Science.gov

Sample records for 32-kda stress protein

  1. Stress proteins induced by arsenic.

    PubMed

    Del Razo, L M; Quintanilla-Vega, B; Brambila-Colombres, E; Calderón-Aranda, E S; Manno, M; Albores, A

    2001-12-01

    The elevated expression of stress proteins is considered to be a universal response to adverse conditions, representing a potential mechanism of cellular defense against disease and a potential target for novel therapeutics. Exposure to arsenicals either in vitro or in vivo in a variety of model systems has been shown to cause the induction of a number of the major stress protein families such as heat shock proteins (Hsp). Among them are members with low molecular weight, such as metallotionein and ubiquitin, as well as ones with masses of 27, 32, 60, 70, 90, and 110 kDa. In most of the cases, the induction of stress proteins depends on the capacity of the arsenical to reach the target, its valence, and the type of exposure, arsenite being the biggest inducer of most Hsp in several organs and systems. Hsp induction is a rapid dose-dependent response (1-8 h) to the acute exposure to arsenite. Thus, the stress response appears to be useful to monitor the sublethal toxicity resulting from a single exposure to arsenite. The present paper offers a critical review of the capacity of arsenicals to modulate the expression and/or accumulation of stress proteins. The physiological consequences of the arsenic-induced stress and its usefulness in monitoring effects resulting from arsenic exposure in humans and other organisms are discussed.

  2. Cell Stress Proteins in Atherothrombosis

    PubMed Central

    Madrigal-Matute, Julio; Martinez-Pinna, Roxana; Fernandez-Garcia, Carlos Ernesto; Ramos-Mozo, Priscila; Burillo, Elena; Egido, Jesus; Blanco-Colio, Luis Miguel; Martin-Ventura, Jose Luis

    2012-01-01

    Cell stress proteins (CSPs) are a large and heterogenous family of proteins, sharing two main characteristics: their levels and/or location are modified under stress and most of them can exert a chaperon function inside the cells. Nonetheless, they are also involved in the modulation of several mechanisms, both at the intracellular and the extracellular compartments. There are more than 100 proteins belonging to the CSPs family, among them the thioredoxin (TRX) system, which is the focus of the present paper. TRX system is composed of several proteins such as TRX and peroxiredoxin (PRDX), two thiol-containing enzymes that are key players in redox homeostasis due to their ability to scavenge potential harmful reactive oxygen species. In addition to their main role as antioxidants, recent data highlights their function in several processes such as cell signalling, immune inflammatory responses, or apoptosis, all of them key mechanisms involved in atherothrombosis. Moreover, since TRX and PRDX are present in the pathological vascular wall and can be secreted under prooxidative conditions to the circulation, several studies have addressed their role as diagnostic, prognostic, and therapeutic biomarkers of cardiovascular diseases (CVDs). PMID:22792412

  3. Fast-Folding Proteins under Stress

    PubMed Central

    Dave, Kapil; Gruebele, Martin

    2015-01-01

    Proteins are subject to a variety of stresses in biological organisms, including pressure and temperature, which are the easiest stresses to simulate by molecular dynamics. We discuss the effect of pressure and thermal stress on very fast folding model proteins, whose in vitro folding can be fully simulated on computers and compared with experiments. We then discuss experiments that can be used to subject proteins to low and high temperature unfolding, as well as low and high pressure unfolding. Pressure and temperature are prototypical perturbations that illustrate how close many proteins are to instability, a property that cells can exploit to control protein function. We conclude by reviewing some recent in-cell experiments, and progress being made in simulating and measuring protein stability and function inside live cells. PMID:26231095

  4. Stress proteins are induced by space environment

    NASA Astrophysics Data System (ADS)

    Takahashi, Akihisa; Ohnishi, Takeo

    The space environment contains two major biologically significant influences such as space radiations and microgravity. Almost all organisms possess essential recognition and response systems for environmental changes. The famous one of cellular stress responses is the gene induction of heat shock protein (HSP). HSP expression is increased under elevated temperatures, and also increased by other sources of cellular stress, including ionizing radiation, oxidative injury, osmotic stress and the unfolded protein response. HSPs assist in the folding and maintenance of newly translated proteins, the refolding of denatured proteins and the further unfolding of misfolded or destabilized proteins to protect the cell from crisis. Based on our space experiment, we report the results and discussion from the viewpoint of HSP expression after exposure to space environment.

  5. Prompt protein glycosylation during acute heat stress.

    PubMed

    Henle, K J; Kaushal, G P; Nagle, W A; Nolen, G T

    1993-08-01

    Constitutive patterns of protein synthesis and protein glycosylation are severely disrupted by acute heat stress. Stressed cells respond by preferential synthesis of specific proteins, e.g., the well-known family of heat shock proteins. We observed another response that rapidly occurs during heating periods as short as 10 min at 45 degrees C. During that period, CHO cells began to glycosylate specific proteins, designated as "prompt" stress glycoproteins (P-SG), while constitutive protein glycosylation ceased. Labeling of P-SGs showed a dose response with time and with temperature and appeared regardless of the label used (D-[3H]mannose or D-[3H]glucose). On SDS-PAGE, the major P-SG was characterized by M(r) approximately 67 kDa (P-SG67) and pI = 5.1. Other less prominent P-SGs appeared at M(r) 160, 100, 64, 60, and 47 kDa; incorporated label showed little turnover during 24 h at 37 degrees C. Prompt glycosylation was inhibited by tunicamycin, and label incorporated into P-SGs was sensitive to N-glycosidase F, but not to O-glycosidase. Analysis of enzymatically digested P-SG67 indicated that label had been incorporated into both high-mannose (Man9GlcNAc) and complex-type oligosaccharides. Brefeldin A did not eliminate P-SG67 labeling, but caused the further appearance of novel, Brefeldin-associated P-SGs. Labeling of P-SG67 oligosaccharides occurred without significant concomitant protein synthesis, suggesting that addition of labeled oligosaccharides largely occurred on mature, rather than nascent proteins. The functional significance of prompt glycosylation remains to be defined, but we propose that this novel phenomenon is an integral part of the cellular heat stress response.

  6. Oxidative stress causes plasma protein modification.

    PubMed

    Tetik, Sermin; Kiliç, Arzu; Aksoy, Halil; Rizaner, Nahit; Ahmad, Sarfraz; Yardimci, Turay

    2015-01-01

    We investigated the effect of oxidative systems on plasma proteins using Chloramine-T, a source of free radicals. Plasma specimens from 10 healthy volunteers were treated with 40 mmol/L Chloramine-T (1:1 v/v). Total protein and plasma carbonyl levels were evaluated spectrophotometrically. Identification of plasma proteins modifications was performed by SDS-PAGE, protein and lipid electrophoresis. Protein fragmentation was evaluated by HPLC. Total protein levels of oxidised plasmas were significantly lower (4.08 ± 0.12 g/dL) than control (7.86 ± 0.03 g/dL) (P < 0.01). Plasma carbonyl levels were higher (1.94 ± 0.38 nmol/mg protein) in oxidised plasma than that of control (0.03 ± 0.01 nmol/mg protein) (P < 0.01). Plasma oxidation had no significant effect on the levels of proteins and lipids. Protein fragmentations were detected in oxidised groups compared to those of the control. We conclude that protein modifications have direct effect on the protein functions, which are related to stress agent, its treatment period(s), and the methodology used for evaluating such experimental results.

  7. Chromatin Proteins: Key Responders to Stress

    PubMed Central

    Smith, Karen T.; Workman, Jerry L.

    2012-01-01

    Environments can be ever-changing and stresses are commonplace. In order for organisms to survive, they need to be able to respond to change and adapt to new conditions. Fortunately, many organisms have systems in place that enable dynamic adaptation to immediate stresses and changes within the environment. Much of this cellular response is coordinated by modulating the structure and accessibility of the genome. In eukaryotic cells, the genome is packaged and rolled up by histone proteins to create a series of DNA/histone core structures known as nucleosomes; these are further condensed into chromatin. The degree and nature of the condensation can in turn determine which genes are transcribed. Histones can be modified chemically by a large number of proteins that are thereby responsible for dynamic changes in gene expression. In this Primer we discuss findings from a study published in this issue of PLoS Biology by Weiner et al. that highlight how chromatin structure and chromatin binding proteins alter transcription in response to environmental changes and stresses. Their study reveals the importance of chromatin in mediating the speed and amplitude of stress responses in cells and suggests that chromatin is a critically important component of the cellular response to stress. PMID:22859908

  8. Protein Degradation and the Stress Response

    PubMed Central

    Flick, Karin; Kaiser, Peter

    2012-01-01

    Environmental stresses are manifold and so are the responses they elicit. This is particularly true for higher eukaryotes where various tissues and cell types are differentially affected by the insult. Type and scope of the stress response can therefore differ greatly among cell types. Given the importance of the Ubiquitin Proteasome System (UPS) for most cellular processes, it comes as no surprise that the UPR plays a pivotal role in counteracting the effects of stressors. Here we outline contributions of the UPS to stress sensing, signaling, and response pathways. We make no claim to comprehensiveness but choose selected examples to illustrate concepts and mechanisms by which protein modification with ubiquitin and proteasomal degradation of key regulators ensures cellular integrity during stress situations. PMID:22414377

  9. Stress Proteins in Aging and Life Span

    PubMed Central

    Murshid, Ayesha; Eguchi, Takanori; Calderwood, Stuart K.

    2014-01-01

    Heat shock proteins (HSP) are molecular chaperones and have been implicated in longevity and aging in many species. Their major functions include, chaperoning misfolded or newly synthesized polypeptides, protecting cells from proteotoxic stress, and processing of immunogenic agents. These proteins are expressed constitutively and can be induced by stresses such as heat, oxidative stress and many more. The induction of HSP in aging could potentially maintain protein homeostasis and longevity by refolding the damaged proteins which accumulate during aging and are toxic to cells. HSP are shown to increase life span in model organisms such as C. elegans and decrease aging related proteotoxicity. Thus, decrease in HSP in aging is associated with disruption of cellular homeostasis which causes diseases such as cancer, cell senescence and neurodegeneration. HSP levels are decreased with aging in most organs including neurons. Aging also causes attenuation or alteration of many signaling pathways as well as the expression of transcription factors such as heat shock factor (HSF). The alteration in regulation and synthesis of Forkhead box O3a (FOXO3a) family of transcription factors as well as major antioxidant enzymes [manganese superoxide dismutase (MnSOD), catalase] are also seen in aging. Among many signaling mechanisms involved in altering longevity and aging, the insulin/IGF1 pathway and the Sir2 deacetylase are highly significant. This review inquires into the role of some of these pathways in longevity/aging along with HSP. PMID:23742046

  10. Stress Genes and Proteins in the Archaea

    PubMed Central

    Macario, Alberto J. L.; Lange, Marianne; Ahring, Birgitte K.; De Macario, Everly Conway

    1999-01-01

    The field covered in this review is new; the first sequence of a gene encoding the molecular chaperone Hsp70 and the first description of a chaperonin in the archaea were reported in 1991. These findings boosted research in other areas beyond the archaea that were directly relevant to bacteria and eukaryotes, for example, stress gene regulation, the structure-function relationship of the chaperonin complex, protein-based molecular phylogeny of organisms and eukaryotic-cell organelles, molecular biology and biochemistry of life in extreme environments, and stress tolerance at the cellular and molecular levels. In the last 8 years, archaeal stress genes and proteins belonging to the families Hsp70, Hsp60 (chaperonins), Hsp40(DnaJ), and small heat-shock proteins (sHsp) have been studied. The hsp70(dnaK), hsp40(dnaJ), and grpE genes (the chaperone machine) have been sequenced in seven, four, and two species, respectively, but their expression has been examined in detail only in the mesophilic methanogen Methanosarcina mazei S-6. The proteins possess markers typical of bacterial homologs but none of the signatures distinctive of eukaryotes. In contrast, gene expression and transcription initiation signals and factors are of the eucaryal type, which suggests a hybrid archaeal-bacterial complexion for the Hsp70 system. Another remarkable feature is that several archaeal species in different phylogenetic branches do not have the gene hsp70(dnaK), an evolutionary puzzle that raises the important question of what replaces the product of this gene, Hsp70(DnaK), in protein biogenesis and refolding and for stress resistance. Although archaea are prokaryotes like bacteria, their Hsp60 (chaperonin) family is of type (group) II, similar to that of the eukaryotic cytosol; however, unlike the latter, which has several different members, the archaeal chaperonin system usually includes only two (in some species one and in others possibly three) related subunits of ∼60 kDa. These

  11. Oxidative stress, free radicals and protein peroxides.

    PubMed

    Gebicki, Janusz M

    2016-04-01

    Primary free radicals generated under oxidative stress in cells and tissues produce a cascade of reactive secondary radicals, which attack biomolecules with efficiency determined by the reaction rate constants and target concentration. Proteins are prominent targets because they constitute the bulk of the organic content of cells and tissues and react readily with many of the secondary radicals. The reactions commonly lead to the formation of carbon-centered radicals, which generally convert in vivo to peroxyl radicals and finally to semistable hydroperoxides. All of these intermediates can initiate biological damage. This article outlines the advantages of the application of ionizing radiations to studies of radicals, with particular reference to the generation of desired radicals, studies of the kinetics of their reactions and correlating the results with events in biological systems. In one such application, formation of protein hydroperoxides in irradiated cells was inhibited by the intracellular ascorbate and glutathione.

  12. The stress response system of proteins: Implications for bioreactor scaleup

    NASA Technical Reports Server (NTRS)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  13. Effect of acute heat stress on plant nutrient metabolism proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abrupt heating decreased the levels (per unit total root protein) of all but one of the nutrient metabolism proteins examined, and for most of the proteins, effects were greater for severe vs. moderate heat stress. For many of the nutrient metabolism proteins, initial effects of heat (1 d) were r...

  14. Phospholemman: a novel cardiac stress protein.

    PubMed

    Cheung, Joseph Y; Zhang, Xue-Qian; Song, Jianliang; Gao, Erhe; Rabinowitz, Joseph E; Chan, Tung O; Wang, Jufang

    2010-08-01

    Phospholemman (PLM), a member of the FXYD family of regulators of ion transport, is a major sarcolemmal substrate for protein kinases A and C in cardiac and skeletal muscle. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. Functionally, when phosphorylated at serine(68), PLM stimulates Na(+)-K(+)-ATPase but inhibits Na(+)/Ca(2+) exchanger in cardiac myocytes. In heterologous expression systems, PLM modulates the gating of cardiac L-type Ca(2+) channel. Therefore, PLM occupies a key modulatory role in intracellular Na(+) and Ca(2+) homeostasis and is intimately involved in regulation of excitation-contraction (EC) coupling. Genetic ablation of PLM results in a slight increase in baseline cardiac contractility and prolongation of action potential duration. When hearts are subjected to catecholamine stress, PLM minimizes the risks of arrhythmogenesis by reducing Na(+) overload and simultaneously preserves inotropy by inhibiting Na(+)/Ca(2+) exchanger. In heart failure, both expression and phosphorylation state of PLM are altered and may partly account for abnormalities in EC coupling. The unique role of PLM in regulation of Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and potentially L-type Ca(2+) channel in the heart, together with the changes in its expression and phosphorylation in heart failure, make PLM a rational and novel target for development of drugs in our armamentarium against heart failure. Clin Trans Sci 2010; Volume 3: 189-196.

  15. A Nucleocytoplasmic Shuttling Protein in Oxidative Stress Tolerance

    SciTech Connect

    Ow, David W.; Song, Wen

    2003-03-26

    Plants for effective extraction of toxic metals and radionuclides must tolerate oxidative stress. To identify genes that enhance oxidative stress tolerance, an S. pombe cDNA expression plasmid library was screened for the ability to yield hypertolerant colonies. Here, we report on the properties of one gene that confers hypertolerance to cadmium and oxidizing chemicals. This gene appears to be conserved in other organisms as homologous genes are found in human, mouse, fruitfly and Arabidopsis. The fruitfly and Arabidopsis genes likewise enhance oxidative stress tolerance in fission yeast. During oxidative stress, the amount of mRNA does not change, but protein fusions to GFP relocate from the cytoplasm to the nucleus. The same pattern is observed with the Arabidopsis homologue-GFP fusion protein. This behavior suggests a signaling role in oxidative stress tolerance and these conserved proteins may be targets for engineering stress tolerant plants for phytoremediation.

  16. Antemortem stress regulates protein acetylation and glycolysis in postmortem muscle.

    PubMed

    Li, Zhongwen; Li, Xin; Wang, Zhenyu; Shen, Qingwu W; Zhang, Dequan

    2016-07-01

    Although exhaustive research has established that preslaughter stress is a major factor contributing to pale, soft, exudative (PSE) meat, questions remain regarding the biochemistry of postmortem glycolysis. In this study, the influence of preslaughter stress on protein acetylation in relationship to glycolysis was studied. The data show that antemortem swimming significantly enhanced glycolysis and the total acetylated proteins in postmortem longissimus dorsi (LD) muscle of mice. Inhibition of protein acetylation by histone acetyltransferase (HAT) inhibitors eliminated stress induced increase in glycolysis. Inversely, antemortem injection of histone deacetylase (HDAC) inhibitors, trichostatin A (TSA) and nicotinamide (NAM), further increased protein acetylation early postmortem and the glycolysis. These data provide new insight into the biochemistry of postmortem glycolysis by showing that protein acetylation regulates glycolysis, which may participate in the regulation of preslaughter stress on glycolysis in postmortem muscle.

  17. Effect of temperature stress on protein methyl esters

    SciTech Connect

    Welch, W.; Kracaw, K.

    1986-05-01

    Protein methyl esters have been implicated in a number of physiological processes. They have measured the effect of temperature stress on the levels of protein methyl esters in the mesophilic fungus Penicillium chrysogenum (PCPS) and the thermophilic fungus P. duponti (PD). PD and PCPS were incubated with (methyl-/sup 3/H)methionine. The mycelia were collected by filtration, frozen in liquid nitrogen and ground to a fine powder. The nitrogen powder was extracted with either phosphate buffer or with SDS, glycerol, phosphate, 2-mercaptoethanol. Insoluble material was removed by centrifugation. The supernatants were assayed for protein methyl esters. The released (/sup 3/H)methanol was extracted into toluene:isoamyl alcohol (3:2) and quantitated by liquid scintillation. The production of volatile methanol was confirmed by use of Conway diffusion cells. Soluble proteins accounted for about one-fourth of the total protein methyl ester extracted by SDS. In PCPS, the SDS extracted proteins have about three times the level of esterification of the soluble proteins whereas in PD there is little difference between soluble and SDS extracted protein. The level of protein esterification in PD is about one-tenth that observed in PCPS. Temperature stress caused large changes in the level of protein esterification. The data suggest protein methyl esters may contribute to the adaptation to environmental stress.

