Science.gov

Sample records for 31p nmr study

  1. Decomposition of adsorbed VX on activated carbons studied by 31P MAS NMR.

    PubMed

    Columbus, Ishay; Waysbort, Daniel; Shmueli, Liora; Nir, Ido; Kaplan, Doron

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) {(DES)2}. Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed.

  2. 39K, 23Na, and 31P NMR Studies of Ion Transport in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Ogino, T.; den Hollander, J. A.; Shulman, R. G.

    1983-09-01

    The relationship between efflux and influx of K+, Na+, and intracellular pH (pHin) in yeast cells upon energizing by oxygenation was studied by using the noninvasive technique of 39K, 23Na, and 31P NMR spectroscopy. By introducing an anionic paramagnetic shift reagent, Dy3+(P3O105-)2, into the medium, NMR signals of intra- and extracellular K+ and Na+ could be resolved, enabling us to study ion transport processes by NMR. Measurements showed that 40% of the intracellular K+ and Na+ in yeast cells contributed to the NMR intensities. By applying this correction factor, the intracellular ion concentrations were determined to be 130-170 mM K+ and 2.5 mM Na+ for fresh yeast cells. With the aid of a home-built solenoidal coil probe for 39K and a double-tuned probe for 23Na and 31P, we could follow time courses of K+ and Na+ transport and of pHin with a time resolution of 1 min. It was shown that H+ extrusion is correlated with K+ uptake and not with Na+ uptake upon energizing yeast cells by oxygenation. When the cells were deenergized after the aerobic period, K+ efflux, H+ influx, and Na+ influx were calculated to be 1.6, 1.5, and 0.15 μ mol/min per ml of cell water, respectively. Therefore, under the present conditions, K+ efflux is balanced by exchange for H+ with an approximate stoichiometry of 1:1.

  3. Intermediate valence behavior of Yb2Ni12P7 studied by using 31P NMR

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Sugiura, K.; Ueda, K.; Mito, T.; Kohara, T.; Satoh, R.; Tsuchiya, K.; Nakano, T.; Takeda, N.

    2013-08-01

    The Yb-based heavy-fermion compound Yb2Ni12P7 with a hexagonal Zr2Fe12P7-type crystal structure was investigated by using the 31P nuclear magnetic resonance (NMR) technique. The complicated NMR line changes its shape gradually with decreasing temperature, implying the presence of some Knight shift components. The temperature dependences of the Knight shift and the nuclear spin-lattice relaxation rate 1/ T 1 suggest the delocalization of 4 f electrons.

  4. 31P-NMR study of resting in vitro rat diaphragm exposed to hypercapnia.

    PubMed

    Fitzgerald, R S; Howell, S; Jacobus, W E

    1988-11-01

    We have reported previously that, when exposed to hypercapnia of various intensities, the diaphragm reduces its force of twitch and tetanic contractions in the in vitro rat preparation as well as in the in vivo dog preparation. The experiments reported here with 31P nuclear magnetic resonance (31P-NMR) spectroscopy attempt to examine cellular mechanisms that might be responsible for this deterioration in mechanical performance. Specifically they describe certain characteristics of this preparation and cautions needed to study the resting in vitro rat diaphragm with such techniques. Second, they report the response of intracellular pH (pHi), phosphocreatine (PCr), ATP, and inorganic phosphate (Pi) in the resting in vitro rat diaphragm exposed to long-term normocapnia or to long-term hypercapnia. The results show that 1) to maintain a viable preparation, it was necessary to keep the diaphragm extended to an area approximating that at functional residual capacity, 2) the diaphragm seemed quite capable of maintaining a constant pHi and constant contents of ATP and Pi during normocapnia, but there was a gradual decline in PCr, and 3) during hypercapnia there was a significant decrease in pHi, but the behavior of the phosphate metabolites was exactly as during normocapnia. The results suggest that the decrease in mechanical performance of the diaphragm is probably not due to a decrease in the availability of the high-energy phosphates, although they do not completely exclude this possibility or possibilities related to regional compartmentation.

  5. CD and 31P NMR studies of tachykinin and MSH neuropeptides in SDS and DPC micelles

    NASA Astrophysics Data System (ADS)

    Schneider, Sydney C.; Brown, Taylor C.; Gonzalez, Javier D.; Levonyak, Nicholas S.; Rush, Lydia A.; Cremeens, Matthew E.

    2016-02-01

    Secondary structural characteristics of substance P (SP), neurokinin A (NKA), neurokinin B (NKB), α-melanocyte stimulating hormone peptide (α-MSH), γ1-MSH, γ2-MSH, and melittin were evaluated with circular dichroism in phosphite buffer, DPC micelles, and SDS micelles. CD spectral properties of γ1-MSH and γ2-MSH as well as 31P NMR of DPC micelles with all the peptides are reported for the first time. Although, a trend in the neuropeptide/micelle CD data appears to show increased α-helix content for the tachykinin peptides (SP, NKA, NKB) and increased β-sheet content for the MSH peptides (α-MSH, γ1-MSH, γ2-MSH) with increasing peptide charge, the lack of perturbed 31P NMR signals for all neuropeptides could suggest that the reported antimicrobial activity of SP and α-MSH might not be related to a membrane disruption mode of action.

  6. Ab initio and DFT study of 31P-NMR chemical shifts of sphingomyelin and dihydrosphingomyelin lipid molecule

    NASA Astrophysics Data System (ADS)

    Sugimori, K.; Kawabe, H.; Nagao, H.; Nishikawa, K.

    One of the phospholipids, sphingomyelin (SM, N-acyl-sphingosine-1-phosphorylcholine) is the most abundant component of mammalian membranes in brain, nervous tissues, and human ocular lens. It plays an important role for apoptosis, aging, and signal transduction. Recently, Yappert and coworkers have shown that human lens sphingomyelin and its hydrogenated derivative, dihydrosphingomyelin (DHSM) are interacted with Ca2+ ions to develop human cataracts. Previously, we have investigated conformational differences between an isolated SM/DHSM molecule and Ca2+-coordinated form by using density functional theory (DFT) for geometry optimization and normal mode analysis. As a result, one of stable conformers of SMs has a hydrogen bonding between hydroxyl group and phosphate group, whereas another conformer has a hydrogen bonding between hydroxyl and phosphate amide group. In this study, 31P-Nuclear Magnetic Resonance (NMR) shielding constants of the obtained conformers are investigated by using ab initio and DFT with NMR-gauge invariant atomic orbitals (NMR-GIAO) calculations. The experimental 31P-NMR chemical shifts of SMs and DHSMs have significant small value around 0.1 ppm. We consider the relative conformational changes between SMs and DHSMs affect the slight deviations of 31P-NMR chemical shifts, and discuss intramolecular hydrogen bondings and the solvent effect in relation to NMR experimental reference.

  7. Degradation of black phosphorus: a real-time 31P NMR study

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Yang, Bingchao; Wan, Bensong; Xi, Xuekui; Zeng, Zhongming; Liu, Enke; Wu, Guangheng; Liu, Zhongyuan; Wang, Wenhong

    2016-09-01

    In this work, degradation behaviors and mechanisms of black phosphorus (BP) crystals in air under ambient conditions were investigated by nuclear magnetic resonance spectroscopy. It has been found that the 31P NMR line intensity for BP decreases exponentially during aging even at the very first several hours, suggesting the origin of the degradation of transport properties. In addition to phosphoric acid, new phosphorous acid was also well resolved in the final aging products. Moreover, BP has been found to be stable in water without the presence of oxygen molecules. These findings are relevant for better understanding of degradation behaviors of BP upon aging and should be helpful for overcoming a barrier that might hamper progress toward applications of BP as a 2D material.

  8. Effect of glyphosate on plant cell metabolism. 31P and 13C NMR studies.

    PubMed

    Gout, E; Bligny, R; Genix, P; Tissut, M; Douce, R

    1992-01-01

    The effect of glyphosate (N-phosphonomethyl glycine; the active ingredient of Roundup herbicide) on plant cells metabolism was analysed by 31P and 13C NMR using suspension-cultured sycamore (Acer pseudoplatanus L) cells. Cells were compressed in the NMR tube and perfused with an original arrangement enabling a tight control of the circulating nutrient medium. Addition of 1 mM glyphosate to the nutrient medium triggered the accumulation of shikimate (20-30 mumol g-1 cell wet weight within 50 h) and shikimate 3-phosphate (1-1.5 mumol g-1 cell wet weight within 50 h). From in vivo spectra it was demonstrated that these two compounds were accumulated in the cytoplasm where their concentrations reached potentially lethal levels. On the other hand, glyphosate present in the cytoplasmic compartment was extensively metabolized to yield aminomethylphosphonic acid which also accumulated in the cytoplasm. Finally, the results presented in this paper indicate that although the cell growth was stopped by glyphosate the cell respiration rates and the level of energy metabolism intermediates remained unchanged.

  9. Site-specificity of ethanol-induced dephosphorylation of rat hepatocyte keratins 8 and 18: A 31P NMR study.

    PubMed

    Eckert, B S; Yeagle, P L

    1996-01-01

    Chronic feeding of ethanol to rats results in disorganization of the keratin intermediate filament network within hepatocytes. Previous studies from this laboratory have shown that intermediate filament organization in cultured cells is related to the phosphorylation state of the proteins. Therefore, we have examined the phosphorylation state of hepatocyte keratins from control and ethanol-fed rats. Feeding ethanol to rats results in dephosphorylation of one site on keratin 8 and one site on keratin 18 at all time points beginning with 6 weeks of ethanol treatment. Dephosphorylation was detected by phosphate analysis and by two-dimensional electrophoresis in which a change in isoelectric point of keratins from ethanol-fed rats was observed. These observations indicate that dephosphorylation of keratins in ethanol-fed animals may be an early step in alcoholic hepatitis which has occurred by 6 weeks of ethanol treatment. To further characterize keratin dephosphorylation in ethanol-fed rats, we used 31P NMR spectroscopy to classify the dephosphorylation site(s). Hepatocyte keratins were purified and solubilized in 9.5 M urea, 10 mM Tris-Cl, pH 8.1. 31P NMR spectra were obtained at 109 MHz, in 10 mm tubes at 30 degrees C. Samples of hepatocyte keratins were phosphorylated with A-kinase, protein kinase C, casein kinase II or Ca/CAM kinase and these samples were analyzed by 31P NMR spectroscopy. The resulting spectra were used as standards to compare the 31P chemical shifts of the resonances produced by these kinases with the phosphorus resonances of control and experimental samples. The 31P NMR spectrum of control hepatocyte keratins shows three resonances at 0.7, 4 and 5 ppm. In vitro phosphorylation by A-kinase produces a resonance at 4 ppm which is distinctly different from the resonance produced by each of the other kinases. In hepatocyte keratins from ethanol-fed animals, the resonance at 4 ppm was missing from the spectrum. These observations indicate that the

  10. Anisotropic indirect nuclear spin-spin coupling in InP: 31P CP NMR study under slow MAS condition

    NASA Astrophysics Data System (ADS)

    Iijima, Takahiro; Hashi, Kenjiro; Goto, Atsushi; Shimizu, Tadashi; Ohki, Shinobu

    2006-02-01

    The indirect nuclear spin-spin interaction tensor between neighboring 113,115In- 31P spins in Fe-doped InP semiconductor has been studied by 31P NMR spectra measured using CP of 113In → 31P and 115In → 31P under slow MAS condition. The isotropic ( Jiso) and anisotropic ( Janiso = 2/3[ J∥ - J⊥]) parts of the indirect interaction tensor are obtained from the spectral simulation. The acceptable combinations of these values are found to be as follows: ( Jiso, Janiso) = (224 ± 5, 500 ± 100 Hz) or (-224 ± 5, 2100 ± 100 Hz). Although, the coupling constants estimated in this study are slightly different from previously reported values of ∣ Jiso∣ = 350 Hz, Janiso = 1298 Hz [M. Engelsberg, R.E. Norberg, Phys. Rev. B 5 (1972) 3395] and of ∣ Jiso∣ = 225 ± 10, Janiso = (813 ± 50) or (1733 ± 50) Hz [M. Tomaselli et al., Phys. Rev. B 58 (1998) 8627], all of these has the trend that Janiso is rather larger than Jiso.

  11. 31P NMR study of erythrocytes from a patient with hereditary pyrimidine-5'-nucleotidase deficiency.

    PubMed Central

    Swanson, M S; Angle, C R; Stohs, S J; Wu, S T; Salhany, J M; Eliot, R S; Markin, R S

    1983-01-01

    The composition of phosphate metabolites and the intracellular pH in erythrocytes from a patient with hereditary pyrimidine-5'-nucleotidase deficiency were examined using 31P NMR spectroscopy. Several resonances were identified in spectra from intact cells and from extracts. The 2,3-bisphosphoglycerate line intensities were normal but the NTP resonances were about twice normal due to the presence of millimolar quantities of pyrimidine phosphates. Several intense resonances were also observed in the diphosphodiester region of the spectrum. One compound contributing to these lines has been identified as cytidine diphosphocholine. The resonances of NTPs were in a position indicating that the additional triphosphates were also bound by Mg2+. Direct measurement shows that there is a nearly proportional increase in total cell Mg2+ in the patient's cells, in agreement with the interpretation of the spectra. The intracellular pH was about 0.2 unit lower in the patient's erythrocytes. This lower pH is due to the elevation in intracellular fixed negative charges and the shift in permeable anions consequent to the Donnan equilibrium. We suggest that the lower intracellular pH may explain the lower oxygen affinity of these cells in the presence of otherwise normal 2,3-bisphosphoglycerate levels and the increased Mg2+ triphosphates level, because the Mg2+ form of NTPs is known not to alter the oxygen affinity of hemoglobin under physiologic conditions. Furthermore, the lower intracellular pH can also explain the abnormalities in glycolytic intermediates observed for these cells. PMID:6296865

  12. Gated /sup 31/P NMR study of tetanic contraction in rat muscle depleted of phosphocreatine

    SciTech Connect

    Shoubridge, E.A.; Radda, G.K.

    1987-05-01

    Rats were fed a diet containing 1% ..beta..-guanidino-propionic acid (GPA) for 6-12 wk to deplete their muscles of phosphocreatine (PCr). Gated /sup 31/P nuclear magnetic resonance (NMR) spectra were obtained from the gastrocnemius-plantaris muscle at various time points during either a 1- or 3-s isometric tetanic contraction using a surface coil. The energy cost of a 1-s tetanus in unfatigued control rat muscle was 48.4 ..mu..mol ATP x g dry wt/sup -1/ x s/sup -1/ and was largely supplied by PCr; anaerobic glycogenolysis was negligible. In GPA-fed rats PCr was undetectable after 400 ms. This had no effect on initial force generated per gram, which was not significantly different from controls. Developed tension in a 3-s tetanus in GPA-fed rats could be divided into a peak phase (duration 0.8-0.9 s) and a plateau phase (65% peak tension) in which PCr was undetectable and the (ATP) was < 20% of that in control muscle. Energy from glycogenolysis was sufficient to maintain force generation at this submaximal level. Mean net glycogen utilization per 3-s tetanus was 78% greater than in control muscle. However, the observed decrease in intracellular pH was less than that expected from energy budget calculations, suggesting either increased buffering capacity or modulation of ATP hydrolysis in the muscles of GPA-fed rats. The results demonstrate that the transport role of PCr is not essential in contracting muscle in GPA-fed rats. PCr is probably important in this regard in the larger fibers of control muscle. Although fast-twitch muscles depleted of PCr have nearly twice the glycogen reserves of control muscle, glycogenolysis is limited in its capacity to fill the role of PCr as an energy buffer under conditions of maximum ATP turnover.

  13. Solid state {sup 31}P NMR study of phosphonate binding sites in guanidine-functionalized, molecular imprinted silica xerogels

    SciTech Connect

    Sasaki, D.Y.; Alam, T.D.

    2000-01-03

    Phosphonate binding sites in guanidine and ammonium surface-functionalized silica xerogels were prepared via the molecular imprinting technique and characterized using solid state {sup 31}P MAS NMR. One-point, two-point, and non-specific host-guest interactions between phenylphosphonic acid (PPA) and the functionalized gels were distinguished by characteristic chemical shifts of the observed absorption peaks. Using solid state as well as solution phase NMR analyses, absorptions observed at 15.5 ppm and 6.5 ppm were identified as resulting from the 1:1 (one-point) and 2:1 (two-point) guanidine to phosphonate interactions, respectively. Similar absorptions were observed with the ammonium functionalized gels. By examining the host-guest interactions within the gels, the efficiency of the molecular imprinting procedure with regard to the functional monomer-to-template interaction could be readily assessed. Template removal followed by substrate adsorption studies conducted on the guanidine functionalized gels provided a method to evaluate the binding characteristics of the receptor sites to a phosphonate substrate. During these experiments, {sup 29}Si and {sup 31}P MAS NMR acted as diagnostic monitors to identify structural changes occurring in the gel matrix and at the receptor site from solvent mediated processes.

  14. Fluorescence anisotropy, FT-IR spectroscopy and 31-P NMR studies on the interaction of paclitaxel with lipid bilayers.

    PubMed

    Dhanikula, Anand Babu; Panchagnula, Ramesh

    2008-06-01

    To understand the bilayer interaction with paclitaxel, fluorescence polarization, Fourier transform infrared spectroscopy (FT-IR) and 31-phosphorus nuclear magnetic resonance (31P-NMR) studies were performed on paclitaxel bearing liposomes. Fluorescence anisotropy of three probes namely, 1,6-diphenyl-1,3,5-hexatriene (DPH), 12-(9-anthroyloxy) stearic acid (12AS) and 8-anilino-1-naphthalene sulfonate (ANS) were monitored as a function of paclitaxel concentration in the unsaturated bilayers. The incorporation of paclitaxel decreased anisotropy of 12AS and ANS probes, while slightly increased anisotropy of DPH. Paclitaxel has a fluidizing effect in the upper region of the bilayer whereas the hydrophobic core is slightly rigidized. FT-IR spectroscopy showed an increase in the asymmetric and symmetric methylene stretching frequencies, splitting of methylene scissoring band and broadening of carbonyl stretching mode. These studies collectively ascertained that paclitaxel mainly occupies the cooperativity region and interact with the interfacial region of unsaturated bilayers and induces fluidity in the headgroup region of bilayer. At higher loadings (>3 mol%), paclitaxel might gradually tend to accumulate at the interface and eventually partition out of bilayer as a result of solute exclusion phenomenon, resulting in crystallization; seed non-bilayer phases, as revealed by 31P-NMR, thereby destabilizing liposomal formulations. In general, any membrane component which has a rigidization effect will decrease, while that with a fluidizing effect will increase, with a bearing on headgroup interactions, partitioning of paclitaxel into bilayers and stability of the liposomes.

  15. sup 31 P and sup 2 H NMR studies of structure and motion in bilayers of phosphatidylcholine and phosphatidylethanolamine

    SciTech Connect

    Ghosh, R. )

    1988-10-04

    The structural and motional properties of mixed bilayers of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) have been examined by using wide-line {sup 31}P, {sup 14}N, and {sup 2H} NMR. {sup 2}H and {sup 14}N NMR data showed that in mixed bilayers containing both PC and PE the conformations of the head-group moieties are essentially identical with those observed for bilayers containing a single phospholipid species. Equimolar amounts of cholesterol induce also only a small change in head-group conformation. For all phospholipid mixtures studied, the {sup 31}P T{sub 1} relaxation was homogeneous over the whole powder spectrum and could be fitted to a single-exponential decay. The {sup 31}P vs temperature profiles were analyzed by a simple correlation model. The presence of equimolar amounts of PE containing either the same (POPE) or a different (Escherichia coli PE) fatty acid composition had essentially no effect on the rate of rotational diffusion of the phosphate groups, with the correlation time being found to be 0.68 ns at 20{degree}C. The presence of equimolar amounts of cholesterol decreased the correlation time to 0.65 ns, and also the activation energy was reduced to 22.6 kJ mol{sup {minus}1}. The authors interpret the decrease in activation energy as being due to the spacing effect of cholesterol which reduces the H-bonding interactions between head-groups, allowing them to rotate more freely. For all cases examined, the rotational diffusion of the phosphate moieties was slower than that observed for the rigid glycerol backbone of the molecule, the latter probably corresponding to overall phospholipid rotation.

  16. Intrauterine fetal brain NMR spectroscopy: 1H and 31P studies in rats

    SciTech Connect

    Nakada, T.; Kwee, I.L.; Suzuki, N.; Houkin, K. )

    1989-11-01

    Fetal brain metabolism was investigated in utero noninvasively using multinuclear nuclear magnetic resonance spectroscopy in rats at two representative prenatal stages: early (17-18 days) and late (20-21 days) stages. Phosphorus-31 (31P) spectroscopy revealed that phosphocreatine is significantly lower in the early stage and increases to the level of early neonates by the late prenatal stage. Intracellular pH at the early stage was found to be strikingly high (7.52 +/- 0.21) and decreased to a level similar to that of neonates by the late stage (7.29 +/- 0.07). Phosphomonoester levels at both stages were similar to the values reported for early neonates. Water-suppressed proton (1H) spectroscopy demonstrated a distinctive in vivo fetal brain spectral pattern characterized by low levels of N-acetyl aspartate and high levels of taurine. High-resolution proton spectroscopy and homonuclear chemical-shift correlate spectroscopy of brain perchloric acid extracts confirmed these in vivo findings. In vitro 31P spectroscopy of acidified chloroform methanol extracts showed the characteristic membrane phospholipid profiles of fetal brain. The phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) ratio (PE/PC) did not show significant changes between the two stages at 0.40 +/- 0.11, a value similar to that of early neonates.

  17. Detergent-like properties of magainin antibiotic peptides: a 31P solid-state NMR spectroscopy study.

    PubMed

    Bechinger, Burkhard

    2005-06-15

    (31)P solid-state NMR spectroscopy has been used to investigate the macroscopic phase behavior of phospholipid bilayers in the presence of increasing amounts of magainin antibiotic peptides. Addition of >1 mol% magainin 2 to gel-phase DMPC or liquid crystalline POPC membranes respectively, results in (31)P NMR spectra that are characterized by the coexistence of isotropic signals and line shapes typical for phospholipid bilayers. The isotropic signal intensity is a function of temperature and peptide concentration. At peptide concentrations >4 mol% of the resulting phospholipid (31)P NMR spectra are characteristic of magnetically oriented POPC bilayers suggesting the formation of small disk-like micelles or perforated sheets. In contrast, addition of magainin to acidic phospholipids results in homogenous bilayer-type (31)P NMR spectra with reduced chemical shift anisotropies. The results presented are in good agreement with the interfacial insertion of magainin helices with an alignment parallel to the surface of the phospholipid bilayers. The resulting curvature strain results in detergent-like properties of the amphipathic helical peptides.

  18. Preservation of bilayer structure in human erythrocytes and erythrocyte ghosts after phospholipase treatment. A 31P-NMR study.

    PubMed

    van Meer, G; de Kruijff, B; op den Kamp, J A; van Deenen, L L

    1980-02-15

    1. Fresh human erythrocytes were treated with lytic and non-lytic combinations of phospholipases A2, C and sphingomyelinase. The 31P-NMR spectra of ghosts derived from such erythrocytes show that, in all cases, the residual phospholipids and lysophospholipids remain organized in a bilayer configuration. 2. A bilayer configuration of the (lyso)phospholipids was also observed after treatment of erythrocyte ghosts with various phospholipases even in the case that 98% of the phospholipid was converted into lysophospholipid (72%) and ceramides (26%). 3. A slightly decreased order of the phosphate group of phospholipid molecules, seen as reduced effective chemical shift anisotropy in the 31P-NMR spectra, was found following the formation of diacyglycerols and ceramides in the membrane of intact erythrocytes. Treatment of ghosts always resulted in an extensive decrease in the order of the phosphate groups. 4. The results allow the following conclusions to made: a. Hydrolysis of phospholipids in intact red cells and ghosts does not result in the formation of non-bilayer configuration of residual phospholipids and lysophospholipids. b. Haemolysis, which is obtained by subsequent treatment of intact cells with sphingomyelinase and phospholipase A2, or with phospholipase C, cannot be ascribed to the formation of non-bilayer configuration of phosphate-containing lipids. c. Preservation of bilayer structure, even after hydrolysis of all phospholipid, shows that other membrane constitutents, e.g. cholesterol and/or membrane proteins play an important role in stabilizing the structure of the erythrocyte membrane. d. A major prerequisite for the application of phospholipases in lipid localization studies, the preservation of a bilayer configuration during phospholipid hydrolysis, is met for the erythrocyte membrane.

  19. A 31P-NMR study of the interaction of Mg2+ ions with nucleoside diphosphates.

    PubMed Central

    Tran-Dinh, S; Neumann, J M

    1977-01-01

    The interaction of Mg2+ with nucleoside disphosphates : ADP, GDP, CDP and UDP has been studied by phosphorus magnetic resonance spectroscopy in aqueous solution. The results show that these four nucleotides behave similarly, the Mg2+ ion binds to the alpha but not to the beta phosphate moiety. The strength of the interaction of Mg2+ ions with nucleoside diphosphates is weaker than with nucleoside triphosphates. The association of Mg2+ on the phosphate chain is stronger in a neutral than in an acid medium. PMID:14328

  20. Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a 31P NMR study.

    PubMed

    Reale, Anna; Mannina, Luisa; Tremonte, Patrizio; Sobolev, Anatoli P; Succi, Mariantonietta; Sorrentino, Elena; Coppola, Raffaele

    2004-10-06

    myo-Inositol hexaphosphate (IP6) is the main source of phosphorus in cereal grains, and therefore, in bakery products. Different microorganisms such as yeasts and lactic acid bacteria have phytase enzymes able to hydrolyze IP6 during the wholemeal breadmaking. In this paper, the phytase activity of Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus curvatus, and Saccharomyces cerevisiae strains, isolated from southern Italian sourdoughs, is assayed using the (31)P NMR technique. The sourdough technology based on the use of lactic acid bacteria in the breadmaking is finally suggested.

  1. 31P NMR spectroscopy of in vivo tumors

    NASA Astrophysics Data System (ADS)

    Ng, T. C.; Evanochko, W. T.; Hiramoto, R. N.; Ghanta, V. K.; Lilly, M. B.; Lawson, A. J.; Corbett, T. H.; Durant, J. R.; Glickson, J. D.

    A probe, suitable for any wide-bore NMR spectrometer, was constructed for monitoring high-resolution spectra of in vivo subcutaneously implanted tumors in mice. Preliminary studies of a variety of murine tumors (MOPC 104E myeloma, Dunn osteosarcoma, colon-26, ovarian M5, and mammary adenocarcinoma as well as human colon, mammary, and lung tumors in athymic mice) indicate that the 31P NMR spectrum is a sensitive monitor of progressive metabolic changes that occur during untreated tumor growth and an early indicator of tumor response to chemotherapy, hyperthermia, and X radiation. Response to each of these therapeutic modalities is accompanied by distinctly different spectral changes.

  2. Inhibition mechanisms of Zn precipitation on aluminum oxide by glyphosate: a 31P NMR and Zn EXAFS study.

    PubMed

    Li, Wei; Wang, Yu-Jun; Zhu, Mengqiang; Fan, Ting-Ting; Zhou, Dong-Mei; Phillips, Brian L; Sparks, Donald L

    2013-05-07

    In this research, the effects of glyphosate (GPS) on Zn sorption/precipitation on γ-alumina were investigated using a batch technique, Zn K-edge EXAFS, and (31)P NMR spectroscopy. The EXAFS analysis revealed that, in the absence of glyphosate, Zn adsorbed on the aluminum oxide surface mainly as bidentate mononuclear surface complexes at pH 5.5, whereas Zn-Al layered double hydroxide (LDH) precipitates formed at pH 8.0. In the presence of glyphosate, the EXAFS spectra of Zn sorption samples at pH 5.5 and 8.0 were very similar, both of which demonstrated that Zn did not directly bind to the mineral surface but bonded with the carboxyl group of glyphosate. Formation of γ-alumina-GPS-Zn ternary surface complexes was further suggested by (31)P solid state NMR data which indicated the glyphosate binds to γ-alumina via a phosphonate group, bridging the mineral surface and Zn. Additionally, we showed the sequence of additional glyphosate and Zn can influence the sorption mechanism. At pH 8, Zn-Al LDH precipitates formed if Zn was added first, and no precipitates formed if glyphosate was added first or simultaneously with Zn. In contrast, at pH 5.5, only γ-alumina-GPS-Zn ternary surface complexes formed regardless of whether glyphosate or Zn was added first or both were added simultaneously.

  3. {sup 31}P NMR study of the complexation of TBP with lanthanides and actinides in solution and in a clay matrix

    SciTech Connect

    Hartzell, C.J.

    1994-07-24

    Goal was to use NMR to study TBP/lanthanide complexes in the interlayer or on edge sites of clays. Work in this laboratory yielded details of the complexation of Eu(NO{sub 3}){sub 3} and Pr(NO{sub 3}){sub 3} with TBP in hexane solution; this information is crucial to interpretation of results of NMR studies of the complexes exchanged into clays. The solution {sup 31}P-chemical shift values were improved by repeating the studies on the lanthanide salts dissolved directly into neat TBP. NMR studies of these neat solutions of the Eu(NO{sub 3}){sub 3}{lg_bullet}3TBP-complex and the Pr(NO{sub 3}){sub 3}{lg_bullet}3TBP-complex show that the {sup 31}P chemical shift remains relatively constant for TBP: lanthanide ratios below 3: 1. At higher ratios, the chemical shift approaches that of free TBP, indicating rapid exchange of TBP between the free and complexed state. Exchange of these complexes into the clay hectorite yielded discrete {sup 31}P-NMR signals for the Eu{lg_bullet}TBP complex at -190 ppm and free TBP at -6 ppm. Adsorption of the Pr{lg_bullet}TBP complex yielded broad signals at 76 ppm for the complex and -6 ppm for free TBP. There was no evidence of exchange between the incorporated complex and the free TBP.

  4. Dynamic structures of intact chicken erythrocyte chromatins as studied by 1H-31P cross-polarization NMR.

    PubMed Central

    Akutsu, H; Nishimoto, S; Kyogoku, Y

    1994-01-01

    The dynamic properties of DNA in intact chicken erythrocyte cells, nuclei, nondigested chromatins, digested soluble chromatins, H1, H5-depleted soluble chromatins and nucleosome cores were investigated by means of single-pulse and 1H-31P cross-polarization NMR. The temperature dependence of the phosphorus chemical shift anisotropy was identical for the former three in the presence of 3 mM MgCl2, suggesting that the local higher order structure is identical for these chromatins. The intrinsic phosphorus chemical shift anisotropy of the nucleosome cores was -159 ppm. The chemical shift anisotropy of DNA in the chromatins can be further averaged by the motion of the linker DNA. The spin-lattice relaxation time in the rotating frame of the proton spins (T1p) of the nondigested chromatins was measured at various locking fields. The result was analyzed on the assumption of the isotropic motion to get a rough value of the correlation time of the motion efficient for the relaxation, which was eventually ascribed to the segmental motion of the linker DNA with restricted amplitude. The 30 nm filament structure induced by NaCl was shown to be dynamically different from that induced by MgCl2. Side-by-side compaction of 30-nm filaments was suggested to be induced in the MgCl2 concentration range higher than 0.3 mM. Biological significance of the dynamic structure was discussed in connection with the results obtained. PMID:7948693

  5. Probing phosphorylation by non-mammalian isoprenoid biosynthetic enzymes using (1)H-(31)P-(31)P correlation NMR spectroscopy.

    PubMed

    Majumdar, Ananya; Shah, Meha H; Bitok, J Kipchirchir; Hassis-LeBeau, Maria E; Freel Meyers, Caren L

    2009-09-01

    The biogenesis of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) is accomplished by the methylerythritol phosphate (MEP) pathway in plants, bacteria and parasites, making it a potential target for the development of anti-infective agents and herbicides. The biosynthetic enzymes comprising this pathway catalyze intriguing chemical transformations on diphosphate scaffolds, offering an opportunity to generate novel analogs in this synthetically challenging compound class. Such a biosynthetic approach to generating new diphosphate analogs may involve transformation through discrete diphosphate species, presenting unique challenges in structure determination and characterization of unnatural enzyme-generated diphosphate products produced in tandem. We have developed (1)H-(31)P-(31)P correlation NMR spectroscopy techniques for the direct characterization of crude MEP pathway enzyme products at low concentrations (200 microM to 5 mM) on a room temperature (non-cryogenic) NMR probe. Coupling the 100% natural abundance of the (31)P nucleus with the high intrinsic sensitivity of proton NMR, (1)H-(31)P-(31)P correlation spectroscopy is particularly useful for characterization of unnatural diphosphate enzyme products in the MEP pathway. As proof of principle, we demonstrate the rapid characterization of natural enzyme products of the enzymes IspD, E and F in tandem enzyme incubations. In addition, we have characterized several unnatural enzyme products using this technique, including new products of cytidyltransferase IspD bearing erythritol, glycerol and ribose components. The results of this study indicate that IspD may be a useful biocatalyst and highlight (1)H-(31)P-(31)P correlation spectroscopy as a valuable tool for the characterization of other unnatural products in non-mammalian isoprenoid biosynthesis.

  6. 31P and 19F NMR studies of glycophorin-reconstituted membranes: preferential interaction of glycophorin with phosphatidylserine

    SciTech Connect

    Ong, R.L.

    1984-01-01

    Glycophorin A, a major glycoprotein of the erythrocyte membrane, has been incorporated into small unilamellar vesicles composed of a variety of pure and mixed phospholipids. Nuclear spin labels including 31P and 19F have been used at natural abundance or have been synthetically incorporated in lipids to act as probes of lipid-protein interaction. Interactions produce broadening of resonances in several cases and it can be used to demonstrate preferential interaction of certain lipids with glycophorin. 31P and 19F probes show a strong preferential interaction of glycophorin with phosphatidylserine over phosphatidylcholine. There is some evidence that interactions are more pronounced at the inner surface of the bilayer and these results are rationalized in terms of the asymmetric distribution of protein and lipid.

  7. In vivo 31P NMR Study of the Metabolism of Murine Mammary 16/C Adenocarcinoma and Its Response to Chemotherapy, X-Radiation, and Hyperthermia

    NASA Astrophysics Data System (ADS)

    Evanochko, W. T.; Ng, T. C.; Lilly, M. B.; Lawson, A. J.; Corbett, T. H.; Durant, J. R.; Glickson, J. D.

    1983-01-01

    31P NMR spectroscopy with surface coils has been used to monitor, in vivo, the phosphate metabolism of subcutaneously implanted mammary 16/C adenocarcinoma in C3H/He mice. This model tumor was studied during untreated tumor growth and after treatment with adriamycin, hyperthermia, and x-radiation. The mammary 16/C tumor exhibited a Gompertzian growth pattern. Levels of high-energy phosphate metabolites--phosphocreatine and ATP--decreased with increases in tumor mass. There was a concomitant increase in the level of Pi and a decrease in the apparent pH of the tumor. These spectral changes appear to reflect changes in tumor vascularization that accompany tumor growth, the tumor becoming progressively more hypoxic. Partial response of this tumor to chemotherapy with adriamycin was reflected in a small but measurable increase in the phosphocreatine resonance, a decrease in Pi, and a return of the intratumor pH to neutral. Hyperthermia resulted in progressive conversion of the 31P NMR spectrum to that of a dead tumor (high levels of Pi, small levels of residual sugar phosphates and pyridine dinucleotides, and acidic pH). X-irradiation (14.0 Gy) led to disappearance of the phosphocreatine peak within 15 min of treatment. Subsequently, this resonance grew back beyond its pretreatment level. As the tumor receded, its spectrum reflected the characteristics of aerobically metabolizing tissue (high levels of phosphocreatine and ATP and low levels of Pi and sugar phosphates).

  8. A chelate-stabilized ruthenium(sigma-pyrrolato) complex: resolving ambiguities in nuclearity and coordination geometry through 1H PGSE and 31P solid-state NMR studies.

    PubMed

    Foucault, Heather M; Bryce, David L; Fogg, Deryn E

    2006-12-11

    Reaction of RuCl2(PPh3)3 with LiNN' (NN' = 2-[(2,6-diisopropylphenyl)imino]pyrrolide) affords a single product, with the empirical formula RuCl[(2,6-iPr2C6H3)N=CHC4H3N](PPh3)2. We identify this species as a sigma-pyrrolato complex, [Ru(NN')(PPh3)2]2(mu-Cl)2 (3b), rather than mononuclear RuCl(NN')(PPh3)2 (3a), on the basis of detailed 1D and 2D NMR characterization in solution and in the solid state. Retention of the chelating, sigma-bound iminopyrrolato unit within 3b, despite the presence of labile (dative) chloride and PPh3 donors, indicates that the chelate effect is sufficient to inhibit sigma --> pi isomerization of 3b to a piano-stool, pi-pyrrolato structure. 2D COSY, SECSY, and J-resolved solid-state 31P NMR experiments confirm that the PPh3 ligands on each metal center are magnetically and crystallographically inequivalent, and 31P CP/MAS NMR experiments reveal the largest 99Ru-31P spin-spin coupling constant (1J(99Ru,31P) = 244 +/- 20 Hz) yet measured. Finally, 31P dipolar-chemical shift spectroscopy is applied to determine benchmark phosphorus chemical shift tensors for phosphine ligands in hexacoordinate ruthenium complexes.

  9. 31P Solid State NMR Studies of ZrP, Mg3P2, and CdPS3

    DTIC Science & Technology

    1988-01-01

    valence , in contrast to that in ZrP, Mg3P2, and MgP4. The 3 1 p solid state NMR spectra are shown in Figure 9. The MAS spectrum reveals a single...orange crystals were recovered from hot concentrated HCa . In one experi- RESULTS AND DISCUSSION ment, brilliant black polyhedral crystals of ZnSnP, were

  10. Combining solid-state and solution-state 31P NMR to study in vivo phosphorus metabolism.

    PubMed Central

    Cholli, A L; Yamane, T; Jelinski, L W

    1985-01-01

    Otherwise unavailable information concerning the distribution of phosphorylated compounds in biological systems is obtained by a combined solid-state/solution-state NMR approach, illustrated here for oocytes from Rana pipiens. General methodology is developed, and further extensions are proposed. The following conclusions pertain to the specific system under examination. (i) Nucleoside phosphates can be observed by magic-angle sample spinning of the lyophilized material. (ii) The solid-state NMR technique of dipolar decoupling provides no additional resolution of the phospholipid and phosphoprotein components of the yolk. However, cellular death produces sufficient pH changes to cause the phospholipid and protein phosphate peaks to become resolvable. The concentration of nucleoside phosphates also decreases. (iii) The phospholipid and phosphoprotein components are shown by computer simulation to be present in a ratio of 40:60, respectively. (iv) The amounts of inorganic phosphate, nucleoside phosphates, and sugar phosphates are determined by solution-state NMR observation of the perchloric acid extract of the oocytes. PMID:3871524

  11. [Optimizing the method for 31P-NMR analysis of organic phosphorus from wetland sediments].

    PubMed

    Lu, Jin; Wang, Hai-Wen; Hao, Hong; Gao, Bo; Jia, Jian-Li

    2013-11-01

    Solution 31P-Nuclear Magnetic Resonance (NMR) is an analysis technology which has been an effective means for the analysis of environmental organic phosphorus. However, the method is rarely applied in the study of wetlands so that the corresponding researches about wetland sediment sample preparation method also very deficient. The present study was aimed to find the most suitable sample preparation method for 31P-NMR analysis of the artificial wetland sediments, using different extractant (NaOH or 0.25 mol x L(-1) NaOH + 0.05 mol x L(-1) EDTA as main extractant, and 1M HCl as pre-extractant or not), sample to extractant ratio (1 : 8 or 1 : 10), centrifugation conditions and scans time and so on. The results showed that the best 31P-NMR spectrum could be obtained with freeze-ried, ground and sieved sediments, 1M HCl as pre-extractant for 16 h, NaOH + 0.05 mol x L(-1) EDTA as main extractant for 16 h, extraction ratio of 1 : 8, and low temperature and high-speed centrifugation (4 degrees C, 10 000 r x min(-1) for 30 min) for avoiding hydrolysis of certain components. Besides, choosing much longer NMR scan time, as 14-16 h (scans about 25 000 times), could get more complete spectral signals spectrum. And finally, four kinds of P-compounds (orthophosphate, orthophosphate monoesters, orthophosphate diesters and pyrophosphate) were detected in the NMR spectrum. But neither polyphosphate nor phosphonates was not found in all these experiments, which need further study. Compared with the traditional chemical analysis method, 31P-NMR method of sample preparation is relatively simple. Then it is less destructive with components distinguished completely. Using 31P-NMR technology, the cognition of wetland phosphorus cycle, especially organophosphate, will be expected to get new breakthrough.

  12. Phosphatidylinositol-specific phospholipase C from Bacillus cereus combines intrinsic phosphotransferase and cyclic phosphodiesterase activities: A sup 31 P NMR study

    SciTech Connect

    Shashidhar, M.S.; Kuppe, A. ); Volwerk, J.J.; Griffith, O.H.

    1990-09-04

    The inositol phosphate products formed during the cleavage of phosphatidylinositol by phosphatidylinositol-specific phospholipase C from Bacillus cereus were analyzed by {sup 31}P NMR. {sup 31}P NMR spectroscopy can distinguish between the inositol phosphate species and phosphatidylinositol. Chemical shift values (with reference to phosphoric acid) observed are {minus}0.41, 3.62, 4.45, and 16.30 ppm for phosphatidylinositol, myo-inositol 1-monophosphate, myo-inositol 2-monophosphate, and myo-inositol 1,2-cyclic monophosphate, respectively. It is shown that under a variety of experimental conditions this phospholipase C cleaves phosphatidylinositol via an intramolecular phosphotransfer reaction producing diacylglycerol and D-myo-inositol 1,2-cyclic monophosphate. The authors also report the new and unexpected observation that the phosphatidylinositol-specific phospholipase C from B. cereus is able to hydrolyze the inositol cyclic phosphate to form D-myo-inositol 1-monophosphate. The enzyme, therefore, possesses phosphotransferase and cyclic phosphodiesterase activities. The second reaction requires thousandfold higher enzyme concentrations to be observed by {sup 31}P NMR. This reaction was shown to be regiospecific in that only the 1-phosphate was produced and stereospecific in that only D-myo-inositol 1,2-cyclic monophosphate was hydrolyzed. Inhibition with a monoclonal antibody specific for the B.cereus phospholipase C showed that the cyclic phosphodiesterase activity is intrinsic to the bacterial enzyme. They propose a two-step mechanism for the phosphatidyl-inositol-specific phospholipase C from B. cereus involving sequential phosphotransferase and cyclic phosphodiesterase activities. This mechanism bears a resemblance to the well-known two-step mechanism of pancreatic ribonuclease, RNase A.

  13. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    SciTech Connect

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S.

    2012-11-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup −}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup −} deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup −} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup −} deer mouse model. Analysis of NMR data of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs) were

  14. /sup 31/P-NMR differentiation between intracellular phosphate pools in Cosmarium (chlorophyta)

    SciTech Connect

    Elgavish, A.; Elgavish, G.A.

    1980-09-01

    /sup 31/P nuclear magnetic resonance (NMR) spectroscopy of intact Cosmarium sp. cells is presented as a suitable tool for the differentiation of intracellular accumulation pools of polyphosphates. The cold trichloroacetic acid (TCA) insoluble fraction is shown to contain most of the total cellular phosphate in the phosphate rich Cosmarium cells. Moreover, evidence from a /sup 31/P-NMR study and electron microscopic observations of cold TCA treated Cosmarium cells indicate that this fraction consists mostly of polyphosphates which seem to retain the native morphological structure observed in the untreated cells. The determination of orthophosphate in the hot water extract of Cosmarium cells did not measure the polyphosphate pools. Determination of total phosphorus content in the hot water extract rendered a value three times higher than the frequently used orthophosphate determination procedure. However, as revealed by the /sup 31/P-NMR spectra and the chemical analyses of the extract and of the treated cells, even total phosphorus in the extract measured only 30% of the total cellular phosphorus. /sup 31/P-NMR enabled the unequivocal chemical identification of the major phosphate compounds in the hot water extract (Surplus P) as orthophosphate and polyphosphates of about 10 phosphate units chainlength. More than 70% of the accumulation pool of polyphosphates was still in the cells after extraction. However, the electron microscopy study revealed that the native granular structure of polyphosphates had been destroyed by the hot water extraction procedure.

  15. In vitro (31)P NMR studies on biopsy skeletal muscle samples compared with meat quality of normal and heterozygous malignant hyperthermia pigs.

    PubMed

    Lahucky, R; Baulain, U; Henning, M; Demo, P; Krska, P; Liptaj, T

    2002-07-01

    Phosphorus nuclear magnetic resonance ((31)P NMR) measurements were made to determine muscle energetic metabolism on muscle biopsy samples of heterozygote malignant hyperthermia (Nn) and normal (NN) pigs DNA tested on occurrence of mutation in RYR 1 gene. Biopsy samples (approx. 1 g) were obtained by spring-loaded biopsy instrument (Biotech, Slovakia) from Longissimus dorsi (LD) muscle at 80 kg live weight. The spectra were recorded at 121 MHz on a VXR 300 (Varian) spectrometer in 10 mm diameter tube (maintained at 39 °C) for 50 min. pH of bioptates after NMR measurements were also measured at 60 min. The changes in inorganic phosphate (Pi), phosophocreatine (PCr) and adenosine triphosphate (ATP) were faster in heterozygote malignant hyperthermia (MH; 29 crossbred White Meaty×Pietrain) than in normal (13 Duroc, Yorkshire and White Meaty). The values of PCr at 20 min and pH at 60 min after taking biopsy allowed discrimination between NN and Nn pigs and significant (P<0.05) differences were also found between two subgroups in heterozygote MH pigs with different rate of post mortem muscle metabolism. The values of PCr and pH as measured at definite time on the biopsies, were significantly (P<0.05) correlated with the rate of post mortem metabolism (pH) and with meat quality traits (r approx. 0.4-0.6). The (31)P NMR measurements pointed to impaired muscle energetic metabolism connected with the occurrence of mutation on the RYR 1 gene in heterozygote MH pigs.

  16. Rate equation for creatine kinase predicts the in vivo reaction velocity: /sup 31/P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat

    SciTech Connect

    Bittl, J.A.; DeLayre, J.; Ingwall, J.S.

    1987-09-22

    Brain, heart, and skeletal muscle contain four different creatine kinase isozymes and various concentrations of substrates for the creatine kinase reaction. To identify if the velocity of the creatine kinase reaction under cellular conditions is regulated by enzyme activity and substrate concentrations as predicted by the rate equation, the authors used /sup 31/P NMR and spectrophotometric techniques to measure reaction velocity, enzyme content, isozyme distribution, and concentrations of substrates in brain, heart, and skeletal muscle of living rat under basal or resting conditions. The total tissue activity of creatine kinase in the direction of MgATP synthesis provided an estimate for V/sub max/ and exceeded the NMR-determined in vivo reaction velocities by an order of magnitude. The isozyme composition varied among the three tissues: >99% BB for brain; 14% MB, 61% MM, and 25% mitochondrial for heart; and 98% MM and 2% mitochondrial for skeletal muscle. The NMR-determined reaction velocities agreed with predicted values from the creatine kinase rate equation. The concentrations of free creatine and cytosolic MgADP, being less than or equal to the dissociation constants for each isozyme, were dominant terms in the creatine kinase rate equation for predicting the in vivo reaction velocity. Thus, they observed that the velocity of the creatine kinase reaction is regulated by total tissue enzyme activity and by the concentrations of creatine and MgADP in a manner that is independent of isozyme distribution.

  17. Studies of vanadium-phosphorus-oxygen selective oxidation catalysts by sup 31 P and sup 51 V NMR spin-echo and volume susceptibility measurements

    SciTech Connect

    Li, Juan.

    1991-10-01

    The purpose of this work is to characterize the vanadium-phosphorous oxide (V-P-O) catalysts for the selective oxidation of n-butane and 1-butene to maleic anhydride. The utility of solid state nuclear magnetic resonance as an analytical tool in this investigation lies in its sensitivity to the electronic environment surrounding the phosphorous and vanadium nuclei, and proximity of paramagnetic species. Spin-echo mapping NMR of {sup 31}p and {sup 51}v and volume magnetic susceptibility measurements were used as local microscopic probes of the presence of V{sup 5+}, V{sup 4+}, V{sup 3+} species in the model compounds: {beta}-VOPO{sub 4}, {beta}-VOPO{sub 4} treated with n-butane/1-butene, (VO){sub 2}P{sub 2}O{sub 7} treated with n-butane/1-butene; and industrial catalysts with P/V (phosphorus to vanadium) ratio of 0.9, 1.0 and 1.1, before and after treatment with n-butane and 1-butene. The NMR spectra provide a picture of how the oxidation states of vanadium are distributed in these catalysts. 73 refs., 32 figs., 8 tabs.

  18. In-depth investigation on quantitative characterization of pyrolysis oil by 31P NMR

    DOE PAGES

    Ben, Haoxi; Ferrell, III, Jack R.

    2016-01-29

    The characterization of different heteroatom functional groups by employing 31P NMR has been developed for almost 30 years. In this study, an in-depth investigation of this commonly used method has been accomplished for the analysis of pyrolysis oil. Several commonly used internal standards for 31P NMR have been examined by in situ monitoring. The results indicated that endo-N-hydroxy-5-norbornene-2,3-dicarboximide (NHND) is not stable after a long period of storage or experiment (>12 hours), but both cyclohexanol and triphenylphosphine oxide (TPPO) can be used as internal standards if a long experiment or storage is required. The pyrolysis oil has also been investigatedmore » by both short time (16 hours) in situ monitoring and long time (14 days) ex situ monitoring. The results showed that aliphatic OH, carboxylic acids and water contents are not very stable after 2 hours, and thus a short time of preparation, storage, and experiment need to be considered to ensure a precise quantitative measurement. The decomposition products are still unclear, but some preliminary investigations for different acids, (e.g. formic acid) have been accomplished. The results indicated that the aromatic carboxylic acids (benzoic acid and vanillic acid) are more stable than formic acid and acetic acid. Interestingly, the formic acid will even decompose to some other compounds at the very beginning of the in situ monitoring test. Further characterization found that water is one of the major products for the decomposition of formic acid in the 31P NMR solution. Finally, as far as we know, this is the first report on such time-dependent changes when using 31P NMR to analyze the pyrolysis oil, and these results show that proper application of this method is essential to achieve reliable quantitative data.« less

  19. Early estrogen-induced metabolic changes and their inhibition by actinomycin D and cycloheximide in human breast cancer cells: sup 31 P and sup 13 C NMR studies

    SciTech Connect

    Neeman, M.; Degani, H. )

    1989-07-01

    Metabolic changes following estrogen stimulation and the inhibition of these changes in the presence of actinomycin D and cycloheximide were monitored continuously in perfused human breast cancer T47D clone 11 cells with {sup 31}P and {sup 13}C NMR techniques. The experiments were performed by estrogen rescue of tamoxifen-treated cells. Immediately after perfusion with estrogen-containing medium, a continuous enhancement in the rates of glucose consumption, lactate production by glycolysis, and glutamate synthesis by the Krebs cycle occurred with a persistent 2-fold increase at 4 hr. Pretreatment with either actinomycin D or cycloheximide, at concentrations known to inhibit mRNA and protein synthesis, respectively, and simultaneous treatment with estrogen and each inhibitor prevented the estrogen-induced changes in glucose metabolism. This suggested that the observed estrogen stimulation required synthesis of mRNA and protein. These inhibitors also modulated several metabolic activities that were not related to estrogen stimulation. The observed changes in the in vivo kinetics of glucose metabolism may provide a means for the early detection of the response of human breast cancer cells to estrogen versus tamoxifen treatment.

  20. Facilitated transport of Mn2+ in sycamore (Acer pseudoplatanus) cells and excised maize root tips. A comparative 31P n.m.r. study in vivo.

    PubMed Central

    Roby, C; Bligny, R; Douce, R; Tu, S I; Pfeffer, P E

    1988-01-01

    Movement of paramagnetic Mn2+ into sycamore (Acer pseudoplatanus) cells has been indirectly examined by observing the line broadening exhibited in its 31P n.m.r. spectra. Mn2+ was observed to pass into the vacuole, while exhibiting a very minor accumulation in the cytoplasm. With time, gradual leakage of phosphate from the vacuole to the cytoplasm was observed along with an increase in glucose-6-phosphate. Anoxia did not appear to affect the relative distribution of Mn2+ in the cytoplasm and vacuole. Under hypoxic conditions restriction of almost all movement of Mn2+ across the plasmalemma as well as the tonoplast was observed. In contrast, maize root tips showed entry and complete complexation of nucleotide triphosphate by Mn2+ during hypoxia. The rate of passage of Mn2+ across the tonoplast in both sycamore and maize root cells is approximately the same. However, the rates of facilitated movement across the respective plasma membranes appear to differ. More rapid movement of Mn2+ across the plasmalemma in maize root tip cells allows a gradual build-up of metal ion in the cytoplasm prior to its diffusion across the tonoplast. Sycamore cells undergo a slower uptake of Mn2+ into their cytoplasms (comparable with the rate of diffusion through the tonoplast), so little or no observable accumulation of Mn2+ is observed in this compartment. PMID:3415663

  1. Interaction Study of an Amorphous Solid Dispersion of Cyclosporin A in Poly-Alpha-Cyclodextrin with Model Membranes by (1)H-, (2)H-, (31)P-NMR and Electron Spin Resonance.

    PubMed

    Debouzy, Jean-Claude; Crouzier, David; Bourbon, Fréderic; Lahiani-Skiba, Malika; Skiba, Mohamed

    2014-01-01

    The properties of an amorphous solid dispersion of cyclosporine A (ASD) prepared with the copolymer alpha cyclodextrin (POLYA) and cyclosporine A (CYSP) were investigated by (1)H-NMR in solution and its membrane interactions were studied by (1)H-NMR in small unilamellar vesicles and by (31)P (2)H NMR in phospholipidic dispersions of DMPC (dimyristoylphosphatidylcholine) in comparison with those of POLYA and CYSP alone. (1)H-NMR chemical shift variations showed that CYSP really interacts with POLYA, with possible adduct formation, dispersion in the solid matrix of the POLYA, and also complex formation. A coarse approach to the latter mechanism was tested using the continuous variations method, indicating an apparent 1 : 1 stoichiometry. Calculations gave an apparent association constant of log Ka = 4.5. A study of the interactions with phospholipidic dispersions of DMPC showed that only limited interactions occurred at the polar head group level ((31)P). Conversely, by comparison with the expected chain rigidification induced by CYSP, POLYA induced an increase in the fluidity of the layer while ASD formation led to these effects almost being overcome at 298 K. At higher temperature, while the effect of CYSP seems to vanish, a resulting global increase in chain fluidity was found in the presence of ASD.

  2. Tendencies of 31P chemical shifts changes in NMR spectra of nucleotide derivatives.

    PubMed Central

    Lebedev, A V; Rezvukhin, A I

    1984-01-01

    31P NMR chemical shifts of the selected mono- and oligonucleotide derivatives, including the compounds with P-N, P-C, P-S bonds and phosphite nucleotide analogues have been presented. The influence of substituents upon 31P chemical shifts has been discussed. The concrete examples of 31P chemical shifts data application in the field of nucleotide chemistry have been considered. PMID:6087290

  3. Exploring new Routes for Identifying Phosphorus Species in Terrestrial and Aquatic Ecosystems with 31P NMR

    NASA Astrophysics Data System (ADS)

    Vestergren, Johan; Persson, Per; Sundman, Annelie; Ilstedt, Ulrik; Giesler, Reiner; Schleucher, Jürgen; Gröbner, Gerhard

    2014-05-01

    develop a new method to retrieve and characterize P components in water. By utilizing passive sampling with ion-exchange resin and subsequent analysis with solid state 31P MAS NMR we could identify various P-species extracted from the aquatic systems. By using this approach we can also study the dynamics of the absorption process at the resin as a function of P-species and temperature. This even enabled us to extract the fraction of bound versus free P as a function of temperature for different model P-components (manuscript in preparation). REFERENCES: Gilbert N. Nature 461 716-718 (2009) Vincent AG. et al., Biogeochemistry, 10.1007/s10533-011-9612-0 (2011). Vestergren J et al., Environ. Sci. Technol, 46, 3950-3956, (2012). Vincent AG et al., Plant Soil, 367, 149-162, (2013). Laudon H., et al., Water Resour. Res., 49, 7154-7158, (2013).

  4. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing cis-monounsaturated acyl chain homologues of oleic acid: differential scanning calorimetric and /sup 31/P NMR spectroscopic studies

    SciTech Connect

    Lewis, R.N.A.H.; Sykes, B.D.; McElhaney, R.N.

    1988-02-09

    The thermotropic phase behavior of dioleoylphosphatidylcholine and six of its longer chain homologues was studied by differential scanning calorimetry and /sup 31/P nuclear magnetic resonance (NMR) spectroscopy. Aqueous dispersions of these compounds all exhibit a single endotherm upon heating but upon cooling exhibit at least two exotherms, both of which occur at temperatures lower than those of their heating endotherm. The single transition observed upon heating was shown by /sup 31/P NMR spectroscopy to be a net conversion from a condensed, subgel-like phase (L/sub c/ phase) to the liquid-crystalline state. Aqueous ethylene glycol dispersions of these compounds also exhibit single endotherms upon heating and cooling exotherms centered at temperatures lower than those of their corresponding heating endotherm. However, the behavior of the aqueous ethylene glycol dispersions differs with respect to their transition temperatures and enthalpies as well as the extent of undercooling observed, and there is some evidence of discontinuities in the cooling behavior of the odd- and even-numbered members of the homologous series. Like the aqueous dispersions, /sup 31/P NMR spectroscopy also shows that the calorimetric events observed in aqueous ethylene glycol involve net interconversions between an L/sub c/-like phase and the liquid-crystalline state. These results demonstrate that although the presence of a cis double bond can perturb the solid-state packing of the acyl chains, its presence does not preclude the formation of highly ordered subgel-like phases in lipid bilayers. In the particular case of these unsaturated phosphatidylcholines, the formation of the subgel phases is more kinetically favorable than is the case with their saturated n-acyl counterparts.

  5. 31P MAS-NMR study of flux-grown rare-earth element orthophosphate (monazite/xenotime) solid solutions: Evidence of random cation distribution from paramagnetically shifted NMR resonances

    SciTech Connect

    Palke, A. C.; Stebbins, J. F.; Boatner, Lynn A

    2013-01-01

    We present 31P magic angle spinning nuclear magnetic resonance (MAS-NMR) spectra of flux-grown solid solutions of La1-xCexPO4 ( x between 0.027 and 0.32) having the monoclinic monazite structure, and of Y1-xMxPO4 (M = Vn+, Ce3+, Nd3+, x between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted NMR resonances are observed in all samples due to the presence of paramagnetic Vn+, Ce3+, and Nd3+ in the diamagnetic LaPO4 or YPO4. As a first-order observation, the number and relative intensity of these peaks is related to the symmetry and structure of the diamagnetic host phase. The presence of paramagnetic shifts allows for increased resolution between NMR resonances for distinct atomic species which leads to the observation of low intensity peaks related to PO4 species having more than one paramagnetic neighbor two or four atomic bonds away. Through careful analysis of peak areas and comparison with predictions for simple models, it was determined that solid solutions in the systems examined here are characterized by complete disorder (random distribution) of diamagnetic La3+ or Y3+ with the paramagnetic substitutional species Ce3+ and Nd3+. The increased resolution given by the paramagnetic interactions also leads to the observation of splitting of specific resonances in the 31P NMR spectra that may be caused by local, small-scale distortions from the substitution of ions having dissimilar ionic radii.

  6. 31P nuclear magnetic resonance study of the proton-irradiated KTiOPO4

    NASA Astrophysics Data System (ADS)

    Kim, Se-Hun; Lee, Cheol Eui

    2013-08-01

    31P nuclear magnetic resonance (NMR) was employed to study the effects of proton irradiation on KTiOPO4 (KTP) in view of the previously studied paramagnetic impurity doping effects. High-resolution 31P NMR measurements showed significant increase in the isotropic chemical shifts of the two inequivalent phosphorus sites in the proton-irradiated KTP system, indicating decrease in the electron density around the phosphorous nuclei. The 31P NMR linewidths of the KTP system manifested anomalies associated with the superionic transition and with the polaron formation, which became much weaker after proton irradiation. Besides, the activation energy of the charge carriers increased significantly after proton irradiation.

  7. TLC and 31P-NMR analysis of low polarity phospholipids.

    PubMed

    Vyssotski, Mikhail; MacKenzie, Andrew; Scott, Dawn

    2009-04-01

    High-performance TLC and (31)P-NMR were assessed as methods of observing the presence of numerous low polarity phospholipids: bis-phosphatidic acid (BPA), semi-lyso bis-phosphatidic acid (SLBPA), N-acyl phosphatidylethanolamine (NAPE), N-(1,1-dimethyl-3-oxo-butyl)-phosphatidylethanolamine (diacetone adduct of PE, DOBPE), N-acetyl PE, phosphatidylmethanol (PM), phosphatidylethanol (PEt), phosphatidyl-n-propanol (PP), phosphatidyl-n-butanol (PB). Both techniques are non-discriminative and do not require the prior isolation of individual lipids. It appears that 2D TLC is superior to (31)P NMR in the analysis of low polarity phospholipids. All phosphatidylalcohols were well separated by 2D TLC. However, some compounds which can present difficulty in separation by 2D-TLC (e.g., SLBPA and NAPE; or DOBPE and N-acetyl PE) were easily distinguished using (31)P NMR so the methods are complimentary. A disadvantage of 2D TLC is that Rf values can vary with different brands and batches of TLC plates. The chemical shifts of (31)P NMR were less variable, and so a library of standards may not be necessary for peak identification. Another advantage of (31)P NMR is the ease of quantification of phospholipids. The applicability of the methods was tested on natural extracts of fish brain and cabbage stem.

  8. 13C and 31P NMR for the diagnosis of muscular phosphorylase-kinase deficiency

    NASA Astrophysics Data System (ADS)

    Jehenson, P.; Duboc, D.; Laforet, P.; Eymard, B.; Lombès, A.; Fardeau, M.; Brunet, P.; Syrota, A.

    1998-02-01

    To further develop and specify the range of medical applications of in vivo NMR spectroscopy for the study of myopathies, it is ncessary to study the largest number of well characterized cases. We here report on the 31P and 13C NMR study of a purely muscular form of phosphorylase-kinase (PK) deficiency. Abnormalities were observed that agree with and increase our pathophysiological knowledge, in particular on the activation of phosphorylase and PK. Also, the abnormalities are different from those found in other clinically similar metabolic myopathies and could be used for the differential diagnosis. Afin de continuer à développer et préciser les applications médicales de la spectroscopie RMN in vivo, il faut étudier le plus grand nombre possible de cas bien caractérisés. Nous avons étudié ici une forme purement musculaire de déficit en phosphorylase-kinase (PK) par RMN du phosphore 31 et du carbone 13. Les altérations observées sont en accord avec et augmentent nos connaissances physiopathologiques, par exemple concernant l'activation de la phosphorylase et PK. Par ailleurs, la combinaison d'altérations observées en 31P et 13C est différente de celle retrouvée dans d'autres myopathies métaboliques cliniquement semblables et pourrait être utilisée pour le diagnostic différentiel.

  9. Phospholipid composition of plasma and erythrocyte membranes in animal species by 31P NMR.

    PubMed

    Ferlazzo, Alida Maria; Bruschetta, Giuseppe; Di Pietro, Patrizia; Medica, Pietro; Notti, Anna; Rotondo, Enrico

    2011-12-01

    The aim of this study was to provide basal values of phospholipid (PL) composition in different animal species by 31P NMR analysis using detergents. This fast and accurate method allowed a quantitative analysis of PLs without any previous separation. Plasma and erythrocyte membrane PLs were investigated in mammals (pig, cow, horse). Moreover, for the first time, the composition of plasma PLs in avian (chicken and ostrich) was performed by 31P NMR. Significant qualitative and quantitative interspecies differences in plasma PL levels were found. Phosphatidilcholine (PC) and sphingomyelin (SPH) levels were significantly higher (P < 0.001) in chicken plasma than all the other species tested. In erythrocytes, cow PC and phosphatidylcholine diarachidoyl were significantly lower (P < 0.001) than for pigs and horses, whereas pig PC presented intermediate values among cows and horses. Inorganic phosphate and 2,3-diphosphoglycerate levels were also significantly different between the species under investigation. The [SPH/total PLs] molar ratios in erythrocytes confirmed interspecies differences in phospholipid composition while the PC/SPH molar ratios could be related to a distinct erythrocyte flexibility and aggregability. Diet and nutrition may contribute primarily to the interspecies differences in plasma PL amounts detected. Significant differences between chicken plasma PC and SPH levels and those of the other animal species could be ascribed to a fat metabolism specific to egg production.

  10. sup 31 P NMR analysis of coal moieties bearing -OH, -NH, and -SH functions

    SciTech Connect

    Verkade, J.G.

    1991-08-31

    NMR reagents for the speciation and quantitation of labile-hydrogen functional groups and sulfur groups in coal ligands have been synthesized and evaluated. These reagents, which contain the NMR-active nuclei {sup 31}p, {sup 119}Sn or {sup 195}pt, were designed to possess improved chemical shift resolution over reagents reported in the literature. Our efforts were successful in the case of the new {sup 31}p and {sup 119}Sn reagents we developed, but the {sup 195}pt work on sulfur groups was only partially successful in as much as the grant came to a close and was not renewed. Our success with {sup 31}P and {sup 119}Sn NMR reagents came to the attention of Amoco and they have recently expressed interest in further supporting that work. A further measure of the success of our efforts can be seen in the nine publications supported by this grant which are cited in the reference list.

  11. Two-dimensional and variable temperature 31P solid-state NMR studies of single crystals containing symmetrical/unsymmetrical bis[6-O,6-O'-(1,2:3,4-diisopropylidene-alpha-D- galactopyranosyl)thiophosphoryl] dichalcogenides.

    PubMed

    Potrzebowski, M J; Helinski, J; Ciesielski, W

    2002-08-07

    The organisation and phase transition of single crystals containing three isostructural bis[6-O,6-O'-(1,2:3,4-diisopropylidene-alpha- D-galactopyranosyl)thiophosphoryl] dichalcogenide derivatives: disulfide 1, diselenide 2 and mixed seleno-sulfide 3, was deduced upon 1D, 2D and variable temperature 31P NMR experiments.

  12. Comparison of phosphorus forms in three extracts of dairy feces by solution 31P NMR analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using solution 31P NMR spectroscopy, we compared three extractants, deionized water, sodium acetate buffer (pH 5.0) with fresh sodium dithionite (NaAc-SD), and 0.25 M NaOH-0.05 M EDTA (NaOH-EDTA), for the profile of P compounds in two dairy fecal samples. Phosphorus extracted was 35% for water, and...

  13. Chemical characterization of a prominent phosphomonoester resonance from mammalian brain. 31P and 1H NMR analysis at 4.7 and 14.1 tesla

    NASA Astrophysics Data System (ADS)

    Pettegrew, J. W.; Kopp, S. J.; Dadok, J.; Minshew, N. J.; Feliksik, J. M.; Glonek, T.; Cohen, M. M.

    A prominent 31P NMR resonance at 3.84 ppm in mammalian brain has been identified as ethanolamine phosphate. The identification was based on 1H and 31P NMR findings (including pH titrations) at 4.7 and 14.1 T, as well as thin-layer chromatography studies. We previously incorrectly assigned the 3.84 ppm resonance to ribose-5-phosphate. The incorrect assignment occurred because the two compounds have very similar 31P chemical shifts, and because we did not carefully consider the effects of counter ions and ionic strengths when interpreting the 31P chemical shifts. In separate preliminary studies we have demonstrated ethanolamine phosphate to be high in immature developing brain and in the degenerating brain of Alzheimer's and Huntington's disease patients. Ethanolamine phosphate may therefore serve as a sensitive marker of membrane phospholipid turnover for both in vitro and in vivo31P NMR studies.

  14. Incorporation of phosphorus guest ions in the calcium silicate phases of Portland cement from 31P MAS NMR spectroscopy.

    PubMed

    Poulsen, Søren L; Jakobsen, Hans J; Skibsted, Jørgen

    2010-06-21

    Portland cements may contain small quantities of phosphorus (typically below 0.5 wt % P(2)O(5)), originating from either the raw materials or alternative sources of fuel used to heat the cement kilns. This work reports the first (31)P MAS NMR study of anhydrous and hydrated Portland cements that focuses on the phase and site preferences of the (PO(4))(3-) guest ions in the main clinker phases and hydration products. The observed (31)P chemical shifts (10 to -2 ppm), the (31)P chemical shift anisotropy, and the resemblance of the lineshapes in the (31)P and (29)Si MAS NMR spectra strongly suggest that (PO(4))(3-) units are incorporated in the calcium silicate phases, alite (Ca(3)SiO(5)) and belite (Ca(2)SiO(4)), by substitution for (SiO(4))(4-) tetrahedra. This assignment is further supported by a determination of the spin-lattice relaxation times for (31)P in alite and belite, which exhibit the same ratio as observed for the corresponding (29)Si relaxation times. From simulations of the intensities, observed in inversion-recovery spectra for a white Portland cement, it is deduced that 1.3% and 2.1% of the Si sites in alite and belite, respectively, are replaced by phosphorus. Charge balance may potentially be achieved to some extent by a coupled substitution mechanism where Ca(2+) is replaced by Fe(3+) ions, which may account for the interaction of the (31)P spins with paramagnetic Fe(3+) ions as observed for the ordinary Portland cements. A minor fraction of phosphorus may also be present in the separate phase Ca(3)(PO(4))(2), as indicated by the observation of a narrow resonance at delta((31)P) = 3.0 ppm for two of the studied cements. (31)P{(1)H} CP/MAS NMR spectra following the hydration of a white Portland cement show that the resonances from the hydrous phosphate species fall in the same spectral range as observed for (PO(4))(3-) incorporated in alite. This similarity and the absence of a large (31)P chemical shift ansitropy indicate that the hydrous (PO(4

  15. Evaluation of Phosphorus Characterization in Broiler Ileal Digesta, Manure, and Litter Samples: 31P-NMR vs. HPLC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using 31-Phosphorus Nuclear Magnetic Resosonance Spectroscopy (31P-NMR) to characterize phosphorus (P) in manures and litter has become prevalent in the area of nutrient management. To date, there has been no published work evaluating P quantification in manure/litter samples with 31P-NMR compared t...

