phosphate metabolite change in working muscles in young heathy Chinese volunteers. Methods. Volunteers performed knee-extending excises using a force control and gauge system while lying prone in a Philips 3T Magnetic Resonance (MR) scanner. The 31P-MRS coil was firmly placed under the middle of the quadriceps . 31P-MRS measurements of inorganic phosphate (Pi), phosphocreatine (PCr) and adenosine triphosphate (ATP) were acquired from quadriceps while subjects were in a state of pre-, during- and post-exercise. The PCr, Pi, PCr/Pi, PCr/ATP, pH, work/energy cost ratio (WE), kPCr and oxidative capacity were compared between males and females. Results. A total of 17 volunteers underwent the study. Males: N = 10, age = 23.30 ± 1.25years; females: N = 7, age = 23.57 ± 0.79 years. In this study, males had significantly greater WE (16.33 ± 6.46 vs. 7.82 ± 2.16, p = 0.002) than females. Among PCr, Pi, PCr/Pi, PCr/ATP, pH, kPCr and oxidative capacity at different exercise status, only PCr/Pi (during-exercise, males = 5.630 ± 1.647, females = 4.014 ± 1.298, p = 0.047), PCr/ATP (during-exercise, males =1.273 ± 0.219, females = 1.523 ± 0.167, p = 0.025), and ATP (post-exercise, males = 24.469 ± 3.911 mmol/kg, females = 18.353 ± 4.818 mmol/kg, p = 0.035) had significant sex differences. Males had significantly greater PCr/Pi, but less PCr/ATP than females during exercise, suggesting males had higher

  18. Monoterpene Unknowns Identified Using IR, [to the first power]H-NMR, [to the thirteenth power]C-NMR, DEPT, COSY, and HETCOR

    ERIC Educational Resources Information Center

    Alty, Lisa T.

    2005-01-01

    A study identifies a compound from a set of monoterpenes using infrared (IR) and one-dimensional (1D) nuclear magnetic resonance (NMR) techniques. After identifying the unknown, each carbon and proton signal can be interpreted and assigned to the structure using the information in the two-dimensional (2D) NMR spectra, correlation spectroscopy…

  19. MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content

    SciTech Connect

    Goswami, Madhumita; Kothiyal, Govind P.; Montagne, Lionel Delevoye, Laurent

    2008-02-15

    Lithium zinc silicate glasses of composition (mol%): 17.5Li{sub 2}O-(72-x)SiO{sub 2}-xZnO-5.1Na{sub 2}O-1.3P{sub 2}O{sub 5}-4.1B{sub 2}O{sub 3}, 5.5{<=}x{<=}17.7, were prepared by conventional melt-quenched technique and converted to glass-ceramic by controlled crystallization process. {sup 29}Si and {sup 31}P MAS-NMR was used to characterize the structure of both glass and glass-ceramic samples. Despite the complex glass composition, Q{sup 2}, Q{sup 3} and Q{sup 4} sites are identified from {sup 29}Si MAS-NMR, which relative intensities are found to vary with the ZnO content, indicating a network depolymerization by ZnO. Moreover, well separated Q{sup 3} and Q{sup 4} resonances for low ZnO content indicates the occurrence of phase separation. From {sup 31}P MAS-NMR, it is seen that phosphorus is mainly present in the form of ortho-(Q{sup 0}) and pyro-phosphate (Q{sup 1}) structural units and variation of ZnO content did not have much effect on these resonances, which provides an additional evidence for phase separation in the glass. On conversion to glass-ceramics, lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), lithium zinc ortho-silicate (Li{sub 3}Zn{sub 0.5}SiO{sub 4}), tridymite (SiO{sub 2}) and cristobalite (SiO{sub 2}) were identified as major silicate crystalline phases. Using {sup 29}Si MAS-NMR, quantification of these silicate crystalline phases is carried out and correlated with the ZnO content in the glass-ceramics samples. In addition, {sup 31}P spectra unambiguously revealed the presence of crystalline Li{sub 3}PO{sub 4} and (Na,Li){sub 3}PO{sub 4} in the glass-ceramics. - Graphical abstract: {sup 29}Si and {sup 31}P MAS-NMR analyses were carried out on multi-component Li{sub 2}O-SiO{sub 2}-ZnO-Na{sub 2}O-P{sub 2}O{sub 5}-B{sub 2}O{sub 3} glasses and glass-ceramics developed for sealing application. Structural data are reported, including phase separation process and quantification of amorphous and crystalline phases.