  18. Analysis of Protein Import into Chloroplasts Isolated from Stressed Plants.

    PubMed

    Ling, Qihua; Jarvis, Paul

    2016-11-01

    Chloroplasts are organelles with many vital roles in plants, which include not only photosynthesis but numerous other metabolic and signaling functions. Furthermore, chloroplasts are critical for plant responses to various abiotic stresses, such as salinity and osmotic stresses. A chloroplast may contain up to ~3,000 different proteins, some of which are encoded by its own genome. However, the majority of chloroplast proteins are encoded in the nucleus and synthesized in the cytosol, and these proteins need to be imported into the chloroplast through translocons at the chloroplast envelope membranes. Recent studies have shown that the chloroplast protein import can be actively regulated by stress. To biochemically investigate such regulation of protein import under stress conditions, we developed the method described here as a quick and straightforward procedure that can easily be achieved in any laboratory. In this method, plants are grown under normal conditions and then exposed to stress conditions in liquid culture. Plant material is collected, and chloroplasts are then released by homogenization. The crude homogenate is separated by density gradient centrifugation, enabling isolation of the intact chloroplasts. Chloroplast yield is assessed by counting, and chloroplast intactness is checked under a microscope. For the protein import assays, purified chloroplasts are incubated with (35)S radiolabeled in vitro translated precursor proteins, and time-course experiments are conducted to enable comparisons of import rates between genotypes under stress conditions. We present data generated using this method which show that the rate of protein import into chloroplasts from a regulatory mutant is specifically altered under osmotic stress conditions.

  19. Production of functional proteins: balance of shear stress and gravity

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

    2007-01-01

    The present invention provides a method for production of functional proteins including hormones by renal cells in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-a-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

  20. Production of functional proteins: balance of shear stress and gravity

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

    2004-01-01

    The present invention provides a method for production of functional proteins including hormones by renal cells in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-a-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

  1. Production of functional proteins: balance of shear stress and gravity

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

    2011-01-01

    A method for the production of functional proteins including hormones by renal cells in a three dimensional culturing process responsive to shear stress uses a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-.alpha.-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D.sub.3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating an in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

  2. Effects of stress and stress hormones on amyloid-beta protein and plaque deposition.

    PubMed

    Dong, Hongxin; Csernansky, John G

    2009-01-01

    Growing evidence indicates that physical and psychosocial stressors, in part acting through the hypothalamic-pituitary-adrenal (HPA) axis, may accelerate the process of Alzheimer's disease (AD). In this review, we summarize recent research related to the effects of stress and stress hormones on the various disease process elements associated with AD. Specifically, we focus on the relationships among chronic stressors, HPA axis activity, amyloid-beta protein, and amyloid-beta plaque deposition in mouse models of AD. The potential mechanisms by which stress and stress-related components, especially corticotrophin-releasing factor and its receptors, influence the pathogenesis of AD are discussed.

  3. Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana

    PubMed Central

    Paudel, Gagan; Bilova, Tatiana; Schmidt, Rico; Greifenhagen, Uta; Berger, Robert; Tarakhovskaya, Elena; Stöckhardt, Stefanie; Balcke, Gerd Ulrich; Humbeck, Klaus; Brandt, Wolfgang; Sinz, Andrea; Vogt, Thomas; Birkemeyer, Claudia; Wessjohann, Ludger; Frolov, Andrej

    2016-01-01

    Among the environmental alterations accompanying oncoming climate changes, drought is the most important factor influencing crop plant productivity. In plants, water deficit ultimately results in the development of oxidative stress and accumulation of osmolytes (e.g. amino acids and carbohydrates) in all tissues. Up-regulation of sugar biosynthesis in parallel to the increasing overproduction of reactive oxygen species (ROS) might enhance protein glycation, i.e. interaction of carbonyl compounds, reducing sugars and α-dicarbonyls with lysyl and arginyl side-chains yielding early (Amadori and Heyns compounds) and advanced glycation end-products (AGEs). Although the constitutive plant protein glycation patterns were characterized recently, the effects of environmental stress on AGE formation are unknown so far. To fill this gap, we present here a comprehensive in-depth study of the changes in Arabidopsis thaliana advanced glycated proteome related to osmotic stress. A 3 d application of osmotic stress revealed 31 stress-specifically and 12 differentially AGE-modified proteins, representing altogether 56 advanced glycation sites. Based on proteomic and metabolomic results, in combination with biochemical, enzymatic and gene expression analysis, we propose monosaccharide autoxidation as the main stress-related glycation mechanism, and glyoxal as the major glycation agent in plants subjected to drought. PMID:27856706

  4. Soy protein reduces paraquat-induced oxidative stress in rats.

    PubMed

    Aoki, Hisa; Otaka, Yukiko; Igarashi, Kiharu; Takenaka, Asako

    2002-08-01

    The effect of soy protein, soy isoflavones and saponins on paraquat (PQ)-induced oxidative stress was investigated in rats. Rats were fed experimental diets containing casein (CAS), soy protein (SPI), and casein with soy isoflavones and saponins (CAS + IS). The diets were supplemented or not with 0.025% paraquat (CAS + PQ, SPI + PQ, and CAS + IS + PQ). The protective effects of soy protein, soy isoflavones, and saponins on paraquat-induced oxidative stress were examined. Ingestion of soy protein generally mitigated the lung enlargement (P = 0.076), loss of body weight (P = 0.051) and oxidation of liver lipid (P = 0.043) and glutathione (P = 0.035) induced by paraquat, although soy isoflavones and saponins did not. To determine whether soy protein exerted its antioxidative effects by preventing paraquat absorption from digestive organs, rats were fed CAS or SPI diets and orally administered a 12.5 g/L paraquat solution. Plasma, urine, and fecal paraquat concentrations did not differ between the two groups, indicating that soy protein did not prevent paraquat absorption. The present study suggests that intake of soy protein itself, but not soy isoflavones and saponins, reduces paraquat-induced oxidative stress in rats, although this effect was not due to reduced absorption of paraquat from digestive organs.

  5. Oxidative stress, protein modification and Alzheimer disease.

    PubMed

    Tramutola, A; Lanzillotta, C; Perluigi, M; Butterfield, D Allan

    2016-06-15

    Alzheimer disease (AD) is a progressive neurodegenerative disease that affects the elderly population with complex etiology. Many hypotheses have been proposed to explain different causes of AD, but the exact mechanisms remain unclear. In this review, we focus attention on the oxidative-stress hypothesis of neurodegeneration and we discuss redox proteomics approaches to analyze post-mortem human brain from AD brain. Collectively, these studies have provided valuable insights into the molecular mechanisms involved both in the pathogenesis and progression of AD, demonstrating the impairment of numerous cellular processes such as energy production, cellular structure, signal transduction, synaptic function, mitochondrial function, cell cycle progression, and degradative systems. Each of these cellular functions normally contributes to maintain healthy neuronal homeostasis, so the deregulation of one or more of these functions could contribute to the pathology and clinical presentation of AD. In particular, we discuss the evidence demonstrating the oxidation/dysfunction of a number of enzymes specifically involved in energy metabolism that support the view that reduced glucose metabolism and loss of ATP are crucial events triggering neurodegeneration and progression of AD.

  6. Ozone stress proteins in pea plants

    SciTech Connect

    Beckett, P.; Mozley, D.; Price, A.; Hetherington, A.; Lea, P. )

    1989-04-01

    21 day old pea plants were fumigated with 200, 100, 50 and 0 ppb ozone (8 hrs/day) for 5 days. Soluble proteins were extracted from the first 6 leaves and analyzed by 1D SDS PAGE. Polypeptides were visualized after coomassie blue staining. With respect to controls, fumigation resulted in a dose dependent decrease in staining intensity of several polypeptides (of approximate M.W. 94, 54, 35 kD). However, treatment with 200 ppb ozone resulted in the appearance of a polypeptide with a molecular weight of circa 32 kD. This polypeptide was absent from control (0 ppb ozone) plants. Currently, we are (1) purifying the c32kD polypeptide, (2) studying the temporal aspects of the synthesis of this polypeptide and (3) investigating whether this represents a general response to pollutant gases.

  7. Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins.

    PubMed

    Das, Indrajit; Png, Chin Wen; Oancea, Iulia; Hasnain, Sumaira Z; Lourie, Rohan; Proctor, Martina; Eri, Rajaraman D; Sheng, Yong; Crane, Denis I; Florin, Timothy H; McGuckin, Michael A

    2013-06-03

    Endoplasmic reticulum (ER) stress in intestinal secretory cells has been linked with colitis in mice and inflammatory bowel disease (IBD). Endogenous intestinal glucocorticoids are important for homeostasis and glucocorticoid drugs are efficacious in IBD. In Winnie mice with intestinal ER stress caused by misfolding of the Muc2 mucin, the glucocorticoid dexamethasone (DEX) suppressed ER stress and activation of the unfolded protein response (UPR), substantially restoring goblet cell Muc2 production. In mice lacking inflammation, a glucocorticoid receptor antagonist increased ER stress, and DEX suppressed ER stress induced by the N-glycosylation inhibitor, tunicamycin (Tm). In cultured human intestinal secretory cells, in a glucocorticoid receptor-dependent manner, DEX suppressed ER stress and UPR activation induced by blocking N-glycosylation, reducing ER Ca(2+) or depleting glucose. DEX up-regulated genes encoding chaperones and elements of ER-associated degradation (ERAD), including EDEM1. Silencing EDEM1 partially inhibited DEX's suppression of misfolding-induced ER stress, showing that DEX enhances ERAD. DEX inhibited Tm-induced MUC2 precursor accumulation, promoted production of mature mucin, and restored ER exit and secretion of Winnie mutant recombinant Muc2 domains, consistent with enhanced protein folding. In IBD, glucocorticoids are likely to ameliorate ER stress by promoting correct folding of secreted proteins and enhancing removal of misfolded proteins from the ER.

  8. Folding propensity of intrinsically disordered proteins by osmotic stress

    SciTech Connect

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.; Pino, James C.; Chennubhotla, S. Chakra; Ramanathan, Arvind; O'Neill, Hugh Michael; Berthelier, Valerie; Stanley, Christopher B.

    2016-10-11

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scattering (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.

  9. Nitrosative Stress and Nitrated Proteins in Trichloroethene-Mediated Autoimmunity

    PubMed Central

    Wang, Gangduo; Wang, Jianling; Luo, Xuemei; Ansari, G. A. Shakeel; Khan, M. Firoze

    2014-01-01

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, has been linked to a variety of autoimmune diseases (ADs) including SLE, scleroderma and hepatitis. Mechanisms involved in the pathogenesis of ADs are largely unknown. Earlier studies from our laboratory in MRL+/+ mice suggested the contribution of oxidative/nitrosative stress in TCE-induced autoimmunity, and N-acetylcysteine (NAC) supplementation provided protection by attenuating oxidative stress. This study was undertaken to further evaluate the contribution of nitrosative stress in TCE-mediated autoimmunity and to identify proteins susceptible to nitrosative stress. Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, ∼250 mg/kg/day via drinking water). TCE exposure led to significant increases in serum anti-nuclear and anti-histone antibodies together with significant induction of iNOS and increased formation of nitrotyrosine (NT) in sera and livers. Proteomic analysis identified 14 additional nitrated proteins in the livers of TCE-treated mice. Furthermore, TCE exposure led to decreased GSH levels and increased activation of NF-κB. Remarkably, NAC supplementation not only ameliorated TCE-induced nitrosative stress as evident from decreased iNOS, NT, nitrated proteins, NF-κB p65 activation and increased GSH levels, but also the markers of autoimmunity, as evident from decreased levels of autoantibodies in the sera. These findings provide support to the role of nitrosative stress in TCE-mediated autoimmune response and identify specific nitrated proteins which could have autoimmune potential. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for designing therapeutic strategies. PMID:24892995

  10. Stress responses during ageing: molecular pathways regulating protein homeostasis.

    PubMed

    Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios

    2015-01-01

    The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.

  11. Artemin protects cells and proteins against oxidative and salt stress.

    PubMed

    Takalloo, Zeinab; Sajedi, Reza H; Hosseinkhani, Saman; Moazzenzade, Taghi

    2017-02-01

    Artemin is an abundant thermostable protein in Artemia encysted embryos under environmental stresses. It is confirmed that high regulatory expression of artemin is relevant to stress resistance in this crustacean. Here, the protective role of artemin from Artemia urmiana has been investigated on survival of bacterial cells under salt and oxidative shocks. Also, for continuous monitoring of the effect of artemin in prevention of proteins aggregation/inactivation, co-expression of artemin and luciferase (as an intracellular reporter) in bacterial cells was performed. According to the results, residual activity of luciferase in artemin expressing E. coli cells exposing to different concentrations of H2O2 and NaCl was significantly higher than non-expressing cells. The luciferase activity was rapidly lost in control cells under salt treatments while in co-transformed cells, the activity was considerably retained at higher salt concentrations. Also, analysis from cell viability assays showed that artemin-expressing cells exhibited more resistance to both stress conditions. In the present study, we document for the first time that artemin can protect proteins and bacterial cells against oxidative and salt stress conditions. These results can declare the resistance property of this crustacean against harsh environmental conditions.

  12. Ribosomal Proteins Control or Bypass p53 during Nucleolar Stress

    PubMed Central

    Russo, Annapina; Russo, Giulia

    2017-01-01

    The nucleolus is the site of ribosome biogenesis, a complex process that requires the coordinate activity of all three RNA polymerases and hundreds of non-ribosomal factors that participate in the maturation of ribosomal RNA (rRNA) and assembly of small and large subunits. Nevertheless, emerging studies have highlighted the fundamental role of the nucleolus in sensing a variety of cellular stress stimuli that target ribosome biogenesis. This condition is known as nucleolar stress and triggers several response pathways to maintain cell homeostasis, either p53-dependent or p53-independent. The mouse double minute (MDM2)-p53 stress signaling pathways are activated by multiple signals and are among the most important regulators of cellular homeostasis. In this review, we will focus on the role of ribosomal proteins in p53-dependent and p53-independent response to nucleolar stress considering novel identified regulators of these pathways. We describe, in particular, the role of ribosomal protein uL3 (rpL3) in p53-independent nucleolar stress signaling pathways. PMID:28085118

  13. Expression of heat stress proteins by human periodontal ligament cells.

    PubMed

    Sauk, J J; Norris, K; Foster, R; Moehring, J; Somerman, M J

    1988-11-01

    The purpose of the present report was to document the stress response produced by physical and chemical abuses to human periodontal ligament cells, and to review some of the known functions of stress response proteins produced as a result of such treatments. For these studies human PDL cells were exposed to sublethal challenges of 43 degrees C heat, sodium arsenite and the amino acid analog L-azetidine-2-carboxylic acid (AZC). The cells were labelled with [35S]-methionine and the proteins produced were examined by autofluorography of SDS-PAGE gels. Heat challenges were shown to induce hsps with an apparent mol. wts. of 90K, 68-72K, 41-47K, and 36 K. Arsenite-treated cells produced similar hsps including a 30k protein not produced by other forms of stress. AZC treatment resulted in the production of apparent functionless hsps with apparent molecular weights of 90,000, 72,000, 68,000 and 36,000. The function of these proteins and their possible role in periodontal disease is discussed.

  14. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview

    PubMed Central

    Gasser, Brigitte; Saloheimo, Markku; Rinas, Ursula; Dragosits, Martin; Rodríguez-Carmona, Escarlata; Baumann, Kristin; Giuliani, Maria; Parrilli, Ermenegilda; Branduardi, Paola; Lang, Christine; Porro, Danilo; Ferrer, Pau; Tutino, Maria Luisa; Mattanovich, Diethard; Villaverde, Antonio

    2008-01-01

    Different species of microorganisms including yeasts, filamentous fungi and bacteria have been used in the past 25 years for the controlled production of foreign proteins of scientific, pharmacological or industrial interest. A major obstacle for protein production processes and a limit to overall success has been the abundance of misfolded polypeptides, which fail to reach their native conformation. The presence of misfolded or folding-reluctant protein species causes considerable stress in host cells. The characterization of such adverse conditions and the elicited cell responses have permitted to better understand the physiology and molecular biology of conformational stress. Therefore, microbial cell factories for recombinant protein production are depicted here as a source of knowledge that has considerably helped to picture the extremely rich landscape of in vivo protein folding, and the main cellular players of this complex process are described for the most important cell factories used for biotechnological purposes. PMID:18394160

  15. Phage shock protein G, a novel ethanol-induced stress protein in Salmonella typhimurium.

    PubMed

    Shoae Hassani, Alireza; Malekzadeh, Feridon; Amirmozafari, Nour; Hamdi, Kasra; Ordouzadeh, Negar; Ghaemi, Amir

    2009-03-01

    Exposure to ethanol is a stress condition that Salmonella typhimurium often encounters during its life cycle. Food, beverage, drugs, and cosmetics have a long history of using alcohols to control pathogens. Ethanol is also commonly used for disinfecting medical instruments. This study was conducted to evaluate the ethanol stress variations on the protein profile, cell structure, and serologic features of S. typhimurium. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the phage shock protein G (pspG), a new ethanol-induced stress protein in cells adapted to 10% ethanol. The result was confirmed by liquid chromatography-mass spectrometry. The maximum quantity of this 9.02-kDa protein was produced in 12.5% (v/v) of ethanol-treated cultures. Scanning electron microscopy has demonstrated new phenotypic characteristics in bacterial structure. The cells were unable to undergo binary fission. This phenomenon explains the tight attachment of bacteria in a colony. Overall, ethanol extreme stress induced expression of new proteins like PspG and repression of some other proteins in S. typhimurium. These induction and repression processes have inflicted dramatic changes on Salmonella behaviors.

  16. Effect of External Electric Field Stress on Gliadin Protein Conformation

    PubMed Central

    Singh, Ashutosh; Munshi, Shirin; Raghavan, Vijaya

    2013-01-01

    A molecular dynamic (MD) modeling approach was applied to evaluate the effect of external electric field on gliadin protein structure and surface properties. Static electric field strengths of 0.001 V/nm and 0.002 V/nm induced conformational changes in the protein but had no significant effect on its surface properties. The study of hydrogen bond evolution during the course of simulation revealed that the root mean square deviation, radius of gyration and secondary structure formation, all depend significantly on the number hydrogen bonds formed. This study demonstrated that it is necessary to gain insight into protein dynamics under external electric field stress, in order to develop the novel food processing techniques that can be potentially used to reduce or eradicate food allergens. PMID:28250397

  17. Folding propensity of intrinsically disordered proteins by osmotic stress

    DOE PAGES

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.; ...

    2016-10-11

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scatteringmore » (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.« less

  18. Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity.

    PubMed

    Kupsco, Allison; Schlenk, Daniel

    2015-01-01

    Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems.

  19. Oxidative Stress, Unfolded Protein Response, and Apoptosis in Developmental Toxicity

    PubMed Central

    Kupsco, Allison; Schlenk, Daniel

    2016-01-01

    Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems. PMID:26008783

  20. A Chrysanthemum Heat Shock Protein Confers Tolerance to Abiotic Stress

    PubMed Central

    Song, Aiping; Zhu, Xirong; Chen, Fadi; Gao, Haishun; Jiang, Jiafu; Chen, Sumei

    2014-01-01

    Heat shock proteins are associated with protection against various abiotic stresses. Here, the isolation of a chrysanthemum cDNA belonging to the HSP70 family is reported. The cDNA, designated CgHSP70, encodes a 647-residue polypeptide, of estimated molecular mass 70.90 kDa and pI 5.12. A sub-cellular localization assay indicated that the cDNA product is deposited in the cytoplasm and nucleus. The performance of Arabidopsis thaliana plants constitutively expressing CgHSP70 demonstrated that the gene enhances tolerance to heat, drought and salinity. When CgHSP70 was stably over-expressed in chrysanthemum, the plants showed an increased peroxidase (POD) activity, higher proline content and inhibited malondialdehyde (MDA) content. After heat stress, drought or salinity the transgenic plants were better able to recover, demonstrating CgHSP70 positive effect. PMID:24663057

  1. [Stress proteins in the cells of Porphyra purpurea (Rhodophyta) thallus].