  16. Distinguishing Bicontinuous Lipid Cubic Phases from Isotropic Membrane Morphologies Using 31P Solid-State NMR Spectroscopy

    PubMed Central

    Yang, Yu; Yao, Hongwei

    2015-01-01

    Nonlamellar lipid membranes are frequently induced by proteins that fuse, bend, and cut membranes. Understanding the mechanism of action of these proteins requires the elucidation of the membrane morphologies that they induce. While hexagonal phases and lamellar phases are readily identified by their characteristic solid-state NMR lineshapes, bicontinuous lipid cubic phases are more difficult to discern, since the static NMR spectra of cubic-phase lipids consist of an isotropic 31P or 2H peak, indistinguishable from the spectra of isotropic membrane morphologies such as micelles and small vesicles. To date, small-angle X-ray scattering is the only method to identify bicontinuous lipid cubic phases. To explore unique NMR signatures of lipid cubic phases, we first describe the orientation distribution of lipid molecules in cubic phases and simulate the static 31P chemical shift lineshapes of oriented cubic-phase membranes in the limit of slow lateral diffusion. We then show that 31P T2 relaxation times differ significantly between isotropic micelles and cubic-phase membranes: the latter exhibit two-orders-of magnitude shorter T2 relaxation times. These differences are explained by the different timescales of lipid lateral diffusion on the cubic-phase surface versus the timescales of micelle tumbling. Using this relaxation NMR approach, we investigated a DOPE membrane containing the transmembrane domain (TMD) of a viral fusion protein. The static 31P spectrum of DOPE shows an isotropic peak, whose T2 relaxation times correspond to that of a cubic phase. Thus, the viral fusion protein TMD induces negative Gaussian curvature, which is an intrinsic characteristic of cubic phases, to the DOPE membrane. This curvature induction has important implications to the mechanism of virus-cell fusion. This study establishes a simple NMR diagnostic probe of lipid cubic phases, which is expected to be useful for studying many protein-induced membrane remodeling phenomena in biology

  17. Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and (31)P NMR analysis.

    PubMed

    Xu, Gang; Zhang, You; Shao, Hongbo; Sun, Junna

    2016-11-01

    Phosphorus (P) recycling or reuse by pyrolyzing crop residue has recently elicited increased research interest. However, the effects of feedstock and pyrolysis conditions on P species have not been fully understood. Such knowledge is important in identifying the agronomic and environmental uses of biochar. Residues of three main Chinese agricultural crops and the biochars (produced at 300°C-600°C) derived from these crops were used to determine P transformations during pyrolysis. Hedley sequential fractionation and (31)P NMR analyses were used in the investigation. Our results showed that P transformation in biochar was significantly affected by pyrolysis temperature regardless of feedstock (Wheat straw, maize straw and peanut husk). Pyrolysis treatment transformed water soluble P into a labile (NaHCO3-Pi) or semi-labile pool (NaOH-Pi) and into a stable pool (Dil. HCl P and residual-P). At the same time, organic P was transformed into inorganic P fractions which was identified by the rapid decomposition of organic P detected with solution (31)P NMR. The P transformation during pyrolysis process suggested more stable P was formed at a higher pyrolysis temperature. This result was also evidenced by the presence of less soluble or stable P species, such as such as poly-P, crandallite (CaAl3(OH)5(PO4)2) and Wavellite (Al3(OH)3(PO4)2·5H2O), as detected by solid-state (31)P NMR in biochars formed at a higher pyrolysis temperature. Furthermore, a significant proportion of less soluble pyrophosphate was identified by solution (2%-35%) and solid-state (8%-53%) (31)P NMR, which was also responsible for the stable P forms at higher pyrolysis temperature although their solubility or stability requires further investigation. Results suggested that a relatively lower pyrolysis temperature retains P availability regardless of feedstock during pyrolysis process.

  18. Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing investigations of connectivity in sodium aluminophosphate glasses

    SciTech Connect

    LANG,DAVID P.; ALAM,TODD M.; BENCOE,DENISE N.

    2000-05-01

    Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing experiments have been used to investigate the spatial distribution of aluminum and sodium cations with respect to the phosphate backbone for a series of sodium aluminophosphate glasses, xAl{sub 2}O{sub 3}{center_dot}50Na{sub 2}O{center_dot}(50{minus}x)P{sub 2}O{sub 5} (0{le} x {le} 17.5). From the {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na connectivity data gathered, information about the medium range order in these glasses is obtained. The expanded connectivity data allows for better identification and interpretation of the new resonances observed in the {sup 31}P MAS NMR spectra with the addition of alumina. The results of the dipolar dephasing experiments show that the sodium-phosphate distribution remains relatively unchanged for the glass series, and that the addition of aluminum occurs primarily through the depolymerization of the phosphate tetrahedral backbone.

  19. Improvement of (31)P NMR spectral resolution by 8-hydroxyquinoline precipitation of paramagnetic Fe and Mn in environmental samples.

    PubMed

    Ding, Shiming; Xu, Di; Li, Bin; Fan, Chengxin; Zhang, Chaosheng

    2010-04-01

    Solution (31)P nuclear magnetic resonance (NMR) spectroscopy is currently the main method for the characterization of phosphorus (P) forms in environment samples. However, identification and quantification of P compounds may be hampered by poor resolution of spectra caused by paramagnetic Fe and Mn. In this study, a novel technique was developed to improve spectral resolution by removing paramagnetic Fe and Mn from alkaline extracts via 8-hydroxyquinoline (8-HOQ) precipitation. Batch experiments showed that both Fe and Mn were effectively removed by the precipitation at pH 9.0, with the removal efficiencies of 83-91% for Fe and 67-78% for Mn from the extracts of five different environmental samples, while little effect was found on concentration of total P. The (31)P NMR analysis of a model P solution showed that addition of 8-HOQ and its precipitation with metal ions did not alter P forms. Further analyses of the five extracts with (31)P NMR spectroscopy demonstrated that the 8-HOQ precipitation was an ideal method compared with the present postextraction techniques, such as bicarbonate dithionate (BD), EDTA and Chelex-100 treatments, by improving spectral resolution to a large extent with no detrimental effects on P forms.

  20. Lateral diffusion of bilayer lipids measured via (31)P CODEX NMR.

    PubMed

    Saleem, Qasim; Lai, Angel; Morales, Hannah H; Macdonald, Peter M

    2012-10-01

    We have employed (31)P CODEX (centre-band-only-detection-of-exchange) NMR to measure lateral diffusion coefficients of phospholipids in unilamellar lipid bilayer vesicles consisting of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), alone or in mixtures with 30 mol% 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) or cholesterol (CHOL). The lateral diffusion coefficients of POPC and POPG were extracted from experimental CODEX signal decays as a function of increasing mixing time, after accounting for the vesicle's size and size distribution, as determined via dynamic light scattering, and the viscosity of the vesicular suspension, as determined via (1)H pulsed field gradient NMR. Lateral diffusion coefficients for POPC and POPG determined in this fashion fell in the range 1.0-3.2 × 10(-12) m(2) s(-1) at 10 °C, depending on the vesicular composition, in good agreement with accepted values. Thus, two advantages of (31)P CODEX NMR for phospholipid lateral diffusion measurements are demonstrated: no labelling of the molecule of interest is necessary, and multiple lateral diffusion coefficients can be measured simultaneously. It is expected that this approach will prove particularly useful in diagnosing heterogeneities in lateral diffusion behaviours, such as might be expected for specific lipid-lipid or lipid-protein interactions, and thermotropic or electrostatically induced phase inhomogeneities.

  1. A simple ergometer for 31P NMR spectroscopy during dynamic forearm exercise in a whole body magnetic resonance imaging system.

    PubMed

    Nishijima, H; Nishida, M; Anzai, T; Yonezawa, K; Fukuda, H; Sato, I; Yasuda, H

    1992-03-01

    The purpose of this study was to construct a simple ergometer for the 31P NMR spectroscopic study of dynamic forearm exercise in a whole body magnetic resonance imaging system and to evaluate the total system and the physiological response to this type of exercise using a multistage protocol. The system consisted of a completely nonmagnetic assembly including a rope, pulley and weights. The work of lifting weights was quantitated. The exercise protocol of 1-min increments in work load enabled subjects to reach maximal effort. Phosphocreatine decreased linearly with an increase in work load and was accompanied by a fall in pH and an increase in lactate level in the antecubital vein of the exercising forearm; concomitantly, there was a slight increase in whole body oxygen uptake and heart rate. Spectroscopy gave reproducible results using this exercise protocol. These results demonstrate that this system provides a reliable means for performing 31P magnetic resonance spectroscopy studies during forearm exercise.

  2. Estimation of the specific surface area of apatites in human mineralized tissues using 31P MAS NMR.

    PubMed

    Kolmas, Joanna; Slósarczyk, Anna; Wojtowicz, Andrzej; Kolodziejski, Waclaw

    2007-10-01

    Specific surface areas of apatites in whole human mineralized tissues were estimated from (31)P MAS NMR linewidths: 77 m(2)g(-1) for enamel and 94 m(2)g(-1) for dentin, dental cementum and cortical bone.

  3. Detoxification of organophosphorus pesticides and nerve agents through RSDL: efficacy evaluation by (31)P NMR spectroscopy.

    PubMed

    Elsinghorst, Paul W; Worek, Franz; Koller, Marianne

    2015-03-04

    Intoxication by organophosphorus compounds, especially by pesticides, poses a considerable risk to the affected individual. Countermeasures involve both medical intervention by means of antidotes as well as external decontamination to reduce the risk of dermal absorption. One of the few decontamination options available is Reactive Skin Decontamination Lotion (RSDL), which was originally developed for military use. Here, we present a (31)P NMR spectroscopy based methodology to evaluate the detoxification efficacy of RSDL with respect to a series of organophosphorus pesticides and nerve agents. Kinetic analysis of the obtained NMR data provided degradation half-lives proving that RSDL is also reasonably effective against organophosphorus pesticides. Unexpected observations of different RSDL degradation patterns are presented in view of its reported oximate-catalyzed mechanism of action.

  4. Evaluation of phosphorus characterization in broiler ileal digesta, manure, and litter samples: (31)P-NMR vs. HPLC.

    PubMed

    Leytem, A B; Kwanyuen, P; Plumstead, P W; Maguire, R O; Brake, J

    2008-01-01

    Using 31-phosphorus nuclear magnetic resonance spectroscopy ((31)P-NMR) to characterize phosphorus (P) in animal manures and litter has become a popular technique in the area of nutrient management. To date, there has been no published work evaluating P quantification in manure/litter samples with (31)P-NMR compared to other accepted methods such as high performance liquid chromatography (HPLC). To evaluate the use of (31)P-NMR to quantify myo-inositol hexakisphosphate (phytate) in ileal digesta, manure, and litter from broilers, we compared results obtained from both (31)P-NMR and a more traditional HPLC method. The quantification of phytate in all samples was very consistent between the two methods, with linear regressions having slopes ranging from 0.94 to 1.07 and r(2) values of 0.84 to 0.98. We compared the concentration of total monoester P determined with (31)P-NMR with the total inositol P content determined with HPLC and found a strong linear relationship between the two measurements having slopes ranging from 0.91 to 1.08 and r(2) values of 0.73 to 0.95. This suggests that (31)P-NMR is a very reliable method for quantifying P compounds in manure/litter samples.

  5. Synthesis of prostanoids; enantiomeric purity of alcohols by a /sup 31/P NMR technique

    SciTech Connect

    Penning, T.D.

    1985-01-01

    The enone, 2,2-diemthyl-3a..beta.., 6a..beta..-dihydro-4H-cyclopenta-1,3-dioxol-4-one, has been synthesized in six steps from cyclopentadiene, resolved using sulfoximine chemistry, and converted into (-)-prostaglandin E/sub 2/ methyl ester in three steps. Introduction of the optically pure omega side-chain using a conjugate addition of a stabilized organocopper reagent, followed by direct alkylation of the enolate with the ..cap alpha.. side-chain allylic iodide in the presence of hexamethylphosphoramide, afforded a trans, vicinally disubstituted cyclopentanone. Deprotection of the C-15 alcohol, followed by aluminum amalgam reduction of the C-10/oxygen bond, provided (-)-PGE/sub 2/ methyl ester in 47% overall yield from the enone. In an extension of previously described work, 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide, prepared from l-ephedrine and thiophosphoryl chloride, was used to determine the enantiomeric excess of chiral alcohols in conjunction with /sup 31/P NMR. Chiral primary and secondary alcohols added quantitatively to the phospholidine to give diastereomers which could be analyzed by /sup 31/P NMR and HPLC. A number of other phosphorus heterocycles were also explored as potential chiral derivatizing reagents.

  6. Magnetism of the spin-trimer compound CaNi 3(P 2O 7)2: Microscopic insight from combined 31P NMR and first-principles studies

    NASA Astrophysics Data System (ADS)

    Majumder, M.; Kanungo, S.; Ghoshray, A.; Ghosh, M.; Ghoshray, K.

    2015-03-01

    Magnetization, 31P nuclear magnetic resonance study, and first-principles electronic structure calculations have been performed in the spin-1 trimer chain compound CaNi3(P2O7 )2. Two separate spectra arising from magnetically and crystallographically inequivalent P sites are observed. In the ordered state, the resonance lines for both the P sites (P1 and P2) are found to be split into two, which is clear microscopic evidence of the development of two-sublattice AFM order below TM. A nonnegligible contribution of ferromagnetic hyperfine field and dipolar field have also been seen in the ordered state. The first-principles calculations show that the intratrimer (J1) and intertrimer interactions (J2) are of weak ferromagnetic type with the values 2.85 and 1.49 meV, respectively, whereas the interchain interaction (J3) is of strong antiferromagnetic type with a value of 5.63 meV. The anisotropy of the imaginary part of dynamical spin susceptibility around TM along with the exponential decrement of 1 /T1 below TM indicate the probable participation of the Ni -3 d electron's orbital degrees of freedom in the ferrimagnetic transition. The dominance of orbital fluctuations over the spin fluctuations seems to be responsible for showing low value of the binding energy u of the local spin configuration (estimated from local spin models) and an unusually weak exponent in the power-law behavior of 1 /T1 below 50 K, in the paramagnetic state. Electronic structure calculations also reveal the importance of orbital degrees of freedom of Ni -3 d moments, which is consistent with our NMR data analysis.

  7. Versatile 1H-31P-31P COSY 2D NMR Techniques for the Characterization of Polyphosphorylated Small Molecules

    PubMed Central

    Majumdar, Ananya; Sun, Yan; Shah, Meha; Freel Meyers, Caren L.

    2010-01-01

    Di- and triphosphorylated small molecules represent key intermediates in a wide range of biological and chemical processes. The importance of polyphosphorylated species in biology and medicine underscores the need to develop methods for the detection and characterization of this compound class. We have reported two-dimensional HPP-COSY spectroscopy techniques to identify diphosphate-containing metabolic intermediates at sub-millimolar concentrations in the methylerythritol phosphate (MEP) isoprenoid biosynthetic pathway.1 In this work, we explore the scope of HPP-COSY based techniques to characterize a diverse group of small organic molecules bearing di- and tri-phosphorylated moieties. These include molecules containing P–O–P and P–C–P connectivities, multivalent P(III)–O–P(V) phosphorus nuclei with widely separated chemical shifts, as well as virtually overlapping 31P resonances exhibiting strong coupling effects. We also demonstrate the utility of these experiments to rapidly distinguish between mono- and diphosphates. A detailed protocol for optimizing these experiments to achieve best performance is presented. PMID:20408590

  8. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by [sup 31]P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G. )

    1992-11-01

    In this study, Iowa State University researchers used [sub 31]P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850[degrees]F[sup +] distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.[sup 31]P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different [sup 31]P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a [sup 31]P-tagged reagent (ClPOCMe[sub 2]CMe[sub 2]O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  9. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by {sup 31}P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G.

    1992-11-01

    In this study, Iowa State University researchers used {sub 31}P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850{degrees}F{sup +} distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.{sup 31}P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different {sup 31}P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a {sup 31}P-tagged reagent (ClPOCMe{sub 2}CMe{sub 2}O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  10. Calculating the response of NMR shielding tensor σ(31P) and 2J(31P,13C) coupling constants in nucleic acid phosphate to coordination of the Mg2+ cation.

    PubMed

    Benda, Ladislav; Schneider, Bohdan; Sychrovský, Vladimír

    2011-03-24

    Dependence of NMR (31)P shielding tensor and (2)J(P,C) coupling constants on solvation of nucleic acid phosphate by Mg(2+) and water was studied using methods of bioinformatic structural analyses of crystallographic data and DFT B3LYP calculations of NMR parameters. The effect of solvent dynamics on NMR parameters was calculated using molecular dynamic. The NMR calculations for representative solvation patterns determined in crystals of B-DNA and A-RNA molecules pointed out the crucial importance of local Mg(2+) coordination geometry, including hydration by explicit water molecules and necessity of dynamical averaging over the solvent reorientation. The dynamically averaged (31)P chemical shift decreased by 2-9.5 ppm upon Mg(2+) coordination, the chemical shielding anisotropy increased by 0-20 ppm, and the (2)J(P,C5') coupling magnitude decreased by 0.2-1.8 Hz upon Mg(2+) coordination. The calculated decrease of the (31)P chemical shift is in excellent agreement with the 1.5-10 ppm decrease of the phosphorothioate (31)P chemical shift upon Cd(2+) coordination probed experimentally in hammerhead ribozyme (Suzumura; et al. J. Am. Chem. Soc. 2002, 124, 8230-8236; Osborne; et al., Biochemistry 2009, 48, 10654-10664). None of the dynamically averaged NMR parameters unequivocally distinguishes the site-specific Mg(2+) coordination to one of the two nonesterified phosphate oxygen atoms of the phosphate determined by bioinformatic analyses. By comparing the limit cases of static and dynamically averaged solvation, we propose that mobility of the solvent has a dramatic impact on NMR parameters of nucleic acid phosphate and must be taken into account for their accurate modeling.

  11. Using 31P-NMR to investigate dynamics of soil phosphorus compounds in the Rothamsted Long Term Experiments

    NASA Astrophysics Data System (ADS)

    Blackwell, Martin; Turner, Ben; Granger, Steve; Hooper, Tony; Darch, Tegan; Hawkins, Jane; Yuan, Huimin; McGrath, Steve

    2015-04-01

    The technique of 31P-NMR spectroscopy has done more to advance the knowledge of phosphorus forms (especially organic phosphorus) in environmental samples than any other method. The technique has advanced such that specific compounds can be identified where previously only broad categories such as orthophosphate monoesters and diesters were distinguishable. The Soil Archive and Long Term Experiments at Rothamsted Research, UK, potentially provides an unequalled opportunity to use this technique to observe changes in soil phosphorus compounds with time and under different treatments, thereby enhancing our understanding of phosphorus cycling and use by plants. Some of the earliest work using this technique on soils was carried out by Hawkes et al. in 1984 and this used soils from two of the oldest Rothamsted Long Term Experiments, namely Highfield and Park Grass. Here we revisit the samples studied in this early work and reanalyse them using current methodology to demonstrate how the 31P-NMR technique has advanced. We also present results from a study on the phosphorus chemistry in soils along the Hoosfield acid strip (Rothamsted, UK), where a pH gradient from 3.7 to 7.8 occurs in a single soil with little variation in total phosphorus (mean ± standard deviation 399 ± 27 mg P kg-1). Soil pH was found to be an important factor in determining the proportion of phosphomonoesters and phosphodiesters in the soil organic phosphorus, although total organic phosphorus concentrations were a relatively consistent proportion of the total soil phosphorus (36 ± 2%) irrespective of soil pH. Key words. 31P-NMR, soil organic phosphorus, long term experiments, Hoosfield acid strip

  12. Assessment of membrane protection by /sup 31/P-NMR effects of lidocaine on calcium-paradox in myocardium

    SciTech Connect

    Sakai, Hirosumi; Yoshiyama, Minoru; Teragaki, Masakazu; Takeuchi, Kazuhide; Takeda, Takeda; Ikata, Mari; Ishikawa, Makoto; Miura, Iwao

    1989-01-01

    In studying calcium paradox, perfused rat hearts were used to investigate the myocardial protective effects of lidocaine. Intracellular contents of phosphates were measured using the /sup 31/P-NMR method. In hearts reexposed to calcium, following 3 minute calcium-free perfusion, a rapid contracture occurred, followed by rapid and complete disappearance of intracellular phosphates with no resumption of cardiac function. In hearts where lidocaine was administered from the onset of the calcium-free perfusion until 2 minutes following the onset of reexposure to calcium, both intracellular phosphates and cardiac contractility were maintained. Therefore, it can be said that cell membranes were protected by lidocaine.

  13. Physiologic significance of the phosphorylation potential in isolated perfused rat hearts (/sup 31/P NMR)

    SciTech Connect

    Watters, T.; Wikman-Coffelt, J.; Wu, S.; Wendland, M.; James, T.; Sievers, R.; Botvinick, E.; Parmley, W.

    1986-03-05

    The authors assessed the metabolic and mechanical effects of changes in coronary perfusion pressure (CPP) and afterload (A) in isolated working apex-ejecting rat hearts perfused with Krebs-Henseleit solution containing an excess of O/sub 2/ and substrate. Log(phosphorylation potential) or log (ATP)/(ADP)x (Pi), designated (L), and log (PCR)/(Pi), designated (L*), were calculated from HPLC measurements after rapid freeze-clamping. Increasing CPP from 80-140 cm H/sub 2/O caused an increase in coronary flow(flow), developed pressure(DevP), O/sub 2/ consumption (VO/sub 2/), L, L*, and CO. L and L* were directly related to VO/sub 2/ and CO. Increasing A from 80-140 cm H/sub 2/O caused an increase in DevP and VO/sub 2/, but a decrease in L, L*, and CO. L and L* were inversely linearly related to VO/sub 2/ but were directly linearly related to CO. In both experiments, L and L* are directly related to CO, suggesting that determination of L* (which can be done with /sup 31/P NMR spectroscopy) may be a useful non-invasive method for determining cardiac pump function curves. L and L* may be related to the Frank-Starling mechanism. In a separate experiment using /sup 31/P NMR spectroscopy of isovolumic (left ventricular balloon) perfused rat hearts, increasing CPP caused a direct linear increase in flow, DevP, and L*, confirming the L* results reported above with CPP experiments using the rapid freeze-clamp technique.

  14. Physiologic significance of the phosphorylation potential in isolated perfused rat hearts (31-P NMR)

    SciTech Connect

    Watters, T.; Wikman-Coffelt, J.; Wu, S.; Wendland, M.; James, T.; Sievers, R.; Botvinick, E.; Parmley, W.

    1986-03-05

    The authors assessed the metabolic and mechanical effects of changes in coronary perfusion pressure (CPP) and afterload (A) in isolated working apex-ejecting rat hearts perfused with Krebs-Henseleit solution containing an excess of O/sub 2/ and substrate. Log (phosphorylation potential) or log (ATP)/(ADP)x (Pi), designated (L), and log (PCR)/(Pi), designated (L*), were calculated from HPLC measurements after rapid freeze-clamping. Increasing CPP from 80-140 cm H/sub 2/O caused an increase in coronary flow (flow), developed pressure (DevP), O/sub 2/ consumption (VO/sub 2/), L, L*, and CO. L and L* were directly related to VO/sub 2/ and CO. Increasing A from 80-140 cm H/sub 2/O caused an increase in DevP and VO/sub 2/, but a decrease in L, L*, and CO. L and L* were inversely linearly related to VO/sub 2/ but were directly linearly related to CO. In both experiments, L and L* are directly related to CO, suggesting that determination of L* (which can be done with 31-P NMR spectroscopy) may be a useful non-invasive method for determining cardiac pump function curves. L and L* may be related to the Frank-Starling mechanism. In a separate experiment using 31-P NMR spectroscopy of isovolumic (left ventricular balloon) perfused rat hearts, increasing CPP caused a direct linear increase in flow, DevP, and L*, confirming the L* results reported above with CPP experiments using the rapid freeze-clamp technique.

  15. /sup 31/P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells

    SciTech Connect

    Lopez, A.; Rols, M.P.; Teissie, J.

    1988-02-23

    Chinese hamster ovary (CHO) cells were reversibly permeabilized by submitting them to short, high-intensity, square wave pulses (1.8 kV/cm, 100 ..mu..s). The cells remained in a permeable state without loss of viability for several hours at 4/sup 0/C. A new anisotropic peak with respect to control cells was observed on /sup 31/P NMR spectroscopic analysis of the phospholipid components. This peak is only present when the cells are permeable, and normal anisotropy is recovered after resealing. Taking into account the fusogenicity of electropermeabilized cells, comparative studies were performed on 5% poly(ethylene glycol) treated cells. The /sup 31/P NMR spectra of the phospholipids displayed the same anisotropic peak as in the case of the electropermeabilized cells. In the two cases, this anisotropic peak was located downfield from the main peak associated to the phospholipids when organized in bilayers. The localization of this anisotropic peak is very different from the one of a hexagonal phase. The authors proposed a reorganization of the polar head group region leading to a weakening of the hydration layer to account for these observations. This was also thought to explain the electric field induced fusogenicity of these cells.

  16. Modified Prony Method to Resolve and Quantify in Vivo31P NMR Spectra of Tumors

    NASA Astrophysics Data System (ADS)

    Barone, P.; Guidoni, L.; Ragona, R.; Viti, V.; Furman, E.; Degani, H.

    Prony's method, successfully used in processing NMR signals, performs poorly at low signal-to-noise ratios. To overcome this problem, a statistical approach has been adopted by using Prony's method as a sampling device from the distribution associated with the true spectrum. Specifically, Prony's method is applied for each regression order p and number of data points n, both considered in a suitable range, and the estimates of frequencies, amplitudes, and decay factors are pooled separately. A histogram of the pooled frequencies is computed and, looking at the histogram, a lower and an upper frequency bound for each line of interest is determined. All frequency estimates in each of the determined intervals as well as associated decay factors and amplitudes are considered to be independent normal variates. A mean value and a corresponding 95% confidence interval are computed for each parameter. 31P NMR signals from MCF7 human breast cancer cells, inoculated into athymic mice and which developed into tumors, have been processed with traditional methods and with this modified Prony's method. The main components of the phosphomonoester peak, namely those deriving from phosphorylcholine and phosphorylethanolamine, are always well resolved with this new approach and their relative amplitudes can be consequently evaluated. Peak intensities of these two signals show different behavior during treatment of tumors with the antiestrogenic drug tamoxifen. The results of this new approach are compared with those obtainable with traditional techniques.

  17. {sup 31}P NMR analysis of coal moieties bearing -OH, -NH, and -SH functions. Final technical report

    SciTech Connect

    Verkade, J.G.

    1991-08-31

    NMR reagents for the speciation and quantitation of labile-hydrogen functional groups and sulfur groups in coal ligands have been synthesized and evaluated. These reagents, which contain the NMR-active nuclei {sup 31}p, {sup 119}Sn or {sup 195}pt, were designed to possess improved chemical shift resolution over reagents reported in the literature. Our efforts were successful in the case of the new {sup 31}p and {sup 119}Sn reagents we developed, but the {sup 195}pt work on sulfur groups was only partially successful in as much as the grant came to a close and was not renewed. Our success with {sup 31}P and {sup 119}Sn NMR reagents came to the attention of Amoco and they have recently expressed interest in further supporting that work. A further measure of the success of our efforts can be seen in the nine publications supported by this grant which are cited in the reference list.

  18. Using solid 13C NMR coupled with solution 31P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic plants are involved in the storage and release capacity for organic matter and nutrients. In this study, solid 13C and solution 31P nuclear magnetic resonance (NMR) spectroscopy were used to characterize the biomass samples of six aquatic plants. Solid 13C NMR spectroscopy revealed the domin...

  19. Forms and lability of phosphorus in algae and aquatic macrophytes characterized by solution 31P NMR coupled with enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased information on forms and lability of phosphorus (P) in aquatic macrophytes and algae is crucial for better understanding of P biogeochemical cycling in eutrophic lakes. In this work, solution 31P nuclear magnetic resonance (NMR) spectroscopy coupled with enzymatic hydrolysis (EH) was used ...

  20. Chemical Characterization and Water Content Determination of Bio-Oils Obtained from Various Biomass Species using 31P NMR Spectroscopy

    SciTech Connect

    David, K.; Ben, H.; Muzzy, J.; Feik, C.; Iisa, K.; Ragauskas, A.

    2012-03-01

    Pyrolysis is a promising approach to utilize biomass for biofuels. One of the key challenges for this conversion is how to analyze complicated components in the pyrolysis oils. Water contents of pyrolysis oils are normally analyzed by Karl Fischer titration. The use of 2-chloro-4,4,5,5,-tetramethyl-1,3,2-dioxaphospholane followed by {sup 31}P NMR analysis has been used to quantitatively analyze the structure of hydroxyl groups in lignin and whole biomass. Results: {sup 31}P NMR analysis of pyrolysis oils is a novel technique to simultaneously characterize components and analyze water contents in pyrolysis oils produced from various biomasses. The water contents of various pyrolysis oils range from 16 to 40 wt%. The pyrolysis oils obtained from Loblolly pine had higher guaiacyl content, while that from oak had a higher syringyl content. Conclusion: The comparison with Karl Fischer titration shows that {sup 31}P NMR could also reliably be used to measure the water content of pyrolysis oils. Simultaneously with analysis of water content, quantitative characterization of hydroxyl groups, including aliphatic, C-5 substituted/syringyl, guaiacyl, p-hydroxyl phenyl and carboxylic hydroxyl groups, could also be provided by {sup 31}P NMR analysis.

  1. Simultaneous determination of phenolic compounds and triterpenic acids in oregano growing wild in Greece by 31P NMR spectroscopy.

    PubMed

    Agiomyrgianaki, Alexia; Dais, Photis

    2012-11-01

    (31)P nuclear magnetic resonance (NMR) spectroscopy was used to detect and quantify simultaneously a large number of phenolic compounds and the two triterpenic acids, ursolic acid and oleanolic acid, extracted from two oregano species Origanum onites and Origanum vulgare ssp. Hirtum using two different organic solvents ethanol and ethyl acetate. This analytical method is based on the derivatization of the hydroxyl and carboxyl groups of these compounds with the phosphorous reagent 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxa phospholane and the identification of the phosphitylated compounds on the basis of the (31)P chemical shifts. Unambiguous assignment of the (31)P NMR chemical shifts of the dihydroxy- and polyhydroxy-phenols in oregano species as well as those of the triterpenic acids was achieved upon comparison with the chemical shifts of model compounds assigned by using two-dimensional NMR techniques. Furthermore, the integration of the appropriate signals of the hydroxyl derivatives in the corresponding (31)P NMR spectra and the use of the phosphitylated cyclohexanol as an internal standard allowed the quantification of these compounds. The validity of this technique for quantitative measurements was thoroughly examined.

  2. Crystallinity and compositional changes in carbonated apatites: Evidence from {sup 31}P solid-state NMR, Raman, and AFM analysis

    SciTech Connect

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M.Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-15

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and {sup 31}P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse {sup 31}P NMR linewidth and inverse Raman PO{sub 4}{sup 3−}ν{sub 1} bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO{sub 3}{sup 2−} range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the {sup 31}P NMR chemical shift frequency and the Raman phosphate ν{sub 1} band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. - Graphical abstract: Carbonated apatite shows an abrupt change in spectral (NMR, Raman) and morphological (AFM) properties at a composition of about one carbonate substitution per unit cell. Display Omitted - Highlights: • Crystallinity (XRD), particle size (AFM) of carbonated apatites and bone mineral. • Linear relationships among crystallinity, {sup 31}P NMR and Raman inverse bandwidths. • Low and high carbonated apatites use different charge-balancing ion-loss mechanism.

  3. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections.

    PubMed

    Fedorov, Sergey V; Rusakov, Yury Yu; Krivdin, Leonid B

    2014-11-01

    The main factors affecting the accuracy and computational cost of the calculation of (31)P NMR chemical shifts in the representative series of organophosphorous compounds are examined at the density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2) levels. At the DFT level, the best functionals for the calculation of (31)P NMR chemical shifts are those of Keal and Tozer, KT2 and KT3. Both at the DFT and MP2 levels, the most reliable basis sets are those of Jensen, pcS-2 or larger, and those of Pople, 6-311G(d,p) or larger. The reliable basis sets of Dunning's family are those of at least penta-zeta quality that precludes their practical consideration. An encouraging finding is that basically, the locally dense basis set approach resulting in a dramatic decrease in computational cost is justified in the calculation of (31)P NMR chemical shifts within the 1-2-ppm error. Relativistic corrections to (31)P NMR absolute shielding constants are of major importance reaching about 20-30 ppm (ca 7%) improving (not worsening!) the agreement of calculation with experiment. Further better agreement with the experiment by 1-2 ppm can be obtained by taking into account solvent effects within the integral equation formalism polarizable continuum model solvation scheme. We recommend the GIAO-DFT-KT2/pcS-3//pcS-2 scheme with relativistic corrections and solvent effects taken into account as the most versatile computational scheme for the calculation of (31)P NMR chemical shifts characterized by a mean absolute error of ca 9 ppm in the range of 550 ppm.

  4. Crystallinity and compositional changes in carbonated apatites: Evidence from 31P solid-state NMR, Raman, and AFM analysis

    PubMed Central

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M. Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-01-01

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and 31P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse 31P NMR linewidth and inverse Raman PO43− ν1 bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO32− range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the 31P NMR chemical shift frequency and the Raman phosphate ν1 band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. PMID:24273344

  5. Crystallinity and compositional changes in carbonated apatites: Evidence from (31)P solid-state NMR, Raman, and AFM analysis.

    PubMed

    McElderry, John-David P; Zhu, Peizhi; Mroue, Kamal H; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H; Franceschi, Renny T; Holl, Mark M Banaszak; Tecklenburg, Mary M J; Ramamoorthy, Ayyalusamy; Morris, Michael D

    2013-10-01

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and (31)P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse (31)P NMR linewidth and inverse Raman PO4(3-) ν1 bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3-10.3 wt% CO3(2-) range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the (31)P NMR chemical shift frequency and the Raman phosphate ν1 band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals.

  6. Forms and Lability of Phosphorus in Algae and Aquatic Macrophytes Characterized by Solution 31P NMR Coupled with Enzymatic Hydrolysis

    NASA Astrophysics Data System (ADS)

    Feng, Weiying; Zhu, Yuanrong; Wu, Fengchang; He, Zhongqi; Zhang, Chen; Giesy, John P.

    2016-11-01

    Solution Phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy coupled with enzymatic hydrolysis (EH) with commercially available phosphatases was used to characterize phosphorus (P) compounds in extracts of the dominant aquatic macrophytes and algae in a eutrophic lake. Total extractable organic P (Po) concentrations ranged from 504 to 1643 mg kg‑1 and 2318 to 8395 mg kg‑1 for aquatic macrophytes and algae, respectively. Using 31P NMR spectroscopy, 11 Po species were detected in the mono- and diester region. Additionally, orthophosphate, pyrophosphate and phosphonates were also detected. Using EH, phytate-like P was identified as the prevalent class of enzyme-labile Po, followed by labile monoester- and diester-P. Comparison of the NMR and EH data indicated that the distribution pattern of major P forms in the samples determined by the two methods was similar (r = 0.712, p < 0.05). Additional 31P NMR spectroscopic analysis of extracts following EH showed significant decreases in the monoester and pyrophosphate regions, with a corresponding increase in the orthophosphate signal, as compared to unhydrolyzed extracts. Based on these quantity and hydrolysis data, we proposed that recycling of Po in vegetative biomass residues is an important mechanism for long-term self-regulation of available P for algal blooming in eutrophic lakes.

  7. Forms and Lability of Phosphorus in Algae and Aquatic Macrophytes Characterized by Solution 31P NMR Coupled with Enzymatic Hydrolysis

    PubMed Central

    Feng, Weiying; Zhu, Yuanrong; Wu, Fengchang; He, Zhongqi; Zhang, Chen; Giesy, John P.

    2016-01-01

    Solution Phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy coupled with enzymatic hydrolysis (EH) with commercially available phosphatases was used to characterize phosphorus (P) compounds in extracts of the dominant aquatic macrophytes and algae in a eutrophic lake. Total extractable organic P (Po) concentrations ranged from 504 to 1643 mg kg−1 and 2318 to 8395 mg kg−1 for aquatic macrophytes and algae, respectively. Using 31P NMR spectroscopy, 11 Po species were detected in the mono- and diester region. Additionally, orthophosphate, pyrophosphate and phosphonates were also detected. Using EH, phytate-like P was identified as the prevalent class of enzyme-labile Po, followed by labile monoester- and diester-P. Comparison of the NMR and EH data indicated that the distribution pattern of major P forms in the samples determined by the two methods was similar (r = 0.712, p < 0.05). Additional 31P NMR spectroscopic analysis of extracts following EH showed significant decreases in the monoester and pyrophosphate regions, with a corresponding increase in the orthophosphate signal, as compared to unhydrolyzed extracts. Based on these quantity and hydrolysis data, we proposed that recycling of Po in vegetative biomass residues is an important mechanism for long-term self-regulation of available P for algal blooming in eutrophic lakes. PMID:27849040

  8. Quantitative (31)P NMR spectroscopy and (1)H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models.

    PubMed

    Cao, Haihui; Nazarian, Ara; Ackerman, Jerome L; Snyder, Brian D; Rosenberg, Andrew E; Nazarian, Rosalynn M; Hrovat, Mirko I; Dai, Guangping; Mintzopoulos, Dionyssios; Wu, Yaotang

    2010-06-01

    In this study, bone mineral density (BMD) of normal (CON), ovariectomized (OVX), and partially nephrectomized (NFR) rats was measured by (31)P NMR spectroscopy; bone matrix density was measured by (1)H water- and fat-suppressed projection imaging (WASPI); and the extent of bone mineralization (EBM) was obtained by the ratio of BMD/bone matrix density. The capability of these MR methods to distinguish the bone composition of the CON, OVX, and NFR groups was evaluated against chemical analysis (gravimetry). For cortical bone specimens, BMD of the CON and OVX groups was not significantly different; BMD of the NFR group was 22.1% (by (31)P NMR) and 17.5% (by gravimetry) lower than CON. For trabecular bone specimens, BMD of the OVX group was 40.5% (by (31)P NMR) and 24.6% (by gravimetry) lower than CON; BMD of the NFR group was 26.8% (by (31)P NMR) and 21.5% (by gravimetry) lower than CON. No significant change of cortical bone matrix density between CON and OVX was observed by WASPI or gravimetry; NFR cortical bone matrix density was 10.3% (by WASPI) and 13.9% (by gravimetry) lower than CON. OVX trabecular bone matrix density was 38.0% (by WASPI) and 30.8% (by gravimetry) lower than CON, while no significant change in NFR trabecular bone matrix density was observed by either method. The EBMs of OVX cortical and trabecular specimens were slightly higher than CON but not significantly different from CON. Importantly, EBMs of NFR cortical and trabecular specimens were 12.4% and 26.3% lower than CON by (31)P NMR/WASPI, respectively, and 4.0% and 11.9% lower by gravimetry. Histopathology showed evidence of osteoporosis in the OVX group and severe secondary hyperparathyroidism (renal osteodystrophy) in the NFR group. These results demonstrate that the combined (31)P NMR/WASPI method is capable of discerning the difference in EBM between animals with osteoporosis and those with impaired bone mineralization.

  9. Distribution and mobility of phosphates and sodium ions in cheese by solid-state 31P and double-quantum filtered 23Na NMR spectroscopy.

    PubMed

    Gobet, Mallory; Rondeau-Mouro, Corinne; Buchin, Solange; Le Quéré, Jean-Luc; Guichard, Elisabeth; Foucat, Loïc; Moreau, Céline

    2010-04-01

    The feasibility of solid-state magic angle spinning (MAS) (31)P nuclear magnetic resonance (NMR) spectroscopy and (23)Na NMR spectroscopy to investigate both phosphates and Na(+) ions distribution in semi-hard cheeses in a non-destructive way was studied. Two semi-hard cheeses of known composition were made with two different salt contents. (31)P Single-pulse excitation and cross-polarization MAS experiments allowed, for the first time, the identification and quantification of soluble and insoluble phosphates in the cheeses. The presence of a relatively 'mobile' fraction of colloidal phosphates was evidenced. The detection by (23)Na single-quantum NMR experiments of all the sodium ions in the cheeses was validated. The presence of a fraction of 'bound' sodium ions was evidenced by (23)Na double-quantum filtered NMR experiments. We demonstrated that NMR is a suitable tool to investigate both phosphates and Na(+) ions distributions in cheeses. The impact of the sodium content on the various phosphorus forms distribution was discussed and results demonstrated that NMR would be an important tool for the cheese industry for the processes controls.

  10. Analysis of monoglycerides, diglycerides, sterols, and free fatty acids in coconut (Cocos nucifera L.) oil by 31P NMR spectroscopy.

    PubMed

    Dayrit, Fabian M; Buenafe, Olivia Erin M; Chainani, Edward T; de Vera, Ian Mitchelle S

    2008-07-23

    Phosphorus-31 nuclear magnetic resonance spectroscopy ( (31)P NMR) was used to differentiate virgin coconut oil (VCO) from refined, bleached, deodorized coconut oil (RCO). Monoglycerides (MGs), diglycerides (DGs), sterols, and free fatty acids (FFAs) in VCO and RCO were converted into dioxaphospholane derivatives and analyzed by (31)P NMR. On the average, 1-MG was found to be higher in VCO (0.027%) than RCO (0.019%). 2-MG was not detected in any of the samples down to a detection limit of 0.014%. On the average, total DGs were lower in VCO (1.55%) than RCO (4.10%). When plotted in terms of the ratio [1,2-DG/total DGs] versus total DGs, VCO and RCO samples grouped separately. Total sterols were higher in VCO (0.096%) compared with RCO (0.032%), and the FFA content was 8 times higher in VCO than RCO (0.127% vs 0.015%). FFA determination by (31)P NMR and titration gave comparable results. Principal components analysis shows that the 1,2-DG, 1,3-DG, and FFAs are the most important parameters for differentiating VCO from RCO.

  11. sup 31 P and sup 1 H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: Relaxation measurements with Mn(II) and Co(II)

    SciTech Connect

    Jarori, G.K.; Ray, B.D.; Rao, B.D.N. )

    1989-11-28

    The paramagnetic effects of Mn(II) and Co(II) on the spin-lattice relaxation rates of {sup 31}P nuclei of ATP and ADP and of Mn(II) on the spin-lattice relaxation rate of the {delta} protons of arginine bound to arginine kinase from lobster tail muscle have been measured. Temperature variation of {sup 31}P relaxation rates in E-MnADP and E-MnATP yields activation energies ({Delta}E) in the range 6-10 kcal/mol. Thus, the {sup 31}P relaxation rates in these complexes are exchange limited and cannot provide structural information. However, the relaxation rates in E-CoADP and E-CoATP exhibit frequency dependence and {Delta}E values in the range 1-2 kcal/mol; i.e., these rates depend upon {sup 31}P-Co(II) distances. These distances were calculated to be in the range 3.2-4.5 {angstrom}, appropriate for direct coordination between Co(II) and the phosphoryl groups. The paramagnetic effect of Mn(II) on the {sup 1}H spin-lattice relaxation rate of the {delta} protons of arginine in the E-MnADP-Arg complex was also measured at three frequencies. From the frequency dependence of the relaxation rate an effective {tau}{sub C} of 0.6 ns has also been calculated, which is most likely to be the electron spin relaxation rate ({tau}{sub S1}) for Mn(II) in this complex. The distance estimated on the basis of the reciprocal sixth root of the average relaxation rate of the {delta} protons was 10.9 {plus minus} 0.3 {angstrom}.

  12. Effect of Ca:Mg ratio on precipitated P species identified using 31P solid state NMR

    NASA Astrophysics Data System (ADS)

    Manimel Wadu, M.

    2009-04-01

    M.C.W. Manimel Wadu1, O.O Akinremi1, S. Kroeker2 1Department of Soil Science, University of Manitoba, Winnipeg, R3T 2N2, Canada 2Department of Chemistry, University of Manitoba, Winnipeg, R3T 2N2, Canada Agronomic efficiency of added P fertilizer is reduced by the precipitation reactions with the exchangeable Ca and Mg in calcareous soils. We hypothesized that the ratio of Ca to Mg on the soil exchange complex will affect the species of P that is precipitated and its solubility in the soil. A laboratory experiment was conducted using a model calcareous soil system which was composed of resin (Amberlite IRP69) and sand coated with CaCO3 packed into a column. The resin was pre saturated with Ca and Mg in order to achieve five different saturation ratios of Ca:Mg approximately as 100:0, 70:30, 50:50, 30:70 and 0:100. Monoammonium Phosphate was applied to the soil surface to simulate one-dimensional diffusive transport. The column was then incubated for 2 weeks. Chemical analysis for water and acid soluble P, pH, NH4, Ca and Mg was performed on 2mm sections of the soil to a depth of 10 cm. This paper will present and discuss the distribution of P along the soil column. Unlike similar studies that have speculated on the precipitation of P, this study will identify and quantify the P species that is formed using 31P solid state NMR technique. Such knowledge will be helpful in understanding the effect of Ca and Mg on P availability in calcareous system and the role of each cation on P precipitation. Key words: P fertilizers, Ca, Mg, model system, solid state NMR

  13. 2D 31P solid state NMR spectroscopy, electronic structure and thermochemistry of PbP7

    NASA Astrophysics Data System (ADS)

    Benndorf, Christopher; Hohmann, Andrea; Schmidt, Peer; Eckert, Hellmut; Johrendt, Dirk; Schäfer, Konrad; Pöttgen, Rainer

    2016-03-01

    Phase pure polycrystalline PbP7 was prepared from the elements via a lead flux. Crystalline pieces with edge-lengths up to 1 mm were obtained. The assignment of the previously published 31P solid state NMR spectrum to the seven distinct crystallographic sites was accomplished by radio-frequency driven dipolar recoupling (RFDR) experiments. As commonly found in other solid polyphosphides there is no obvious correlation between the 31P chemical shift and structural parameters. PbP7 decomposes incongruently under release of phosphorus forming liquid lead as remainder. The thermal decomposition starts at T>550 K with a vapor pressure almost similar to that of red phosphorus. Electronic structure calculations reveal PbP7 as a semiconductor according to the Zintl description and clearly shows the stereo-active Pb-6s2 lone pairs in the electron localization function ELF.

  14. 31P{1H}NMR and carbonyl force constants of unsymmetrical bidentate phosphine complexes of group (VI) metal carbonyls

    NASA Astrophysics Data System (ADS)

    Jesu Raj, Joe Gerald; Pathak, Devendra Deo; Kapoor, Pramesh N.

    2015-05-01

    In our present work we report synthesis of an unsymmetrical diphos ligand, 1-diphenylphosphino-2-di-m-tolylphosphinoethane and its coordinate complexes with group (VI) metal carbonyls such as Cr(CO)6 Mo(CO)6 and W(CO)6. The synthesized ligand and its complexes have been completely characterized by elemental analyses, FTIR, 1HNMR, 31P{1H}NMR and FAB mass spectrometry methods. Special emphasis has been given to calculations of carbonyl force constants. Based on the spectroscopic evidences it has been confirmed that these metal carbonyl complexes with the ditertiary phosphine ligand showed cis geometry in their molecular structure.

  15. Detection of Phosphomonoester Signals in Proton-Decoupled 31P NMR Spectra of the Myocardium of Patients with Myocardial Hypertrophy

    NASA Astrophysics Data System (ADS)

    Jung, Wulf-Ingo; Sieverding, Ludger; Breuer, Johannes; Schmidt, Oliver; Widmaier, Stefan; Bunse, Michael; van Erckelens, Franz; Apitz, Jürgen; Dietze, Guenther J.; Lutz, Otto

    1998-07-01

    Proton-decoupled31P NMR spectroscopy at 1.5 T of the anterior left ventricular myocardium was used to monitor myocardial phosphate metabolism in asymptomatic patients with hypertrophic cardiomyopathy (HCM,n= 14) and aortic stenosis (AS,n= 12). In addition to the well-known phosphorus signals a phosphomonoester (PME) signal was detected at about 6.9 ppm in 7 HCM and 2 AS patients. This signal was not observed in the spectra of normal controls (n= 11). We suggest that in spectra of patients with myocardial hypertrophy the presence of a PME signal reflects alterations in myocardial glucose metabolism.

  16. The effect of ethanol on hydroxyl and carbonyl groups in biopolyol produced by hydrothermal liquefaction of loblolly pine: (31)P-NMR and (19)F-NMR analysis.

    PubMed

    Celikbag, Yusuf; Via, Brian K; Adhikari, Sushil; Buschle-Diller, Gisela; Auad, Maria L

    2016-08-01

    The goal of this study was to investigate the role of ethanol and temperature on the hydroxyl and carbonyl groups in biopolyol produced from hydrothermal liquefaction of loblolly pine (Pinus spp.) carried out at 250, 300, 350 and 390°C for 30min. Water and water/ethanol mixture (1/1, wt/wt) were used as liquefying solvent in the HTL experiments. HTL in water and water/ethanol is donated as W-HTL and W/E-HTL, respectively. It was found that 300°C and water/ethanol solvent was the optimum liquefaction temperature and solvent, yielding up to 68.1wt.% bio-oil and 2.4wt.% solid residue. (31)P-NMR analysis showed that biopolyol produced by W-HTL was rich in phenolic OH while W/E-HTL produced more aliphatic OH rich biopolyols. Moreover, biopolyols with higher hydroxyl concentration were produced by W/E-HTL. Carbonyl groups were analyzed by (19)F-NMR, which showed that ethanol reduced the concentration of carbonyl groups.

  17. The host plant Pinus pinaster exerts specific effects on phosphate efflux and polyphosphate metabolism of the ectomycorrhizal fungus Hebeloma cylindrosporum: a radiotracer, cytological staining and (31) P NMR spectroscopy study.

    PubMed

    Torres-Aquino, Margarita; Becquer, Adeline; Le Guernevé, Christine; Louche, Julien; Amenc, Laurie K; Staunton, Siobhan; Quiquampoix, Hervé; Plassard, Claude

    2017-02-01

    Ectomycorrhizal (ECM) association can improve plant phosphorus (P) nutrition. Polyphosphates (polyP) synthesized in distant fungal cells after P uptake may contribute to P supply from the fungus to the host plant if they are hydrolyzed to phosphate in ECM roots then transferred to the host plant when required. In this study, we addressed this hypothesis for the ECM fungus Hebeloma cylindrosporum grown in vitro and incubated without plant or with host (Pinus pinaster) and non-host (Zea mays) plants, using an experimental system simulating the symbiotic interface. We used (32) P labelling to quantify P accumulation and P efflux and in vivo and in vitro nuclear magnetic resonance (NMR) spectroscopy and cytological staining to follow the fate of fungal polyP. Phosphate supply triggered a massive P accumulation as newly synthesized long-chain polyP in H. cylindrosporum if previously grown under P-deficient conditions. P efflux from H. cylindrosporum towards the roots was stimulated by both host and non-host plants. However, the host plant enhanced (32) P release compared with the non-host plant and specifically increased the proportion of short-chain polyP in the interacting mycelia. These results support the existence of specific host plant effects on fungal P metabolism able to provide P in the apoplast of ectomycorrhizal roots.

  18. Internuclear 31P-51V Distance Measurements in Polyoxoanionic Solids Using REAPDOR NMR Spectroscopy

    PubMed Central

    Huang, Wenlin; Vega, Alexander J.; Gullion, Terry; Polenova, Tatyana

    2014-01-01

    We report the first results establishing REAPDOR experiments for distance measurements between a spin-1/2 (31P) and spin-7/2 (51V) pair in a series of vanadium-substituted polyoxoanionic solids from the Keggin and Wells-Dawson families. We have quantitatively measured 31P-51V distances in mono-vanadium substituted K4PVW11O40, 1-K7P2VW17O62, and 4-K7P2VW17O62. Numerical simulations of the experimental data yield very good agreement with the averaged P-W/P-V distances determined from the X-ray diffraction measurements in the same or related compounds. REAPDOR is therefore a very sensitive P-V distance probe anticipated to be especially useful in the absence of long-range order. Our results suggest that REAPDOR spectroscopy could be broadly applicable for interatomic distance measurements in other spin-7/2-spin-1/2 nuclear pairs. PMID:17918932

  19. NMR shielding constants in PH3, absolute shielding scale, and the nuclear magnetic moment of 31P.

    PubMed

    Lantto, Perttu; Jackowski, Karol; Makulski, Włodzimierz; Olejniczak, Małgorzata; Jaszuński, Michał

    2011-09-29

    Ab initio values of the absolute shielding constants of phosphorus and hydrogen in PH(3) were determined, and their accuracy is discussed. In particular, we analyzed the relativistic corrections to nuclear magnetic resonance (NMR) shielding constants, comparing the constants computed using the four-component Dirac-Hartree-Fock approach, the four-component density functional theory (DFT), and the Breit-Pauli perturbation theory (BPPT) with nonrelativistic Hartree-Fock or DFT reference functions. For the equilibrium geometry, we obtained σ(P) = 624.309 ppm and σ(H) = 29.761 ppm. Resonance frequencies of both nuclei were measured in gas-phase NMR experiments, and the results were extrapolated to zero density to provide the frequency ratio for an isolated PH(3) molecule. This ratio, together with the computed shielding constants, was used to determine a new value of the nuclear magnetic dipole moment of (31)P: μ(P) = 1.1309246(50) μ(N).

  20. The mitochondrial precursor protein apocytochrome c strongly influences the order of the headgroup and acyl chains of phosphatidylserine dispersions. A sup 2 H and sup 31 P NMR study

    SciTech Connect

    Jordi, W.; de Kroon, A.I.P.M.; Killian, A.; de Kruijff, B. )

    1990-03-06

    Deuterium and phosphorus nuclear magnetic resonance techniques were used to study the interaction of the mitochondrial precursor protein apocytochrome c with headgroup-deuterated (dioleoylphosphatidyl-L-(2-{sup 2}H{sub 1})serine) and acyl chain deuterated (1,2-(11,11-{sup 2}H{sub 2})dioleoylphosphatidylserine) dispersions. Binding of the protein to dioleoylphosphatidylserine liposomes results in phosphorus nuclear magnetic resonance spectra typical of phospholipids undergoing fast axial rotation in extended liquid-crystalline bilayers with a reduced residual chemical shift anisotropy and an increased line width. {sup 2}H NMR spectra on headgroup-deuterated dioleoylphosphatidylserine dispersions showed a decrease in quadrupolar splitting and a broadening of the signal on interaction with apocytochrome c. Addition of increasing amounts of apocytochrome c to the acyl chain deuterated dioleoylphosphatidylserine dispersions results in the gradual appearance of a second component in the spectra with a 44% reduced quadrupolar splitting. Such large reduction of the quadrupolar splitting has never been observed for any protein studied yet. The induction of a new spectral component with a well-defined reduced quadrupolar splitting seems to be confined to the N-terminus since addition of a small hydrophilic amino-terminal peptide (residues 1-38) also induces a second component with a strongly reduced quadrupolar splitting. A chemically synthesized peptide corresponding to amino acid residues 2-17 of the presequence of the mitochondrial protein cytochrome oxidase subunit IV also has a large perturbing effect on the order of the acyl chains, indicating that the observed effects may be a property shared by many mitochondrial precursor proteins. Implications of these data for the import of apocytochrome c into mitochondria will be discussed.

  1. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state (13)C NMR and solution (31)P NMR spectroscopy.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Meng, Wei; He, Zhongqi; Feng, Weiying; Zhang, Chen; Giesy, John P

    2016-02-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state (13)C NMR and solution (31)P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes.

  2. sup 31 P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase

    SciTech Connect

    Brindle, K.; Braddock, P.; Fulton, S. )

    1990-04-03

    Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creating kinase activities similar to those found in mammalian heart muscle. {sup 31}P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06 and 0.1 measured directly in cell extracts.

  3. 31P NMR characterization and efficiency of new types of water-insoluble phosphate fertilizers to supply plant-available phosphorus in diverse soil types.

    PubMed

    Erro, Javier; Baigorri, Roberto; Yvin, Jean-Claude; Garcia-Mina, Jose M

    2011-03-09

    Hydroponic plant experiments demonstrated the efficiency of a type of humic acid-based water-insoluble phosphate fertilizers, named rhizosphere controlled fertilizers (RCF), to supply available phosphorus (P) to different plant species. This effect was well correlated to the root release of specific organic acids. In this context, the aims of this study are (i) to study the chemical nature of RCF using solid-state (31)P NMR and (ii) to evaluate the real efficiency of RCF matrix as a source of P for wheat plants cultivated in an alkaline and acid soil in comparison with traditional water-soluble (simple superphosphate, SSP) and water-insoluble (dicalcium phosphate, DCP) P fertilizers. The (31)P NMR study revealed the formation of multimetal (double and triple, MgZn and/or MgZnCa) phosphates associated with chelating groups of the humic acid through the formation of metal bridges. With regard to P fertilizer efficiency, the results obtained show that the RCF matrix produced higher plant yields than SSP in both types of soil, with DCP and the water-insoluble fraction from the RCF matrix (WI) exhibiting the best results in the alkaline soil. By contrast, in the acid soil, DCP showed very low efficiency, WI performed on a par with SSP, and RCF exhibited the highest efficiency, thus suggesting a protector effect of humic acid from soil fixation.

  4. Hetergeneous tumour response to photodynamic therapy assessed by in vivo localised 31P NMR spectroscopy.

    PubMed Central

    Ceckler, T. L.; Gibson, S. L.; Kennedy, S. D.; Hill, R.; Bryant, R. G.

    1991-01-01

    Photodynamic therapy (PDT) is efficacious in the treatment of small malignant lesions when all cells in the tumour receive sufficient drug, oxygen and light to induce a photodynamic effect capable of complete cytotoxicity. In large tumours, only partial effectiveness is observed presumably because of insufficient light penetration into the tissue. The heterogeneity of the metabolic response in mammary tumours following PDT has been followed in vivo using localised phosphorus NMR spectroscopy. Alterations in nucleoside triphosphates (NTP), inorganic phosphate (Pi) and pH within localised regions of the tumour were monitored over 24-48 h following PDT irradiation of the tumour. Reduction of NTP and increases in Pi were observed at 4-6 h after PDT irradiation in all regions of treated tumours. The uppermost regions of the tumours (those nearest the skin surface and exposed to the greatest light fluence) displayed the greatest and most prolonged reduction of NTP and concomitant increase in Pi resulting in necrosis. The metabolite concentrations in tumour regions located towards the base of the tumour returned a near pre-treatment levels by 24-48 h after irradiation. The ability to follow heterogeneous metabolic responses in situ provides one means to assess the degree of metabolic inhibition which subsequently leads to tumour necrosis. Images Figure 4 PMID:1829953

  5. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae

    NASA Astrophysics Data System (ADS)

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud

    2016-02-01

    31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ.

  6. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae.

    PubMed

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P; Ferrier-Pagès, Christine; Grover, Renaud

    2016-02-23

    (31)P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on (31)P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ.

  7. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae

    PubMed Central

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud

    2016-01-01

    31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ. PMID:26902733

  8. Direct Speciation of Phosphorus in Alum-Amended Poultry Litter: Solid-State 31P NMR Investigation

    SciTech Connect

    Hunger, Stefan; Cho, Herman M.; Sims, James T.; Sparks, Donald L.

    2004-02-01

    Amending poultry litter (PL) with aluminum sulfate (alum) has proven to be effective in reducing water-soluble phosphorus (P) in the litter and in runoff from fields that have received PL applications; it has therefore been suggested as a best management practice. Although its effectiveness has been demonstrated on a macroscopic scale in the field, little is known about P speciation in either alumamended or unamended litter. This knowledge is important for the evaluation of the long-term stability and bioavailability of P, which is a necessary prerequisite for the assessment of the sustainability of intensive poultry operations. Both solid state MAS and CP-MAS {sup 31}P NMR as well as {sup 31}P({sup 27}Al) TRAPDOR were used to investigate P speciation in alumamended and unamended PL. The results indicate the presence of a complex mixture of organic and inorganic orthophosphate phases. A calcium phosphate phase, probably a surface precipitate on calcium carbonate, could be identified in both unamended and alum-amended PL, as well as physically bound HPO{sub 4}{sup 2-}. Phosphate associated with Al was found in the alum-amended PL, most probably a mixture of a poorly ordered wavellite and phosphate surface complexes on aluminum hydroxide that had been formed by the hydrolysis of alum. However, a complex mixture of organic and inorganic phosphate species could not be resolved. Phosphate associated with Al comprised on average 40{+-}14% of the total P in alum-amended PL, whereas calcium phosphate phases comprised on average 7{+-}4% in the alum-amended PL and 14{+-}5% in the unamended PL.

  9. Structural and {sup 31}P NMR investigation of Bi(MM'){sub 2}PO{sub 6} statistic solid solutions: Deconvolution of lattice constraints and cationic influences

    SciTech Connect

    Colmont, Marie; Delevoye, Laurent; Ketatni, El Mostafa; Montagne, Lionel; Mentre, Olivier . E-mail: mentre@ensc-lille.fr

    2006-07-15

    Two solid solutions BiM{sub x} Mg{sub (2-x)}PO{sub 6} (with M {sup 2+}=Zn or Cd) have been studied through {sup 31}P MAS NMR. The analysis has been performed on the basis of refined crystal structures through X-ray diffraction and neutron diffraction. The BiZn {sub x} Mg{sub (2-x)}PO{sub 6} does not provide direct evidence for sensitive changes in the phosphorus local symmetry. This result is in good agreement with structural data which show nearly unchanged lattices and atomic separations through the Zn{sup 2+} for Mg{sup 2+} substitution. On the other hand, the Cd{sup 2+} for Mg{sup 2+} substitution behaves differently. Indeed, up to five resonances are observed, each corresponding to one of the five first-cationic neighbour distributions, i.e. 4Mg/0Cd, 3Mg/1Cd, 2Mg/2Cd, 1Mg/3Cd and 0Mg/4Cd. Their intensities match rather well the expected weight for each configuration of the statistical Cd{sup 2+}/Mg{sup 2+} mixed occupancy. The match is further improved when one takes into account the influence of the 2nd cationic sphere that is available from high-field NMR data (18.8 T). Finally, the fine examination of the chemical shift for each resonance versus x allows to de-convolute the mean Z/a {sup 2} effective field into two sub-effects: a lattice constraint-only term and a chemical-only term whose effects are directly quantifiable. - Graphical abstract: First (CdMg){sub 4} cationic sphere influence on the {sup 31}P NMR signal in Bi(Cd,Mg){sub 2}PO{sub 6}. Display Omitted.

  10. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state (31)P and (13)C NMR spectroscopy.

    PubMed Central

    Naito, A; Nagao, T; Norisada, K; Mizuno, T; Tuzi, S; Saitô, H

    2000-01-01

    The conformation and dynamics of melittin bound to the dimyristoylphosphatidylcholine (DMPC) bilayer and the magnetic orientation in the lipid bilayer systems were investigated by solid-state (31)P and (13)C NMR spectroscopy. Using (31)P NMR, it was found that melittin-lipid bilayers form magnetically oriented elongated vesicles with the long axis parallel to the magnetic field above the liquid crystalline-gel phase transition temperature (T(m) = 24 degrees C). The conformation, orientation, and dynamics of melittin bound to the membrane were further determined by using this magnetically oriented lipid bilayer system. For this purpose, the (13)C NMR spectra of site-specifically (13)C-labeled melittin bound to the membrane in the static, fast magic angle spinning (MAS) and slow MAS conditions were measured. Subsequently, we analyzed the (13)C chemical shift tensors of carbonyl carbons in the peptide backbone under the conditions where they form an alpha-helix and reorient rapidly about the average helical axis. Finally, it was found that melittin adopts a transmembrane alpha-helix whose average axis is parallel to the bilayer normal. The kink angle between the N- and C-terminal helical rods of melittin in the lipid bilayer is approximately 140 degrees or approximately 160 degrees, which is larger than the value of 120 degrees determined by x-ray diffraction studies. Pore formation was clearly observed below the T(m) in the initial stage of lysis by microscope. This is considered to be caused by the association of melittin molecules in the lipid bilayer. PMID:10777736

  11. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy.

    PubMed

    Williams, J P; Headrick, J P

    1996-08-07

    Free cytosolic concentrations of ATP, PCr, ADP and 5'-AMP, and the cytosolic [ATP]/[ADP].[Pi] ratio, were determined in isolated and in situ rat hearts using 31P-NMR spectroscopy. Total tissue metabolite concentrations were determined by HPLC analysis of freeze-clamped, perchloric acid-extracted tissue. In in situ myocardium the PCr/ATP ratio was 2.7 +/- 0.2 determined from 31P-NMR data (using either PCr/beta-NTP or PCr/gamma-NTP), and 1.9 +/- 0.1 (P < 0.01) determined from total tissue concentrations. 31P-NMR-determined and total tissue [PCr] were in excellent agreement (49.6 +/- 8.4 and 49.5 +/- 1.0 mumol.g-1 dry wt, respectively), whereas 31P-NMR-determined [ATP] (18.6 +/- 3.2 mumol.g-1 dry wt) was only 71% of the total tissue concentration (26.1 +/- 1.7 mumol.g-1 dry wt, P < 0.01). Isolation and Langendorff perfusion of rat hearts with glucose as substrate reduced total tissue [ATP] and [PCr] and the 31P-NMR-determined PCr/ATP ratio fell to 1.5 +/- 0.1. This value agreed well with the total tissue ratio of 1.4 +/- 0.1, and there was excellent agreement between 31P-NMR-determined and total tissue [PCr] and [ATP] values in the perfused heart. Addition of pyruvate to perfusate increased the 31P-NMR-determined PCr/ATP ratio to 1.7 +/- 0.1 due to elevated [PCr], and there remained excellent agreement between NMR-determined and total tissue [PCr] and [ATP] values. Free cytosolic [ADP] (from the creatine kinase equilibrium) was 5% of total tissue ADP, and free cytosolic [5'-AMP] (from the adenylate kinase equilibrium) ranged from 0.2-0.3% of total tissue 5'-AMP. Bioenergetic state, indexed by [ATP]/[ADP].[Pi], was much lower in isolated perfused hearts (30 mM-1) vs. in situ myocardium (approximately 150 mM-1). In summary, we observe a substantial disproportionality between total tissue PCr/ATP and 31P-NMR-determined PCr/ATP in highly energised in situ myocardium but not in isolated perfused hearts. This appears due to an NMR invisible ATP compartment approximating 29

  12. Phospholipid fingerprints of milk from different mammalians determined by 31P NMR: towards specific interest in human health.

    PubMed

    Garcia, Cyrielle; Lutz, Norbert W; Confort-Gouny, Sylviane; Cozzone, Patrick J; Armand, Martine; Bernard, Monique

    2012-12-01

    Our objective was to identify and quantify phospholipids in milk from different species (human HM, cow CoM, camel CaM, and mare MM) using an optimised (31)P NMR spectroscopy procedure. The phospholipid fingerprints were species-specific with a broader variety of classes found in HM and MM; HM and CaM were richer in sphingomyelin (78.3 and 117.5μg/ml) and plasmalogens (27.3 and 24μg/ml), possibly important for infant development. Total phospholipid content was higher in CaM (0.503mM) and lower in MM (0.101mM) compared to HM (0.324mM) or CoM (0.265mM). Our optimised method showed good sensitivity, high resolution, and easy sample preparation with minimal loss of target molecules. It is suitable for determining the accurate composition of a large number of bioactive phospholipids with putative health benefits, including plasmalogens, and should aid in selecting appropriate ingredient sources for infant milk substitutes or fortifiers, and for functional foods dedicated to adults.

  13. Quantitative 31P NMR analysis of solid wood offers an insight into the acetylation of its components.

    PubMed

    Sadeghifar, Hasan; Dickerson, James P; Argyropoulos, Dimitris S

    2014-11-26

    As a solid substrate, wood and its components are almost invariably examined via spectroscopic or indirect methods of analysis. Unlike earlier approaches, in this effort we dissolve pulverized wood in ionic liquid and then directly derive its functional group contents by quantitative (31)P NMR. As such, this novel analytical methodology is thoroughly examined and an insight into the detailed way acetylation proceeds on solid wood and its components is provided as a function of wood density and within its various anatomical features. As anticipated, the efficiency of acetylation was found to be greater within low density wood than in high density wood. The lignin, the cellulose and the hemicelluloses of the low density wood was found to be acetylated nearly twice as fast with remarkable differences in their quantitative degree of acetylation amongst them. This direct analytical data validates the applied methodology and confirms, for the first time, that the order of acetylation in solid wood is lignin>hemicellulose>cellulose and no reactivity differences exist between early wood and late wood.

  14. Study of hereditary fructose intolerance by use of 31P magnetic resonance spectroscopy.

    PubMed

    Oberhaensli, R D; Rajagopalan, B; Taylor, D J; Radda, G K; Collins, J E; Leonard, J V; Schwarz, H; Herschkowitz, N

    1987-10-24

    The effect of fructose on liver metabolism in patients with hereditary fructose intolerance (HFI) and in heterozygotes for HFI was studied by 31P magnetic resonance spectroscopy (31P-MRS). In patients with HFI (n = 5) ingestion of small amounts of fructose was followed by an increase in sugar phosphates and decrease in inorganic phosphate (Pi) in the liver that could be detected by 31P-MRS. 31P-MRS could be used to diagnose fructose intolerance and to monitor the patients' compliance with a fructose-restricted diet. In heterozygotes (n = 8) 50 g fructose given orally led to accumulation of sugar phosphates and depletion of Pi in the liver. Fructose also induced a larger increase in plasma urate in heterozygotes than in control subjects. The effect of fructose on liver Pi and plasma urate was most pronounced in heterozygotes with gout (n = 3). Heterozygosity for HFI may predispose to hyperuricaemia.