  20. NMR/MRI with hyperpolarized gas and high Tc SQUID

    DOEpatents

    Schlenga, Klaus; de Souza, Ricardo E.; Wong-Foy, Annjoe; Clarke, John; Pines, Alexander

    2000-01-01

    A method and apparatus for the detection of nuclear magnetic resonance (NMR) signals and production of magnetic resonance imaging (MRI) from samples combines the use of hyperpolarized inert gases to enhance the NMR signals from target nuclei in a sample and a high critical temperature (Tc) superconducting quantum interference device (SQUID) to detect the NMR signals. The system operates in static magnetic fields of 3 mT or less (down to 0.1 mT), and at temperatures from liquid nitrogen (77K) to room temperature. Sample size is limited only by the size of the magnetic field coils and not by the detector. The detector is a high Tc SQUID magnetometer designed so that the SQUID detector can be very close to the sample, which can be at room temperature.

  1. sup 31 Phosphorus NMR studies of renal membrane phospholipids

    SciTech Connect

    Boylan, J.G.

    1988-01-01

    A research program was undertaken in order to study the effects of toxin-induced acute renal failure and streptozotozin-induced diabetes mellitus on the organization and motion of phospholipids in kidney membranes. The method of study included {sup 31}P NMR and computer simulated lineshape analyses and apparent lipid diffusion rate measurements. These were performed with selected tissue samples and disease models, and the results were compared with those of healthy renal tissues in order to identify changes associated with the diseased state. A new selective-excitation NMR pulse sequence was developed in which a portion of the lipid molecules were excited with a series of short equally-spaced RF pulses. As the position of the molecules changed on the membrane by lateral diffusion, the shape of the hole was seen to change. Experimental spectra were compared with calculated lineshapes in order to obtain estimates of useful molecular parameters including relation times and lateral lipid diffusion rates. The lineshape calculations were based on a solution to the Bloch equations for complex magnetization components with exchange terms added for diffusion.

  2. 224} studied by NMR

    SciTech Connect

    Furukawa, Y; Fang, X; Kögerler, P

    2014-05-14

    7Li nuclear magnetic resonance (NMR) studies have been performed to investigate magnetic properties and spin dynamics of Mn3+ (S = 2) spins in the giant polyoxometalate molecule {Mn40W224}. The 7Li-NMR line width is proportional to the external magnetic field H as expected in a paramagnetic state above 3 K. Below this temperature the line width shows a sudden increase and is almost independent of H, which indicates freezing of the local Mn3+ spins. The temperature dependence of T1 for both 1H and 7Li reveals slow spin dynamics at low temperatures, consistent with spin freezing. The slow spin dynamics is also evidenced by the observation of a peak of 1/T2 around 3 K, where the fluctuation frequency of spins is of the order of ~200 kHz. An explicit form of the temperature dependence of the fluctuation frequency of Mn3+ spins is derived from the nuclear relaxation data.

  3. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  4. Intermediate length scale organisation in tin borophosphate glasses: new insights from high field correlation NMR.

    PubMed

    Tricot, G; Saitoh, A; Takebe, H

    2015-11-28

    The structure of tin borophosphate glasses, considered for the development of low temperature sealing glasses or anode materials for Li-batteries, has been analysed at the intermediate length scale by a combination of high field standard and advanced 1D/2D nuclear magnetic resonance techniques. The nature and extent of B/P mixing were analysed using the (11)B((31)P) dipolar heteronuclear multiple quantum coherence NMR sequence and the data interpretation allowed (i) detecting the presence and analysing the nature of the B-O-P linkages, (ii) re-interpreting the 1D (31)P spectra and (iii) extracting the proportion of P connected to borate species. Interaction between the different borate species was analysed using the (11)B double quantum-simple quantum experiment to (i) investigate the presence and nature of the B-O-B linkage, (ii) assign the different borate species observed all along the composition line and (iii) monitor the borate network formation. In addition, (119)Sn static NMR was used to investigate the evolution of the chemical environment of the tin polyhedra. Altogether, the set of data allowed determining the structural units constituting the glass network and quantifying the extent of B/P mixing. The structural data were then used to explain the non-linear and unusual evolution of the glass transition temperature. PMID:26186677

  5. Functional pools of oxidative and glycolytic fibers in human muscle observed by /sup 31/P magnetic resonance spectroscopy during exercise

    SciTech Connect

    Park, J.H.; Brown, R.L.; Park, C.R.; McCully, K.; Cohn, M.; Haselgrove, J.; Chance, B.