    PubMed

    Podlipaeva, Iu I; Ful'da, S; Gudkov, A V

    2014-01-01

    Heat shock proteins have been revealed for the first time by the methods of Western blotting using alkaline phosphatase and ECL in the cells of Porphyra purpurea from Kattegat area of the Baltic Sea in normal and experimental stress conditions. It was demonstrated with application of monoclonal anti-Hsp70 antibodies that a slight band about 70 kDa is present constitutively at the film; additionally the polypeptide of about 40 kDa ("Hsp40") has been detected. After heat shock at 28 degrees C during 1 hr significant "expenditure" of Hsp70 was observed, as well as the pronounced induction of "Hsp40"; the induction was expressed especially strongly in 24 hr after the stress application.

  2. NEURONATIN IS A STRESS-RESPONSIVE PROTEIN OF ROD PHOTORECEPTORS

    PubMed Central

    SHINDE, VISHAL; PITALE, PRIYAMVADA M.; HOWSE, WAYNE; GORBATYUK, OLEG; GORBATYUK, MARINA

    2016-01-01

    Neuronatin (NNAT) is a small transmembrane proteolipid that is highly expressed in the embryonic developing brain and several other peripheral tissues. This study is the first to provide evidence that NNAT is detected in the adult retina of various adult rod-dominant mammals, including wild-type (WT) rodents, transgenic rodents expressing mutant S334ter, P23H, or T17M rhodopsin, non-human primates, humans, and cone-dominant tree shrews. Immunohistochemical and quantitative real time polymerase chain reaction (qRT-PCR) analyses were applied to detect NNAT. Confocal microscopy analysis revealed that NNAT immunofluorescence is restricted to the outer segments (OSs) of photoreceptors without evidence of staining in other retinal cell types across all mammalian species. Moreover, in tree shrew retinas, we found NNAT to be co-localized with rhodopsin, indicating its predominant expression in rods. The rod-derived expression of NNAT was further confirmed by qRT-PCR in isolated rod photoreceptor cells. We also used these cells to mimic cellular stress in transgenic retinas by treating them with the endoplasmic reticulum stress inducer, tunicamycin. Thus, our data revealed accumulation of NNAT around the nucleus as compared to dispersed localization of NNAT within control cells. This distribution coincided with the partial intracellular mislocalization of NNAT to the outer nuclear layer observed in transgenic retinas. In addition, stressed retinas demonstrated an increase of NNAT mRNA and protein levels. Therefore, our study demonstrated that NNAT is a novel stress-responsive protein with a potential structural and/or functional role in adult mammalian retinas. PMID:27109921

  3. Distinct stress conditions result in aggregation of proteins with similar properties

    PubMed Central

    Weids, Alan J.; Ibstedt, Sebastian; Tamás, Markus J.; Grant, Chris M.

    2016-01-01

    Protein aggregation is the abnormal association of proteins into larger aggregate structures which tend to be insoluble. This occurs during normal physiological conditions and in response to age or stress-induced protein misfolding and denaturation. In this present study we have defined the range of proteins that aggregate in yeast cells during normal growth and after exposure to stress conditions including an oxidative stress (hydrogen peroxide), a heavy metal stress (arsenite) and an amino acid analogue (azetidine-2-carboxylic acid). Our data indicate that these three stress conditions, which work by distinct mechanisms, promote the aggregation of similar types of proteins probably by lowering the threshold of protein aggregation. The proteins that aggregate during physiological conditions and stress share several features; however, stress conditions shift the criteria for protein aggregation propensity. This suggests that the proteins in aggregates are intrinsically aggregation-prone, rather than being proteins which are affected in a stress-specific manner. We additionally identified significant overlaps between stress aggregating yeast proteins and proteins that aggregate during ageing in yeast and C. elegans. We suggest that similar mechanisms may apply in disease- and non-disease settings and that the factors and components that control protein aggregation may be evolutionary conserved. PMID:27086931

  4. Distinct stress conditions result in aggregation of proteins with similar properties.

    PubMed

    Weids, Alan J; Ibstedt, Sebastian; Tamás, Markus J; Grant, Chris M

    2016-04-18

    Protein aggregation is the abnormal association of proteins into larger aggregate structures which tend to be insoluble. This occurs during normal physiological conditions and in response to age or stress-induced protein misfolding and denaturation. In this present study we have defined the range of proteins that aggregate in yeast cells during normal growth and after exposure to stress conditions including an oxidative stress (hydrogen peroxide), a heavy metal stress (arsenite) and an amino acid analogue (azetidine-2-carboxylic acid). Our data indicate that these three stress conditions, which work by distinct mechanisms, promote the aggregation of similar types of proteins probably by lowering the threshold of protein aggregation. The proteins that aggregate during physiological conditions and stress share several features; however, stress conditions shift the criteria for protein aggregation propensity. This suggests that the proteins in aggregates are intrinsically aggregation-prone, rather than being proteins which are affected in a stress-specific manner. We additionally identified significant overlaps between stress aggregating yeast proteins and proteins that aggregate during ageing in yeast and C. elegans. We suggest that similar mechanisms may apply in disease- and non-disease settings and that the factors and components that control protein aggregation may be evolutionary conserved.

  5. Saccharomyces cerevisiae Tti2 Regulates PIKK Proteins and Stress Response

    PubMed Central

    Hoffman, Kyle S.; Duennwald, Martin L.; Karagiannis, Jim; Genereaux, Julie; McCarton, Alexander S.; Brandl, Christopher J.

    2016-01-01

    The TTT complex is composed of the three essential proteins Tel2, Tti1, and Tti2. The complex is required to maintain steady state levels of phosphatidylinositol 3-kinase-related kinase (PIKK) proteins, including mTOR, ATM/Tel1, ATR/Mec1, and TRRAP/Tra1, all of which serve as regulators of critical cell signaling pathways. Due to their association with heat shock proteins, and with newly synthesized PIKK peptides, components of the TTT complex may act as cochaperones. Here, we analyze the consequences of depleting the cellular level of Tti2 in Saccharomyces cerevisiae. We show that yeast expressing low levels of Tti2 are viable under optimal growth conditions, but the cells are sensitive to a number of stress conditions that involve PIKK pathways. In agreement with this, depleting Tti2 levels decreased expression of Tra1, Mec1, and Tor1, affected their localization and inhibited the stress responses in which these molecules are involved. Tti2 expression was not increased during heat shock, implying that it does not play a general role in the heat shock response. However, steady state levels of Hsp42 increase when Tti2 is depleted, and tti2L187P has a synthetic interaction with exon 1 of the human Huntingtin gene containing a 103 residue polyQ sequence, suggesting a general role in protein quality control. We also find that overexpressing Hsp90 or its cochaperones is synthetic lethal when Tti2 is depleted, an effect possibly due to imbalanced stoichiometry of a complex required for PIKK assembly. These results indicate that Tti2 does not act as a general chaperone, but may have a specialized function in PIKK folding and/or complex assembly. PMID:27172216

  6. A Universal Stress Protein Involved in Oxidative Stress Is a Phosphorylation Target for Protein Kinase CIPK6.

    PubMed

    Gutiérrez-Beltrán, Emilio; Personat, José María; de la Torre, Fernando; Del Pozo, Olga

    2017-01-01

    Calcineurin B-like interacting protein kinases (CIPKs) decode calcium signals upon interaction with the calcium sensors calcineurin B like proteins into phosphorylation events that result into adaptation to environmental stresses. Few phosphorylation targets of CIPKs are known and therefore the molecular mechanisms underlying their downstream output responses are not fully understood. Tomato (Solanum lycopersicum) Cipk6 regulates immune and susceptible Programmed cell death in immunity transforming Ca(2+) signals into reactive oxygen species (ROS) signaling. To investigate SlCipk6-induced molecular mechanisms and identify putative substrates, a yeast two-hybrid approach was carried on and a protein was identified that contained a Universal stress protein (Usp) domain present in bacteria, protozoa and plants, which we named "SlRd2". SlRd2 was an ATP-binding protein that formed homodimers in planta. SlCipk6 and SlRd2 interacted using coimmunoprecipitation and bimolecular fluorescence complementation (BiFC) assays in Nicotiana benthamiana leaves and the complex localized in the cytosol. SlCipk6 phosphorylated SlRd2 in vitro, thus defining, to our knowledge, a novel target for CIPKs. Heterologous SlRd2 overexpression in yeast conferred resistance to highly toxic LiCl, whereas SlRd2 expression in Escherichia coli UspA mutant restored bacterial viability in response to H2O2 treatment. Finally, transient expression of SlCipk6 in transgenic N benthamiana SlRd2 overexpressors resulted in reduced ROS accumulation as compared to wild-type plants. Taken together, our results establish that SlRd2, a tomato UspA, is, to our knowledge, a novel interactor and phosphorylation target of a member of the CIPK family, SlCipk6, and functionally regulates SlCipk6-mediated ROS generation.

  7. Stress-strain dependence for soy-protein nanofiber mats

    NASA Astrophysics Data System (ADS)

    Khansari, S.; Sinha-Ray, S.; Yarin, A. L.; Pourdeyhimi, B.

    2012-02-01

    Soy protein/nylon 6 monolithic and core-shell nanofibers were solution-blown and collected on a rotating drum as fiber mats. Tensile tests of rectangular strips of these mats revealed their stress-strain dependences. These dependences were linear at low strains which correspond to their elastic behavior. Then, a plastic-like nonlinearity sets in, which is followed by catastrophic rupture. Parameters such as Young's modulus, yield stress, and specific strain energy were measured. The results were rationalized in the framework of the phenomenological elastic-plastic model, as well as a novel micromechanical model (the latter attributes plasticity to bond rapture between the individual overstressed fibers in the mat). Besides, the effects of stretching history, rate of stretching, and winding velocity of the collector drum on the strength-related parameters are studied. The results for soy protein/nylon 6 nanofiber mats are also compared to those for solution blown pure nylon 6 mats, which were produced and tested in the same way.

  8. Opioid peptides derived from food proteins suppress aggregation and promote reactivation of partly unfolded stressed proteins.

    PubMed

    Artemova, N V; Bumagina, Z M; Kasakov, A S; Shubin, V V; Gurvits, B Ya

    2010-02-01

    A new view of the opioid peptides is presented. The potential of small peptides derived from precursor food proteins, to bind to partly unfolded stressed proteins to prevent their irreversible aggregation and inactivation has been demonstrated in various in vitro test systems: dithiothreitol-induced aggregation of alpha-lactalbumin (LA), heat-induced aggregation of alcohol dehydrogenase (ADH), and aggregation and inactivation of bovine erythrocyte carbonic anhydrase (CA) in the process of its refolding after removal of stress conditions. Using dynamic light scattering (DLS), turbidimetry, fluorescence, and circular dichroism measurements protective effects of the synthetic opioid peptides: exorphin C from wheat gluten (Tyr-Pro-Ile-Ser-Leu), rubiscolin-5 from spinach ribulose-bisphosphate-carboxylase/oxygenase (Rubisco) (Tyr-Pro-Leu-Asp-Leu), and hemorphin-6 from bovine hemoglobin (Tyr-Pro-Trp-Thr-Gln-Arg) have been revealed. We have demonstrated the concentration-dependent suppression of light scattering intensity of aggregates of LA and ADH in the presence of the peptides, the population of nanoparticles with higher hydrodynamic radii being shifted to the lower ones, accompanied by an increase in the lag period of aggregation. The presence of the peptides in the refolding solution was shown to assist reactivation of CA and enhance the yield of the CA soluble protein. The results suggest that bioactive food protein fragments may be regarded as exogenous supplements to the endogenous defense mechanisms of the human organism under stress conditions.

  9. Nuclear localization and phosphorylation of three 25-kilodalton rat stress proteins.

    PubMed Central

    Kim, Y J; Shuman, J; Sette, M; Przybyla, A

    1984-01-01

    The nuclear localization and phosphorylation of three 25-kilodalton rat myoblast stress proteins were examined. Data obtained in these analyses led to the following conclusions: (i) all three proteins become localized in the nucleus of stressed cells, (ii) two of the proteins are modified by phosphorylation, and (iii) phosphorylation occurs exclusively on serine residues. Images PMID:6717429

  10. DSSylation, a novel protein modification targets proteins induced by oxidative stress, and facilitates their degradation in cells.

    PubMed

    Zhang, Yinghao; Chang, Fang-Mei; Huang, Jianjun; Junco, Jacob J; Maffi, Shivani K; Pridgen, Hannah I; Catano, Gabriel; Dang, Hong; Ding, Xiang; Yang, Fuquan; Kim, Dae Joon; Slaga, Thomas J; He, Rongqiao; Wei, Sung-Jen

    2014-02-01

    Timely removal of oxidatively damaged proteins is critical for cells exposed to oxidative stresses; however, cellular mechanism for clearing oxidized proteins is not clear. Our study reveals a novel type of protein modification that may play a role in targeting oxidized proteins and remove them. In this process, DSS1 (deleted in split hand/split foot 1), an evolutionally conserved small protein, is conjugated to proteins induced by oxidative stresses in vitro and in vivo, implying oxidized proteins are DSS1 clients. A subsequent ubiquitination targeting DSS1-protein adducts has been observed, suggesting the client proteins are degraded through the ubiquitin-proteasome pathway. The DSS1 attachment to its clients is evidenced to be an enzymatic process modulated by an unidentified ATPase. We name this novel protein modification as DSSylation, in which DSS1 plays as a modifier, whose attachment may render target proteins a signature leading to their subsequent ubiquitination, thereby recruits proteasome to degrade them.

  11. Intracellular proteins produced by mammalian cells in response to environmental stress

    NASA Technical Reports Server (NTRS)

    Goochee, Charles F.; Passini, Cheryl A.

    1988-01-01

    The nature of the response of mammalian cells to environmental stress is examined by reviewing results of studies where cultured mouse L cells and baby hamster kidney cells were exposed to heat shock and the synthesis of heat-shock proteins and stress-response proteins (including HSP70, HSC70, HSP90, ubiquitin, and GRP70) in stressed and unstressed cells was evaluated using 2D-PAGE. The intracellular roles of the individual stress response proteins are discussed together with the regulation of the stress response system.

  12. Characterization of the Proteostasis Roles of Glycerol Accumulation, Protein Degradation and Protein Synthesis during Osmotic Stress in C. elegans

    PubMed Central

    Choung-Hee Lee, Elaine; Deonarine, Andrew; Strange, Kevin

    2012-01-01

    Exposure of C. elegans to hypertonic stress-induced water loss causes rapid and widespread cellular protein damage. Survival in hypertonic environments depends critically on the ability of worm cells to detect and degrade misfolded and aggregated proteins. Acclimation of C. elegans to mild hypertonic stress suppresses protein damage and increases survival under more extreme hypertonic conditions. Suppression of protein damage in acclimated worms could be due to 1) accumulation of the chemical chaperone glycerol, 2) upregulation of protein degradation activity, and/or 3) increases in molecular chaperoning capacity of the cell. Glycerol and other chemical chaperones are widely thought to protect proteins from hypertonicity-induced damage. However, protein damage is unaffected by gene mutations that inhibit glycerol accumulation or that cause dramatic constitutive elevation of glycerol levels. Pharmacological or RNAi inhibition of proteasome and lyosome function and measurements of cellular protein degradation activity demonstrated that upregulation of protein degradation mechanisms plays no role in acclimation. Thus, changes in molecular chaperone capacity must be responsible for suppressing protein damage in acclimated worms. Transcriptional changes in chaperone expression have not been detected in C. elegans exposed to hypertonic stress. However, acclimation to mild hypertonicity inhibits protein synthesis 50–70%, which is expected to increase chaperone availability for coping with damage to existing proteins. Consistent with this idea, we found that RNAi silencing of essential translational components or acute exposure to cycloheximide results in a 50–80% suppression of hypertonicity-induced aggregation of polyglutamine-YFP (Q35::YFP). Dietary changes that increase protein production also increase Q35::YFP aggregation 70–180%. Our results demonstrate directly for the first time that inhibition of protein translation protects extant proteins from damage

  13. The ER Stress Surveillance (ERSU) pathway regulates daughter cell ER protein aggregate inheritance.

    PubMed

    Piña, Francisco J; Niwa, Maho

    2015-09-01

    Stress induced by cytoplasmic protein aggregates can have deleterious consequences for the cell, contributing to neurodegeneration and other diseases. Protein aggregates are also formed within the endoplasmic reticulum (ER), although the fate of ER protein aggregates, specifically during cell division, is not well understood. By simultaneous visualization of both the ER itself and ER protein aggregates, we found that ER protein aggregates that induce ER stress are retained in the mother cell by activation of the ER Stress Surveillance (ERSU) pathway, which prevents inheritance of stressed ER. In contrast, under conditions of normal ER inheritance, ER protein aggregates can enter the daughter cell. Thus, whereas cytoplasmic protein aggregates are retained in the mother cell to protect the functional capacity of daughter cells, the fate of ER protein aggregates is determined by whether or not they activate the ERSU pathway to impede transmission of the cortical ER during the cell cycle.

  14. Quantitative proteomics reveals the effect of protein glycosylation in soybean root under flooding stress

    PubMed Central

    Mustafa, Ghazala; Komatsu, Setsuko

    2014-01-01

    Flooding stress has a negative impact on soybean cultivation because it severely impairs growth and development. To understand the flooding responsive mechanism in early stage soybeans, a glycoproteomic technique was used. Two-day-old soybeans were treated with flooding for 2 days and roots were collected. Globally, the accumulation level of glycoproteins, as revealed by cross-reaction with concanavalin A decreased by 2 days of flooding stress. Glycoproteins were enriched from total protein extracts using concanavalin A lectin resin and analyzed using a gel-free proteomic technique. One-hundred eleven and 69 glycoproteins were identified without and with 2 days of flooding stress, respectively. Functional categorization of these identified glycoproteins indicated that the accumulation level of proteins related to protein degradation, cell wall, and glycolysis increased, while stress-related proteins decreased under flooding stress. Also the accumulation level of glycoproteins localized in the secretory pathway decreased under flooding stress. Out of 23 common glycoproteins between control and flooding conditions, peroxidases and glycosyl hydrolases were decreased by 2 days of flooding stress. mRNA expression levels of proteins in the endoplasmic reticulum and N-glycosylation related proteins were downregulated by flooding stress. These results suggest that flooding might negatively affect the process of N-glycosylation of proteins related to stress and protein degradation; however glycoproteins involved in glycolysis are activated. PMID:25477889

  15. The Arabidopsis PLAT domain protein1 promotes abiotic stress tolerance and growth in tobacco.

    PubMed

    Hyun, Tae Kyung; Albacete, Alfonso; van der Graaff, Eric; Eom, Seung Hee; Großkinsky, Dominik K; Böhm, Hannah; Janschek, Ursula; Rim, Yeonggil; Ali, Walid Wahid; Kim, Soo Young; Roitsch, Thomas

    2015-08-01

    Plant growth and consequently crop yield can be severely compromised by abiotic and biotic stress conditions. Transgenic approaches that resulted in increased tolerance against abiotic stresses often were typically accompanied by adverse effects on plant growth and fitness under optimal growing conditions. Proteins that belong to the PLAT-plant-stress protein family harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and are ubiquitously present in monocot and dicot plant species. Until now, only limited data is available for PLAT-plant-stress family members, which suggested that these proteins in general could promote tolerance towards stress responses. We studied the function of the Arabidopsis PLAT-plant-stress protein AtPLAT1 employing heterologous gain-of-function analysis in tobacco. AtPLAT1 conferred increased abiotic stress tolerance in tobacco, evident by improved tolerance towards cold, drought and salt stresses, and promoted growth, reflected by a faster development under non-stressed conditions. However, the overexpression of AtPLAT1 in tobacco reduced the tolerance towards biotic stress conditions and, therefore, could be involved in regulating the crosstalk between abiotic and biotic stress responses. Thus, we showed that heterologously expressed AtPLAT1 functions as positive regulator of abiotic stress tolerance and plant growth, which could be an important new asset for strategies to develop plants with improved abiotic stress tolerance, without growth and subsequent yield penalties under optimal growth conditions.