  15. Detailed Chemical Composition of Condensed Tannins via Quantitative (31)P NMR and HSQC Analyses: Acacia catechu, Schinopsis balansae, and Acacia mearnsii.

    PubMed

    Crestini, Claudia; Lange, Heiko; Bianchetti, Giulia

    2016-09-23

    The chemical composition of Acacia catechu, Schinopsis balansae, and Acacia mearnsii proanthocyanidins has been determined using a novel analytical approach that rests on the concerted use of quantitative (31)P NMR and two-dimensional heteronuclear NMR spectroscopy. This approach has offered significant detailed information regarding the structure and purity of these complex and often elusive proanthocyanidins. More specifically, rings A, B, and C of their flavan-3-ol units show well-defined and resolved absorbance regions in both the quantitative (31)P NMR and HSQC spectra. By integrating each of these regions in the (31)P NMR spectra, it is possible to identify the oxygenation patterns of the flavan-3-ol units. At the same time it is possible to acquire a fingerprint of the proanthocyanidin sample and evaluate its purity via the HSQC information. This analytical approach is suitable for both the purified natural product proanthocyanidins and their commercial analogues. Overall, this effort demonstrates the power of the concerted use of these two NMR techniques for the structural elucidation of natural products containing labile hydroxy protons and a carbon framework that can be traced out via HSQC.

  16. Ionization behavior of polyphosphoinositides determined via the preparation of pH titration curves using solid-state 31P NMR.

    PubMed

    Graber, Zachary T; Kooijman, Edgar E

    2013-01-01

    Detailed knowledge of the degree of ionization of lipid titratable groups is important for the evaluation of protein-lipid and lipid-lipid interactions. The degree of ionization is commonly evaluated by acid-base titration, but for lipids localized in a multicomponent membrane interface this is not a suitable technique. For phosphomonoester-containing lipids such as the polyphosphoinositides, phosphatidic acid, and ceramide-1-phosphate, this is more conveniently accomplished by (31)P NMR. Here, we describe a solid-state (31)P NMR procedure to construct pH titration curves to determine the degree of ionization of phosphomonoester groups in polyphosphoinositides. This procedure can also be used, with suitable sample preparation conditions, for other important signaling lipids. Access to a solid-state, i.e., magic angle spinning, capable NMR spectrometer is assumed. The procedures described here are valid for a Bruker instrument, but can be adapted for other spectrometers as needed.

  17. Analysis of the urinary excretion of ifosfamide and its N-dechloroethylated metabolites in children using 31P-NMR spectroscopy.

    PubMed

    Misiura, Konrad; Zubowska, Małgorzata; Zielińska, Elzbieta

    2003-01-01

    Amounts of ifosfamide (CAS 3778-73-2) and its N-dechloroethylated metabolites excreted in the urine were measured using 31P-NMR spectroscopy in 26 cancer children treated with this drug. Strong inter-patient variation in levels of these compounds were found. These differences were independent from patients age, body surface area, and sex, the dose of the drug, suggesting genetic base of observed variations in ifosfamide metabolism.

  18. 31P NMR Relaxation of Cortical Bone Mineral at Multiple Magnetic Field Strengths and Levels of Demineralization

    PubMed Central

    Seifert, Alan C.; Wright, Alexander C.; Wehrli, Suzanne L.; Ong, Henry H.; Li, Cheng; Wehrli, Felix W.

    2013-01-01

    Purpose Recent work has shown that solid-state 1H and 31P MRI can provide detailed insight into bone matrix and mineral properties, thereby potentially enabling differentiation of osteoporosis from osteomalacia. However, 31P MRI of bone mineral is hampered by unfavorable relaxation properties. Hence, accurate knowledge of these properties is critical to optimizing MRI of bone phosphorus. Methods In this work, 31P MRI signal-to-noise ratio (SNR) was predicted on the basis of T1 and T2* (effective transverse relaxation time) measured in lamb bone at six field strengths (1.5 – 11.7 T) and subsequently verified by 3-D ultra-short echo-time and zero echo-time imaging. Further, T1 was measured in deuterium-exchanged bone and partially demineralized bone. Results 31P T2* was found to decrease from 220.3 ± 4.3 μs to 98.0 ± 1.4 μs from 1.5 to 11.7 T, and T1 to increase from 12.8 ± 0.5 s to 97.3 ± 6.4 s. Deuteron substitution of exchangeable water showed that 76% of the 31P longitudinal relaxation rate is due to 1H-31P dipolar interactions. Lastly, hypomineralization was found to decrease T1, which may have implications for 31P MRI based mineralization density quantification. Conclusion Despite the steep decrease in the T2*/T1 ratio, SNR should increase with field strength as Bo0.4 for sample-dominated noise and as Bo1.1 for coil-dominated noise. This was confirmed by imaging experiments. PMID:23505120

  19. Differently saturated fatty acids can be differentiated by 31P NMR subsequent to derivatization with 2-chloro-4,4,5,5-tetramethyldioxaphospholane: a cautionary note.

    PubMed

    Eibisch, Mandy; Riemer, Thomas; Fuchs, Beate; Schiller, Jürgen

    2013-03-20

    The analysis of free fatty acid (FFA) mixtures is a very important but, even nowadays, challenging task. This particularly applies as the so far most commonly used technique-gas chromatography/mass spectrometry (GC/MS)-is tedious and time-consuming. It has been convincingly shown ( Spyros, A.; Dais, P. J. Agric. Food Chem. 2000, 48, 802 - 5) that FFA may be analyzed by (31)P NMR subsequent to derivatization with 2-chloro-4,4,5,5-tetramethyldioxaphospholane (CTDP). However, it was also indicated that differently unsaturated FFAs result in the same (31)P NMR chemical shift and cannot be differentiated. Therefore, only the overall fatty acid content of a sample can be determined by the CTDP assay. In contrast, we will show here by using high-field NMR (600 MHz spectrometer, i.e., 242.884 MHz for (31)P) that the CTDP assay may be used to differentiate FFAs that have pronounced differences in their double bond contents: saturated fatty acids (16:0), moderately unsaturated (18:1, 18:2), highly unsaturated (20:4), and extremely unsaturated fatty acids (22:6) result in slightly different chemical shifts. The same applies for oxidized fatty acids. Finally, it will also be shown that the CTDP derivatization products decompose in a time-dependent manner. Therefore, all investigations must adhere to a strict time regime.

  20. High Resolution NMR ^15N and ^31P NMR Of Antiferroelectric Phase Transition in Ammonium Dihydrogen Arsenate and Ammonium Dihydrogen Phosphate

    NASA Astrophysics Data System (ADS)

    Gunaydin-Sen, Ozge

    2005-03-01

    Natural abundance ^15N CPMAS NMR has been used to investigate the paraelectric-antiferroelectric phase transition of NH4H2AsO4 (ADA) (TN˜216K) and of NH4H2PO4 (ADP) (148K), with a focus on the role of the NH4^+ ion. Isotropic chemical shift of ^15N for ADA exhibits an almost linear temperature dependence to within TN±1K, and then changes discontinuously, followed by another almost linear dependence. The spectra of the paraelectric and antiferroelectric phases coexist around the TN. The sharp anomaly around TN implies that the NH4^+ ions undergo a displacive transition, whereas the protons in the O-HO bonds undergo an order-disorder transition. The ^15N data thus support a mixed order-disorder-displacive mechanism for this transition. The ^15N data on ADP exhibit somewhat different behavior. ^31P CPMAS measurements will also be presented and discussed in terms of the above model.

  1. Correcting human heart 31P NMR spectra for partial saturation. Evidence that saturation factors for PCr/ATP are homogeneous in normal and disease states

    NASA Astrophysics Data System (ADS)

    Bottomley, Paul A.; Hardy, Christopher J.; Weiss, Robert G.

    Heart PCr/ATP ratios measured from spatially localized 31P NMR spectra can be corrected for partial saturation effects using saturation factors derived from unlocalized chest surface-coil spectra acquired at the heart rate and approximate Ernst angle for phosphor creatine (PCr) and again under fully relaxed conditions during each 31P exam. To validate this approach in studies of normal and disease states where the possibility of heterogeneity in metabolite T1 values between both chest muscle and heart and normal and disease states exists, the properties of saturation factors for metabolite ratios were investigated theoretically under conditions applicable in typical cardiac spectroscopy exams and empirically using data from 82 cardiac 31P exams in six study groups comprising normal controls ( n = 19) and patients with dilated ( n = 20) and hypertrophic ( n = 5) cardiomyopathy, coronary artery disease ( n = 16), heart transplants ( n = 19), and valvular heart disease ( n = 3). When TR ≪ T1,(PCr), with T1(PCr) ⩾ T1(ATP), the saturation factor for PCr/ATP lies in the range 1.5 ± 0.5, regardless of the T1 values. The precise value depends on the ratio of metabolite T1 values rather than their absolute values and is insensitive to modest changes in TR. Published data suggest that the metabolite T1 ratio is the same in heart and muscle. Our empirical data reveal that the saturation factors do not vary significantly with disease state, nor with the relative fractions of muscle and heart contributing to the chest surface-coil spectra. Also, the corrected myocardial PCr/ATP ratios in each normal or disease state bear no correlation with the corresponding saturation factors nor the fraction of muscle in the unlocalized chest spectra. However, application of the saturation correction (mean value, 1.36 ± 0.03 SE) significantly reduced scatter in myocardial PCr/ATP data by 14 ± 11% (SD) ( p ⩽ 0.05). The findings suggest that the relative T1 values of PCr and ATP are

  2. Phospholipid compositions of sera and synovial fluids from dog, human and horse: a comparison by 31P-NMR and MALDI-TOF MS.

    PubMed

    Fuchs, B; Bondzio, A; Wagner, U; Schiller, J

    2009-08-01

    Alterations of the phospholipid (PL) compositions of body fluids are assumed to be indicative of inflammatory diseases, e.g. rheumatoid arthritis (RA). Recently, we have shown that particularly the phosphatidylcholine/lysophosphatidylcholine (PC/LPC) ratio determined in human synovial fluids (SF) and sera represents a reliable measure of the inflammatory state in RA patients. However, it is not yet clear to what extent the PC/LPC ratio is also affected by nutrition habits. In the present study, the PL and the corresponding acyl chain compositions of human body fluids (SF and serum of RA patients as well as serum from healthy volunteers) are compared with those of two other mammalian species (horses and dogs suffering from degenerative joint diseases as well as healthy controls) by high-resolution 31P-nuclear magnetic resonance (NMR) spectroscopy and matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS). The most important result of this study is that the PL compositions of SF and serum of horse and dog are comparable with those of human body fluids. Compared with humans, however, the horse body fluid contains less PCs with highly unsaturated arachidonoyl residues, while that of dogs possesses the highest content of arachidonoyl-containing PC. These species-related differences stem primarily from different nutrition habits (meat vs. plants).

  3. 31P NMR spectroscopy in the quality control and authentication of extra-virgin olive oil: a review of recent progress.

    PubMed

    Dais, Photis; Spyros, Apostolos

    2007-05-01

    This review is a brief account on the application of a novel methodology to the quality control and authentication of extra-virgin olive oil. This methodology is based on the derivatization of the labile hydrogens of functional groups, such as hydroxyl and carboxyl groups, of olive oil constituents with the phosphorus reagent 2-chloro-4,4,5,5-tetramethyldioxaphospholane, and the use of the (31)P chemical shifts to identify the phosphitylated compounds. Various experimental aspects such as pertinent instrumentation, sample preparation, acquisition parameters and properties of the phosphorus reagent are reviewed. The strategy to assign the (31)P signals of the phosphitylated model compounds and olive oil constituents by employing 1D and 2D NMR experiments is presented. Finally, the capability of this technique to assess the quality and the genuineness of extra-virgin olive oil and to detect fraud is discussed.

  4. Variations of different dissolved and particulate phosphorus classes during an algae bloom in a eutrophic lake by (31)P NMR spectroscopy.

    PubMed

    Bai, Xiuling; Sun, Jinhua; Zhou, Yunkai; Gu, Lei; Zhao, Hongyan; Wang, Jiehua

    2017-02-01

    Characterization of phosphorus (P) pools is vital to understanding the contribution of P to water eutrophication. In this study, dissolved and particulate P classes during an algae bloom in Lake Taihu, as well as their relationships with the main environmental factors, were analyzed based on solution (31)P NMR. The results showed that dissolved P was dominated by orthophosphate (Ortho-P) in heavily polluted regions and by orthophosphate monoester (Mono-P) and orthophosphate diester (Diester-P) in lightly polluted regions, indicating that the main dissolved P classes varied with the degree of lake pollution. The difference in the temporal variation patterns of dissolved P classes revealed that dissolved Ortho-P is the preferred class, and its concentration may be affected by major primary producers. It also revealed that dissolved Mono-P is prone to accumulation under the effects of algal blooms, especially in heavily polluted regions. The main particulate P classes were similar to those of dissolved P, but their variation trends were the same in different lake regions. There were significant positive correlations between the major particulate P classes and Chl a during the majority of the sampling period, indicating that living algal cells have a major contribution to particulate P. Obvious temporal variations of P classes may affect the bioavailability and dynamics of P in the water of Lake Taihu, but the particle reactivities of the main inorganic and organic P classes were similar. Therefore, they have little effect on P partitioning between the dissolved and particulate phases.

  5. Solid state {sup 31}P MAS NMR spectroscopy and conductivity measurements on NbOPO{sub 4} and H{sub 3}PO{sub 4} composite materials

    SciTech Connect

    Risskov Sørensen, Daniel; Nielsen, Ulla Gro; Skou, Eivind M.

    2014-11-15

    A systematic study of composite powders of niobium oxide phosphate (NbOPO{sub 4}) and phosphoric acid (H{sub 3}PO{sub 4}) has been performed in order to characterize the material's ability to perform as an electrolyte material in medium temperature fuel cells and electrolyzers. Powders of H{sub 3}PO{sub 4} contents between 13.1 and 74.2 M% were produced and characterized with powder X-ray diffraction, {sup 31}P MAS NMR and impedance spectroscopy. NMR revealed that a significant degree of dehydration and vaporization of H{sub 3}PO{sub 4} takes place above 200 °C, and increases with temperature. At 500 °C the NbOPO{sub 4} and H{sub 3}PO{sub 4} has reacted to form niobium pyrophosphate (Nb{sub 2}P{sub 4}O{sub 15}). Impedance spectroscopy showed an increase in conductivity with increasing acid concentration, whereas the conductivity decreased slightly with increasing temperature. The highest conductivity measured was 2.5·10{sup −3} S/cm for a sample containing 74.2 M% of H{sub 3}PO{sub 4}. Lastly, it was shown that NbOPO{sub 4} has no significant conductivity of its own. - Graphical abstract: Conductivity of NbOPO{sub 4}/H{sub 3}PO{sub 4} composites as a function of equivalent P{sub 2}O{sub 5} content. The conductivity is insignificant for pure NbOPO{sub 4}. - Highlights: • Composites have been made from NbOPO{sub 4} and H{sub 3}PO{sub 4}. • The composites composition has been investigated with solid state NMR. • The composites have shown clear signs of acid dehydration upon heating. • The conductivity of the composites increases for increasing acid content. • NbOPO{sub 4} has no significant conductivity of its own.

  6. Probing the PI3K/Akt/mTor pathway using 31P-NMR spectroscopy: routes to glycogen synthase kinase 3

    PubMed Central

    Phyu, Su M.; Tseng, Chih-Chung; Fleming, Ian N.; Smith, Tim A. D.

    2016-01-01

    Akt is an intracellular signalling pathway that serves as an essential link between cell surface receptors and cellular processes including proliferation, development and survival. The pathway has many downstream targets including glycogen synthase kinase3 which is a major regulatory kinase for cell cycle transit as well as controlling glycogen synthase activity. The Akt pathway is frequently up-regulated in cancer due to overexpression of receptors such as the epidermal growth factor receptor, or mutation of signalling pathway kinases resulting in inappropriate survival and proliferation. Consequently anticancer drugs have been developed that target this pathway. MDA-MB-468 breast and HCT8 colorectal cancer cells were treated with inhibitors including LY294002, MK2206, rapamycin, AZD8055 targeting key kinases in/associated with Akt pathway and the consistency of changes in 31P-NMR-detecatable metabolite content of tumour cells was examined. Treatment with the Akt inhibitor MK2206 reduced phosphocholine levels in MDA-MB-468 cells. Treatment with either the phosphoinositide-3-kinase inhibitor, LY294002 and pan-mTOR inhibitor, AZD8055 but not pan-Akt inhibitor MK2206 increased uridine-5′-diphosphate-hexose cell content which was suppressed by co-treatment with glycogen synthase kinase 3 inhibitor SB216763. This suggests that there is an Akt-independent link between phosphoinositol-3-kinase and glycogen synthase kinase3 and demonstrates the potential of 31P-NMR to probe intracellular signalling pathways. PMID:27811956

  7. Structural investigations of silicate-phosphate glasses containing MoO3 by FTIR, Raman and 31P MAS NMR spectroscopies

    NASA Astrophysics Data System (ADS)

    Szumera, Magdalena

    2014-09-01

    Molybdenum is a transition metal (refers to the “d” block of the periodic table) whose atom has an incomplete d sub-shell. It is known that in silicate glasses molybdenum may exist under four oxidation states: Mo6+, Mo5+, Mo4+ and Mo3+, simultaneously molybdenum cations, depending on their content in the glass network, may either be a glass forming component, or act as a modifier. The contemporary literature data show studies conducted mostly on the structure of silicate, phosphate, borate and borosilicate glasses containing molybdenum ions, but not silicate-phosphate glasses. Therefore, the author has undertaken detailed studies using FTIR, Raman and 31P MAS NMR techniques in order to examine the effect of MoO3 addition into the structure of silicate-phosphate glasses from SiO2sbnd P2O5sbnd K2Osbnd CaOsbnd MgO system. On the basis of obtained results it was concluded that molybdenum ions in the analysed glasses act as a modifier, which follows from the gradual breakage of oxygen bridges, i.e. Psbnd Osbnd P, Sisbnd Osbnd Si, and Sisbnd Osbnd P, and the following formation of connections such as Mo[MoO4]sbnd Osbnd Si and/or Mo[MoO4]sbnd Osbnd P. In summary, it is concluded that the increase of MoO3 content (up to 4.4 mol.%) in the structure of glasses of SiO2sbnd P2O5sbnd K2Osbnd MgOsbnd CaO system results in weakening of the structure and gradual increase of the degree of silico-oxygen and phosphor-oxygen frameworks depolymerisation.

  8. Structural investigations of silicate-phosphate glasses containing MoO3 by FTIR, Raman and 31P MAS NMR spectroscopies.

    PubMed

    Szumera, M

    2014-09-15

    Molybdenum is a transition metal (refers to the "d" block of the periodic table) whose atom has an incomplete d sub-shell. It is known that in silicate glasses molybdenum may exist under four oxidation states: Mo6+, Mo5+, Mo4+ and Mo3+, simultaneously molybdenum cations, depending on their content in the glass network, may either be a glass forming component, or act as a modifier. The contemporary literature data show studies conducted mostly on the structure of silicate, phosphate, borate and borosilicate glasses containing molybdenum ions, but not silicate-phosphate glasses. Therefore, the author has undertaken detailed studies using FTIR, Raman and 31P MAS NMR techniques in order to examine the effect of MoO3 addition into the structure of silicate-phosphate glasses from SiO2P2O5K2OCaOMgO system. On the basis of obtained results it was concluded that molybdenum ions in the analysed glasses act as a modifier, which follows from the gradual breakage of oxygen bridges, i.e. POP, SiOSi, and SiOP, and the following formation of connections such as Mo[MoO4]OSi and/or Mo[MoO4]OP. In summary, it is concluded that the increase of MoO3 content (up to 4.4 mol.%) in the structure of glasses of SiO2P2O5K2OMgOCaO system results in weakening of the structure and gradual increase of the degree of silico-oxygen and phosphor-oxygen frameworks depolymerisation.

  9. Hyposmotic shock: effects on rubidium/potassium efflux in normal and ischemic rat hearts, assessed by 87Rb and 31P NMR.

    PubMed

    Jilkina, Olga; Kuzio, Bozena; Kupriyanov, Valery V

    2003-01-20

    The study evaluated effects of hyposmotic shock on the rate of Rb(+)/K(+) efflux, intracellular pH and energetics in Langendorff-perfused rat hearts with the help of 87Rb- and 31P-NMR. Two models of hyposmotic shock were compared: (1) normosmotic hearts perfused with low [NaCl] (70 mM) buffer, (2) hyperosmotic hearts equilibrated with additional methyl alpha-D-glucopyranoside (Me-GPD, 90 or 33 mM) or urea (90 mM) perfused with normosmotic buffer. Four minutes after hyposmotic shock, Rb(+) efflux rate constant transiently increased approximately two-fold, while pH transiently decreased by 0.08 and 0.06 units, in the first and the second models, respectively, without significant changes in phosphocreatine and ATP. Hyposmotic shock (second model) did not change the rate of Rb(+)/K(+) uptake, indicating that the activity of Na(+)/K(+) ATPase was not affected. Dimethylamiloride (DMA) (10 microM) abolished activation of the Rb(+)/K(+) efflux in the second model; however, Na(+)/H(+) exchanger was not involved, because intracellular acidosis induced by the hyposmotic shock was not enhanced by DMA treatment. After 12 or 20 min of global ischemia, the rate of Rb(+)/K(+) efflux increased by 120%. Inhibitor of the ATP-sensitive potassium channels, glibenclamide (5 microM), partially (40%) decreased the rate constant; however, reperfusion with hyperosmolar buffer (90 mM Me-GPD) did not. We concluded that the shock-induced stimulation of Rb(+)/K(+) efflux occurred, at least partially, through the DMA-sensitive cation/H(+) exchanger and swelling-induced mechanisms did not considerably contribute to the ischemia-reperfusion-induced activation of Rb(+)/K(+) efflux.

  10. Characteristics and assessment of biogenic phosphorus in sediments from the multi-polluted Haihe River, China, using phosphorus fractionation and phosphorus-31 nuclear magnetic resonance (31P-NMR)

    NASA Astrophysics Data System (ADS)

    Zhang, W. Q.; Zhang, H.; Tang, W. Z.; Shan, B. Q.

    2013-10-01

    We studied the phosphorus (P) pollution, as described by concentrations, distribution and transformation potential, of sediments of the water scarce and heavily polluted Fuyang River, a tributary of the Haihe River, using P fractionation and phosphorus-31 nuclear magnetic resonance (31P-NMR).The sediments of the Fuyang River accumulate significant amounts of inorganic phosphorus (Pi) and organic phosphorus (Po) from industrial and domestic wastewater and agricultural non-point pollution. In terms of their contribution to total phosphorus, the rank order of the P fractions was as follows: H2SO4-P > NaOH-Pi > Res-P > NaOH-Po > KCl-P and their average relative proportions were 69.7:47.5:15.9:2.9:1.0 (the proportion was based on the average proportion of the KCl-P). Seven P compounds were detected by the 31P-NMR analysis. Orthophosphate (Ortho-P: 45.2-92.4%) and orthophosphate monoesters (mono-P: 6.6-45.7%) were the dominant forms. Smaller amounts of pyrophosphates (pyro-P: 0.1-6.6%), deoxyribonucleic acid (DNA-P: 0.3-3.9%), phosphonates (phon-P: 0-3.3%), phospholipids (lipids-P: 0-2.7%) and polyphosphate (poly-P: 0-0.04%) were observed in the sediments. Results of P fractionation and 31P-NMR analysis showed that 35% of Pi was labile P, including KCl-P and NaOH-Pi (Fe-P and Al-P). Biogenic-P accounted for 24% of P in the sediments. Analysis of the relationships between P species and water quality indicated that the Po compounds would mineralize to form ortho-P and would be potentially bioavailable for recycling to surface water, supporting further growth of phytoplankton and leading to algal blooms.

  11. Transport of phosphocholine in higher plant cells: sup 31 P nuclear magnetic resonance studies

    SciTech Connect

    Gout, E.; Bligny, R.; Roby, C.; Douce, R. )

    1990-06-01

    Phosphocholine (PC) is an abundant primary form of organic phosphate that is transported in plant xylem sap. Addition of PC to the perfusate of compressed P{sub i}-starved sycamore cells monitored by {sup 31}P NMR spectroscopy resulted in an accumulation of PC and all the other phosphate esters in the cytoplasmic compartment. Addition of hemicholinium-3, an inhibitor of choline uptake, to the perfusate inhibited PC accumulation but not inorganic phosphate (P{sub i}). When the P{sub i}-starved cells were perfused with a medium containing either P{sub i} or PC, the resulting P{sub i} distribution in the cell was the same. Addition of choline instead of PC to the perfusate of compressed cells resulted in an accumulation of PC in the cytoplasmic compartment from choline kinase activity. In addition, PC phosphatase activity has been discovered associated with the cell wall. These results indicate that PC was rapidly hydrolyzed outside the cell and that choline and P{sub i} entered the cytosolic compartment where choline kinase re-forms PC.

  12. Transport of phosphocholine in higher plant cells: 31P nuclear magnetic resonance studies.

    PubMed Central

    Gout, E; Bligny, R; Roby, C; Douce, R

    1990-01-01

    Phosphocholine (PC) is an abundant primary form of organic phosphate that is transported in plant xylem sap. Addition of PC to the perfusate of compressed Pi-starved sycamore cells monitored by 31P NMR spectroscopy resulted in an accumulation of PC and all the other phosphate esters in the cytoplasmic compartment. Addition of hemicholinium-3, an inhibitor of choline uptake, to the perfusate inhibited PC accumulation but not inorganic phosphate (Pi). When the Pi-starved cells were perfused with a medium containing either Pi or PC, the resulting Pi distribution in the cell was the same. Addition of choline instead of PC to the perfusate of compressed cells resulted in an accumulation of PC in the cytoplasmic compartment from choline kinase activity. In addition, PC phosphatase activity has been discovered associated with the cell wall. These results indicate that PC was rapidly hydrolyzed outside the cell and that choline and Pi entered the cytosolic compartment where choline kinase re-forms PC. PMID:11607080

  13. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples.

  14. β,γ-CHF- and β,γ-CHCl-dGTP diastereomers: synthesis, discrete 31P NMR signatures and absolute configurations of new stereochemical probes for DNA polymerases

    PubMed Central

    Wu, Yue; Zakharova, Valeria M.; Kashemirov, Boris A.; Goodman, Myron F.; Batra, Vinod K.; Wilson, Samuel H.; McKenna, Charles E.

    2012-01-01

    Deoxynucleoside 5′-triphosphate analogues in which the β,γ-bridging oxygen has been replaced with a CXY group are useful chemical probes to investigate DNA polymerase catalytic and base selection mechanisms. A limitation of such probes has been that conventional synthetic methods generate a mixture of diastereomers when the bridging carbon substitution is non-equivalent (X ≠ Y). We report here a general solution to this long-standing problem with four examples of individual β,γ-CXY dNTP diastereomers: (S)- and (R)-β,γ-CHCl dGTP (12a-1, 12a-2) and (S)- and (R)-β,γ-CHF dGTP (12b-1, 12b-2). Central to their preparation was conversion of the achiral parent bisphosphonic acids to P,C-dimorpholinamide derivatives (7) of their (R)-mandelic acid monoesters (6), which provided access to the individual diastereomers 7a-1, 7a-2, 7b-1, and 7b-2 by preparative HPLC. Selective acidic hydrolysis of the P-N bond then afforded the “ portal ” diastereomers 10, which were readily coupled to morpholine-activated dGMP. Removal of the chiral auxiliary by H2 (Pd/C) afforded the four individual diastereomeric nucleotides (12), which were characterized by 31P, 1H and 19F NMR, and by MS. After treatment with Chelex®-100 to remove traces of paramagnetic ions, at pH ~10 the diastereomer pairs 12a and 12b exhibit discrete Pα and Pβ 31P resonances. The more upfield Pα and more downfield Pβ resonances (and also the more upfield 19F NMR resonance in 12b) are assigned to the (R) configuration at the Pβ-CHX-Pγ carbons, based on the absolute configurations of the individual diastereomers as determined by X-ray crystallographic structures of their ternary complexes with DNA-pol β. PMID:22397499

  15. In vivo sup 23 Na and sup 31 P NMR measurement of a tonoplast Na sup + /H sup + exchange process and its characteristics in two barley cultivars

    SciTech Connect

    Fan, T.W.M.; Norlyn, J.; Epstein, E. ); Higashi, R.M. )

    1989-12-01

    A Na{sup +} uptake-associated vacuolar alkalinization was observed in roots of two barley cultivars (Arivat and the more salt-tolerant California Mariout) by using {sup 23}Na and {sup 31}P in vivo NMR spectroscopy. A NaCl uptake-associated broadening was also noted for both vacuolar P{sub i} and intracellular Na NMR peaks, consistent with Na{sup +} uptake into the same compartment as the vacuolar P{sub i}. A close coupling of Na{sup +} with H{sup +} transport (presumably the Na{sup +}/H{sup +} antiport) in vivo was evidence by qualitative and quantitative correlations between Na{sup +} accumulation and vacuolar alkalinization for both cultivars. Prolongation of the low NaCl pretreatment (30 mM) increased the activity of the putative antiport in Arivat but reduced it in California Mariout. This putative antiport also showed a dependence on NaCl concentration for California Mariout but not for Arivat. No cytoplasmic acidification accompanied the antiporter activity for either cultivar. The response of adenosine phosphates indicated that ATP utilization exceeded the capacity for ATP synthesis in Arivat, but the two processes seemed balanced in California Mariout. These comparisons provide clues to the role of the tonoplast Na{sup +}/H{sup +} antiport and compensatory cytoplasmic adjustments including pH, osymolytes, and energy phosphates in governing the different salt tolerance of the two cultivars.

  16. Functional pools of fast and slow twitch fibers observed by /sup 31/P-NMR during exercise of flexor wrist muscles in man

    SciTech Connect

    Park, J.H.; Park, C.R.; Brown, R.L.; Chance, B.

    1987-05-01

    Functional compartments of fast and slow twitch fibers have been observed by /sup 31/P-NMR spectroscopy during exercise of the wrist flexor muscles in a sedentary, young male subject. Values of Pi, phosphocreatine (PCr) and adenine nucleotides were determined at rest and during an exercise protocol. The subject flexed his wrist muscles at 20% of maximum strength every 5 sec for 6 min and then increased his effort in the next two 6 min intervals to 40% and 60% of maximum. With exercise, the Pi/PCr rose rapidly to the exceptionally high value of 2.2 at 60% effort. As the Pi increased, the initial single peak (pH 7.0-6.9) split into two distinct components with pH values of 6.8 and 6.3. Quantitatively, distribution of the Pi was 40% in the pH 6.8 peak and 60% in the pH 6.3 peak as determined by area estimation following curve fitting. This presumably reflects two pools of Pi corresponding to the oxidative (slow twitch, high pH) and glycolytic (fast twitch, low pH) fibers. In the second identical exercise sequence which followed immediately, only one Pi peak (pH 6.8-6.9) appeared. This suggested that the glycolytic contribution to energy production was largely exhausted and the residual energy was derived from oxidative metabolism. During exercise at high levels, total phosphate decreased due primarily to loss of NMR visible adenine nucleotides. Similar phenomena have been observed in three other sedentary individuals, but not in trained athletes.

  17. Synthesis, crystal structure, vibrational and 31P-NMR spectroscopy of the thiophosphate NaMg[PO3S]·9H2O

    NASA Astrophysics Data System (ADS)

    Höppe, Henning A.; Scharinger, Stefan W.; Heck, Joachim G.; Gross, Peter; Netzsch, Philip; Kazmierczak, Karolina

    2016-12-01

    NaMg[PO3S]·9H2O was obtained as single-phase crystalline powder starting from NaOH, PSCl3 and MgCl2·6H2O. At room temperature NaMg[PO3S]·9H2O crystallises in space group Cmc21 (no. 36) (a=638.58(4) pm, b=1632.31(10) pm, c=1217.16(7) pm, Z = 4; Rint = 0.032, Rσ = 0.034, R1 = 0.036, wR2 = 0.071). The data collection at 100 K reveals an ordering of the PO3S tetrahedra by undergoing a symmetry reduction to P21 (no. 4) and an according formation of twins (C1121, unconv. setting of P21, a=631.41(3) pm, b=1630.00(7) pm, c=1219.24(5) pm, γ=90.00(2)°, Z = 4; Rint = 0.115, Rσ = 0.064, R1 = 0.045, wR2 = 0.070). NaMg[PO3S]·9H2O comprises isolated PO3S tetrahedra, distorted MgO6 octahedra and trigonal NaO6 prisms. 31P NMR spectroscopy showed a chemical shift of 33.7 ppm. The vibrational spectra of NaMg[PO3S]·9H2O were recorded and the relevant bands were assigned.

  18. Geographical characterization of greek virgin olive oils (cv. Koroneiki) using 1H and 31P NMR fingerprinting with canonical discriminant analysis and classification binary trees.

    PubMed

    Petrakis, Panos V; Agiomyrgianaki, Alexia; Christophoridou, Stella; Spyros, Apostolos; Dais, Photis

    2008-05-14

    This work deals with the prediction of the geographical origin of monovarietal virgin olive oil (cv. Koroneiki) samples from three regions of southern Greece, namely, Peloponnesus, Crete, and Zakynthos, and collected in five harvesting years (2001-2006). All samples were chemically analyzed by means of 1H and 31P NMR spectroscopy and characterized according to their content in fatty acids, phenolics, diacylglycerols, total free sterols, free acidity, and iodine number. Biostatistical analysis showed that the fruiting pattern of the olive tree complicates the geographical separation of oil samples and the selection of significant chemical compounds. In this way the inclusion of the harvesting year improved the classification of samples, but increased the dimensionality of the data. Discriminant analysis showed that the geographical prediction at the level of three regions is very high (87%) and becomes (74%) when we pass to the thinner level of six sites (Chania, Sitia, and Heraklion in Crete; Lakonia and Messinia in Peloponnesus; Zakynthos). The use of classification and binary trees made possible the construction of a geographical prediction algorithm for unknown samples in a self-improvement fashion, which can be readily extended to other varieties and areas.

  19. Synthesis, structure, and /sup 31/P and /sup 183/W NMR spectra of P/sub 4/W/sub 14/O/sub 58//sup 12/minus//

    SciTech Connect

    Thouvenot, R.; Teze, A.; Contant, R.; Herve, G.

    1988-02-10

    The P/sub 4/W/sub 14/O/sub 58//sup 12/minus// anion was obtained from the reaction of sodium tungstate and sodium phosphate in acetic acid. The structure of K/sub 12/P/sub 4/W/sub 14/O/sub 58/ /times/ 21H/sub 2/O (monoclinic, C2/c; a = 22.145 (6) /angstrom/, b = 15.823 (2) /angstrom/, c = 21.860 (4) /angstrom/, /beta/ = 109.54 (2)/degree/; Z = 4) has been refined to final indices R and R/sub w/ of 0.048 and 0.055. The polyanion consists on two PW/sub 7/O/sub 29/ subunits linked by two phosphorus atoms. This dimeric structure is preserved in aqueous solution as shown by /sup 183/W and /sup 31/P NMR spectra. Unusual spin-spin coupling constants, i.e. /sup 2/J/sub W-P/ = 18, 10.2 Hz and /sup 2/J/sub W-W/ = 37 Hz, as well as a four-bond coupling (/sup 4/j/sub W-P/ of about 2 Hz) are discussed in relation to the structural parameters. Some characteristic features of the vibrational (IR and Raman) spectra are also discussed. 20 refs., 6 figs., 4 tabs.

  20. Concurrent quantification of tissue metabolism and blood flow via 2H/31P NMR in vivo. III. Alterations of muscle blood flow and metabolism during sepsis.

    PubMed

    Song, S K; Hotchkiss, R S; Karl, I E; Ackerman, J J

    1992-05-01

    In the conclusion of this series of reports, the application of 31P/2H NMR to investigate the pathophysiology of sepsis in rat hindlimb muscle is demonstrated. Sepsis decreased muscle [PCr] by 18%, 18 +/- 4 SD vs 22 +/- 4 SD mmol/kg tissue wet wt (P = 0.01) in control rats but [ATP] was unchanged, 6 mmol/kg tissue wet wt (P = 0.2). The derived free cytosolic [ADP] in the two groups was similar, [ADP]septic = 0.023 +/- 0.004 SD and [ADP]control = 0.021 +/- 0.003 SD mmol/kg tissue wet wt, and not statistically different (P = 0.14). Likewise [Pi] in the septic and control groups was not statistically different, [Pi]septic = 1.1 +/- 0.5 SD and [Pi]control = 1.2 +/- 0.4 SD mmol/kg tissue wet wt (P = 0.2). Septic rats presented the symptom of respiratory alkalosis evidenced by elevated blood pH. Sepsis decreased muscle blood flow by 33%, P = 0.003, but examination of individual subjects did not demonstrate a correlation with the reduction in [PCr]. Thus, a metabolic energy deficit caused by cellular ischemia/hypoxia is not a likely cause of cellular abnormality in rat hindlimb muscle during sepsis.

  1. Classification of edible oils by employing 31P and 1H NMR spectroscopy in combination with multivariate statistical analysis. A proposal for the detection of seed oil adulteration in virgin olive oils.

    PubMed

    Vigli, Georgia; Philippidis, Angelos; Spyros, Apostolos; Dais, Photis

    2003-09-10

    A combination of (1)H NMR and (31)P NMR spectroscopy and multivariate statistical analysis was used to classify 192 samples from 13 types of vegetable oils, namely, hazelnut, sunflower, corn, soybean, sesame, walnut, rapeseed, almond, palm, groundnut, safflower, coconut, and virgin olive oils from various regions of Greece. 1,2-Diglycerides, 1,3-diglycerides, the ratio of 1,2-diglycerides to total diglycerides, acidity, iodine value, and fatty acid composition determined upon analysis of the respective (1)H NMR and (31)P NMR spectra were selected as variables to establish a classification/prediction model by employing discriminant analysis. This model, obtained from the training set of 128 samples, resulted in a significant discrimination among the different classes of oils, whereas 100% of correct validated assignments for 64 samples were obtained. Different artificial mixtures of olive-hazelnut, olive-corn, olive-sunflower, and olive-soybean oils were prepared and analyzed by (1)H NMR and (31)P NMR spectroscopy. Subsequent discriminant analysis of the data allowed detection of adulteration as low as 5% w/w, provided that fresh virgin olive oil samples were used, as reflected by their high 1,2-diglycerides to total diglycerides ratio (D > or = 0.90).

  2. Modeling Ti/Ge Distribution in LiTi2-xGex(PO4)3 NASICON Series by (31)P MAS NMR and First-Principles DFT Calculations.

    PubMed

    Diez-Gómez, Virginia; Arbi, Kamel; Sanz, Jesús

    2016-08-03

    Ti/Ge distribution in rhombohedral LiTi2-xGex(PO4)3 NASICON series has been analyzed by (31)P magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and first-principles density functional theory (DFT) calculations. Nuclear magnetic resonance is an excellent probe to follow Ti/Ge disorder, as it is sensitive to the atomic scale environment without long-range periodicity requirements. In the samples considered here, PO4 units are surrounded by four Ti/Ge octahedra, and then, five different components ascribed to P(OTi)4, P(OTi)3(OGe), P(OTi)2(OGe)2, P(OTi)(OGe)3, and P(OGe)4 environments are expected in (31)P MAS NMR spectra of R3̅c NASICON samples. However, (31)P MAS NMR spectra of analyzed series display a higher number of signals, suggesting that, although the overall symmetry remains R3̅c, partial substitution causes a local decrement in symmetry. With the aid of first-principles DFT calculations, 10 detected (31)P NMR signals have been assigned to different Ti4-nGen arrangements in the R3 subgroup symmetry. In this assignment, the influence of octahedra of the same or different R2(PO4)3 structural units has been considered. The influence of bond distances, angles and atom charges on (31)P NMR chemical shieldings has been discussed. Simulation of the LiTi2-xGex(PO4)3 series suggests that detection of 10 P environments is mainly due to the existence of two oxygen types, O1 and O2, whose charges are differently affected by Ge and Ti occupation of octahedra. From the quantitative analysis of detected components, a random Ti/Ge distribution has been deduced in next nearest neighbor (NNN) sites that surround tetrahedral PO4 units. This random distribution was supported by XRD data displaying Vegard's law.

  3. Using solid (13)C NMR coupled with solution (31)P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; Wang, Hao; He, Zhongqi; Guo, Wenjing; Song, Fanhao; Giesy, John P

    2017-01-01

    Forms and labilities of plant-derived organic matters (OMs) including carbon (C) and phosphorus (P) were fundamental for understanding their release, degradation and environmental behaviour in lake ecosystems. Thus, solid (13)C and solution (31)P nuclear magnetic resonance (NMR) spectroscopy were used to characterize biomass of six aquatic plants in Tai Lake, China. The results showed that carbohydrates (61.2% of the total C) were predominant C functional group in the solid (13)C NMR spectra of plant biomass, which may indicate high lability and bioavailability of aquatic plants-derived organic matter in lakes. There was 72.6-103.7% of the total P in aquatic plant biomass extracted by NaOH-EDTA extracts. Solution (31)P NMR analysis of these NaOH-EDTA extracts further identified several molecular species of P including orthophosphate (50.1%), orthophosphate monoesters (46.8%), DNA (1.6%) and pyrophosphate (1.4%). Orthophosphate monoesters included β-glycerophosphate (17.7%), hydrolysis products of RNA (11.7%), α-glycerophosphate (9.2%) and other unknown monoesters (2.1%). Additionally, phytate, the major form of organic P in many lake sediments, was detected in floating plant water poppy. These inorganic P (e.g. orthophosphate and pyrophosphate) and organic P (e.g. diester and its degradation products) identified in plant biomass were all labile and bioavailable P, which would play an important role in recycling of P in lakes. These results increased knowledge of chemical composition and bioavailability of OMs derived from aquatic plants in lakes.

  4. An examination of the metabolic processes underpinning critical swimming in Atlantic cod (Gadus morhua L.) using in vivo 31P-NMR spectroscopy.

    PubMed

    Lurman, Glenn J; Bock, Christian H; Pörtner, Hans-O

    2007-11-01

    Traditionally, critical swimming speed has been defined as the speed when a fish can no longer propel itself forward, and is exhausted. To gain a better understanding of the metabolic processes at work during a U(crit) swim test, and that lead to fatigue, we developed a method using in vivo (31)P-NMR spectroscopy in combination with a Brett-type swim tunnel. Our data showed that a metabolic transition point is reached when the fish change from using steady state aerobic metabolism to non-steady state anaerobic metabolism, as indicated by a significant increase in inorganic phosphate levels from 0.3+/-0.3 to 9.5+/-3.4 mol g(-1), and a drop in intracellular pH from 7.48+/-0.03 to 6.81+/-0.05 in muscle. This coincides with the point when the fish change gait from subcarangiform swimming to kick-and-glide bursts. As the number of kicks increased, so too did the Pi concentration, and the pH(i) dropped. Both changes were maximal at U(crit). A significant drop in Gibbs free energy change of ATP hydrolysis from -55.6+/-1.4 to -49.8+/-0.7 kJ mol(-1) is argued to have been involved in fatigue. This confirms earlier findings that the traditional definition of U(crit), unlike other critical points that are typically marked by a transition from aerobic to anaerobic metabolism, is the point of complete exhaustion of both aerobic and anaerobic resources.

  5. 31P NMR 2D Mapping of Creatine Kinase Forward Flux Rate in Hearts with Postinfarction Left Ventricular Remodeling in Response to Cell Therapy

    PubMed Central

    Gao, Ling; Cui, Weina; Zhang, Pengyuan; Jang, Albert; Zhu, Wuqiang; Zhang, Jianyi

    2016-01-01

    Utilizing a fast 31P magnetic resonance spectroscopy (MRS) 2-dimensional chemical shift imaging (2D-CSI) method, this study examined the heterogeneity of creatine kinase (CK) forward flux rate of hearts with postinfarction left ventricular (LV) remodeling. Immunosuppressed Yorkshire pigs were assigned to 4 groups: 1) A sham-operated normal group (SHAM, n = 6); 2) A 60 minutes distal left anterior descending coronary artery ligation and reperfusion (MI, n = 6); 3) Open patch group; ligation injury plus open fibrin patch over the site of injury (Patch, n = 6); and 4) Cell group, hiPSCs-cardiomyocytes, -endothelial cells, and -smooth muscle cells (2 million, each) were injected into the injured myocardium pass through a fibrin patch (Cell+Patch, n = 5). At 4 weeks, the creatine phosphate (PCr)/ATP ratio, CK forward flux rate (Flux PCr→ATP), and k constant of CK forward flux rate (kPCr→ATP) were severely decreased at border zone myocardium (BZ) adjacent to MI. Cell treatment results in significantly increase of PCr/ATP ratio and improve the value of kPCr→ATP and Flux PCr→ATP in BZ myocardium. Moreover, the BZ myocardial CK total activity and protein expression of CK mitochondria isozyme and CK myocardial isozyme were significantly reduced, but recovered in response to cell treatment. Thus, cell therapy results in improvement of BZ bioenergetic abnormality in hearts with postinfarction LV remodeling, which is accompanied by significantly improvements in BZ CK activity and CK isozyme expression. The fast 2D 31P MR CSI mapping can reliably measure the heterogeneity of bioenergetics in hearts with post infarction LV remodeling. PMID:27606901

  6. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling.

    PubMed

    Barabás, Orsolya; Németh, Veronika; Bodor, Andrea; Perczel, András; Rosta, Edina; Kele, Zoltán; Zagyva, Imre; Szabadka, Zoltán; Grolmusz, Vince I; Wilmanns, Matthias; Vértessy, Beáta G

    2013-12-01

    Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason-Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy ((31)P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme-product complex structure.

  7. Distance measurements in disodium ATP hydrates by means of 31P double quantum two-dimensional solid-state NMR spectroscopy.

    PubMed

    Potrzebowski, M J; Gajda, J; Ciesielski, W; Montesinos, I M

    2006-04-01

    POST-C7 measurements provide constraints allowing distinguishing crystal lattice organization and establishing intra and/or intermolecular distances between phosphorus atoms of triphosphate chains for different hydrates of disodium ATP salts. Double-quantum efficiency in function of excitation time obtained from series of two-dimensional spectra for POST-C7 experiments was used to set up of buildup curves and semi-quantitative measure of 31P-31P length.

  8. Interplay between Fe 3d and Ce 4f magnetism and Kondo interaction in CeFeAs(1-x)P(x)O probed by 75As and 31P NMR.

    PubMed

    Sarkar, R; Baenitz, M; Jesche, A; Geibel, C; Steglich, F

    2012-04-04

    A detailed (31)P (I = 1/2) and (75)As (I = 3/2) NMR study on polycrystalline CeFeAs(1-x)P(x)O alloys is presented. The magnetism of CeFeAsO changes drastically upon P substitution on the As site. CeFePO is a heavy fermion system without long-range order whereas CeFeAsO exhibits an Fe 3d SDW type of ordering accompanied by a structural transition from tetragonal (TT) to orthorhombic (OT) structure. Furthermore, Ce 4f(1) orders antiferromagnetically (AFM) at low temperature. At the critical concentration where the Fe magnetism is diminished the Ce-Ce interaction changes to a ferromagnetic (FM) type of ordering. Three representative samples of the CeFeAs(1-x)P(x)O (x = 0.05, 0.3 and 0.9) series are systematically investigated. (1) For the x = 0.05 alloy a drastic change of the linewidth at 130 K indicates the AFM-SDW type of ordering of Fe and the structural change from the TT to the OT phase. The linewidth roughly measures the internal field in the ordered state and the transition is most likely first order. The small and nearly constant shift from (31)P and (75)As NMR suggests the presence of competing hyperfine interactions between the nuclear spins and the 4f and 3d ions of Ce and Fe. (2) For the x = 0.3 alloy, the evolution of the Fe-SDW type of order takes place at around 70 K corroborating the results of bulk measurement and μSR. Here we found evidence for phase separation of paramagnetic and magnetic SDW phases. (3) In contrast to the heavy fermion CeFePO for the x = 0.9 alloy a phase transition is found at 2 K. The field-dependent NMR shift gives evidence of FM ordering. Above the ordering the spin-lattice relaxation rate (31)(1/T(1)) shows unconventional, non-Korringa-like behaviour which indicates a complex interplay of Kondo and FM fluctuations.

  9. 27Al, 47,49Ti, 31P, and 13C MAS NMR Study of VX, GD, and HD Reactions with Nanosize Al2O3, Conventional Al2O3 and TiO2, and Aluminum and Titanium Metal

    DTIC Science & Technology

    2007-01-01

    reactions involved and peak assignments for titanophosphonate 3, Ti(m) and anatase (see text). 17568 J. Phys. Chem. C , Vol. 111, No. 47, 2007 Wagner et al...postulated to be Ti(O)[O2P(CH3)OPin]2, in agreement with elemental analysis. High-field 47,49Ti MAS NMR of anatase shows marked narrowing of its signals...Metal 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Reactions of VX, GD, and HD with Al2O3, TiO2 ( anatase and rutile), aluminum, and titanium metal

  10. Liquid-liquid extraction of metal ions by neutral phosphoramides. Part I. Extraction of uranyl ions from nitrate and sulphate media. Examination of extracted species by UV/VIS and {sup 31}P NMR spectroscopy

    SciTech Connect

    Rodehueser, L.; Rubini, P.R.; Bokolo, K.; Laakel, N.; Delpuech, J.J.

    1992-09-01

    The extraction of uranyl nitrate and uranyl sulphate from aqueous media by the neutral chelating diphosphoramides CH{sub 3}-N[P(O)(NMe{sub 2}){sub 2}]{sub 2} (NIPA) and its less hydrophilic homologs R-N[P(O)(NMe{sub 2}){sub 2}]{sub 2} (R = -C{sub 12}H{sub 25} (ODIPA) or -C{sub 16}H{sub 33} (OHDIPA)), diluted in CH{sub 3}NO{sub 2} or toluene, has been studied. In the presence of HNO{sub 3}, NaNO{sub 3}, NaCl, and Na{sub 2}SO{sub 4} as salting-out agents, extraction is generally excellent. Some of the extracted complex species have been identified by comparing their {sup 31}P NMR and UV/vis spectra with those of pure complexes of known structure. The results are compared with extractions using tri-n-butyl phosphate (TBP) as the complexing agent. 20 refs., 9 figs., 4 tabs.

  11. NMR studies on polyphosphide Ce6Ni6P17

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Yamada, H.; Ueda, K.; Mito, T.; Aoyama, Y.; Nakano, T.; Takeda, N.

    2016-02-01

    We report the result of 31P nuclear magnetic resonance (NMR) studies on Ce6Ni6P17. The observed NMR spectra show a Lorentzian-type and an asymmetric shapes, reflecting the local symmetry around each P site in the cubic unit cell. We have identified the observed NMR lines corresponding to three inequivalent P sites and deduced the temperature dependence of the Knight shift for each site. The Knight shifts increase with decreasing temperature down to 1.5 K, indicating a localized spin system of Ce6Ni6P17. Antiferromagnetic correlation between 4f spins is suggested from the negative sign of the Weiss-temperature.

  12. Determination of the enantiomeric excess of chiral carboxylic acids by 31P NMR with phosphorylated derivatizing agents from C2-symmetrical diamines containing the (S)-alpha-phenylethyl group.

    PubMed

    Mastranzo, Virginia M; Quintero, Leticia; de Parrodi, Cecilia Anaya

    2007-06-01

    The use of P(III) and P(V) organophosphorus derivatizing agents prepared from C(2) symmetrical (1R,2R)- and (1S,2S)-trans-N,N'-bis-[(S)-alpha-phenylethyl]-cyclohexane-1,2-diamines 1 and 2, as well as (1R,2R)- and (1S,2S)-trans-N,N'-bis-[(S)-alpha-phenylethyl]-4-cyclohexene-1,2-diamines 3 and 4 for the determination of enantiomeric composition of chiral carboxylic acids by (31)P NMR, is described.

  13. Quantitative 31P NMR for Simultaneous Trace Analysis of Organophosphorus Pesticides in Aqueous Media Using the Stir Bar Sorptive Extraction Method

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Talebpour, Z.; Molaabasi, F.; Bijanzadeh, H. R.; Khazaeli, S.

    2016-09-01

    The analysis of pesticides in water samples is of primary concern for quality control laboratories due to the toxicity of these compounds and their associated public health risk. A novel analytical method based on stir bar sorptive extraction (SBSE), followed by 31P quantitative nuclear magnetic resonance (31P QNMR), has been developed for simultaneously monitoring and determining four organophosphorus pesticides (OPPs) in aqueous media. The effects of factors on the extraction efficiency of OPPs were investigated using a Draper-Lin small composite design. An optimal sample volume of 4.2 mL, extraction time of 96 min, extraction temperature of 42°C, and desorption time of 11 min were obtained. The results showed reasonable linearity ranges for all pesticides with correlation coefficients greater than 0.9920. The limit of quantification (LOQ) ranged from 0.1 to 2.60 mg/L, and the recoveries of spiked river water samples were from 82 to 94% with relative standard deviation (RSD) values less than 4%. The results show that this method is simple, selective, rapid, and can be applied to other sample matrices.

  14. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  15. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small

  16. Use of 31P nuclear magnetic resonance spectroscopy and electron microscopy to study phosphorus metabolism of microorganisms from wastewaters.

    PubMed

    Florentz, M; Granger, P; Hartemann, P

    1984-03-01

    We used 31P nuclear magentic resonance to study the transfer of phosphorus between Pis and polyphosphates in microorganisms involved in wastewater treatment. We showed that the transfer process is reversible and of the first order in accordance with the polyphosphate concentration. The presence of nitrates in the anoxic phase led to results similar to those obtained during the aerobic phase. (Anoxic implies absence of oxygen but presence of nitrate, whereas anaerobic implies absence of oxygen and nitrate. In bacteriology, the term anoxic is not common, and the term anaerobic implies absence of oxygen and includes the conditions under which nitrate is present.) We observed that carbon dioxide lowers the pH, which entails a hydrolysis of polyphosphates, and helium seems to stop the evolution of the cells. Further, 2,4-dinitrophenol decouples the oxidative phosphorylation and brings about a decrease in the polyphosphate pool.

  17. sup 31 P nuclear magnetic resonance study of the effect of azide on xylose fermentation by Candida tropicalis

    SciTech Connect

    Lohmeier-Vogel, E.; Vogel, H. ); Skoog, K.; Hahn-Haegerdal, B. )

    1989-08-01

    Maximal ethanol production by Candida tropicalis grown on xylose was obtained at an oxygen transfer rate of 5 to 7 mmol/liter per h. Addition of 0.2 mM azide increased the ethanol yield by a factor of 3 to 4, based on the cell mass produced, and decreased the formation of the by-product xylitol by 80%. In the presence of azide, ethanol was reassimilated before the carbon source was depleted. At all oxygenation levels studied, azide caused 25 to 60% of the carbon to be lost, most probable as carbon dioxide. Identical spectra were obtained with {sup 31}P nuclear magnetic resonance spectroscopy performed on extracts of C. tropicalis grown on xylose in the absence and presence of azide. Azide lowered the levels of sugar phosphates. Enzymatic analysis showed extremely low levels of fructose 1,6-diphosphate compared with the levels obtained in the absence of azide, while the level of malate, a citric acid cycle intermediate, was not influenced by azide. {sup 31}P nuclear magnetic resonance spectroscopy performed on xylose-grown whole cells of C. tropicalis showed that azide lowered the intracellular pH, inhibited the uptake of external P{sub i}, and decreased the buildup of polyphosphate in relation to results with untreated cells. Similar results were obtained with the uncoupler of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone (CCCP), except that CCCP treatment led to extremely high levels of internal P{sub i}. The dual effect of azide as a respiratory inhibitor and as an uncoupler is discussed with respect to the metabolism and product formation in xylose-assimilating C. tropicalis.

  18. 31P-NMR analysis of the B to Z transition in double-stranded (dC-dG)3 and (dC-dG)4 in high salt solution.

    PubMed Central

    Holak, T A; Borer, P N; Levy, G C; van Boom, J H; Wang, A H

    1984-01-01

    In 4M NaCl solutions (dC-dG)n (n = 3,4; approximately 9 mM) exist as a mixture o +/- B and Z forms. The low and high field components of two 31P NMR resonances originating from internal phosphodiester groups are assigned to the GpC and CpG linkages, respectively. Low temperatures stabilize the Z-forms, which completely disappear above 50 degrees C (n = 3) and 65 degrees C (n = 4). delta H = -44 and -17 kJ/mol for B to Z transition in the hexamer and octamer duplexes, respectively. Temperature dependent changes (0-50 degrees C range) in the spin-lattice relaxation times at 145.7 MHz are distinctly different for the 31P nuclei o +/- GpC and CpG groups. The relaxation data can be explained by assuming that the GpC phosphodiester groups undergo more local internal motion than do the CpG groups. PMID:6547530

  19. Synthesis and structure of tridentate bis(phosphinic amide)-phosphine oxide complexes of yttrium nitrate. Applications of 31P,89Y NMR methods in structural elucidation in solution.

    PubMed

    Popovici, Cristinel; Fernández, Ignacio; Oña-Burgos, Pascual; Roces, Laura; García-Granda, Santiago; Ortiz, Fernando López

    2011-07-07

    The synthesis and characterisation of a tridentate ligand containing two diphenylphosphinic amide side-arms connected through the ortho position to a phenylphosphine oxide moiety and the 1:1 and 2:1 complexes formed with yttrium nitrate are reported for the first time. The free ligand (R(P1)*,S(P3)*)-11 is obtained diastereoselectively by reaction of ortho-lithiated N,N-diisopropyl-P,P-diphenylphosphinic amide with phenylphosphonic dichloride. Complexes [Y((R(P1)*,S(P3)*)-11)(NO(3))(3)] and [Y((R(P1)*,S(P3)*)-11)(2)(NO(3))](NO(3))(2) were isolated by mixing ligand 11 with Y(NO(3))(3)·6H(2)O in acetonitrile at room temperature in a ligand to metal molar ratio of 1:1 and 2:1, respectively. The 1:1 derivative is the product of thermodynamic control when a molar ratio of ligand to yttrium salt of 1:1 is used. The new compounds have been characterised both as the solid (X-ray diffraction) and in solution (multinuclear magnetic resonance). In both yttrium complexes the ligand acts as a tridentate chelate. The arrangement of the two ligands in the 2:1 complex affords a pseudo-meso structure. Tridentate chelation of yttrium(III) in both complexes is retained in solution as evidenced by (89)Y NMR data obtained via(31)P,(89)Y-HMQC, and (89)Y,(31)P-DEPT experiments. The investigation of the solution behaviour of the Y(III) complexes through PGSE NMR diffusion measurements showed that average structures in agreement with the 1:1 and 1:2 stoichiometries are retained in acetonitrile.

  20. A Solid-State Study of a Novel 31P Spin Pair Using Magic-Angle-Spinning Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Challoner, R.; Mcdowell, C. A.; Yoshifuji, M.; Toyota, K.; Tossell, J. A.

    The present investigation concerns the solid-state nuclear magnetic resonance spectroscopy of the 31P spin pair in the novel three-membered heterocyclic compound 3-(dichloromethylene)- trans-1,2-bis( 2,4,6-tri- tert-butylphenyl)- 1,2-diphosphirane using the magic-angle-spinning (MAS) technique. The homogeneous 31P lineshapes are analyzed to extract the principal components of the shielding tensors using the Maricq and Waugh description of homonuclear spin-pair systems by average-Hamiltonian theory, modified to encompass the n = 0 rotational resonance situation. The experimental values of the shielding-tensor components are compared with those obtained from ab initio calculations performed on the model molecule P 2C 2H 4 to aid further the interpretation of the 31P MAS NMR spectrum of the chloromethylene-diphosphirane. The magnitudes and orientations of calculated shielding-tensor components of the model compound methylene-diphosphirane P 2C 2H 4 are compared with those for the phosphorus spin pair in the molecular environments of P 2, P 2H 2, and P 2H 4. The electronic structures and bonding in all of those molecular species are discussed.

  1. Investigation of organic condensed phoshates: Synthesis and structural characterization by 31P MAS NMR and X-ray diffraction of the 3-phenylpropylamonium cyclohexaphosphate dihydrate

    NASA Astrophysics Data System (ADS)

    Hlel, F.; Thouvenot, R.; Smiri, L.

    2005-05-01

    Preparation, crystal structure and infra-red absorption spectra are reported for a new organic salt of the cyclohexaphosphate, [C6H5(CH2)3NH3]6P6O18 . 2 H2O. The new compound crystallizes in the triclinic system (P space group) with Z = 2 and the following unit cell dimensions: a = 10.528(3), b = 19.183(2), c = 9.839(3) Å, = 74.92(5), = 117.48(6) and = 99.90(5)°. The structure was solved by using 6709 independent reflections down to R value of 0.039. The ring anion exhibits internal symmetry. Its main geometrical features are those commonly observed in the atomic arrangements of cyclohexaphosphates. The three dimensional cohesion of this atomic arrangement is maintained through H-bonds between organic cations, water molecules and the external oxygen atoms of the P6O18-6 ring. The H-bond interactions induce local distortions of the ring leading to the existence of three different types of phosphate tetrahedra.Solid-state 31P magic-angle-spinning nuclear magnetic resonance (MAS NMR), performed at 162 MHz shows three isotropic resonances at -19.8, -22.6 and -24.5 ppm, confirming the non-equivalence of the three PO4 groups. They are characterized by different chemical shift tensor parameters, which are in agreement with the local geometrical features of the tetrahedra.

  2. Role of magnesium and calcium in alcohol-induced hypertension and strokes as probed by in vivo television microscopy, digital image microscopy, optical spectroscopy, 31P-NMR, spectroscopy and a unique magnesium ion-selective electrode.

    PubMed

    Altura, B M; Altura, B T

    1994-10-01

    It is not known why alcohol ingestion poses a risk for development of hypertension, stroke and sudden death. Of all drugs, which result in body depletion of magnesium (Mg), alcohol is now known to be the most notorious cause of Mg-wasting. Recent data obtained through the use of biophysical (and noninvasive) technology suggest that alcohol may induce hypertension, stroke, and sudden death via its effects on intracellular free Mg2+ ([Mg2+]i), which in turn alter cellular and subcellular bioenergetics and promote calcium ion (Ca2+) overload. Evidence is reviewed that demonstrates that the dietary intake of Mg modulates the hypertensive actions of alcohol. Experiments with intact rats indicates that chronic ethanol ingestion results in both structural and hemodynamic alterations in the microcirculation, which, in themselves, could account for increased vascular resistance. Chronic ethanol increases the reactivity of intact microvessels to vasoconstrictors and results in decreased reactivity to vasodilators. Chronic ethanol ingestion clearly results in vascular smooth muscle cells that exhibit a progressive increase in exchangeable and cellular Ca2+ concomitant with a progressive reduction in Mg content. Use of 31P-NMR spectroscopy coupled with optical-backscatter reflectance spectroscopy revealed that acute ethanol administration to rats results in dose-dependent deficits in phosphocreatine (PCr), the [PCr]/[ATP] ratio, intracellular pH (pHi), oxyhemoglobin, and the mitochondrial level of oxidized cytochrome oxidase aa3 concomitant with a rise in brain-blood volume and inorganic phosphate. Temporal studies performed in vivo, on the intact brain, indicate that [Mg2+]i is depleted before any of the bioenergetic changes. Pretreatment of animals with Mg2+ prevents ethanol from inducing stroke and prevents all of the adverse bioenergetic changes from taking place. Use of quantitative digital imaging microscopy, and mag-fura-2, on single-cultured canine cerebral vascular

  3. Creatine and cyclocreatine treatment of human colon adenocarcinoma xenografts: 31P and 1H magnetic resonance spectroscopic studies

    PubMed Central

    Kristensen, C A; Askenasy, N; Jain, R K; Koretsky, A P

    1999-01-01

    Creatine (Cr) and cyclocreatine (cyCr) have been shown to inhibit the growth of a variety of human and murine tumours. The purpose of this study was to evaluate the anti-tumour effect of these molecules in relation to drug accumulation, energy metabolism, tumour water accumulation and toxicity. Nude mice carrying a human colon adenocarcinoma (LS174T) with a creatine kinase (CK) activity of 2.12 units mg−1 protein were fed Cr (2.5% or 5%) or cyCr (0.025%, 0.1% or 0.5%) for 2 weeks and compared with controls fed standard diet. Cr concentrations of 2.5% and 5% significantly inhibited tumour growth, as did 0.1% and 0.5% cyCr. In vivo 31P magnetic resonance spectroscopy (MRS) after 2 weeks of treatment showed an increase in [phosphocreatine (PCr)+phosphocyclocreatine (PcyCr)]/nucleoside triphosphate (NTP) with increasing concentrations of dietary Cr and cyCr, without changes in absolute NTP contents. The antiproliferative effect of the substrates of CK was not related to energy deficiency but was associated with acidosis. Intratumoral substrate concentrations (measured by 1H-MRS) of 4.8 μmol g−1 wet weight Cr (mice fed 2.5% Cr) and 6.2 μmol g−1 cyCr (mice fed 0.1% cyCr) induced a similar decrease in growth rate, indicating that both substrates were equally potent in tumour growth inhibition. The best correlant of growth inhibition was the total Cr or (cyCr+Cr) concentrations in the tissue. In vivo, these agents did not induce excessive water accumulation and had no systemic effects on the mice (weight loss, hypoglycaemia) that may have caused growth inhibition. © 1999 Cancer Research Campaign PMID:9888469

  4. In situ preparation and fate of cis-4-hydroxycyclophosphamide and aldophosphamide: 1H and 31P NMR evidence for equilibration of cis- and trans-4-hydroxycyclophosphamide with aldophosphamide and its hydrate in aqueous solution.

    PubMed

    Borch, R F; Hoye, T R; Swanson, T A

    1984-04-01

    cis-4-Hydroxycyclophosphamide (2) and aldophosphamide (4) were generated in aqueous phosphate or cacodylate buffer by dimethyl sulfide reduction of cis-4-hydroperoxycyclophosphamide (8) and by sodium periodate cleavage of 3,4-dihydroxybutyl N,N-bis(2-chloroethyl)phosphorodiamidate (9), respectively; the reactions of 2 and 4 were examined by 1H and 31P NMR. Within 30-60 min (pH or pD 7.0, 25 degrees C) the same pseudoequilibrium mixture was established in both reactions, with cis- and trans-4-hydroxycyclophosphamide (2 and 3), aldophosphamide (4), and its hydrate (5) present in the approximate ratio of 4:2:0.3:1. Structures of the intermediates were assigned unambiguously based upon analysis of the chemical shifts and coupling constants in the proton spectra determined in D2O buffers, and the 31P assignments followed by correlation of component ratios at equilibrium. Free energy differences of 0.4, 0.4, and 0.7 kcal/mol at 25 degrees C were estimated between 2, 3, 5, and 4, respectively, with 2 being the most stable. The aldehyde 4 reacted most rapidly with water to give hydrate 5; cyclization of 4 to 3 occurred faster than to 2, and the rate of cyclization to 2 was comparable to that for elimination to 6. Compound 5 is formed much faster than 3 from the diol cleavage, but 5 and 3 are produced at comparable rates from 2, suggesting that conversion of 2 to 3 can proceed by a mechanism other than ring opening. The rate of equilibration appears to be independent of buffer structure, indicating that bifunctional catalysis is not important in the ring-opening reaction.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Dynamic in vivo (31)P nuclear magnetic resonance study of Saccharomyces cerevisiae in glucose-limited chemostat culture during the aerobic-anaerobic shift.

    PubMed

    Gonzalez, B; de Graaf, A; Renaud, M; Sahm, H

    2000-04-01

    The purpose of this work was to analyse in vivo the influence of sudden oxygen depletion on Saccharomyces cerevisiae, grown in glucose-limited chemostat culture, using a recently developed cyclone reactor coupled with (31)P NMR spectroscopy. Before, during and after the transition, intracellular and extracellular phosphorylated metabolites as well as the pHs in the different cellular compartments were monitored with a time resolution of 2.5 min. The employed integrated NMR bioreactor system allowed the defined glucose-limited continuous cultivation of yeast at a density of 75 g DW/l and a p(O(2)) of 30% air saturation. A purely oxidative metabolism was maintained at all times. In vivo (31)P NMR spectra obtained were of excellent quality and even allowed the detection of phosphoenolpyruvate (PEP). During the switch from aerobic to anaerobic conditions, a rapid, significant decrease of intracellular ATP and PEP levels was observed and the cytoplasmic pH decreased from 7.5 to 6.8. This change, which was accompanied by a transient influx of extracellular inorganic phosphate (P(i)), appeared to correlate linearly with the decrease of the ATP concentration, suggesting that the cause of the partial collapse of the plasma membrane pH gradient was a reduced availability of ATP. The complete phosphorous balance established from our measurement data showed that polyphosphate was not the source of the increased intracellular P(i). The derived intracellular P(i), ATP and ADP concentration data confirmed that the glycolytic flux at the level of glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase and enolase enzymes is mainly controlled by thermodynamic constraints.

  6. Solid state 31P cross-polarization/magic angle sample spinning nuclear magnetic resonance studies of crystalline glycogen phosphorylase b

    PubMed Central

    Taguchi, Jocelyn E.; Heyes, Stephen J.; Barford, David; Johnson, Louise N.; Dobson, Christopher M.