    1987-12-01

    Quantitative probing of heterogeneous regions in muscle is feasible with phosphorus-31 magnetic resonance spectroscopy because of the differentiation of metabolic patterns of glycolytic and oxidative fibers. A differential recruitment of oxidative and glycolytic fibers during exercise was demonstrated in 4 of 10 untrained young men by following changes in phosphate metabolites. Concentrations of inorganic phosphate (P/sub i/), phosphocreatine, and ATP were estimated in the wrist flexor muscles of the forearm at rest, during two cycles of three grades of exercise, and in recovery. At high work levels (40% of maximum strength), two distinct P/sub i/ peaks were observed and identified with P/sub i/ pools at pH 6.9 and pH 5.9-6.4, respectively. These could be accounted for as follows. At the lowest level of work (using 20% of maximum strength), early recruitment primarily of oxidative (type I) and possibly some intermediate (type IIA) muscle fibers occurs with relatively little net lactate production and consequently little decrease in pH. At higher work loads, however, primarily glycolytic (type IIB) muscle fibers are recruited, which have relatively high net lactate production and therefore generate a second pool of P/sub i/ at low pH. These observations indicated exhaustion of glycolytic type IIB fibers, removal of lactate by high local blood flow, and sustained contractions largely by oxidative type I and IIA fibers. A functional differentiation of fiber types could also be demonstrated during recovery if exercise was stopped while two pools of P/sub i/ were still apparent. The potential of magnetic resonance spectroscopy to characterize oxidative and glycolytic fibers, predict capacity for aerobic performance, and signal the presence of muscle pathology is discussed.

  6. Some nitrogen-14 NMR studies in solids

    SciTech Connect

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  7. Solid-state NMR in the analysis of drugs and naturally occurring materials.

    PubMed

    Paradowska, Katarzyna; Wawer, Iwona

    2014-05-01

    This article presents some of the solid-state NMR (SSNMR) techniques used in the pharmaceutical and biomedical research. Solid-state magic angle spinning (MAS) NMR provides structural information on powder amorphous solids for which single-crystal diffraction structures cannot be obtained. NMR is non-destructive; the powder sample may be used for further studies. Quantitative results can be obtained, although solid-state NMR spectra are not normally quantitative. As compared with other techniques, MAS NMR is insensitive and requires a significant amount of the powder sample (2-100mg) to fill the 1.3-7 mm ZrO2 rotor. This is its main drawback, since natural compounds isolated from plants, microorganisms or cell cultures are difficult to obtain in quantities higher than a few milligrams. Multinuclear MAS NMR routinely uses (1)H and (13)C nuclei, less frequently (15)N, (19)F, (31)P, (77)Se, (29)Si, (43)Ca or (23)Na. The article focuses on the pharmaceutical applications of SSNMR, the studies were aimed to control over manufacturing processes (e.g. crystallization and milling) investigation of chemical and physical stability of solid forms both as pure drug and in a formulated product. SSNMR is used in combination with some other analytical methods (DSC, XRD, FT-IR) and theoretical calculations of NMR parameters. Biologically active compounds, such as amino acids and small peptides, steroids and flavonoids were studied by SSNMR methods (part 4) providing valuable structural information. The SSNMR experiments performed on biopolymers and large natural products like proteins, cellulose and lipid layers are commented upon briefly in part 5. PMID:24173236

  8. Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

    PubMed

    Yoon, Ji Won

    2014-11-01

    Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. PMID:25218584

  9. Functional pools of oxidative and glycolytic fibers in human muscle observed by 31P magnetic resonance spectroscopy during exercise.