  16. A First Line of Stress Defense: Small Heat Shock Proteins and their function in protein homeostasis

    PubMed Central

    Haslbeck, Martin; Vierling, Elizabeth

    2015-01-01

    Small heat shock proteins (sHsps) are virtually ubiquitous molecular chaperones that can prevent the irreversible aggregation of denaturing proteins. To maintain protein homeostasis, sHsps complex with a variety of nonnative proteins in an ATP-independent manner and, in the context of the stress response, form a first line of defense against protein aggregation. In vertebrates they act to maintain the clarity of the eye lens, and in humans sHsp mutations are linked to myopathies and neuropathies. Although found in all domains of life, sHsps are quite diverse and have evolved independently in metazoans, plants and fungi. sHsp monomers range in size from approximately 12 to 42 kDa and are defined by a conserved β-sandwich α-crystallin domain, flanked by variable N- and C-terminal sequences. Most sHsps form large oligomeric ensembles with a broad distribution of different, sphere- or barrel like oligomers, with the size and structure of the oligomers dictated by features of the N- and C-termini. The activity of sHsps is regulated by mechanisms that change the equilibrium distribution in tertiary features and/or quaternary structure of the sHsp ensembles. Cooperation and/or coassembly between different sHsps in the same cellular compartment adds an underexplored level of complexity to sHsp structure and function. PMID:25681016

  17. A first line of stress defense: small heat shock proteins and their function in protein homeostasis.

    PubMed

    Haslbeck, Martin; Vierling, Elizabeth

    2015-04-10

    Small heat shock proteins (sHsps) are virtually ubiquitous molecular chaperones that can prevent the irreversible aggregation of denaturing proteins. sHsps complex with a variety of non-native proteins in an ATP-independent manner and, in the context of the stress response, form a first line of defense against protein aggregation in order to maintain protein homeostasis. In vertebrates, they act to maintain the clarity of the eye lens, and in humans, sHsp mutations are linked to myopathies and neuropathies. Although found in all domains of life, sHsps are quite diverse and have evolved independently in metazoans, plants and fungi. sHsp monomers range in size from approximately 12 to 42kDa and are defined by a conserved β-sandwich α-crystallin domain, flanked by variable N- and C-terminal sequences. Most sHsps form large oligomeric ensembles with a broad distribution of different, sphere- or barrel-like oligomers, with the size and structure of the oligomers dictated by features of the N- and C-termini. The activity of sHsps is regulated by mechanisms that change the equilibrium distribution in tertiary features and/or quaternary structure of the sHsp ensembles. Cooperation and/or co-assembly between different sHsps in the same cellular compartment add an underexplored level of complexity to sHsp structure and function.

  18. Highly Precise Quantification of Protein Molecules per Cell During Stress and Starvation Responses in Bacillus subtilis *

    PubMed Central

    Maaβ, Sandra; Wachlin, Gerhild; Bernhardt, Jörg; Eymann, Christine; Fromion, Vincent; Riedel, Katharina; Becher, Dörte; Hecker, Michael

    2014-01-01

    Systems biology based on high quality absolute quantification data, which are mandatory for the simulation of biological processes, successively becomes important for life sciences. We provide protein concentrations on the level of molecules per cell for more than 700 cytosolic proteins of the Gram-positive model bacterium Bacillus subtilis during adaptation to changing growth conditions. As glucose starvation and heat stress are typical challenges in B. subtilis' natural environment and induce both, specific and general stress and starvation proteins, these conditions were selected as models for starvation and stress responses. Analyzing samples from numerous time points along the bacterial growth curve yielded reliable and physiologically relevant data suitable for modeling of cellular regulation under altered growth conditions. The analysis of the adaptational processes based on protein molecules per cell revealed stress-specific modulation of general adaptive responses in terms of protein amount and proteome composition. Furthermore, analysis of protein repartition during glucose starvation showed that biomass seems to be redistributed from proteins involved in amino acid biosynthesis to enzymes of the central carbon metabolism. In contrast, during heat stress most resources of the cell, namely those from amino acid synthetic pathways, are used to increase the amount of chaperones and proteases. Analysis of dynamical aspects of protein synthesis during heat stress adaptation revealed, that these proteins make up almost 30% of the protein mass accumulated during early phases of this stress. PMID:24878497

  19. Stress response in the ascidian Ciona intestinalis: transcriptional profiling of genes for the heat shock protein 70 chaperone system under heat stress and endoplasmic reticulum stress.

    PubMed

    Fujikawa, Tetsuya; Munakata, Takeo; Kondo, Shin-ichi; Satoh, Nori; Wada, Shuichi

    2010-03-01

    The genome of Ciona intestinalis contains eight genes for HSP70 superfamily proteins, 36 genes for J-proteins, a gene for a J-like protein, and three genes for BAG family proteins. To understand the stress responses of genes in the HSP70 chaperone system comprehensively, the transcriptional profiles of these 48 genes under heat stress and endoplasmic reticulum (ER) stress were studied using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Heat stress treatment increased the messenger RNA (mRNA) levels of six HSP70 superfamily genes, eight J-protein family genes, and two BAG family genes. In the cytoplasmic group of the DnaK subfamily of the HSP70 family, Ci-HSPA1/6/7-like was the only heat-inducible gene and Ci-HSPA2/8 was the only constitutively active gene which showed striking simplicity in comparison with other animals that have been examined genome-wide so far. Analyses of the time course and temperature dependency of the heat stress responses showed that the induction of Ci-HSPA1/6/7-like expression rises to a peak after heat stress treatment at 28 degrees C (10 degrees C upshift from control temperature) for 1 h. ER stress treatment with Brefeldin A, a drug that is known to act as ER stress inducer, increased the mRNA levels of four HSP70 superfamily genes and four J-protein family genes. Most stress-inducible genes are conserved between Ciona and vertebrates, as expected from a close evolutionary relationship between them. The present study characterized the stress responses of HSP70 chaperone system genes in Ciona for the first time and provides essential data for comprehensive understanding of the functions of the HSP70 chaperone system.

  20. Heat-resistant protein expression during germination of maize seeds under water stress.

    PubMed

    Abreu, V M; Silva Neta, I C; Von Pinho, E V R; Naves, G M F; Guimarães, R M; Santos, H O; Von Pinho, R G

    2016-08-12

    Low water availability is one of the factors that limit agricultural crop development, and hence the development of genotypes with increased water stress tolerance is a challenge in plant breeding programs. Heat-resistant proteins have been widely studied, and are reported to participate in various developmental processes and to accumulate in response to stress. This study aimed to evaluate heat-resistant protein expression under water stress conditions during the germination of maize seed inbreed lines differing in their water stress tolerance. Maize seed lines 91 and 64 were soaked in 0, -0.3, -0.6, and -0.9 MPa water potential for 0, 6, 12, 18, and 24 h. Line 91 is considered more water stress-tolerant than line 64. The analysis of heat-resistant protein expression was made by gel electrophoresis and spectrophotometry. In general, higher expression of heat-resistant proteins was observed in seeds from line 64 subjected to shorter soaking periods and lower water potentials. However, in the water stress-tolerant line 91, a higher expression was observed in seeds that were subjected to -0.3 and -0.6 MPa water potentials. In the absence of water stress, heat-resistant protein expression was reduced with increasing soaking period. Thus, there was a difference in heat-resistant protein expression among the seed lines differing in water stress tolerance. Increased heat-resistant protein expression was observed in seeds from line 91 when subjected to water stress conditions for longer soaking periods.

  1. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants.

    PubMed

    Liu, Jian-Xiang; Howell, Stephen H

    2010-09-01

    The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that protein folding is such a fastidious process and subject to adverse environmental conditions, the ER QC system appears to have been usurped to serve as an environmental sensor and responder in plants. Under stressful conditions, the ER protein folding machinery reaches a limit as the demands for protein folding exceed the capacity of the system. Under these conditions, misfolded or unfolded proteins accumulate in the ER, triggering an unfolded protein response (UPR). UPR mitigates ER stress by upregulating the expression of genes encoding components of the protein folding machinery or the ER-associated degradation system. In Arabidopsis thaliana, ER stress is sensed and stress signals are transduced by membrane-bound transcription factors, which are activated and mobilized under environmental stress conditions. Under acute or chronic stress conditions, UPR can also lead to apoptosis or programmed cell death. Despite recent progress in our understanding of plant protein QC, discovering how different environmental conditions are perceived is one of the major challenges in understanding this system. Since the ER QC system is one among many stress response systems in plants, another major challenge is determining the extent to which the ER QC system contributes to various stress responses in plants.

  2. Hypothesis: NDL proteins function in stress responses by regulating microtubule organization

    PubMed Central

    Khatri, Nisha; Mudgil, Yashwanti

    2015-01-01

    N-MYC DOWNREGULATED-LIKE proteins (NDL), members of the alpha/beta hydrolase superfamily were recently rediscovered as interactors of G-protein signaling in Arabidopsis thaliana. Although the precise molecular function of NDL proteins is still elusive, in animals these proteins play protective role in hypoxia and expression is induced by hypoxia and nickel, indicating role in stress. Homology of NDL1 with animal counterpart N-MYC DOWNREGULATED GENE (NDRG) suggests similar functions in animals and plants. It is well established that stress responses leads to the microtubule depolymerization and reorganization which is crucial for stress tolerance. NDRG is a microtubule-associated protein which mediates the microtubule organization in animals by causing acetylation and increases the stability of α-tubulin. As NDL1 is highly homologous to NDRG, involvement of NDL1 in the microtubule organization during plant stress can also be expected. Discovery of interaction of NDL with protein kinesin light chain- related 1, enodomembrane family protein 70, syntaxin-23, tubulin alpha-2 chain, as a part of G protein interactome initiative encourages us to postulate microtubule stabilizing functions for NDL family in plants. Our search for NDL interactors in G protein interactome also predicts the role of NDL proteins in abiotic stress tolerance management. Based on published report in animals and predicted interacting partners for NDL in G protein interactome lead us to hypothesize involvement of NDL in the microtubule organization during abiotic stress management in plants. PMID:26583023

  3. Amino Acid and Protein Metabolism in Bermuda Grass During Water Stress 12

    PubMed Central

    Barnett, N. M.; Naylor, A. W.

    1966-01-01

    The ability of Arizona Common and Coastal Bermuda grass [Cynodon dactylon (L.) Pers.] to synthesize amino acids and proteins during water stress was investigated. Amino acids were continually synthesized during the water stress treatments, but protein synthesis was inhibited and protein levels decreased. Water stress induced a 10- to 100-fold accumulation of free proline in shoots and a 2- to 6-fold accumulation of free asparagine, both of which are characteristic responses of water-stressed plants. Valine levels increased, and glutamic acid and alanine levels decreased. 14C labeling experiments showed that free proline turns over more slowly than any other free amino acid during water stress. This proline is readily synthesized and accumulated from glutamic acid. It is suggested that during water stress free proline functions as a storage compound. No significant differences were found in the amino acid and protein metabolism of the 2 varieties of Bermuda grass. PMID:16656387

  4. Molecular modeling of mechanical stresses on proteins in glassy matrices: Formalism

    NASA Astrophysics Data System (ADS)

    Hatch, Harold W.; Debenedetti, Pablo G.

    2012-07-01

    We present an expression for the calculation of microscopic stresses in molecular simulation, which is compatible with the use of electrostatic lattice sums such as the Ewald sum, with the presence of many-body interactions, and which allows local stresses to be calculated on surfaces of arbitrarily complex shape. The ultimate goal of this work is to investigate microscopic stresses on proteins in glassy matrices, which are used in the pharmaceutical industry for the long-term storage and stabilization of labile biomolecules. We demonstrate the formalism's usefulness through selected results on ubiquitin and an α-keratin fragment, in liquid and glassy states. We find that atomic-level normal stresses on hydrophilic side-chains exhibit a similar fingerprint in both proteins, and protein-level normal stresses increase upon vitrification. Both proteins experience compressive stresses of the order of 102 bar in the glassy state.

  5. Effect of thermal stress on protein expression in the mussel Mytilus galloprovincialis Lmk.

    PubMed

    González-Riopedre, M; Novás, A; Dobaño, E; Ramos-Martínez, J I; Barcia, R

    2007-07-01

    The exposure of organisms to stressing agents may affect the level and pattern of protein expression. Certain proteins with an important role in protein homeostasis and in the tolerance to stress, known as stress proteins, are especially affected. Different tissues and cells show a range of sensitivities to stress, depending on the habitat to which organisms have adapted. The response of different tissues and cells from the mussel Mytilus galloprovincialis Lmk. to heat shock has been studied in this work using different exposure times and temperatures. During the assays, protein expression was observed to vary depending on the tissue studied, the temperature or the exposure time used. But maybe the most prominent thing is the different response obtained from the cultured haemocytes and those freshly obtained from stressed mussels, which makes us think that the extraction procedure is the main cause of the response of non-cultured cells, although the haemolymph may contain components that modulate haemocyte response.

  6. The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease

    DTIC Science & Technology

    2016-07-01

    AWARD NUMBER: W81XWH-14-1-0203 TITLE: The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease PRINCIPAL...1 July 2015- 30 June 2016 4. TITLE AND SUBTITLE The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease 5a...We hypothesize that ER stress induced by glucose in diabetes promotes diabetic CKD through CRT stimulation of TGF-beta-dependent calcium/NFAT

  7. The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease

    DTIC Science & Technology

    2015-07-01

    1 AWARD NUMBER: W81XWH-14-1-0203 TITLE: The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease PRINCIPAL...COVERED 07/01/2014-06/30/2015 4. TITLE AND SUBTITLE The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease 5a...NUMBER(S) 13. SUPPLEMENTARY NOTES 14. ABSTRACT We hypothesize that ER stress induced by glucose in diabetes promotes diabetic CKD through CRT stimulation

  8. Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression.

    PubMed

    Adlard, P A; Cotman, C W

    2004-01-01

    Exercise is increasingly recognized as an intervention that can reduce CNS dysfunctions such as cognitive decline, depression and stress. Previously we have demonstrated that brain-derived neurotrophic factor (BDNF) is increased in the hippocampus following exercise. In this study we tested the hypothesis that exercise can counteract a reduction in hippocampal BDNF protein caused by acute immobilization stress. Since BDNF expression is suppressed by corticosterone (CORT), circulating CORT levels were also monitored. In animals subjected to 2 h immobilization stress, CORT was elevated immediately following, and at 1 h after the cessation of stress, but remained unchanged from baseline up to 24 h post-stress. The stress protocol resulted in a reduction in BDNF protein at 5 and 10 h post-stress that returned to baseline at 24 h. To determine if exercise could prevent this stress-induced reduction in BDNF protein, animals were given voluntary access to running wheels for 3 weeks prior to the stress. Stressed animals, in the absence of exercise, again demonstrated an initial elevation in CORT (at 0 h) and a subsequent decrease in hippocampal BDNF at the 10 h time point. Exercising animals, both non-stressed and stressed, demonstrated circulating CORT and hippocampal BDNF protein levels that were significantly elevated above control values at both time points examined (0 and 10 h post-stress). Thus, the persistently high CORT levels in exercised animals did not affect the induction of BDNF with exercise, and the effect of immobilization stress on BDNF protein was overcome. To examine the role of CORT in the stress-related regulation of BDNF protein, experiments were carried out in adrenalectomized (ADX) animals. BDNF protein was not downregulated as a result of immobilization stress in ADX animals, while there continued to be an exercise-induced upregulation of BDNF. This study demonstrates that CORT modulates stress-related alterations in BDNF protein. Further, exercise

  9. Phosphorylation of the mitochondrial protein Sab by stress-activated protein kinase 3.

    PubMed

    Court, Naomi W; Kuo, Ivana; Quigley, Oonagh; Bogoyevitch, Marie A

    2004-06-18

    Mitogen-activated protein kinases (MAPKs) transduce extracellular signals into responses such as growth, differentiation, and death through their phosphorylation of specific substrate proteins. Early studies showed the consensus sequence (Pro/X)-X-(Ser/Thr)-Pro to be phosphorylated by MAPKs. Docking domains such as the "kinase interaction motif" (KIM) also appear to be crucial for efficient substrate phosphorylation. Here, we show that stress-activated protein kinase-3 (SAPK3), a p38 MAPK subfamily member, localizes to the mitochondria. Activated SAPK3 phosphorylates the mitochondrial protein Sab, an in vitro substrate of c-Jun N-terminal kinase (JNK). Sab phosphorylation by SAPK3 was dependent on the most N-terminal KIM (KIM1) of Sab and occurred primarily on Ser321. This appeared to be dependent on the position of Ser321 within Sab and the sequence immediately surrounding it. Our results suggest that SAPK3 and JNK may share a common target at the mitochondria and provide new insights into the substrate recognition by SAPK3.

  10. Specific cross-reactivity of antibodies raised against two major stress proteins, stress 70 and chaperonin 60, in diverse species

    SciTech Connect

    Sanders, B.M.; Martin, L.S.; Nakagawa, P.A. ); Hunter, D.A. . Biologisk Inst.); Miller, S. ); Ullrich, S.J. . National Cancer Inst.)

    1994-08-01

    Immunoblot analysis using several antibodies raised against two major families of stress proteins, stress 70 and chaperonin 60 (cpn60), which are highly conserved in mammals, was carried out in diverse species often used in environmental research, including molluscs, annelids, crustaceans, echinoderms, and fish. The study revealed surprisingly different patterns of antibody cross-reactivity among species. The monoclonal anti-stress 70 antibody (mAb) C92 was the least cross-reactive for all species tested. The mAbs anti-stress 70 N27, BRM-22, and 3a3 were more broadly cross-reactive, but their binding specifities to stress 70 isoforms in the diverse species tested did not correlate with one another or follow taxonomic lines. The polyclonal anti-stress 70 antibody reacted to proteins in the 70 to 74 kDa range in all fish examined and in most invertebrates. When a polyclonal antibody (pAb) raised against cpn60 from a moth was used as a probe, specific binding was observed with proteins in the 60 to 64 kDa range in all fish examined and in most invertebrates. However, the size and number of isoforms that reacted with the pAb were species specific. These data suggest that these two major stress protein families are less highly conserved in invertebrates and fish than in mammals. Therefore, to minimize misinterpretation when using antibodies in heterologous assays with species in which the stress response has not been well characterized, it is important to determine which isoforms of stress 70 react with a particular antibody and to take into account the differential regulation of each member of this multigene family.