    1993-01-01

    31P cross-polarization/magic angle sample spinning nuclear magnetic resonance spectra have been obtained for pyridoxal 5′-phosphate (PLP) bound to glycogen phosphorylase b (GPb) in two different crystalline forms, monoclinic and tetragonal. Analysis of the intensities of the spinning sidebands in the nuclear magnetic resonance spectra has enabled estimates of the principal values of the 31P chemical shift tensors to be obtained. Differences between the two sets of values suggest differences in the environment of the phosphate moiety of the pyridoxal phosphate in the two crystalline forms. The tensor for the tetragonal crystalline form, T state GPb, is fully consistent with those found for dianionic phosphate groups in model compounds. The spectrum for the monoclinic crystalline form, R state GPb, although closer to that of dianionic than monoanionic model phosphate compounds, deviates significantly from that expected for a simple dianion or monoanion. This is likely to result from specific interactions between the PLP phosphate group and residues in its binding site in the protein. A possible explanation for the spectrum of the monoclinic crystals is that the shift tensor is averaged by a proton exchange process between different ionization states of the PLP associated with the presence of a sulfate ion bound in the vicinity of the PLP. PMID:8457673

  7. An NMR probe for the study of aerobic suspensions of cells and organelles

    SciTech Connect

    Balaban, R.S.; Gadian, D.G.; Radda, G.K.; Wong, G.G.

    1981-09-15

    The construction of an NMR probe and cell chamber with good mixing, pH buffering, and oxygenation characteristics, which can be used for relatively dilute cell and organelle suspension is described. The /sup 31/P NMR spectra of acceptable signal-to-noise ratios are obtained from approximately 200 mg (protein) of tissues, and kinetic studies of mitochondrial oxidative phosphorylation are demonstrated. Representative spectra from rabbit kidney cortical tubules and rabbit kidney cortical mitochondria are presented.

  8. {sup 1}H and {sup 31}P nuclear magnetic resonance study of proton-irradiated KH{sub 2}PO{sub 4}

    SciTech Connect

    Kim, Se-Hun; Lee, Kyu Won; Oh, B. H.; Lee, Cheol Eui; Hong, K. S.

    2007-11-01

    We have studied the microscopic structure and dynamics in a proton-irradiated KH{sub 2}PO{sub 4} single crystal. Our {sup 1}H and {sup 31}P nuclear magnetic resonance measurements indicate that proton irradiation gives rise to a decrease in the local dipolar order of the rigid lattice protons and an increase in interstitial protons as well as structural distortion of the PO{sub 4} tetrahedra.

  9. A 31P magnetic resonance spectroscopy study of mitochondrial function in skeletal muscle of patients with Parkinson's disease.

    PubMed

    Taylor, D J; Krige, D; Barnes, P R; Kemp, G J; Carroll, M T; Mann, V M; Cooper, J M; Marsden, C D; Schapira, A H

    1994-08-01

    The activity of complex I of the respiratory chain is decreased in the substantia nigra of patients with Parkinson's disease (PD) but the presence of this defect in skeletal muscle is controversial. Therefore, the mitochondrial function of skeletal muscle in patients with PD was investigated in vivo using 31P magnetic resonance spectroscopy. Results from 7 PD patients, 11 age matched controls and 9 mitochondrial myopathy patients with proven complex I deficiency were obtained from finger flexor muscle at rest, during exercise and in recovery from exercise. In resting muscle, the patients with mitochondrial myopathy showed a low PCr/ATP ratio, a low phosphorylation potential, a high P(i)/PCr ratio and a high calculated free [ADP]. During exercise, stores of high energy phosphate were depleted more rapidly than normal, while in recovery, the concentration of phosphocreatine and free ADP returned to pre-exercise values more slowly than normal. In contrast, the patients with PD were not significantly different from normal for any of these variables, and no abnormality of muscle energetics was detected. Three of the PD patients also had mitochondrial function assessed biochemically in muscle biopsies. No respiratory chain defect was identified in any of these patients by polarography or enzyme analysis when compared with age-matched controls. These results suggest that skeletal muscle is not a suitable tissue for the investigation and identification of the biochemical basis of the nigral complex I deficiency in PD.

  10. Two protocols to measure mitochondrial capacity in women and adolescent girls: a 31P-MRS preliminary study.

    PubMed

    Willcocks, Rebecca Jane; Fulford, Jon; Barker, Alan Robert; Armstrong, Neil; Williams, Craig Anthony

    2014-05-01

    The phosphocreatine (PCr) recovery time constant (τ) following exercise provides a measure of mitochondrial oxidative capacity. The purpose of this investigation was to use 2 different protocols to determine τ in adolescent females. 31P-MR spectra were collected during 2 exercise tests in 6 adolescent girls (13.8 ± 0.3 y) and 7 women (23.2 ± 3.4 y). The first test consisted of 23 repeated 4 seconds maximal isometric calf contractions separated by 12-second recovery; PCr recovery between the final 18 contractions was used to calculate τ. The second test was a sustained 20-second maximal contraction; recovery was fitted with an exponential function to measure τ. PCr τ did not significantly differ between groups: (gated exercise: 4 girls: 16 ± 5 s, 7 women: 17 ± 5 s, p; sustained exercise: 6 girls: 19 ± 6 s, 7 women: 19 ± 4 s). Bland-Altman analysis demonstrated a close agreement between sustained and gated exercise. Both gated and sustained exercise appear feasible in a pediatric population, and offer a noninvasive evaluation of mitochondrial oxidative capacity.

  11. Study of cultured fibroblasts in vivo using NMR

    SciTech Connect

    Karczmar, G.S.

    1984-08-01

    The goal was to study the compartmentation of phosphorylated glycolytic intermediates in intact Chicken Embryo Fibroblasts (CEFs) using /sup 31/P NMR at 109 MHz. A technique for maintaining functional cells at high densities in an NMR magnet is described. Signals were detected from cytoplasmic inorganic phosphate (P/sub i/), ATP, NAD, NADH, phosphorylcholine and phosphorylethanolamine. The effect of external glucose on cytoplasmic pools of phosphates was studied. When cells were perfused with glucose-free medium the rate of glycolysis decreased, the amplitudes of the ATP resonances decreased, and the P/sub i/ intensity increased. The quantity of NMR-detectable P/sub i/ produced was significantly greater than the quantity of NMR-detectable ATP which was lost. Experiments with /sup 32/P labeled P/sub i/ showed that as the concentration of glucose in the medium was increase, the amount of phosphate sequestered in the cells increased. We conclude that there is a pool of P/sub i/ which is not detected by high resolution NMR and that the size of this pool increases as the rate of glycolysis increase. Longtitudinal relaxation times of intracellular phosphates in normal, transformed, and primary CEFs were measured. The results demonstrate that relaxation times of phosphates are sensitive to structural and metabolic changes which occur when cells are grown in culture. 59 references. 31 figures.

  12. Solid state NMR studies of materials for energy technology

    NASA Astrophysics Data System (ADS)

    Nambukara Kodiweera Arachchilage, Chandana K.

    Presented in this dissertation are NMR investigations of the dynamical and structural properties of materials for energy conversion and storage devices. 1H and 2H NMR was used to study water and methanol transportation in sulfonated poly(arylene ether ketone) based membranes for direct methanol fuel cells (DMFC). These results are presented in chapter 3. The amount of liquid in the membrane and ion exchange capacity (IEC) are two main factors that govern the dynamics in these membranes. Water and methanol diffusion coefficients also are comparable. Chapters 4 and 5 are concerned with 31P and 1H NMR in phosphoric acid doped PBI membranes (para-PBI and 2OH-PBI) as well as PBI membranes containing ionic liquids (H3PO4/PMIH2PO4/PBI). These membranes are designed for higher-temperature fuel cell operation. In general, stronger short and long range interactions were observed in the 2OH-PBI matrix, yielding reduced proton transport compared to that of para-PBI. In the case of H3PO4/PMIH2PO 4/PBI, both conductivity and diffusion are higher for the sample with molar ratio 2/4/1. Finally, chapter 6 is devoted to the 31P NMR MAS study of phosphorus-containing structural groups on the surfaces of micro/mesoporous activated carbons. Two spectral features were observed and the narrow feature identifies surface phosphates while the broad component identifies heterogeneous subsurface phosphorus environments including phosphate and more complex structure multiple P-C, P-N and P=N bonds.

  13. Gray Matter-Specific Changes in Brain Bioenergetics after Acute Sleep Deprivation: A 31P Magnetic Resonance Spectroscopy Study at 4 Tesla

    PubMed Central

    Plante, David T.; Trksak, George H.; Jensen, J. Eric; Penetar, David M.; Ravichandran, Caitlin; Riedner, Brady A.; Tartarini, Wendy L.; Dorsey, Cynthia M.; Renshaw, Perry F.; Lukas, Scott E.; Harper, David G.

    2014-01-01

    Study Objectives: A principal function of sleep may be restoration of brain energy metabolism caused by the energetic demands of wakefulness. Because energetic demands in the brain are greater in gray than white matter, this study used linear mixed-effects models to examine tissue-type specific changes in high-energy phosphates derived using 31P magnetic resonance spectroscopy (MRS) after sleep deprivation and recovery sleep. Design: Experimental laboratory study. Setting: Outpatient neuroimaging center at a private psychiatric hospital. Participants: A total of 32 MRS scans performed in eight healthy individuals (mean age 35 y; range 23-51 y). Interventions: Phosphocreatine (PCr) and β-nucleoside triphosphate (NTP) were measured using 31P MRS three dimensional-chemical shift imaging at high field (4 Tesla) after a baseline night of sleep, acute sleep deprivation, and 2 nights of recovery sleep. Novel linear mixed-effects models were constructed using spectral and tissue segmentation data to examine changes in bioenergetics in gray and white matter. Measurements and Results: PCr increased in gray matter after 2 nights of recovery sleep relative to sleep deprivation with no significant changes in white matter. Exploratory analyses also demonstrated that increases in PCr were associated with increases in electroencephalographic slow wave activity during recovery sleep. No significant changes in β-NTP were observed. Conclusions: These results demonstrate that sleep deprivation and subsequent recovery-induced changes in high-energy phosphates primarily occur in gray matter, and increases in phosphocreatine after recovery sleep may be related to sleep homeostasis. Citation: Plante DT, Trksak GH, Jensen JE, Penetar DM, Ravichandran C, Riedner BA, Tartarini WL, Dorsey CM, Renshaw PF, Lukas SE, Harper DG. Gray matter-specific changes in brain bioenergetics after acute sleep deprivation: a 31P magnetic resonance spectroscopy study at 4 Tesla. SLEEP 2014

  14. 31P-magnetic resonance spectroscopy and 2H-magnetic resonance imaging studies of a panel of early-generation transplanted murine tumour models.

    PubMed Central

    Robinson, S. P.; van den Boogaart, A.; Maxwell, R. J.; Griffiths, J. R.; Hamilton, E.; Waterton, J. C.

    1998-01-01

    The objective of this study was first to determine whether three slowly growing early-generation murine transplantable tumours, the T40 fibrosarcoma, T115 mammary carcinoma and T237 lung carcinoma, exhibit patterns of energetics and blood flow during growth that are different from those of the faster growing RIF-1 fibrosarcoma. Serial measurements were made with 31P-magnetic resonance spectroscopy (MRS), relating to nutritive blood flow and 2H-magnetic resonance imaging (MRI), which is sensitive to both nutritive and large-vessel (non-nutritive) flow. All four tumour lines showed a decrease in betaNTP/Pi and pH with growth; however, each line showed a different pattern of blood flow that did not correlate with the decrease in energetics. Qualitative histological analysis strongly correlated with the 2H-MRI. Second, their response to 5 mg kg(-1) hydralazine i.v. was monitored by 31P-MRS. A marked decrease in betaNTP/Pi and pH was observed in both the RIF-1 fibrosarcoma and the third-generation T115 mammary carcinoma after hydralazine challenge. In contrast, the fourth generation T40 fibrosarcoma and T237 lung carcinoma showed no change in 31P-MRS parameters. However, a fifth-generation T237 cohort, which grew approximately three times faster than fourth-generation T237 cohorts, exhibited a significant deterioration in betaNTP/Pi and pH in response to hydralazine. These data are consistent with a decoupling between large-vessel and nutritive blood flow and indicate that early-generation transplants that have a slow growth rate and vascular tone are more appropriate models of human tumour vasculature than more rapidly growing, repeatedly transplanted tumours. Images Figure 2 PMID:9667643

  15. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project during the past reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have been reinvestigating the prospects of using zero field NMR types of techniques for two dimensional NMR structural analysis of complex organic solids such as coals. Currently MAS spin rates are not sufficiently high to permit zero field in high field NMR for protons in typical organic solids, however they are compatible with {sup 13}C-{sup 13}C dipolar couplings. In collaboration with Dr. Robert Tycko of AT T Bell Laboratories, inventor of the zero field in high field NMR method, the authors have performed the first zero field in high field {sup 13}C NMR experiments. These results are described. 9 refs., 2 figs.

  16. Study of cultured fibroblasts in vivo using NMR

    SciTech Connect

    Karczmar, G.S.

    1984-01-01

    The goal of this thesis was to study the compartmentation of phosphorylated glycolytic intermediates in intact Chicken Embryo Fibroblasts (CEFs) using /sup 31/P NMR at 109 MHz. Because glycolysis is regulated differently in normal and virally transformed CEFs, NMR experiments were performed on both types of cells. A technique for maintaining functional cells at high densities in an NMR magnet is described. Signals were detected from cytoplasmic inorganic phosphate (P/sub i/), ATP, NAD, NADH, phosphorylcholine and phosphorylethanolamine. The effect of external glucose on cytoplasmic pools of phosphates was studied. However, experiments with /sup 32/P labelled P/sub i/ showed that as the concentration of glucose in the medium was increased, the amount of phosphate sequestered in the cells increased. They conclude that there is a pool of P/sub i/ which is not detected by high resolution of NMR and that the size of this pool increases as the rate of glycolysis increases. These effects were found only in cultured cells; the data for transformed and normal cells were similar. Longitudinal relaxation times of intracellular phosphates in normal, transformed, and primary CEFs were measured.

  17. In vivo and in vitro 31P magnetic resonance spectroscopic studies of the hepatic response of healthy rats and rats with acute hepatic damage to fructose loading.

    PubMed

    Lu, W; Locke, S J; Brauer, M

    1994-05-01

    The hepatic response to a fructose challenge for control rats, and rats subjected to an acute sublethal dose of carbon tetrachloride (CCl4) or bromobenzene (BB), was compared using dynamic in vivo 31P MRS. Fructose loading conditions were used in which control rats showed only a modest increase in hepatic phosphomonoester (PME), and a small decrease in ATP, Pi, and intracellular pH after fructose administration. Both CCl4 and BB-treated rats showed a much greater fructose-induced accumulation of PME than did controls. Trolox C, a free radical scavenger, prevented most of this PME increase. BB-treated rats, given sufficient time to recover from the hepatotoxic insult, responded to the fructose load similarly to controls. Liver aldolase activities of control, toxicant-treated rats, and toxicant plus Trolox C-treated rats correlated inversely with PME accumulation after fructose loading (correlation coefficient: -0.834, P < 0.05). Perchloric acid extracts of rat livers studied by in vitro 31P MRS confirmed that the PME accumulation after fructose loading is mainly due to an increase in fructose 1-phosphate. These studies are consistent with the aldolase-catalyzed cleavage of fructose 1-phosphate being rate-limiting in hepatic fructose metabolism, and that the CCl4 and BB treatment modify and inactivate the aldolase enzyme.

  18. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  19. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focused on variable temperature spin lattice relaxation measurements for several of the Argonne coals. 5 figs.

  20. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focussed on spin lattice relaxation measurements for several of the Argonne coals. 2 figs., 1 tab.

  1. NMR studies of oriented molecules

    SciTech Connect

    Sinton, S.W.

    1981-11-01

    Deuterium and proton magnetic resonance are used in experiments on a number of compounds which either form liquid crystal mesophases themselves or are dissolved in a liquid crystal solvent. Proton multiple quantum NMR is used to simplify complicated spectra. The theory of nonselective multiple quantum NMR is briefly reviewed. Benzene dissolved in a liquid crystal are used to demonstrate several outcomes of the theory. Experimental studies include proton and deuterium single quantum (..delta..M = +-1) and proton multiple quantum spectra of several molecules which contain the biphenyl moiety. 4-Cyano-4'-n-pentyl-d/sub 11/-biphenyl (5CB-d/sub 11/) is studied as a pure compound in the nematic phase. The obtained chain order parameters and dipolar couplings agree closely with previous results. Models for the effective symmetry of the biphenyl group in 5CB-d/sub 11/ are tested against the experimental spectra. The dihedral angle, defined by the planes containing the rings of the biphenyl group, is found to be 30 +- 2/sup 0/ for 5DB-d/sub 11/. Experiments are also described for 4,4'-d/sub 2/-biphenyl, 4,4' - dibromo-biphenyl, and unsubstituted biphenyl.

  2. Optimized 31P MRS in the human brain at 7 T with a dedicated RF coil setup

    PubMed Central

    van de Bank, Bart L.; Orzada, Stephan; Smits, Frits; Lagemaat, Miriam W.; Rodgers, Christopher T.; Bitz, Andreas K.

    2015-01-01

    The design and construction of a dedicated RF coil setup for human brain imaging (1H) and spectroscopy (31P) at ultra‐high magnetic field strength (7 T) is presented. The setup is optimized for signal handling at the resonance frequencies for 1H (297.2 MHz) and 31P (120.3 MHz). It consists of an eight‐channel 1H transmit–receive head coil with multi‐transmit capabilities, and an insertable, actively detunable 31P birdcage (transmit–receive and transmit only), which can be combined with a seven‐channel receive‐only 31P array. The setup enables anatomical imaging and 31P studies without removal of the coil or the patient. By separating transmit and receive channels and by optimized addition of array signals with whitened singular value decomposition we can obtain a sevenfold increase in SNR of 31P signals in the occipital lobe of the human brain compared with the birdcage alone. These signals can be further enhanced by 30 ± 9% using the nuclear Overhauser effect by B 1‐shimmed low‐power irradiation of water protons. Together, these features enable acquisition of 31P MRSI at high spatial resolutions (3.0 cm3 voxel) in the occipital lobe of the human brain in clinically acceptable scan times (~15 min). © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26492089

  3. Solid State NMR Studies of Energy Conversion and Storage Materials

    NASA Astrophysics Data System (ADS)

    Jankuru Hennadige, Sohan Roshel De Silva

    NMR (Nuclear magnetic resonance) spectroscopy is utilized to study energy conversion and storage materials. Different types of NMR techniques including Magic Angle Spinning, Cross-polarization and relaxation measurement experiments were employed. Four different projects are discussed in this dissertation. First, three types of CFx battery materials were investigated. Electrochemical studies have demonstrated different electrochemical performances by one type, delivering superior performance over the other two. 13C and 19F MAS NMR techniques are employed to identify the atomic/molecular structural factors that might account for differences in electrochemical performance among different types. Next as the second project, layered polymer dielectrics were investigated by NMR. Previous studies have shown that thin film capacitors are improved by using alternate layers of two polymers with complementary properties: one with a high breakdown strength and one with high dielectric constant as opposed to monolithic layers. 13C to 1H cross-polarization techniques were used to investigate any inter-layer properties that may cause the increase in the dielectric strength. The third project was to study two types of thermoelectric materials. These samples were made of heavily doped phosphorous and boron in silicon by two different methods: ball-milled and annealed. These samples were investigated by NMR to determine the degree of disorder and obtain insight into the doping efficiency. The last ongoing project is on a lithium-ion battery system. The nature of passivating layers or the solid electrolyte interphase (SEI) formed on the electrodes surface is important because of the direct correlation between the SEI and the battery life time/durability. Multinuclear (7Li, 19F, 31P) techniques are employed to identify the composition of the SEI formation of both positive and negative electrodes.

  4. Effects of Coenzyme Q10 on Skeletal Muscle Oxidative Metabolism in Statin Users Assessed Using 31P Magnetic Resonance Spectroscopy: a Randomized Controlled Study

    PubMed Central

    Buettner, Catherine; Greenman, Robert L.; Ngo, Long H.; Wu, Jim S.

    2016-01-01

    Objectives Statins partially block the production of coenzyme Q10 (CoQ10), an essential component for mitochondrial function. Reduced skeletal muscle mitochondrial oxidative capacity has been proposed to be a cause of statin myalgia and can be measured using 31phosphorus magnetic resonance spectroscopy (31P-MRS). The purpose of this study is to assess the effect of CoQ10 oral supplementation on mitochondrial function in statin users using 31P-MRS. Design/Setting In this randomized, double-blind, placebo-controlled pilot study, 21 adults aged 47–73 were randomized to statin+placebo (n=9) or statin+CoQ10 (n=12). Phosphocreatine (PCr) recovery kinetics of calf muscles were assessed at baseline (off statin and CoQ10) and 4 weeks after randomization to either statin+CoQ10 or statin+placebo. Results Baseline and post-treatment PCr recovery kinetics were assessed for 19 participants. After 4 weeks of statin+ CoQ10 or statin+placebo, the overall relative percentage change (100*(baseline−follow up)/baseline) in PCr recovery time was −15.1% compared with baseline among all participants, (p-value=0.258). Participants randomized to statin+placebo (n=9) had a relative percentage change in PCr recovery time of −18.9%, compared to −7.7% among participants (n=10) receiving statin+CoQ10 (p-value=0.448). Conclusions In this pilot study, there was no significant change in mitochondrial function in patients receiving 4 weeks of statin+CoQ10 oral therapy when compared to patients on statin+placebo. PMID:27610419

  5. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1990-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have concentrated on a theoretical treatment of pairs of tightly coupled spin {1/2} nuclei under magic angle spinning conditions. The average Hamiltonian theory developed here is required for a quantitative understanding of two dimensional NMR experiments of such spin pairs in solids. These experiments in turn provide a means of determining connectivities between resonances in solid state NMR spectra. Development of these techniques will allow us to establish connectivities between functional components in coals. The complete description of these spin dynamics has turned out to be complex, and is necessary to provide a foundation upon which such experiments may be quantitatively interpreted in complex mixtures such as coals. 25 refs., 4 figs., 3 tabs.

  6. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concern how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. During the last quarter the authors have concentrated on improvements in cross polarization (CP) sequences with a goal of making the CP process insensitive to experimental conditions such as the magic angle spinning (MAS) rate. In order to be able to use fields the order of 7.0 T or higher, CP efficiency must be maintained at MAS rates of over 10 kHz. The standard sequences have severe limitations at these rates which lead to intensity distortions in {sup 13}C CPMAS spectra. Thus in order to be able to take advantage of the increases in sensitivity and resolution that accompany high field operation, improvements in the NMR methods are required. The new sequences the authors are developing will be especially important for quantitative analysis of coal structure by {sup 13}C solid state NMR at high field strengths. 13 refs., 7 figs., 2 tabs.

  7. Assessing crop residue phosphorus speciation using chemical fractionation and solution 31P nuclear magnetic resonance spectroscopy.

    PubMed

    Noack, Sarah R; Smernik, Ronald J; McBeath, Therese M; Armstrong, Roger D; McLaughlin, Mike J

    2014-08-01

    At physiological maturity, nutrients in crop residues can be released to the soil where they are incorporated into different labile and non-labile pools while the remainder is retained within the residue itself. The chemical speciation of phosphorus (P) in crop residues is an important determinant of the fate of this P. In this study, we used chemical fractionation and (31)P nuclear magnetic resonance (NMR) spectroscopy, first separately and then together, to evaluate the P speciation of mature oat (Avena sativa) residue. Two water extracts (one employing shaking and the other sonication) and two acid extracts (0.2N perchloric acid and 10% trichloroacetic acid) of these residues contained similar concentrations of orthophosphate (molybdate-reactive P determined by colorimetry) as NaOH-EDTA extracts of whole plant material subsequently analysed by solution (31)P NMR spectroscopy. However, solution (31)P NMR analysis of the extracts and residues isolated during the water/acid extractions indicated that this similarity resulted from a fortuitous coincidence as the orthophosphate concentration in the water/acid extracts was increased by the hydrolysis of pyrophosphate and organic P forms while at the same time there was incomplete extraction of orthophosphate. Confirmation of this was the absence of pyrophosphate in both water and acid fractions (it was detected in the whole plant material) and the finding that speciation of organic P in the fractions differed from that in the whole plant material. Evidence for incomplete extraction of orthophosphate was the finding that most of the residual P in the crop residues following water/acid extractions was detected as orthophosphate using (31)P NMR. Two methods for isolating and quantifying phospholipid P were also tested, based on solubility in ethanol:ether and ethanol:ether:chloroform. While these methods were selective and appeared to extract only phospholipid P, they did not extract all phospholipid P, as some was

  8. NMR studies of isotopically labeled RNA

    SciTech Connect

    Pardi, A.

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  9. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coal models. Along the same lines the author are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. During the last quarter the authors has concentrated on improvements in cross polarization (CP) sequences with a goal of making the CP process insensitive to experimental conditions such as the Hartmann-Hahn mismatch. It has been found that the usual theories of CP are incorrect, and that the CP process is very heterogeneous in nature. This has significant implications on methods typically used in quantifying {sup 13}C CPMAS spectra of coals. 19 refs., 11 figs.

  10. 1H and 31P nuclear magnetic resonance and kinetic studies of the active site structure of chloroplast CF1 ATP synthase.

    PubMed

    Devlin, C C; Grisham, C M

    1990-07-03

    The interaction of nucleotides and nucleotide analogues and their metal complexes with Mn2+ bound to both the latent and dithiothreitol-activated CF1 ATP synthase has been examined by means of steady-state kinetics, water proton relaxation rate (PRR) measurements, and 1H and 31P nuclear relaxation measurements. Titration of both the latent and activated Mn(2+)-CF1 complexes with ATP, ADP, Pi, Co(NH3)4ATP, Co(NH3)4ADP, and Co(NH3)4AMPPCP leads to increases in the water relaxation enhancement, consistent with enhanced metal binding and a high ternary complex enhancement. Steady-state kinetic studies are consistent with competitive inhibition of CF1 by Co(NH3)4AMPPCP with respect to CaATP. The data are consistent with a Ki for Co(NH3)4AMPPCP of 650 microM, in good agreement with a previous Ki of 724 microM for Cr(H2O)4ATP [Frasch, W., & Selman, B. (1982) Biochemistry 21, 3636-3643], and a best fit KD of 209 microM from the water PRR measurements. 1H and 31P nuclear relaxation measurements in solutions of CF1 and Co(NH3)4AMPPCP were used to determine the conformation of the bound substrate analogue and the arrangement with respect to this structure of high- and low-affinity sites for Mn2+. The bound nucleotide analogue adopts a bent conformation, with the low-affinity Mn2+ site situated between the adenine and triphosphate moieties and the high-affinity metal site located on the far side of the triphosphate chain. The low-affinity metal forms a distorted inner-sphere complex with the beta-P and gamma-P of the substrate. The distances from Mn2+ to the triphosphate chain are too large for first coordination sphere complexes but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules or residues from the protein.

  11. sup 1 H and sup 31 P nuclear magnetic resonance and kinetic studies of the active site structure of chloroplast CF sub 1 ATP synthase

    SciTech Connect

    Devlin, C.C.; Grisham, C.M. )

    1990-07-03

    The interaction of nucleotides and nucleotide analogues and their complexes with Mn{sup 2+} bound to both the latent and dithiothreitol-activated CF{sub 1} ATP synthase has been examined by means of steady-state kinetics, water proton relaxation rate (PRR) measurements, and {sup 1}H and {sup 31}P nuclear relaxation measurements. Titration of both the latent and activated Mn{sup 2+}-CF{sub 1} complexes with ATP, ADP, P{sub i}, Co(NH{sub 3}){sub 4}ATP, Co(NH{sub 3}){sub 4}ADP, and Co(NH{sub 3}){sub 4}AMPPCP leads to increases in the water relaxation enhancement, consistent with enhanced metal binding and a high ternary complex enhancement. Steady-state kinetic studies are consistent with competitive inhibition of CF{sub 1} by Co(NH{sub 3}){sub 4}AMPPCP with respect to CaATP. {sup 1}H and {sup 31}P nuclear relaxation measurements in solutions of CF{sub 1} and Co(NH{sub 3}){sub 4}AMPPCP were used to determine the conformation of the bound substrate analogue and the arrangement with respect to this structure of high- and low-affinity sites for Mn{sup 2+}. The bound nucleotide analogue adopts a bent conformation, with the low-affinity sites for Mn{sup 2+}. The bound nucleotide analogue adopts a bent conformation, with the low-affinity Mn{sup 2+} site situated between the adenine and triphosphate moieties and the high-affinity metal site located on the far side of the triphosphate chain. The low-affinity metal forms a distorted inner-sphere complex with the {beta}-P and {gamma}-P of the substrate. The distances from Mn{sup 2+} to the triphosphate chain are too large for first coordination sphere complexes but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules or residues from the protein.

  12. A solid-state NMR study of the formation of molecular sieve SAPO-34.

    PubMed

    Yan, Zhimin; Chen, Banghao; Huang, Yining

    2009-04-01

    This work examined the formation of a catalytically important microporous material, SAPO-34, in the presence of HF under hydrothermal synthesis conditions. The local environments of P, Al, F and Si atoms in several solid phases obtained at different stages of crystallization were characterized by several solid-state NMR techniques including (31)P, (27)Al, (19)F and (29)Si MAS, (27)Al triple-quantum MAS, (31)P{(27)Al} transfer of populations in double-resonance, (27)Al{(31)P} rotational-echo double-resonance (REDOR), (27)Al-->(31)P heteronuclear correlation spectroscopy, (31)P{(19)F} and (27)Al{(19)F} REDOR as well as (1)H-->(31)P cross polarization. The NMR results provide the new insights into the formation of SAPO-34.

  13. Insulin Resistance Is Associated With Reduced Mitochondrial Oxidative Capacity Measured by 31P-Magnetic Resonance Spectroscopy in Participants Without Diabetes From the Baltimore Longitudinal Study of Aging.

    PubMed

    Fabbri, Elisa; Chia, Chee W; Spencer, Richard G; Fishbein, Kenneth W; Reiter, David A; Cameron, Donnie; Zane, Ariel C; Moore, Zenobia A; Gonzalez-Freire, Marta; Zoli, Marco; Studenski, Stephanie A; Kalyani, Rita R; Egan, Josephine M; Ferrucci, Luigi

    2017-01-01

    Whether individuals with insulin resistance (IR) but without criteria for diabetes exhibit reduced mitochondrial oxidative capacity is unclear; addressing this question could guide research for new therapeutics. We investigated 248 participants without diabetes from the Baltimore Longitudinal Study of Aging (BLSA) to determine whether impaired mitochondrial capacity is associated with prediabetes, IR, and duration and severity of hyperglycemia exposure. Mitochondrial capacity was assessed as the postexercise phosphocreatine recovery time constant (τPCr) by (31)P-magnetic resonance spectroscopy, with higher τPCr values reflecting reduced capacity. Prediabetes was defined using the American Diabetes Association criteria from fasting and 2-h glucose measurements. IR and sensitivity were calculated using HOMA-IR and Matsuda indices. The duration and severity of hyperglycemia exposure were estimated as the number of years from prediabetes onset and the average oral glucose tolerance test (OGTT) 2-h glucose measurement over previous BLSA visits. Covariates included age, sex, body composition, physical activity, and other confounders. Higher likelihood of prediabetes, higher HOMA-IR, and lower Matsuda index were associated with longer τPCr. Among 205 participants with previous OGTT data, greater severity and longer duration of hyperglycemia were independently associated with longer τPC In conclusion, in individuals without diabetes a more impaired mitochondrial capacity is associated with greater IR and a higher likelihood of prediabetes.

  14. Cooperation and Competition between Adenylate Kinase, Nucleoside Diphosphokinase, Electron Transport, and ATP Synthase in Plant Mitochondria Studied by 31P-Nuclear Magnetic Resonance.

    PubMed Central

    Roberts, JKM.; Aubert, S.; Gout, E.; Bligny, R.; Douce, R.

    1997-01-01

    Nucleotide metabolism in potato (Solanum tuberosum) mitochondria was studied using 31P-nuclear magnetic resonance spectroscopy and the O2 electrode. Immediately following the addition of ADP, ATP synthesis exceeded the rate of oxidative phosphorylation, fueled by succinate oxidation, due to mitochondrial adenylate kinase (AK) activity two to four times the maximum activity of ATP synthase. Only when the AK reaction approached equilibrium was oxidative phosphorylation the primary mechanism for net ATP synthesis. A pool of sequestered ATP in mitochondria enabled AK and ATP synthase to convert AMP to ATP in the presence of exogenous inorganic phosphate. During this conversion, AK activity can indirectly influence rates of oxidation of both succinate and NADH via changes in mitochondrial ATP. Mitochondrial nucleoside diphosphokinase, in cooperation with ATP synthase, was found to facilitate phosphorylation of nucleoside diphosphates other than ADP at rates similar to the maximum rate of oxidative phosphorylation. These results demonstrate that plant mitochondria contain all of the machinery necessary to rapidly regenerate nucleoside triphosphates from AMP and nucleoside diphosphates made during cellular biosynthesis and that AK activity can affect both the amount of ADP available to ATP synthase and the level of ATP regulating electron transport. PMID:12223600

  15. Polyoxomolybdate promoted hydrolysis of a DNA-model phosphoester studied by NMR and EXAFS spectroscopy.

    PubMed

    Absillis, Gregory; Van Deun, Rik; Parac-Vogt, Tatjana N

    2011-11-21

    Hydrolysis of (p-nitrophenyl)phosphate (NPP), a commonly used phosphatase model substrate, was examined in molybdate solutions by means of (1)H, (31)P, and (95)Mo NMR spectroscopy and Mo K-edge Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. At 50 °C and pD 5.1 the cleavage of the phosphoester bond in NPP proceeds with a rate constant of 2.73 × 10(-5) s(-1) representing an acceleration of nearly 3 orders of magnitude as compared to the hydrolysis measured in the absence of molybdate. The pD dependence of k(obs) exhibits a bell-shaped profile, with the fastest cleavage observed in solutions where [Mo(7)O(24)](6-) is the major species in solution. Mixing of NPP and [Mo(7)O(24)](6-) resulted in formation of these two intermediate complexes that were detected by (31)P NMR spectroscopy. Complex A was characterized by a (31)P NMR resonance at -4.27 ppm and complex B was characterized by a (31)P NMR resonance at -7.42 ppm. On the basis of the previous results from diffusion ordered NMR spectroscopy, performed with the hydrolytically inactive substrate phenylphosphonate (PhP), the structure of these two complexes was deduced to be (NPP)(2)Mo(5)O(21)(4-) (complex A) and (NPP)(2)Mo(12)O(36)(H(2)O)(6)(4-) (complex B). The pH studies point out that both complexes are hydrolytically active and lead to the hydrolysis of phosphoester bond in NPP. The NMR spectra did not show evidence of any paramagnetic species, excluding the possibility of Mo(VI) reduction to Mo(V), and indicating that the cleavage of the phosphomonoester bond is purely hydrolytic. The Mo K-edge XANES region also did not show any sign of Mo(VI) to Mo(V) reduction during the hydrolytic reaction. (95)Mo NMR and Mo K-edge EXAFS spectra measured during different stages of the hydrolytic reaction showed a gradual disappearance of [Mo(7)O(24)](6-) during the hydrolytic reaction and appearance of [P(2)Mo(5)O(23)](6-), which was the final complex observed at the end of hydrolytic reaction.

  16. Fluorine-19 or phosphorus-31 NMR spectroscopy: a suitable analytical technique for quantitative in vitro metabolic studies of fluorinated or phosphorylated drugs.

    PubMed

    Martino, Robert; Gilard, Véronique; Desmoulin, Franck; Malet-Martino, Myriam

    2005-08-10

    Fluorine-19 or phosphorus-31 NMR (19F NMR or 31P NMR) spectroscopy provides a highly specific tool for identification of fluorine- or phosphorus-containing drugs and their metabolites in biological media as well as a suitable analytical technique for their absolute quantification. This article focuses on the application of in vitro 19F or 31P NMR to the quantitative metabolic studies of some fluoropyrimidine or oxazaphosphorine drugs in clinical use. The first part presents an overview of the advantages (non-destructive and non-selective direct quantitative study of the biological matrices) and limitations (expensive cost of the spectrometers, limited mass or concentration sensitivity) of NMR spectroscopy. The second part deals with the criteria to be considered for successful quantification by NMR (uniform excitation over the entire spectral width of the spectrum, resonance signals properly characterised by taking into account T1 values and avoiding NOE enhancements, optimisation of the data processing, choice of a suitable standard reference). The third and fourth parts report some examples of quantification of 5-fluorouracil, its prodrug capecitabine, 5-fluorocytosine and their metabolites in bulk solutions (biofluids, tissue extracts, perfusates and culture media) and heterogeneous media (excised tissues and packed intact cells) as well as cyclophosphamide and ifosfamide in biofluids. These two parts emphasise the high potential of in vitro 19F or 31P NMR for absolute quantification, in a single run, of all the fluorine- or phosphorus-containing species in the matrices analysed. The limit of quantification in bulk solutions is 1-3 microM for 19F NMR and approximately 10 microM for 31P NMR. In heterogeneous media analysed with 19F NMR, it is 2-5 nmol in excised tissues and cell pellets.

  17. Improving the Hyperpolarization of 31P Nuclei by Synthetic Design

    PubMed Central

    2015-01-01

    Traditional 31P NMR or MRI measurements suffer from low sensitivity relative to 1H detection and consequently require longer scan times. We show here that hyperpolarization of 31P nuclei through reversible interactions with parahydrogen can deliver substantial signal enhancements in a range of regioisomeric phosphonate esters containing a heteroaromatic motif which were synthesized in order to identify the optimum molecular scaffold for polarization transfer. A 3588-fold 31P signal enhancement (2.34% polarization) was returned for a partially deuterated pyridyl substituted phosphonate ester. This hyperpolarization level is sufficient to allow single scan 31P MR images of a phantom to be recorded at a 9.4 T observation field in seconds that have signal-to-noise ratios of up to 94.4 when the analyte concentration is 10 mM. In contrast, a 12 h 2048 scan measurement under standard conditions yields a signal-to-noise ratio of just 11.4. 31P-hyperpolarized images are also reported from a 7 T preclinical scanner. PMID:25811635

  18. Interfaces in polymer nanocomposites - An NMR study

    NASA Astrophysics Data System (ADS)

    Böhme, Ute; Scheler, Ulrich

    2016-03-01

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. 1H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T2 is most suited. In this presentation we report on two applications of T2 measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of the polymer dynamics in the melt under shear flow.

  19. NMR Methods to Study Dynamic Allostery

    PubMed Central

    Grutsch, Sarina; Brüschweiler, Sven; Tollinger, Martin

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy provides a unique toolbox of experimental probes for studying dynamic processes on a wide range of timescales, ranging from picoseconds to milliseconds and beyond. Along with NMR hardware developments, recent methodological advancements have enabled the characterization of allosteric proteins at unprecedented detail, revealing intriguing aspects of allosteric mechanisms and increasing the proportion of the conformational ensemble that can be observed by experiment. Here, we present an overview of NMR spectroscopic methods for characterizing equilibrium fluctuations in free and bound states of allosteric proteins that have been most influential in the field. By combining NMR experimental approaches with molecular simulations, atomistic-level descriptions of the mechanisms by which allosteric phenomena take place are now within reach. PMID:26964042

  20. Direct and simultaneous quantification of ATP, ADP and AMP by (1)H and (31)P Nuclear Magnetic Resonance spectroscopy.

    PubMed

    Lian, Yakun; Jiang, Hua; Feng, Jinzhou; Wang, Xiaoyan; Hou, Xiandeng; Deng, Pengchi

    2016-04-01

    ATP, ADP and AMP are energy substances with vital biological significance. Based on the structural differences, a simple, rapid and comprehensive method has been established by (1)H and (31)P Nuclear Magnetic Resonance ((1)H-NMR and (31)P-NMR) spectroscopies. Sodium 3-(trimethylsilyl) propionate-2,2,3,3-d4 (TMSP) and anhydrous disodium hydrogen phosphate (Na2HPO4) were selected as internal standards for (1)H-NMR and (31)P-NMR, respectively. Those three compounds and corresponding internal standards can be easily distinguished both by (1)H-NMR and (31)P-NMR. In addition, they all have perfect linearity in a certain range: 0.1-100mM for (1)H-NMR and 1-75 mM for (31)P-NMR. To validate the precision of this method, mixed samples of different concentrations were measured. Recovery experiments were conducted in serum (91-113% by (1)H-NMR and 89-113% by (31)P-NMR).

  1. NMR studies of cation transport across membranes

    SciTech Connect

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  2. In Vivo 31P-Nuclear Magnetic Resonance Studies of Glyphosate Uptake, Vacuolar Sequestration, and Tonoplast Pump Activity in Glyphosate-Resistant Horseweed1[W

    PubMed Central

    Ge, Xia; d’Avignon, D. André; Ackerman, Joseph J.H.; Sammons, R. Douglas

    2014-01-01

    Horseweed (Conyza canadensis) is considered a significant glyphosate-resistant (GR) weed in agriculture, spreading to 21 states in the United States and now found globally on five continents. This laboratory previously reported rapid vacuolar sequestration of glyphosate as the mechanism of resistance in GR horseweed. The observation of vacuole sequestration is consistent with the existence of a tonoplast-bound transporter. 31P-Nuclear magnetic resonance experiments performed in vivo with GR horseweed leaf tissue show that glyphosate entry into the plant cell (cytosolic compartment) is (1) first order in extracellular glyphosate concentration, independent of pH and dependent upon ATP; (2) competitively inhibited by alternative substrates (aminomethyl phosphonate [AMPA] and N-methyl glyphosate [NMG]), which themselves enter the plant cell; and (3) blocked by vanadate, a known inhibitor/blocker of ATP-dependent transporters. Vacuole sequestration of glyphosate is (1) first order in cytosolic glyphosate concentration and dependent upon ATP; (2) competitively inhibited by alternative substrates (AMPA and NMG), which themselves enter the plant vacuole; and (3) saturable. 31P-Nuclear magnetic resonance findings with GR horseweed are consistent with the active transport of glyphosate and alternative substrates (AMPA and NMG) across the plasma membrane and tonoplast in a manner characteristic of ATP-binding cassette transporters, similar to those that have been identified in mammalian cells. PMID:25185124

  3. Structural Studies of Biological Solids Using NMR

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  4. NMR techniques in the study of cardiovascular structure and functions

    SciTech Connect

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy. NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance.

  5. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1992-05-27

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed a delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  6. Energy Deregulation Precedes Alteration in Heart Energy Balance in Young Spontaneously Hypertensive Rats: A Non Invasive In Vivo 31P-MR Spectroscopy Follow-Up Study

    PubMed Central

    Deschodt-Arsac, Veronique; Arsac, Laurent; Magat, Julie; Naulin, Jerome; Quesson, Bruno; Dos Santos, Pierre

    2016-01-01

    Introduction Gradual alterations in cardiac energy balance, as assessed by the myocardial PCr/ATP-ratio, are frequently associated with the development of cardiac disease. Despite great interest for the follow-up of myocardial PCr and ATP content, cardiac MR-spectroscopy in rat models in vivo is challenged by sensitivity issues and cross-contamination from other organs. Methods Here we combined MR-Imaging and MR-Spectroscopy (Bruker BioSpec 9.4T) to follow-up for the first time in vivo the cardiac energy balance in the SHR, a genetic rat model of cardiac hypertrophy known to develop early disturbances in cytosolic calcium dynamics. Results We obtained consistent 31P-spectra with high signal/noise ratio from the left ventricle in vivo by using a double-tuned (31P/1H) surface coil. Reasonable acquisition time (<3.2min) allowed assessing the PCr/ATP-ratio comparatively in SHR and age-matched control rats (WKY): i) weekly from 12 to 21 weeks of age; ii) in response to a bolus injection of the ß-adrenoreceptor agonist isoproterenol at age 21 weeks. Discussion Along weeks, the cardiac PCr/ATP-ratio was highly reproducible, steady and similar (2.35±0.06) in SHR and WKY, in spite of detectable ventricular hypertrophy in SHR. At the age 21 weeks, PCr/ATP dropped more markedly (-17.1%±0.8% vs. -3,5%±1.4%, P<0.001) after isoproterenol injection in SHR and recovered slowly thereafter (time constant 21.2min vs. 6.6min, P<0.05) despite similar profiles of tachycardia among rats. Conclusion The exacerbated PCr/ATP drop under ß-adrenergic stimulation indicates a defect in cardiac energy regulation possibly due to calcium-mediated abnormalities in the SHR heart. Of note, defects in energy regulation were present before detectable abnormalities in cardiac energy balance at rest. PMID:27622548

  7. The effects of intramolecular and intermolecular coordination on (31)P nuclear shielding: phosphorylated azoles.

    PubMed

    Chernyshev, Kirill A; Larina, Ludmila I; Chirkina, Elena A; Krivdin, Leonid B

    2012-02-01

    The effects of intramolecular and intermolecular coordination on (31)P nuclear shielding have been investigated in the series of tetracoordinated, pentacoordinated and hexacoordinated N-vinylpyrazoles and intermolecular complexes of N-vinylimidazole and 1-allyl-3,5-dimethylpyrazole with phosphorous pentachloride both experimentally and theoretically. It was shown that either intramolecular or intermolecular coordination involving phosphorous results in a dramatic (31)P nuclear shielding amounting to approximately 150 ppm on changing the phosphorous coordination number by one. A major importance of solvent effects on (31)P nuclear shielding of intramolecular and intermolecular complexes involving N → P coordination bond has been demonstrated. It was found that the zeroth-order regular approximation-gauge-including atomic orbital-B1PW91/DZP method was sufficiently accurate for the calculation of (31)P NMR chemical shifts, provided relativistic corrections are taken into account, the latter being of crucial importance in the description of (31)P nuclear shielding.

  8. NMR Studies of Spin Decoherence in Phosphorus-doped Silicon

    NASA Astrophysics Data System (ADS)

    Li, D.; Dementyev, A. E.; Liu, M.; Barrett, S. E.

    2002-03-01

    Understanding nuclear spin dynamics in Si:P is an important step(B.E. Kane, quant-ph/0003031.) towards the realization of semiconductor spin-based qubits(B.E. Kane, Nature 393, 133 (1998).). We present measurements of NMR spectra and relaxation times for both ^29Si and ^31P, in fields up to 15.3 Tesla. Our progress towards Optically Pumped Nuclear Magnetic Resonance(A.E. Dementyev, P.Khandelwal, N.N. Kuzma, S.E. Barrett, L.N. Pfeiffer, K.W.West, Solid State Commun. 119, 217 (2001).) (OPNMR) of Si:P will be described.

  9. Gated in vivo examination of cardiac metabolites with /sup 31/P nuclear magnetic resonance

    SciTech Connect

    Kantor, H.L.; Briggs, R.W.; Metz, K.R.; Balaban, R.S.

    1986-07-01

    Phosphorus-31 nuclear magnetic resonance (/sup 31/P NMR) spectroscopy was used to study the temporal aspects of metabolism of canine heart in vivo. An NMR catheter coil was passed through the jugular vein of a dog into the apex of the right ventricle and spectra were recorded at four points in the cardiac cycle by triggering from the blood pressure trace of the animal. The /sup 31/P spin-lattice relaxation times of phosphocreatine (PC) and the ..gamma../sup -/,..cap alpha../sup -/, and ..beta..-phosphates of ATP at 1.89 Tesla are 4.4, 1.8, 1.7, and 1.6 s, respectively. The ratio of PC to ATP is 2.0. No changes in PC/ATP were noted in any of the four portions of the cardiac cycle examined, and difference spectra exhibited no observable signals, in contrast to previously reported results for glucose-perfused rat hearts. On the assumption that intracellular pH and the total creatine pool were constant, the expression for the creatine kinase reaction was used to deduce that free ADP concentrations were invariant throughout the cardiac cycle. This is in apparent disagreement with the proposed regulatory role for ADP in heart oxidative phosphorylation.

  10. NMR studies of protein structure and dynamics

    NASA Astrophysics Data System (ADS)

    Kay, Lewis E.

    2011-12-01

    Recent advances in solution NMR spectroscopy have significantly extended the spectrum of problems that can now be addressed with this technology. In particular, studies of proteins with molecular weights on the order of 100 kDa are now possible at a level of detail that was previously reserved for much smaller systems. An example of the sort of information that is now accessible is provided in a study of malate synthase G, a 723 residue enzyme that has been a focal point of research efforts in my laboratory. Details of the labeling schemes that have been employed and optimal experiments for extraction of structural and dynamics information on this protein are described. NMR studies of protein dynamics, in principle, give insight into the relation between motion and function. A description of deuterium-based spin relaxation methods for the investigation of side chain dynamics is provided. Examples where millisecond (ms) time scale dynamics play an important role and where relaxation dispersion NMR spectroscopy has been particularly informative, including applications involving the membrane enzyme PagP and mutants of the Fyn SH3 domain that fold on a ms time scale, are presented.

  11. Posttranslational modification of Klebsiella pneumoniae flavodoxin by covalent attachment of coenzyme A, shown by sup 31 P NMR and electrospray mass spectrometry, prevents electron transfer from the nifJ protein to nitrogenase. A possible new regulatory mechanism for biological nitrogen fixation

    SciTech Connect

    Thorneley, R.N.F.; Ashby, G.A.; Drummond, M.H.; Eady, R.R.; Huff, S.; Macdonald, C.J. ); Abell, C.; Schneier, A. )

    1992-02-04

    A strain of Escherichia coli (71-18) that produces ca. 15% of its soluble cytoplasmic protein as a flavodoxin, the Klebsiella pneumoniae nifF gene product, has been constructed. The flavodoxin was purified using FPLC and resolved into two forms, designated KpFldI and KpFldII, which were shown to have identical N-terminal amino acid sequences (30 residues) in agreement with that predicted by the K. pneumoniae nifF DNA sequence. {sup 31}P NMR, electrospray mass spectrometry, UV-visible spectra, and thiol group estimations showed that the single cysteine residue (position 68) of KpFldI is posttranslationally modified in KpFldII by the covalent, mixed disulfide, attachment of coenzyme A. KpFldII was inactive as an electron carrier between the K. pneumoniae nifJ product (a pyruvate-flavodoxin oxidoreductase) and K. pneumoniae nifH product (the Fe-protein of nitrogenase). This novel posttranslational modification of a flavodoxin is discussed in terms of the regulation of nitrogenase activity in vivo in response to the level of dissolved O{sub 2} and the carbon status of diazotrophic cultures.

  12. Responders to Wide-Pulse, High-Frequency Neuromuscular Electrical Stimulation Show Reduced Metabolic Demand: A 31P-MRS Study in Humans

    PubMed Central

    Wegrzyk, Jennifer; Fouré, Alexandre; Le Fur, Yann; Maffiuletti, Nicola A.; Vilmen, Christophe; Guye, Maxime; Mattei, Jean-Pierre; Place, Nicolas; Bendahan, David; Gondin, Julien

    2015-01-01

    Conventional (CONV) neuromuscular electrical stimulation (NMES) (i.e., short pulse duration, low frequencies) induces a higher energetic response as compared to voluntary contractions (VOL). In contrast, wide-pulse, high-frequency (WPHF) NMES might elicit–at least in some subjects (i.e., responders)–a different motor unit recruitment compared to CONV that resembles the physiological muscle activation pattern of VOL. We therefore hypothesized that for these responder subjects, the metabolic demand of WPHF would be lower than CONV and comparable to VOL. 18 healthy subjects performed isometric plantar flexions at 10% of their maximal voluntary contraction force for CONV (25 Hz, 0.05 ms), WPHF (100 Hz, 1 ms) and VOL protocols. For each protocol, force time integral (FTI) was quantified and subjects were classified as responders and non-responders to WPHF based on k-means clustering analysis. Furthermore, a fatigue index based on FTI loss at the end of each protocol compared with the beginning of the protocol was calculated. Phosphocreatine depletion (ΔPCr) was assessed using 31P magnetic resonance spectroscopy. Responders developed four times higher FTI’s during WPHF (99 ± 37 ×103 N.s) than non-responders (26 ± 12 ×103 N.s). For both responders and non-responders, CONV was metabolically more demanding than VOL when ΔPCr was expressed relative to the FTI. Only for the responder group, the ∆PCr/FTI ratio of WPHF (0.74 ± 0.19 M/N.s) was significantly lower compared to CONV (1.48 ± 0.46 M/N.s) but similar to VOL (0.65 ± 0.21 M/N.s). Moreover, the fatigue index was not different between WPHF (-16%) and CONV (-25%) for the responders. WPHF could therefore be considered as the less demanding NMES modality–at least in this subgroup of subjects–by possibly exhibiting a muscle activation pattern similar to VOL contractions. PMID:26619330

  13. NMR studies of ordered structures and valence states in the successive valence-transition system EuPtP

    NASA Astrophysics Data System (ADS)

    Mito, T.; Nishitani, K.; Koyama, T.; Muta, H.; Maruyama, T.; Pristáš, G.; Ueda, K.; Kohara, T.; Mitsuda, A.; Sugishima, M.; Wada, H.

    2014-11-01

    We have studied EuPtP, which undergoes two successive valence transitions at TA˜240 K and TB˜200 K by 31P-nuclear magnetic resonance (NMR) measurements. From the analysis of NMR spectra, we obtained plausible ordered structures and Eu valence states in three phases divided by TA and TB. These ordered structures well explain observed inequivalent P sites and the intensity ratio of the NMR spectra arising from these P sites. The results are also in good accordance with mean Eu valence measured by the x-ray absorption spectroscopy. We also discuss Eu 4 f states and the origin of the transitions from the measurements of nuclear spin lattice relaxation rate and hyperfine coupling constant.

  14. Local electromagnetic properties of magnetic pnictides: a comparative study probed by NMR measurements.

    PubMed

    Majumder, M; Ghoshray, K; Ghoshray, A; Pal, A; Awana, V P S

    2013-05-15

    (75)As and (31)P NMR studies are performed in PrCoAsO and NdCoPO respectively. The Knight shift data in PrCoAsO indicate the presence of an antiferromagnetic interaction between the 4f moments along the c axis in the ferromagnetic state of Co 3d moments. We propose a possible spin structure in this system. The (75)As quadrupolar coupling constant, νQ, increases continuously with decrease of temperature and is found to vary linearly with the intrinsic spin susceptibility, K(iso). This indicates the possibility of the presence of a coupling between charge density and spin density fluctuations. Further, the (31)P NMR Knight shift and spin-lattice relaxation rate (1/T1) in the paramagnetic state of NdCoPO indicate that the differences of LaCoPO and NdCoPO from SmCoPO are due to the decrement of the interlayer separation and not due to the moments of the 4f electrons. The nuclear spin-lattice relaxation time (T1) in NdCoPO shows weak anisotropy at 300 K. Using the self-consistent renormalization (SCR) theory of itinerant ferromagnets, it is shown that in the ab plane, the spin fluctuations are three-dimensional ferromagnetic in nature. From SCR theory the important spin-fluctuation parameters (T0, TA, F¯1) are evaluated. The similarities and dissimilarities of the NMR results in As and P based systems with different rare earths are also discussed.

  15. Acyl chain orientational order in large unilamellar vesicles: comparison with multilamellar liposomes: a 2H and 31P nuclear magnetic resonance study.

    PubMed Central

    Fenske, D B; Cullis, P R

    1993-01-01

    Large unilamellar vesicles (LUVs) composed of 1-[2H31]palmitoyl-2-oleoyl phosphatidylcholine (POPC-d31), with diameters of approximately 117 +/- 31 and 180 +/- 44 nm, were prepared by extrusion through polycarbonate filters with pore sizes of 0.1 and 0.2 microns, respectively. The 2H nuclear magnetic resonance (NMR) spectra obtained at 21 degrees C contain two components: a broad component (approximately 17 kHz linewidth) corresponding to the methylene groups and a narrower component originating from the methyl groups. Spectra with increasing powder pattern characteristics were obtained by reducing the rate of phospholipid reorientations by addition of glycerol (to increase the solvent viscosity) and by lowering the temperature. Full powder spectra, characteristic of liquid-crystalline bilayers, were obtained for both LUV samples at 0 degrees C in the presence of 50 wt% glycerol. Individual quadrupolar splittings were not resolved in these spectra, due to broader linewidths in the LUVs, which have significantly shorter values for spin-spin relaxation time T2 measured from the decay of the quadrupolar echo (90 microseconds) than the multilmellar vesicles (MLVs; 540 microseconds). Smoothed order parameter profiles (OPPs) were obtained for these samples by integration of the dePaked spectra. The OPPs were very similar to the OPP of POPC-d31 MLVs in 50 wt% glycerol at the same temperature, indicating that orientational order in MLVs and LUVs with a diameter of > or = 100 nm is essentially the same. The presence of 80 wt% glycerol was found to have a disordering effect on the vesicles. PMID:8324185

  16. AMP promotes oxygen consumption and ATP synthesis in heart mitochondria through the adenylate kinase reaction: an NMR spectroscopy and polarography study.

    PubMed

    Doliba, Nicolai M; Babsky, Andriy M; Doliba, Nataliya M; Wehrli, Suzanne L; Osbakken, Mary D

    2015-03-01

    Adenylate kinase plays an important role in cellular energy homeostasis by catalysing the interconversion of adenine nucleotides. The goal of present study was to evaluate the contribution of the adenylate kinase reaction to oxidative ATP synthesis by direct measurements of ATP using (31) P NMR spectroscopy. Results show that AMP can stimulate ATP synthesis in the presence or absence of ADP. In particular, addition of 1 mM AMP to the 0.6 mM ADP superfusion system of isolated superfused mitochondria (contained and maintained in agarose beads) led to a 25% increase in ATP synthesis as measured by the increase in βATP signal. More importantly, we show that AMP can support ATP synthesis in the absence of ADP, demonstrated as follows. Superfusion of mitochondria without ADP led to the disappearance of ATP γ, α and β signals and the increase of Pi . Addition of AMP to the medium restored the production of ATP, as demonstrated by the reappearance of γ, α and β ATP signals, in conjunction with a decrease in Pi , which is being used for ATP synthesis. Polarographic studies showed Mg(2+) dependence of this process, confirming the specificity of the adenylate kinase reaction. Furthermore, data obtained from this study demonstrate, for the first time, that different aspects of the adenylate kinase reaction can be evaluated with (31) P NMR spectroscopy. SIGNIFICANCE OF RESEARCH PARAGRAPH: The data generated in the present study indicate that (31) P NMR spectroscopy can effectively be used to study the adenylate kinase reaction under a variety of conditions. This is important because understanding of adenylate kinase function and/or malfunction is essential to understanding its role in health and disease. The data obtained with (31) P NMR were confirmed by polarographic studies, which further strengthens the robustness of the NMR findings. In summary, (31) P NMR spectroscopy provides a sensitive tool to study adenylate kinase activity in different physiological and

  17. Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated ten soils from six states in United States to determine the relationship between potentiometric titration derived soil surface charge and Phosphorus-31 (P) nuclear magnetic resonance (NMR) speciation with the concentration of water-extractable P (WEP). The surface charge value at the...

  18. Microslot NMR probe for metabolomics studies.

    PubMed

    Krojanski, Hans Georg; Lambert, Jörg; Gerikalan, Yilmaz; Suter, Dieter; Hergenröder, Roland

    2008-11-15

    A NMR microprobe based on microstrip technology suitable for investigations of volume-limited samples in the low nanoliter range was designed. NMR spectra of sample quantities in the 100 pmol range can be obtained with this probe in a few seconds. The planar geometry of the probe is easily adaptable to the size and geometry requirements of the samples.

  19. NMR studies of renal phosphate metabolites in vivo: Effects of hydration and dehydration

    SciTech Connect

    Wolff, S.D.; Eng, C.; Balaban, R.S. )

    1988-10-01

    The present study characterizes the {sup 31}P-nuclear magnetic resonance (NMR) spectrum of rabbit kidneys in vivo and evaluates the effect of hydration on phosphorous metabolites including the organic solute glycerophosphorylcholine (GPC). Cortical phosphorylethanolamine is the predominant component of the phosphomonoester region of the {sup 31}P spectrum. The contribution of blood to the spectrum is mainly from 2,3 diphosphoglycerate, which comprises {approximately}30% of the inorganic phosphate region. Acute infusion of 0.9% saline decreases the sodium content of the inner medulla by >50% in 15 min as shown by {sup 23}Na imaging. Despite this medullary Na dilution, no change in renal GPC content was observed for >1 h even with the addition of furosemide or furosemide and antidiuretic hormone. However, 20 h of chronic dehydration with 0.45% saline did result in a 30% decrease in renal GPC content when compared with dehydrated animals. These findings are consistent with GPC not playing a role in the short-term regulation of the medullary intracellular milieu in response to acute reductions in medullary Na content.

  20. A multinuclear solid state NMR spectroscopic study of the structural evolution of disordered calcium silicate sol-gel biomaterials.

    PubMed

    Lin, Zhongjie; Jones, Julian R; Hanna, John V; Smith, Mark E

    2015-01-28

    Disordered sol-gel prepared calcium silicate biomaterials show significant, composition dependent ability to bond with bone. Bone bonding is attributed to rapid hydroxycarbonate apatite (HCA) formation on the glass surface after immersion in body fluid (or implantation). Atomic scale details of the development of the structure of (CaO)x(SiO2)1-x (x = 0.2, 0.3 and 0.5) under heat treatment and subsequent dissolution in simulated body fluid (SBF) are revealed through a multinuclear solid state NMR approach using one-dimensional (17)O, (29)Si, (31)P and (1)H. Central to this study is the combination of conventional static and magic angle spinning (MAS) and two-dimensional (2D) triple quantum (3Q) (17)O NMR experiments that can readily distinguish and quantify the bridging (BOs) and non-bridging (NBOs) oxygens in the silicate network. Although soluble calcium is present in the sol, the (17)O NMR results reveal that the sol-gel produced network structure is initially dominated by BOs after gelation, aging and drying (e.g. at 120 °C), indicating a nanoscale mixture of the calcium salt and a predominantly silicate network. Only once the calcium salt is decomposed at elevated temperatures do the Ca(2+) ions become available to break BO. Apatite forming ability in SBF depends strongly on the surface OH and calcium content. The presence of calcium aids HCA formation via promotion of surface hydration and the ready availability of Ca(2+) ions. (17)O NMR shows the rapid loss of NBOs charge balanced by calcium as it is leached into the SBF. The formation of nanocrystalline, partially ordered HCA can be detected via(31)P NMR. This data indicates the importance of achieving the right balance of BO/NBO for optimal biochemical response and network properties.

  1. Isotope labeling for NMR studies of macromolecular structure and interactions

    SciTech Connect

    Wright, P.E.

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  2. NMR-Metabolic Methodology in the Study of GM Foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 1H NMR methodology used in the study of genetically modified (GM) foodstuff is discussed. The study of transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the KNAT1 gene from Arabidopsis is presented as a novel study-case. The 1H NMR metabolic profiling was carried out. Twenty-two wat...

  3. Characterization of phosphate sequestration by a lanthanum modified bentonite clay: A solid- state NMR, EXAFS and PXRD study

    SciTech Connect

    Dithmer, Line; Lipton, Andrew S.; Reitzel, Kasper; Warner, Terence E.; Lundberg, Daniel; Nielsen, Ulla Gro

    2015-04-07

    Phosphate (P) sequestration by a lanthanum (La) exchanged bentonite (a clay mineral), which is extensively used in chemical lake restoration, was investigated on the molecular level using a combination of 31P and 139La solid state NMR spectroscopy (SSNMR), extended X-ray absorption spectroscopy (EX-AFS) and powder X-ray diffraction (PXRD) in combination with sorption studies. 31P SSNMR show that all phosphate is immobilized as rhabdophane, LaPO4·xH2O, which is further supported by 139La SSNMR and EXAFS; whereas PXRD results are ambiguous with respect to rhabdophane and monazite (LaPO4). Adsorption studies show that, at humic acids (HA) concentrations above ca. 250 μM the binding capacity is only 50 % of the theoretical value or even less. No other lanthanum or phosphate phases are detected by SSNMR and EXAFS indicating the effect of HA is kinetic. Moreover, 31P SSNMR shows that rhabdophane formed upon P sequestration is in close proximity to the clay matrix.

  4. NMR studies of multiphase flows II

    SciTech Connect

    Altobelli, S.A.; Caprihan, A.; Fukushima, E.

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  5. Chemical Equilibrium in Supramolecular Systems as Studied by NMR Spectrometry

    ERIC Educational Resources Information Center

    Gonzalez-Gaitano, Gustavo; Tardajos, Gloria

    2004-01-01

    Undergraduate students are required to study the chemical balance in supramolecular assemblies constituting two or more interacting species, by using proton NMR spectrometry. A good knowledge of physical chemistry, fundamentals of chemical balance, and NMR are pre-requisites for conducting this study.

  6. A multinuclear static NMR study of geopolymerisation

    SciTech Connect

    Favier, Aurélie; Habert, Guillaume; Roussel, Nicolas; D'Espinose de Lacaillerie, Jean-Baptiste

    2015-09-15

    Geopolymers are inorganic binders obtained by alkali activation of aluminosilicates. While the structure of geopolymers is now well understood, the details of the geopolymerisation reaction and their impact on the rheology of the paste remain uncertain. In this work, we follow the elastic properties of a paste made with metakaolin and sodium silicate solution. After the first sharp increase of elastic modulus occurring a few hundred of seconds after mixing and related to the heterogeneous formation of an alumina–silicate gel with a molar ratio Si/Al < 4 located at the grains boundaries, we focus on the progressive increase in elastic modulus on a period of few hours during the setting of the geopolymer. In this study, we combine the study of rheological properties of the paste with {sup 23}Na, {sup 27}Al and {sup 29}Si static NMR measurement in order to better understand the origin of this second increase in elastic modulus. Our results show that, after a few hours, Al and Na evolution in the liquid phase are concomitant. This suggests the precipitation of an aluminosilicate phase where Al is in tetrahedral position and Na compensates the charge. Furthermore, Si speciation confirms this result and allows us to identify the precipitation of a product, which has a chemical composition close to the final composition of geopolymer. This study provides strong evidence for a heterogeneous formation of an aluminosilicate glass directly from the first gel and the silicate solution without the need for a reorganisation of Gel 1 into Gel 2.

  7. Positional isotope exchange studies on enzyme using NMR spectroscopy

    SciTech Connect

    Matsunaga, T.O.

    1987-01-01

    The isotopically enriched compounds, /sup 18/O-..beta..,..gamma..-ATP and /sup 18/O bridge-labeled pyrophosphate, synthesized previously in this laboratory, were used to investigate and measure the exchange vs. turnover of substrates and products from their central complexes in four selected enzyme systems. Using hi-field /sup 31/P NMR, we were able to differentiate between /sup 18/O labeled in the bridge vs. the non-bridge positions by virtue of the isotope shift upon the phosphorus nuclei. The bridge to non-bridge scrambling of the label was quantitated and the exchange vs. turnover ratios under a variety of conditions was determined. Using the substrate inhibitor carboxycreatinine, PIX experiments with /sup 18/O-..beta..,..gamma..-ATP and creatine kinase were conducted. It was shown that carboxycreatinine and creatine kinase promoted exchange of the /sup 18/O label as determined by NMR. We have concluded that carboxycreatinine is either a substrate that catalyzes very slow turnover or it catalyzes exchange by a dissociative (SN/sub 1//sub P/) type of mechanism

  8. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    ERIC Educational Resources Information Center

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  9. High-resolution, high-pressure NMR studies of proteins.

    PubMed Central

    Jonas, J; Ballard, L; Nash, D

    1998-01-01

    Advanced high-resolution NMR spectroscopy, including two-dimensional NMR techniques, combined with high pressure capability, represents a powerful new tool in the study of proteins. This contribution is organized in the following way. First, the specialized instrumentation needed for high-pressure NMR experiments is discussed, with specific emphasis on the design features and performance characteristics of a high-sensitivity, high-resolution, variable-temperature NMR probe operating at 500 MHz and at pressures of up to 500 MPa. An overview of several recent studies using 1D and 2D high-resolution, high-pressure NMR spectroscopy to investigate the pressure-induced reversible unfolding and pressure-assisted cold denaturation of lysozyme, ribonuclease A, and ubiquitin is presented. Specifically, the relationship between the residual secondary structure of pressure-assisted, cold-denatured states and the structure of early folding intermediates is discussed. PMID:9649405

  10. Dynamics of Antibody Domains Studied by Solution NMR

    PubMed Central

    Vu, Bang K.; Walsh, Joseph D.; Dimitrov, Dimiter S.; Ishima, Rieko

    2012-01-01

    Information on local dynamics of antibodies is important to evaluate stability, to rationally design variants, and to clarify conformational disorders at the epitope binding sites. Such information may also be useful for improved understanding of antigen recognition. NMR can be used for characterization of local protein dynamics at the atomic level through relaxation measurements. Due to the complexity of the NMR spectra, an extensive use of this method is limited to small protein molecules, for example, antibody domains and some scFv. Here, we describe a protocol that was used to study the dynamics of an antibody domain in solution using NMR. We describe protein preparation for NMR studies, NMR sample optimization, signal assignments, and dynamics experiments. PMID:19252840

  11. Structural analysis of molybdo-zinc-phosphate glasses: Neutron scattering, FTIR, Raman scattering, MAS NMR studies

    NASA Astrophysics Data System (ADS)

    Renuka, C.; Shinde, A. B.; Krishna, P. S. R.; Reddy, C. Narayana

    2016-08-01

    Vitreous samples were prepared in the xMoO3-17ZnO-(83-x) NaPO3 with 35 ≥ x ≥ 55 glass forming system by energy efficient microwave heating method. Structural evolution of the vitreous network was monitored as a function of composition by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Raman scattering, Magic Angle Spin Nuclear magnetic resonance (MAS NMR) and Neutron scattering. Addition of MoO3 to the ZnO-NaPO3 glass leads to a pronounced increase in glass transition temperature (Tg) suggesting a significant increase in network connectivity and strength. In order to analyze FTIR and Raman scattering, a simple structural model is presented to rationalize the experimental observations. A number of structural units are formed due to network modification, and the resulting glass may be characterized by a network polyhedral with different numbers of unshared corners. 31P MAS NMR confirms a clear distinction between structural species having 3, 2, 1, 0 bridging oxygens (BOs). Further, Neutron scattering studies were used to probe the structure of these glasses. The result suggests that all the investigated glasses have structures based on chains of four coordinated phosphate and six coordinated molybdate units, besides, two different lengths of P-O bonds in tetrahedral phosphate units that are assigned to bonds of the P-atom with terminal and bridging oxygen atoms.