    PubMed

    Park, J H; Brown, R L; Park, C R; McCully, K; Cohn, M; Haselgrove, J; Chance, B

    1987-12-01

    oxidative type I fibers. The potential of magnetic resonance spectroscopy to characterize oxidative and glycolytic fibers, predict capacity for aerobic performance, and signal the presence of muscle pathology is discussed. PMID:3480522

  10. Isolation and 2D NMR Studies of Alkaloids from Comptonella sessilifoliola1.

    PubMed

    Pusset, J; Lopez, J L; Pais, M; Neirabeyeh, M A; Veillon, J M

    1991-04-01

    Six known furanoquinoline alkaloids have been isolated from the wood and trunk bark of COMPTONELLA SESSILIFOLIOLA (Guillaumin) Hartley (Rutaceae). 2D NMR experiments gave the assignment of all the signals for both (1)H- and (13)C-NMR spectra. Pteleine and kokusaginine were used as models. The two-dimensional carbon-proton correlation experiments, performed for the first time on furanoquinoline alkaloids, led us to correct (13)C-NMR assignments previously described in the literature. PMID:17226139

  11. Parallel NMR spectroscopy with simultaneous detection of (1) H and (19) F nuclei.

    PubMed

    Kovacs, Helena; Kupče, Ēriks

    2016-07-01

    Recording NMR signals of several nuclear species simultaneously by using parallel receivers provides more information from a single measurement and at the same time increases the measurement sensitivity per unit time. Here we present a comprehensive series of the most frequently used NMR experiments modified for simultaneous direct detection of two of the most sensitive NMR nuclei - (1) H and (19) F. We hope that the presented material will stimulate interest in and further development of this technique. PMID:27021630

  12. Targeted Molecular Imaging of Cancer Cells Using MS2-Based (129)Xe NMR.

    PubMed

    Jeong, Keunhong; Netirojjanakul, Chawita; Munch, Henrik K; Sun, Jinny; Finbloom, Joel A; Wemmer, David E; Pines, Alexander; Francis, Matthew B

    2016-08-17

    We have synthesized targeted, selective, and highly sensitive (129)Xe NMR nanoscale biosensors using a spherical MS2 viral capsid, Cryptophane A molecules, and DNA aptamers. The biosensors showed strong binding specificity toward targeted lymphoma cells (Ramos line). Hyperpolarized (129)Xe NMR signal contrast and hyper-CEST (129)Xe MRI image contrast indicated its promise as highly sensitive hyperpolarized (129)Xe NMR nanoscale biosensor for future applications in cancer detection in vivo. PMID:27454679

  13. NMR Spectroscopy for Thin Films by Magnetic Resonance Force Microscopy

    PubMed Central

    Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, SangGap; Kim, Kiwoong; Han, Yunseok

    2013-01-01

    Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336 μm that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the 19F NMR spectrum for a 34 nm-thick CaF2 thin film. PMID:24217000

  14. Study of molecular interactions with 13C DNP-NMR

    NASA Astrophysics Data System (ADS)

    Lerche, Mathilde H.; Meier, Sebastian; Jensen, Pernille R.; Baumann, Herbert; Petersen, Bent O.; Karlsson, Magnus; Duus, Jens Ø.; Ardenkjær-Larsen, Jan H.

    2010-03-01

    NMR spectroscopy is an established, versatile technique for the detection of molecular interactions, even when these interactions are weak. Signal enhancement by several orders of magnitude through dynamic nuclear polarization alleviates several practical limitations of NMR-based interaction studies. This enhanced non-equilibrium polarization contributes sensitivity for the detection of molecular interactions in a single NMR transient. We show that direct 13C NMR ligand binding studies at natural isotopic abundance of 13C gets feasible in this way. Resultant screens are easy to interpret and can be performed at 13C concentrations below μM. In addition to such ligand-detected studies of molecular interaction, ligand binding can be assessed and quantified with enzymatic assays that employ hyperpolarized substrates at varying enzyme inhibitor concentrations. The physical labeling of nuclear spins by hyperpolarization thus provides the opportunity to devise fast novel in vitro experiments with low material requirement and without the need for synthetic modifications of target or ligands.