  11. Changes of testicular phosphorylated proteins in response to restraint stress in male rats*

    PubMed Central

    Arun, Supatcharee; Burawat, Jaturon; Sukhorum, Wannisa; Sampannang, Apichakan; Uabundit, Nongnut; Iamsaard, Sitthichai

    2016-01-01

    Objective: To investigate male reproductive parameters via changes of potential testicular protein markers in restraint-stress rats. Methods: Male Sprague-Dawley rats were divided into two groups (non-immobilized control and restraint-immobilized/stress groups, n=8 each group). The stress animals were immobilized (12 h/d) by a restraint cage for 7 consecutive days. All reproductive parameters, morphology and histology were observed and compared between groups. In addition, the expression of steroidogenic acute regulatory (StAR) and phosphotyrosine proteins (previously localized in Sertoli and late spermatid cells) in testicular lysate was assayed by immuno-Western blotting. Results: Testosterone level, sperm concentration and sperm head normality of stress rats were significantly decreased while the corticosterone level was increased as compared with the control (P<0.05). Histologically, stress rats showed low sperm mass in epididymal lumen and some atrophy of seminiferous tubules. Although the expression of testicular StAR protein was not significantly different between groups, changed patterns of the 131, 95, and 75 kDa testicular phosphorylated proteins were observed in the stress group compared with the control group. The intensity of a testicular 95-kDa phosphorylated protein was significantly decreased in stress rats. Conclusions: This study has demonstrated the alteration of testicular phosphorylated protein patterns, associated with adverse male reproductive parameters in stress rats. It could be an explanation of some infertility in stress males. PMID:26739523

  12. Spatially organized aggregation of misfolded proteins as cellular stress defense strategy.

    PubMed

    Miller, Stephanie B M; Mogk, Axel; Bukau, Bernd

    2015-04-10

    An evolutionary conserved response of cells to proteotoxic stress is the organized sequestration of misfolded proteins into subcellular deposition sites. In Saccharomyces cerevisiae, three major sequestration sites for misfolded proteins exist, IPOD (insoluble protein deposit), INQ (intranuclear quality control compartment) [former JUNQ (juxtanuclear quality control compartment)] and CytoQ. IPOD is perivacuolar and predominantly sequesters amyloidogenic proteins. INQ and CytoQs are stress-induced deposits for misfolded proteins residing in the nucleus and the cytosol, respectively, and requiring cell-compartment-specific aggregases, nuclear Btn2 and cytosolic Hsp42 for formation. The organized aggregation of misfolded proteins is proposed to serve several purposes collectively increasing cellular fitness and survival under proteotoxic stress. These include (i) shielding of cellular processes from interference by toxic protein conformers, (ii) reducing the substrate burden for protein quality control systems upon immediate stress, (iii) orchestrating chaperone and protease functions for efficient repair or degradation of damaged proteins [this involves initial extraction of aggregated molecules via the Hsp70/Hsp104 bi-chaperone system followed by either refolding or proteasomal degradation or removal of entire aggregates by selective autophagy (aggrephagy) involving the adaptor protein Cue5] and (iv) enabling asymmetric retention of protein aggregates during cell division, thereby allowing for damage clearance in daughter cells. Regulated protein aggregation thus serves cytoprotective functions vital for the maintenance of cell integrity and survival even under adverse stress conditions and during aging.

  13. ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation.

    PubMed

    Seo, Ji Hae; Park, Ji-Hyeon; Lee, Eun Ji; Vo, Tam Thuy Lu; Choi, Hoon; Kim, Jun Yong; Jang, Jae Kyung; Wee, Hee-Jun; Lee, Hye Shin; Jang, Se Hwan; Park, Zee Yong; Jeong, Jaeho; Lee, Kong-Joo; Seok, Seung-Hyeon; Park, Jin Young; Lee, Bong Jin; Lee, Mi-Ni; Oh, Goo Taeg; Kim, Kyu-Won

    2016-10-06

    Heat shock protein (Hsp)70 is a molecular chaperone that maintains protein homoeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. However, the mechanisms by which Hsp70 balances these opposing functions under stress conditions remain unknown. Here, we demonstrate that Hsp70 preferentially facilitates protein refolding after stress, gradually switching to protein degradation via a mechanism dependent on ARD1-mediated Hsp70 acetylation. During the early stress response, Hsp70 is immediately acetylated by ARD1 at K77, and the acetylated Hsp70 binds to the co-chaperone Hop to allow protein refolding. Thereafter, Hsp70 is deacetylated and binds to the ubiquitin ligase protein CHIP to complete protein degradation during later stages. This switch is required for the maintenance of protein homoeostasis and ultimately rescues cells from stress-induced cell death in vitro and in vivo. Therefore, ARD1-mediated Hsp70 acetylation is a regulatory mechanism that temporally balances protein refolding/degradation in response to stress.

  14. ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation

    PubMed Central

    Seo, Ji Hae; Park, Ji-Hyeon; Lee, Eun Ji; Vo, Tam Thuy Lu; Choi, Hoon; Kim, Jun Yong; Jang, Jae Kyung; Wee, Hee-Jun; Lee, Hye Shin; Jang, Se Hwan; Park, Zee Yong; Jeong, Jaeho; Lee, Kong-Joo; Seok, Seung-Hyeon; Park, Jin Young; Lee, Bong Jin; Lee, Mi-Ni; Oh, Goo Taeg; Kim, Kyu-Won

    2016-01-01

    Heat shock protein (Hsp)70 is a molecular chaperone that maintains protein homoeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. However, the mechanisms by which Hsp70 balances these opposing functions under stress conditions remain unknown. Here, we demonstrate that Hsp70 preferentially facilitates protein refolding after stress, gradually switching to protein degradation via a mechanism dependent on ARD1-mediated Hsp70 acetylation. During the early stress response, Hsp70 is immediately acetylated by ARD1 at K77, and the acetylated Hsp70 binds to the co-chaperone Hop to allow protein refolding. Thereafter, Hsp70 is deacetylated and binds to the ubiquitin ligase protein CHIP to complete protein degradation during later stages. This switch is required for the maintenance of protein homoeostasis and ultimately rescues cells from stress-induced cell death in vitro and in vivo. Therefore, ARD1-mediated Hsp70 acetylation is a regulatory mechanism that temporally balances protein refolding/degradation in response to stress. PMID:27708256

  15. Application of proteomics to investigate stress-induced proteins for improvement in crop protection.

    PubMed

    Afroz, Amber; Ali, Ghulam Muhammad; Mir, Asif; Komatsu, Setsuko

    2011-05-01

    Proteomics has contributed to defining the specific functions of genes and proteins involved in plant-pathogen interactions. Proteomic studies have led to the identification of many pathogenicity and defense-related genes and proteins expressed during phytopathogen infections, resulting in the collection of an enormous amount of data. However, the molecular basis of plant-pathogen interactions remains an intensely active area of investigation. In this review, the role of differential analysis of proteins expressed during fungal, bacterial, and viral infection is discussed, as well as the role of JA and SA in the production of stress related proteins. Resistance acquired upon induction of stress related proteins in intact plant leaves is mediated by potentiation of pathogens via signal elicitors. Stress related genes extensively used in biotechnology had been cited. Stress related proteins identified must be followed through for studying the molecular mechanism for plant defense against pathogens.

  16. Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress

    PubMed Central

    Oh, MyeongWon; Nanjo, Yohei; Komatsu, Setsuko

    2014-01-01

    Soybean is sensitive to flooding stress and exhibits reduced growth under flooding conditions. To better understand the flooding-responsive mechanisms of soybean, the effect of exogenous calcium on flooding-stressed soybeans was analyzed using proteomic technique. An increase in exogenous calcium levels enhanced soybean root elongation and suppressed the cell death of root tip under flooding stress. Proteins were extracted from the roots of 4-day-old soybean seedlings exposed to flooding stress without or with calcium for 2 days and analyzed using gel-free proteomic technique. Proteins involved in protein degradation/synthesis/posttranslational modification, hormone/cell wall metabolisms, and DNA synthesis were decreased by flooding stress; however, their reductions were recovered by calcium treatment. Development, lipid metabolism, and signaling-related proteins were increased in soybean roots when calcium was supplied under flooding stress. Fermentation and glycolysis-related proteins were increased in response to flooding; however, these proteins were not affected by calcium supplementation. Furthermore, urease and copper chaperone proteins exhibited similar profiles in 4-day-old untreated soybeans and 4-day-old soybeans exposed to flooding for 2 days in the presence of calcium. These results suggest that calcium might affect the cell wall/hormone metabolisms, protein degradation/synthesis, and DNA synthesis in soybean roots under flooding stress. PMID:25368623

  17. Identification of nuclear proteins in soybean under flooding stress using proteomic technique.

    PubMed

    Oh, Myeong Won; Nanjo, Yohei; Komatsu, Setsuko

    2014-05-01

    Flooding stress restricts soybean growth, it results in decrease the production. In this report, to understand how nuclear proteins in soybean affected by flooding, abundance changes of those proteins was analyzed. Nuclear proteins were extracted from the root tips of soybean treated with or without flooding stress. The extracted proteins were analyzed using a label-free quantitative proteomic technique. Of a total of 94 nuclear proteins that were found to be responsive to flooding, the 19 and 75 proteins were increased and decreased, respectively. The identified flooding-responsive proteins were functionally classified, revealing that 8 increased proteins changed in protein synthesis, posttranslational modification, and protein degradation, while 34 decreased proteins were involved in transcription, RNA processing, DNA synthesis, and chromatin structure maintenance. Among these proteins, those whose levels changed more than 10 fold included two poly ADP-ribose polymerases and a novel G-domain-containing protein that might be involved in RNA binding. The mRNA expression levels of these three proteins indicated a similar tendency to their protein abundance changes. These results suggest that acceleration of protein poly-ADP-ribosylation and suppression of RNA metabolism may be involved in root tip of soybean under flooding stress.

  18. Overexpression of a Cytosolic Abiotic Stress Responsive Universal Stress Protein (SbUSP) Mitigates Salt and Osmotic Stress in Transgenic Tobacco Plants

    PubMed Central

    Udawat, Pushpika; Jha, Rajesh K.; Sinha, Dinkar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and O2− radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant. PMID:27148338

  19. Calcineurin B-Like Protein-Interacting Protein Kinase CIPK21 Regulates Osmotic and Salt Stress Responses in Arabidopsis.

    PubMed

    Pandey, Girdhar K; Kanwar, Poonam; Singh, Amarjeet; Steinhorst, Leonie; Pandey, Amita; Yadav, Akhlilesh K; Tokas, Indu; Sanyal, Sibaji K; Kim, Beom-Gi; Lee, Sung-Chul; Cheong, Yong-Hwa; Kudla, Jörg; Luan, Sheng

    2015-09-01

    The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.

  20. Protein Mediated Oxidative Stress in Patients with Diabetes and its Associated Neuropathy: Correlation with Protein Carbonylation and Disease Activity Markers

    PubMed Central

    Almogbel, Ebtehal

    2017-01-01

    Introduction Free radicals have been implicated as Diabetes Mellitus (DM) contributors in type 2 DM and its associated Diabetes Mellitus Neuropathy (DMN). However, the potential for protein mediated oxidative stress to contribute disease pathogenesis remains largely unexplored. Aim To investigate the status and contribution of protein mediated oxidative stress in patients with DM or DMN and to explore whether oxidative protein modification has a role in DM progression to DM associated neuropathy. Materials and Methods Sera from 42 DM and 37 DMN patients with varying levels of disease activities biomarkers (HbA1C, patients’ age or disease duration) and 21 age- and sex-matched healthy controls were evaluated for serum levels of protein mediated oxidative stress. Results Serum analysis showed significantly higher levels of protein carbonyl contents in both DM and DMN patients compared with healthy controls. Importantly, not only was there an increased number of subjects positive for protein carbonylation, but also the levels of protein carbonyl contents were significantly higher among DM and DMN patients, whose HbA1C were ≥8.8 as compared with patients with lower HbA1C (HbA1C<8.8). Similar pattern of protein carbonyls formation was also observed with patients’ ages or with patient’s disease durations, suggesting a possible relationship between protein oxidation and disease progression. Furthermore, sera from DMN patients had higher levels of protein carbonylation compared with non-neuropathic DM patients’ sera, suggesting an involvement of protein oxidation in the progression of diabetes to diabetes neuropathy. Conclusion These findings support an association between protein oxidation and DM or DMN progression. The stronger response observed in patients with higher HbA1C or patients’ ages or disease durations suggests, that protein mediated oxidative stress may be useful in evaluating the progression of DM and its associated DMN and in elucidating the

  1. ClpB/Hsp100 proteins and heat stress tolerance in plants.

    PubMed

    Mishra, Ratnesh Chandra; Grover, Anil

    2016-10-01

    High-temperature stress can disrupt cellular proteostasis, resulting in the accumulation of insoluble protein aggregates. For survival under stressful conditions, it is important for cells to maintain a pool of native soluble proteins by preventing and/or dissociating these aggregates. Chaperones such as GroEL/GroES (Hsp60/Hsp10) and DnaK/DnaJ/GrpE (Hsp70/Hsp40/nucleotide exchange factor) help cells minimize protein aggregation. Protein disaggregation is accomplished by chaperones belonging to the Caseinolytic Protease (Clp) family of proteins. ClpB/Hsp100 proteins are strikingly ubiquitous and are found in bacteria, yeast and multi-cellular plants. The expression of these proteins is regulated by heat stress (HS) and developmental cues. Bacteria and yeast contain one and two forms of ClpB proteins, respectively. Plants possess multiple forms of these proteins that are localized to different cellular compartments (i.e. cytoplasm/nucleus, chloroplast or mitochondria). Overwhelming evidence suggests that ClpB/Hsp100 proteins play decisive roles in cell adaptation to HS. Mutant bacteria and yeast cells lacking active ClpB/Hsp100 proteins are critically sensitive to high-temperature stress. Likewise, Arabidopsis, maize and rice mutants lacking cytoplasmic ClpB proteins are very sensitive to heat. In this study, we present the structural and functional attributes of plant ClpB forms.

  2. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    EPA Science Inventory

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ)induce oxidative stress by redox cycling, which generates hydrogen peroxide (H202). Cysteinylthio...

  3. Tau protein is essential for stress-induced brain pathology

    PubMed Central

    Lopes, Sofia; Vaz-Silva, João; Pinto, Vitor; Dalla, Christina; Kokras, Nikolaos; Bedenk, Benedikt; Mack, Natalie; Czisch, Michael; Almeida, Osborne F. X.; Sousa, Nuno; Sotiropoulos, Ioannis

    2016-01-01

    Exposure to chronic stress is frequently accompanied by cognitive and affective disorders in association with neurostructural adaptations. Chronic stress was previously shown to trigger Alzheimer’s-like neuropathology, which is characterized by Tau hyperphosphorylation and missorting into dendritic spines followed by memory deficits. Here, we demonstrate that stress-driven hippocampal deficits in wild-type mice are accompanied by synaptic missorting of Tau and enhanced Fyn/GluN2B-driven synaptic signaling. In contrast, mice lacking Tau [Tau knockout (Tau-KO) mice] do not exhibit stress-induced pathological behaviors and atrophy of hippocampal dendrites or deficits of hippocampal connectivity. These findings implicate Tau as an essential mediator of the adverse effects of stress on brain structure and function. PMID:27274066

  4. Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins.

    PubMed

    Hightower, L E; Guidon, P T

    1989-02-01

    Cultured rat embryo cells were stimulated to rapidly release a small group of proteins that included several heat-shock proteins (hsp110, hsp71, hscp73) and nonmuscle actin. The extracellular proteins were analyzed by two-dimensional polyacrylamide gel electrophoresis. Heat-shocked cells released the same set of proteins as control cells with the addition of the stress-inducible hsp110 and hsp71. Release of these proteins was not blocked by either monensin or colchicine, inhibitors of the common secretory pathway. A small amount of the glucose-regulated protein grp78 was externalized by this pathway. The extracellular accumulation of these proteins was inhibited after they were synthesized in the presence of the lysine analogue aminoethyl cysteine. It is likely that the analogue-substituted proteins were misfolded and could not be released from cells, supporting our conclusion that a selective release mechanism is involved. Remarkably, actin and the squid heat-shock proteins homologous to rat hsp71 and hsp110 are also among a select group of proteins transferred from glial cells to the squid giant axon, where they have been implicated in neuronal stress responses (Tytell et al.: Brain Res., 363:161-164, 1986). Based in part on the similarities between these two sets of proteins, we hypothesized that these proteins were released from labile cortical regions of animal cells in response to perturbations of homeostasis in cells as evolutionarily distinct as cultured rat embryo cells and squid glial cells.

  5. The Arabidopsis PLAT domain protein1 is critically involved in abiotic stress tolerance.

    PubMed

    Hyun, Tae Kyung; van der Graaff, Eric; Albacete, Alfonso; Eom, Seung Hee; Großkinsky, Dominik K; Böhm, Hannah; Janschek, Ursula; Rim, Yeonggil; Ali, Walid Wahid; Kim, Soo Young; Roitsch, Thomas

    2014-01-01

    Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions. Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant growth, and thereby assigned a function to this previously uncharacterised PLAT domain protein. The functional data obtained for PLAT1 support that PLAT-plant-stress proteins in general could be promising targets for improving abiotic stress tolerance without yield penalty.

  6. WRKY Proteins: Signaling and Regulation of Expression during Abiotic Stress Responses

    PubMed Central

    Banerjee, Aditya

    2015-01-01

    WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research. PMID:25879071

  7. Protein aggregation activates erratic stress response in dietary restricted yeast cells

    PubMed Central

    Bhadra, Ankan Kumar; Das, Eshita; Roy, Ipsita

    2016-01-01

    Chronic stress and prolonged activation of defence pathways have deleterious consequences for the cell. Dietary restriction is believed to be beneficial as it induces the cellular stress response machinery. We report here that although the phenomenon is beneficial in a wild-type cell, dietary restriction leads to an inconsistent response in a cell that is already under proteotoxicity-induced stress. Using a yeast model of Huntington’s disease, we show that contrary to expectation, aggregation of mutant huntingtin is exacerbated and activation of the unfolded protein response pathway is dampened under dietary restriction. Global proteomic analysis shows that when exposed to a single stress, either protein aggregation or dietary restriction, the expression of foldases like peptidyl-prolyl isomerase, is strongly upregulated. However, under combinatorial stress, this lead is lost, which results in enhanced protein aggregation and reduced cell survival. Successful designing of aggregation-targeted therapeutics will need to take additional stressors into account. PMID:27633120

  8. Biomolecular Stress-Sensitive Gauges: Surface-Mediated Immobilization of Mechanosensitive Membrane Protein

    DTIC Science & Technology

    2003-01-01

    Immobilization of Mechanosensitive Membrane Protein 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...8-98) Prescribed by ANSI Std Z39-18 Biomolecular Stress-Sensitive Gauges: Surface-Mediated Immobilization of Mechanosensitive Membrane Protein...biomolecular gauges.1 Studies of a mechanosensitive protein of large conductance (MscL) had shown that a dramatic change in the protein conformation

  9. Electrophoresis and spectrometric analyses of adaptation-related proteins in thermally stressed Chromobacterium violaceum.