  12. NMR Techniques in Metabolomic Studies: A Quick Overview on Examples of Utilization.

    PubMed

    Kruk, Joanna; Doskocz, Marek; Jodłowska, Elżbieta; Zacharzewska, Anna; Łakomiec, Joanna; Czaja, Kornelia; Kujawski, Jacek

    2017-01-01

    Metabolomics is a rapidly developing branch of science that concentrates on identifying biologically active molecules with potential biomarker properties. To define the best biomarkers for diseases, metabolomics uses both models (in vitro, animals) and human, as well as, various techniques such as mass spectroscopy, gas chromatography, liquid chromatography, infrared and UV-VIS spectroscopy and nuclear magnetic resonance. The last one takes advantage of the magnetic properties of certain nuclei, such as (1)H, (13)C, (31)P, (19)F, especially their ability to absorb and emit energy, what is crucial for analyzing samples. Among many spectroscopic NMR techniques not only one-dimensional (1D) techniques are known, but for many years two-dimensional (2D, for example, COSY, DOSY, JRES, HETCORE, HMQS), three-dimensional (3D, DART-MS, HRMAS, HSQC, HMBC) and solid-state NMR have been used. In this paper, authors taking apart fundamental division of nuclear magnetic resonance techniques intend to shown their wide application in metabolomic studies, especially in identifying biomarkers.

  13. NMR studies of metallic tin confined within porous matrices

    SciTech Connect

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-04-01

    {sup 119}Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown.

  14. Some nitrogen-14 NMR studies in solids

    SciTech Connect

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  15. NMR studies of nucleic acid dynamics

    NASA Astrophysics Data System (ADS)

    Al-Hashimi, Hashim M.

    2013-12-01

    Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner.

  16. Study of molecular dynamics and the solid state phase transition mechanism for unsymmetrical thiopyrophosphate using X-ray diffraction, DFT calculations and NMR spectroscopy.

    PubMed

    Potrzebowski, Marek J; Bujacz, Grzegorz D; Bujacz, Anna; Olejniczak, Sebastian; Napora, Paweł; Heliński, Jan; Ciesielski, Włodzimierz; Gajda, Jarosław

    2006-01-19

    Differential scanning calorimetry (DSC) and low-temperature X-ray diffraction studies showed that 2-thio-(5,5-dimethyl-1,3,2-dioxaphosphorinanyl)2'-oxo-dineopentyl-thiophosphate (compound 1) undergoes reversible phase transition at 203 K related to the change of symmetry of the crystallographic unit. Solid state NMR spectroscopy was used to establish the dynamic processes of aliphatic groups and the phosphorus skeleton. 13C and 31P variable temperature NMR studies as well as T1 and T1rho measurements of relaxation times revealed the different mode of molecular motion for each neopentyl residue directly bonded to phosphorus. It is concluded that molecular dynamics of aliphatic groups causes different van der Waals interactions in the crystal lattice and is the driving force of phase transition for compound 1. Finally, we showed that very sharp phase transition temperature makes compound 1 an excellent candidate as a low-temperature NMR thermometer in the solid phase.

  17. NMR Studies of Dynamic Biomolecular Conformational Ensembles

    PubMed Central

    Torchia, Dennis A.

    2015-01-01

    Multidimensional heteronuclear NMR approaches can provide nearly complete sequential signal assignments of isotopically enriched biomolecules. The availability of assignments together with measurements of spin relaxation rates, residual spin interactions, J-couplings and chemical shifts provides information at atomic resolution about internal dynamics on timescales ranging from ps to ms, both in solution and in the solid state. However, due to the complexity of biomolecules, it is not possible to extract a unique atomic-resolution description of biomolecular motions even from extensive NMR data when many conformations are sampled on multiple timescales. For this reason, powerful computational approaches are increasingly applied to large NMR data sets to elucidate conformational ensembles sampled by biomolecules. In the past decade, considerable attention has been directed at an important class of biomolecules that function by binding to a wide variety of target molecules. Questions of current interest are: “Does the free biomolecule sample a conformational ensemble that encompasses the conformations found when it binds to various targets; and if so, on what time scale is the ensemble sampled?” This article reviews recent efforts to answer these questions, with a focus on comparing ensembles obtained for the same biomolecules by different investigators. A detailed comparison of results obtained is provided for three biomolecules: ubiquitin, calmodulin and the HIV-1 trans-activation response RNA. PMID:25669739

  18. Inframolecular acid–base and coordination properties towards Na+ and Mg2+ of myo-inositol 1,3,4,5,6-pentakisphosphate: a structural approach to biologically relevant species† †Electronic supplementary information (ESI) available: Application of the Cluster Expansion Method (Table S1); 31P NMR spectra (Fig. S1); Structural details of Ins(1,3,4,5,6)P 5–Mg2+ interaction (Fig. S2); Comparative fit of alternative chemical models for the Ins(1,3,4,5,6)P 5–Na+ system (Fig. S3). See DOI: 10.1039/c2dt31807e Click here for additional data file.

    PubMed Central

    Torres, Julia; Macho, Israel; Gómez, Kerman; Godage, Himali Y.; Riley, Andrew M.; Potter, Barry V. L.; González, Gabriel; Kremer, Carlos

    2013-01-01

    The myo-inositol phosphates (InsPs) are specific signalling metabolites ubiquitous in eukaryotic cells. Although Ins(1,3,4,5,6)P 5 is the second most abundant member of the InsPs family, its certain biological roles are far from being elucidated, in part due to the large number of species formed by Ins(1,3,4,5,6)P 5 in the presence of metal ions. In light of this, we have strived in the past to make a complete and at the same time “biological-user-friendly” description of the Ins(1,3,4,5,6)P 5 chemistry with mono and multivalent cations. In this work we expand these studies focusing on the inframolecular aspects of its protonation equilibria and the microscopic details of its coordination behaviour towards biologically relevant metal ions. We present here a systematic study of the Ins(1,3,4,5,6)P 5 intrinsic acid–base processes, in a non-interacting medium, and over a wide pH range, analyzing the 31P NMR curves by means of a model based on the Cluster Expansion Method. In addition, we have used a computational approach to analyse the energetic and structural features of the protonation and conformational changes of Ins(1,3,4,5,6)P 5, and how they are influenced by the presence of two physiologically relevant cations, Na+ and Mg2+. PMID:23183928

  19. Diamond Deposition and Defect Chemistry Studied via Solid State NMR

    DTIC Science & Technology

    1994-06-30

    same integrated NMR signal, regardless of its chemical environment, provided complete spin-lattice relaxation occurs between averages 3 . Gem -quality...occurs between averages, and broadening from years, a large research effort has been devoted to the study paramagnetic centers is insignificant. Gem ...information on the distribution and motion mond’s durability very attractive. However, while gem - of hydrogen can be obtained from the solid-state NMR

  20. High-Resolution NMR Studies of Human Tissue Factor

    PubMed Central

    Nuzzio, Kristin M.; Watt, Eric D.; Boettcher, John M.; Gajsiewicz, Joshua M.; Morrissey, James H.; Rienstra, Chad M.

    2016-01-01

    In normal hemostasis, the blood clotting cascade is initiated when factor VIIa (fVIIa, other clotting factors are named similarly) binds to the integral membrane protein, human tissue factor (TF). The TF/fVIIa complex in turn activates fX and fIX, eventually concluding with clot formation. Several X-ray crystal structures of the soluble extracellular domain of TF (sTF) exist; however, these structures are missing electron density in functionally relevant regions of the protein. In this context, NMR can provide complementary structural information as well as dynamic insights into enzyme activity. The resolution and sensitivity for NMR studies are greatly enhanced by the ability to prepare multiple milligrams of protein with various isotopic labeling patterns. Here, we demonstrate high-yield production of several isotopically labeled forms of recombinant sTF, allowing for high-resolution NMR studies both in the solid and solution state. We also report solution NMR spectra at sub-mM concentrations of sTF, ensuring the presence of dispersed monomer, as well as the first solid-state NMR spectra of sTF. Our improved sample preparation and precipitation conditions have enabled the acquisition of multidimensional NMR data sets for TF chemical shift assignment and provide a benchmark for TF structure elucidation. PMID:27657719

  1. Comparison of (31)P saturation and inversion magnetization transfer in human liver and skeletal muscle using a clinical MR system and surface coils.

    PubMed

    Buehler, Tania; Kreis, Roland; Boesch, Chris

    2015-02-01

    (31)P MRS magnetization transfer ((31)P-MT) experiments allow the estimation of exchange rates of biochemical reactions, such as the creatine kinase equilibrium and adenosine triphosphate (ATP) synthesis. Although various (31)P-MT methods have been successfully used on isolated organs or animals, their application on humans in clinical scanners poses specific challenges. This study compared two major (31)P-MT methods on a clinical MR system using heteronuclear surface coils. Although saturation transfer (ST) is the most commonly used (31)P-MT method, sequences such as inversion transfer (IT) with short pulses might be better suited for the specific hardware and software limitations of a clinical scanner. In addition, small NMR-undetectable metabolite pools can transfer MT to NMR-visible pools during long saturation pulses, which is prevented with short pulses. (31)P-MT sequences were adapted for limited pulse length, for heteronuclear transmit-receive surface coils with inhomogeneous B1 , for the need for volume selection and for the inherently low signal-to-noise ratio (SNR) on a clinical 3-T MR system. The ST and IT sequences were applied to skeletal muscle and liver in 10 healthy volunteers. Monte-Carlo simulations were used to evaluate the behavior of the IT measurements with increasing imperfections. In skeletal muscle of the thigh, ATP synthesis resulted in forward reaction constants (k) of 0.074 ± 0.022 s(-1) (ST) and 0.137 ± 0.042 s(-1) (IT), whereas the creatine kinase reaction yielded 0.459 ± 0.089 s(-1) (IT). In the liver, ATP synthesis resulted in k = 0.267 ± 0.106 s(-1) (ST), whereas the IT experiment yielded no consistent results. ST results were close to literature values; however, the IT results were either much larger than the corresponding ST values and/or were widely scattered. To summarize, ST and IT experiments can both be implemented on a clinical body scanner with heteronuclear transmit-receive surface coils; however, ST results are

  2. β-Sheet nanocrystalline domains formed from phosphorylated serine-rich motifs in caddisfly larval silk: a solid state NMR and XRD study.

    PubMed

    Addison, J Bennett; Ashton, Nicholas N; Weber, Warner S; Stewart, Russell J; Holland, Gregory P; Yarger, Jeffery L

    2013-04-08

    Adhesive silks spun by aquatic caddisfly (order Trichoptera) larvae are used to build both intricate protective shelters and food harvesting nets underwater. In this study, we use (13)C and (31)P solid-state NMR and wide angle X-ray diffraction (WAXD) as tools to elucidate molecular protein structure of caddisfly larval silk from the species Hesperophylax consimilis . Caddisfly larval silk is a fibroin protein based biopolymer containing mostly repetitive amino acid motifs. NMR and X-ray results provide strong supporting evidence for a structural model in which phosphorylated serine repeats (pSX)4 complex with divalent cations Ca(2+) and Mg(2+) to form rigid nanocrystalline β-sheet structures in caddisfly silk. (13)C NMR data suggests that both phosphorylated serine and neighboring valine residues exist in a β-sheet conformation while glycine and leucine residues common in GGX repeats likely reside in random coil conformations. Additionally, (31)P chemical shift anisotropy (CSA) analysis indicates that the phosphates on phosphoserine residues are doubly ionized, and are charge-stabilized by divalent cations. Positively charged arginine side chains also likely play a role in charge stabilization. Finally, WAXD results finds that the silk is at least 7-8% crystalline, with β-sheet interplane spacings of 3.7 and 4.5 Å.

  3. Quantitation of Localized 31P Magnetic Resonance Spectra Based on the Reciprocity Principle

    NASA Astrophysics Data System (ADS)

    Kreis, R.; Slotboom, J.; Pietz, J.; Jung, B.; Boesch, C.

    2001-04-01

    There is a need for absolute quantitation methods in 31P magnetic resonance spectroscopy, because none of the phosphorous-containing metabolites is necessarily constant in pathology. Here, a method for absolute quantitation of in vivo31P MR spectra that provides reproducible metabolite contents in institutional or standard units is described. It relies on the reciprocity principle, i.e., the proportionality between the B1 field map and the map of reception strength for a coil with identical relative current distributions in receive and transmit mode. Cerebral tissue contents of 31P metabolites were determined in a predominantly white matter-containing location in healthy subjects. The results are in good agreement with the literature and the interexamination coefficient of variance is better than that in most previous studies. A gender difference found for some of the 31P metabolites may be explained by different voxel composition.

  4. NMR-Metabolic Methodology in the Study of GM Foods

    PubMed Central

    Sobolev, Anatoly P.; Capitani, Donatella; Giannino, Donato; Nicolodi, Chiara; Testone, Giulio; Santoro, Flavio; Frugis, Giovanna; Iannelli, Maria A.; Mattoo, Autar K.; Brosio, Elvino; Gianferri, Raffaella; D’Amico, Irene; Mannina, Luisa

    2010-01-01

    The 1H-NMR methodology used in the study of genetically modified (GM) foods is discussed. Transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the ArabidopsisKNAT1 gene is presented as a case study. Twenty-two water-soluble metabolites (amino acids, organic acids, sugars) present in leaves of conventional and GM lettuce were monitored by NMR and quantified at two developmental stages. The NMR spectra did not reveal any difference in metabolite composition between the GM lettuce and the wild type counterpart. Statistical analyses of metabolite variables highlighted metabolism variation as a function of leaf development as well as the transgene. A main effect of the transgene was in altering sugar metabolism. PMID:22253988

  5. Erythrocytes in muscular dystrophy. Investigation with 31P nuclear magnetic resonance spectroscopy

    SciTech Connect

    Sarpel, G.; Lubansky, H.J.; Danon, M.J.; Omachi, A.

    1981-05-01

    Phosphorus 31 nuclear magnetic resonance (31P NMR) signals were recorded from intact human erythrocytes for 16 hours. Total phosphate concentration, which was estimated as the sum of the individual 31P signals, was 25% lower in erythrocytes from men with myotonic dystrophy than in control erythrocytes. The inorganic-phosphate fraction contained the highest average phosphate concentration over the 16-hour period, and made the major contribution to the difference in total phosphate between the two groups. This result was not observed in erythrocytes from either women with myotonic dystrophy or patients with Duchenne's dystrophy and may be due to a change in cell membrane permeability to inorganic phosphate, which lead to lower steady-state concentrations of the intracellular phosphates.

  6. Erythrocytes in muscular dystrophy. Investigation with /sup 31/P nuclear magnetic resonance spectroscopy

    SciTech Connect

    Sarpel, G.; Lubansky, H.J.; Danon, M.J.; Omachi, A.

    1981-05-01

    Phosphorus 31 nuclear magnetic resonance (/sup 31/P NMR) signals were recorded from intact human erythrocytes for 16 hours. Total phosphate concentration, which was estimated as the sum of the individual /sup 31/P signals, was 25% lower in erythrocytes from men with myotonic dystrophy than in control erythrocytes. The inorganic-phosphate fraction contained the highest average phosphate concentration over the 16-hour period, and made the major contribution to the difference in total phosphate between the two groups. This result was not observed in erythrocytes from either women with myotonic dystrophy or patients with Duchenne's dystrophy and may be due to a change in cell membrane permeability to inorganic phosphate, which leads to lower steady-state concentrations of the intracellular phosphates.

  7. Characterization of phosphorus forms in lake macrophytes and algae by solution (31)P nuclear magnetic resonance spectroscopy.

    PubMed

    Feng, Weiying; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; Giesy, John P; He, Zhongqi; Song, Lirong; Fan, Mingle

    2016-04-01

    Debris from aquatic macrophytes and algae are important recycling sources of phosphorus (P), which can result in continuing blooms of algae by recycling bioavailable P in the eutrophic lakes. However, knowledge of forms of P in aquatic macrophytes and algae and their contribution to internal loads of P in lakes is limited. Without such knowledge, it is difficult to develop appropriate strategies to remediate and or restore aquatic ecosystems that have become eutrophic. Therefore, in this work, P was extracted from six types of aquatic macrophytes and algae collected from Tai Lake of China and characterized by use of solution (31)P-nuclear magnetic resonance (NMR) spectroscopy. When extracted by 0.5 M NaOH-25 mM EDTA, extraction recovery of total P(TP) and organic P(Po) exceeded 90 %. Concentrations of Po in algae and aquatic macrophytes were 5552 mg kg(-1) and 1005 mg kg(-1) and accounted for 56.0 and 47.2 % of TP, respectively. When Po, including condensed P, was characterized by solution (31)P-NMR Po in algae included orthophosphate monoesters (79.8 %), pyrophosphate (18.2 %), and orthophosphate diester (2.0 %), and Po in aquatic macrophytes included orthophosphate monoesters (90.3 %), pyrophosphate (4.2 %), and orthophosphate diester (5.5 %). Additionally, orthophosphate monoesters in algal debris mainly included β-glycerophosphate (44.1 %), α-glycerophosphate (13.5 %), and glucose 6-phosphate (13.5 %). Orthophosphate monoesters in aquatic macrophytes mainly included β-glycerophosphate (27.9 %), α-glycerophosphate (24.6 %), and adenosine 5' monophosphate (8.2 %). Results derived from this study will be useful in better understanding nutrient cycling, relevant eutrophication processes, and pollution control for freshwater lakes.

  8. Novel Dodecaarylporphyrins: Synthesis and Variable Temperature NMR Studies

    SciTech Connect

    Cancilla, Mark; Lebrilla, Carlito; Ma, Jian-Guo; Medforth, Craig J.; Muzzi, Cinzia M.; Shelnutt, John A.; Smith, Kevin M.; Voss, Lisa

    1999-05-05

    An investigation of the synthesis of novel dodecaarylporphyrins using the Suzuki coupling reaction of arylboronic acids with octabromotetraarylporphyrins is reported. Studies of the dynamic properties of these new porphyrins using variable temperature (VT) 1H NMR spectroscopy and molecular mechanics provide interesting insights into their dynamic properties, including the first determination of {beta} aryl rotation in a porphyrin system.

  9. Quantitative 31P nuclear magnetic resonance analysis of metabolite concentrations in Langendorff-perfused rabbit hearts.

    PubMed Central

    Gard, J K; Kichura, G M; Ackerman, J J; Eisenberg, J D; Billadello, J J; Sobel, B E; Gross, R W

    1985-01-01

    The quantitative analysis of the mobile high-energy phosphorus metabolites in isovolumic Langendorff-perfused rabbit hearts has been performed by 31P NMR utilizing rapid pulse repetition to optimize sensitivity. Absolute quantification required reference to an external standard, determination of differential magnetization saturation and resonance peak area integration by Lorentzian lineshape analysis. Traditionally accepted hemodynamic indices (LVDP, dp/dt) and biochemical indices (lactate, pyruvate) of myocardial function were measured concomitantly with all NMR determinations. Hemodynamically and biochemically competent Langendorff-perfused rabbit hearts were found to have intracellular PCr, ATP, GPC, and Pi concentrations of 14.95 +/- 0.25, 8.08 +/- 0.13, 5.20 +/- 0.58 and 2.61 +/- 0.47 mM respectively. Intracellular pH was 7.03 +/- 0.01. Cytosolic ADP concentration was derived from a creatine kinase equilibrium model and determined to be approximately 36 microM. Reduction of perfusate flow from 20 to 2.5 ml/min demonstrated statistically significant decreases in PCr, ATP, and pH as well as an increase in Pi that correlated closely with the independent hemodynamic and biochemical indices of myocardial function. The decrease in ATP and PCr concentrations precisely matched the increase in Pi during reduced flow. These results constitute the first quantitative determination of intracellular metabolite concentrations by 31P NMR in intact rabbit myocardium under physiologic and low flow conditions. PMID:4074839

  10. Evaluation of cerebral 31-P chemical shift images utilizing statistical parametric mapping

    NASA Astrophysics Data System (ADS)

    Riehemann, Stefan; Gaser, Christian; Volz, Hans-Peter; Sauer, Heinrich

    1999-05-01

    We present an evaluation technique of two dimensional (2D) nuclear magnetic resonance (NMR) chemical shift images (CSI) to analyze spatial differences of metabolite distributions and/or concentrations between groups of probands. Thus, chemical shift imaging is not only used as localization technique for NMR-spectroscopy, but the information of the complete spectroscopic image is used for the evaluation process. 31P CSI of the human brain were acquired with a Philips Gyroscan ACSII whole-body scanner at 1.5 T. CSI for different phosphorus metabolites were generated, all representing the same anatomical location. For each metabolite the CSI of two groups of subjects were compared with each other using the general linear model implemented in the widely distributed SPM96 software package. With this approach, even covariates or confounding variables like age or medication can be considered. As an example for the application of this technique, variations in the distribution of the 31P metabolite phosphocreatin between unmedicated schizophrenic patients and healthy controls were visualized. To our knowledge, this is the first approach to analyze spatial variations in metabolite concentrations between groups of subjects on the basis of chemical shift images. The presented technique opens a new perspective in the evaluation of 2D NMR spectroscopic data.

  11. Studies of Transition Metal Complexes Using Dynamic NMR Techniques.

    NASA Astrophysics Data System (ADS)

    Coston, Timothy Peter John

    Available from UMI in association with The British Library. This Thesis is primarily concerned with the quantitative study of fluxional processes in, predominantly platinum(IV) complexes, with the ligands 1,1,2,2-tetrakis(methylthio)ethane (MeS)_2CHCH(SMe)_2 , and 1,1,2,2-tetrakis(methylthio)ethene (MeS) _2C=C(SMe)_2. Quantitative information relating to the energetics of these processes has been obtained by a combination of one- and two-dimensional NMR techniques. Chapter One provides an introduction to the background of fluxional processes in transition metal complexes together with data concerning the energetics of the processes that have already been studied by NMR techniques. Chapter Two provides a thorough grounding in NMR techniques, in particular those concerned with the quantitative measurement of rates involved in chemical exchange processes. A description of the use of 2D EXSY NMR spectroscopy in obtaining rate data is given. The properties of the magnetic isotope of platinum are given in Chapter Three. A general survey is also given of some additional compounds that have already been studied by platinum-195 spectroscopy. Chapter Four is concerned with the quantitative study of low temperature (<293 K) fluxionality (sulphur inversion) in the complexes (PtXMe_3 (MeS)_2CHCH(SMe) _2) (X = Cl, Br, I). These complexes were studied by dynamic nuclear magnetic resonance and the information regarding the rates of sulphur inversion was obtained by complete band-shape analysis. Chapter Five is concerned with high temperature (>333 K) fluxionality, of the previous complexes, as studied by a combination of one- and two -dimensional NMR techniques. Aside from obtaining thermodynamic parameters for all the processes, a new novel mechanism is proposed. Chapter Six is primarily concerned with the NMR investigation of the new dinuclear complexes ((PtXMe _3)_2(MeS) _2CHCH(SMe)_2) (X = Cl, Br, I). The solution properties have been established and thermo-dynamic parameters

  12. Study of correlations in molecular motion by multiple quantum NMR

    SciTech Connect

    Tang, J.H.

    1981-11-01

    Nuclear magnetic resonance is a very useful tool for characterizing molecular configurations through the measurement of transition frequencies and dipolar couplings. The measurement of spectral lineshapes, spin-lattice relaxation times, and transverse relaxation times also provide us with valuable information about correlations in molecular motion. The new technique of multiple quantum nuclear magnetic resonance has numerous advantages over the conventional single quantum NMR techniques in obtaining information about static and dynamic interactions of coupled spin systems. In the first two chapters, the theoretical background of spin Hamiltonians and the density matrix formalism of multiple quantum NMR is discussed. The creation and detection of multiple quantum coherence by multiple pulse sequence are discussed. Prototype multiple quantum spectra of oriented benzene are presented. Redfield relaxation theory and the application of multiple quantum NMR to the study of correlations in fluctuations are presented. A specific example of an oriented methyl group relaxed by paramagnetic impurities is studied in detail. The study of possible correlated motion between two coupled methyl groups by multiple quantum NMR is presented. For a six spin system it is shown that the four-quantum spectrum is sensitive to two-body correlations, and serves a ready test of correlated motion. The study of the spin-lattice dynamics of orienting or tunneling methyl groups (CH/sub 3/ and CD/sub 3/) at low temperatures is presented. The anisotropic spin-lattice relaxation of deuterated hexamethylbenzene, caused by the sixfold reorientation of the molecules, is investigated, and the NMR spectrometers and other experimental details are discussed.

  13. The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids.

    PubMed

    Charpentier, Thibault

    2011-07-01

    In 2001, Mauri and Pickard introduced the gauge including projected augmented wave (GIPAW) method that enabled for the first time the calculation of all-electron NMR parameters in solids, i.e. accounting for periodic boundary conditions. The GIPAW method roots in the plane wave pseudopotential formalism of the density functional theory (DFT), and avoids the use of the cluster approximation. This method has undoubtedly revitalized the interest in quantum chemical calculations in the solid-state NMR community. It has quickly evolved and improved so that the calculation of the key components of NMR interactions, namely the shielding and electric field gradient tensors, has now become a routine for most of the common nuclei studied in NMR. Availability of reliable implementations in several software packages (CASTEP, Quantum Espresso, PARATEC) make its usage more and more increasingly popular, maybe indispensable in near future for all material NMR studies. The majority of nuclei of the periodic table have already been investigated by GIPAW, and because of its high accuracy it is quickly becoming an essential tool for interpreting and understanding experimental NMR spectra, providing reliable assignments of the observed resonances to crystallographic sites or enabling a priori prediction of NMR data. The continuous increase of computing power makes ever larger (and thus more realistic) systems amenable to first-principles analysis. In the near future perspectives, as the incorporation of dynamical effects and/or disorder are still at their early developments, these areas will certainly be the prime target.

  14. [NMR study of complex formation of aromatic ligands with heptadeoxynucleotide 5'-d(GCGAAGC) forming stable hairpin structure in aqueous solution].

    PubMed

    Veselkov, A N; Eaton, R J; Semanin, A V; Pakhomov, V I; Dymant, L N; Karavaev, L; Davies, D V

    2002-01-01

    Complex formation of hairpin-producing heptadeoxynucleotide 5'-d(GCGAAGC) with aromatic molecules: acridine dye proflavine and anthracycline antibiotic daunomycin was studied by one-dimensional 1H NMR and two-dimensional correlation 1H-1H (2M-TOCSY, 2M-NOESY), 1H-31P (2M-HMBC) NMR spectroscopy (500 and 600 MHz) in aqueous solution. Concentration and temperature dependences for the chemical shifts of ligand protons were measured, molecular models of equilibrium in solution were developed, and equilibrium thermodynamic parameters for the formation of intercalation complexes were calculated. Spatial structures of dye and antibiotic complexes with the heptamer hairpin were constructed on the basis of 2M-NOE data and the calculated values of limiting chemical shifts of ligand protons.

  15. Multinuclear NMR studies of gaseous and liquid sevoflurane

    NASA Astrophysics Data System (ADS)

    Macięga, E.; Makulski, W.; Jackowski, K.; Blicharska, B.

    2006-03-01

    For the first time, a small amount of sevoflurane ((CF 3) 2CHOCH 2F) in carbon dioxide and xenon as the gaseous solvents has been studied using 19F and 1H NMR spectra. Density-dependent 19F and 1H nuclear magnetic shielding was observed when the pressure of each solvent was increased. After extrapolation of the results to the zero-density limit it was possible to determine the appropriate shielding constants free from intermolecular interactions, σ0(F) and σ0(H). Similar procedure has also been applied for the investigation of fluorine-proton spin-spin couplings and the 2J 0(FH) and 3J 0(FH) constants of an isolated (CF 3) 2CHOCH 2F molecule were also obtained. Additionally, high-resolution 1H, 13C, 17O and 19F NMR spectra of pure liquid sevoflurane were also recorded and all the 1H- 13C, 1H- 19F and 19F- 13C spin-spin coupling constants and NMR chemical shifts were measured. It is shown that the experimental NMR parameters are suitable for comparison with the results of recent quantum-chemical calculations.

  16. An NMR Study of Enzyme Activity.

    ERIC Educational Resources Information Center

    Peterman, Keith E.; And Others

    1989-01-01

    A laboratory experiment designed as a model for studying enzyme activity with a basic spectrometer is presented. Included are background information, experimental procedures, and a discussion of probable results. Stressed is the value of the use of Nuclear Magnetic Resonance in biochemistry. (CW)

  17. NMR studies and applications of perfluorocarbon gases

    NASA Astrophysics Data System (ADS)

    Chang, Yulin

    Hyperpolarized 3He has been very successful in magnetic resonance imaging (MRI) of the lungs. It provides ways to study the physiological properties of the lungs and lung function. However, the high costs of the polarizing apparatus and the complicated polarizing procedure are preventing this technique from being clinically used routinely. Recent developments have shown that several fluorinated gases have the potential to replace 3He in some of its applications. This thesis presents some preliminary results of human excised lung imaging using C2F6 and C3F8. These two fluorinated gases were able to yield images with good signal-to-noise ratio and reasonable resolutions in a 1.5 T magnet. Using diffusion MRI of these two gases can distinguish emphysematous lungs from healthy ones. An important application of these gases would be to determine local lung surface-to-volume (S/V) ratio in vivo, which requires the unrestricted (free) diffusivity in each pixel to be known. We present data in this thesis which allow free diffusivities to be calculated from the relaxation time T1. Samples of pure C 2F6 and C3F8 at different pressures and in mixtures with oxygen at different concentrations were made. Measurements were done at two different magnetic fields and temperature was regulated to study the temperature dependence over a small range. These two gases were also used in studies of carbon-block filters, where the strong adsorption of the gases to the high surface-area carbon is beneficial. A brief review of our work on mouse lung imaging using hyperpolarized 3He is presented in Appendix A; Appendix B is a study of the longitudinal spin magnetization in the presence of a strong magnetic field gradient; the construction of the pulsed field gradient waveform measurement coils and some experimental results using these coils are contained in Appendix C.

  18. Proton NMR studies of functionalized nanoparticles in aqueous environments

    NASA Astrophysics Data System (ADS)

    Tataurova, Yulia Nikolaevna

    Nanoscience is an emerging field that can provide potential routes towards addressing critical issues such as clean and sustainable energy, environmental remediation and human health. Specifically, porous nanomaterials, such as zeolites and mesoporous silica, are found in a wide range of applications including catalysis, drug delivery, imaging, environmental protection, and sensing. The characterization of the physical and chemical properties of nanocrystalline materials is essential to the realization of these innovative applications. The great advantage of porous nanocrystals is their increased external surface area that can control their biological, chemical and catalytic activities. Specific functional groups synthesized on the surface of nanoparticles are able to absorb heavy metals from the solution or target disease cells, such as cancer cells. In these studies, three main issues related to functionalized nanomaterials will be addressed through the application of nuclear magnetic resonance (NMR) techniques including: 1) surface composition and structure of functionalized nanocrystalline particles; 2) chemical properties of the guest molecules on the surface of nanomaterials, and 3) adsorption and reactivity of surface bound functional groups. Nuclear magnetic resonance (NMR) is one of the major spectroscopic techniques available for the characterization of molecular structure and conformational dynamics with atomic level detail. This thesis deals with the application of 1H solution state NMR to porous nanomaterial in an aqueous environment. Understanding the aqueous phase behavior of functionalized nanomaterials is a key factor in the design and development of safe nanomaterials because their interactions with living systems are always mediated through the aqueous phase. This is often due to a lack of fundamental knowledge in interfacial chemical and physical phenomena that occur on the surface of nanoparticles. The use of solution NMR spectroscopy results

  19. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy.

    PubMed

    Lu, Yi; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2016-06-16

    NMR measurements do not require separation and chemical modification of samples and therefore rapidly and directly provide non-targeted information on chemical components in complex mixtures. In this study, one-dimensional (¹H, (13)C, and (31)P) and two-dimensional (¹H-(13)C and ¹H-(31)P) NMR spectroscopy were conducted to analyze yogurt without any pretreatment. ¹H, (13)C, and (31)P NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose were separately observed in the ¹H NMR spectra. In addition, the signals from the acyl chains of milk fats were also successfully identified but overlapped with many other signals. Quantitative difference spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the quantitative ¹H NMR spectra. This method allowed us to eliminate interference on the overlaps; therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat could be determined directly without separation. Moreover, the ¹H-(31)P HMBC spectra revealed for the first time that N-acetyl-d-glucosamine-1-phosphate is contained in yogurt.

  20. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy

    PubMed Central

    Lu, Yi; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2016-01-01

    NMR measurements do not require separation and chemical modification of samples and therefore rapidly and directly provide non-targeted information on chemical components in complex mixtures. In this study, one-dimensional (1H, 13C, and 31P) and two-dimensional (1H-13C and 1H-31P) NMR spectroscopy were conducted to analyze yogurt without any pretreatment. 1H, 13C, and 31P NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose were separately observed in the 1H NMR spectra. In addition, the signals from the acyl chains of milk fats were also successfully identified but overlapped with many other signals. Quantitative difference spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the quantitative 1H NMR spectra. This method allowed us to eliminate interference on the overlaps; therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat could be determined directly without separation. Moreover, the 1H-31P HMBC spectra revealed for the first time that N-acetyl-d-glucosamine-1-phosphate is contained in yogurt. PMID:27322339

  1. Advancement of 31P Magnetic Resonance Spectroscopy Using GRAPPA Reconstruction on a 3D Volume

    NASA Astrophysics Data System (ADS)

    Clevenger, Tony

    as a clinical diagnos- tic tool for liver cancer, and potentially other cancer types, by reducing the amount of time needed to get relevant data for treatment efficacy of SBRT patients. Imple- mentation of this work into our ongoing clinical study will further provide insights into whether the 31P MSRI method can be an early predictor of normal tissue toxicity and/or treatment response.

  2. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1997-03-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NMR methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methane groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of coals, and their suitability for possible correlations with the oil sourcing potential of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples. In this report period we have focused our work on 1 segment of the program. Our last report outlined progress in using our NMR editing methods with higher field operation where higher magic angle spinning rates are required. Significant difficulties were identified, and these have been the main subject of study during the most recent granting period.

  3. 2H NMR studies of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  4. Double rotation NMR studies of zeolites and aluminophosphate molecular sieves

    SciTech Connect

    Jelinek, Raz

    1993-07-01

    Goal is to study the organization and structures of guest atoms and molecules and their reactions on internal surfaces within pores of zeolites and aluminophosphate molecular sieves. 27Al and 23Na double rotation NMR (DOR) is used since it removes the anisotropic broadening in NMR spectra of quadrupolar nuclei, thus increasing resolution. This work concentrates on probing aluminum framework atoms in aluminophosphate molecular sieves and sodium extra framework cations in porous aluminosilicates. In aluminophosphates, ordering and electronic environments of the framework 27Al nuclei are modified upon adsorption of water molecules within the channels; a relation is sought between the sieve channel topology and the organization of adsorbed water, as well as the interaction between the Al nuclei and the water molecules. Extra framework Na+ cations are directly involved in adsorption processes and reactions in zeolite cavities.

  5. Cyclen-based bismacrocycles for biological anion recognition. A potentiometric and NMR study of AMP, ADP and ATP nucleotide complexation.

    PubMed

    Delépine, Anne-Sophie; Tripier, Raphaël; Handel, Henri

    2008-05-21

    The behaviour of two cyclen-based bismacrocycles linked by aromatic spacers as receptors of adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP) anions is explored. The two bismacrocycles differ from one another by the nature of their spacers, which are respectively 1,3-dimethylbenzene (BMC), or 2,6-dimethylpyridine (BPyC). Potentiometric investigations supported by (1)H and (31)P NMR measurements were performed over a wide pH range to characterize and understand the driving forces implicated in the supramolecular assemblies. A comparison is also carried out with the results presented in this work and those obtained previously with these two ligands and inorganic phosphates. The comparison exhibits the importance of pi-stacking capability of the organic anions in the binding and hydrogen-bonding network. For BPyC, NMR studies highlight two coordination schemes depending on the protonation of the nitrogen atom of the pyridinyl spacer, which acts in acidic media as a supplementary anchoring point.

  6. NMR Structural Studies of Antimicrobial Peptides: LPcin Analogs

    PubMed Central

    Jeong, Ji-Ho; Kim, Ji-Sun; Choi, Sung-Sub; Kim, Yongae

    2016-01-01

    Lactophoricin (LPcin), a component of proteose peptone (113–135) isolated from bovine milk, is a cationic amphipathic antimicrobial peptide consisting of 23 amino acids. We designed a series of N- or C-terminal truncated variants, mutated analogs, and truncated mutated analogs using peptide-engineering techniques. Then, we selected three LPcin analogs of LPcin-C8 (LPcin-YK1), LPcin-T2WT6W (LPcin-YK2), and LPcin-T2WT6W-C8 (LPcin-YK3), which may have better antimicrobial activities than LPcin, and successfully expressed them in E. coli with high yield. We elucidated the 3D structures and topologies of the three LPcin analogs in membrane environments by conducting NMR structural studies. We investigated the purity of the LPcin analogs and the α-helical secondary structures by performing 1H-15N 2D HSQC and HMQC-NOESY liquid-state NMR spectroscopy using protein-containing micelle samples. We measured the 3D structures and tilt angles in membranes by conducting 15N 1D and 2D 1H-15N SAMMY type solid-state NMR spectroscopy with an 800 MHz in-house-built 1H-15N double-resonance solid-state NMR probe with a strip-shield coil, using protein-containing large bicelle samples aligned and confirmed by molecular-dynamics simulations. The three LPcin analogs were found to be curved α-helical structures, with tilt angles of 55–75° for normal membrane bilayers, and their enhanced activities may be correlated with these topologies. PMID:26789765

  7. NMR Studies of Molecular Orientation and Dynamics in Spider silk

    NASA Astrophysics Data System (ADS)

    Michal, Carl; Eles, Philip

    2004-05-01

    Spider dragline silk has a unique combination of strength and extensibility that has been difficult to achieve in synthetic polymer fibres and has inspired industrial efforts to produce genetically engineered analogues. In light of these efforts elsewhere, we describe solid-state NMR experiments that elucidate the molecular structure and dynamics of this remarkable material. These experiments include the use of a 2-D exchange NMR experiment known as DECODER in which the sample is reoriented through a discrete angle during the mixing time. This experiment allows a reconstruction of the orientation distribution of the protein backbone. Our data is well described by a two-component distribution where the protein backbones of both components are preferentially aligned along the silk fibre. This experiment is also sensitive to molecular motion on a wide range of time-scales, and is employed to study changes in the silk as a function of fibre extension and hydration. Hydrated silk undergoes a remarkable phenomena known as supercontraction where fibres shrink by up to 50% in length while swelling in diameter. DECODER NMR of fully and partially supercontracted silk reveals that supercontraction occurs through a process of local phase transitions where water disrupts inter- and intra-chain hydrogen bonds.

  8. 7Li NMR study of normal human erythrocytes

    NASA Astrophysics Data System (ADS)

    Pettegrew, J. W.; Post, J. F. M.; Panchalingam, K.; Withers, G.; Woessner, D. E.

    The biological action of lithium is of great interest because of the therapeutic efficacy of the cation in manic-depressive illness. To investigate possible molecular interactions of lithium, 7Li NMR studies were conducted on normal human erythrocytes which had been incubated with lithium chloride. The uptake of lithium ions was followed by 7Li NMR, using a dysprosium, tripolyphosphate shift reagent. Lithium uptake followed single-exponential kinetics with a time constant of 14.7 h. The intracellular lithium relaxation times were T 1 ⋍ 5 s and T 2 ⋍ 0.15 s, which implies a lengthening of the lithium correlation time. It was found that lithium does not interact significantly with hemoglobin, the erythrocyte membrane, or artificial phospholipid membranes. Based on measurements of lithium T1 and T2 in concentrated agar gels, the large difference between T1 and T2 for intracellular lithium ions may be due to diffusion of the hydrated lithium ion through heterogeneous electrostatic field gradients created by the erythrocyte membrane-associated cytoskeletal network. Lithium binding to the membrane-associated cytoskeleton, however, cannot be ruled out. Because of the large differences between T1 and T2 of intracellular lithium ions, 1Li NMR may be a sensitive and promising noninvasive method to probe the intracellular environment.

  9. MRI and unilateral NMR study of reindeer skin tanning processes.

    PubMed

    Zhu, Lizheng; Del Federico, Eleonora; Ilott, Andrew J; Klokkernes, Torunn; Kehlet, Cindie; Jerschow, Alexej

    2015-04-07

    The study of arctic or subarctic indigenous skin clothing material, known for its design and ability to keep the body warm, provides information about the tanning materials and techniques. The study also provides clues about the culture that created it, since tanning processes are often specific to certain indigenous groups. Untreated skin samples and samples treated with willow (Salix sp) bark extract and cod liver oil are compared in this study using both MRI and unilateral NMR techniques. The two types of samples show different proton spatial distributions and different relaxation times, which may also provide information about the tanning technique and aging behavior.

  10. Probing the interaction of U(vi) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy.

    PubMed

    Uribe, Eva C; Mason, Harris E; Shusterman, Jennifer A; Bruchet, Anthony; Nitsche, Heino

    2016-06-21

    The fundamental interaction of U(vi) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U(vi) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse (31)P NMR on U(vi) contacted samples revealed that U(vi) only interacts with a fraction of the ligands present on the surface. At pH 4 the U(vi) extraction capacity of the material is limited to 27-37% of the theoretical capacity, based on ligand loading. We combined single pulse (31)P NMR on U(vi)-contacted samples with batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U(vi) binds to deprotonated phosphonate and/or silanol sites. We use (31)P-(31)P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U(vi)-complexed and non-complexed ligand environments. These measurements reveal that U(vi) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.

  11. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1997-09-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a completion of a detailed comparative analysis of the suite of spectral editing techniques developed in our laboratory for this purpose. The appended report is a manuscript being submitted to the Journal of Magnetic Resonance on this subject.

  12. Review of NMR characterization of pyrolysis oils

    DOE PAGES

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; ...

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  13. Tricritical point in ferroelastic ammonium titanyl fluoride: NMR study

    SciTech Connect

    Kavun, V.Ya.; Kozlova, S.G.; Laptash, N.M; Tkachenko, I.A.; Gabuda, S.P

    2010-09-15

    Ionic mobility and phase transitions in ammonium titanyl pentafluoride (NH{sub 4}){sub 3}TiOF{sub 5} were studied using the {sup 19}F and {sup 1}H NMR data. The high-temperature phase (I) is characterized by spherically symmetric (isotropic) reorientation of [TiOF{sub 5}]{sup 3-} anions and by uniaxial reorientation of these anions in the ferroelastic phase II. A previously unknown second-order phase transition to the low-temperature modification (NH{sub 4}){sub 3}TiOF{sub 5}(III) was found at 205 K. The transition is accompanied by hindering of uniaxial rotations of [TiOF{sub 5}]{sup 3-} anions and by noticeable change of {sup 19}F magnetic shielding tensor associated with the influence of pseudo-Jahn-Teller effect. A pressure-induced tricritical point with coordinates p{sub TCR{approx}}2 kbar and T{sub TCR{approx}}170 K is estimated on the base of {sup 19}F NMR chemical shift data, and previously studied p-T diagram of (NH{sub 4}){sub 3}TiOF{sub 5}. - Graphical abstract: p-T phase diagram of (NH{sub 4}){sub 3}TiOF{sub 5}.

  14. NMR Study of Organic Counterion Binding to Perfluorinated Micellar Structures

    NASA Astrophysics Data System (ADS)

    Bossev, Dobrin; Matsumoto, Mustuo; Nakahara, Masaru

    2008-03-01

    In this study we have applied our previously developed NMR method to study the adsorption of tetramethylammonium (TMA^+) and tetraethylammonium (TEA^+) counterions to micelles formed by perfluorooctylsulfonate (FOS^-) surfactant in water at 30 C. These two counterions induce formation of threadlike surfactant structures that result in well pronounced viscoelastic properties of the solution. To selectively probe the degree of counterion binding we have used ^1H and ^19F NMR chemical shifts and self-diffusion coefficients that are sensitive to the Stern and diffuse double layers, respectively. The competitive adsorption of TMA^+ and TEA^+ was examined as a function of the TMA^+/TEA^+ ratio at a constant FOS^- concentration of 100 mM. The two counterions were found to form Stern layer around the FOS^- micelles with comparable packing; about one counterion per two micellized FOS molecules. When mixed at intermediate proportions, however, the TEA^+ counterion shows preferential binding; the concentration of TEA^+ in the Stern layer is found to be twice higher than that of TMA^+ at equal total respective concentrations in the solution. These results are discussed in terms of counterion size and hydrophobicity and presented in parallel with those that involved the smaller and more hydrophilic lithium counterion.

  15. Entangled Polymer Melt Dynamics Studied By Low-Field NMR

    NASA Astrophysics Data System (ADS)

    Vaca Chavez, Fabian; Huebsch, Patrick; Zirbs, Ronald; Binder, Wolfgang; Saalwaechter, Kay

    2009-03-01

    Proton Multiple-Quantum (MQ) NMR is a powerful technique to investigate polymer dynamics due to its sensitivity to molecular motions on very different timescales. Entangled melts exhibit dynamic processes that cover a wide range of timescales, starting from fast ps-scale segmental reorientation up to diffusive and cooperative motions on the ms-s-scale. In this work, we apply MQ NMR to linear poly(cis-1,4-isoprene) and poly(isobutylene) of different molecular weight above the glass transition over suitable ranges of temperature, in order to establish the dynamic regimes predicted by the tube model, and, for the first time, to extract actual time scale information. This directly complements many neutron scattering studies, which are restricted to the sub-μs-timescale. Measurements on PIB-grafted silica particles with different molecular weights and different chain densities on the surface of the particle are also shown. The data is analyzed by establishing scaling laws which can be directly associated with different dynamic regimes predicted by the tube/reptation model. Full analytical analyses based on a correlation function which explicitly includes segmental, Rouse, and reptation dynamics are discussed.

  16. Effects of nucleotide binding to LmrA: A combined MAS-NMR and solution NMR study.

    PubMed

    Hellmich, Ute A; Mönkemeyer, Leonie; Velamakanni, Saroj; van Veen, Hendrik W; Glaubitz, Clemens

    2015-12-01

    ABC transporters are fascinating examples of fine-tuned molecular machines that use the energy from ATP hydrolysis to translocate a multitude of substrates across biological membranes. While structural details have emerged on many members of this large protein superfamily, a number of functional details are still under debate. High resolution structures yield valuable insights into protein function, but it is the combination of structural, functional and dynamic insights that facilitates a complete understanding of the workings of their complex molecular mechanisms. NMR is a technique well-suited to investigate proteins in atomic resolution while taking their dynamic properties into account. It thus nicely complements other structural techniques, such as X-ray crystallography, that have contributed high-resolution data to the architectural understanding of ABC transporters. Here, we describe the heterologous expression of LmrA, an ABC exporter from Lactococcus lactis, in Escherichia coli. This allows for more flexible isotope labeling for nuclear magnetic resonance (NMR) studies and the easy study of LmrA's multidrug resistance phenotype. We use a combination of solid-state magic angle spinning (MAS) on the reconstituted transporter and solution NMR on its isolated nucleotide binding domain to investigate consequences of nucleotide binding to LmrA. We find that nucleotide binding affects the protein globally, but that NMR is also able to pinpoint local dynamic effects to specific residues, such as the Walker A motif's conserved lysine residue.

  17. NMR structural studies of PECVD amorphous silicon films

    NASA Astrophysics Data System (ADS)

    Cull, Thomas Sidley, Jr.

    The properties of plasma enhanced chemical vapor deposition (PECVD) amorphous semiconductor films vary depending upon preparation conditions and doping. Hydrogenated amorphous silicon films (a-Si:H) have some properties that make these films desirable for use in solar cells and photoreceptor devices. Maximizing electronic and structural properties of such films is key to their success. Nuclear magnetic resonance, and in particular deuterium magnetic resonance (DMR) for a-Si:H,D films, is a useful means to study the morphology of such samples. The location and motions of hydrogen and the chemically equivalent deuterium within an amorphous semiconductor film can be observed with NMR. The information from the NMR studies can be correlated with electronic properties studies to determine whether a given sample would make a successful photovoltaic device. This thesis focuses on three aspects of study: comparison of two samples that differ in the bias applied to the substrate upon which the amorphous films were grown; derivation of relaxation parameters for covalently bonded deuterium; development of a new pulse sequence "incremental spin echo double resonance (SEDOR)" to study the number of unlike spins that contribute to the local field of a given nuclei. Four significant conclusions can be drawn. First, the electronic quality as measured by the photoresponse product etamutau correlates with the broad Gaussian DMR spectral feature which arises from molecular hydrogen in sites that restrict motion. Second, the relaxation of nuclear magnetization under extreme inhomogeneous broadening can be modeled very well as the relaxation without spin diffusion to faster relaxing species within a sample. Third, incremental SEDOR has either a quantum mechanical or classical behavior depending upon the length of the pulse spacing in comparison to the spin-spin relaxation time. Fourth, the local field at the hydrogen of an HD pair within an a-Si:H,D sample is determined on average by

  18. NMR Studies on the Aqueous Phase Photochemical Degradation of TNT

    SciTech Connect

    Thorn, Kevin A.; Cox, Larry G.

    2008-04-06

    Aqueous phase photochemical degradation of 2,4,6-trinitrotoluene (TNT) is an important pathway in several environments, including washout lagoon soils, impact craters from partially detonated munitions that fill with rain or groundwater, and shallow marine environments containing unexploded munitions that have corroded. Knowledge of the degradation products is necessary for compliance issues on military firing ranges and formerly used defense sites. Previous laboratory studies have indicated that UV irradiation of aqueous TNT solutions results in a multicomponent product mixture, including polymerization compounds, that has been only partially resolved by mass spectrometric analyses. This study illustrates how a combination of solid and liquid state 1H, 13C, and 15N NMR spectroscopy, including two dimensional analyses, provides complementary information on the total product mixture from aqueous photolysis of TNT, and the effect of reaction conditions. Among the degradation products detected were amine, amide, azoxy, azo, and carboxylic acid compounds.

  19. Unilateral NMR study of a XVI century wall painted

    NASA Astrophysics Data System (ADS)

    Proietti, N.; Capitani, D.; Rossi, E.; Cozzolino, S.; Segre, A. L.

    2007-06-01

    Wall paintings in the XVI century Serra Chapel in the "Chiesa di Nostra Signora del Sacro Cuore" Rome, have been studied using unilateral NMR. In order to map the distribution of moisture content in the wall painted, a large number of Hahn echo measurements, covering large areas of the wall painting were performed. Because the intensity of the Hahn echo is proportional to the amount of moisture in the area under study, the experimental data were transformed into 2D gradient colour maps which allowed an easy visualization of the moisture content of the wall. The state of conservation of the wall painting was monitored using T2 measurements specially with regards to outcropping salt.

  20. NMR studies of two spliced leader RNAs using isotope labeling

    SciTech Connect

    Lapham, J.; Crothers, D.M.

    1994-12-01

    Spliced leader RNAs are a class of RNA molecules (<200 nts) involved in the trans splicing of messenger RNA found in trypanosomes, nematodes, and other lower eukaryotes. The spliced leader RNA from the trypanosome Leptomonas Collosoma exists in two alternate structural forms with similar thermal stabilities. The 54 nucleotides on the 5{prime} end of the SL molecule is structurally independent from the 3{prime} half of the RNA, and displays the two structural forms. Furthermore, the favored of the two structures was shown to contain anomalous nuclease sensitivity and thermal stability features, which suggests that there may be tertiary interactions between the splice site and other nucleotides in the 5{prime} end. Multidimensional NMR studies are underway to elucidate the structural elements present in the SL RNAs that give rise to their physical properties. Two spliced leader sequences have been studied. The first, the 54 nucleotides on the 5{prime} end of the L. Collosoma sequence, was selected because of earlier studies in our laboratory. The second sequence is the 5{prime} end of the trypanosome Crithidia Fasciculata, which was chosen because of its greater sequence homology to other SL sequences. Given the complexity of the NMR spectra for RNA molecules of this size, we have incorporated {sup 15}N/{sup 13}C-labeled nucleotides into the RNA. One of the techniques we have developed to simplify the spectra of these RNA molecules is isotope labeling of specific regions of the RNA. This has been especially helpful in assigning the secondary structure of molecules that may be able to adopt multiple conformations. Using this technique one can examine a part of the molecule without spectral interference from the unlabeled portion. We hope this approach will promote an avenue for studying the structure of larger RNAs in their native surroundings.

  1. Localized Spectroscopy from Anatomically Matched Compartments: Improved Sensitivity and Localization for Cardiac 31P MRS in Humans

    NASA Astrophysics Data System (ADS)

    Löffler, Ralf; Sauter, Rolf; Kolem, Heinrich; Haase, Axel; von Kienlin, Markus

    1998-10-01

    Several pioneering studies have demonstrated that localized31P NMR spectroscopy of the human heart might become an important diagnostic tool in cardiology. The main limitation is due to the low sensitivity of these experiments, allowing only crude spatial resolution. We have implemented a three-dimensional version of SLOOP ("spectral localization with optimal pointspread function") on a clinical instrument. SLOOP takes advantage of all availablea prioriinformation to match the size and the shape of the sensitive volumes to the anatomical structures in the examined subject. Thus, SLOOP reduces the contamination from adjacent organs and improves the sensitivity compared to conventional techniques such as ISIS or chemical shift imaging (CSI). Initial studies were performed on six healthy volunteers at 1.5 T. The good localization properties are demonstrated by the absence of resonances from blood in the heart spectra, and by PCr-free spectra from the liver. Compared to conventional CSI, the signal-to-noise ratio of the SLOOP heart spectra was improved by approximately 30%. Taking into account the varying excitation angle in the inhomogeneous B1field of the surface coil, the SLOOP model computes the local spin saturation at every point in space. Therefore, no global saturation correction is required in the quantitative evaluation of local spectra. In this study, we found a PCr/γ-ATP ratio in the left ventricular wall of 1.90 ± 0.33 (mean ± standard deviation).

  2. NMR study of heavy fermion compound EuNi2P2

    NASA Astrophysics Data System (ADS)

    Magishi, K.; Watanabe, R.; Hisada, A.; Saito, T.; Koyama, K.; Fujiwara, T.

    2015-03-01

    We report the results of 31P-nuclear magnetic resonance (NMR) measurements on heavy fermion compound EuNi2P2 in order to investigate the magnetic properties at low temperatures from a microscopic view point. The Knight shift has a negative value in an entire temperature range, and the absolute value increases with decreasing temperature but exhibits a broad maximum around 40 K, which is similar to the behavior of the magnetic susceptibility. Also, the nuclear spin-lattice relaxation rate 1/T1 is almost constant at high temperatures above 200 K, which is reminiscent of the relaxation mechanism dominated by the interaction of the 31P nucleus with fluctuating Eu-4f moments. Below 200 K, 1/T1 gradually decreases on cooling due to the change of the valence in the Eu ion. At low temperatures, 1/T1 does not obey the Korringa relation, in contrast to typical heavy fermion compounds. The nuclear spin-spin relaxation rate 1/T2 shows the similar behavior as 1/T1 at high temperatures. But, below 50 K, 1/T2 increases upon cooling due to the development of the magnetic excitation.

  3. Wheat germ 5S ribosomal RNA common arm fragment conformations observed by sup 1 H and sup 31 P nuclear magnetic resonance spectroscopy

    SciTech Connect

    Wu, Jiejun; Marshall, A.G. )

    1990-02-20

    The nonexchangeable protons of the common arm fragment of wheat germ (Triticum aestivum) ribosomal 5S RNA have been observed by means of high-resolution 500-MHz {sup 1}H NMR spectroscopy in D{sub 2}O solution. Although NMR studies on the exchangeable protons support the presence of two distinct solution structures of the common arm fragment (and of the same base-paired segment in intact 5S rRNA), only a single conformation is manifested in the {sup 1}H NMR behavior of all of the H6 and H5 pyrimidine and most of the H8/H2 purine protons under the same salt conditions. The nonexchangeable protons near the base-paired helix have been assigned by a sequential strategy. Conformational features such as the presence of a cytidine-uridine (C{center dot}U) pair at the loop-helix junction and base stacking into the hairpin loop are evaluated from nuclear Overhauser enhancement spectroscopy (NOESY) data. Double-quantum filtered correlation spectroscopy (DQF-COSY) experiments show that most of the 26 riboses are in the C3{prime}-endo conformation. Finally, backbone conformational changes induced by Mg{sup 2+} and heating have been monitored by {sup 31}P NMR spectroscopy. The results show that the common arm RNA segment can assume two conformations which produce distinguishably different NMR environments at the base-pair hydrogen-bond imino protons but not at nonexchangeable base or ribose proton or backbone phosphate sites.

  4. Determining the Mode of Action Involved in the Antimicrobial Activity of Synthetic Peptides: A Solid-State NMR and FTIR Study

    PubMed Central

    Lorin, Aurélien; Noël, Mathieu; Provencher, Marie-Ève; Turcotte, Vanessa; Cardinal, Sébastien; Lagüe, Patrick; Voyer, Normand; Auger, Michèle

    2012-01-01

    We have previously shown that leucine to lysine substitution(s) in neutral synthetic crown ether containing 14-mer peptide affect the peptide structure and its ability to permeabilize bilayers. Depending on the substitution position, the peptides adopt mainly either a α-helical structure able to permeabilize dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) vesicles (nonselective peptides) or an intermolecular β-sheet structure only able to permeabilize DMPG vesicles (selective peptides). In this study, we have used a combination of solid-state NMR and Fourier transform infrared spectroscopy to investigate the effects of nonselective α-helical and selective intermolecular β-sheet peptides on both types of bilayers. 31P NMR results indicate that both types of peptides interact with the headgroups of DMPC and DMPG bilayers. 2H NMR and Fourier transform infrared results reveal an ordering of the hydrophobic core of bilayers when leakage is noted, i.e., for DMPG vesicles in the presence of both types of peptides and DMPC vesicles in the presence of nonselective peptides. However, selective peptides have no significant effect on the ordering of DMPC acyl chains. The ability of these 14-mer peptides to permeabilize lipid vesicles therefore appears to be related to their ability to increase the order of the bilayer hydrophobic core. PMID:23062339

  5. Ion transport in porous media studied by NMR.

    PubMed

    Pel, L; Huinink, H P; Kopinga, K; Rijniers, L A; Kaasschieter, E F

    2001-01-01

    Moisture and salt transport in masonry can give rise to damages. Therefore a detailed knowledge of the moisture and salt transport is essential for understanding the durability of masonry. A special NMR apparatus has been made allowing quasi-simultaneous measurements of both moisture and Na profiles in porous building materials. Using this apparatus both the absorption of a 4 M NaCl solution in a calcium silicate brick and the drying of a 3 M NaCl capillary saturated fired-clay brick have been studied. It was found that during the absorption process the Na ions clearly stay behind, which this is caused by adsorption of these ions to the pore surface. For the drying it was found that at the beginning of the drying process the ions accumulate near the surface. As the drying rate decreases, diffusion becomes dominant and the ion profile levels off again.

  6. ¹H NMR and hyperpolarized ¹³C NMR assays of pyruvate-lactate: a comparative study.

    PubMed

    Hill, Deborah K; Jamin, Yann; Orton, Matthew R; Tardif, Nicolas; Parkes, Harold G; Robinson, Simon P; Leach, Martin O; Chung, Yuen-Li; Eykyn, Thomas R

    2013-10-01

    Pyruvate-lactate exchange is mediated by the enzyme lactate dehydrogenase (LDH) and is central to the altered energy metabolism in cancer cells. The measurement of exchange kinetics using hyperpolarized (13) C NMR has provided a biomarker of response to novel therapeutics. However, the observable signal is restricted to the exchanging hyperpolarized (13) C pools and the endogenous pools of (12) C-labelled metabolites are invisible in these measurements. In this study, we investigated an alternative in vitro (1) H NMR assay, using [3-(13) C]pyruvate, and compared the measured kinetics with a hyperpolarized (13) C NMR assay, using [1-(13) C]pyruvate, under the same conditions in human colorectal carcinoma SW1222 cells. The apparent forward reaction rate constants (kPL ) derived from the two assays showed no significant difference, and both assays had similar reproducibility (kPL  = 0.506 ± 0.054 and kPL  = 0.441 ± 0.090 nmol/s/10(6) cells; mean ± standard deviation; n = 3); (1) H, (13) C assays, respectively). The apparent backward reaction rate constant (kLP ) could only be measured with good reproducibility using the (1) H NMR assay (kLP  = 0.376 ± 0.091 nmol/s/10(6) cells; mean ± standard deviation; n = 3). The (1) H NMR assay has adequate sensitivity to measure real-time pyruvate-lactate exchange kinetics in vitro, offering a complementary and accessible assay of apparent LDH activity.

  7. MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content

    NASA Astrophysics Data System (ADS)

    Goswami, Madhumita; Kothiyal, Govind P.; Montagne, Lionel; Delevoye, Laurent

    2008-02-01

    Lithium zinc silicate glasses of composition (mol%): 17.5Li 2O-(72- x)SiO 2- xZnO-5.1Na 2O-1.3P 2O 5-4.1B 2O 3, 5.5⩽ x⩽17.7, were prepared by conventional melt-quenched technique and converted to glass-ceramic by controlled crystallization process. 29Si and 31P MAS-NMR was used to characterize the structure of both glass and glass-ceramic samples. Despite the complex glass composition, Q2, Q3 and Q4 sites are identified from 29Si MAS-NMR, which relative intensities are found to vary with the ZnO content, indicating a network depolymerization by ZnO. Moreover, well separated Q3 and Q4 resonances for low ZnO content indicates the occurrence of phase separation. From 31P MAS-NMR, it is seen that phosphorus is mainly present in the form of ortho-( Q0) and pyro-phosphate ( Q1) structural units and variation of ZnO content did not have much effect on these resonances, which provides an additional evidence for phase separation in the glass. On conversion to glass-ceramics, lithium disilicate (Li 2Si 2O 5), lithium zinc ortho-silicate (Li 3Zn 0.5SiO 4), tridymite (SiO 2) and cristobalite (SiO 2) were identified as major silicate crystalline phases. Using 29Si MAS-NMR, quantification of these silicate crystalline phases is carried out and correlated with the ZnO content in the glass-ceramics samples. In addition, 31P spectra unambiguously revealed the presence of crystalline Li 3PO 4 and (Na,Li) 3PO 4 in the glass-ceramics.

  8. Ultra-broadband NMR probe: numerical and experimental study of transmission line NMR probe.

    PubMed

    Kubo, Atsushi; Ichikawa, Shinji

    2003-06-01

    We have reinvestigated a transmission line NMR probe first published by Lowe and co-workers in 1970s [Rev. Sci. Instrum. 45 (1974) 631; 48 (1977) 268] numerically and experimentally. The probe is expected to be ultra-broadband, thus might enable new types of solid-state NMR experiments. The NMR probe consists of a coil and capacitors which are connected to the coil at regular intervals. The circuit is the same as a cascaded LC low-pass filter, except there are nonzero mutual inductances between different coil sections. We evaluated the mutual inductances by Neumann's formula and calculated the electrical characteristics of the probe as a function of a carrier frequency. We found that they were almost the same as those of a cascaded LC low-pass filter, when the inductance L of a section was estimated from the inductance of the whole coil divided by the number of the sections, and if C was set to the capacitance in a section. For example, the characteristic impedance of a transmission line coil is given by Z=(L/C)(1/2). We also calculated the magnitude and the distribution of RF magnetic field inside the probe. The magnitude of RF field decreases when the carrier frequency is increased because the phase delay between neighboring sections is proportional to the carrier frequency. For cylindrical coils, the RF field is proportional to (pinu/2nu(d))(1/2)exp(-nu/nu(d)), where the decay frequency nu(d) is determined by the dimensions of the coil. The observed carrier frequency thus must be much smaller than the decay frequency. This condition restricts the size of transmission line coils. We made a cylindrical coil for a 1H NMR probe operating below 400 MHz. It had a diameter 2.3mm and a pitch 1.2mm. Five capacitors of 6pF were connected at every three turns. The RF field strength was 40 and 60 kHz at the input RF power 100 W by a calculation and by experiments, respectively. The calculations showed that the RF field inhomogeneity along the coil axis was caused by a

  9. Zero-field NMR and NQR studies of magnetically ordered state in charge-ordered EuPtP

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Maruyama, T.; Ueda, K.; Mito, T.; Mitsuda, A.; Umeda, M.; Sugishima, M.; Wada, H.

    2015-03-01

    EuPtP undergoes two valence transitions and has two kinds of valence states of Eu ions at low temperatures. In the charge-ordered state, this compound shows an antiferromagnetic order ascribed to magnetic divalent Eu ions. We investigated the antiferromagnetically ordered state of EuPtP by nuclear magnetic resonance (NMR) measurement and nuclear quadrupole resonance (NQR) measurement in a zero external magnetic field. The observed 153Eu NMR signals of a magnetic divalent state and Eu,153151 NQR signals of a nonmagnetic trivalent state clearly demonstrate that the spins order in the hexagonal basal plane and the internal magnetic field is not canceled out, even at the Eu3 + layers which are in the middle of magnetic Eu2 + layers. In addition, the observation of 31P and 195Pt NMR spectra allowed us to discuss a possible magnetic structure. We also evaluated the nuclear quadrupole frequencies for both Eu2 + and Eu3 + ion states.

  10. Solid-State NMR Studies of Amyloid Fibril Structure

    NASA Astrophysics Data System (ADS)

    Tycko, Robert

    2011-05-01

    Current interest in amyloid fibrils stems from their involvement in neurodegenerative and other diseases and from their role as an alternative structural state for many peptides and proteins. Solid-state nuclear magnetic resonance (NMR) methods have the unique capability of providing detailed structural constraints for amyloid fibrils, sufficient for the development of full molecular models. In this article, recent progress in the application of solid-state NMR to fibrils associated with Alzheimer's disease, prion fibrils, and related systems is reviewed, along with relevant developments in solid-state NMR techniques and technology.

  11. Extra thymidine stacks into the d(CTGGTGCGG).d(CCGCCCAG) duplex. An NMR and model-building study.

    PubMed Central

    van den Hoogen, Y T; van Beuzekom, A A; van den Elst, H; van der Marel, G A; van Boom, J H; Altona, C

    1988-01-01

    NMR and model-building studies were carried out on the duplex d(CTGGTGCGG).d(CCGCCCAG), referred to as (9+8)-mer, which contains an unpaired thymidine residue. Resonances of the base and of several sugar protons of the (9+8)-mer were assigned by means of a NOESY experiment. Interresidue NOEs between dG(4) and dT(5) as well as between dT(5) and dG(6) provided evidence that the extra dT is stacked into the duplex. Thermodynamic analysis of the chemical shift vs temperature profiles yielded an average TmD value of 334 K and delta HD of -289 kJmol-1 for the duplex in equilibrium random-coil transition. The shapes of the shift profiles as well as the thermodynamic parameters obtained for the extra dT residue and its neighbours again indicate that the unpaired dT base is incorporated inside an otherwise intact duplex. This conclusion is further supported by (a) the observation of an imino-proton resonance of the unpaired dT; (b) the relatively small dispersion in 31P chemical shifts (approximately 0.5 ppm) for the (9+8)-mer, which indicates the absence of t/g or g/t combinations for the phosphate diester torsion angles alpha/zeta. An energy-minimized model of the (9+8)-mer, which fits the present collection of experimental data, is presented. PMID:3368313

  12. Extra thymidine stacks into the d(CTGGTGCGG).d(CCGCCCAG) duplex. An NMR and model-building study.

    PubMed

    van den Hoogen, Y T; van Beuzekom, A A; van den Elst, H; van der Marel, G A; van Boom, J H; Altona, C

    1988-04-11

    NMR and model-building studies were carried out on the duplex d(CTGGTGCGG).d(CCGCCCAG), referred to as (9+8)-mer, which contains an unpaired thymidine residue. Resonances of the base and of several sugar protons of the (9+8)-mer were assigned by means of a NOESY experiment. Interresidue NOEs between dG(4) and dT(5) as well as between dT(5) and dG(6) provided evidence that the extra dT is stacked into the duplex. Thermodynamic analysis of the chemical shift vs temperature profiles yielded an average TmD value of 334 K and delta HD of -289 kJmol-1 for the duplex in equilibrium random-coil transition. The shapes of the shift profiles as well as the thermodynamic parameters obtained for the extra dT residue and its neighbours again indicate that the unpaired dT base is incorporated inside an otherwise intact duplex. This conclusion is further supported by (a) the observation of an imino-proton resonance of the unpaired dT; (b) the relatively small dispersion in 31P chemical shifts (approximately 0.5 ppm) for the (9+8)-mer, which indicates the absence of t/g or g/t combinations for the phosphate diester torsion angles alpha/zeta. An energy-minimized model of the (9+8)-mer, which fits the present collection of experimental data, is presented.

  13. The characterization of phospholipid functional group probe species on respirable silicon-containing dusts by solid-state 13C and 31P nuclear magnetic resonance spectroscopy.

    PubMed

    Murray, David K

    2010-03-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopic studies are reported for the interactions of probe molecules with respirable silicon-containing dusts as experimental evidence complementing computational studies reported by Snyder and Madura recently in J. Phys. Chem. B 112, 7095 (2008). The selected probe molecules represent the individual functional groups of a model lung surfactant dipalmitoylphosphatidyl choline (DPPC) deposited on a respirable silica and kaolin from water solution. (13)C and (31)P solid-state NMR spectroscopies were employed to detect chemical shift, line width, and chemical shift anisotropy, providing experimental evidence of mobility and relaxation changes describing the site and orientation of surface-associated species. NMR results confirm that only the phosphate and adjacent carbons are immobilized by surface hydroxyls on kaolin, while these and the carbons of the cationic head group are likewise immobilized by surface silanols on Miu-U-Sil 5. The phosphates in phosphoryl- and phosphatidyl-cholines were the primary interaction sites, with additional weak coordination with the trimethylammonium cation species. Covalent Al-O-P formation is not likely a factor in in vivo or in vitro toxicity mechanisms of respirable silicon-containing materials, but is rather the result of dehydration or demethoxylation reactions occurring over time or during heating or reduced pressure used in preparing materials for NMR spectroscopic study. Hydration is a critical factor in the formation and preparation for spectroscopic observation of coated dusts. Care must be taken to ensure that products formed and studied correspond to species formed in vivo under suitable concentration and hydration conditions.