  15. Treatment of glycogenosys type V (McArdle disease) with creatine and ketogenic diet with clinical scores and with 31P-MRS on working leg muscle

    PubMed Central

    Vorgerd, M; Zange, J

    2007-01-01

    Summary McArdle’s disease is caused by genetic defects of the musclespecific isozyme of glycogen phosphorylase, which block ATP formation from glycogen in skeletal muscle. Creatine supplementation and ketogenic diet have been tested as potential supplements for muscle energy metabolism which may improve muscle symptomatic. Outcome measures were clinical scores describing muscle symptomatic and parameters derived from 31P-MRS examinations on working muscle. In two placebo controlled cross-over studies low dose creatine showed beneficial effects on muscle symptoms and performance whereas high dose creatine distinctly worsened muscle symptomatic in patients. In both studies, however, the absence of an elevation in phosphocreatine indicated the absence of a creatine uptake by the muscle fibre. The effects of creatine on muscle symptomatic may be independent from energy metabolism in muscle. In a case study, ketogenic diet improved muscle symptomatic and performance. However, these effects again did not result in 31PMRS visible changes in muscle energy metabolism. PMID:17915573

  16. Adenosine triphosphate infusion increases liver energy status in advanced lung cancer patients: an in vivo 31P magnetic resonance spectroscopy study.

    PubMed

    Leij-Halfwerk, Susanne; Agteresch, Hendrik J; Sijens, Paul E; Dagnelie, Pieter C

    2002-02-01

    We recently observed inhibition of weight loss in patients with advanced nonsmall-cell lung cancer after intravenous infusion of ATP. Because liver ATP levels were found to be decreased in lung cancer patients with weight loss, the present 31P magnetic resonance spectroscopy (MRS) study was aimed at investigating whether ATP infusion restores liver energy status in these patients. Nine patients with advanced nonsmall-cell lung cancer (stage IIIB/IV) were studied 1 week before (baseline) and at 22 to 24 hours of continuous ATP infusion (37-75 microg/kg/min). Localized hepatic 31P MR spectra (repetition time 15 seconds), obtained in the overnight-fasted state, were analyzed for ATP and P(i) content. Ten healthy subjects (without ATP infusion) served as control. Liver ATP levels in lung cancer patients increased from 8.8 +/- 0.7% (relative to total MR-detectable phosphate; mean +/- SE) at baseline to 12.2 +/- 0.9% during ATP infusion (P <.05), i.e., a level similar to that in healthy subjects (11.9 +/- 0.9%). The increase in ATP level during ATP infusion was most prominent in patients with > or = 5% weight loss (baseline: 7.9 +/- 0.7%, during ATP infusion: 12.8 +/- 1.0%, P < 0.01). In conclusion, ATP infusion restores hepatic energy levels in patients with advanced lung cancer, especially in weight-losing patients. These changes may contribute to the previously reported beneficial effects of ATP infusion on the nutritional status of lung cancer patients. PMID:11826418

  17. High-energy phosphate metabolism during incremental calf exercise in humans measured by 31 phosphorus magnetic resonance spectroscopy (31P MRS).

    PubMed

    Schocke, Michael F H; Esterhammer, Regina; Kammerlander, Christian; Rass, Anton; Kremser, Christian; Fraedrich, Gustav; Jaschke, Werner R; Greiner, Andreas

    2004-01-01

    Several previous 31 phosphorus magnetic resonance spectroscopy ((31)P MRS) studies performing incremental or progressive muscle exercises have observed that a decrease in pH is accompanied with an acceleration in phosphocreatine (PCr) hydrolysis. The purpose of this study was to investigate the relationship between PCr breakdown and pH during isotonic, exhaustive, incremental plantar flexion exercises. We included eight healthy, male volunteers into this study. Using a 1.5 Tesla MR scanner and a self-built exercise bench, we performed serial free induction decay (FID) (31)P MRS measurements with a time resolution of 1 min at rest, isotonic calf muscle exercise, and recovery. The exercise protocol consisted of 5-min intervals with 4.5, 6, 7.5, and 9 W workload followed by 9-min recovery. Changes in PCr and inorganic phosphate (Pi) were determined as percent changes in comparison to the baseline. In addition, pH values were calculated. This study obtained significant decreases in PCr corresponding to the gradual increases in workload. In each workload level that was succeeded by all volunteers, PCr hydrolysis passed into a steady state. After an early biphasic response, we detected a significant decrease in pH from the first to the second minute of the 6-W workload level followed by a further continuous decrease in pH up to the second minute of the recovery phase. The decrease in pH was not accompanied by acceleration in PCr hydrolysis. In conclusion, this study shows that PCr hydrolysis during incremental plantar flexion exercises passes into a steady state at different workload levels. The observed decrease in pH does not result in acceleration of PCr hydrolysis. PMID:14972400

  18. Effects of Coenzyme Q10 on Skeletal Muscle Oxidative Metabolism in Statin Users Assessed Using 31P Magnetic Resonance Spectroscopy: a Randomized Controlled Study

    PubMed Central

    Buettner, Catherine; Greenman, Robert L.; Ngo, Long H.; Wu, Jim S.