    PubMed

    Cordeiro, I B; Castro, D P; Nogueira, P P O; Angelo, P C S; Nogueira, P A; Gonçalves, J F C; Pereira, A M R F; Garcia, J S; Souza, G H M F; Arruda, M A Z; Eberlin, M N; Astolfi-Filho, S; Andrade, E V; López-Lozano, J L

    2013-10-29

    Chromobacterium violaceum is a Gram-negative proteobacteria found in water and soil; it is widely distributed in tropical and subtropical regions, such as the Amazon rainforest. We examined protein expression changes that occur in C. violaceum at different growth temperatures using electrophoresis and mass spectrometry. The total number of spots detected was 1985; the number ranged from 99 to 380 in each assay. The proteins that were identified spectrometrically were categorized as chaperones, proteins expressed exclusively under heat stress, enzymes involved in the respiratory and fermentation cycles, ribosomal proteins, and proteins related to transport and secretion. Controlling inverted repeat of chaperone expression and inverted repeat DNA binding sequences, as well as regions recognized by sigma factor 32, elements involved in the genetic regulation of the bacterial stress response, were identified in the promoter regions of several of the genes coding proteins, involved in the C. violaceum stress response. We found that 30 °C is the optimal growth temperature for C. violaceum, whereas 25, 35, and 40 °C are stressful temperatures that trigger the expression of chaperones, superoxide dismutase, a probable small heat shock protein, a probable phasing, ferrichrome-iron receptor protein, elongation factor P, and an ornithine carbamoyltransferase catabolite. This information improves our comprehension of the mechanisms involved in stress adaptation by C. violaceum.

  10. Impact of Post-Translational Modifications of Crop Proteins under Abiotic Stress

    PubMed Central

    Hashiguchi, Akiko; Komatsu, Setsuko

    2016-01-01

    The efficiency of stress-induced adaptive responses of plants depends on intricate coordination of multiple signal transduction pathways that act coordinately or, in some cases, antagonistically. Protein post-translational modifications (PTMs) can regulate protein activity and localization as well as protein–protein interactions in numerous cellular processes, thus leading to elaborate regulation of plant responses to various external stimuli. Understanding responses of crop plants under field conditions is crucial to design novel stress-tolerant cultivars that maintain robust homeostasis even under extreme conditions. In this review, proteomic studies of PTMs in crops are summarized. Although the research on the roles of crop PTMs in regulating stress response mechanisms is still in its early stage, several novel insights have been retrieved so far. This review covers techniques for detection of PTMs in plants, representative PTMs in plants under abiotic stress, and how PTMs control functions of representative proteins. In addition, because PTMs under abiotic stresses are well described in soybeans under submergence, recent findings in PTMs of soybean proteins under flooding stress are introduced. This review provides information on advances in PTM study in relation to plant adaptations to abiotic stresses, underlining the importance of PTM study to ensure adequate agricultural production in the future. PMID:28248251

  11. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress.

    PubMed

    van Galen, Peter; Kreso, Antonija; Mbong, Nathan; Kent, David G; Fitzmaurice, Timothy; Chambers, Joseph E; Xie, Stephanie; Laurenti, Elisa; Hermans, Karin; Eppert, Kolja; Marciniak, Stefan J; Goodall, Jane C; Green, Anthony R; Wouters, Bradly G; Wienholds, Erno; Dick, John E

    2014-06-12

    The blood system is sustained by a pool of haematopoietic stem cells (HSCs) that are long-lived due to their capacity for self-renewal. A consequence of longevity is exposure to stress stimuli including reactive oxygen species (ROS), nutrient fluctuation and DNA damage. Damage that occurs within stressed HSCs must be tightly controlled to prevent either loss of function or the clonal persistence of oncogenic mutations that increase the risk of leukaemogenesis. Despite the importance of maintaining cell integrity throughout life, how the HSC pool achieves this and how individual HSCs respond to stress remain poorly understood. Many sources of stress cause misfolded protein accumulation in the endoplasmic reticulum (ER), and subsequent activation of the unfolded protein response (UPR) enables the cell to either resolve stress or initiate apoptosis. Here we show that human HSCs are predisposed to apoptosis through strong activation of the PERK branch of the UPR after ER stress, whereas closely related progenitors exhibit an adaptive response leading to their survival. Enhanced ER protein folding by overexpression of the co-chaperone ERDJ4 (also called DNAJB9) increases HSC repopulation capacity in xenograft assays, linking the UPR to HSC function. Because the UPR is a focal point where different sources of stress converge, our study provides a framework for understanding how stress signalling is coordinated within tissue hierarchies and integrated with stemness. Broadly, these findings reveal that the HSC pool maintains clonal integrity by clearance of individual HSCs after stress to prevent propagation of damaged stem cells.

  12. Increased temporal cortex ER stress proteins in depressed subjects who died by suicide.

    PubMed

    Bown, C; Wang, J F; MacQueen, G; Young, L T

    2000-03-01

    Regulation of ER stress proteins, such as the 78-kilodalton glucose regulated protein (GRP78) by chronic treatment with mood stabilizing drugs suggests that this family of proteins may be involved in the pathophysiology of mood disorders. Indeed, increased levels of GRP78, GRP94, and calreticulin, a third member of the ER stress protein family, were found in temporal cortex of subjects with major depressive disorder who died by suicide compared with controls and subjects who died by other means. No such differences were found in subjects with other psychiatric disorders such as bipolar disorder or schizophrenia. These data suggest a potential role for ER stress proteins in severe depression that merits further study.

  13. Shear-stress-mediated refolding of proteins from aggregates and inclusion bodies.

    PubMed

    Yuan, Tom Z; Ormonde, Callum F G; Kudlacek, Stephan T; Kunche, Sameeran; Smith, Joshua N; Brown, William A; Pugliese, Kaitlin M; Olsen, Tivoli J; Iftikhar, Mariam; Raston, Colin L; Weiss, Gregory A

    2015-02-09

    Recombinant protein overexpression of large proteins in bacteria often results in insoluble and misfolded proteins directed to inclusion bodies. We report the application of shear stress in micrometer-wide, thin fluid films to refold boiled hen egg white lysozyme, recombinant hen egg white lysozyme, and recombinant caveolin-1. Furthermore, the approach allowed refolding of a much larger protein, cAMP-dependent protein kinase A (PKA). The reported methods require only minutes, which is more than 100 times faster than conventional overnight dialysis. This rapid refolding technique could significantly shorten times, lower costs, and reduce waste streams associated with protein expression for a wide range of industrial and research applications.

  14. Mitochondrial respiratory dysfunction-elicited oxidative stress and posttranslational protein modification in mitochondrial diseases.

    PubMed

    Wu, Yu-Ting; Wu, Shi-Bei; Lee, Wan-Yu; Wei, Yau-Huei

    2010-07-01

    Pathogenic mutation in mtDNA and mitochondrial dysfunction are associated with mitochondrial diseases. In this review, we discuss the oxidative stress-elicited mitochondrial protein modifications that may contribute to the pathophysiology of mitochondrial diseases. We demonstrated that excess ROS produced by defective mitochondria could increase the acetylation of microtubule proteins through the suppression of Sirt2, which results in perinuclear distribution of mitochondria in skin fibroblasts of patients with CPEO syndrome. Our recent work showed that mitochondrial dysfunction-induced oxidative stress can disrupt protein degradation system by inhibiting the ubiquitin-proteasome pathway and protease activity in human cells harboring mutant mtDNA. This in turn causes accumulation of aberrant proteins in mitochondria and renders the mutant cells more susceptible to apoptosis induced by oxidative stress. Furthermore, oxidative stress can modulate phosphorylation of mitochondrial proteins, which can affect metabolism in a number of diseases. Taken together, we suggest that oxidative stress-triggered protein modifications and defects in protein turnover play an important role in the pathogenesis and progression of mitochondrial diseases.

  15. mTORC1 Coordinates Protein Synthesis and Immunoproteasome Formation via PRAS40 to Prevent Accumulation of Protein Stress.

    PubMed

    Yun, Young Sung; Kim, Kwan Hyun; Tschida, Barbara; Sachs, Zohar; Noble-Orcutt, Klara E; Moriarity, Branden S; Ai, Teng; Ding, Rui; Williams, Jessica; Chen, Liqiang; Largaespada, David; Kim, Do-Hyung

    2016-02-18

    Reduction of translational fidelity often occurs in cells with high rates of protein synthesis, generating defective ribosomal products. If not removed, such aberrant proteins can be a major source of cellular stress causing human diseases. Here, we demonstrate that mTORC1 promotes the formation of immunoproteasomes for efficient turnover of defective proteins and cell survival. mTORC1 sequesters precursors of immunoproteasome β subunits via PRAS40. When activated, mTORC1 phosphorylates PRAS40 to enhance protein synthesis and simultaneously to facilitate the assembly of the β subunits for forming immunoproteasomes. Consequently, the PRAS40 phosphorylations play crucial roles in clearing aberrant proteins that accumulate due to mTORC1 activation. Mutations of RAS, PTEN, and TSC1, which cause mTORC1 hyperactivation, enhance immunoproteasome formation in cells and tissues. Those mutations increase cellular dependence on immunoproteasomes for stress response and survival. These results define a mechanism by which mTORC1 couples elevated protein synthesis with immunoproteasome biogenesis to protect cells against protein stress.

  16. Proteins induced by salt stress in tomato germinating seeds

    SciTech Connect

    Torres-Shumann, S.; Godoy, J.A.; del Pozo, O.; Pintor-Toro, J.A. )

    1989-04-01

    Salt effects on protein synthesis in tomato germinating seeds were investigated by two-dimensional polyacrilamide gel electrophoresis of proteins labeled in vivo with ({sup 35}S)-Methionine. Seeds germinating in NaCl were analyzed at three germination stages (4mm long radicals, 15mm long radicles and expanding cotyledons) and compared to those germinating in water. At the first germination stage several basic proteins of M.W. 13Kd, 16Kd, 17Kd and 18Kd were detected in only salt germinating seeds. Other basic proteins of M.W. 12Kd, 50Kd and 54Kd were salt-induced at the second and third stage of germination. One 14Kd acid protein is observed in every assayed stage and shows several phosphorylated forms. The levels of expression of these proteins are directly correlated to assayed NaCl concentrations. All of these proteins, except 17Kd, are also induced by abscisic acid (ABA) in the same germination stages. A cooperative effect on the synthesis of these proteins is observed when both ABA and NaCl are present.

  17. sigmaB-dependent protein induction in Listeria monocytogenes during vancomycin stress.

    PubMed

    Shin, Ji-Hyun; Kim, Jungmin; Kim, Sung-Min; Kim, Shukho; Lee, Je-Chul; Ahn, Jung-Mo; Cho, Je-Yoel

    2010-07-01

    Listeria monocytogenes is a food-borne pathogen that can survive under a wide range of environmental and energy stress conditions. The general stress response controlled by sigma(B) largely contributes to stress resistance in L. monocytogenes. Moreover, the bacterial cell wall is the first defense against cellular stress and as such is the target of numerous antibiotics. We therefore hypothesize that sigma(B) contributes to monitoring the integrity of cell walls. We evaluated sigma(B) activity in wild type and DeltasigB mutant L. monocytogenes containing reporter fusions (sigma(B)-dependent opuCA promoter and a lacZ reporter gene) during the early exponential growth phase by measuring the specific activity of beta-galactosidase after vancomycin (2 microg mL(-1) final concentration) stress. sigma(B) activity is significantly induced only in the wild-type strain by addition of vancomycin. In addition, we identified sigma(B)-dependent vancomycin-inducible proteins using LC-ESI-MS/MS analysis. Two independent proteomic analyses confirmed the minimum twofold upregulation of 18 vancomycin-inducible sigma(B)-dependent stress response proteins in the wild-type strain compared with the DeltasigB mutant. The functions of these proteins are associated with cell wall biogenesis, intracellular transport, general stress response, cell metabolism and virulence. These results suggest that the sigma(B) protein may contribute to the monitoring of cell wall integrity.

  18. Proteomic analysis of protein expression in Lactobacillus plantarum in response to alkaline stress.

    PubMed

    Lee, KiBeom; Rho, Beom-Seop; Pi, KyungBae; Kim, Ho-Jin; Choi, Yun-Jaie

    2011-04-20

    Lactobacillus plantarum, a probiotic organism that plays an important role in the microbial fermentation of alkaline materials in fermenting foods, faces alkaline stress during the fermentation process. Here, we report the patterns of protein expression in L. plantarum subjected to transient (1h) alkaline stress at pH 7.7, 8.7 or 9.7. Thirty-three alkaline-responsive proteins were identified by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS). Identification of proteins showing differential expression in response to alkaline stress revealed that the alkaline stress response of L. plantarum is a complex process. Some proteins appear to be induced, others repressed. These proteins could be clustered into nine groups based on their probable functions: energy metabolism, transport system, purine/pyrimidine metabolism, amino acid metabolism, proteolytic activity, transcription-translation, stress-related, general function, and unknown functions. These proteomic analyses are expected to prove useful in understanding the adaptive response of L. plantarum strains to alkaline stress and may facilitate future investigations into the genetic and physiological aspects of this response.

  19. Gene and protein expression of Drosophila Starvin during cold stress and recovery from chill coma.

    PubMed

    Colinet, Hervé; Hoffmann, Ary

    2010-05-01

    In Drosophila melanogaster, the sole member of the Bcl-2-associated anthanogene (BAG)-family proteins, called Starvin (Stv), has only been recently described. BAG proteins regulate a large range of physiological processes including life/death cell balance and stress response. The role of Stv has been poorly studied in the context of abiotic stress and particularly during and after cold stress. In this study we investigated the temporal expression of Stv gene and protein in adult flies during both the cold stress (up to 9 h at 0 degrees C) and the subsequent recovery phase (up to 8 h at 25 degrees C). Because BAG proteins can regulate positively and negatively the function of Hsp70/Hsc70, we also checked whether Stv expression was related to Hsp70 and Hsc70. Stv mRNA and Stv protein both showed a similar expression pattern: no modulation during the cold period followed by a significant up-regulation during the recovery period. A coordinated response of Stv and Hsp70 mRNA was observed, but not for Hsc70. Our findings indicate that Stv expression is part of a stress-induced program in D. melanogaster. It probably acts as a co-chaperone modulating the activity of Hsp70 chaperone machinery during recovery from cold stress. Finally our results support the suggestion that Stv and human BAG3 may be functional homologs.

  20. Endoplasmic Reticulum Stress and the Unfolded Protein Responses in Retinal Degeneration

    PubMed Central

    Zhang, Sarah X.; Sanders, Emily; Fliesler, Steven J.; Wang, Joshua J.

    2014-01-01

    The endoplasmic reticulum (ER) is the primary intracellular organelle responsible for protein and lipid biosynthesis, protein folding and trafficking, calcium homeostasis, and several other vital processes in cell physiology. Disturbance in ER function results in ER stress and subsequent activation of the unfolded protein response (UPR). The UPR up-regulates ER chaperones, reduces protein translation, and promotes clearance of cytotoxic misfolded proteins to restore ER homeostasis. If this vital process fails, the cell will be signaled to enter apoptosis, resulting in cell death. Sustained ER stress also can trigger an inflammatory response and exacerbate oxidative stress, both of which contribute synergistically to tissue damage. Studies performed over the past decade have implicated ER stress in a broad range of human diseases, including neurodegenerative diseases, cancer, diabetes, and vascular disorders. Several of these diseases also entail retinal dysfunction and degeneration caused by injury to retinal neurons and/or to the blood vessels that supply retinal cells with nutrients, trophic and homeostatic factors, oxygen, and other essential molecules, as well as serving as a conduit for removal of waste products and potentially toxic substances from the retina. Collectively, such injuries represent the leading cause of blindness world-wide in all age groups. Herein, we summarize recent progress on the study of ER stress and UPR signaling in retinal biology and discuss the molecular mechanisms and the potential clinical applications of targeting ER stress as a new therapeutic approach to prevent and treat neuronal degeneration in the retina. PMID:24792589

  1. Phenotypic Diversity Using Bimodal and Unimodal Expression of Stress Response Proteins.

    PubMed

    Garcia-Bernardo, Javier; Dunlop, Mary J

    2016-05-24

    Populations of cells need to express proteins to survive the sudden appearance of stressors. However, these mechanisms may be taxing. Populations can introduce diversity, allowing individual cells to stochastically switch between fast-growing and stress-tolerant states. One way to achieve this is to use genetic networks coupled with noise to generate bimodal distributions with two distinct subpopulations, each adapted to a stress condition. Another survival strategy is to rely on random fluctuations in gene expression to produce continuous, unimodal distributions of the stress response protein. To quantify the environmental conditions where bimodal versus unimodal expression is beneficial, we used a differential evolution algorithm to evolve optimal distributions of stress response proteins given environments with sudden fluctuations between low and high stress. We found that bimodality evolved for a large range of environmental conditions. However, we asked whether these findings were an artifact of considering two well-defined stress environments (low and high stress). As noise in the environment increases, or when there is an intermediate environment (medium stress), the benefits of bimodality decrease. Our results indicate that under realistic conditions, a continuum of resistance phenotypes generated through a unimodal distribution is sufficient to ensure survival without a high cost to the population.

  2. Developmentally and stress-induced small heat shock proteins in cork oak somatic embryos.

    PubMed

    Puigderrajols, Pere; Jofré, Anna; Mir, Gisela; Pla, Maria; Verdaguer, Dolors; Huguet, Gemma; Molinas, Marisa

    2002-06-01

    The timing and tissue localization of small heat shock proteins (sHSPs) during cork oak somatic embryo development was investigated under normal growing culture conditions and in response to stress. Western blot analyses using polyclonal antibodies raised against cork oak recombinant HSP17 showed a transient accumulation of class I sHSPs during somatic embryo maturation and germination. Moreover, the amount of protein increased at all stages of embryo development in response to exogenous stress. The developmentally accumulated proteins localized to early differentiating, but not the highly dividing, regions of the root and shoot apical meristems. By contrast, these highly dividing regions were strongly immunostained after heat stress. Findings support the hypothesis of a distinct control for developmentally and stress-induced accumulation of class I sHSPs. The possible role of sHSPs is discussed in relation to their tissue specific localization.

  3. The ER Stress Surveillance (ERSU) pathway regulates daughter cell ER protein aggregate inheritance

    PubMed Central

    Piña, Francisco J; Niwa, Maho

    2015-01-01

    Stress induced by cytoplasmic protein aggregates can have deleterious consequences for the cell, contributing to neurodegeneration and other diseases. Protein aggregates are also formed within the endoplasmic reticulum (ER), although the fate of ER protein aggregates, specifically during cell division, is not well understood. By simultaneous visualization of both the ER itself and ER protein aggregates, we found that ER protein aggregates that induce ER stress are retained in the mother cell by activation of the ER Stress Surveillance (ERSU) pathway, which prevents inheritance of stressed ER. In contrast, under conditions of normal ER inheritance, ER protein aggregates can enter the daughter cell. Thus, whereas cytoplasmic protein aggregates are retained in the mother cell to protect the functional capacity of daughter cells, the fate of ER protein aggregates is determined by whether or not they activate the ERSU pathway to impede transmission of the cortical ER during the cell cycle. DOI: http://dx.doi.org/10.7554/eLife.06970.001 PMID:26327697

  4. Production of Functional Proteins: Balance of Shear Stress and Gravity

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Haysen, James Howard (Inventor)

    2005-01-01

    The present invention provides for a method of culturing cells and inducing the expression of at least one gene in the cell culture. The method provides for contacting the cell with a transcription factor decoy oligonucleotide sequence directed against a nucleotide sequence encoding a shear stress response element.