  14. A Wet-Lab Approach to Stereochemistry Using [superscript 31]P NMR Spectroscopy

    ERIC Educational Resources Information Center

    Fenton, Owen S.; Sculimbrene, Bianca R.

    2011-01-01

    Understanding stereochemistry is an important and difficult task for students to master in organic chemistry. In both introductory and advanced courses, students are encouraged to explore the spatial relationships between molecules, but this exploration is often limited either to the lecture hall or the confines of the library. As such, we sought…

  15. Diffusion NMR methods applied to xenon gas for materials study

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  16. In-Cell Solid-State NMR: An Emerging Technique for the Study of Biological Membranes

    PubMed Central

    Warnet, Xavier L.; Arnold, Alexandre A.; Marcotte, Isabelle; Warschawski, Dror E.

    2015-01-01

    Biological molecular processes are often studied in model systems, which simplifies their inherent complexity but may cause investigators to lose sight of the effects of the molecular environment. Information obtained in this way must therefore be validated by experiments in the cell. NMR has been used to study biological cells since the early days of its development. The first NMR structural studies of a protein inside a cell (by solution-state NMR) and of a membrane protein (by solid-state NMR) were published in 2001 and 2011, respectively. More recently, dynamic nuclear polarization, which has been used to enhance the signal in solid-state NMR, has also been applied to the study of frozen cells. Much progress has been made in the past 5 years, and in this review we take stock of this new technique, which is particularly appropriate for the study of biological membranes. PMID:26682804

  17. Fundamental studies of supported bimetallic catalysts by NMR spectroscopy

    SciTech Connect

    Savargaonkar, Nilesh

    1996-10-17

    Various hydrogenation reactions on transition metals are important commercially whereas certain hydrogenolysis reactions are useful from fundamental point of view. Understanding the hydrogen mobility and kinetics of adsorption-desorption of hydrogen is important in understanding the mechanisms of such reactions involving hydrogen. The kinetics of hydrogen chemisorption was studied by means of selective excitation NMR on silica supported Pt, Rh and Pt-Rh catalysts. The activation energy of hydrogen desorption was found to be lower on silica supported Pt catalysts as compared to Rh and Pt-Rh catalysts. It was found that the rates of hydrogen adsorption and desorption on Pt-Rh catalyst were similar to those on Rh catalyst and much higher as compared to Pt catalyst. The Ru-Ag bimetallic system is much simpler to study than the Pt-Rh system and serves as a model system to characterize more complicated systems such as the K/Ru system. Ag was found to decrease the amounts of adsorbed hydrogen and the hydrogen-to-ruthenium stoichiometry. Ag reduced the populations of states with low and intermediate binding energies of hydrogen on silica supported Ru catalyst. The rates of hydrogen adsorption and desorption were also lower on silica supported Ru-Ag catalyst as compared to Ru catalyst. This report contains introductory information, the literature review, general conclusions, and four appendices. An additional four chapters and one appendix have been processed separately for inclusion on the data base.

  18. NMR study of strontium binding by a micaceous mineral.

    PubMed

    Bowers, Geoffrey M; Ravella, Ramesh; Komarneni, Sridhar; Mueller, Karl T

    2006-04-13

    The nature of strontium binding by soil minerals directly affects the transport and sequestration/remediation of radioactive strontium species released from leaking high-level nuclear waste storage tanks. However, the molecular-level structure of strontium binding sites has seldom been explored in phyllosilicate minerals by direct spectroscopic means and is not well-understood. In this work, we use solid-state NMR to analyze strontium directly and indirectly in a fully strontium-exchanged synthetic mica of nominal composition Na(4)Mg(6)Al(4)Si(4)O(20)F(4). Thermogravimetric analysis, X-ray diffraction analysis, and NMR evidence supports that heat treatment at 500 degrees C for 4 h fully dehydrates the mica, creating a hydrogen-free interlayer. Analysis of the strontium NMR spectrum of the heat-treated mica shows a single strontium environment with a quadrupolar coupling constant of 9.02 MHz and a quadrupolar asymmetry parameter of 1.0. These quadrupolar parameters are consistent with a highly distorted and asymmetric coordination environment that would be produced by strontium cations without water in the coordination sphere bound deep within the ditrigonal holes. Evidence for at least one additional strontium environment, where proton-strontium couplings may occur, was found via a (1)H-(87)Sr transfer of populations by double resonance NMR experiment. We conclude that the strontium cations in the proton-free interlayer are observable by (87)Sr NMR and bound through electrostatic interactions as nine coordinate inner-sphere complexes sitting in the ditrigonal holes. Partially hydrated strontium cations invisible to direct (87)Sr NMR are also present and located on the external mica surfaces, which are known to hydrate upon exposure to atmospheric moisture. These results demonstrate that modern pulsed NMR techniques and high fields can be used effectively to provide structural details of strontium binding by phyllosilicate minerals.

  19. NMR Study of Strontium Binding by a Micaceous Mineral

    SciTech Connect

    Bowers, Geoffrey M.; Ravella, Ramesh; Komarneni, S.; Mueller, Karl T.

    2006-04-13

    The nature of strontium binding by soil minerals directly affects the transport and sequestration/remediation of radioactive strontium species released from leaking high-level nuclear waste storage tanks. However, the molecular-level structure of strontium binding sites has seldom been explored in phyllosilicate minerals by direct spectroscopic means and is not well-understood. In this work, we use solid-state NMR to analyze strontium directly and indirectly in a fully strontium-exchanged synthetic mica of nominal composition Na4Mg6Al4Si4O20F4. Thermogravimetric analysis, X-ray diffraction analysis, and NMR evidence supports that heat treatment at 500 °C for 4 h fully dehydrates the mica, creating a hydrogen-free interlayer. Analysis of the strontium NMR spectrum of the heat-treated mica shows a single strontium environment with a quadrupolar coupling constant of 9.02 MHz and a quadrupolar asymmetry parameter of 1.0. These quadrupolar parameters are consistent with a highly distorted and asymmetric coordination environment that would be produced by strontium cations without water in the coordination sphere bound deep within the ditrigonal holes. Evidence for at least one additional strontium environment, where proton-strontium couplings may occur, was found via a 1H-87Sr transfer of populations by double resonance NMR experiment. We conclude that the strontium cations in the proton-free interlayer are observable by 87Sr NMR and bound through electrostatic interactions as nine coordinate inner-sphere complexes sitting in the ditrigonal holes. Partially hydrated strontium cations invisible to direct 87Sr NMR are also present and located on the external mica surfaces, which are known to hydrate upon exposure to atmospheric moisture. These results demonstrate that modern pulsed NMR techniques and high fields can be used effectively to provide structural details of strontium binding by phyllosilicate minerals.

  20. Studies of Molecular Dynamics by Solid State Deuterium NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Baiyi

    The rotational dynamics of molecules in a number of solid systems were followed by variable temperature deuterium (^2H), nuclear magnetic resonance (NMR) spectroscopy via changes in the spectral lineshapes and spin-lattice relaxation times (T _1). First the pure solid trimethylamine-borane adduct, (CH_3)_3NBH_3, was studied. For a methyl deuterated sample, T _1 measurements yielded two T_1 minima, 6.9 ms and 4.3 ms corresponding to the slowing of methyl and trimethyl rotation, respectively, with decreasing temperature. Activation energies for methyl and trimethyl rotation, obtained from fitting the T _1 curve as a function of temperature, were 32.8 and 15.0 kJ/mol, respectively; simulations of the spectral lineshapes gave 26.6 and 18.9 kT/mol, respectively. Fitting of the ^2H T_1 curve for the borane deuterated sample gave a BH _3 rotation activation energy of 14.1 kT/mol and a ^2H quadrupolar coupling constant, chi, of 101 kHz. The activation energy for BH_3 rotation obtained from the spectral lineshape simulations gave 12.6 kT/mol. A series of deuterated organic chalcogen cations: (CH_3)_3S^+, (CH_3)_3Se^+ and (CH_3)_3Te^+, were ion exchanged into the cavities of sodium Mordenite LZ-M5 and the dynamics of these guests within the hydrated zeolite were followed by ^2H NMR. All three undergo isotropic motion above about -80 to -90^circC. Below this temperature two superimposed ^2H powder spectra appear; the broad lineshape is consistent with only methyl rotation in a hindered, coordinated site, and the other narrow lineshape is due to both methyl and trimethyl rotation in a less hindered, uncoordinated site. As the temperature is lowered the population of the lower energy coordinated site increases. Relative peak areas yield adsorption enthalpies of 6.7, 7.8 and 10.0 kJ/mol for (CH_3)_3S^+, (CH_3)_3Se^+ and (CH_3)_3Te^+, respectively. The series of methyl deuterated ammonium and phosphonium cations: (CH_3)NH_3^+ , (CH_3)_2NH^+ , (CH_3)_3NH^+ and (CH_3)_4P^+ , were

  1. Evaluation of a New 1H/31P Dual-Tuned Birdcage Coil for 31P Spectroscopy

    PubMed Central

    Potter, WM; Wang, L; McCully, KK; Zhao, Q

    2013-01-01

    We introduce a new dual-tuned Hydrogen/Phosphorus (1H/31P) birdcage coil, referred to as split birdcage coil, and evaluate its performance using both simulations and magnetic resonance (MR) experiments on a 3 T MR scanner. The proposed coil simplifies the practical matters of tuning and matching, which makes the coil easily reproducible. Simulations were run with the Finite Difference in Time Domain (FDTD) method to evaluate the sensitivity and homogeneity of the magnetic field generated by the proposed 1H coils. Following simulations, MR experiments were conducted using both a phantom and human thigh to compare the proposed design with a currently available commercial dual-tuned flexible surface coil, referred to as flex surface coil, for signal to noise ratio (SNR) as well as homogeneity for the 31P coil. At regions deep within the human thigh, the split birdcage coil was able to acquire spectroscopic signal with a higher average SNR than the flex surface coil. For all regions except those close to the flex surface coil, the split birdcage coil matched or exceeded the performance of the flex surface coil. PMID:24039555

  2. Differential cross sections measurement of 31P(p,pγ1)31P reaction for PIGE applications

    NASA Astrophysics Data System (ADS)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.

    2016-09-01

    Differential cross sections of proton induced gamma-ray emission from the 31P(p,pγ1)31P (Eγ = 1266 keV) nuclear reaction were measured in the proton energy range of 1886-3007 keV at the laboratory angle of 90°. For these measurements a thin Zn3P2 target evaporated onto a self-supporting C film was used. The gamma-rays and backscattered protons were detected simultaneously. An HPGe detector placed at an angle of 90° with respect to the beam direction was employed to collect gamma-rays while an ion implanted Si detector placed at a scattering angle of 165° was used to detect backscattered protons. Simultaneous collection of gamma-rays and RBS spectra is a great advantage of this approach which makes differential cross-section measurements independent on the collected beam charge. The obtained cross-sections were compared with the previously only measured data in the literature. The validity of the measured differential cross sections was verified through a thick target benchmarking experiment. The overall systematic uncertainty of cross section values was estimated to be better than ±9%.

  3. High resolution deuterium NMR studies of bacterial metabolism

    SciTech Connect

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  4. NMR study of small molecule adsorption in MOF-74-Mg

    NASA Astrophysics Data System (ADS)

    Lopez, M. G.; Canepa, Pieremanuele; Thonhauser, T.

    2013-04-01

    We calculate the carbon nuclear magnetic resonance (NMR) shielding for CO2 and the hydrogen shieldings for both H2 and H2O inside the metal organic framework MOF-74-Mg. Our ab initio calculations are at the density functional theory level using the van der Waals including density functional vdW-DF. The shieldings are obtained while placing the small molecules throughout the structure, including the calculated adsorption site for various loading scenarios. We then explore relationships between loading, rotational and positional characteristics, and the NMR shieldings for each adsorbate. Our NMR calculations show a change in the shielding depending on adsorbate, position, and loading in a range that is experimentally observable. We further provide a simple model for the energy and the NMR shieldings throughout the cavity of the MOF. By providing this mapping of shielding to position and loading for these adsorbates, we argue that NMR probes could be used to provide additional information about the position at which these small molecules bind within the MOF, as well as the loading of the adsorbed molecule.

  5. A Deuterium NMR Study of Bent-Core Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Dingemans, Theo J.; Madsen, Louis A.; Samulski, Edward T.

    2002-10-01

    We have synthesized two deuterated boomerang-shaped liquid crystals based on 2,5-bis(4-hydroxyphenyl)-1,3,4-oxadiazole (ODBP). Deuterium was introduced in the rigid 2,5-diphenyl-1,3,4-oxadiazole core and in the aromatic ring of the terminal 4-dodecyloxyphenyl moiety using standard acid catalyzed deuterium exchange conditions. Both compounds, (4,4'(1,3,4-oxadiazole-2,5-diyl-d4) di-4-dodecyloxybenzoate: ODBP-d4-Ph-O-C12) and (4,4'(1,3,4-oxadiazole-2,5-diyl) di-4-dodecyloxy-benzoate-d4; ODBP-Ph-d4-O-C12) were investigated by nuclear magnetic resonance, optical microscopy and differential scanning calorimetry. The optical textures and thermal behavior of both compounds were found to be identical to the non-deuterated analog 4,4(1,3,4-oxadiazole-2,5-diyl) di-4-dodecyloxybenzoate (ODBP-Ph-O-C12) which we reported earlier. These compounds exhibit behavior indicative of a biaxial nematic liquid crystal phase, which we hope to confirm using deuterium NMR spectroscopy in the next phase of this study.

  6. Vibrational and NMR probe studies of S Az-1 montmorillonite

    SciTech Connect

    Johnston, C.T.; Erickson, C.; Earl, W.L.

    1992-09-01

    This paper reports a study of the interactions of exchangeable metal cations with mineral surfaces using a combined spectroscopic/macroscopic approach. Objectives were to examine the use of water molecules and metal cations as molecular probes of smectite water interactions. The {nu}{sub 2} mode of water is used as a diagnostic vibrational band. An FTIR-gravimetric cell is used to examine the FTIR spectra of water on homoionic smectites. The {sup 23}Na NMR resonance is used to probe metal-water interactions on the surface. Results show that there are strong changes in both position and absorption coefficient of the H-O-H bending mode of water sorbed on SAz-1 montmorillonite as a function of water content. These changes are attributed to strong electrostatic forces and mobility changes that occur when the water in the interlammelar space is associated with the metal ion. The clay surface is viewed as having at least two distinct sites to which a hydrated Na{sup +} can bind. 32 refs, 5 figs. (DLC)

  7. Vibrational and NMR probe studies of S Az-1 montmorillonite

    SciTech Connect

    Johnston, C.T.; Erickson, C. . Dept. of Soil Science); Earl, W.L. )

    1992-01-01

    This paper reports a study of the interactions of exchangeable metal cations with mineral surfaces using a combined spectroscopic/macroscopic approach. Objectives were to examine the use of water molecules and metal cations as molecular probes of smectite water interactions. The {nu}{sub 2} mode of water is used as a diagnostic vibrational band. An FTIR-gravimetric cell is used to examine the FTIR spectra of water on homoionic smectites. The {sup 23}Na NMR resonance is used to probe metal-water interactions on the surface. Results show that there are strong changes in both position and absorption coefficient of the H-O-H bending mode of water sorbed on SAz-1 montmorillonite as a function of water content. These changes are attributed to strong electrostatic forces and mobility changes that occur when the water in the interlammelar space is associated with the metal ion. The clay surface is viewed as having at least two distinct sites to which a hydrated Na{sup +} can bind. 32 refs, 5 figs. (DLC)

  8. NMR studies of the conformational interconversion of butaclamol in solution.

    PubMed

    Casarotto, M G; Craik, D J; Lloyd, E J

    1991-07-01

    1H NMR experiments at 300 MHz have been carried out to determine the identity and study the interconversion of two conformations of butaclamol in solution. The hydrochloride salt in DMSO exists as an equilibrium mixture of two conformations, which differ in their stereochemistry about the ring junction that contains the single nitrogen atom in butaclamol. The trans form has a relative population of 80% and the cis I form 20%. In CDCl3 only the trans form is observed, while in CDCl3-DMSO mixtures, both forms are detected in a ratio (trans:cis I) that decreases as the percentage of CDCl3 decreases. For the free base in either CD2Cl2 or DMSO, only a single set of resonances is observed at room temperature, but as temperature is lowered, peaks from methine protons H4a and H13b near the ring junction broaden and (for samples in CD2Cl2) eventually split into two resonances corresponding to the cis and trans forms. It is suggested that nitrogen inversion is the dynamic process responsible for the interconversion of the two forms. Line shape analysis as a function of temperature yielded an energy barrier of 9.6 +/- 0.5 kcal/mol for the interconversion, in good agreement with values obtained from saturation transfer experiments. In the hydrochloride salt, the barrier in DMSO was somewhat higher, i.e., 17.3 +/- 0.9 kcal/mol, as determined by saturation transfer and variable-temperature measurements.

  9. NMR study of black-phase in SmS

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Yamada, H.; Ueda, K.; Mito, T.; Haga, Y.

    2015-03-01

    We report the result of the 33S nuclear magnetic resonance (NMR) measurement on the nonmagnetic semiconductor SmS at ambient pressure. For this measurement, the 33S isotope enriched powder sample of SmS was prepared to increase the 33S NMR intensity. We have attempted 33S NMR measurement on SmS and successfully observed the signal of it. With decreasing temperature, the spectrum measured at the constant magnetic field shifted to lower frequency and became weakly temperature dependent below 50 K. The presence of the energy gap was microscopically established by the rapid decrease in the nuclear spin-lattice relaxation rate 1/T1. The activation energy was deduced to be 625 K from an Arrhenius plot of T1.

  10. Probing the interaction of U(VI) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy

    DOE PAGES

    Uribe, Eva C.; Mason, Harris E.; Shusterman, Jennifer A.; ...

    2016-05-30

    The fundamental interaction of U(VI) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U(VI) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse 31P NMR on U(VI) contacted samples revealed that U(VI)only interacts with a fraction of the ligands present on the surface. At pH 4 the U(VI) extraction capacity of the material is limited to 27–37% of the theoretical capacity, based on ligand loading. We combined single pulse 31P NMR on U(VI)-contacted samples withmore » batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U(VI) binds to deprotonated phosphonate and/or silanol sites. We use 31P–31P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U(VI)-complexed and non-complexed ligand environments. Furthermore, these measurements reveal that U(VI) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.« less

  11. NMR studies of osmoregulation in methanogenic archaebacteria. [NMR (nuclear magnetic resonance)

    SciTech Connect

    Robertson, D.E.

    1991-01-01

    Methanogens are strict anaerobic archaebacteria whose metabolism centers around the reduction of CO[sub 2] to CH[sub 4]. Their environments are often extreme (high temperatures, high salt, few nutrients, etc.) and they may have evolved unique ways to handle these stresses. It is proposed that methanogenic archaebacteria respond to osmotic stress by accumulating a series of organic solutes. In two strains of marine methanogens, Methanogenium cariaci and Methanococcus thermolithotrophicus, four key organic solutes are observed: L-[alpha]-glutamate, [beta]-glutamate, N[sup e]-acetyl-[beta]-lysine, and glycine betaine. The first three of these are synthesized de novo; glycine betaine is transported into the Mg. cariaci cells from the medium. In the absence of betaine, Mg. cariaci synthesizes N[sup e]-acetyl-[beta]-lysine as the dominant osmolyte. Mc. thermolithotrophicus also synthesizes N[sup e]-acetyl-[beta]-lysine but only at salt concentrations greater than 1 M. In Mc. thermolithotrophicus intracellular potassium ion concentrations, determined by [sup 39]K NMR spectroscopy, are balanced by the total concentration of anionic amino acid species, [alpha]-glutamate and [beta]-glutamate. Turnover of the organic solutes has been monitored using [sup 13]C-pulse/[sup 12]C-chase, and [sup 15]N-pulse/[sup 14]N-chase experiments. The [beta]-amino acids exhibit slower turnover rates compared to L-[alpha]-glutamate or aspartate, consistent with their role as compatible solutes. Biosynthetic information for the [beta]-amino acids was provided by [sup 13]C-label incorporation and steady state labeling experiments. [beta]-glutamate shows a lag in [sup 13]C uptake from [sup 13]CO[sub 2], indicative of its biosynthesis from a precursor not in equilibrium with the soluble L-[alpha]-glutamate pool, probably a macromolecule. A novel biosynthetic pathway is proposed for N[sup e]-acetyl-[beta]-lysine from the diaminopimelate pathway.

  12. Bulge-out structures in the single-stranded trimer AUA and in the duplex (CUGGUGCGG).(CCGCCCAG). A model-building and NMR study.

    PubMed Central

    van den Hoogen, Y T; van Beuzekom, A A; de Vroom, E; van der Marel, G A; van Boom, J H; Altona, C

    1988-01-01

    Model-building studies were carried out on the trimer AUA. Bulge-out structures which allow incorporation into a continuous RNA helix were generated and energy-minimized. All geometrical features obtained by previous NMR studies on purine-pyrimidine-purine sequences are accounted for in these models. One of the models was used to fit into a double helical fragment. Only minor changes were necessary to construct a central bulge-out in an otherwise intact duplex. NMR and model-building studies were performed on the duplex (CUGGUGCGG).(CCGCCCAG) which contains an unpaired uridine residue. NOE data, chemical-shift profiles and imino-proton resonances provided evidence that the extra U is bulged out of the duplex. The relatively small dispersion in 31P chemical shifts (approximately equal to 0.7 ppm) indicate the absence of t/g or g/t combinations for the phosphodiester angles zeta/alpha. An energy-minimized model of the duplex, which fits the present collection of data, is presented. PMID:3387215

  13. Al NMR study of molten aluminum oxide compounds and mixtures, measured at ultra high temperatures.

    NASA Astrophysics Data System (ADS)

    Piwowarczyk, J.; Marzke, R. F.; Wolf, G. H.; Petuskey, W. T.; Takulapalli, B.

    2002-10-01

    The technique of ultra high-temperature nuclear magnetic resonance (NMR) has provided insight into the chemical structure and properties of molten aluminum-bearing refractory ceramics, at temperatures in excess of 2000 ^oC. Through application of standard NMR measurements we have studied molten aluminum-bearing ceramics via ^27Al NMR. We have measured spin-lattice (T_1) and spin-spin (T_2) relaxation times, have studied Al-O-P chemical bonding within molten aluminua-monazite (Al_2O3 + LaPO_4) samples and have begun to measure Al diffusivity as a function of temperature and composition. To overcome the limitations of standard NMR heating systems a specially designed NMR probe was developed. Application of levitation technology and a laser heating system permit controlled, containerless heating of samples over a wide range of temperatures. Supported by NSF DMR 0116361, DMR 9818133 and by Research Corp. RA 0276

  14. Solid state NMR studies of gels derived from low molecular mass gelators.

    PubMed

    Nonappa; Kolehmainen, E

    2016-07-13

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples.

  15. Solid state NMR studies of gels derived from low molecular mass gelators

    PubMed Central

    Kolehmainen, E.

    2016-01-01

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples. PMID:27374054

  16. NMR-based simulation studies of Pf1 coat protein in explicit membranes.

    PubMed

    Cheng, Xi; Jo, Sunhwan; Marassi, Francesca M; Im, Wonpil

    2013-08-06

    As time- and ensemble-averaged measures, NMR observables contain information about both protein structure and dynamics. This work represents a computational study to extract such information for membrane proteins from orientation-dependent NMR observables: solid-state NMR chemical shift anisotropy and dipolar coupling, and solution NMR residual dipolar coupling. We have performed NMR-restrained molecular dynamics simulations to refine the structure of the membrane-bound form of Pf1 coat protein in explicit lipid bilayers using the recently measured chemical shift anisotropy, dipolar coupling, and residual dipolar coupling data. From the simulations, we have characterized detailed protein-lipid interactions and explored the dynamics. All simulations are stable and the NMR restraints are well satisfied. The C-terminal transmembrane (TM) domain of Pf1 finds its optimal position in the membrane quickly (within 6 ns), illustrating efficient solvation of TM domains in explicit bilayer environments. Such rapid convergence also leads to well-converged interaction patterns between the TM helix and the membrane, which clearly show the interactions of interfacial membrane-anchoring residues with the lipids. For the N-terminal periplasmic helix of Pf1, we identify a stable, albeit dynamic, helix orientation parallel to the membrane surface that satisfies the amphiphatic nature of the helix in an explicit lipid bilayer. Such detailed information cannot be obtained solely from NMR observables. Therefore, the present simulations illustrate the usefulness of NMR-restrained MD refinement of membrane protein structure in explicit membranes.

  17. NMR and NQR study of the thermodynamically stable quasicrystals

    SciTech Connect

    Shastri, A.

    1995-02-10

    {sup 27}Al and {sup 61,65}Cu NMR measurements are reported for powder samples of stable AlCuFe and AlCuRu icosahedral quasicrystals and their crystalline approximants, and for a AlPdMn single grain quasicrystal. Furthermore, {sup 27}Al NQR spectra at 4.2 K have been observed in the AlCuFe and AlCuRu samples. From the quadrupole perturbed NMR spectra at different magnetic fields, and from the zero field NQR spectra, a wide distribution of local electric field gradient (EFG) tensor components and principal axis system orientations was found at the Al site. A model EFG calculation based on a 1/1 AlCuFe approximant was successful in explaining the observed NQR spectra. It is concluded that the average local gradient is largely determined by the p-electron wave function at the Al site, while the width of the distribution is due to the lattice contribution to the EFG. Comparison of {sup 63}Cu NMR with {sup 27}Al NMR shows that the EFG distribution at the two sites is similar, but that the electronic contribution to the EFG is considerably smaller at the Cu site, in agreement with a more s-type wave function of the conduction electrons.

  18. 129Xe NMR studies of biochar made from biobased materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is created by pyrolysis of biobased materials under controlled oxidative environments. The product is charcoal-like and can be used as filtration medium, sequestrant for metallic ions, soil conditioner, and other applications. In our work we have found 129Xe NMR to be an excellent technique...

  19. Selectively labeling the heterologous protein in Escherichia coli for NMR studies: a strategy to speed up NMR spectroscopy.

    PubMed

    Almeida, F C; Amorim, G C; Moreau, V H; Sousa, V O; Creazola, A T; Américo, T A; Pais, A P; Leite, A; Netto, L E; Giordano, R J; Valente, A P

    2001-01-01

    Nuclear magnetic resonance is an important tool for high-resolution structural studies of proteins. It demands high protein concentration and high purity; however, the expression of proteins at high levels often leads to protein aggregation and the protein purification step can correspond to a high percentage of the overall time in the structural determination process. In the present article we show that the step of sample optimization can be simplified by selective labeling the heterologous protein expressed in Escherichia coli by the use of rifampicin. Yeast thioredoxin and a coix transcription factor Opaque 2 leucine zipper (LZ) were used to show the effectiveness of the protocol. The (1)H/(15)N heteronuclear correlation two-dimensional NMR spectrum (HMQC) of the selective (15)N-labeled thioredoxin without any purification is remarkably similar to the spectrum of the purified protein. The method has high yields and a good (1)H/(15)N HMQC spectrum can be obtained with 50 ml of M9 growth medium. Opaque 2 LZ, a difficult protein due to the lower expression level and high hydrophobicity, was also probed. The (15)N-edited spectrum of Opaque 2 LZ showed only the resonances of the protein of heterologous expression (Opaque 2 LZ) while the (1)H spectrum shows several other resonances from other proteins of the cell lysate. The demand for a fast methodology for structural determination is increasing with the advent of genome/proteome projects. Selective labeling the heterologous protein can speed up NMR structural studies as well as NMR-based drug screening. This methodology is especially effective for difficult proteins such as hydrophobic transcription factors, membrane proteins, and others.

  20. Selectively Labeling the Heterologous Protein in Escherichia coli for NMR Studies: A Strategy to Speed Up NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Almeida, F. C. L.; Amorim, G. C.; Moreau, V. H.; Sousa, V. O.; Creazola, A. T.; Américo, T. A.; Pais, A. P. N.; Leite, A.; Netto, L. E. S.; Giordano, R. J.; Valente, A. P.

    2001-01-01

    Nuclear magnetic resonance is an important tool for high-resolution structural studies of proteins. It demands high protein concentration and high purity; however, the expression of proteins at high levels often leads to protein aggregation and the protein purification step can correspond to a high percentage of the overall time in the structural determination process. In the present article we show that the step of sample optimization can be simplified by selective labeling the heterologous protein expressed in Escherichia coli by the use of rifampicin. Yeast thioredoxin and a coix transcription factor Opaque 2 leucine zipper (LZ) were used to show the effectiveness of the protocol. The 1H/15N heteronuclear correlation two-dimensional NMR spectrum (HMQC) of the selective 15N-labeled thioredoxin without any purification is remarkably similar to the spectrum of the purified protein. The method has high yields and a good 1H/15N HMQC spectrum can be obtained with 50 ml of M9 growth medium. Opaque 2 LZ, a difficult protein due to the lower expression level and high hydrophobicity, was also probed. The 15N-edited spectrum of Opaque 2 LZ showed only the resonances of the protein of heterologous expression (Opaque 2 LZ) while the 1H spectrum shows several other resonances from other proteins of the cell lysate. The demand for a fast methodology for structural determination is increasing with the advent of genome/proteome projects. Selective labeling the heterologous protein can speed up NMR structural studies as well as NMR-based drug screening. This methodology is especially effective for difficult proteins such as hydrophobic transcription factors, membrane proteins, and others.

  1. Multidimensional HRMAS NMR: a platform for in vivo studies using intact bacterial cells.

    PubMed

    Li, Wei

    2006-07-01

    In vivo analysis in whole cell bacteria, especially the native tertiary structures of the bacterial cell wall, remains an unconquered frontier. The current understanding of bacterial cell wall structures has been based on destructive analysis of individual components. These in vitro results may not faithfully reflect the native structural and conformational information. Multidimensional High Resolution Magic Angle Spinning NMR (HRMAS NMR) has evolved to be a powerful technique in a variety of in vivo studies, including live bacterial cells. Existing studies of HRMAS NMR in bacteria, technical consideration of its successful application, and current limitations in studying true human pathogens are briefly reviewed in this report.

  2. A solid-state NMR study of hydrogen-bonding networks and ion dynamics in benzimidazole salts.

    PubMed

    Traer, Jason W; Britten, James F; Goward, Gillian R

    2007-05-24

    On the basis of our solid-state NMR characterization of dynamics in two model salts, we draw the analogy to the fuel cell membrane candidate, phosphoric acid-doped poly(benzimidazole), and conclude that phosphate anion dynamics contribute to long-range proton transport, whereas the mobility of the polymer itself is not a contributing factor. This is contrasted with emerging membrane candidates, which rely on fully covalently bonded acid donors and acceptors, and target high-temperature PEM fuel cell operation in the absence of liquid electrolyte. The hydrogen-bonding structures of benzimidazolium phosphate and benzimidazolium methane phosphonate are established using X-ray diffraction paired with solid-state 1H DQF NMR. By comparing the dynamics of the phosphate and methane phosphonate anions with the dynamics of imidazolium and benzimidazolium cations, the relative importance of these processes in proton transport is determined. The imidazolium cation is known to undergo two-site ring reorientation on the millisecond time scale. In contrast, it is shown here that the benzimidazolium rings are immobile in analogous salts, on a time scale extending into the tens of seconds. Therefore, we look to the phosphate anions and demonstrate that the time scale of tetrahedral reorientation is comparably fast (50 ms). Moreover, the 31P CODEX NMR data clearly indicate a four-site jump process. In contrast, the methane phosphonate undergoes a three-site jump on a slower time scale (75 ms). A mechanism for a zigzag pathway of proton transport through the phosphonate salt crystallites is developed based on the 31P CODEX and 1H variable-temperature MAS NMR data.

  3. Application of a microcoil probe head in NMR analysis of chemicals related to the chemical weapons convention.

    PubMed

    Koskela, Harri; Vanninen, Paula

    2008-07-15

    A 1.7-mm microcoil probe head was tested in the analysis of organophosphorus compounds related to the Chemical Weapons Convention. The microcoil probe head demonstrated a high mass sensitivity in the detection of traces of organophosphorus compounds in samples. Methylphosphonic acid, the common secondary degradation product of sarin, soman, and VX, was detected at level 50 ng (0.52 nmol) from a 30-microL water sample using proton-observed experiments. Direct phosphorus observation of methylphosphonic acid with (31)P{(1)H} NMR experiment was feasible at the 400-ng (4.17 nmol) level. Application of the microcoil probe head in the spiked sample analysis was studied with a test water sample containing 2-10 microg/mL of three organophosphorus compounds. High-quality (1)H NMR, (31)P{(1)H} NMR, 2D (1)H-(31)P fast-HMQC, and 2D TOCSY spectra were obtained in 3 h from the concentrated 1.7-mm NMR sample prepared from 1 mL of the water solution. Furthermore, a 2D (1)H-(13)C fast-HMQC spectrum with sufficient quality was possible to measure in 5 h. The microcoil probe head demonstrated a considerable sensitivity improvement and reduction of measurement times for the NMR spectroscopy in identification of chemicals related to the Chemical Weapons Convention.

  4. 125Te NMR study of IrTe 2

    NASA Astrophysics Data System (ADS)

    Mizuno, Kiyoshi; Magishi, Ko-ichi; Shinonome, Yasuaki; Saito, Takahito; Koyama, Kuniyuki; Matsumoto, Nobuhiro; Nagata, Shoichi

    2002-03-01

    We have measured 125Te NMR of IrTe2 in order to elucidate the origin of the anomalous behaviors in electrical and magnetic properties around 270 K. In high-temperature region, the NMR spectrum exhibits a sharp line. On the other hand, in low-temperature region, the spectrum shifts to higher magnetic field and splits into three lines. Also, the nuclear spin-lattice relaxation rate, 1/T1, is proportional to the temperature in both temperature sides; Korringa-like behavior which is characteristic of a metallic state. From the T dependences of the spectrum and 1/T1 around 270 K, it is suggested that these anomalous behaviors may not be due to the charge density wave formation but be caused by a kind of lattice distortion at low temperature.

  5. NMR study of n-dodecane adsorbed on graphite.

    PubMed

    Alba, M D; Castro, M A; Clarke, S M; Perdigón, A C

    2003-05-01

    In this brief contribution we demonstrate that 1H and 2H NMR spectroscopy can be an effective method of investigating adsorption from liquids at the solid-liquid interface. The method is illustrated here with the adsorption of a simple alkane adsorbed on graphite, in particular the system n-dodecane and graphite at coverages of 1 and 5 monolayers. Static single-pulse proton nuclear magnetic resonance and static quadrupolar echo deuterium nuclear magnetic resonance spectra were recorded for both coverages. The experimental NMR results presented here show features clearly consistent with earlier calorimetric and neutron scattering work and demonstrate the formation of solid adsorbed layers that coexist with the bulk adsorbate with both isotopes. This ability to probe both deuterated and protonated materials simultaneously illustrates that this experimental approach can be readily extended to investigate the adsorption behaviour of multicomponent mixtures.

  6. NMR study of mesomorphic solutions of cellulose derivatives

    SciTech Connect

    Dayan, S.; Fried, F.; Gilli, J.M.; Sixou, P.

    1983-01-01

    Highly concentrated solutions of hydroxypropylcellulose and cellulose acetate give mesomorphic phases in a precise range of temperatures and concentrations. The existence of an orientational anisotropy in such solutions induces typical parameters of the high-resolution NMR spectra (chemical shift, splitting) that are similar to those of liquid crystal spectra. In the present work, the high-resolution NMR spectra of nuclei belonging to the solute molecules (D/sub 2/O and trifluoroacetic acid) were recorded as a function of various physical parameters such as temperature, concentration, and temporal change of the solutions. The specific variation of the orientational degree of order for each mesophase is described. In the case of the cellulose acetate/trifluoroacetic acid solution, an order parameter is calculated and a model for the orientational organization of the solution is described. 34 references, 10 figures, 1 table.

  7. Magic angle spinning NMR study of the ferroelectric transition of KH2PO4: definitive evidence of a displacive component

    NASA Astrophysics Data System (ADS)

    Kweon, Jin Jung; Fu, Riqiang; Choi, Eun Sang; Dalal, Naresh S.

    2017-04-01

    Variable temperature magic angle spinning (MAS) NMR measurements are reported on 1H and 31P nuclei in KH2PO4 (KDP) in the vicinity of its paraelectric–ferroelectric phase transition temperature, T c, of 123 K, to examine the transition mechanism, in particular if this is a model order–disorder type or whether it also involves a displacive component. It has been well established that the temperature variation of the isotropic chemical shift, δ iso, in NMR measurements of the nuclei directly involved in the transition should remain constant or change smoothly through T c for an order–disorder type transition but it should show an anomalous change for a displacive one. Here we demonstrate that the δ iso for both 31P and 1H nuclei in KDP show clear anomalies as a function of temperature around KDP’s T c, providing direct evidence of a displacive component for the phase transition of KDP in contrast to the generally accepted notion that it is a model order–disorder type.

  8. NMR studies of selective population inversion and spin clustering

    SciTech Connect

    Baum, J.S.

    1986-02-01

    This work describes the development and application of selective excitation techniques in Nuclear Magnetic Resonance. Composite pulses and multiple-quantum methods are used to accomplish various goals, such as broadband and narrowband excitation in liquids, and collective excitation of groups of spins in solids. These methods are applied to a variety of problems, including non-invasive spatial localization, spin cluster size characterization in disordered solids and solid state NMR imaging.

  9. Solid State NMR Studies of the Aluminum Hydride Phases

    NASA Technical Reports Server (NTRS)

    Hwang, Son-Jong; Bowman, R. C., Jr.; Graetz, Jason; Reilly, J. J.

    2006-01-01

    Several solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH3 samples. MAS-NMR spectra for the 1H and 27Al nuclei have been obtained on a variety of AlH3 samples that include the (beta)- and (gamma)- phases as well as the most stable (alpha)-phase. While the dominant components in these NMR spectra correspond to the aluminum hydride phases, other species were found that include Al metal, molecular hydrogen (H2), as well as peaks that can be assigned to Al-O species in different configurations. The occurrence and concentration of these extraneous components are dependent upon the initial AlH3 phase composition and preparation procedures. Both the (beta)-AlH3 and (gamma)-AlH3 phases were found to generate substantial amounts of Al metal when the materials were stored at room temperature while the (alpha)-phase materials do not exhibit these changes.

  10. Study by ³¹P NMR spectroscopy of the triacylglycerol degradation processes in olive oil with different heat-transfer mechanisms.

    PubMed

    Lucas-Torres, Covadonga; Pérez, Angel; Cabañas, Beatriz; Moreno, Andrés

    2014-12-15

    The thermal degradation of olive oil using conventional and microwave heating under the same experimental conditions were compared. A powerful identification and quantification technique based on (31)P NMR has been developed to characterise the differences between the minor components including diacylglycerol and free fatty acids in the heated samples. The (31)P NMR spectra of the degraded olive oils, which contain OH groups derivatised with a phosphorus reagent, showed that conventional heating is more detrimental to the oil than microwave technique. Conventional heating leads to a significant increase in the diacylglycerol and free fatty acid contents as well as in the number of degradation compounds, which damage the olive oil quality. However, the main process that takes place on using microwave heating is isomerisation between diacylglycerols, a change that could give a potential longer shelf life to the olive oil.

  11. NMR methods for in-situ biofilm metabolism studies: spatial and temporal resolved measurements

    SciTech Connect

    Majors, Paul D.; Mclean, Jeffrey S.; Fredrickson, Jim K.; Wind, Robert A.

    2005-11-01

    We are developing nuclear magnetic resonance (NMR) microscopy, spectroscopy and combined NMR/optical techniques to the study of biofilms. Objectives include: time and depth-resolved metabolite concentrations with isotropic spatial resolution on the order of 10 microns, metabolic pathways and flux rates, mass transport and ultimately their correlation with gene expression by optical microscopy in biofilms. These methods are being developed with Shewanella oneidensis MR-1 as a model system, but are equally applicable to other biofilm systems of interest. Thus, spatially resolved NMR of biofilms is expected to contribute significantly to the understanding of adherent cell metabolism.

  12. Conformational studies by 1H and 13C NMR of lisinopril

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yohko; Ishi, Tomoko

    1993-10-01

    Lisinopril, N-N-[( s-1-carboxy-3-phenylpropyl]- L-lysyl- L-proline) (MK-521), is an inhibitor of angiotensin-converting enzyme and a new drug for the treatment of hypertension. 1H and 13C NMR studies have shown that the s-cis equilibrium about the amide bond is strongly dependent on the configuration of the chiral centres. Vicinal coupling constants of stereochemical significance were obtained in deuterated solvent using NMR techniques. Comparison with values calculated for lisinopril using potential energy calculations and NMR show that lisinopril exists in preferred optimum conformation in solution.

  13. From precursors to non-oxide ceramics: Pyrolytic mechanisms studied by NMR

    SciTech Connect

    Sigmund, W.M.; Aldinger, F.; Feike, M.; Spiess, H.W.

    1996-12-31

    The pyrolysis of a poly ethylsilazane was studied using a CO{sub 2}-laser beam heated solid state MAS-NMR probe head. Chemical structures of the intermediate stages could be identified. The analogy of the pyrolysis evolution for the following two different methods could be shown: (A) in an inert gas furnace conventionally prepared and (B) laser irradiated in the NMR probe head under magic-angle spinning (MAS) conditions. Samples prepared by method A were studied by {sup 29}Si MAS-NMR and samples prepared by method B were studied with an appropriate cross polarization time by {sup 29}Si CP-MAS-NMR. Both experiments showed the same mechanisms for the pyrolysis as the polymer is transformed into a Si{sub 3}N{sub 4}/C ceramic.

  14. Benchmark Theoretical and Experimental Study on (15)N NMR Shifts of Oxidatively Damaged Guanine.

    PubMed

    Dračínský, Martin; Šála, Michal; Klepetářová, Blanka; Šebera, Jakub; Fukal, Jiří; Holečková, Veronika; Tanaka, Yoshiyuki; Nencka, Radim; Sychrovský, Vladimír

    2016-02-11

    The (15)N NMR shifts of 9-ethyl-8-oxoguanine (OG) were calculated and measured in liquid DMSO and in crystal. The OG molecule is a model for oxidatively damaged 2'-deoxyguanosine that occurs owing to oxidative stress in cell. The DNA lesion is repaired with human 8-oxoguanine glycosylase 1 (hOGG1) base-excision repair enzyme, however, the exact mechanism of excision of damaged nucleobase with hOGG1 is currently unknown. This benchmark study on (15)N NMR shifts of OG aims their accurate structural interpretation and calibration of the calculation protocol utilizable in future studies on mechanism of hOGG1 enzyme. The effects of NMR reference, DFT functional, basis set, solvent, structure, and dynamics on calculated (15)N NMR shifts were first evaluated for OG in crystal to calibrate the best performing calculation method. The effect of large-amplitude motions on (15)N NMR shifts of OG in liquid was calculated employing molecular dynamics. The B3LYP method with Iglo-III basis used for B3LYP optimized geometry with 6-311++G(d,p) basis and including effects of solvent and molecular dynamic was the calculation protocol used for calculation of (15)N NMR shifts of OG. The NMR shift of N9 nitrogen of OG was particularly studied because the atom is involved in an N-glycosidic bond that is cleaved with hOGG1. The change of N9 NMR shift owing to oxidation of 9-ethylguanine (G) measured in liquid was -27.1 ppm. The calculated N9 NMR shift of OG deviated from experiment in crystal and in liquid by 0.45 and 0.65 ppm, respectively. The calculated change of N9 NMR shift owing to notable N9-pyramidalization of OG in one previously found polymorph was 20.53 ppm. We therefore assume that the pyramidal geometry of N9 nitrogen that could occur for damaged DNA within hOGG1 catalytic site might be detectable with (15)N NMR spectroscopy. The calculation protocol can be used for accurate structural interpretation of (15)N NMR shifts of oxidatively damaged guanine DNA residue.

  15. Quantitative NMR Analysis of Partially Substituted Biodiesel Glycerols

    SciTech Connect

    Nagy, M.; Alleman, T. L.; Dyer, T.; Ragauskas, A. J.

    2009-01-01

    Phosphitylation of hydroxyl groups in biodiesel samples with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane followed by 31P-NMR analysis provides a rapid quantitative analytical technique for the determination of substitution patterns on partially esterified glycerols. The unique 31P-NMR chemical shift data was established with a series mono and di-substituted fatty acid esters of glycerol and then utilized to characterize an industrial sample of partially processed biodiesel.

  16. Dietary fat modulation of mammary tumor growth and metabolism demonstrated by /sup 31/P-nuclear magnetic resonance

    SciTech Connect

    Erickson, K.L.; Buckman, D.K.; Hubbard, N.E.; Ross, B.

    1986-03-05

    The relationship of dietary fat concentration and saturation on the growth and metabolic activity of line 168 was studied using syngeneic mice fed 6 experimental diets before and during tumor growth. Tumor latency was significantly greater for mice fed a diet containing the minimum of essential fatty acids (EFA, 0.5% corn oil) or 8% coconut oil (SF) than for mice fed 8 or 20% safflower oil (PUF) or 20% SF. Changes in dietary fat resulted in alterations of tumor cell and serum fatty acid composition but not the number of inflammatory cells infiltrating the tumor. /sup 31/P-surface coil NMR was used to measure possible changes in tumor metabolism in vivo. Although pH decreased from 7.2 to 6.6 as the tumor volume increased, there was no difference in pH among dietary groups. There was an inverse relationship between both sugar phosphate (SP)/Pi and ATP/Pi ratios and tumor volume; those ratios for mice fed an EFA deficient or minimal EFA diet decreased at a different rate than ratios for mice fed diets with additional fat. Tumors of mice fed diets containing no or a low level (0.3%) of 18:2 had higher SP/ATP ratios than mice fed diets containing a moderate level (approx. 4%) of 18:2. Thus, high levels of dietary fat had a significant effect on promotion of mammary tumors during early stages of tumor growth. Differences in tumor volume associated with dietary fat may be related to changes in the levels of high energy phosphate metabolites.

  17. Ongoing Dual-Angle Measurements for the Correction of Partial Saturation in 31P MR Spectroscopy

    PubMed Central

    Tyler, Damian J.; Lopez, Orlando; Cole, Mark A.; Carr, Carolyn A.; Stuckey, Daniel J.; Lakatta, Edward; Clarke, Kieran; Spencer, Richard G.

    2010-01-01

    Use of a repetition time similar to, or shorter than, metabolite T1's is common in NMR spectroscopy of biological samples to improve the signal–to–noise ratio. Conventionally, the partial saturation that results from this is corrected using saturation factors. However, this can lead to erroneous results in the presence of chemical exchange or non-constant T1's. We describe an alternative approach to correction for saturation, based on ongoing dual–angle T1 measurements (O-DAM). Using 31P MR spectroscopy of the perfused rat heart undergoing ischaemia-reperfusion, we demonstrate that signal alternations in the data acquired by the dual-angle approach are eliminated by the O-DAM correction scheme, meaning that metabolite concentration and T1 measurements can be made throughout the course of the ischaemia-reperfusion protocol. Simulations, based on parameters pertinent to the perfused rat heart, demonstrate that accurate saturation correction is possible with this method except at times of rapid concentration change. Additionally, compared to the conventional saturation factor correction method, the O-DAM correction scheme results in improved accuracy in determining the [PCr] recovery time constant. Thus, the O-DAM procedure permits accurate monitoring of metabolite concentrations even in the setting of chemical exchange and T1 changes, and allows more accurate analysis of bioenergetic status. PMID:20740663

  18. Recent progress in solid-state NMR studies of drugs confined within drug delivery systems.

    PubMed

    Skorupska, Ewa; Jeziorna, Agata; Kazmierski, Slawomir; Potrzebowski, Marek J

    2014-01-01

    Recent progress in the application of solid-state NMR (SS NMR) spectroscopy in structural studies of active pharmaceutical ingredients (APIs) embedded in different drug carriers is detailed. This article is divided into sections. The first part reports short characterization of the nanoparticles and microparticles that can be used as drug delivery systems (DDSs). The second part shows the applicability of SS NMR to study non-steroidal anti-inflammatory drugs (NSAIDs). In this section, problems related to API-DDS interactions, morphology, local molecular dynamics, nature of inter- or intramolecular connections, and pore filling are reviewed for different drug carriers (e.g. mesoporous silica nanoparticles (MSNs), cyclodextrins, polymeric matrices and others). The third and fourth sections detail the recent applications of SS NMR for searching for antibiotics and anticancer drugs confined in zeolites, MSNs, amorphous calcium phosphate and other carriers.

  19. NMR studies on the flexibility of nucleoside diphosphate kinase.

    PubMed

    Xu, Y; Lecroisey, A; Veron, M; Delepierre, M; Janin, J

    1997-06-01

    Human NDP kinase B, product of the nm23-H2 gene, binds DNA. It has been suggested that a helix hairpin on the protein surface, part of the nucleotide substrate binding site, could accommodate DNA binding by swinging away. The presence of flexible regions was therefore investigated by 1H NMR dynamic filtering. Although TOCSY peaks could be assigned to five residues at the N terminus of Dictyostelium NDP kinase, no flexible region was detected in the human enzyme. These data favor the idea that the protein offers different binding sites to mono- and polynucleotides.

  20. NMR study of seven coumarins from mammea siamensis.

    PubMed

    Prachyawarakorn, V; Mahidol, C; Ruchirawat, S

    2000-01-01

    Seven known mammea coumarins, mammea A/AA cyclo D ( 1 ), mammea A/AD cyclo D ( 2 ), mammea A/AB cyclo D ( 3 ), mammea A/AC cyclo F ( 4 ), mam-mea A/AB cyclo F ( 5 ), mammea A/AA cyclo F ( 6 ), mammea B/AC cyclo F ( 7 ), were isolated for the first time from the hexane extract of Mammea siamensis . A detailed analysis of both 1D and 2D NMR spectral data of these compounds was made.

  1. 119 Sn NMR studies on the heavy fermion compound CeSn3

    NASA Astrophysics Data System (ADS)

    Crocker, John; Kim, Andrew; Klavins, Peter; Curro, Nicholas

    2015-03-01

    CeSn3 does not exhibit long-range order at low temperatures, thus it provides an interesting baseline for NMR studies of the Knight shift. We report the synthesis and characterization of single crystals of CeSn3, as well as 119Sn nuclear magnetic resonance (NMR) measurements from 4.5K to room temperature. Our data reveal a broad peak in the knight shift (K) at Tmax ~ 135K, and a knight shift anomaly at T* ~ 85K.

  2. Multiple-quantum NMR studies of spin clusters in liquid crystals and zeolites

    SciTech Connect

    Pearson, J. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1991-07-01

    This work will describe the use of MQ NMR to study spin clusters in anisotropic materials. A technique known as multiple-quantum spin counting was used to determine average spin cluster sizes liquid crystalline materials and in faujacitic zeolites containing aromatic hydrocarbons. The first half of the thesis will describe MQ NMR and the MQ spin counting technique, and the second half of the thesis will describe the actual experiments and their results.

  3. Scalar and anisotropic J interactions in undoped InP: A triple-resonance NMR study

    NASA Astrophysics Data System (ADS)

    Tomaselli, Marco; Degraw, David; Yarger, Jeffery L.; Augustine, Matthew P.; Pines, Alexander

    1998-10-01

    The heteronuclear J-coupling tensor between nearest neighbor 31P and 113In spins in undoped InP is investigated by means of 113In-->31P polarization transfer under rapid magic angle spinning (MAS). The scalar contribution can be measured directly and is found to have the value \\|Jiso(31P-113,115In)\\|=(225+/-10) Hz. The principal value of the traceless anisotropic J-coupling tensor (pseudodipolar coupling) is determined to be Janiso(31P-113,115In)=2/3[J||(31P-113,115In)-J⊥(31P-113,115In)]=(813+/-50) or (1733+/-50) Hz, assuming axial symmetry with the principal axis parallel to the In-P bond. Our values deviate from those reported previously [M. Engelsberg and R. E. Norberg, Phys. Rev. B 5, 3395 (1972)] [based on a moment analysis of the 31P resonance \\|Jiso(31P-113,115In)\\|=350 Hz and Janiso(31P-113,115In)=1273 Hz], but confirm the postulate that the nearest neighbor 31P-113,115In magnetic dipolar and pseudodipolar interactions are of the same order of magnitude and partially cancel each other.

  4. An NMR Study of Biomimetic Fluorapatite - Gelatine Mesocrystals.

    PubMed

    Vyalikh, Anastasia; Simon, Paul; Rosseeva, Elena; Buder, Jana; Scheler, Ulrich; Kniep, Rüdiger

    2015-10-30

    The mesocrystal system fluoroapatite-gelatine grown by double-diffusion is characterized by hierarchical composite structure on a mesoscale. In the present work we apply solid state NMR to characterize its structure on the molecular level and provide a link between the structural organisation on the mesoscale and atomistic computer simulations. Thus, we find that the individual nanocrystals are composed of crystalline fluorapatite domains covered by a thin boundary apatite-like layer. The latter is in contact with an amorphous layer, which fills the interparticle space. The amorphous layer is comprised of the organic matrix impregnated by isolated phosphate groups, Ca3F motifs and water molecules. Our NMR data provide clear evidence for the existence of precursor complexes in the gelatine phase, which were not involved in the formation of apatite crystals, proving hence theoretical predictions on the structural pre-treatment of gelatine by ion impregnation. The interfacial interactions, which may be described as the glue holding the composite materials together, comprise hydrogen bond interactions with the apatite PO4(3-) groups. The reported results are in a good agreement with molecular dynamics simulations, which address the mechanisms of a growth control by collagen fibers, and with experimental observations of an amorphous cover layer in biominerals.

  5. NMR study of CeTe at low temperatures

    NASA Astrophysics Data System (ADS)

    Hinderer, J.; Weyeneth, S. M.; Weller, M.; Gavilano, J. L.; Felder, E.; Hulliger, F.; Ott, H. R.

    2006-05-01

    We present 125Te NMR measurements on CeTe powder at temperatures between 1 and 150 K and in magnetic fields between 5 and 8 T. CeTe is a rocksalt-type intermetallic compound. It orders antiferromagnetically at TN≈2.2 K with a much reduced ordered moment [H.R. Ott, J.K. Kjems, F. Hulliger, Phys. Rev. Lett. 42 20 (1979) 1378]. From our low-temperature NMR spectra we infer the presence of at least three inequivalent Te sites at low temperatures. Considering the crystal structure this result is completely unexpected. The linewidths and the Knight shifts of the individual lines are significantly different and increase substantially with decreasing temperature. They follow the temperature dependence of the magnetic susceptibility above 20 K. Above TN, hyperfine fields of 1.6, 0.8 and 0.0 T at the three Te sites per Bohr magneton of Ce moment are deduced from Knight shift vs. magnetic susceptibility data. These values are typical for transferred hyperfine fields via conduction electrons.

  6. Dynamical properties of confined supercooled water: an NMR study

    NASA Astrophysics Data System (ADS)

    Mallamace, Francesco; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Liu, Li; Mou, Chung-Yuan; Chen, Sow-Hsin

    2006-09-01

    We report a set of dynamical data of confined water measured in a very deeply supercooled regime (290-190 K). Water is contained in silica matrices (MCM-41-S) which consist of 1D cylindrical pores with diameters d = 14,18 and 24 Å. When confined in these tubular pores, water does not crystallize, and can be supercooled well below 200 K. We use the NMR technique to obtain the characteristic proton relaxation time-constants (the spin-lattice relaxation time-constant T1 and the spin-spin relaxation time-constant T2) and a direct measurement of the self-diffusion coefficient in the whole temperature range. We give evidence of the existence of a fragile-to-strong dynamic crossover (FSC) at TL = 225 K from the temperature dependence of the self-diffusion coefficient. A combination of the NMR self-diffusion coefficient with the average translational relaxation time, as measured by quasi-elastic neutron scattering, shows a well defined decoupling of transport coefficients, i.e. the breakdown of the Stokes-Einstein relation, on approaching the crossover temperature TL.

  7. An NMR Study of Biomimetic Fluorapatite - Gelatine Mesocrystals

    NASA Astrophysics Data System (ADS)

    Vyalikh, Anastasia; Simon, Paul; Rosseeva, Elena; Buder, Jana; Scheler, Ulrich; Kniep, Rüdiger

    2015-10-01

    The mesocrystal system fluoroapatite—gelatine grown by double-diffusion is characterized by hierarchical composite structure on a mesoscale. In the present work we apply solid state NMR to characterize its structure on the molecular level and provide a link between the structural organisation on the mesoscale and atomistic computer simulations. Thus, we find that the individual nanocrystals are composed of crystalline fluorapatite domains covered by a thin boundary apatite-like layer. The latter is in contact with an amorphous layer, which fills the interparticle space. The amorphous layer is comprised of the organic matrix impregnated by isolated phosphate groups, Ca3F motifs and water molecules. Our NMR data provide clear evidence for the existence of precursor complexes in the gelatine phase, which were not involved in the formation of apatite crystals, proving hence theoretical predictions on the structural pre-treatment of gelatine by ion impregnation. The interfacial interactions, which may be described as the glue holding the composite materials together, comprise hydrogen bond interactions with the apatite PO43- groups. The reported results are in a good agreement with molecular dynamics simulations, which address the mechanisms of a growth control by collagen fibers, and with experimental observations of an amorphous cover layer in biominerals.

  8. Cell-free protein production for NMR studies.

    PubMed

    Takeda, Mitsuhiro; Kainosho, Masatsune

    2012-01-01

    The cell-free expression system using an Escherichia coli extract is a practical method for producing isotope-labeled proteins. The advantage of the cell-free system over cellular expression is that any isotope-labeled amino acid can be incorporated into the target protein with minimal scrambling, thus providing opportunities for advanced isotope labeling of proteins. We have modified the standard protocol for E. coli cell-free expression to cope with two problems specific to NMR sample preparation. First, endogenous amino acids present in the E. coli S30 extract lead to dilution of the added isotope. To minimize the content of the remaining amino acids, a gel filtration step is included in the preparation of the E. coli extract. Second, proteins produced by the cell-free system are not necessarily homogeneous due to incomplete processing of the N-terminal formyl-methionine residue, which complicates NMR spectra. Therefore, the protein of interest is engineered to contain a cleavable N-terminal histidine-tag, which generates a homogeneous protein after the digestion of the tag. Here, we describe the protocol for modified E. coli cell-free expression.

  9. An NMR Study of Biomimetic Fluorapatite – Gelatine Mesocrystals

    PubMed Central

    Vyalikh, Anastasia; Simon, Paul; Rosseeva, Elena; Buder, Jana; Scheler, Ulrich; Kniep, Rüdiger

    2015-01-01

    The mesocrystal system fluoroapatite—gelatine grown by double-diffusion is characterized by hierarchical composite structure on a mesoscale. In the present work we apply solid state NMR to characterize its structure on the molecular level and provide a link between the structural organisation on the mesoscale and atomistic computer simulations. Thus, we find that the individual nanocrystals are composed of crystalline fluorapatite domains covered by a thin boundary apatite-like layer. The latter is in contact with an amorphous layer, which fills the interparticle space. The amorphous layer is comprised of the organic matrix impregnated by isolated phosphate groups, Ca3F motifs and water molecules. Our NMR data provide clear evidence for the existence of precursor complexes in the gelatine phase, which were not involved in the formation of apatite crystals, proving hence theoretical predictions on the structural pre-treatment of gelatine by ion impregnation. The interfacial interactions, which may be described as the glue holding the composite materials together, comprise hydrogen bond interactions with the apatite PO43− groups. The reported results are in a good agreement with molecular dynamics simulations, which address the mechanisms of a growth control by collagen fibers, and with experimental observations of an amorphous cover layer in biominerals. PMID:26515127

  10. Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria)

    NASA Astrophysics Data System (ADS)

    Kupka, Teobald; Wieczorek, Piotr P.

    2016-01-01

    In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of 1H and 13C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.

  11. Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria).

    PubMed

    Kupka, Teobald; Wieczorek, Piotr P

    2016-01-15

    In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of (1)H and (13)C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.

  12. NMR relaxometry as a versatile tool to study Li ion dynamics in potential battery materials.

    PubMed

    Kuhn, A; Kunze, M; Sreeraj, P; Wiemhöfer, H D; Thangadurai, V; Wilkening, M; Heitjans, P

    2012-04-01

    NMR spin relaxometry is known to be a powerful tool for the investigation of Li(+) dynamics in (non-paramagnetic) crystalline and amorphous solids. As long as significant structural changes are absent in a relatively wide temperature range, with NMR spin-lattice (as well as spin-spin) relaxation measurements information on Li self-diffusion parameters such as jump rates and activation energies are accessible. Diffusion-induced NMR relaxation rates are governed by a motional correlation function describing the ion dynamics present. Besides the mean correlation rate of the dynamic process, the motional correlation function (i) reflects deviations from random motion (so-called correlation effects) and (ii) gives insights into the dimensionality of the hopping process. In favorable cases, i.e., when temperature- and frequency-dependent NMR relaxation rates are available over a large dynamic range, NMR spin relaxometry is able to provide a comprehensive picture of the relevant Li dynamic processes. In the present contribution, we exemplarily present two recent variable-temperature (7)Li NMR spin-lattice relaxation studies focussing on Li(+) dynamics in crystalline ion conductors which are of relevance for battery applications, viz. Li(7) La(3)Zr(2)O(12) and Li(12)Si(7).

  13. Protein folding and unfolding studied at atomic resolution by fast two-dimensional NMR spectroscopy.

    PubMed

    Schanda, Paul; Forge, Vincent; Brutscher, Bernhard

    2007-07-03

    Atom-resolved real-time studies of kinetic processes in proteins have been hampered in the past by the lack of experimental techniques that yield sufficient temporal and atomic resolution. Here we present band-selective optimized flip-angle short transient (SOFAST) real-time 2D NMR spectroscopy, a method that allows simultaneous observation of reaction kinetics for a large number of nuclear sites along the polypeptide chain of a protein with an unprecedented time resolution of a few seconds. SOFAST real-time 2D NMR spectroscopy combines fast NMR data acquisition techniques with rapid sample mixing inside the NMR magnet to initiate the kinetic event. We demonstrate the use of SOFAST real-time 2D NMR to monitor the conformational transition of alpha-lactalbumin from a molten globular to the native state for a large number of amide sites along the polypeptide chain. The kinetic behavior observed for the disappearance of the molten globule and the appearance of the native state is monoexponential and uniform along the polypeptide chain. This observation confirms previous findings that a single transition state ensemble controls folding of alpha-lactalbumin from the molten globule to the native state. In a second application, the spontaneous unfolding of native ubiquitin under nondenaturing conditions is characterized by amide hydrogen exchange rate constants measured at high pH by using SOFAST real-time 2D NMR. Our data reveal that ubiquitin unfolds in a gradual manner with distinct unfolding regimes.

  14. Molecular dynamics of solid cortisol studied by NMR

    NASA Astrophysics Data System (ADS)

    Andrew, E. R.

    Polycrystalline cortisol (hydrocortisone; 11β,17α,21-trihydroxy-4-preg- nene-3,20-dione; C21H30O5) has been investigated by continuous and pulse proton NMR methods between 78 and 400 K at Larmor frequencies of 7, 25 and 60 MHz. A reduced value of second moment was found above 90 K and is ascribed to reorientation of two methyl groups. A single asymmetric minimum was found in the temperature dependence of the spin-lattice relaxation times and this also is attributed to reorientation of two methyl groups. The asymmetry suggests an asymmetric distribution of correlation times of the motion. Using the Cole-Davidson distribution, the best computer fit yields the following parameters characterizing the motion: Ea = 11ṡ8 ± 0ṡ1 kJ mol-1, τ0 = 4ṡ6 ± 0ṡ4) x 10-13s, distribution parameter δ = 0ṡ62.

  15. Pulsed NMR study of the curing process of epoxy resin.

    PubMed

    Kimoto, Hiroki; Tanaka, Chikako; Yaginuma, Michiko; Shinohara, Emi; Asano, Atsushi; Kurotsu, Takuzo

    2008-07-01

    To analyze a curing process of epoxy resin in terms of molecular motion, we adapted a pulsed NMR method. Three kinds of (1)H spin-spin relaxation times (T(2L) (long), T(2S) (short) and T(2M) (intermediate)) were estimated from observed solid echo train signals as the curing process proceeded. A short T(2S) value below 20 micros suggests the existence of a motion-restricted chain, that is, cured elements of resin, and its fraction, P(S), sigmoidally increased with the curing time. On the other hand, the fraction of T(2L), P(L), decreased with the reaction time reciprocally against P(S), suggesting the disappearance of highly mobile molecules raised from pre-cured resin. The spin-lattice relaxation time, T(1), was also measured to check another aspect of molecular motion in the process. T(1) of the mixed epoxy resin and curing agent gradually increased just after mixing both of them. This corresponds to an increment of a less-mobile fraction, of which the correction time is more than 10(-6) s, and also means that the occurrence of a network structure whose mobility is strongly restricted by chemically bonded bridges between the epoxy resin and curing agent. The time courses of these parameters coincided with those of IR peaks pertinent to the curing reaction. Therefore, pulsed NMR is a useful tool to monitor the hardening process of epoxy resin in real time non-distractively in terms of the molecular motion of protons.

  16. Whole-body radiofrequency coil for (31) P MRSI at 7 T.

    PubMed

    Löring, J; van der Kemp, W J M; Almujayyaz, S; van Oorschot, J W M; Luijten, P R; Klomp, D W J

    2016-06-01

    Widespread use of ultrahigh-field (31) P MRSI in clinical studies is hindered by the limited field of view and non-uniform radiofrequency (RF) field obtained from surface transceivers. The non-uniform RF field necessitates the use of high specific absorption rate (SAR)-demanding adiabatic RF pulses, limiting the signal-to-noise ratio (SNR) per unit of time. Here, we demonstrate the feasibility of using a body-sized volume RF coil at 7 T, which enables uniform excitation and ultrafast power calibration by pick-up probes. The performance of the body coil is examined by bench tests, and phantom and in vivo measurements in a 7-T MRI scanner. The accuracy of power calibration with pick-up probes is analyzed at a clinical 3-T MR system with a close to identical (1) H body coil integrated at the MR system. Finally, we demonstrate high-quality three-dimensional (31) P MRSI of the human body at 7 T within 5 min of data acquisition that includes RF power calibration. Copyright © 2016 John Wiley & Sons, Ltd.

  17. NMR studies of DNA duplexes singly cross-linked by different synthetic linkers.

    PubMed Central

    Altmann, S; Labhardt, A M; Bur, D; Lehmann, C; Bannwarth, W; Billeter, M; Wüthrich, K; Leupin, W

    1995-01-01

    Molecular modelling studies resulted in the design of a variety of non-nucleotidic covalent linkers to bridge the 3'-end of the (+)-strand and the 5'-end of the (-)-strand in DNA duplexes. Three of these linkers were synthesized and used to prepare singly cross-linked duplexes d(GTGGAATTC)-linker-d(GAATTCCAC). Linker I is an assembly of a propylene-, a phosphate- and a second propylene-group and is thought to mimic the backbone of two nucleotides. Linkers II and III consist of five and six ethyleneglycol units, respectively. The melting temperatures of the cross-linked duplexes are 65 degrees C for I and 73 degrees C for II and III, as compared with 36 degrees C for the corresponding non-linked nonadeoxynucleotide duplex. The three cross-linked duplexes were structurally characterized by nuclear magnetic resonance spectroscopy. The 1H and 31P resonance assignments in the DNA stem were obtained using standard methods. For the resonance assignment of the linker protons, two-dimensional 1H-31P heteronuclear COSY and two-quantum-experiments were used. Distance geometry calculations with NOE-derived distance constraints were performed and the resulting structures were energy-minimized. In duplex I, the nucleotides flanking the propylene-phosphate-propylene-linker do not form a Watson-Crick base pair, whereas in duplexes II and III the entire DNA stem is in a B-type double helix conformation. Images PMID:8532525

  18. The NMR study of biologically active metallated alkanol ammoinium ionic liquids

    NASA Astrophysics Data System (ADS)

    Ushakov, I. A.; Voronov, V. K.; Adamovich, S. N.; Mirskov, R. G.; Mirskova, A. N.

    2016-01-01

    The 1H, 13C, 15N, and 111Cd NMR spectra of a series of metallated alkanol ammonium ionic liquids (MAIL) series [n N(CH2CH2OH;)3M]+ · mX-, where M = Cd, Mg, Zn, Fe, Rh; X = Cl, OOCCH3, obtained in a wide range of temperatures of the studied samples, have been analyzed. It is found that, under biomimetic conditions (H2O, 25 °C), the compounds studied exist as mono- bi- and the tricyclic structures, which are in equilibrium. Shift of the equilibrium depends upon nature of a metal and effects all the parameters of the NMR spectra. Peculiarities of ligand exchange, typical for the studied compounds, have been studied in a wide range of temperatures. It is found that the NMR data can be used to control structure of the compounds formed in the course of synthesis.