    2016-01-01

    Objectives Statins partially block the production of coenzyme Q10 (CoQ10), an essential component for mitochondrial function. Reduced skeletal muscle mitochondrial oxidative capacity has been proposed to be a cause of statin myalgia and can be measured using 31phosphorus magnetic resonance spectroscopy (31P-MRS). The purpose of this study is to assess the effect of CoQ10 oral supplementation on mitochondrial function in statin users using 31P-MRS. Design/Setting In this randomized, double-blind, placebo-controlled pilot study, 21 adults aged 47–73 were randomized to statin+placebo (n=9) or statin+CoQ10 (n=12). Phosphocreatine (PCr) recovery kinetics of calf muscles were assessed at baseline (off statin and CoQ10) and 4 weeks after randomization to either statin+CoQ10 or statin+placebo. Results Baseline and post-treatment PCr recovery kinetics were assessed for 19 participants. After 4 weeks of statin+ CoQ10 or statin+placebo, the overall relative percentage change (100*(baseline−follow up)/baseline) in PCr recovery time was −15.1% compared with baseline among all participants, (p-value=0.258). Participants randomized to statin+placebo (n=9) had a relative percentage change in PCr recovery time of −18.9%, compared to −7.7% among participants (n=10) receiving statin+CoQ10 (p-value=0.448). Conclusions In this pilot study, there was no significant change in mitochondrial function in patients receiving 4 weeks of statin+CoQ10 oral therapy when compared to patients on statin+placebo. PMID:27610419

  19. Sensitive and robust electrophoretic NMR: Instrumentation and experiments

    NASA Astrophysics Data System (ADS)

    Hallberg, Fredrik; Furó, István; Yushmanov, Pavel V.; Stilbs, Peter

    2008-05-01

    Although simple as a concept, electrophoretic NMR (eNMR) has so far failed to find wider application. Problems encountered are mainly due to disturbing and partly irreproducible convection-like bulk flow effects from both electro-osmosis and thermal convection. Additionally, bubble formation at the electrodes and rf noise pickup has constrained the typical sample geometry to U-tube-like arrangements with a small filling factor and a low resulting NMR sensitivity. Furthermore, the sign of the electrophoretic mobility cancels out in U-tube geometries. We present here a new electrophoretic sample cell based on a vertically placed conventional NMR sample tube with bubble-suppressing palladium metal as electrode material. A suitable radiofrequency filter design prevents noise pickup by the NMR sample coil from the high-voltage leads which extend into the sensitive sample volume. Hence, the obtained signal-to-noise ratio of this cell is one order of magnitude higher than that of our previous U-tube cells. Permitted by the retention of the sign of the displacement-related signal phase in the new cell design, an experimental approach is described where bulk flow effects by electro-osmosis and/or thermal convection are compensated through parallel monitoring of a reference signal from a non-charged species in the sample. This approach, together with a CPMG-like pulse train scheme provides a superior first-order cancellation of non-electrophoretic bulk flow effects.

  20. (13)C NMR assignments of regenerated cellulose from solid-state 2D NMR spectroscopy.

    PubMed

    Idström, Alexander; Schantz, Staffan; Sundberg, Johan; Chmelka, Bradley F; Gatenholm, Paul; Nordstierna, Lars

    2016-10-20

    From the assignment of the solid-state (13)C NMR signals in the C4 region, distinct types of crystalline cellulose, cellulose at crystalline surfaces, and disordered cellulose can be identified and quantified. For regenerated cellulose, complete (13)C assignments of the other carbon regions have not previously been attainable, due to signal overlap. In this study, two-dimensional (2D) NMR correlation methods were used to resolve and assign (13)C signals for all carbon atoms in regenerated cellulose. (13)C-enriched bacterial nanocellulose was biosynthesized, dissolved, and coagulated as highly crystalline cellulose II. Specifically, four distinct (13)C signals were observed corresponding to con