  5. The Arabidopsis Gene zinc finger protein 3(ZFP3) Is Involved in Salt Stress and Osmotic Stress Response

    PubMed Central

    Zhang, Aidong; Liu, Dongdong; Hua, Changmei; Yan, An; Liu, Bohan; Wu, Minjie; Liu, Yihua; Huang, Linli; Ali, Imran; Gan, Yinbo

    2016-01-01

    Plants are continuously challenged by various abiotic and biotic stresses. To tide over these adversities, plants evolved intricate regulatory networks to adapt these unfavorable environments. So far, many researchers have clarified the molecular and genetic pathways involved in regulation of stress responses. However, the mechanism through which these regulatory networks operate is largely unknown. In this study, we cloned a C2H2-type zinc finger protein gene ZFP3 from Arabidopsis thaliana and investigated its function in salt and osmotic stress response. Our results showed that the expression level of ZFP3 was highly suppressed by NaCl, mannitol and sucrose. Constitutive expression of ZFP3 enhanced tolerance of plants to salt and osmotic stress while the zfp3 mutant plants displays reduced tolerance in Arabidopsis. Gain- and Loss-of-function studies of ZFP3 showed that ZFP3 significantly changes proline accumulation and chlorophyll content. Furthermore, over-expression of ZFP3 induced the expressions of stress-related gene KIN1, RD22, RD29B and AtP5CS1. These results suggest that ZFP3 is involved in salt and osmotic stress response. PMID:27977750

  6. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae.

    PubMed Central

    Shenton, Daniel; Grant, Chris M

    2003-01-01

    The irreversible oxidation of cysteine residues can be prevented by protein S-thiolation, a process by which protein SH groups form mixed disulphides with low-molecular-mass thiols such as glutathione. We report here the target proteins which are modified in yeast cells in response to H(2)O(2). In particular, a range of glycolytic and related enzymes (Tdh3, Eno2, Adh1, Tpi1, Ald6 and Fba1), as well as translation factors (Tef2, Tef5, Nip1 and Rps5) are identified. The oxidative stress conditions used to induce S-thiolation are shown to inhibit GAPDH (glyceraldehyde-3-phosphate dehydrogenase), enolase and alcohol dehydrogenase activities, whereas they have no effect on aldolase, triose phosphate isomerase or aldehyde dehydrogenase activities. The inhibition of GAPDH, enolase and alcohol dehydrogenase is readily reversible once the oxidant is removed. In addition, we show that peroxide stress has little or no effect on glucose-6-phosphate dehydrogenase or 6-phosphogluconate dehydrogenase, the enzymes that catalyse NADPH production via the pentose phosphate pathway. Thus the inhibition of glycolytic flux is proposed to result in glucose equivalents entering the pentose phosphate pathway for the generation of NADPH. Radiolabelling is used to confirm that peroxide stress results in a rapid and reversible inhibition of protein synthesis. Furthermore, we show that glycolytic enzyme activities and protein synthesis are irreversibly inhibited in a mutant that lacks glutathione, and hence cannot modify proteins by S-thiolation. In summary, protein S-thiolation appears to serve an adaptive function during exposure to an oxidative stress by reprogramming metabolism and protecting protein synthesis against irreversible oxidation. PMID:12755685

  7. Abiotic stress responses in plants: roles of calmodulin-regulated proteins

    PubMed Central

    Virdi, Amardeep S.; Singh, Supreet; Singh, Prabhjeet

    2015-01-01

    Intracellular changes in calcium ions (Ca2+) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca2+-sensing proteins and has been shown to be involved in transduction of Ca2+ signals. After interacting with Ca2+, CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants. PMID:26528296

  8. Sm-Like Protein-Mediated RNA Metabolism Is Required for Heat Stress Tolerance in Arabidopsis

    PubMed Central

    Okamoto, Masanori; Matsui, Akihiro; Tanaka, Maho; Morosawa, Taeko; Ishida, Junko; Iida, Kei; Mochizuki, Yoshiki; Toyoda, Tetsuro; Seki, Motoaki

    2016-01-01

    Sm-like proteins play multiple functions in RNA metabolism, which is essential for biological processes such as stress responses in eukaryotes. The Arabidopsis thaliana sad1 mutant has a mutation of sm-like protein 5 (LSM5) and shows impaired drought and salt stress tolerances. The lsm5/sad1 mutant also showed hypersensitivity to heat stress. GFP-fused LSM5/SAD1 was localized in the nucleus under optimal growth conditions. After heat stress treatment, GFP-fused LSM5/SAD1 fluorescence was also observed as small cytoplasmic dots, in addition to nuclear localization. Whole genome transcriptome analysis revealed that many genes in Arabidopsis were drastically changed in response to heat stress. More heat-responsive genes were highly expressed in lsm5/sad1 mutant at both 2 and 6 h after heat stress treatment. Additionally, intron-retained and capped transcripts accumulated in the lsm5/sad1 mutant after heat stress treatment. In this study, we also identified non-Arabidopsis Genome Initiative transcripts that were expressed from unannotated regions. Most of these transcripts were antisense transcripts, and many capped non-AGI transcripts accumulated in the lsm5/sad1 mutant during heat stress treatment. These results indicated that LSM5/SAD1 functions to degrade aberrant transcripts through appropriate mRNA splicing and decapping, and precise RNA metabolic machinery is required for heat stress tolerance. PMID:27493656

  9. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress.

    PubMed

    Klatt, P; Lamas, S

    2000-08-01

    Protein S-glutathiolation, the reversible covalent addition of glutathione to cysteine residues on target proteins, is emerging as a candidate mechanism by which both changes in the intracellular redox state and the generation of reactive oxygen and nitrogen species may be transduced into a functional response. This review will provide an introduction to the concepts of oxidative and nitrosative stress and outline the molecular mechanisms of protein regulation by oxidative and nitrosative thiol-group modifications. Special attention will be paid to recently published work supporting a role for S-glutathiolation in stress signalling pathways and in the adaptive cellular response to oxidative and nitrosative stress. Finally, novel insights into the molecular mechanisms of S-glutathiolation as well as methodological problems related to the interpretation of the biological relevance of this post-translational protein modification will be discussed.

  10. Relationship between a stress membrane protein of Oenococcus oeni and glyceraldehyde-3-phosphate dehydrogenases.

    PubMed

    Carreté, Ramon; Reguant, Cristina; Bordons, Albert; Constantí, Magda

    2005-10-01

    The goal of this study was to analyze how the profiles of membrane proteins of Oenococcus oeni change under particular stress conditions of wine. Sodium dodecyl sulfate polyacrylamide gel electrophoresis protein profiles of membrane fraction showed that a 40-kDa protein was overexpressed in the presence of SO2. The sequence of its N-terminal fragment showed a significant identity with glyceraldehyde-3-phosphate dehydrogenases (GAPDHs), but the protein showed no GAPDH activity. This sequence was compared with those of other GAPDHs with ClustalW alignment, and it was found to be somewhat similar to that of the cell-wall and membrane proteins of other lactic acid bacteria.

  11. Exaggerated phosphorylation of brain tau protein in CRH KO mice exposed to repeated immobilization stress.

    PubMed

    Kvetnansky, Richard; Novak, Petr; Vargovic, Peter; Lejavova, Katarina; Horvathova, Lubica; Ondicova, Katarina; Manz, George; Filipcik, Peter; Novak, Michal; Mravec, Boris

    2016-07-01

    Neuroendocrine and behavioral stress responses are orchestrated by corticotropin-releasing hormone (CRH) and norepinephrine (NE) synthesizing neurons. Recent findings indicate that stress may promote development of neurofibrillary pathology in Alzheimer's disease. Therefore, we investigated relationships among stress, tau protein phosphorylation, and brain NE using wild-type (WT) and CRH-knockout (CRH KO) mice. We assessed expression of phosphorylated tau (p-tau) at the PHF-1 epitope and NE concentrations in the locus coeruleus (LC), A1/C1 and A2/C2 catecholaminergic cell groups, hippocampus, amygdala, nucleus basalis magnocellularis, and frontal cortex of unstressed, singly stressed or repeatedly stressed mice. Moreover, gene expression and protein levels of tyrosine hydroxylase (TH) and CRH receptor mRNA were determined in the LC. Plasma corticosterone levels were also measured. Exposure to a single stress increases tau phosphorylation throughout the brain in WT mice when compared to singly stressed CRH KO animals. In contrast, repeatedly stressed CRH KO mice showed exaggerated tau phosphorylation relative to WT controls. We also observed differences in extent of tau phosphorylation between investigated structures, e.g. the LC and hippocampus. Moreover, CRH deficiency leads to different responses to stress in gene expression of TH, NE concentrations, CRH receptor mRNA, and plasma corticosterone levels. Our data indicate that CRH effects on tau phosphorylation are dependent on whether stress is single or repeated, and differs between brain regions. Our findings indicate that CRH attenuates mechanisms responsible for development of stress-induced tau neuropathology, particularly in conditions of chronic stress. However, the involvement of central catecholaminergic neurons in these mechanisms remains unclear and is in need of further investigation.

  12. Severe Injury Is Associated With Insulin Resistance, Endoplasmic Reticulum Stress Response, and Unfolded Protein Response

    PubMed Central

    Jeschke, Marc G.; Finnerty, Celeste C.; Herndon, David N.; Song, Juquan; Boehning, Darren; Tompkins, Ronald G.; Baker, Henry V.; Gauglitz, Gerd G.

    2012-01-01

    Objective We determined whether postburn hyperglycemia and insulin resistance are associated with endoplasmic reticulum (ER) stress/unfolded protein response (UPR) activation leading to impaired insulin receptor signaling. Background Inflammation and cellular stress, hallmarks of severely burned and critically ill patients, have been causally linked to insulin resistance in type 2 diabetes via induction of ER stress and the UPR. Methods Twenty severely burned pediatric patients were compared with 36 nonburned children. Clinical markers, protein, and GeneChip analysis were used to identify transcriptional changes in ER stress and UPR and insulin resistance–related signaling cascades in peripheral blood leukocytes, fat, and muscle at admission and up to 466 days postburn. Results Burn-induced inflammatory and stress responses are accompanied by profound insulin resistance and hyperglycemia. Genomic and protein analysis revealed that burn injury was associated with alterations in the signaling pathways that affect insulin resistance, ER/sarcoplasmic reticulum stress, inflammation, and cell growth/apoptosis up to 466 days postburn. Conclusion Burn-induced insulin resistance is associated with persistent ER/sarcoplasmic reticulum stress/UPR and subsequent suppressed insulin receptor signaling over a prolonged period of time. PMID:22241293

  13. Heat Stress Decreases Levels of Nutrient-Uptake and -Assimilation Proteins in Tomato Roots

    PubMed Central

    Giri, Anju; Heckathorn, Scott; Mishra, Sasmita; Krause, Charles

    2017-01-01

    Global warming will increase root heat stress, which is already common under certain conditions. Effects of heat stress on root nutrient uptake have rarely been examined in intact plants, but the limited results indicate that heat stress will decrease it; no studies have examined heat-stress effects on the concentration of nutrient-uptake proteins. We grew Solanum lycopersicum (tomato) at 25 °C/20 °C (day/night) and then transferred some plants for six days to 35 °C /30 °C (moderate heat) or 42 °C/37 °C (severe heat) (maximum root temperature = 32 °C or 39 °C, respectively); plants were then moved back to control conditions for seven days to monitor recovery. In a second experiment, plants were grown for 15 days at 28 °C/23 °C, 32 °C/27 °C, 36 °C/31 °C, and 40 °C/35 °C (day/night). Concentrations of nutrient-uptake and -assimilation proteins in roots were determined using protein-specific antibodies and ELISA (enzyme-linked immunosorbent assay). In general, (1) roots were affected by heat more than shoots, as indicated by decreased root:shoot mass ratio, shoot vs. root %N and C, and the level of nutrient metabolism proteins vs. less sensitive photosynthesis and stomatal conductance; and (2) negative effects on roots were large and slow-to-recover only with severe heat stress (40 °C–42 °C). Thus, short-term heat stress, if severe, can decrease total protein concentration and levels of nutrient-uptake and -assimilation proteins in roots. Hence, increases in heat stress with global warming may decrease crop production, as well as nutritional quality, partly via effects on root nutrient relations. PMID:28106834

  14. Allicin Induces Thiol Stress in Bacteria through S-Allylmercapto Modification of Protein Cysteines*

    PubMed Central

    Müller, Alexandra; Eller, Jakob; Albrecht, Frank; Prochnow, Pascal; Kuhlmann, Katja; Bandow, Julia Elisabeth; Slusarenko, Alan John

    2016-01-01

    Allicin (diallyl thiosulfinate) from garlic is a highly potent natural antimicrobial substance. It inhibits growth of a variety of microorganisms, among them antibiotic-resistant strains. However, the precise mode of action of allicin is unknown. Here, we show that growth inhibition of Escherichia coli during allicin exposure coincides with a depletion of the glutathione pool and S-allylmercapto modification of proteins, resulting in overall decreased total sulfhydryl levels. This is accompanied by the induction of the oxidative and heat stress response. We identified and quantified the allicin-induced modification S-allylmercaptocysteine for a set of cytoplasmic proteins by using a combination of label-free mass spectrometry and differential isotope-coded affinity tag labeling of reduced and oxidized thiol residues. Activity of isocitrate lyase AceA, an S-allylmercapto-modified candidate protein, is largely inhibited by allicin treatment in vivo. Allicin-induced protein modifications trigger protein aggregation, which largely stabilizes RpoH and thereby induces the heat stress response. At sublethal concentrations, the heat stress response is crucial to overcome allicin stress. Our results indicate that the mode of action of allicin is a combination of a decrease of glutathione levels, unfolding stress, and inactivation of crucial metabolic enzymes through S-allylmercapto modification of cysteines. PMID:27008862

  15. Tianeptine modulates amygdalar glutamate neurochemistry and synaptic proteins in rats subjected to repeated stress.

    PubMed

    Piroli, Gerardo G; Reznikov, Leah R; Grillo, Claudia A; Hagar, Janel M; Fadel, Jim R; Reagan, Lawrence P

    2013-03-01

    Stress is a common environmental factor associated with depressive illness and the amygdala is thought to be integral for this association. For example, repeated stress impairs amygdalar neuroplasticity in rodents and these defects parallel amygdalar deficits in depressive illness patients. Because the excitatory neurotransmitter glutamate is important in neuroplasticity, we hypothesized that alterations in amygdalar glutamatergic systems may serve as key players in depressive illness. Moreover, restoration of amygdalar glutamatergic systems may serve as important therapeutic targets in the successful management of multiple stress-related mood disorders. To address these hypotheses, we measured glutamate efflux in the basolateral and central amygdalar complexes via in vivo microdialysis, as well as the expression of synaptic proteins that regulate vesicular glutamate packaging and release, in rats subjected to repeated stress and treated daily with saline or the antidepressant tianeptine. Glutamate efflux was significantly reduced in the central amygdalar complex of animals subjected to repeated stress. In addition, repeated stress nearly eliminated amygdalar vGLUT2 expression, thereby proving a potential mechanism through which repeated stress impairs amygdalar glutamate neurochemistry. These stress-induced changes in glutamate efflux and vGLUT2 expression were inhibited by daily tianeptine administration. Moreover, tianeptine administration increased the vesicular localization of SNAP-25, which could account for the ability of tianeptine to modify glutamatergic tone in non-stressed control rats. Collectively, these results demonstrate that repeated stress differentially affects amygdalar glutamate systems and further supports our previous studies indicating that tianeptine's antidepressant efficacy may involve targeting amygdalar glutatamatergic systems.

  16. Dynamics of protein damage in yeast frataxin mutant exposed to oxidative stress.

    PubMed

    Kim, Jin-Hee; Sedlak, Miroslav; Gao, Qiang; Riley, Catherine P; Regnier, Fred E; Adamec, Jiri

    2010-12-01

    Oxidative stress and protein carbonylation is implicated in aging and various diseases such as neurodegenerative disorders, diabetes, and cancer. Therefore, the accurate identification and quantification of protein carbonylation may lead to the discovery of new biomarkers. We have developed a new method that combines avidin affinity selection of carbonylated proteins with iTRAQ labeling and LC fractionation of intact proteins. This simple LC-based workflow is an effective technique to reduce sample complexity, minimize technical variation, and enable simultaneous quantification of four samples. This method was used to determine protein oxidation in an iron accumulating mutant of Saccharomyces cerevisiae exposed to oxidative stress. Overall, 31 proteins were identified with 99% peptide confidence, and of those, 27 proteins were quantified. Most of the identified proteins were associated with energy metabolism (32.3%), and cellular defense, transport, and folding (38.7%), suggesting a drop in energy production and reducing power of the cells due to the damage of glycolytic enzymes and decrease in activity of enzymes involved in protein protection and regeneration. In addition, the oxidation sites of seven proteins were identified and their estimated position also indicated a potential impact on the enzymatic activities. Predicted 3D structures of peroxiredoxin (TSA1) and thioredoxin II (TRX2) revealed close proximity of all oxidized amino acid residues to the protein active sites.

  17. The 'tubulin-like' S1 protein of Spirochaeta is a member of the hsp65 stress protein family

    NASA Technical Reports Server (NTRS)

    Munson, D.; Obar, R.; Tzertzinis, G.; Margulis, L.

    1993-01-01

    A 65-kDa protein (called S1) from Spirochaeta bajacaliforniensis was identified as 'tubulin-like' because it cross-reacted with at least four different antisera raised against tubulin and was isolated, with a co-polymerizing 45-kDa protein, by warm-cold cycling procedures used to purify tubulin from mammalian brain. Furthermore, at least three genera of non-cultivable symbiotic spirochetes (Pillotina, Diplocalyx, and Hollandina) that contain conspicuous 24-nm cytoplasmic tubules displayed a strong fluorescence in situ when treated with polyclonal antisera raised against tubulin. Here we summarize results that lead to the conclusion that this 65-kDa protein has no homology to tubulin. S1 is an hsp65 stress protein homologue. Hsp65 is a highly immunogenic family of hsp60 proteins which includes the 65-kDa antigens of Mycobacterium tuberculosis (an active component of Freund's complete adjuvant), Borrelia, Treponema, Chlamydia, Legionella, and Salmonella. The hsp60s, also known as chaperonins, include E. coli GroEL, mitochondrial and chloroplast chaperonins, the pea aphid 'symbionin' and many other proteins involved in protein folding and the stress response.

  18. Appearance of a stress-response protein, phage-shock protein A, in Escherichia coli exposed to hydrophobic organic solvents.

    PubMed

    Kobayashi, H; Yamamoto, M; Aono, R

    1998-02-01

    A 28 kDa protein associated with the inner membrane was induced strongly in Escherichia coli K-12 cells grown in the presence of a hydrophobic organic solvent, n-hexane or cyclooctane. These organic solvents suppressed the growth (growth rate and yield) of E. coli. A partial amino acid sequence showed that this protein was the phage-shock protein PspA. PspA is known to be induced in E. coli cells under extreme stress conditions. The results suggest that E. coli cells are subject to strong stress in the presence of organic solvents. Introduction of a multi-copy plasmid vector carrying the psp operon into E. coli improved the survival frequency of cells exposed suddenly to n-hexane but not the growth rate of cells growing in the presence of n-hexane.