  19. Tb3+ and Ca2+ binding to phosphatidylcholine. A study comparing data from optical, NMR, and infrared spectroscopies.

    PubMed Central

    Petersheim, M; Halladay, H N; Blodnieks, J

    1989-01-01

    The paramagnetic and luminescent lanthanides are unique probes of cation-phospholipid interactions. Their spectroscopic properties provide the means to characterize and monitor complexes formed with lipids in ways not possible with biochemically more interesting cations, such as Ca2+. In this work, Tb3+-phosphatidylcholine complexes are described using the luminescence properties of Tb3+, the effect of its paramagnetism on the 31P NMR and 13C NMR spectra of the lipid, and changes in the infrared spectrum of the lipid induced by the cation. There are two Tb3+-phosphatidylcholine complexes with very different coordination environments, as evidenced by changes in the optical excitation spectrum of the lanthanide. The NMR experiments indicate that the two complexes differ in the number of phosphate groups directly coordinating Tb3+. Tb3+ binding induces changes in the phosphodiester infrared bands that are most consistent with bidentate chelation of Tb3+ by each phosphate, whereas Ca2+-induced changes are more consistent with monodentate coordination. The significance of this discrepancy is discussed. PMID:2790138

  20. NMR relaxometry study of plaster mortar with polymer additives

    SciTech Connect

    Jumate, E.; Manea, D.; Moldovan, D.; Fechete, R.

    2013-11-13

    The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T{sub 2} relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T{sub 2} distributions. These can be associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T{sub 2} relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T{sub 2} relaxation rates corresponding to the bound water.

  1. Relationship between /sup 31/P nuclear magnetic resonance spectra and pulmonary vasomotor tone in hypoxic pig lobes

    SciTech Connect

    Buescher, P.; Pillain, R.; Pearse, D.; Eichhorn, G.; Sylvester, J.

    1986-03-01

    To investigate the relationship between lung tissue energy state and vasomotor tone, the authors measured /sup 31/P NMR spectra during repeated exposures to hypoxia in 5 isolated degassed left lower lobes perfused with blood at a constant flow (500ml/min) and left atrial pressure (<0mmHg). Perfusate O/sub 2/ tension (PpO/sub 2/) was changed by varying the gas mixtures (40, 7, 0% O/sub 2/) flowing through a bubble oxygenator in the perfusion circuit. /sup 31/P spectra obtained after stabilization of pulmonary artery pressure (Ppa) at each PpO/sub 2/ revealed peaks for ATP, inorganic phosphate (Pi) phosphomono and diesters (PME and PDE). During 7% O/sub 2/, Ppa and ATP increased but Pi did not change suggesting that lung tissue energy state improved during hypoxic vasoconstriction. During 0% O/sub 2/, there was a reversible deterioration of energy state (high Pi, low ATP). Thus, it appears that lung tissue energy state and vasomotor tone were related, but the precise nature of the relationship remains to be determined.

  2. Solid-state NMR studies of a diverged microsomal amino-proximate delta12 desaturase peptide reveal causes of stability in bilayer: tyrosine anchoring and arginine snorkeling.

    PubMed

    Gibbons, William J; Karp, Ethan S; Cellar, Nick A; Minto, Robert E; Lorigan, Gary A

    2006-02-15

    This study reports the solid-state NMR spectroscopic characterization of the amino-proximate transmembrane domain (TM-A) of a diverged microsomal delta12-desaturase (CREP-1) in a phospholipid bilayer. A series of TM-A peptides were synthesized with 2H-labeled side chains (Ala-53, -56, and -63, Leu-62, Val-50), and their dynamic properties were studied in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) bilayers at various temperatures. At 6 mol % peptide to lipid, 31P NMR spectra indicated that the peptides did not significantly disrupt the phospholipid bilayer in the L(alpha) phase. The 2H NMR spectra from Ala-53 and Ala-56 samples revealed broad Pake patterns with quadrupolar splittings of 16.9 kHz and 13.3 kHz, respectively, indicating restricted motion confined within the hydrocarbon core of the phospholipid bilayer. Conversely, the deuterated Ala-63 sample revealed a peak centered at 0 kHz with a linewidth of 1.9 kHz, indicating increased side-chain motion and solvent exposure relative to the spectra of the other Ala residues. Val-50 and Leu-62 showed Pake patterns, with quadrupolar splittings of 3.5 kHz and 3.7 kHz, respectively, intermediate to Ala-53/Ala-56 and Ala-63. This indicates partial motional averaging and supports a model with the Val and Leu residues embedded inside the lipid bilayer. Solid-state NMR spectroscopy performed on the 2H-labeled Ala-56 TM-A peptide incorporated into magnetically aligned phospholipid bilayers indicated that the peptide is tilted 8 degrees with respect to the membrane normal of the lipid bilayer. Snorkeling and anchoring interactions of Arg-44 and Tyr-60, respectively, with the polar region or polar hydrophobic interface of the lipid bilayer are suggested as control elements for insertional depth and orientation of the helix in the lipid matrix. Thus, this study defines the location of key residues in TM-A with respect to the lipid bilayer, describes the conformation of TM-A in a biomembrane mimic, presents a

  3. NMR study of the reversible trapping of SF6 by cucurbit[6]uril in aqueous solution.

    PubMed

    Fusaro, Luca; Locci, Emanuela; Lai, Adolfo; Luhmer, Michel

    2008-11-27

    The complexation of sulfur hexafluoride (SF(6)), a highly potent greenhouse gas, by cucurbit[6]uril (CB) was studied at various temperatures in Na(2)SO(4) aqueous solutions by (19)F and (1)H NMR. CB shows a remarkable affinity for SF(6), suggesting that it is a suitable molecular container for the design of materials tailored for SF(6) trapping. At 298 K, the equilibrium constant characterizing the inclusion of SF(6) by CB is 3.1 x 10(4) M(-1) and the residence time of SF(6) within the CB cavity is estimated to be of the order of a few seconds. The enthalpic and entropic contributions to the free energy of encapsulation were determined and are discussed. This work also reports on the interest of SF(6) in the framework of the spin-spy methodology. The advantages and drawbacks of solution-state (19)F NMR of SF(6) with respect to (129)Xe NMR are discussed. SF(6) comes forward as a versatile and informative spin-spy molecule for probing systems in solution because its detection limit by (19)F NMR reaches the micromolar range with standard equipment and because quantitative integral measurements, relaxation time measurements, and demanding experiments, such as translational diffusion coefficient measurements, are easily carried out in addition to chemical shift measurements. Solution-state (19)F NMR of SF(6) emerges as a promising alternative to (129)Xe NMR for probing cavities and for other applications relying on the encapsulation of an NMR active gaseous probe.

  4. NMR studies in chemistry. I. Organometallic tin and geramanium compounds. II. The sorbitol pathway in intact lenses

    SciTech Connect

    Williams, W.F.

    1985-01-01

    Nuclear magnetic resonance spectroscopy has been utilized in the study of two very different chemical problems. The bonding and structure of various cyclopropyl derivatives of tin and germanium has been investigated by means of Sn-119, Ge-73, C-13, and H-1 NMR spectroscopy. Intact rabbit lenses have also been studied using NMR spectroscopy with regard to diabetic cataract formation. C-13 and P-31 NMR spectroscopies have been utilized in the study of the sorbitol pathway and aldose reductase inhibition.

  5. Calcium binding by phosphatidylserine headgroups. Deuterium NMR study.

    PubMed Central

    Roux, M; Bloom, M

    1991-01-01

    The binding of calcium to headgroup deuterated 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphoserine (POPS) was investigated by using deuterium magnetic resonance in pure POPS membranes and in mixed 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC)/POPS 5:1 (m:m) bilayers. Addition of CaCl2 to pure POPS bilayers led to two component spectra attributed, respectively, to liquid-crystallin POPS (less than 15 kHz) and POPS molecules in the calcium-induced dehydrated phase (cochleate) (approximately 120 kHz). The liquid-crystalline component has nearly disappeared at a Ca2+ to POPS ratio of 0.5, indicating that, under such conditions, most of the POPS molecules are in the precipitated cochleate phase. After dilution of the POPS molecules in zwitterionic POPC membranes (POPC/POPS 5:1 m:m), single component spectra characteristic of POPS in the liquid-crystalline state were observed in the presence of Molar concentrations of calcium ions (Ca2+ to POPS ratio greater than 50), showing that the amount of dehydrated cochleate PS-Ca2+ phase, if any, was low (less than 5%) under such conditions. Deuterium NMR data obtained in the 15-50 degrees C temperature range with the mixed PC/PS membranes, either in the absence or the presence of Ca2+ ions, indicate that the serine headgroup undergoes a temperature-induced conformational change, independent of the presence of Ca2+. This is discussed in relation to other headgroup perturbations such as that observed upon change of the membrane surface charge density. PMID:1883944

  6. 2H NMR studies of glycerol dynamics in protein matrices.

    PubMed

    Herbers, C R; Sauer, D; Vogel, M

    2012-03-28

    We use (2)H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  7. Studies of 27Al NMR in SrAl4

    NASA Astrophysics Data System (ADS)

    Niki, Haruo; Higa, Nonoka; Kuroshima, Hiroko; Toji, Tatsuki; Morishima, Mach; Minei, Motofumi; Yogi, Mamoru; Nakamura, Ai; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika; Harima, Hisatomo

    A charge density wave (CDW) transition at TCDW = 243 K and a structural phase (SP) transition at approximately 100 K occur in SrAl4 with the BaAl4-type body center tetragonal structure, which is the divalent and non-4f electron reference compound of EuAl4. To understand the behaviors of the CDW and SP transitions, the 27Al NMR measurements using a single crystal and a powder sample of SrAl4 have been carried out. The line width below TCDW is modulated by an electrical quadruple interaction between 27Al nucleus and CDW charge modulation. The incommensurate CDW state below TCDW changes into a different structure below TSP. The temperature dependences of Knight shifts of 27Al(I) and 27Al(II) show the different behaviors. The temperature variation of 27Al(I) Knight shift shows anomalies at the CDW and SP transition temperatures, revealing the shift to negative side below TCDW, which is attributable to the core polarization of the d-electrons. However, 27Al(II) Knight shift keeps almost constant except for the small shift due to the SP transition. The 1/T1T of 27Al(I) indicates the obvious changes due to the CDW and SP transitions, while that of 27Al(II) takes a constant value. The density of state at the Fermi level at Al(I) site below 60 K would be about 0.9 times less than that above TCDW.

  8. 2H NMR studies of glycerol dynamics in protein matrices

    NASA Astrophysics Data System (ADS)

    Herbers, C. R.; Sauer, D.; Vogel, M.

    2012-03-01

    We use 2H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  9. N-H...F hydrogen bonds in fluorinated benzanilides: NMR and DFT study.

    PubMed

    Manjunatha Reddy, G N; Vasantha Kumar, M V; Guru Row, T N; Suryaprakash, N

    2010-10-28

    Using (19)F and (1)H-NMR (with (14)N decoupling) spectroscopic techniques together with density functional theoretical (DFT) calculations, we have investigated weak molecular interactions in isomeric fluorinated benzanilides. Simultaneous presence of through space nuclear spin-spin couplings ((1h)J(N-HF)) of diverse strengths and feeble structural fluctuations are detected as a function of site specific substitution of fluorine atoms within the basic identical molecular framework. The transfer of hydrogen bonding interaction energies through space is established by perturbing their strengths and monitoring the effect on NMR parameters. Multiple quantum (MQ) excitation, up to the highest possible MQ orders of coupled protons, is utilized as a tool for accurate (1)H assignments. Results of NMR studies and DFT calculations are compared with the relevant structural parameters taken from single crystal X-ray diffraction studies.

  10. Practical applications of hydrostatic pressure to refold proteins from inclusion bodies for NMR structural studies.

    PubMed

    Ogura, Kenji; Kobashigawa, Yoshihiro; Saio, Tomohide; Kumeta, Hiroyuki; Torikai, Shinnosuke; Inagaki, Fuyuhiko

    2013-06-01

    Recently, the hydrostatic pressure refolding method was reported as a practical tool for solubilizing and refolding proteins from inclusion bodies; however, there have been only a few applications for protein structural studies. Here, we report the successful applications of the hydrostatic pressure refolding method to refold proteins, including the MOE-2 tandem zinc-finger, the p62 PB1 domain, the GCN2 RWD domain, and the mTOR FRB domain. Moreover, the absence of aggregation and the correct folding of solubilized protein samples were evaluated with size exclusion chromatography and NMR experiments. The analyses of NMR spectra for MOE-2 tandem zinc-finger and GCN2 RWD further led to the determination of tertiary structures, which are consistent with those from soluble fractions. Overall, our results indicate that the hydrostatic pressure method is effective for preparing samples for NMR structural studies.

  11. Mechanical Behavior of Polymer Gels for RDCs and RCSAs Collection: NMR Imaging Study of Buckling Phenomena.

    PubMed

    Hellemann, Erich; Teles, Rubens R; Hallwass, Fernando; Barros, W; Navarro-Vázquez, Armando; Gil, Roberto R

    2016-11-07

    Anisotropic NMR parameters, such as residual dipolar couplings (RDCs), residual chemical shift anisotropies (RCSAs) and residual quadrupolar couplings (RQCs or ΔνQ ), appear in solution-state NMR when the molecules under study are subjected to a degree of order. The tunable alignment by reversible compression/relaxation of gels (PMMA and p-HEMA) is an easy, user-friendly, and very affordable method to measure them. When using this method, a fraction of isotropic NMR signals is observed in the NMR spectra, even at a maximum degree of compression. To explain the origin of these isotropic signals we decided to investigate their physical location inside the NMR tube using deuterium 1D imaging and MRI micro-imaging experiments. It was observed that after a certain degree of compression the gels start to buckle and they generate pockets of isotropic solvent, which are never eliminated. The amount of buckling depends on the amount of cross-linker and the length of the gel.

  12. 1H NMR, 13C NMR and mass spectral studies of some Schiff bases derived from 3-amino-1,2,4-triazole.

    PubMed

    Issa, Y M; Hassib, H B; Abdelaal, H E

    2009-11-01

    Heterocyclic Schiff bases derived from 3-amino-1,2,4-triazole and different substituted aromatic aldehydes are prepared and subjected to (1)H NMR, (13)C NMR and mass spectral analyses. (1)H NMR spectra in DMSO exhibit a sharp singlet within the 9.35-8.90ppm region which corresponds to the azomethine proton. The position of this signal is largely dependent on the nature of the substituents on the benzal moiety. It is observed that the shape, position and the integration value of the signal of the aromatic proton of the triazole ring ((5)C) are clearly affected by the rate of exchange, relaxation time, concentration of solution as well as the solvent used. (13)C NMR is taken as substantial support for the results reached from (1)H NMR studies. The mass spectral results are taken as a tool to confirm the structure of the investigated compounds. The base peak (100%), mostly the M-1 peak, indicates the facile loss of hydrogen radical. The fragmentation pattern of the unsubstituted Schiff base is taken as the general scheme. Differences in the other schemes result from the effect of the electronegativity of the substituents attached to the aromatic ring.

  13. NMR-BASED METABOLOMIC STUDIES OF ENDOCRINE DISRUPTION IN SMALL FISH MODELS

    EPA Science Inventory

    Metabolomics is now being widely used to obtain complementary information to genomic and proteomic studies. Among the various approaches used in metabolomics, NMR spectroscopy is particularly powerful, in part because it is relatively non-selective, and is amenable to the study o...

  14. 125Te and 139La NMR Studies of Single Crystal LaTe3

    NASA Astrophysics Data System (ADS)

    Chudo, Hiroyuki; Michioka, Chishiro; Itoh, Yutaka; Yoshimura, Kazuyoshi

    2007-12-01

    We report 125Te and 139La NMR studies for single crystals of LaTe3 between 10 and 160 K under an applied field of H = 7.4841 T. We observed the broad 125Te(1) NMR signals of metallic Te(1) sheets with a superlattice modulation and the sharp 125Te(2) and 139La NMR signals of LaTe(2) bi-layers. Temperature dependence of 125Te(1) nuclear spin-lattice relaxation times of the modulated Te(1) sheets obeys a modified Korringa relation. The results indicate that the electronic state on the Te(1) sheets is a Landau-Fermi liquid on a misfit superlattice or a Tomonaga-Luttinger liquid in a two-dimensional charge-density wave ordering state.

  15. Molecular motion of micellar solutes: a /sup 13/C NMR relaxation study

    SciTech Connect

    Stark, R.E.; Kasakevich, M.L.; Granger, J.W.

    1982-02-04

    A series of simple NMR relaxation experiments have been performed on nitrobenzene and aniline dissolved in the ionic detergents sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (CTAB). Using /sup 13/C relaxation rates at various molecular sites, and comparing data obtained in organic media with those for micellar solutions, the viscosity at the solubilization site was estimated and a detailed picture of motional restrictions imposed by the micellar enviroment was derived. Viscosities of 8 to 17 cp indicate a rather fluid environment for solubilized nitrobenzene; both additives exhibit altered motional preferences in CTAB solutions only. As an aid in interpretation of the NMR data, quasi-elastic light scattering and other physical techniques have been used to evaluate the influence of organic solutes on micellar size and shape. The NMR methods are examined critically in terms of their general usefulness for studies of solubilization in detergent mice

  16. Solid-state NMR studies of form I of atorvastatin calcium.

    PubMed

    Wang, Wei David; Gao, Xudong; Strohmeier, Mark; Wang, Wei; Bai, Shi; Dybowski, Cecil

    2012-03-22

    Solid-state (13)C, (19)F, and (15)N magic angle spinning NMR studies of Form I of atorvastatin calcium are reported, including chemical shift tensors of all resolvable carbon sites and fluorine sites. The complete (13)C and (19)F chemical shift assignments are given based on an extensive analysis of (13)C-(1)H HETCOR and (13)C-(19)F HETCOR results. The solid-state NMR data indicate that the asymmetric unit of this material contains two atorvastatin molecules. A possible structure of Form I of atorvastatin calcium (ATC-I), derived from solid-state NMR data and density functional theory calculations of various structures, is proposed for this important active pharmaceutical ingredient (API).

  17. Multivalent ligand mimetics of LecA from P. aeruginosa: synthesis and NMR studies.

    PubMed

    Bini, Davide; Marchetti, Roberta; Russo, Laura; Molinaro, Antonio; Silipo, Alba; Cipolla, Laura

    2016-06-24

    Molecular recognition of glycans plays an important role in glycomic and glycobiology studies. For example, pathogens have a number of different types of lectin for targeting host sugars. In bacteria, lectins exist sometimes as domains of bacterial toxins and exploit adhesion to glycoconjugates as a means of entering host cells. Herein, we describe the synthesis of three glycodendrons with the aim to dissect the fine structural details involved in the multivalent carbohydrate-protein interactions. LecA, from the pathogen Pseudomonas aeruginosa, has been used to characterize galactose dendrons interaction using one of the most widespread NMR technique for the elucidation of receptor-ligand binding in solution, the saturation transfer difference (STD) NMR. Furthermore, the effective hydrodynamic radius of each dendrimer recognized by LecA was estimated from the diffusion coefficients determined by pulsed-field-gradient stimulated echo (PFG-STE) NMR experiments.

  18. Chiral trimethylsilylated C2-symmetrical diamines as phosphorous derivatizing agents for the determination of the enantiomeric excess of chiral alcohols by 1H NMR

    PubMed Central

    Chauvin, Anne-Sophie; Alexakis, Alexandre

    2006-01-01

    The use of organophosphorus derivatising agents, prepared from C2 symmetric trimethylsilylated diamines, for the 1H NMR and 31P NMR determination of the enantiomeric composition of chiral alcohols is described. PMID:16566844

  19. Proton-NMR study on chemisorption of ethylene on platinum powder

    NASA Astrophysics Data System (ADS)

    Takashi Shibanuma; Toshiji Matsui

    1985-05-01

    The high-temperature phase of ethylene on surfaces of Pt powder has been studied by proton-NMR in order to decide whether the surface species is the ethylidyne species (CH 3C) proposed by Kesmodel et al. or the multiple-bonded species (CH 2CH) proposed by Demuth. The observed NMR spectrum is not attributable to CH 3-groups on the surfaes, but can be interpreted as the superposition of two signals, one originating from CH 2-groups and the other from CH-groups. In other words, the results suggest that the surface species is the multiple-bonded species.

  20. Proton-NMR study on chemisorption of ethylene on platinum powder

    NASA Astrophysics Data System (ADS)

    Shibanuma, Takashi; Matsui, Toshiji

    The high-temperature phase of ethylene on surfaces of Pt powder has been studied by proton-NMR in order to decide whether the surface species is the ethylidyne species (CH 3-C≡) proposed by Kesmodel et al. or the multiple-bonded species (-CH 2-CH=) proposed by Demuth. The observed NMR spectrum is not attributable to CH 3-groups on the surfaces, but can be interpreted as the superposition of two signals, one originating from CH 2-groups and the other from CH-groups. In other words, the results suggest that the surface species is the multiple-bonded species.

  1. NMR studies on a new method for selective degradation of lignins

    SciTech Connect

    Lu, F.; Ralph, J.

    1996-10-01

    The selectivity and cleanliness of reactions which form the basis of a proposed new alternative to the analytical thioacidolysis method have been examined by NMR using model compounds and isolated lignins The results from the model study show that all steps involved in the new selective method are almost quantitative. When applied to isolated lignins, the NMR spectra show that the main substructures of lignin a selectively and cleanly converted to desired derivatives which are further degraded by specific ether cleavage reactions resulting in high yields of analyzable monomers. The beautiful selectivity and cleanliness demonstrated here, combined with its mildness, should make this method very attractive to lignin researchers.

  2. Phosphorus-31 nuclear magnetic resonance studies of cellular systems

    SciTech Connect

    Robitaille, P.M.L.

    1986-01-01

    In this study, /sup 31/P-NMR spectroscopy was applied to the study of (1) sipunculan erythrocytes, (2) spermatozoa isolated from several vertebrate and invertebrate species, and (3) unfertilized eggs isolated from the blue crab and the horseshoe crab. /sup 31/P-NMR results center on the identification of key metabolites and on the determination of intracellular pH. In studies involving fish spermatozoa, emphasis was also placed on examining changes in metabolic profiles following (1) an anaerobic insult, (2) motility initiation, or (3) short-term storage. This study also captures several difficulties in spectral interpretation which a spectroscopist is likely to encounter.

  3. Solid-state MAS NMR, TEM, and TGA studies of structural hydroxyl groups and water in nanocrystalline apatites prepared by dry milling.

    PubMed

    Pajchel, Lukasz; Kolodziejski, Waclaw

    2013-01-01

    A series of nanocrystalline calcium hydroxyapatites was prepared by dry milling and characterized using proton and (31)P MAS NMR, TEM, and TGA methods. The samples contained stubby rod-shaped crystals, which length and width varied in the 130-30 and 95-20 nm ranges, respectively. It was confirmed that concentration of structural hydroxyl groups in nanocrystalline apatites decreases with the decreasing crystal size. In the series of the studied apatites, the decrease was from 86 to ca. 50 % in reference to stoichiometric apatite. Water was found in the surface hydrated layer and in the c-axis channels, in which compartments existed as adsorbed and structural, respectively. Molecules of the adsorbed water were capable of moving from the crystal surface into the lattice c-axis channels of apatite. This process introduced considerable structural disorder within and around those channels and reduced the content of the structural hydroxyl groups, particularly in the region underneath the apatite crystal surface.

  4. Solid-state NMR and ESR studies of activated carbons produced from pecan shells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activated carbon from pecan shells has shown promise as an adsorbent in water treatment and sugar refining. However, the chemistry of the material is complex and not fully understood. We report here the application of solid state NMR and ESR to study the chemical structure, mobility, and pore volu...

  5. Genetic analysis of 16 NMR-lipoprotein fractions in humans, the GOLDN study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixteen nuclear magnetic resonance (NMR) spectroscopy lipoprotein measurements of more than 1,000 subjects of GOLDN study, at fasting and at 3.5 and 6 h after a postprandial fat (PPL) challenge at visits 2 and 4, before and after a 3 weeks Fenofibrate (FF) treatment, were included in 6 time-independ...

  6. Silver metallation of hen egg white lysozyme: X-ray crystal structure and NMR studies.

    PubMed

    Panzner, Matthew J; Bilinovich, Stephanie M; Youngs, Wiley J; Leeper, Thomas C

    2011-12-14

    The X-ray crystal structure, NMR binding studies, and enzyme activity of silver(I) metallated hen egg white lysozyme are presented. Primary bonding of silver is observed through His15 with secondary bonding interactions coming from nearby Arg14 and Asp87. A covalently bound nitrate completes a four coordinate binding pocket.

  7. Age and gender dependence of human cardiac phosphorus metabolites determined by SLOOP 31P MR spectroscopy.

    PubMed

    Köstler, Herbert; Landschütz, Wilfried; Koeppe, Sabrina; Seyfarth, Tobias; Lipke, Claudia; Sandstede, Jörn; Spindler, Matthias; von Kienlin, Markus; Hahn, Dietbert; Beer, Meinrad

    2006-10-01

    The aim of this study was to apply (31)P magnetic resonance spectroscopy (MRS) using spatial localization with optimal point spread function (SLOOP) to investigate possible age and gender dependencies of the energy metabolite concentrations in the human heart. Thirty healthy volunteers (18 males and 12 females, 21-67 years old, mean = 40.7 years) were examined with the use of (31)P-MRS on a 1.5 T scanner. Intra- and interobserver variability measures (determined in eight of the volunteers) were both 3.8% for phosphocreatine (PCr), and 4.7% and 8.3%, respectively, for adenosine triphosphate (ATP). High-energy phosphate (HEP) concentrations in mmol/kg wet weight were 9.7 +/- 2.4 (age < 40 years, N = 16) and 7.7 +/- 2.5 (age >or= 40 years, N = 14) for PCr, and 5.1 +/- 1.0 (age < 40 years) and 4.1 +/- 0.8 (age >or= 40 years) for ATP, respectively. Separated by gender, PCr concentrations of 9.2 +/- 2.4 (men, N = 18) and 8.0 +/- 2.8 (women, N = 12) and ATP concentrations of 4.9 +/- 1.0 (men) and 4.2 +/- 0.9 (women) were measured. A significant decrease of PCr and ATP was found for volunteers older than 40 years (P < 0.05), but the differences in metabolic concentrations between both sexes were not significant. In conclusion, age has a minor but still significant impact on cardiac energy metabolism, and no significant gender differences were detected.

  8. Solid-state 207Pb NMR studies of mixed lead halides, PbFX (X=Cl, Br, or I).

    PubMed

    Glatfelter, Alicia; Dybowski, Cecil; Kragten, David D; Bai, Shi; Perry, Dale L; Lockard, Jenny

    2007-04-01

    Solid-state 207Pb NMR studies have been conducted on mixed lead(II) halides of the type PbFX, where X=Cl, Br, or I. NMR data for the mixed halides are compared to the solid-state NMR data for the divalent, binary lead halides, PbX2 (X=F, Cl, Br, I). The NMR data are evaluated in the context of the structures of the compounds and the effects of the mixed halides on the electronic structure of the divalent lead. Data sets for the mixed halides are discussed and compared to those for the regular lead(II) halides.

  9. Ultra-high field NMR studies of antibody binding and site-specific phosphorylation of {alpha}-synuclein

    SciTech Connect

    Sasakawa, Hiroaki |; Sakata, Eri; Yamaguchi, Yoshiki; Masuda, Masami |; Mori, Tetsuya; Kurimoto, Eiji; Iguchi, Takeshi; Hisanaga, Shin-ichi; Iwatsubo, Takeshi; Hasegawa, Masato; Kato, Koichi |

    2007-11-23

    Although biological importance of intrinsically disordered proteins is becoming recognized, NMR analyses of this class of proteins remain as tasks with more challenge because of poor chemical shift dispersion. It is expected that ultra-high field NMR spectroscopy offers improved resolution to cope with this difficulty. Here, we report an ultra-high field NMR study of {alpha}-synuclein, an intrinsically disordered protein identified as the major component of the Lewy bodies. Based on NMR spectral data collected at a 920 MHz proton frequency, we performed epitope mapping of an anti-{alpha}-synuclein monoclonal antibody, and furthermore, characterized conformational effects of phosphorylation at Ser129 of {alpha}-synuclein.

  10. Solid-state and unilateral NMR study of deterioration of a Dead Sea Scroll fragment.

    PubMed

    Masic, A; Chierotti, M R; Gobetto, R; Martra, G; Rabin, I; Coluccia, S

    2012-02-01

    Unilateral and solid-state nuclear magnetic resonance (NMR) analyses were performed on a parchment fragment of the Dead Sea Scroll (DSS). The analyzed sample belongs to the collection of non-inscribed and nontreated fragments of known archaeological provenance from the John Rylands University Library in Manchester. Therefore, it can be considered as original DSS material free from any contamination related to the post-discovery period. Considering the paramount significance of the DSS, noninvasive approaches and portable in situ nondestructive methods are of fundamental importance for the determination of composition, structure, and chemical-physical properties of the materials under study. NMR studies reveal low amounts of water content associated with very short proton relaxation times, T(1), indicating a high level of deterioration of collagen molecules within scroll fragments. In addition, (13)C cross-polarization magic-angle-spinning (CPMAS) NMR spectroscopy shows characteristic peaks of lipids whose presence we attribute to the production technology that did not involve liming. Extraction with chloroform led to the reduction of both lipid and protein signals in the (13)C CPMAS spectrum indicating probable involvement of lipids in parchment degradation processes. NMR absorption and relaxation measurements provide nondestructive, discriminative, and sensitive tools for studying the deterioration effects on the organization and properties of water and collagen within ancient manuscripts.

  11. 19F NMR study on the biodegradation of fluorophenols by various Rhodococcus species.

    PubMed

    Bondar, V S; Boersma, M G; Golovlev, E L; Vervoort, J; Van Berkel, W J; Finkelstein, Z I; Solyanikova, I P; Golovleva, L A; Rietjens, I M

    1998-01-01

    Of all NMR observable isotopes 19F is the one perhaps most convenient for studies on biodegradation of environmental pollutants. The reasons underlying this potential of 19F NMR are discussed and illustrated on the basis of a study on the biodegradation of fluorophenols by four Rhodococcus strains. The results indicate marked differences between the biodegradation pathways of fluorophenols among the various Rhodococcus species. This holds not only for the level and nature of the fluorinated biodegradation pathway intermediates that accumulate, but also for the regioselectivity of the initial hydroxylation step. Several of the Rhodococcus species contain a phenol hydroxylase that catalyses the oxidative defluorination of ortho-fluorinated di- and trifluorophenols. Furthermore, it is illustrated how the 19F NMR technique can be used as a tool in the process of identification of an accumulated unknown metabolite, in this case most likely 5-fluoromaleylacetate. Altogether, the 19F NMR technique proved valid to obtain detailed information on the microbial biodegradation pathways of fluorinated organics, but also to provide information on the specificity of enzymes generally considered unstable and, for this reason, not much studied so far.

  12. Feasibility of assessing bone matrix and mineral properties in vivo by combined solid-state 1H and 31P MRI

    PubMed Central

    Song, Hee Kwon; Seifert, Alan C.; Li, Cheng; Wehrli, Felix W.

    2017-01-01

    Purpose To develop and evaluate an integrated imaging protocol for bone water and phosphorus quantification in vivo by solid-state 1H and 31P MRI. Materials and methods All studies were HIPAA-compliant and were performed with institutional review board approval and written informed consent. Proton (1H) ultra-short echo-time (UTE) and phosphorus (31P) zero echo-time (ZTE) sequences were designed and implemented on a 3 T clinical MR scanner to quantify bone water and mineral in vivo. The left tibia of ten healthy subjects (including both genders, 49±15 y/o) was examined with a custom-built 1H/31P dual-frequency extremity RF coil. Total bone water (TW), water bound to the collagen matrix (BW) and bone 31P were quantified from MR images with respect to reference samples of known 1H or 31P concentration, and pore water (PW) was subsequently determined from TW and BW. Porosity index (PI) was calculated as the ratio between UTE images acquired at two echo times. MRI parameters were compared with bone density measures obtained by high-resolution peripheral quantitative CT (HR-pQCT). Results The total scan time for the bone water and 31P quantification protocol was about 50 minutes. Average TW, BW, PW and 31P concentrations were 13.99±1.26, 10.39±0.80, 3.34±1.41 mol/L and 7.06±1.53 mol/L for the studied cohort, respectively, in good agreement with previous results conducted ex vivo. Average intra-subject coefficients of variation were 3.47%, 2.60% and 7.50% for TW, BW and PW and 5.60% for 31P. Negative correlations were observed between PW and vBMD (p<0.05) as well as between PI and 31P (p<0.05), while bone mineral content (BMC) estimated from 31P MRI and HR-pQCT were strongly positively correlated (p<0.0001). Conclusion This work demonstrates the feasibility of quantifying bone water and mineral phosphorus in human subjects in a single MRI session with a clinically practical imaging protocol. PMID:28296979

  13. Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI

    PubMed Central

    Seifert, Alan C.; Li, Cheng; Rajapakse, Chamith S.; Bashoor- Zadeh, Mahdieh; Bhagat, Yusuf A.; Wright, Alexander C.; Zemel, Babette S.; Zavaliangos, Antonios; Wehrli, Felix W.

    2014-01-01

    Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-CT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression. Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: R2 = 0.32, p < 0.005; BW: R2 = 0.63, p < 0.0005) and age (31P: R2 = 0.39, p < 0.05; BW: R2 = 0.70, p < 0.0001), and positively with pQCT density (31P: R2 = 0.46, p < 0.05; BW: R2 = 0.50, p < 0.005). In contrast, the bone mineralization ratio (expressed here as the ratio of 31P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware. PMID:24846186

  14. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    SciTech Connect

    Bevilaqua, Rochele C. A.; Miranda, Caetano R.; Rigo, Vagner A.; Veríssimo-Alves, Marcos

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  15. Water exchange in plant tissue studied by proton NMR in the presence of paramagnetic centers.

    PubMed

    Bacić, G; Ratković, S

    1984-04-01

    The proton NMR relaxation of water in maize roots in the presence of paramagnetic centers, Mn2+, Mn- EDTA2 -, and dextran-magnetite was measured. It was shown that the NMR method of Conlon and Outhred (1972, Biochem. Biophys. Acta. 288:354-361) can be applied to a heterogenous multicellular system, and the water exchange time between cortical cells and the extracellular space can be calculated. The water exchange is presumably controlled by the intracellular unstirred layers. The Mn- EDTA2 - complex is a suitable paramagnetic compound for complex tissue, while the application of dextran-magnetite is probably restricted to studies of water exchange in cell suspensions. The water free space of the root and viscosity of the cells cytoplasm was estimated with the use of Mn- EDTA2 -. The convenience of proton NMR for studying the multiphase uptake of paramagnetic ions by plant root as well as their transport to leaves is demonstrated. A simple and rapid NMR technique (spin-echo recovery) for continuous measurement of the uptake process is presented.

  16. 17O NMR study of diamagnetic and paramagnetic lanthanide(III)-DOTA complexes in aqueous solution.

    PubMed

    Fusaro, Luca; Luhmer, Michel

    2014-08-18

    The complexes between the polyaminocarboxylate DOTA ligand and the whole series of stable lanthanide(III) metal ions, except Gd(3+), were studied in aqueous solution by (17)O NMR. For all of the paramagnetic systems, the (17)O NMR signals of both the nonchelating (O1) and chelating (O2) oxygen atoms could be detected, and for some of them, the signals of both the SAP and TSAP (TSAP') conformational isomers were also observed. Line width data analysis reveals that signal broadening is not dominated by paramagnetic relaxation enhancement, as it was believed to be. The data indicate that quadrupole relaxation and, for some complexes, chemical exchange between the SAP and TSAP isomers are the major contributions to the (17)O NMR line width at 25 °C. Besides, the Fermi contact and pseudocontact contributions to the observed lanthanide-induced shifts could be extracted. The (17)O hyperfine coupling constants determined for O2 in the SAP and TSAP isomers are similar to each other and to the values reported for several Gd(III) complexes comprising fast-exchanging ligands. Interestingly, the results suggest that (17)O NMR should prove to be useful for the study of highly paramagnetic Gd(III) complexes of nonlabile ligands.

  17. Two dimensional NMR and NMR relaxation studies of coal structure. Progress report, September 13, 1991--December 31, 1991

    SciTech Connect

    Zilm, K.W.

    1992-05-27

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed a delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  18. Two dimensional NMR and NMR relaxation studies of coal structure. Progress report, January 1, 1992--March 31, 1992

    SciTech Connect

    Zilm, K.W.

    1992-07-01

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed at delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  19. Characterization of the phosphoserine of pepsinogen using /sup 31/P nuclear magnetic resonance: corroboration of X-ray crystallographic results

    SciTech Connect

    Williams, S.P.; Bridger, W.A.; James, M.N.G.

    1986-10-21

    The endogenous phosphoserine residue in porcine pepsinogen has been titrated with use of phosphorus-31 nuclear magnetic resonance (/sup 31/P NMR). It has an observed pK/sub a/sub 2// of 6.7 and a narrow line width (approx. =10 Hz). The phosphate can be readily removed by an acid phosphatase from potato; however, it is resistant to hydrolysis by several alkaline phosphatases. The X-ray crystal structure of porcine pepsinogen at 1.8-A resolution shows a rather weak and diffuse region of electron density in the vicinity of the phosphorylated serine residue. This suggests considerable dynamic mobility or conformational disorder of the phosphate. In order to define more fully this behavior the NMR data have been used to corroborate these crystallographic results. All these physical data are consistent with a highly mobile phosphoserine residue on the surface of the zymogen and freely exposed to solvent. In addition, certain properties of this phosphoserine moiety on pepsinogen are similar to those of one of the phosphorylated residues of ovalbumin. The possible significance of this is discussed.

  20. Comparison of phytate and other organic P forms in Mehlich-3 and Alkaline-EDTA matrices by ICP, NMR and mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The favored method of organic P identification over the last few decades has been 31P NMR. While this technique has the distinct advantage of speciating the organic P fraction, it has a relatively poor detection threshold (0.05 mg/ml), which typically limits 31P NMR to qualitative or confirmative ap...

  1. A 2H and 14N NMR study of molecular motion in polycrystalline choline salts

    NASA Astrophysics Data System (ADS)

    Pratum, T. K.; Klein, M. P.

    2H and 14N solid-state NMR spectra of polycrystalline choline chloride, bromide, and iodide indicate that 180° cation flipping motion occurs in all three salts. From the temperature dependence of these spectra, the activation energy for this motion is determined to be 5.8 ± I kcal/mol in the iodide salt and 11 ± 1.5 kcal/mol in the chloride salt. In the bromide salt the reorientation rate is too rapid to be determined from the NMR lineshape, but the temperature dependence of the 2H quadrupole coupling parameters is indicative of a second-order phase transition at approximately 273 K. The spectral distortions in the 14N NMR spectra of the chloride and iodide salts are adequately explained using the motional model derived from the 2H NMR results, while the 14N spectra of the bromide salt show no motional effects. The axis of reorientation which is inferred from these data appears to be consistent with that indicated in a previous X-ray crystallographic study.

  2. Li NMR study of heavy-fermion LiV2O4 containing magnetic defects

    SciTech Connect

    Zong, X.; Das, S.; Borsa, F.; Vannette, M.; Prozorov, R.; Schmalian, J.; Johnston, D.

    2008-04-21

    We present a systematic study of the variations of the {sup 7}Li NMR properties versus magnetic defect concentration up to 0.83 mol% within the spinel structure of polycrystalline powder samples and a collection of small single crystals of LiV2O4 in the temperature range from 0.5 to 4.2 K. We also report static magnetization measurements and ac magnetic susceptibility measurements at 14 MHz on the samples at low temperatures. Both the NMR spectrum and nuclear spin-lattice relaxation rate are inhomogeneous in the presence of the magnetic defects. The NMR data for the powders are well explained by assuming that (i) there is a random distribution of magnetic point defects, (ii) the same heavy Fermi liquid is present in the samples containing the magnetic defects as in magnetically pure LiV2O4, and (iii) the influences of the magnetic defects and of the Fermi liquid on the magnetization and NMR properties are separable. In the single crystals, somewhat different behaviors are observed. Remarkably, the magnetic defects in the powder samples show evidence of spin freezing below T {approx} 1.0 K, whereas in the single crystals with similar magnetic defect concentration no spin freezing was found down to 0.5 K. Thus different types of magnetic defects and/or interactions between them appear to arise in the powders versus the crystals, possibly due to the substantially different synthesis conditions of the powders and crystals.

  3. Comparative study of inversion methods of three-dimensional NMR and sensitivity to fluids

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Wang, Peng; Mao, Keyu

    2014-04-01

    Three-dimensional nuclear magnetic resonance (3D NMR) logging can simultaneously measure transverse relaxation time (T2), longitudinal relaxation time (T1), and diffusion coefficient (D). These parameters can be used to distinguish fluids in the porous reservoirs. For 3D NMR logging, the relaxation mechanism and mathematical model, Fredholm equation, are introduced, and the inversion methods including Singular Value Decomposition (SVD), Butler-Reeds-Dawson (BRD), and Global Inversion (GI) methods are studied in detail, respectively. During one simulation test, multi-echo CPMG sequence activation is designed firstly, echo trains of the ideal fluid models are synthesized, then an inversion algorithm is carried on these synthetic echo trains, and finally T2-T1-D map is built. Futhermore, SVD, BRD, and GI methods are respectively applied into a same fluid model, and the computing speed and inversion accuracy are compared and analyzed. When the optimal inversion method and matrix dimention are applied, the inversion results are in good aggreement with the supposed fluid model, which indicates that the inversion method of 3D NMR is applieable for fluid typing of oil and gas reservoirs. Additionally, the forward modeling and inversion tests are made in oil-water and gas-water models, respectively, the sensitivity to the fluids in different magnetic field gradients is also examined in detail. The effect of magnetic gradient on fluid typing in 3D NMR logging is stuied and the optimal manetic gradient is choosen.

  4. Layered structure of room-temperature ionic liquids in microemulsions by multinuclear NMR spectroscopic studies.

    PubMed

    Falcone, R Dario; Baruah, Bharat; Gaidamauskas, Ernestas; Rithner, Christopher D; Correa, N Mariano; Silber, Juana J; Crans, Debbie C; Levinger, Nancy E

    2011-06-06

    Microemulsions form in mixtures of polar, nonpolar, and amphiphilic molecules. Typical microemulsions employ water as the polar phase. However, microemulsions can form with a polar phase other than water, which hold promise to diversify the range of properties, and hence utility, of microemulsions. Here microemulsions formed by using a room-temperature ionic liquid (RTIL) as the polar phase were created and characterized by using multinuclear NMR spectroscopy. (1)H, (11)B, and (19)F NMR spectroscopy was applied to explore differences between microemulsions formed by using 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]) as the polar phase with a cationic surfactant, benzylhexadecyldimethylammonium chloride (BHDC), and a nonionic surfactant, Triton X-100 (TX-100). NMR spectroscopy showed distinct differences in the behavior of the RTIL as the charge of the surfactant head group varies in the different microemulsion environments. Minor changes in the chemical shifts were observed for [bmim](+) and [BF(4)](-) in the presence of TX-100 suggesting that the surfactant and the ionic liquid are separated in the microemulsion. The large changes in spectroscopic parameters observed are consistent with microstructure formation with layering of [bmim](+) and [BF(4)](-) and migration of Cl(-) within the BHDC microemulsions. Comparisons with NMR results for related ionic compounds in organic and aqueous environments as well as literature studies assisted the development of a simple organizational model for these microstructures.

  5. {sup 1}H NMR spectroscopic studies establish that heparanase is a retaining glycosidase

    SciTech Connect

    Wilson, Jennifer C.; Laloo, Andrew Elohim; Singh, Sanjesh; Ferro, Vito

    2014-01-03

    Highlights: •{sup 1}H and {sup 13}C NMR chemical shifts of fondaparinux were fully assigned by 1D and 2D NMR techniques. •Hydrolysis of fondaparinux by heparanase was monitored by {sup 1}H NMR spectroscopy. •Heparanase is established to be a retaining glycosidase. -- Abstract: Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to the clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase. However, there has been no direct experimental evidence to support this conclusion. Herein we describe {sup 1}H NMR spectroscopic studies of the hydrolysis of the pentasaccharide substrate fondaparinux by heparanase, and provide conclusive evidence that heparanase hydrolyses its substrate with retention of configuration and is thus established as a retaining glycosidase. Knowledge of the mechanism of hydrolysis may have implications for future design of inhibitors for this important drug target.

  6. NMR and IR spectroscopic study of proton exchange between o-nitrophenol and methanol in CCl/sub 4/

    SciTech Connect

    Bureiko, S.F.; Golubev, N.S.; Lange, I.Y.

    1982-08-01

    The kinetics of proton exchange in solution between o-nitrophenol and methanol have been studied by dynamic NMR and IR spectroscopy, and a method has been developed for the simultaneous determination of the rate constants for H-H, H-D, and D-H exchange from /sup 1/H NMR spectra.

  7. Solid state NMR study of SEI formation in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Dachun

    Recently, rechargeable lithium ion batteries, which offer high energy density and long cycle life, are in great demand as power sources for our mobile electronic society. The formation of a solid electrolyte interphase (SEI) on the surface of electrodes in lithium ion batteries plays an essential role in their performance. This thesis presents solid state NMR and MAS NMR results on the SEI, which contribute to our understanding of SEI formation on both cathodes and anodes. This thesis is organized as following: Chapter 1 surveys the history of batteries and the challenges to further development of the lithium ion battery. Fundamental aspects and SEI formation mechanisms are also included in Chapter l. Chapter 2 deals with the principles and experimental techniques of solid state NMR. Chapter 3 presents studies of SEI formation on anode and cathode in lithium ion batteries using electrochemical impedance spectroscopy (EIS) and NMR. The results provide EIS and NMR evidence that cells containing electrolytes with high EC content display less irreversible capacity after high temperature storage. The irreversible capacity is attributed to SEI growth on electrode surfaces. NMR results on cathodes, on the other hand, imply that the presence of Ni in the cathode may reduce cell performance due to the oxidation of Ni 3+ to Ni4+. Our simulations show that a lower EC/DMC ratio is associated with a smaller SEI intensity for the cathode and higher intensity for the anode. Chapter 4 discusses the effect of temperature on SEI formation on anodes and cathodes. NMR measurements show that MCMB graphite based anodes exhibit high stability no chemical shift is evident over a wide temperature range. On cathodes, however, NMR does reveal changes in SEI intensity as a function of temperature. These changes are believed to be the result of decomposition of the SEI. Evidently, then, changes in the performance of the cell as a factor of temperature are, at least in part, due to changes in

  8. 13C NMR study of halogen bonding of haloarenes: measurements of solvent effects and theoretical analysis.

    PubMed

    Glaser, Rainer; Chen, Naijun; Wu, Hong; Knotts, Nathan; Kaupp, Martin

    2004-04-07

    Solvent effects on the NMR spectra of symmetrical (X = F (1), X = Cl (2), X = Br (3), X = I (4), X = NO2 (5), X = CN (6)) and unsymmetrical (X = I, Y = MeO (7), Y = PhO (8)) para-disubstituted acetophenone azines X-C6H4-CMe=N-N=CMe-C6H4-Y and of models X-C6H4-CMe=N-Z (X = I, Z = H (9), Z = NH2 (10)), 4-iodoacetophenone (11), and iodobenzene (12) were measured in CDCl(3), DMSO, THF, pyridine, and benzene to address one intramolecular and one intermolecular issue. Solvent effects on the (13)C NMR spectra are generally small, and this finding firmly establishes that the azine bridge indeed functions as a "conjugation stopper," an important design concept in our polar materials research. Since intermolecular halogen bonding of haloarenes do occur in polar organic crystalline materials, the NMR solution data pose the question as to whether the absence of solvent shifts indicates the absence of strong halogen bonding in solution. This question was studied by the theoretical analysis of the DMSO complexes of iodoarenes 4, 9-12, and of iodoacetylene. DFT and MP2 computations show iodine bonding, and characteristic structural and electronic features are described. The nonrelativistic complexation shifts and the change in the spin-orbit induced heavy atom effect of iodine compensate each other, and iodine bonding thus has no apparent effect on Ci in the iodoarenes. For iodides, complexation by DMSO occurs and may or may not manifest itself in the NMR spectra. The absence of complexation shifts in the NMR spectra of halides does not exclude the occurrence of halogen bonding in solution.

  9. Preliminary 1H NMR study on archaeological waterlogged wood.

    PubMed

    Maccotta, Antonella; Fantazzini, Paola; Garavaglia, Carla; Donato, Ines D; Perzia, Patrizia; Brai, Maria; Morreale, Filippa

    2005-01-01

    Magnetic Resonance Relaxation (MRR) and Magnetic Resonance Imaging (MRI) are powerful tools to obtain detailed information on the pore space structure that one is unlikely to obtain in other ways. These techniques are particularly suitable for Cultural Heritage materials, because they use water 1H nuclei as a probe. Interaction with water is one of the main causes of deterioration of materials. Porous structure in wood, for example, favours the penetration of water, which can carry polluting substances and promote mould growth. A particular case is waterlogged wood from underwater discoveries and moist sites; in fact, these finds are very fragile because of chemical, physical and biological decay from the long contact with the water. When wood artefacts are brought to the surface and directly dried in air, there is the collapse of the cellular structures, and wood loses its original form and dimensions and cannot be used for study and museum exhibits. In this work we have undertaken the study of some wood finds coming from Ercolano's harbour by MRR and MRI under different conditions, and we have obtained a characterization of pore space in wood and images of the spatial distribution of the confined water in the wood.

  10. NMR spectroscopy study of local correlations in water

    NASA Astrophysics Data System (ADS)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Stanley, H. Eugene

    2016-12-01

    Using nuclear magnetic resonance we study the dynamics of the hydrogen bond (HB) sub-domains in bulk and emulsified water across a wide temperature range that includes the supercooled regime. We measure the proton spin-lattice T1 and spin-spin T2 relaxation times to understand the hydrophilic interactions that determine the properties of water. We use (i) the Bloembergen, Purcell, and Pound approach that focuses on a single characteristic correlation time τc, and (ii) the Powles and Hubbard approach that measures the proton rotational time τθ. We find that when the temperature is low both relaxation times are strongly correlated when the HB lifetime is long, and that when the temperature is high a decrease in the HB lifetime destroys the water clusters and decouples the dynamic modes of the system.

  11. On-flow pulsed field gradient heteronuclear correlation spectrometry in off-line LC-SPE-NMR analysis of chemicals related to the chemical weapons convention.

    PubMed

    Koskela, Harri; Ervasti, Mia; Björk, Heikki; Vanninen, Paula

    2009-02-01

    Hyphenation of liquid chromatography with nuclear magnetic resonance spectroscopy (LC-NMR) is a useful technique in the analysis of complex samples. However, application of on-flow 1H NMR spectrometry during the LC-NMR analysis usually suffers from high intensity of eluent resonances. The poor dynamic range can be improved either with use of deuterated eluents or with various signal suppression schemes. Deuterated eluents are expensive, and peak-selective signal suppression schemes are often unsatisfactory when detection of chemicals at low concentration is needed. If the analytes have a common heteronucleus, on-flow pulsed field gradient heteronuclear correlation spectrometry can offer several benefits. The analytes can be monitored selectively, while the intense nondeuterated eluent and impurity background can be effectively eliminated. In our study, on-flow one-dimensional (1D) 1H-31P heteronuclear single quantum coherence (HSQC) spectrometry was utilized in the analysis of characteristic organophosphorus degradation products of nerve agents sarin and soman during chromatographic separation. These chemicals were not detectable by UV, so their retention times were monitored using on-flow 1D 1H-31P HSQC. This enabled application of LC-NMR combined with solid-phase extraction (LC-SPE-NMR) in analysis of these organophosphorus chemicals in an alkaline decontamination solution. The analytes were extracted from the SPE cartridges with deuterated eluent, and the off-line NMR analysis was performed using a mass-sensitive microcoil probe head. The used on-flow 1D 1H-31P HSQC approach offered a high dynamic range and good detection limit (ca. 10 microg/55 nmol) with a high sampling frequency (1 point per 2 s) in the acquired pseudo-two-dimensional spectrum. No significant impurity background was present in the off-line NMR samples, and identification of the extracted analytes was straightforward.

  12. NMR studies of electrostatic potential distribution around biologically important molecules.

    PubMed Central

    Likhtenshtein, G I; Adin, I; Novoselsky, A; Shames, A; Vaisbuch, I; Glaser, R

    1999-01-01

    A new experimental approach has been developed to study the distribution of local electrostatic potential around specific protons in biologically important molecules. The approach is the development of a method denoted as "spin label/spin probe," which was proposed by one of us (. Mol. Biol. 6:498-507). The proposed method is based upon the quantitative measurement of the contribution of differently charged nitroxide probes to the spin lattice relaxation rate (1/T1) of protons in the molecule of interest, followed by calculation of local electrostatic potential using the classical Debye equation. In parallel, the theoretical calculation of potential distribution with the use of the MacSpartan Plus 1.0 program has been performed. Application of the method to solutions of simple organic molecules (aliphatic and aromatic alcohols, aliphatic carboxylates (propionate anion), and protonated ethyl amine and imidazole) allowed us to estimate the effective potential around the molecules under investigation. These were found to be in good agreement with theoretically expected values. This technique was then applied to zwitterionic amino acids bearing neutral and charged side chains (glycine, lysine, histidine, and aspartic acid). The reliability of the general approach is proved by the data presented in this paper. Application of this new methodology can afford insight into the biochemical significance of electrostatic effects in biological systems. PMID:10388770

  13. NMR study of hydrogen diffusion in zirconium hydride

    SciTech Connect

    Korn, C.; Goren, S.D.

    1986-01-01

    The nuclear-magnetic-resonance method was used to study the diffusion of hydrogen in zirconium hydride by measuring the temperature dependence of T/sub 1/ in a temperature range where the major relaxation mechanism was due to hydrogen diffusion. The samples investigated were ZrH/sub 1.588/, ZrH/sub 1.629/, ZrH/sub 1.684/, ZrH/sub 1.736/, ZrH/sub 1.815/, ZrH/sub 1.910/, and ZrH/sub 1.960/. These spanned both the cubic and tetragonal phases. The activation energy was found to be independent of hydrogen concentration in the cubic phase with E/sub a/ = 13.4 +- 0.4 kcal/mol and a preexponential factor given by A = (1/2)(2-x)(45 +- 10) x 10/sup 12/ Hz. In the tetragonal phase the activation energy of the bulk of the hydrogen increased modestly with concentration. In addition, it was discovered that a new very fast hydrogen channel was created by the tetragonality for approx.3% of the hydrogen. They jump with a preexponential factor that is about 2 orders of magnitude larger than that of the rest of the hydrogen. A comparison was also made between the Bloembergen-Purcell-Pound, the Barton-Sholl, and the Bustard theories for nuclear magnetic relaxation due to diffusion.

  14. NMR study of hydrogen diffusion in zirconium hydride

    NASA Astrophysics Data System (ADS)

    Korn, C.; Goren, S. D.

    1986-01-01

    The nuclear-magnetic-resonance method was used to study the diffusion of hydrogen in zirconium hydride by measuring the temperature dependence of T1 in a temperature range where the major relaxation mechanism was due to hydrogen diffusion. The samples investigated were ZrH1.588, ZrH1.629, ZrH1.684, ZrH1.736, ZrH1.815, ZrH1.910, and ZrH1.960. These spanned both the cubic and tetragonal phases. The activation energy was found to be independent of hydrogen concentration in the cubic phase with Ea=13.4+/-0.4 kcal/mol and a preexponential factor given by A=(1/2)(2-x)(45+/-10)×1012 Hz. In the tetragonal phase the activation energy of the bulk of the hydrogen increased modestly with concentration. In addition, it was discovered that a new very fast hydrogen channel was created by the tetragonality for ~3% of the hydrogen. They jump with a preexponential factor that is about 2 orders of magnitude larger than that of the rest of the hydrogen. A comparison was also made between the Bloembergen-Purcell-Pound, the Barton-Sholl, and the Bustard theories for nuclear magnetic relaxation due to diffusion.

  15. (31)P-MRS of healthy human brain: ATP synthesis, metabolite concentrations, pH, and T1 relaxation times.

    PubMed

    Ren, Jimin; Sherry, A Dean; Malloy, Craig R

    2015-11-01

    The conventional method for measuring brain ATP synthesis is (31)P saturation transfer (ST), a technique typically dependent on prolonged pre-saturation with γ-ATP. In this study, ATP synthesis rate in resting human brain is evaluated using EBIT (exchange kinetics by band inversion transfer), a technique based on slow recovery of γ-ATP magnetization in the absence of B1 field following co-inversion of PCr and ATP resonances with a short adiabatic pulse. The unidirectional rate constant for the Pi → γ-ATP reaction is 0.21 ± 0.04 s(-1) and the ATP synthesis rate is 9.9 ± 2.1 mmol min(-1)  kg(-1) in human brain (n = 12 subjects), consistent with the results by ST. Therefore, EBIT could be a useful alternative to ST in studying brain energy metabolism in normal physiology and under pathological conditions. In addition to ATP synthesis, all detectable (31)P signals are analyzed to determine the brain concentration of phosphorus metabolites, including UDPG at around 10 ppm, a previously reported resonance in liver tissues and now confirmed in human brain. Inversion recovery measurements indicate that UDPG, like its diphosphate analogue NAD, has apparent T1 shorter than that of monophosphates (Pi, PMEs, and PDEs) but longer than that of triphosphate ATP, highlighting the significance of the (31)P-(31)P dipolar mechanism in T1 relaxation of polyphosphates. Another interesting finding is the observation of approximately 40% shorter T1 for intracellular Pi relative to extracellular Pi, attributed to the modulation by the intracellular phosphoryl exchange reaction Pi ↔ γ-ATP. The sufficiently separated intra- and extracellular Pi signals also permit the distinction of pH between intra- and extracellular environments (pH 7.0 versus pH 7.4). In summary, quantitative (31)P MRS in combination with ATP synthesis, pH, and T1 relaxation measurements may offer a promising tool to detect biochemical alterations at early stages of brain dysfunctions and diseases.

  16. Interaction of ferulic acid derivatives with human erythrocytes monitored by pulse field gradient NMR diffusion and NMR relaxation studies.

    PubMed

    Anselmi, Cecilia; Bernardi, Francesca; Centini, Marisanna; Gaggelli, Elena; Gaggelli, Nicola; Valensin, Daniela; Valensin, Gianni

    2005-04-01

    Ferulic acid (Fer), a natural anti-oxidant and chemo-protector, is able to suppress experimental carcinogenesis in the forestomach, lungs, skin, tongue and colon. Several Fer derivatives have been suggested as promising candidates for cancer prevention, being the biological activity related also to the capacity of partitioning between aqueous and lipid phases. In the present work, pulsed field gradient (PFG) NMR diffusion measurement and NMR relaxation rates have been adopted for investigating the interaction of three Fer derivatives (Fer-C11, Fer-C12 and Fer-C13) with human erythrocytes. Binding to the erythrocyte membrane has been shown for all derivatives, which displayed a similar interaction mode such that the aromatic moiety and the terminal part of the alkyl chain were the most affected. Quantitative analysis of the diffusion coefficients was used to show that Fer-C12 and Fer-C13 display higher affinity for the cell membrane when compared with Fer-C11. These findings agree with the higher anti-oxidant activity of the two derivatives.

  17. Proton NMR study of the state of water in fibrin gels, plasma, and blood clots

    SciTech Connect

    Blinc, A.; Lahajnar, G.; Blinc, R.; Zidansek, A.; Sepe, A. )

    1990-04-01

    A proton NMR relaxation and pulsed field gradient self-diffusion study of water in fibrin gels, plasma, and blood clots has been performed with special emphasis on the effect of the sol-gel and shrinkage transitions. Deuteron NMR in fibrin gels was also studied to supplement the proton data. It is shown that a measurement of the water proton or deuteron T1/T2 ratio allows for a determination of the bound water fraction in all these systems. The change in the T1/T2 ratio at the shrinkage transition further allows for a determination of the surface fractal dimension of the gel if the change in the volume of the gel is known. The self-diffusion coefficient of water in these systems, which determines the transport properties of the gel, is found to be proportional to the free water fraction in both the nonshrunken and shrunken state.

  18. Conformational equilibrium of phenylacetic acid and its halogenated analogues through theoretical studies, NMR and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Levandowski, Mariana N.; Rozada, Thiago C.; Melo, Ulisses Z.; Basso, Ernani A.; Fiorin, Barbara C.

    2017-03-01

    This paper presents a study on the conformational preferences of phenylacetic acid (PA) and its halogenated analogues (FPA, CPA, BPA). To clarify the effects that rule these molecules' behaviour, theoretical calculations were used, for both the isolated phase and solution, combined with nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy. Most conformations of phenylacetic acid and its halogenated derivatives are stabilized through the hyperconjugative effect, which rules the conformational preference. NMR analyses showed that even with the variation in medium polarity, there was no significant change in the conformation population. Infrared spectroscopy showed similar results for all compounds under study. In most spectra, two bands were found through the carbonyl deconvolution, which is in accordance with the theoretical data. It was possible to prove that variation in the nature of the substituent in the ortho position had no significant influence on the conformational equilibrium.

  19. NMR and mass spectrometry of phosphorus in wetlands

    USGS Publications Warehouse

    El-Rifai, H.; Heerboth, M.; Gedris, T.E.; Newman, S.; Orem, W.; Cooper, W.T.

    2008-01-01

    There is at present little information on the long-term stability of phosphorus sequestered in wetlands. Phosphorus sequestered during high loading periods may be relatively unstable and easily remobilized following changes in nutrient status or hydrological regime, but the chemical forms of sequestered phosphorus that do remobilize are largely unknown at this time. A lack of suitable analytical techniques has contributed to this dearth of knowledge regarding the stability of soil organic phosphorus. We analysed phosphorus in soils from the 'head' of Rescue Strand tree island and an adjacent marsh in the Florida Everglades by 31P nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Tree islands are important areas of biodiversity within the Everglades and offer a unique opportunity to study phosphorus sequestration because they are exposed to large phosphorus loads and appear to be natural nutrient sinks. The 31P NMR profiling of extracts from surface and sediment samples in the tree island indicates that phosphorus input to Rescue Strand tree island soils is mostly in the form of inorganic ortho-phosphate and is either refractory when deposited or rapidly recycled by the native vegetation into a stable phosphorus pool largely resistant to re-utilization by plants or microbes. Mass spectrometry revealed the presence of inositol hexakisphosphate, a common organic monophosphate ester not previously observed in Everglades' soils. ?? 2008 The Authors.

  20. Theoretical and experimental IR, Raman and NMR spectra in studying the electronic structure of 2-nitrobenzoates

    NASA Astrophysics Data System (ADS)

    Świsłocka, R.; Samsonowicz, M.; Regulska, E.; Lewandowski, W.

    2007-05-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the 2-nitrobenzoic acid (2-NBA) was studied. Optimized geometrical structures of studied compounds were calculated by HF, B3PW91, B3LYP methods using 6-311++G ∗∗ basis set. The theoretical IR and NMR spectra were obtained. The vibrational (FT-IR, FT-Raman) and NMR ( 1H and 13C) spectra for 2-nitrobenzoic acid salts of alkali metals were also recorded. The assignment of vibrational spectra was done. Characteristic shifts of band wavenumbers and changes in band intensities along the metal series were observed. Good correlation between the wavenumbers of the vibrational bands in the IR and Raman spectra for 2-nitrobenzoates (2-NB) and ionic potential, electronegativity, atomic mass and affinity of metals were found. The chemical shifts of protons and carbons ( 1H, 13C NMR) in the series of studied alkali metal 2-nitrobenzoates were observed too. The calculated parameters were compared to experimental characteristic of studied compounds.

  1. Protein-Carbohydrate Interactions Studied by NMR: From Molecular Recognition to Drug Design

    PubMed Central

    Fernández-Alonso, María del Carmen; Díaz, Dolores; Berbis, Manuel Álvaro; Marcelo, Filipa; Cañada, Javier; Jiménez-Barbero, Jesús

    2012-01-01

    Diseases that result from infection are, in general, a consequence of specific interactions between a pathogenic organism and the cells. The study of host-pathogen interactions has provided insights for the design of drugs with therapeutic properties. One area that has proved to be promising for such studies is the constituted by carbohydrates which participate in biological processes of paramount importance. On the one hand, carbohydrates have shown to be information carriers with similar, if not higher, importance than traditionally considered carriers as amino acids and nucleic acids. On the other hand, the knowledge on molecular recognition of sugars by lectins and other carbohydrate-binding proteins has been employed for the development of new biomedical strategies. Biophysical techniques such as X-Ray crystallography and NMR spectroscopy lead currently the investigation on this field. In this review, a description of traditional and novel NMR methodologies employed in the study of sugar-protein interactions is briefly presented in combination with a palette of NMR-based studies related to biologically and/or pharmaceutically relevant applications. PMID:23305367

  2. Low-temperature NMR studies of Zn tautomerism and hindered rotations in solid zincocene derivatives.

    PubMed

    Lopez del Amo, Juan Miguel; Buntkowsky, Gerd; Limbach, Hans-Heinrich; Resa, Irene; Fernandez, Rafael; Carmona, Ernesto

    2008-04-24

    Using a combination of NMR methods we have detected and studied fluxional motions in the slip-sandwich structure of solid decamethylzincocene (I, [(eta5-C5Me5)Zn(eta1-C5Me5)]). For comparison, we have also studied the solid iminoacyl derivative [(eta5-C5Me5)Zn(eta1-C(NXyl)C5Me5)] (II). The variable temperature 13C CPMAS NMR spectra of I indicate fast rotations of both Cp* rings in the molecule down to 156 K as well as the presence of an order-disorder phase transition around 210 K. The disorder is shown to be dynamic arising from a fast combined Zn tautomerism and eta1/eta5 reorganization of the Cp* rings between two degenerate states A and B related by a molecular inversion. In the ordered phase, the degeneracy of A and B is lifted; that is, the two rings X and Y are inequivalent, where X exhibits a larger fraction of time in the eta5 state than Y. However, the interconversion is still fast and characterized by a reaction enthalpy of DeltaH = 2.4 kJ mol-1 and a reaction entropy of DeltaS = 4.9 J K-1 mol-1. In order to obtain quantitative kinetic information, variable temperature 2H NMR experiments were performed on static samples of I-d6 and II-d6 between 300 and 100 K, where in each ring one CH3 is replaced by one CD3 group. For II-d6, the 2H NMR line shapes indicate fast CD3 group rotations and a fast "eta5 rotation", corresponding to 72 degrees rotational jumps of the eta5 coordinated Cp* ring. The latter motion becomes slow around 130 K. By line shape analysis, an activation energy of the eta5 rotation of about 21 kJ mol-1 was obtained. 2H NMR line shapes analysis of I-d6 indicates fast CD3 group rotations at all temperatures. Moreover, between 100 and 150 K, a transition from the slow to the fast exchange regime is observed for the 5-fold rotational jumps of both Cp* rings, exhibiting an activation energy of 18 kJ mol-1. This value was corroborated by 2H NMR relaxometry from which additionally the activation energies 6.3 kJ mol-1 and 11.2 kJ mol-1 for the CD3

  3. INSTRUMENTS AND METHODS OF INVESTIGATION: NMR potentials for studying physical processes in fossil coals

    NASA Astrophysics Data System (ADS)

    Alekseev, Anatolii D.; Ul'yanova, Ekaterina V.; Vasilenko, Tat'yana A.

    2005-11-01

    High-resolution, pulsed, and wide-line NMR studies of fossil coals are reviewed. Coal substance conversion due to outbursts is discussed. Results on water and methane interactions with coal substance, which provide insight into the dynamic characteristics of boundary water, the location of methane in coal structure, and water and methane's hazard implications for coal beds (gas- or geodynamic phenomena) are presented; these are shown to have potential for predicting and preventing life threatening situations.

  4. NMR study of a membrane protein in detergent-free aqueous solution.

    PubMed

    Zoonens, Manuela; Catoire, Laurent J; Giusti, Fabrice; Popot, Jean-Luc

    2005-06-21

    One of the major obstacles to membrane protein (MP) structural studies is the destabilizing effect of detergents. Amphipols (APols) are short amphipathic polymers that can substitute for detergents to keep MPs water-soluble under mild conditions. In the present work, we have explored the feasibility of studying the structure of APol-complexed MPs by NMR. As a test MP, we chose the 171-residue transmembrane domain of outer MP A from Escherichia coli (tOmpA), whose x-ray and NMR structures in detergent are known. 2H,15N-labeled tOmpA was produced as inclusion bodies, refolded in detergent solution, trapped with APol A8-35, and the detergent removed by adsorption onto polystyrene beads. The resolution of transverse relaxation-optimized spectroscopy-heteronuclear single-quantum correlation spectra of tOmpA/A8-35 complexes was found to be close to that of the best spectra obtained in detergent solutions. The dispersion of chemical shifts indicated that the protein had regained its native fold and retained it during the exchange of surfactants. MP-APol interactions were mapped by substituting hydrogenated for deuterated A8-35. The resulting dipolar broadening of amide proton linewidths was found to be limited to the beta-barrel region of tOmpA, indicating that A8-35 binds specifically to the hydrophobic transmembrane surface of the protein. The potential of this approach to MP studies by solution NMR is discussed.

  5. Review of NMR studies of nanoscale molecular magnets composed of geometrically frustrated antiferromagnetic triangles

    DOE PAGES

    Furukawa, Yuji

    2016-10-01

    This paper presents a comprehensive review of nuclear magnetic resonance (NMR) studies performed on three nanoscale molecular magnets with different novel configurations of geometrically frustrated antiferromagnetic (AFM) triangles: (1) the isolated single AFM triangle K6[V15As6O42(H2O)]·8H2O (in short V15), (2) the spin ball [Mo72Fe30O252(Mo2O7(H2O))2(Mo2O8H2(H2O)) (CH3COO)12(H2O)91]·150H2O (in short Fe30 spin ball), and (3) the twisted triangular spin tube [(CuCl2tachH)3Cl]Cl2 (in short Cu3 spin tube). In V15t, from 51V NMR spectra, the local spin configurations were directly determined in both the nonfrustrated total spin ST = 3/2 state at higher magnetic fields (H ge; 2.7 T) and the two nearly degenerate ST =more » 1/2 ground states at lower magnetic fields (H ≤ 2.7 T). The dynamical magnetic properties of V15 were investigated by proton spin-lattice relaxation rate (1/T1) measurements. In the ST = 3/2 state, 1/T1 shows thermally activated behaviour as a function of temperature. On the other hand, the temperature independent behaviour of 1/T1 at very low temperatures is observed in the frustrated ST = 1/2 ground state. Possible origins for the peculiar behaviour of 1/T1 will be discussed in terms of magnetic fluctuations due to spin frustrations. In Fe30, static and dynamical properties of Fe3+ (s = 5/2) have been investigated by proton NMR spectra and 1/T1 measurements. From the temperature dependence of 1/T1, the fluctuation frequency of the Fe3+ spins is found to decrease with decreasing temperature, indicating spin freezing at low temperatures. The spin freezing is also evidenced by the observation of a sudden broadening of 1H NMR spectra below 0.6 K. Finally, 1H NMR data in Cu3 will be described. An observation of magnetic broadening of 1H NMR spectra at low temperatures below 1 K directly revealed a gapless ground state. The 1/T1 measurements revealed a usual slow spin dynamics in the Cu3 spin tube.« less

  6. /sup 13/C NMR studies of the molecular flexibility of antidepressants

    SciTech Connect

    Munro, S.L.; Andrews, P.R.; Craik, D.J.; Gale, D.J.

    1986-02-01

    The solution dynamics of a series of clinically potent antidepressants have been investigated by measuring /sup 13/C NMR relaxation parameters. Correlation times and internal motional rates were calculated from spin-lattice relaxation times and nuclear Overhauser effects for the protonated carbons in mianserin, imipramine-like antidepressants, and amitriptyline-like antidepressants. These data were interpreted in terms of overall molecular tumbling, internal rotations, and inherent flexibility of these structures. Of particular interest was the conformational variability of the tricyclic nucleus of the tricyclic antidepressants, where the data indicated a fivefold difference in mobility of the dimethylene bridge of imipramine-like antidepressants relative to amitriptyline-like compounds. The implications of such a difference in internal motions is discussed in relation to previous NMR studies and to the reported differences in pharmacological activity of these antidepressants.

  7. NMR and Mössbauer Study of Al2O3-Eu2O3

    NASA Astrophysics Data System (ADS)

    Nava, N.; Salas, P.; Llanos, M. E.; Pérez-Pastenes, H.; Viveros, T.

    2005-02-01

    Alumina-europia mixed oxides with 5 and 10 wt.% Eu2O3 were studied by Mössbauer spectroscopy, 27Al MAS-NMR and X-ray diffraction (XRD). The samples were prepared by the sol-gel technique. The XRD patterns for the calcined samples show a broad peak around 2 θ = 30° which is assigned to the Eu2O3; after treatment with hydrogen at 1073 K no reduction to Eu+2 or Eu0 was observed. The NMR spectra show three peaks, which are assigned to the octahedral, pentahedral and tetrahedral aluminum sites; the intensity of each peak depends on the concentration of europium ions. The Mössbauer spectra of the calcined samples show a single peak near zero velocity which is attributed to the Eu+3; after H2 treatment at 1073 K similar spectra were obtained, suggesting Eu+3 is not reducibly at this temperature.

  8. Chiral Magnetism in an Itinerant Helical Magnet, MnSi - An Extended 29Si NMR Study

    NASA Astrophysics Data System (ADS)

    Yasuoka, Hiroshi; Motoya, Kiyoichiro; Majumder, Mayukh; Witt, Sebastian; Krellner, Cornelius; Baenitz, Michael

    2016-07-01

    The microscopic magnetism in the helical, conical and ferromagnetically polarized phases in an itinerant helical magnet, MnSi, has been studied by an extended 29Si NMR at zero field and under external magnetic fields. The temperature dependence of the staggered moment, MQ(T), determined by the 29Si NMR frequency, ν(T), and the nuclear relaxation rate, 1/T1(T), at zero field is in general accord with the SCR theory for weak itinerant ferromagnetic metals and its extension to helical magnets. The external field dependence of resonance frequency, ν(H), follows a vector sum of the contributions from the atomic hyperfine and macroscopic fields with a field induced moment characteristic to itinerant magnets. A discontinuous jump of the resonance frequency at the critical field, Hc, between the conical and the polarized phases has also been found, which suggests a first order like change of the electronic states at Hc.

  9. A comprehensive NMR structural study of Titan aerosol analogs: Implications for Titan's atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    He, Chao; Smith, Mark A.

    2014-11-01

    Titan has a thick atmosphere composed primarily of nitrogen and methane. Complex organic chemistry induced by solar ultraviolet radiation and energetic particles, takes place in Titan's upper atmosphere, producing an optically thick reddish brown carbon based haze encircling this moon. The chemistry in Titan's atmosphere and its resulting chemical structures are still not fully understood in spite of a great many efforts being made. In our previous work, we have investigated the structure of the 13C and 15N labeled, simulated Titan haze aerosols (tholin) by NMR and identified several dominant small molecules in the tholin. Here we report our expanded structural investigation of the bulk of the tholin by more comprehensive NMR study. The NMR results show that the tholin materials are dominated by heavily nitrogenated compounds, in which the macromolecular structures are highly branched polymeric or oligomeric compounds terminated in methyl, amine, and nitrile groups. The structural characteristic suggest that the tholin materials are formed via different copolymerization or incorporation mechanisms of small precursors, such as HCN, CH2dbnd NH, NH3 and C2H2. This study helps to understand the formation process of nitrogenated organic aerosols in Titan's atmosphere and their prebiotic implications.

  10. Cu(II)-Based Paramagnetic Probe to Study RNA-Protein Interactions by NMR.

    PubMed

    Seebald, Leah M; DeMott, Christopher M; Ranganathan, Srivathsan; Asare Okai, Papa Nii; Glazunova, Anastasia; Chen, Alan; Shekhtman, Alexander; Royzen, Maksim

    2017-04-03

    Paramagnetic NMR techniques allow for studying three-dimensional structures of RNA-protein complexes. In particular, paramagnetic relaxation enhancement (PRE) data can provide valuable information about long-range distances between different structural components. For PRE NMR experiments, oligonucleotides are typically spin-labeled using nitroxide reagents. The current work describes an alternative approach involving a Cu(II) cyclen-based probe that can be covalently attached to an RNA strand in the vicinity of the protein's binding site using "click" chemistry. The approach has been applied to study binding of HIV-1 nucleocapsid protein 7 (NCp7) to a model RNA pentanucleotide, 5'-ACGCU-3'. Coordination of the paramagnetic metal to glutamic acid residue of NCp7 reduced flexibility of the probe, thus simplifying interpretation of the PRE data. NMR experiments showed attenuation of signal intensities from protein residues localized in proximity to the paramagnetic probe as the result of RNA-protein interactions. The extent of the attenuation was related to the probe's proximity allowing us to construct the protein's contact surface map.

  11. NMR study on small proteins from Helicobacter pylori for antibiotic target discovery: a review.

    PubMed

    Kang, Su-Jin; Kim, Do-Hee; Lee, Bong-Jin

    2013-10-30

    Due to the widespread and increasing appearance of antibiotic resistance, a new strategy is needed for developing novel antibiotics. Especially, there are no specific antibiotics for Helicobacter pylori (H. pylori). H. pylori are bacteria that live in the stomach and are related to many serious gastric problems such as peptic ulcers, chronic gastritis, mucosa-associated lymphoid tissue lymphoma, and gastric cancer. Because of its importance as a human pathogen, it's worth studying the structure and function of the proteins from H. pylori. After the sequencing of the H. pylori strain 26695 in 1997, more than 1,600 genes were identified from H. pylori. Until now, the structures of 334 proteins from H. pylori have been determined. Among them, 309 structures were determined by X-ray crystallography and 25 structures by Nuclear Magnetic Resonance (NMR), respectively. Overall, the structures of large proteins were determined by X-ray crystallography and those of small proteins by NMR. In our lab, we have studied the structural and functional characteristics of small proteins from H. pylori. In this review, 25 NMR structures of H. pylori proteins will be introduced and their structure-function relationships will be discussed.

  12. Phosphorus-31 NMR spectra of ethidium, quinacrine, and daunomycin complexes with poly(adenylic acid)ter dot poly(uridylic acid) RNA duplex and calf thymus DNA

    SciTech Connect

    Gorenstein, D.G.; Lai, K. )

    1989-04-04

    {sup 31}P NMR provides a convenient monitor of the phosphate ester backbone conformational changes upon binding of the intercalating drugs ethidium, quinacrine, and daunomycin to sonicated poly(A){center dot}poly(U) and calf thymus DNA. {sup 31}P chemical shifts can also be used to assess differences in the duplex unwinding angles in the presence of the drug. Thus a new {sup 31}P signal, 1.8-2.2 ppm downfield from the double-stranded helix signals, is observed in the ethidium ion-poly(A){center dot}poly(U) complex. This signal arises from phosphates which are in perturbed environments due to intercalation of the drug. This is in keeping with the hypothesis that the P-O ester torsional angle in phosphates linking the intercalated base pairs is more trans-like. Similar though smaller deshielding of the {sup 31}P signals is observed in sonicated poly(A){center dot}poly(U)-quinacrine complexes as well as in the daunomycin complexes. The effect of added ethidium ion, quinacrine, and daunomycin on the {sup 31}P spectra of sonicated calf thymus DNA is consistent with Wilson and Jones' (1982) earlier study. In these drug-DNA complexes the drug produces a gradual downfield shift in the DNA {sup 31}P signal without the appearance of a separate downfield peak. These differences are attributed to differences in the rate of chemical exchange of the drug between free and bound duplex states. The previous correlation of {sup 31}P chemical shift with drug duplex unwinding angle is confirmed for both the RNA and DNA duplexes.

  13. A 29Si MAS-NMR study of transition metal site occupancy in forsterite

    NASA Astrophysics Data System (ADS)

    Mccarty, R. J.; Palke, A.; Stebbins, J. F.; Hartman, S.

    2012-12-01

    In this study, we address the problem of transition metal site occupancy in Mg-rich olivine using solid-state magic-angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy. Transition metal substitution in olivine can occur in either of the two crystallographically unique octahedral sites: the smaller, more symmetric M1 site or the larger, more distorted M2 site. Site occupancy of the transition metal is expected to correlate with ionic radius and d-orbital structure. In NMR spectroscopy the presence of paramagnetic ions, such as transition metal ions, can produce accessory peaks referred to as "contact shifts," due to the interaction between unpaired electrons on the paramagnetic ion locally associated with the resonating nucleus. The position and intensity of the contact shifts are dependent on the geometrical association such as bond distances and bond angles between the paramagnetic ion and the resonating nucleus. 29Si MAS-NMR spectra collected on synthetic forsterite (Mg2SiO4) doped with minor amounts (0.2-5%) of individual, divalent, paramagnetic, transition metal cations (Mn, Co, Ni, or Cu) substituting for Mg in the octahedral sites, reveals multiple contact shifts. An interpretation of the number of such contact shifts and their relative intensities correlated with structural information of possible 29Si-M1 and 29Si-M2 configurations, potentially allows for the assignment of specific transition metals to individual M1 or M2 sites. An analysis of the MAS-NMR data will potentially bring a new level of confidence to transition metal site occupancy in forsterite.

  14. NMR Studies of Thermo-responsive Behavior of an Amphiphilic Poly(asparagine) Derivative in Water.

    PubMed

    Watanabe, Eiji; Boutis, Gregory S; Sato, Hiroko; Sekine, Sokei; Asakura, Tetsuo

    2014-01-14

    The thermo-responsive behavior of a unique biocompatible polymer, poly(N-substituted α/β-asparagine) derivative (PAD), has been studied with several NMR methods. The (1)H and (13)C solution NMR measurements of the PAD in DMSO-d6 were used to investigate the isolated polymer and perform spectral assignments. By systematic addition of D2O we have tracked structural changes due to aggregation and observed contraction of hydrophilic side chains. Solution and cross polarization / magic angle spinning (CP/MAS) (13)C NMR approaches were implemented to investigate the aggregates of the PAD aqueous solution during the liquid to gel transition as the temperature was increased. At temperatures near 20 °C, all of the peaks from the PAD were observed in the (13)C CP/MAS and (13)C solution NMR spectra, indicating the presence of polymer chain nodes. Increasing the temperature to 40 °C resulted in a partial disentanglement of the nodes due to thermal agitation and further heating resulted in little to no additional structural changes. Deuterium T1-T2 and T2-T2 two-dimensional relaxation spectroscopies using an inverse Laplace transform, were also implemented to monitor the water-PAD interaction during the phase transition. At temperatures near 20 °C the dynamical characteristics of water were manifested into one peak in the deuterium T1-T2 map. Increasing the temperature to 40 °C resulted in several distinguishable reservoirs of water with different dynamical characteristics. The observation of several reservoirs of water at the temperature of gel formation at 40 °C is consistent with a physical picture of a gel involving a network of interconnected polymer chains trapping a fluid. Further increase in temperature to 70 °C resulted in two non-exchanging water reservoirs probed by deuterium T2-T2 measurements.

  15. Temperature and pressure based NMR studies of detergent micelle phase equilibria.

    PubMed

    Alvares, Rohan; Gupta, Shaan; Macdonald, Peter M; Prosser, R Scott

    2014-05-29

    Bulk thermodynamic and volumetric parameters (ΔGmic°, ΔHmic°, ΔSmic°, ΔCp,mic°, ΔVmic°, and Δκmic°) associated with the monomer–micelle equilibrium, were directly determined for a variety of common detergents [sodium n-dodecyl sulfate (SDS), n-dodecyl phosphocholine (DPC), n-dodecyl-β-d-maltoside (DDM), and 7-cyclohexyl-1-heptyl phosphocholine (CyF)] via 1H NMR spectroscopy. For each temperature and pressure point, the critical micelle concentration (cmc) was obtained from a single 1H NMR spectrum at a single intermediate concentration by referencing the observed chemical shift to those of pure monomer and pure micellar phases. This permitted rapid measurements of the cmc over a range of temperatures and pressures. In all cases, micelle formation was strongly entropically favored, while enthalpy changes were all positive, with the exception of SDS, which exhibited a modestly negative enthalpy of micellization. Heat capacity changes were also characteristically negative, while partial molar volume changes were uniformly positive, as expected for an aggregation process dictated by hydrophobic effects. Isothermal compressibility changes were found to be consistent with previous measurements using other techniques. Thermodynamic measurements were also related to spectroscopic studies of topology and micelle structure. For example, paramagnetic effects resulting from the addition of dioxygen provided microscopic topological details concerning the hydrophobicity gradient along the detergent chains within their respective micelles as detected by 1H NMR. In a second example, combined 13C and 1H NMR chemical shift changes arising from application of high pressure, or upon micellization, of CyF provided site-specific details regarding micelle topology. In this fashion, bulk thermodynamics could be related to microscopic topological details within the detergent micelle.

  16. Mn(II) binding to human serum albumin: a ¹H-NMR relaxometric study.

    PubMed

    Fanali, Gabriella; Cao, Yu; Ascenzi, Paolo; Fasano, Mauro

    2012-12-01

    Human serum albumin (HSA) displays several metal binding sites, participating to essential and toxic metal ions disposal and transport. The major Zn(II) binding site, called Site A, is located at the I/II domain interface, with residues His67, Asn99, His247, and Asp249 contributing with five donor atoms to the metal ion coordination. Additionally, one water molecule takes part of the octahedral coordination geometry. The occurrence of the metal-coordinated water molecule allows the investigation of the metal complex geometry by water (1)H-NMR relaxation, provided that the diamagnetic Zn(II) is replaced by the paramagnetic Mn(II). Here, the (1)H-NMR relaxometric study of Mn(II) binding to HSA is reported. Mn(II) binding to HSA is modulated by Zn(II), pH, and myristate through competitive inhibition and allosteric mechanisms. The body of results indicates that the primary binding site of Zn(II) corresponds to the secondary binding site of Mn(II), i.e. the multimetal binding site A. Excess Zn(II) completely displaces Mn(II) from its primary site suggesting that the primary Mn(II) site corresponds to the secondary Zn(II) site. This uncharacterized site is functionally-linked to FA1; moreover, metal ion binding is modulated by myristate and pH. Noteworthy, water (1)H-NMR relaxometry allowed a detailed analysis of thermodynamic properties of HSA-metal ion complexes.

  17. Structural Studies of Ethylene-1-Octene and Ethylene-Norbornene Random Copolymers by NMR and WAXD

    NASA Astrophysics Data System (ADS)

    Mowery, Daniel; Carrilero, Isabel; Alamo, Rufina

    2003-03-01

    The properties of two series of melt-quenched, random ethylene copolymers (comonomer content < 15 moldiscussed. Changes in the crystallite properties with increasing comonomer content, including crystallite thickness reduction from ^13C T1 NMR relaxation times and chain packing from the line widths of crystal NMR spectra, were found to be independent of comonomer type. Analyses of the non-crystalline regions revealed differences. Copolymers with norbornene showed a larger reduction in the peak position of the WAXD amorphous halo relative to copolymers with the same content of 1-octene. The NMR resonance of the amorphous CH2 backbone units was broader in the copolymers with norbornene. Both observations are due to significant conformational differences in the non-crystalline chains with different comonomer type. Interestingly, the overall decrease in ^13C T1 times of the amorphous CH2 backbone units with increasing comonomer content was the same for both copolymer systems. Hence, in the range of comonomer content studied, the rates of fast motions for ethylene segments in the backbone are independent of comonomer type.

  18. Molecular ordering of mixed surfactants in mesoporous silicas: A solid-state NMR study

    SciTech Connect

    Kobayashi, Takeshi; Mao, Kanmi; Wang, Shy-Guey; Lin, Victor S.-Y.; Pruski, Marek

    2011-02-17

    The use of mixed surfactants in the synthesis of mesoporous silica nanoparticles (MSNs) is of importance in the context of adjusting pore structures, sizes and morphologies. In the present study, the arrangement of molecules in micelles produced from a mixture of two surfactants, cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPB) was detailed by solid-state NMR spectroscopy. Proximities of methyl protons in the trimethylammonium headgroup of CTAB and protons in the pyridinium headgroup of CPB were observed under fast magic angle spinning (MAS) by {sup 1}H-{sup 1}H double quantum (DQ) MAS NMR and NOESY. This result suggested that CTAB and CPB co-exist in the pores without forming significant monocomponent domain structures. {sup 1}H-{sup 29}Si heteronuclear correlation (HETCOR) NMR showed that protons in the headgroups of CTAB are in closer proximity to the silica surface than those in the CPB headgroups. The structural information obtained in this investigation leads to better understanding of the mechanisms of self-assembly and their role in determining the structure and morphology of mesoporous materials.

  19. Nuclear Magnetic Resonance (NMR) as a tool for the study of the metabolism of Rickettsia slovaca.

    PubMed

    García-Álvarez, Lara; Busto, Jesús H; Peregrina, Jesús M; Santibáñez, Sonia; Portillo, Aránzazu; Avenoza, Alberto; Oteo, José A

    2015-01-01

    Rickettsial infections are caused by intracellular bacteria. They do not grow in standard culture media so there are limitations in routine practice to study their metabolism. Nuclear Magnetic Resonance (NMR) spectroscopy is used for identification of metabolites in biological samples. Vero cells infected with Rickettsia slovaca as well as uninfected cells were monitored by (1)H NMR showing the presence of ethanol and lactic acid. As no differences were observed, labeled compounds were added into cultures. When D-[1-13C]glucose was monitored by (13)C NMR no differences among infected and uninfected cells were observed in metabolic profiles. Glucose was transformed into ethanol in all cultures. Monitored experiments carried out with [2-13C]glycine showed differences between infected and uninfected cell cultures spectra. Glycine was partially transformed into serine, but the amount of the serine formed was larger in those infected. Moreover, L-[2-13C]leucine, L-[1-13C]isoleucine and L-[15N]tyrosine were evaluated. No differences among infected and uninfected cells were observed in the metabolic profiles when tyrosine and leucine were monitored. The amino acid L-[1-13C]isoleucine exhibited different metabolism in presence of the R. slovaca, showing a promising behavior as biomarker. In this work we focused on finding one or more compounds that could be metabolized specifically by R. slovaca and could be used as an indicator of its activity.

  20. A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies.

    PubMed

    Smith, Albert A; Corzilius, Björn; Bryant, Jeffrey A; DeRocher, Ronald; Woskov, Paul P; Temkin, Richard J; Griffin, Robert G

    2012-10-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz ((1)H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE(011) resonator acts as both an NMR coil and microwave resonator, and a double balanced ((1)H, (13)C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S=1/2 electron spins, 100 kHz on (1)H, and 50 kHz on (13)C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (≥3 T).

  1. Intrinsic Proton NMR Studies of Mg(OH)2 and Ca(OH)2

    NASA Astrophysics Data System (ADS)

    Itoh, Yutaka; Isobe, Masahiko

    2016-09-01

    We studied the short proton free induction decay signals and the broad 1H NMR spectra of Mg(OH)2 and Ca(OH)2 powders at 77-355 K and 42 MHz using pulsed NMR techniques. Using a Gaussian-type back extrapolation procedure for the obscured data of the proton free induction decay signals, we obtained more precise values of the second moments of the Fourier-transformed broad NMR spectra than those in a previous report [Y. Itoh and M. Isobe, http://doi.org/10.7566/JPSJ.84.113601, J. Phys. Soc. Jpn. 84, 113601 (2015)] and compared with the theoretical second moments. The decrease in the second moment could not account for the large decrease in the magnitude of the intrinsic proton spin-lattice relaxation rate 1/T1 from Mg(OH)2 to Ca(OH)2. The analysis of 1/T1 ∝ exp(-Eg/kBT) with Eg ˜ 0.01 eV points to a local hopping mechanism, and that of 1/T1 ∝ Tn with n ˜ 0.5 points to an anharmonic rattling mechanism.

  2. A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies

    NASA Astrophysics Data System (ADS)

    Smith, Albert A.; Corzilius, Björn; Bryant, Jeffrey A.; DeRocher, Ronald; Woskov, Paul P.; Temkin, Richard J.; Griffin, Robert G.

    2012-10-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz (1H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE011 resonator acts as both an NMR coil and microwave resonator, and a double balanced (1H, 13C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = 1/2 electron spins, 100 kHz on 1H, and 50 kHz on 13C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (⩾3 T).

  3. Novel electrolytes for use in new and improved batteries: An NMR study

    NASA Astrophysics Data System (ADS)

    Berman, Marc B.

    This thesis focuses on the use of nuclear magnetic resonance (NMR) spectroscopy in order to study materials for use as electrolytes in batteries. The details of four projects are described in this thesis as well as a brief theoretical background of NMR. Structural and dynamics properties were determined using several NMR techniques such as static, MAS, PFG diffusion, and relaxation to understand microscopic and macroscopic properties of the materials described within. Nuclei investigate were 1H, 2H, 7Li, 13C, 19F, 23Na, and 27Al. The first project focuses on an exciting new material to be used as a solid electrolyte membrane. T. The second project focuses on the dynamics of ionic liquid-solvent mixtures and their comparison to molecular dynamics computer simulations. The third project involves a solvent-free film containing NaTFSI salt mixed in to PEO for use in sodium-ion batteries. This final project focuses on a composite electrolyte consisting of a ceramic and solid: LiI:PEO:LiAlO2.

  4. Density functional theory study of (13)C NMR chemical shift of chlorinated compounds.

    PubMed

    Li, Songqing; Zhou, Wenfeng; Gao, Haixiang; Zhou, Zhiqiang

    2012-02-01

    The use of the standard density functional theory (DFT) leads to an overestimation of the paramagnetic contribution and underestimation of the shielding constants, especially for chlorinated carbon nuclei. For that reason, the predictions of chlorinated compounds often yield too high chemical shift values. In this study, the WC04 functional is shown to be capable of reducing the overestimation of the chemical shift of Cl-bonded carbons in standard DFT functionals and to show a good performance in the prediction of (13)C NMR chemical shifts of chlorinated organic compounds. The capability is attributed to the minimization of the contributions that intensively increase the chemical shift in the WC04. Extensive computations and analyses were performed to search for the optimal procedure for WC04. The B3LYP and mPW1PW91 standard functionals were also used to evaluate the performance. Through detailed comparisons between the basis set effects and the solvent effects on the results, the gas-phase GIAO/WC04/6-311+G(2d,p)//B3LYP/6-31+G(d,p) was found to be specifically suitable for the prediction of (13)C NMR chemical shifts of chlorides in both chlorinated and non-chlorinated carbons. Further tests with eight molecules in the probe set sufficiently confirmed that WC04 was undoubtedly effective for accurately predicting (13) C NMR chemical shifts of chlorinated organic compounds.

  5. Unilateral NMR, 13C CPMAS NMR spectroscopy and micro-analytical techniques for studying the materials and state of conservation of an ancient Egyptian wooden sarcophagus.

    PubMed

    Proietti, Noemi; Presciutti, Federica; Di Tullio, Valeria; Doherty, Brenda; Marinelli, Anna Maria; Provinciali, Barbara; Macchioni, Nicola; Capitani, Donatella; Miliani, Costanza

    2011-03-01

    A multi-technique approach was employed to study a decorated Egyptian wooden sarcophagus (XXV-XXVI dynasty, Third Intermediate Period), belonging to the Museo del Vicino Oriente of the Sapienza University of Rome. Portable non-invasive unilateral NMR was applied to evaluate the conservation state of the sarcophagus. Moreover, using unilateral NMR, a non-invasive analytical protocol was established to detect the presence of organic substances on the surface and/or embedded in the wooden matrix. This protocol allowed for an educated sampling campaign aimed at further investigating the state of degradation of the wood and the presence of organic substances by (13)C cross polarization magic angle spinning (CPMAS) NMR spectroscopy. The composition of the painted layer was analysed by optical microscopy (OM), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Raman and surface enhanced (resonance) Raman spectroscopy (SERS/SERRS), infrared and GC-MS techniques, evidencing original components such as clay minerals, Egyptian green, indigo, natural gums, and also highlighting restoration pigments and alteration compounds. The identification of the wood, of great value for the reconstruction of the history of the artwork, was achieved by means of optical microscopy.

  6. The structure of phosphate glass biomaterials from neutron diffraction and (31)P nuclear magnetic resonance data.

    PubMed

    Pickup, D M; Ahmed, I; Guerry, P; Knowles, J C; Smith, M E; Newport, R J

    2007-10-17

    Neutron diffraction and (31)P nuclear magnetic resonance spectroscopy were used to probe the structure of phosphate glass biomaterials of general composition (CaO)0.5-x(Na2O)x(P2O5)0.5 (x = 0, 0.1 and 0.5). The results suggest that all three glasses have structures based on chains of Q(2) phosphate groups. Clear structural differences are observed between the glasses containing Na2O and CaO. The P-O bonds to bridging and non-bridging oxygens are less well resolved in the neutron data from the samples containing CaO, suggesting a change in the nature of the bonding as the field strength of the cation increases [Formula: see text]. In the (CaO)0.5(P2O5)0.5 glass most of the Ca(2+) ions are present in isolated CaOx polyhedra whereas in the (Na2O)0.5(P2O5)0.5 glass the NaOx polyhedra share edges leading to a Na-Na correlation. The results of the structural study are related to the properties of the (CaO)0.4(Na2O)0.1(P2O5)0.5 biomaterial.

  7. Dynamics of Reassembled Thioredoxin Studied by Magic Angle Spinning NMR: Snapshots from Different Timescales

    PubMed Central

    Yang, Jun; Tasayco, Maria Luisa; Polenova, Tatyana

    2014-01-01

    Solid-state NMR spectroscopy can be used to probe internal protein dynamics in the absence of the overall molecular tumbling. In this study, we report 15N backbone dynamics in differentially enriched 1-73(U-13C, 15N)/74-108(U-15N) reassembled thioredoxin on multiple timescales using a series of 2D and 3D MAS NMR experiments probing the backbone amide 15N longitudinal relaxation, 1H-15N dipolar order parameters, 15N chemical shift anisotropy (CSA), and signal intensities in the temperature-dependent and 1H T2′ -filtered NCA experiments. The spin-lattice relaxation rates R1(R1 = 1/T1) were observed in the range from 0.012 to 0.64 s-1 indicating large site-to-site variations in dynamics on pico- to nanosecond time scales. The 1H-15N dipolar order parameters, , and 15N CSA anisotropies, δσ reveal the backbone mobilities in reassembled thioredoxin, as reflected in the average = 0.89 ± 0.06 and δσ = 92.3 ± 5.2 ppm, respectively. From the aggregate of experimental data from different dynamics methods, some degree of correlation between the motions on the different time scales has been suggested. Analysis of the dynamics parameters derived from these solid-state NMR experiments indicates higher mobilities for the residues constituting irregular secondary structure elements than for those located in the α-helices and β-sheets, with no apparent systematic differences in dynamics between the α-helical and β-sheet residues. Remarkably, the dipolar order parameters derived from the solid-state NMR measurements and the corresponding solution NMR generalized order parameters display similar qualitative trends as a function of the residue number. The comparison of the solid-state dynamics parameters to the crystallographic B-factors has identified the contribution of static disorder to the B-factors. The combination of longitudinal relaxation, dipolar order parameter, and CSA line shape analyses employed in this study provides snapshots of dynamics and a new

  8. Cryoprotection of Lipid Membranes for High-Resolution Solid-State NMR Studies of Membrane Peptides and Proteins at Low Temperature

    PubMed Central

    Lee, Myungwoon; Hong, Mei

    2014-01-01

    Solid-state NMR spectra of membrane proteins often show significant line broadening at cryogenic temperatures. Here we investigate the effects of several cryoprotectants to preserve the spectral resolution of lipid membranes and membrane peptides at temperatures down to ~200 K. Trehalose, glycerol, dimethylsulfoxide (DMSO), dimethylformamide (DMF), and polyethylene glycol (PEG), were chosen. These compounds are commonly used in protein crystallography and cryobiology. 13C and 1H MAS spectra of several types of lipid membranes show that DMSO provides the best resolution enhancement over unprotected membranes and also best retards ice formation at low temperature. DMF and PEG-400 show slightly weaker cryoprotection, while glycerol and trehalose neither prevent membrane line broadening nor prevent ice formation under the conditions of our study. Neutral saturated-chain phospholipids are the most amenable to cryoprotection, whereas negatively charged and unsaturated lipids attenuate cryoprotection. 13C-1H dipolar couplings and 31P chemical shift anisotropies indicate that high spectral resolution at low temperature is correlated with stronger immobilization of the lipids at high temperature, indicating that line narrowing results from reduction of the conformational space sampled by the lipid molecules at high temperature. DMSO selectively narrowed the linewidths of the most disordered residues in the influenza M2 transmembrane peptide, while residues that exhibit narrow linewidths in the unprotected membrane are less impacted. A relatively rigid β-hairpin antimicrobial peptide, PG-1, showed a linewidth increase of ~0.5 ppm over a ~70 K temperature drop both with and without cryoprotection. Finally, a short-chain saturated lipid, DLPE, exhibits excellent linewidths, suggesting that it may be a good medium for membrane protein structure determination. The three best cryoprotectants found in this work – DMSO, PEG, and DMF - should be useful for low

  9. Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature.

    PubMed

    Lee, Myungwoon; Hong, Mei

    2014-08-01

    Solid-state NMR spectra of membrane proteins often show significant line broadening at cryogenic temperatures. Here we investigate the effects of several cryoprotectants to preserve the spectral resolution of lipid membranes and membrane peptides at temperatures down to ~200 K. Trehalose, glycerol, dimethylsulfoxide (DMSO), dimethylformamide (DMF), and polyethylene glycol (PEG), were chosen. These compounds are commonly used in protein crystallography and cryobiology. 13C and 1H magic-angle-spinning spectra of several types of lipid membranes show that DMSO provides the best resolution enhancement over unprotected membranes and also best retards ice formation at low temperature. DMF and PEG-400 show slightly weaker cryoprotection, while glycerol and trehalose neither prevent membrane line broadening nor prevent ice formation under the conditions of our study. Neutral saturated-chain phospholipids are the most amenable to cryoprotection, whereas negatively charged and unsaturated lipids attenuate cryoprotection. 13C-1H dipolar couplings and 31P chemical shift anisotropies indicate that high spectral resolution at low temperature is correlated with stronger immobilization of the lipids at high temperature, indicating that line narrowing results from reduction of the conformational space sampled by the lipid molecules at high temperature. DMSO selectively narrowed the linewidths of the most disordered residues in the influenza M2 transmembrane peptide, while residues that exhibit narrow linewidths in the unprotected membrane are less impacted. A relatively rigid β-hairpin antimicrobial peptide, PG-1, showed a linewidth increase of ~0.5 ppm over a ~70 K temperature drop both with and without cryoprotection. Finally, a short-chain saturated lipid, DLPE, exhibits excellent linewidths, suggesting that it may be a good medium for membrane protein structure determination. The three best cryoprotectants found in this work-DMSO, PEG, and DMF-should be useful for low

  10. Phenol-formaldehyde resins: A quantitative NMR study of molecular structure and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Ottenbourgs, Benjamin Tony

    Phenol-formaldehyde (PF) resins have been the subject of this work. 13C liquid-state and solid-state NMR has been used to investigate the molecular structure of mainly novolak and partially of resole resins. 1H wideline in combination with 13C solid-state NMR relaxometry has been applied to study the curing and the molecular dynamics of phenolic resins. It was the intention to provide an insight in the relationship between resin composition, resin structure and subsequent resin properties (by means of the molecular dynamics). An improved 13C liquid-state NMR quantification technique of novolaks in THF-CDCl3 solutions is demonstrated. Full quantitative 13C liquid-state spectra of phenol-formaldehyde resins with high signal- to-noise ratio were obtained by using chromium acetylacetonate under optimized spectral conditions within a few hours spectrometer time. Attached proton test (APT) spectra enabled proper peak assignments in the region with significant overlap. For several novolaks, prepared under different catalytic conditions, the degree of polymerization, degree of branching, number average molecular weight, isomeric distribution, and the number of unreacted ortho and para phenol ring positions was determined with a reduced margin of error, by analyzing and integrating the 13C spectra. The power of 13C solid-state NMR in the analysis of cured PF resins is shown. Particular importance was ascribed to the question of the quantifiability of the experiments when it was desired to measure the degree of conversion by means of a 13C CP/MAS contact time study. The network structure present, and thus also the mechanical properties, is critically dependent upon the final degree of conversion obtained after curing. The degree of conversion, which depended on the cure conditions (cure temperature, cure pressure and cure time), was limited by vitrification as was demonstrated by DSC experiments. Changes in the spin-lattice relaxation time T 1H were observed, providing

  11. a Study of Molecular Dynamics in Water-Cellulose Systems Using NMR

    NASA Astrophysics Data System (ADS)

    Waana, Charles Musannyana

    This thesis presents the application of Nuclear Magnetic Resonance (NMR) to the study of the water dynamics in water-cellulose systems. Both H_2O and D_2O were used in polycrystalline Sigmacell 50 cellulose and in cellulose acetate films. Both the spectral lineshapes and various spin relaxation times were studied as functions of temperature and moisture content of the samples. ^1H and ^2 H NMR spectra of rm H_2O and rm D_2O absorbed in cellulose acetate films were observed while changing the angle between the plane of the film and the static magnetic field. ^1H-NMR spectra show dipolar splittings that vary depending on the angle. The splitting has a maximum when the surface of the film is perpendicular to the magnetic field. From the angular dependence of the dipolar splittings, it is deduced that the motionally averaged axis of the dipole moments is perpendicular to the film surface. ^2H NMR spectra show quadrupolar splittings which indicate that the motionally averaged axis of the electric quadrupole interaction is oriented perpendicular to the film. A number of NMR parameters were determined as a function of moisture content at 20^circ C for water adsorbed on Sigmacell 50 cellulose. The NMR parameters indicate that the cellulose swells as the water is added. Ninety-two percent of the cellulose is in crystalline domains and undergoes very little swelling indicating that it is largely inaccessible to water, whereas the remaining 8% is in paracrystalline or amorphous domains which are accessible to water and undergo considerable swelling. A three state model is applied for the protons in these samples, consisting of cellulose protons, water in intimate contact with these cellulose portons, and water which is not in intimate contact. Exchange and/or cross relaxation occurs between the three different proton groups. All the data are consistent with this model. An NMR relaxation study of water dynamics in hydrated Sigmacell 50 cellulose and cellulose acetate films has

  12. Heteronuclear NMR studies of cobalamins. 11. sup 15 N NMR studies of the axial nucleotide and amide side chains of cyanocobalamin and dicyanocobamides

    SciTech Connect

    Brown, K.; Brooks, H.B.; Xiang, Zou ); Victor, M.; Ray, A. ); Timkovich, R. )

    1990-11-28

    Spectroscopic and thermodynamic evidence for the structure of cobalamines and dicyanocobalamin (CN){sub 2}Cbl have been previously reported. The structure indicated the occurrence of the so-called tuck-in species. Further observations and characterization of the tuck-in species of (CN){sub 2}Cbl by {sup 15}N NMR spectroscopy are presented herein. These results represent the first observation of the {sup 15}N NMR spectrum of benzimidazole nucleotide of cobalamins. The first NMR observation of the amide protons of cobalamins and their connectivity to the amide nitrogens are also reported. 50 refs., 2 figs., 2 tabs.

  13. Binding mechanism of an SH3 domain studied by NMR and ITC.

    PubMed

    Demers, Jean-Philippe; Mittermaier, Anthony

    2009-04-01

    Complexes between Src-homology 3 domains and proline-rich target peptides can have lifetimes on the order of milliseconds, making them too short-lived for kinetic characterization by conventional methods. Nuclear magnetic resonance (NMR) dynamics experiments are ideally suited to study such rapid binding equilibria, and additionally provide information on partly bound intermediate states. We used NMR together with isothermal titration calorimetry (ITC) to characterize the interaction of the SH3 domain from the Fyn tyrosine kinase with a 12-residue peptide at temperatures between 10 and 50 degrees C. NMR data at all temperatures are consistent with an effectively two-state binding reaction, such that any intermediates are either very weakly populated or exchange extremely rapidly with the free or bound forms. Dissociation rate constants, determined by CPMG and ZZ-exchange NMR experiments, range from k(off)(10 degrees C) = 4.5 s(-1) to k(off)(50 degrees C) = 331 s(-1). ITC data at all temperatures follow a simple two-state interaction model. Binding is favored enthalpically, with a dissociation enthalpy, DeltaH(D)(30 degrees C) = 15.4 kcal mol(-1), and disfavored entropically, with a dissociation entropy, DeltaS(D)(30 degrees C) = 20.0 cal mol(-1) K(-1). The free protein and peptide have significantly higher heat capacity than the bound complex, DeltaC(p) = 352 cal mol(-1) K(-1), which is consistent with the largely hydrophobic character of the binding interface. An Eyring plot of k(off) values gives an activation enthalpy of dissociation, DeltaH(D)(double dagger)(30 degrees C) = 19.3 kcal mol(-1) and exhibits slight curvature consistent with the ITC-derived value of DeltaC(p). The curvature suggests that nonpolar residues of the hydrophobic interface are solvated in the transition state for dissociation. Association rate constants were calculated as k(on) = k(off)/K(D), and range from k(on)(10 degrees C) = 1.03 x 10(8) M(-1) s(-1) to k(on)(50 degrees C) = 2.0 x 10

  14. High-resolution /sup 1/H NMR study of the solution structure of alamethicin

    SciTech Connect

    Esposito, G.; Carver, J.A.; Boyd, J.; Campbell, I.D.

    1987-02-24

    A /sup 1/H NMR study of the peptide alamethicin, which forms voltage-gated ion channels in membranes, is described. The molecule was studied in methanol as a function of temperature and pH. A complete assignment of the spectra is given, including several stereospecific assignments. Alamethicin was found to have a structure substantially similar to the crystal although, in solution, the C-terminal dipeptide adopts a somewhat extended conformation. The overall conformation was insensitive to the ionization of the side chain of the ionizable group, Glu-18.

  15. Understanding the directed ortho lithiation of (R)-Ph₂P(=NCO₂Me)NHCH(Me)Ph. NMR spectroscopic and computational study of the structure of the N-lithiated species.

    PubMed

    Casimiro, M; García-López, J; Iglesias, M J; López-Ortiz, F

    2014-10-14

    A multinuclear magnetic resonance ((1)H, (7)Li, (13)C, (15)N, (31)P) and DFT computational study at the M06-2X(SMD,THF)/6-311+G(d,p)//B3LYP/6-31G(d) level of the structure of a N-lithiated phosphinimidic amide (R)-Ph2P(=NCO2Me)NHCH(Me)Ph 13 has been performed. In THF solution it exists as an equilibrium mixture of monomers and dimers. The monomers consist of a six-membered ring formed by coordination of the lithium atom with the deprotonated nitrogen and the oxygen atom of the carbonyl group. This coordination mode is in contrast to the standard N,N-chelation observed in N-lithiated N,N'-bis(trimethylsilyl)phosphinimidic amides. The calculations showed that the metallacycle adopts a twist-boat conformation and that the lithium atom is in a tetrahedral environment involving O,N-chelation by the ligand and coordination to two/one THF molecules in the monomer/dimer. Dimerization takes place through O-Li bridges. For all species two series of isomers have been identified, which originated by restricted rotation of the methoxy group and ring inversion. The twist-boat conformational interconversion seems to be operating for explaining the pattern of signals observed in the (7)Li and (31)P NMR spectra. The structure found for the most stable dimer is analogous to the molecular structure reported for a related C(α)-lithiated phosphazene 20. The structural study revealed that the chiral side-arm of the N-lithiated species is oriented to the outer face of the pro-S P-phenyl ring, which shows one ortho-proton very close to the nitrogen atom of the carbamate moiety. In this conformation, proton abstraction by a base is highly favoured, in agreement with the experimental results.

  16. Biphenyl Bicelle Disks Align Perpendicular to Magnetic Fields on Large Temperature Scales: A Study Combining Synthesis, Solid-State NMR, TEM, and SAXS

    PubMed Central

    Loudet, Cécile; Manet, Sabine; Gineste, Stéphane; Oda, Reïko; Achard, Marie-France; Dufourc, Erick J.

    2007-01-01

    A phosphatidylcholine lipid (PC) containing a biphenyl group in one of its acyl chains (1-tetradecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-PC, TBBPC) was successfully synthesized with high yield. Water mixtures of TBBPC with a short-chain C6 lipid, dicaproyl-PC (DCPC), lead to bicelle systems formation. Freeze-fracture electron microscopy evidenced the presence of flat bilayered disks of 800 Å diameter for adequate composition, hydration, and temperature conditions. Because of the presence of the biphenyl group, which confers to the molecule a positive magnetic anisotropy Δχ, the disks align with their normal, n, parallel to the magnetic field B0, as directly detected by 31P, 14N, 2H solid-state NMR and also using small-angle x-ray scattering after annealing in the field. Temperature-composition and temperature-hydration diagrams were established. Domains where disks of TBBPC/DCPC align with their normal parallel to the field were compared to chain-saturated lipid bicelles made of DMPC(dimyristoylPC)/DCPC, which orient with their normal perpendicular to B0. TBBPC/DCPC bicelles exist on a narrow range of long- versus short-chain lipid ratios (3%) but over a large temperature span around room temperature (10–75°C), whereas DMPC/DCPC bicelles exhibit the reverse situation, i.e., large compositional range (22%) and narrow temperature span (25–45°C). The two types of bicelles present orienting properties up to 95% dilution but with the peculiarity that water trapped in biphenyl bicelles exhibits ordering properties twice as large as those observed in the saturated-chains analog, which offers very interesting properties for structural studies on hydrophilic or hydrophobic embedded biomolecules. PMID:17307824

  17. NMR studies of muscle glycogen synthesis in insulin-resistant offspring of parents with non-insulin-dependent diabetes mellitus immediately after glycogen-depleting exercise.

    PubMed Central

    Price, T B; Perseghin, G; Duleba, A; Chen, W; Chase, J; Rothman, D L; Shulman, R G; Shulman, G I

    1996-01-01

    To examine the impact of insulin resistance on the insulin-dependent and insulin-independent portions of muscle glycogen synthesis during recovery from exercise, we studied eight young, lean, normoglycemic insulin-resistant (IR) offspring of individuals with non-insulin-dependent diabetes mellitus and eight age-weight matched control (CON) subjects after plantar flexion exercise that lowered muscle glycogen to approximately 25% of resting concentration. After approximately 20 min of exercise, intramuscular glucose 6-phosphate and glycogen were simultaneously monitored with 31P and 13C NMR spectroscopies. The postexercise rate of glycogen resynthesis was nonlinear. Glycogen synthesis rates during the initial insulin independent portion (0-1 hr of recovery) were similar in the two groups (IR, 15.5 +/- 1.3 mM/hr and CON, 15.8 +/- 1.7 mM/hr); however, over the next 4 hr, insulin-dependent glycogen synthesis was significantly reduced in the IR group [IR, 0.1 +/- 0.5 mM/hr and CON, 2.9 +/- 0.2 mM/hr; (P < or = 0.001)]. After exercise there was an initial rise in glucose 6-phosphate concentrations that returned to baseline after the first hour of recovery in both groups. In summary, we found that following muscle glycogen-depleting exercise, IR offspring of parents with non-insulin-dependent diabetes mellitus had (i) normal rates of muscle glycogen synthesis during the insulin-independent phase of recovery from exercise and (ii) severely diminished rates of muscle glycogen synthesis during the subsequent recovery period (2-5 hr), which has previously been shown to be insulin-dependent in normal CON subjects. These data provide evidence that exercise and insulin stimulate muscle glycogen synthesis in humans by different mechanisms and that in the IR subjects the early response to stimulation by exercise is normal. PMID:8643574

  18. Characterization of filter extractables by proton NMR spectroscopy: studies on intact filters with process buffers.

    PubMed

    Kao, Y H; Bender, J; Hagewiesche, A; Wong, P; Huang, Y; Vanderlaan, M

    2001-01-01

    Studies were conducted to characterize potential extractables from sterilizing grade filters. The focus of this report is the 0.22 micron Durapore (hydrophilic modified PVDF) filter which is used throughout our recovery processes. The objectives of this study are (1) to identify potential filter extractables from the hydrophilic PVDF filters; (2) to show that NMR spectroscopy may be used to detect filter extractables in the presence of product and excipients; and (3) to establish levels of filter extractables obtained by extraction with a variety of buffers. The data show that the primary source of filter extractables is the hydrophilic modification of the PVDF membrane surface. Extractables from the modified hydrophilic PVDF filter include propylene glycol (PG) and soluble oligomers of the hydroxypropyl acrylate and cross-linker. Propylene glycol, arising from the hydrolysis of the hydroxypropyl acrylate, appears to be the primary extractable in buffers above pH 11. Since the 1H-NMR method can easily detect the methyl proton signals of PG, an NMR assay was developed to detect PG in the presence of buffer excipients and final product. Propylene glycol can be used as a marker for the extractables from Durapore hydrophilic PVDF filters. Although numerous buffers were used to generate extractables from the PVDF filter, significant extractables (PG and soluble oligomers) were found only in high pH extraction buffers. As a result of this finding, only a limited number of new buffers or new PVDF filters will require testing for future validation studies. Process validation studies have shown that neither PG nor soluble oligomers are at levels that impact the quality or safety of the product.

  19. Advanced solids NMR studies of coal structure and chemistry. Progress report, March 1 - September 1, 1996

    SciTech Connect

    Zilm, K.W.

    1996-12-31

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utili- zation of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NNM methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methine groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. We will also develop NMR methods for probing coal macropore structure using hyperpolarized {sup 29}Xe as a probe, and study the molecular dynamics of what appear to be mobile, CH{sub 2} rich, long chain hydrocarbons. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of coals, and their suitability for possible correlations with the oil sourcing potential of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples.

  20. Nuclear spin coherence of neutral 31P donors in isotopically enriched 28Si

    NASA Astrophysics Data System (ADS)

    Petersen, E. S.; Tyryshkin, A. M.; Lyon, S. A.; Tojo, S.; Itoh, K. M.; Thewalt, M. L. W.; Riemann, H.; Abrosimov, N. V.; Becker, P.; Pohl, H.-J.

    2014-03-01

    In natural silicon the nuclear spin coherence of neutral 31P donors is limited to about 1 second by flip-flopping 29Si nuclear spins. Here we eliminate this process by using isotopically enriched 28Si with 50 ppm of 29Si. This allows us to examine other processes which may decohere the 31P nuclear spins. We use X-band pulsed ENDOR at 1.7 K to examine isotopically enriched Si crystals with donor concentrations from 1014 to 4x1015 P/cm3 and find a dependence of 31P nuclear spin coherence time on donor concentration. The measured nuclear spin echo decays are fit by a stretched exponential function, exp(-(t/T2)n) , with n ranging from 0.7 to 1. This differs from n of about 2 commonly seen for spectral diffusion due to indirect spin flip-flops. The measured T2 times decrease significantly when the donor concentration increases, changing from 8 s at 1014 to 0.2 s at 4x1015 P/cm3. From the observed donor concentration dependence at higher densities, we conclude that direct electron spin flip-flops are responsible for 31P donor nuclear spin decoherence. This work was supported in part by NSF through the Materials World Network program (DMR-1107606) and the Princeton MRSEC (DMR-0819860), and in part by the U.S. Army Research Office (W911NF-13-1-0179).

  1. 31P to 77Se cross polarization in beta-P4Se3.

    PubMed

    Pietrass, T; Seydoux, R; Roth, R E; Eckert, H; Pines, A

    1997-08-01

    Cross polarization from 31P to 77Se is demonstrated in beta-P4Se3. This material, an inorganic glass, is readily synthesized from the elements and serves as a convenient sample for setting the Hartmann-Hahn condition.

  2. Detection of platinum dihydride bisphosphine complexes and studies of their reactivity through para-hydrogen-enhanced NMR methods.

    PubMed

    Godard, Cyril; López-Serrano, Joaquín; Gálvez-López, María-Dolores; Roselló-Merino, Marta; Duckett, Simon B; Khazal, Iman; Lledós, Agustí; Whitwood, Adrian C

    2008-01-01

    In-situ NMR studies on the reactions of Pt{CH2 = CHSi(Me)2}2O)(PCy3) with phosphines, HSiEt3 and--hydrogen or Pt(L)(L')(Me)(2) alone enable the detection of cis-Pt(L)(L')(H)2 [L = PCy3 and L' = PCy2H, PPh3 or PCy3] which then undergo hydride site interchange and H2 reductive elimination on the NMR timescale.

  3. A NMR reverse diffusion filter for the simplification of spectra of complex mixtures and the study of drug receptor interactions.

    PubMed

    Vega-Vázquez, M; Cobas, J C; Oliveira de Sousa, F F; Martin-Pastor, M

    2011-08-01

    A reverse diffusion filter NMR experiment (Drev) is proposed for the study of small molecules in binding with macromolecules. The filtering efficiency of Drev to eliminate the signals of the macromolecule is shown to be superior to conventional transverse relaxation filters at least for macromolecules containing a significant fraction of flexible residues. The Drev filter was also a useful complement for ligand-based NMR screening in combination with saturation transfer difference experiments.

  4. NMR STUDIES OF LIQUID CRYSTALS AND MOLECULES DISSOLVED IN LIQUID CRYSTAL SOLVENTS

    SciTech Connect

    Drobny, G.P.

    1982-11-01

    This thesis describes several studies in which nuclear magnetic resonance (nmr) spectroscopy has been used to probe the structure, orientation and dynamics of liquid crystal mesogens and molecules dissolved in liquid crystalline phases. In addition, a modern high field nmr spectrometer is described which has been used to perform such nmr studies. Chapter 1 introduces the quantum mechanical formalisms used throughout this thesis and briefly reviews the fundamentals of nuclear spin physics and pulsed nmr spectroscopy. First the density operator is described and a specific form for the canonical ensemble is derived. Then Clebsch-Gordon coefficients, Wigner rotation matrices, and irreducible tensor operators are reviewed. An expression for the equilibrium (Curie) magnetization is obtained and the linear response of a spin system to a strong pulsed r.f. irradiation is described. Finally, the spin interaction Hamiltonians relevant to this work are reviewed together with their truncated forms. Chapter 2 is a deuterium magnetic resonance study of two 'nom' liquid crystals which possess several low temperature mesomorphic phases. Specifically, deuterium quadrupolar echo spectroscopy is used to determine the orientation of the liquid crystal molecules in smectic phases, the changes in molecular orientation and motion that occur at smectic-smectic phase transitions, and the order of the phase transitions. For both compounds, the phase sequence is determined to be isotropic, nematic, smectic A, smectic C, smectic B{sub A}, smectic B{sub C}, and crystalline. The structure of the smectic A phase is found to be consistent with the well-known model of a two dimensional liquid in which molecules are rapidly rotating about their long axes and oriented at right angles to the plane of the layers. Molecules in the smectic C phase are found to have their long axes tilted with respect to the layer normal, and the tilt angle is temperature dependent, increasing from zero at the smectic A

  5. NMR study of a membrane protein in detergent-free aqueous solution

    PubMed Central

    Zoonens, Manuela; Catoire, Laurent J.; Giusti, Fabrice; Popot, Jean-Luc

    2005-01-01

    One of the major obstacles to membrane protein (MP) structural studies is the destabilizing effect of detergents. Amphipols (APols) are short amphipathic polymers that can substitute for detergents to keep MPs water-soluble under mild conditions. In the present work, we have explored the feasibility of studying the structure of APol-complexed MPs by NMR. As a test MP, we chose the 171-residue transmembrane domain of outer MP A from Escherichia coli (tOmpA), whose x-ray and NMR structures in detergent are known. 2H,15N-labeled tOmpA was produced as inclusion bodies, refolded in detergent solution, trapped with APol A8-35, and the detergent removed by adsorption onto polystyrene beads. The resolution of transverse relaxation-optimized spectroscopy–heteronuclear single-quantum correlation spectra of tOmpA/A8-35 complexes was found to be close to that of the best spectra obtained in detergent solutions. The dispersion of chemical shifts indicated that the protein had regained its native fold and retained it during the exchange of surfactants. MP–APol interactions were mapped by substituting hydrogenated for deuterated A8-35. The resulting dipolar broadening of amide proton linewidths was found to be limited to the β-barrel region of tOmpA, indicating that A8-35 binds specifically to the hydrophobic transmembrane surface of the protein. The potential of this approach to MP studies by solution NMR is discussed. PMID:15956183

  6. (1)H chemical shift differences of Prelog-Djerassi lactone derivatives: DFT and NMR conformational studies.

    PubMed

    Aímola, Túlio J; Lima, Dimas J P; Dias, Luiz C; Tormena, Cláudio F; Ferreira, Marco A B

    2015-02-21

    This work reports an experimental and theoretical study of the conformational preferences of several Prelog-Djerassi lactone derivatives, to elucidate the (1)H NMR chemical shift differences in the lactonic core that are associated with the relative stereochemistry of these derivatives. The boat-like conformation of explains the anomalous (1)H chemical shift between H-5a and H-5b, in which the two methyl groups (C-8 and C-9) face H-5b, leading to its higher shielding effect.

  7. [1H-NMR studies of the ACTH-like immunoregulatory peptides].

    PubMed

    Khristoforov, V S; Kutyshenko, V P; Abramov, V M; Zav'ialov, V P

    1997-01-01

    A comparative study of the conformational and dynamics properties of the ACTH-like linear peptides, sequences of which correspond to amino acid residues 11-20 of the heavy chain of human immunoglobulin G1 Eu, residues 78-85 of human pro-interleukin-1 alpha and site 10-18 of human ACTH, was performed in aqueous solution and dimethylsulfoxide by 1H-NMR spectroscopy at 400 MHz. The peptides were shown to possess an unordered unfolded flexible conformation in aqueous solution. The revealed structural and dynamic features of the peptides are discussed together with biological activity of this class of compounds.

  8. Methanol carbonylation over copper-modified mordenite zeolite: A solid-state NMR study.

    PubMed

    Zhou, Lei; Li, Shenhui; Qi, Guodong; Su, Yongchao; Li, Jing; Zheng, Anmin; Yi, Xianfeng; Wang, Qiang; Deng, Feng

    2016-11-01

    The carbonylation of methanol with carbon monoxide to generate methyl acetate over Cu-H-MOR and H-MOR zeolites is studied using solid-state NMR spectroscopy. It is found that the catalytic activity of Cu-H-MOR zeolite is much higher than that of H-MOR zeolite. The presence of Cu(+) species enables the stabilization of dimethyl ether, which efficiently suppresses the hydrocarbon formation during carbonylation process over Cu-H-MOR zeolite. In addition, the carbon monoxide adsorbed on Cu(+) site is not an active species to produce either methyl acetate or acetic acid.

  9. NMR study on iridium(III) complexes for identifying disulfonate substituted bathophenanthroline regio-isomers.

    PubMed

    Liu, Chenchen; Yu, Linpo; Liu, Yang; Li, Fang; Zhou, Ming

    2011-12-01

    A series of novel biscyclometalated iridium (III) complexes with an ancillary disulfonated bathophenanthroline (DSBP(2-)) ligand, Ir(L)(2)DSBPNa, L = 2-phenylpyridine (ppy), 2,4-difluorophenylpyridine (fppy), and 1-phenylisoquinoline (piq) were found to have two isomeric forms. The chemical structures of the isomers were determined by the one- and two-dimensional (1)H and (13)C NMR studies. The isomeric state was proved to have originated from the disulfonate-related regio-isomer of the DSBP(2-) ligand.

  10. Solid state NMR study of dietary fiber powders from aronia, bilberry, black currant and apple.

    PubMed

    Wawer, I; Wolniak, M; Paradowska, K

    2006-09-01

    13C CPMAS NMR spectra of dietary fiber powders from aronia (chokeberry), bilberry, black currant and apple were recorded. The spectra are complex owing to superposition of resonances from different polysaccharides and polyphenolic compounds. Standard, dipolar dephased and the TH(1rho) partially relaxed spectra enabled the identification of several constituents: microcrystalline cellulose, pectins, lignins, cutin-like polymers and condensed tannins. The fiber powders obtained from berries contain significant amounts of anthocyanins, as indicated by their dark violet color, but not verified by chemical shifts. The anthocyanin-rich extract from aronia berries and its major components, cyanidin-3-O-galactoside and (-)epicatechin were also studied.

  11. Thermal degradation in a trimodal poly(dimethylsiloxane) network studied by (1)H multiple quantum NMR.

    PubMed

    Giuliani, Jason R; Gjersing, Erica L; Chinn, Sarah C; Jones, Ticora V; Wilson, Thomas S; Alviso, Cynthia T; Herberg, Julie L; Pearson, Mark A; Maxwell, Robert S

    2007-11-15

    Thermal degradation of a filled, cross-linked siloxane material synthesized from poly(dimethylsiloxane) chains of three different average molecular weights and with two different cross-linking species has been studied by (1)H multiple quantum (MQ) NMR methods. Multiple domains of polymer chains were detected by MQ NMR exhibiting residual dipolar coupling () values of 200 and 600 Hz, corresponding to chains with high average molecular weight between cross-links and chains with low average molecular weight between cross-links or near the multifunctional cross-linking sites. Characterization of the values and changes in distributions present in the material were studied as a function of time at 250 degrees C and indicate significant time-dependent degradation. For the domains with low , a broadening in the distribution was observed with aging time. For the domain with high , increases in both the mean and the width in were observed with increasing aging time. Isothermal thermal gravimetric analysis reveals a 3% decrease in weight over 20 h of aging at 250 degrees C. Degraded samples also were analyzed by traditional solid-state (1)H NMR techniques, and off-gassing products were identified by solid-phase microextraction followed by gas chromatography-mass spectrometry. The results, which will be discussed here, suggest that thermal degradation proceeds by complex competition between oxidative chain scissioning and postcuring cross-linking that both contribute to embrittlement.

  12. A stable amorphous statin: solid-state NMR and dielectric studies on dynamic heterogeneity of simvastatin.

    PubMed

    Nunes, Teresa G; Viciosa, M Teresa; Correia, Natália T; Danède, F; Nunes, Rita G; Diogo, Hermínio P

    2014-03-03

    Statins have been widely used as cholesterol-lowering agents. However, low aqueous solubility of crystalline statins and, consequently, reduced biovailability require seeking for alternative forms and formulations to ensure an accurate therapeutic window. The objective of the present study was to evaluate the stability of amorphous simvastatin by probing molecular dynamics using two nondestructive techniques: solid-state NMR and dielectric relaxation spectroscopy. Glassy simvastatin was obtained by the melt quench technique. (13)C cross-polarization/magic-angle-spinning (CP/MAS) NMR spectra and (1)H MAS NMR spectra were obtained from 293 K up to 333 K (Tg ≈ 302 K). The (13)C spin-lattice relaxation times in the rotating frame, T1ρ, were measured as a function of temperature, and the correlation time and activation energy data obtained for local motions in different frequency scales revealed strong dynamic heterogeneity, which appears to be essential for the stability of the amorphous form of simvastatin. In addition, the (1)H MAS measurements presented evidence for mobility of the hydrogen atoms in hydroxyl groups which was assigned to noncooperative secondary relaxations. The complex dielectric permittivity of simvastatin was monitored in isochronal mode at five frequencies (from 0.1 to 1000 kHz), by carrying out a heating/cooling cycle allowing to obtain simvastatin in the supercooled and glassy states. The results showed that no dipolar moment was lost due to immobilization, thus confirming that no crystallization had taken place. Complementarily, the present study focused on the thermal stability of simvastatin using thermogravimetric analysis while the thermal events were followed up by differential scanning calorimetry and dielectric relaxation spectroscopy. Overall, the results confirm that the simvastatin in the glass form reveals a potential use in the solid phase formulation on the pharmaceutical industry.

  13. UV-visible and (1)H-(15)N NMR spectroscopic studies of colorimetric thiosemicarbazide anion sensors.

    PubMed

    Farrugia, Kristina N; Makuc, Damjan; Podborska, Agnieszka; Szaciłowski, Konrad; Plavec, Janez; Magri, David C

    2015-02-14

    Four model thiosemicarbazide anion chemosensors containing three N-H bonds, substituted with phenyl and/or 4-nitrophenyl units, were synthesised and studied for their anion binding abilities with hydroxide, fluoride, acetate, dihydrogen phosphate and chloride. The anion binding properties were studied in DMSO and 9 : 1 DMSO-H2O by UV-visible absorption and (1)H/(13)C/(15)N NMR spectroscopic techniques and corroborated with DFT studies. Significant changes were observed in the UV-visible absorption spectra with all anions, except for chloride, accompanied by dramatic colour changes visible to the naked eye. These changes were determined to be due to the deprotonation of the central N-H proton and not due to hydrogen bonding based on (1)H/(15)N NMR titration studies with acetate in DMSO-d6-0.5% water. Direct evidence for deprotonation was confirmed by the disappearance of the central thiourea proton and the formation of acetic acid. DFT and charge distribution calculations suggest that for all four compounds the central N-H proton is the most acidic. Hence, the anion chemosensors operate by a deprotonation mechanism of the central N-H proton rather than by hydrogen bonding as is often reported.

  14. Fructose-induced aberration of metabolism in familial gout identified by sup 31 P magnetic resonance spectroscopy

    SciTech Connect

    Seegmiller, J.E. Univ. of California, San Diego ); Dixon, R.M.; Kemp, G.J.; Rajagopalan, B.; Radda, G.K. ); Angus, P.W. Austin Hospital, Heidelburg, Victoria ); McAlindon, T.E.; Dieppe, P. )

    1990-11-01

    The hyperuricemia responsible for the development of gouty arthritis results from a wide range of environmental factors and underlying genetically determined aberrations of metabolism. {sup 31}P magnetic resonance spectroscopy studies of children with hereditary fructose intolerance revealed a readily detectable rise in phosphomonoesters with a marked fall in inorganic phosphate in their liver in vivo and a rise in serum urate in response to very low doses of oral fructose. Parents and some family members heterozygous for this enzyme deficiency showed a similar pattern when given a substantially larger dose of fructose. Three of the nine heterozygotes thus identified also had clinical gout, suggesting the possibility of this defect being a fairly common cause of gout. In the present study this same noninvasive technology was used to identify the same spectral pattern in 2 of the 11 families studied with hereditary gout. In one family, the index patient's three brothers and his mother all showed the fructose-induced abnormality of metabolism, in agreement with the maternal inheritance of metabolism, in agreement with the maternal inheritance of the gout in this family group. The test dose of fructose used produced a significantly larger increment in the concentration of serum urate in the patients showing the changes in {sup 31}P magnetic resonance spectra than in the other patients with familial gout or in nonaffected members, thus suggesting a simpler method for initial screening for the defect.

  15. Solid-state NMR studies of proteins immobilized on inorganic surfaces

    DOE PAGES

    Shaw, Wendy J.

    2014-10-29

    Solid state NMR is the primary tool for studying the quantitative, site-specific structure, orientation, and dynamics of biomineralization proteins under biologically relevant conditions. Two calcium phosphate proteins, statherin and leucine rich amelogenin protein (LRAP), have been studied in depth and have different features, challenging our ability to extract design principles. More recent studies of the significantly larger full-length amelogenin represent a challenging but necessary step to ultimately investigate the full diversity of biomineralization proteins. Interactions of amino acids and silaffin peptide with silica are also being studied, along with qualitative studies of proteins interacting with calcium carbonate. Dipolar recoupling techniquesmore » have formed the core of the quantitative studies, yet, the need for isolated spin pairs makes this approach costly and time intensive. The use of multi-dimensional techniques is advancing, methodology which, despite its challenges with these difficult-to-study proteins, will continue to drive future advancements in this area.« less

  16. Solid-state NMR studies of proteins immobilized on inorganic surfaces

    SciTech Connect

    Shaw, Wendy J.

    2014-10-29

    Solid state NMR is the primary tool for studying the quantitative, site-specific structure, orientation, and dynamics of biomineralization proteins under biologically relevant conditions. Two calcium phosphate proteins, statherin and leucine rich amelogenin protein (LRAP), have been studied in depth and have different features, challenging our ability to extract design principles. More recent studies of the significantly larger full-length amelogenin represent a challenging but necessary step to ultimately investigate the full diversity of biomineralization proteins. Interactions of amino acids and silaffin peptide with silica are also being studied, along with qualitative studies of proteins interacting with calcium carbonate. Dipolar recoupling techniques have formed the core of the quantitative studies, yet, the need for isolated spin pairs makes this approach costly and time intensive. The use of multi-dimensional techniques is advancing, methodology which, despite its challenges with these difficult-to-study proteins, will continue to drive future advancements in this area.

  17. Proton NMR studies of PECVD hydrogenated amorphous silicon films and HWCVD hydrogenated amorphous silicon films

    NASA Astrophysics Data System (ADS)

    Herberg, Julie Lynn

    This dissertation discusses a new understanding of the internal structure of hydrogenated amorphous silicon. Recent research in our group has included nuclear spin echo double resonance (SEDOR) measurements on device quality hydrogenated amorphous silicon photovoltaic films. Using the SEDOR pulse sequence with and without the perturbing 29Si pulse, we obtain Fourier transform spectra for film at 80K that allows us to distinguish between molecular hydrogen and hydrogen bonded to silicon. Using such an approach, we have demonstrated that high quality a-Si:H films produced by Plasma Enhanced Chemical Vapor Deposition (PECVD) from SiH 4 contains about ten atomic percent hydrogen, nearly 40% of which is molecular hydrogen, individually trapped in the amorphous equivalent of tetragonal sites (T-sites). The main objective of this dissertation is to examine the difference between a-Si:H made by PECVD techniques and a-Si:H made by Hot Wire Chemical Vapor Deposition (HWCVD) techniques. Proton NMR and 1H- 29Si SEDOR NMR are used to examine the hydrogen structure of HWCVD a-Si:H films prepared at the University of Utrecht and at the National Renewable Energy Laboratory (NREL). Past NMR studies have shown that high quality PECVD a-Si:H films have geometries in which 40% of the contained hydrogen is present as H2 molecules individually trapped in the amorphous equivalent of T-sites. A much smaller H2 fraction sometimes is physisorbed on internal surfaces. In this dissertation, similar NMR methods are used to perform structural studies of the two HWCVD aSi:H samples. The 3kHz resonance line from T-site-trapped H2 molecules shows a hole-burn behavior similar to that found for PECVD a-Si:H films as does the 24kHz FWHM line from clustered hydrogen bonded to silicon. Radio frequency hole-burning is a tool to distinguish between inhomogenous and homogeneous broadening. In the hole-burn experiments, the 3kHz FWHM resonance line from T-site-trapped H2 molecules shows a hole

  18. Solid state NMR and LVSEM studies on the hardening of latex modified tile mortar systems

    SciTech Connect

    Rottstegge, J.; Arnold, M.; Herschke, L.; Glasser, G.; Wilhelm, M.; Spiess, H.W. . E-mail: spiess@mpip-mainz.mpg.de; Hergeth, W.D.

    2005-12-15

    Construction mortars contain a broad variety of both inorganic and organic additives beside the cement powder. Here we present a study of tile mortar systems based on portland cement, quartz, methyl cellulose and different latex additives. As known, the methyl cellulose stabilizes the freshly prepared cement paste, the latex additive enhances final hydrophobicity, flexibility and adhesion. Measurements were performed by solid state nuclear magnetic resonance (NMR) and low voltage scanning electron microscopy (LVSEM) to probe the influence of the latex additives on the hydration, hardening and the final tile mortar properties. While solid state NMR enables monitoring of the bulk composition, scanning electron microscopy affords visualization of particles and textures with respect to their shape and the distribution of the different phases. Within the alkaline cement paste, the poly(vinyl acetate) (VAc)-based latex dispersions stabilized by poly(vinyl alcohol) (PVA) were found to be relatively stable against hydrolysis. The influence of the combined organic additives methyl cellulose, poly(vinyl alcohol) and latexes stabilized by poly(vinyl alcohol) on the final silicate structure of the cement hydration products is small. But even small amounts of additives result in an increased ratio of ettringite to monosulfate within the final hydrated tile mortar as monitored by {sup 27}Al NMR. The latex was found to be adsorbed to the inorganic surfaces, acting as glue to the inorganic components. For similar latex water interfaces built up by poly(vinyl alcohol), a variation in the latex polymer composition results in modified organic textures. In addition to the networks of the inorganic cement and of the latex, there is a weak network build up by thin polymer fibers, most probably originating from poly(vinyl alcohol). Besides the weak network, polymer fibers form well-ordered textures covering inorganic crystals such as portlandite.