  19. Developmental Regulation of Genes Encoding Universal Stress Proteins in Schistosoma mansoni

    PubMed Central

    Isokpehi, Raphael D.; Mahmud, Ousman; Mbah, Andreas N.; Simmons, Shaneka S.; Avelar, Lívia; Rajnarayanan, Rajendram V.; Udensi, Udensi K.; Ayensu, Wellington K.; Cohly, Hari H.; Brown, Shyretha D.; Dates, Centdrika R.; Hentz, Sonya D.; Hughes, Shawntae J.; Smith-McInnis, Dominique R.; Patterson, Carvey O.; Sims, Jennifer N.; Turner, Kelisha T.; Williams, Baraka S.; Johnson, Matilda O.; Adubi, Taiwo; Mbuh, Judith V.; Anumudu, Chiaka I.; Adeoye, Grace O.; Thomas, Bolaji N.; Nashiru, Oyekanmi; Oliveira, Guilherme

    2011-01-01

    The draft nuclear genome sequence of the snail-transmitted, dimorphic, parasitic, platyhelminth Schistosoma mansoni revealed eight genes encoding proteins that contain the Universal Stress Protein (USP) domain. Schistosoma mansoni is a causative agent of human schistosomiasis, a severe and debilitating Neglected Tropical Disease (NTD) of poverty, which is endemic in at least 76 countries. The availability of the genome sequences of Schistosoma species presents opportunities for bioinformatics and genomics analyses of associated gene families that could be targets for understanding schistosomiasis ecology, intervention, prevention and control. Proteins with the USP domain are known to provide bacteria, archaea, fungi, protists and plants with the ability to respond to diverse environmental stresses. In this research investigation, the functional annotations of the USP genes and predicted nucleotide and protein sequences were initially verified. Subsequently, sequence clusters and distinctive features of the sequences were determined. A total of twelve ligand binding sites were predicted based on alignment to the ATP-binding universal stress protein from Methanocaldococcus jannaschii. In addition, six USP sequences showed the presence of ATP-binding motif residues indicating that they may be regulated by ATP. Public domain gene expression data and RT-PCR assays confirmed that all the S. mansoni USP genes were transcribed in at least one of the developmental life cycle stages of the helminth. Six of these genes were up-regulated in the miracidium, a free-swimming stage that is critical for transmission to the snail intermediate host. It is possible that during the intra-snail stages, S. mansoni gene transcripts for universal stress proteins are low abundant and are induced to perform specialized functions triggered by environmental stressors such as oxidative stress due to hydrogen peroxide that is present in the snail hemocytes. This report serves to catalyze the

  20. Failure of RQC machinery causes protein aggregation and proteotoxic stress.

    PubMed

    Choe, Young-Jun; Park, Sae-Hun; Hassemer, Timm; Körner, Roman; Vincenz-Donnelly, Lisa; Hayer-Hartl, Manajit; Hartl, F Ulrich

    2016-03-10

    Translation of messenger RNAs lacking a stop codon results in the addition of a carboxy-terminal poly-lysine tract to the nascent polypeptide, causing ribosome stalling. Non-stop proteins and other stalled nascent chains are recognized by the ribosome quality control (RQC) machinery and targeted for proteasomal degradation. Failure of this process leads to neurodegeneration by unknown mechanisms. Here we show that deletion of the E3 ubiquitin ligase Ltn1p in yeast, a key RQC component, causes stalled proteins to form detergent-resistant aggregates and inclusions. Aggregation is dependent on a C-terminal alanine/threonine tail that is added to stalled polypeptides by the RQC component, Rqc2p. Formation of inclusions additionally requires the poly-lysine tract present in non-stop proteins. The aggregates sequester multiple cytosolic chaperones and thereby interfere with general protein quality control pathways. These findings can explain the proteotoxicity of ribosome-stalled polypeptides and demonstrate the essential role of the RQC in maintaining proteostasis.

  1. Expression of heat shock protein genes in insect stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heat shock proteins (HSPs) that are abundantly expressed in insects are important modulators of insect survival. Expression of HSP genes in insects is not only developmentally regulated, but also induced by various stressors in order to confer protection against such stressors. The expression o...

  2. Histone deacetylase 6 associates with ribosomes and regulates de novo protein translation during arsenite stress.

    PubMed

    Kappeler, Kyle V; Zhang, Jack; Dinh, Thai Nho; Strom, Joshua G; Chen, Qin M

    2012-05-01

    Histone deacetylase 6 (HDAC6) is known as a cytoplasmic enzyme that regulates cell migration, cell adhesion, and degradation of misfolded proteins by deacetylating substrates such as α-tubulin and Hsp90. When HaCaT keratinocytes were exposed to 1-200μM sodium arsenite, we observed perinuclear localization of HDAC6 within 30 min. Although the overall level of HDAC6 protein did not change, sodium arsenite caused an increase of HDAC6 in ribosomal fractions. Separation of ribosomal subunits versus intact ribosomes or polysomes indicated that HDAC6 was mainly detected in 40/43S fractions containing the small ribosomal subunit in untreated cells but was associated with 40/43S and 60/80S ribosomal fractions in arsenite-treated cells. Immunocytochemistry studies revealed that arsenite caused colocalization of HDAC6 with the ribosomal large and small subunit protein L36a and S6. Both L36a and S6 were detected in the immunocomplex of HDAC6 isolated from arsenite-treated cells. The observed physical interaction of HDAC6 with ribosomes pointed to a role of HDAC6 in stress-induced protein translation. Among arsenite stress-induced proteins, de novo Nrf2 protein translation was inhibited by Tubastatin A. These data demonstrate that HDAC6 was recruited to ribosomes, physically interacted with ribosomal proteins, and regulated de novo protein translation in keratinocytes responding to arsenite stress.

  3. Ebola Virus Does Not Induce Stress Granule Formation during Infection and Sequesters Stress Granule Proteins within Viral Inclusions

    PubMed Central

    Nelson, Emily V.; Schmidt, Kristina M.; Deflubé, Laure R.; Doğanay, Sultan; Banadyga, Logan; Olejnik, Judith; Hume, Adam J.; Ryabchikova, Elena; Ebihara, Hideki; Kedersha, Nancy; Ha, Taekjip

    2016-01-01

    ABSTRACT A hallmark of Ebola virus (EBOV) infection is the formation of viral inclusions in the cytoplasm of infected cells. These viral inclusions contain the EBOV nucleocapsids and are sites of viral replication and nucleocapsid maturation. Although there is growing evidence that viral inclusions create a protected environment that fosters EBOV replication, little is known about their role in the host response to infection. The cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation and translational arrest mediated by the phosphorylation of a translation initiation factor, the α subunit of eukaryotic initiation factor 2 (eIF2α). Here, we show that selected SG proteins are sequestered within EBOV inclusions, where they form distinct granules that colocalize with viral RNA. These inclusion-bound (IB) granules are functionally and structurally different from canonical SGs. Formation of IB granules does not indicate translational arrest in the infected cells. We further show that EBOV does not induce formation of canonical SGs or eIF2α phosphorylation at any time postinfection but is unable to fully inhibit SG formation induced by different exogenous stressors, including sodium arsenite, heat, and hippuristanol. Despite the sequestration of SG marker proteins into IB granules, canonical SGs are unable to form within inclusions, which we propose might be mediated by a novel function of VP35, which disrupts SG formation. This function is independent of VP35's RNA binding activity. Further studies aim to reveal the mechanism for SG protein sequestration and precise function within inclusions. IMPORTANCE Although progress has been made developing antiviral therapeutics and vaccines against the highly pathogenic Ebola virus (EBOV), the cellular mechanisms involved in EBOV infection are still largely unknown. To better understand these intracellular events, we investigated the cellular stress response, an antiviral

  4. Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness to stress

    PubMed Central

    Escusa-Toret, Stéphanie; Vonk, Willianne I. M.; Frydman, Judith

    2014-01-01

    The extensive links between proteotoxic stress, protein aggregation and pathologies ranging from aging to neurodegeneration underscore the importance of understanding how cells manage protein misfolding. Using live-cell imaging, we here determine the fate of stress-induced misfolded proteins from their initial appearance until their elimination. Upon denaturation, misfolded proteins are sequestered from the bulk cytoplasm into dynamic ER-associated puncta that move and coalesce into larger structures in an energy-dependent but cytoskeleton-independent manner. These puncta, which we name Q-bodies, concentrate different misfolded and stress-denatured proteins en-route to degradation, but do not contain amyloid aggregates, which localize instead to the IPOD. Q-body formation and clearance depends on an intact cortical ER and a complex chaperone network that is affected by rapamycin and impaired during chronological aging. Importantly, Q-body formation enhances cellular fitness during stress. We conclude that spatial sequestration of misfolded proteins in Q-bodies is an early quality control strategy occurring synchronously with degradation to clear the cytoplasm from potentially toxic species. PMID:24036477

  5. Gel-Free/Label-Free Proteomic Analysis of Endoplasmic Reticulum Proteins in Soybean Root Tips under Flooding and Drought Stresses.

    PubMed

    Wang, Xin; Komatsu, Setsuko

    2016-07-01

    Soybean is a widely cultivated crop; however, it is sensitive to flooding and drought stresses. The adverse environmental cues cause the endoplasmic reticulum (ER) stress due to accumulation of unfolded or misfolded proteins. To investigate the mechanisms in response to flooding and drought stresses, ER proteomics was performed in soybean root tips. The enzyme activity of NADH cytochrome c reductase was two-fold higher in the ER than other fractions, indicating that the ER was isolated with high purity. Protein abundance of ribosomal proteins was decreased under both stresses compared to control condition; however, the percentage of increased ribosomes was two-fold higher in flooding compared to drought. The ER proteins related to protein glycosylation and signaling were in response to both stresses. Compared to control condition, calnexin was decreased under both stresses; however, protein disulfide isomerase-like proteins and heat shock proteins were markedly decreased under flooding and drought conditions, respectively. Furthermore, fewer glycoproteins and higher levels of cytosolic calcium were identified under both stresses compared to control condition. These results suggest that reduced accumulation of glycoproteins in response to both stresses might be due to dysfunction of protein folding through calnexin/calreticulin cycle. Additionally, the increased cytosolic calcium levels induced by flooding and drought stresses might disturb the ER environment for proper protein folding in soybean root tips.

  6. Stem cell function and stress response are controlled by protein synthesis

    PubMed Central

    Blanco, Sandra; Bandiera, Roberto; Popis, Martyna; Hussain, Shobbir; Lombard, Patrick; Aleksic, Jelena; Sajini, Abdulrahim; Tanna, Hinal; Cortés-Garrido, Rosana; Gkatza, Nikoletta; Dietmann, Sabine; Frye, Michaela

    2016-01-01

    Summary Whether protein synthesis and cellular stress response pathways interact to control stem cell function is currently unknown. Here, we show that skin stem cells synthesize less protein than their immediate progenitors in vivo, even when forced to proliferate. Our analyses reveal that activation of stress response pathways drives both a global reduction of protein synthesis and altered translational programmes that together promote stem cell functions and tumourigenesis. Mechanistically we show that inhibition of post-transcriptional cytosine-5 methylation locks stem cells in this distinct translational inhibition programme. Paradoxically, this inhibition renders stem cells hypersensitive to cytotoxic stress, as tumour regeneration after treatment with 5-fluorouracil is blocked. Thus, stem cells must revoke translation inhibition pathways to regenerate a tissue or tumour. PMID:27306184

  7. Protein misfolding and oxidative stress promote glial-mediated neurodegeneration in an Alexander disease model

    PubMed Central

    Wang, Liqun; Colodner, Kenneth J.; Feany, Mel B.

    2011-01-01

    Although alterations in glial structure and function commonly accompany death of neurons in neurodegenerative diseases, the role glia play in modulating neuronal loss is poorly understood. We have created a model of Alexander disease in Drosophila by expressing disease-linked mutant versions of glial fibrillary acidic protein (GFAP) in fly glia. We find aggregation of mutant human GFAP into inclusions bearing the hallmarks of authentic Rosenthal fibers. We also observe significant toxicity of mutant human GFAP to glia, which is mediated by protein aggregation and oxidative stress. Both protein aggregation and oxidative stress contribute to activation of a robust autophagic response in glia. Toxicity of mutant GFAP to glial cells induces a non-cell autonomous stress response and subsequent apoptosis in neurons, which is dependent on glial glutamate transport. Our findings thus establish a simple genetic model of Alexander disease and further identify cellular pathways critical for glial-induced neurodegeneration. PMID:21414908

  8. Endoplasmic reticulum stress caused by aggregate-prone proteins containing homopolymeric amino acids.

    PubMed

    Uchio, Naohiro; Oma, Yoko; Toriumi, Kazuya; Sasagawa, Noboru; Tanida, Isei; Fujita, Eriko; Kouroku, Yoriko; Kuroda, Reiko; Momoi, Takashi; Ishiura, Shoichi

    2007-11-01

    Many human proteins have homopolymeric amino acid (HPAA) tracts, but their physiological functions or cellular effects are not well understood. Previously, we expressed 20 HPAAs in mammalian cells and showed characteristic intracellular localization, in that hydrophobic HPAAs aggregated strongly and caused high cytotoxicity in proportion to their hydrophobicity. In the present study, we investigated the cytotoxicity of these aggregate-prone hydrophobic HPAAs, assuming that the ubiquitin proteasome system is impaired in the same manner as other well-known aggregate-prone polyglutamine-containing proteins. Some highly hydrophobic HPAAs caused a deficiency in the ubiquitin proteasome system and excess endoplasmic reticulum stress, leading to apoptosis. These results indicate that the property of causing excess endoplasmic reticulum stress by proteasome impairment may contribute to the strong cytotoxicity of highly hydrophobic HPAAs, and proteasome impairment and the resulting excess endoplasmic reticulum stress is not a common cytotoxic effect of aggregate-prone proteins such as polyglutamine.

  9. Oxidative stress-induced posttranslational modification of proteins as a target of functional food.

    PubMed

    Naito, Yuji; Yoshikawa, Toshikazu

    2009-01-01

    In lifestyle-related diseases including metabolic syndrome, atherosclerosis, and cancer, oxidative stress is indicated by several markers, among which are lipid peroxides, aldehydes, and nitrotyrosine. We hypothesized that identification of proteins that are posttranslationally modified due to oxidative stress would lead to a greater understanding of some of the potential molecular mechanisms involved in degeneration and inflammation in these disorders. Proteomics is an emerging method for identification of proteins and their modification residues, and its application to food factor science is just beginning. Especially, we can obtain several monoclonal antibodies to detect specifically oxidized proteins, which can be applied to analysis by immunostaining or immunoblot. In this review, we present the use of these monoclonal antibodies in several diseases, from which new insights have emerged into mechanisms of metabolism and inflammation in these disorders that are associated with oxidative stress.

  10. Group 3 LEA Protein, ZmLEA3, Is Involved in Protection from Low Temperature Stress

    PubMed Central

    Liu, Yang; Liang, Jianan; Sun, Liping; Yang, Xinghong; Li, Dequan

    2016-01-01

    Late embryogenesis abundant (LEA) proteins are a family of small highly hydrophilic proteins that accumulate at the onset of seed desiccation and in response to adverse conditions such as drought, salinity, low temperature, or water deficit. In previous studies, we demonstrated that ZmLEA3 could enhance the transgenic tobacco tolerance to osmotic and oxidative stresses. Here, we demonstrated that the transcription of ZmLEA3 in the maize stems could be significantly induced by low temperature and osmotic stresses and by treatment with abscisic acid (ABA) and H2O2. Further study indicated that ZmLEA3 is a single copy gene in the maize genome. The ZmLEA3 protein could protect lactate dehydrogenase (LDH) activity at low temperatures. The overexpression of ZmLEA3 conferred tolerance to low-temperature stress to transgenic tobacco, yeast (GS115) and E. coli (BL21). PMID:27471509

  11. Study of GOLPH3: a potential stress-inducible protein from Golgi apparatus.

    PubMed

    Li, Ting; You, Hong; Zhang, Jie; Mo, Xiaoye; He, Wenfang; Chen, Yang; Tang, Xiangqi; Jiang, Zheng; Tu, Ranran; Zeng, Liuwang; Lu, Wei; Hu, Zhiping

    2014-06-01

    Although the Golgi apparatus has been studied extensively for over 100 years, the complex structure-function relationships have yet to be elucidated. It is well known that the Golgi complex plays an important role in the transport, processing, sorting, and targeting of numerous proteins and lipids destined for secretion, plasma membrane, and lysosomes. Increasing evidence suggests that the Golgi apparatus is a sensor and common downstream effector of stress signals in cell death pathways. It undergoes disassembly and fragmentation in several neurological disorders. Recent studies indicate that Golgi phosphoprotein 3 (GOLPH3 also known as GPP34/GMx33/MIDAS), a peripheral membrane protein of trans-Golgi network, represents an exciting new class of oncoproteins involved in cell signal transduction and is potentially mobilized by stress. In this review, we focus on the importance of GOLPH3 in vesicular trafficking, Golgi architecture maintenance, receptor sorting, protein glycosylation, and further discuss its potential in signal sensing in stress response.

  12. Heat shock protein response in phosphorus-deficient heat-stressed broiler chickens.

    PubMed

    Edens, F W; Hill, C H; Wang, S

    1992-12-01

    1. During acute in vivo heat stress, a normal heat shock protein (HSP) response was not inducible in chickens deficient in inorganic phosphorus (P(i)-deficient). 2. Small quantities of HSP 70 and HSP 90 were induced, but little or no HSP 23 was induced in P(i)-deficient chickens compared to P(i)-adequate chickens. 3. Increased susceptibility of P(i)-deficient chickens to acute heat stress was attributed to their inability to produce an adequate HSP response.

  13. Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress

    PubMed Central

    Grønli, Janne; Soulé, Jonathan; Bramham, Clive R.

    2014-01-01

    Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function. PMID:24478645

  14. Impact of osmotic stress on protein diffusion in Lactococcus lactis.

    PubMed

    Mika, Jacek T; Schavemaker, Paul E; Krasnikov, Victor; Poolman, Bert

    2014-11-01

    We measured translational diffusion of proteins in the cytoplasm and plasma membrane of the Gram-positive bacterium Lactococcus lactis and probed the effect of osmotic upshift. For cells in standard growth medium the diffusion coefficients for cytosolic proteins (27 and 582 kDa) and 12-transmembrane helix membrane proteins are similar to those in Escherichia coli. The translational diffusion of GFP in L. lactis drops by two orders of magnitude when the medium osmolality is increased by ∼ 1.9 Osm, and the decrease in mobility is partly reversed in the presence of osmoprotectants. We find a large spread in diffusion coefficients over the full population of cells but a smaller spread if only sister cells are compared. While in general the diffusion coefficients we measure under normal osmotic conditions in L. lactis are similar to those reported in E. coli, the decrease in translational diffusion upon osmotic challenge in L. lactis is smaller than in E. coli. An even more striking difference is that in L. lactis the GFP diffusion coefficient drops much more rapidly with volume than in E. coli. We discuss these findings in the light of differences in turgor, cell volume, crowding and cytoplasmic structure of Gram-positive and Gram-negative bacteria.

  15. Overexpression of a Pathogenesis-Related Protein 10 Enhances Biotic and Abiotic Stress Tolerance in Rice

    PubMed Central

    Wu, Jingni; Kim, Sang Gon; Kang, Kyu Young; Kim, Ju-Gon; Park, Sang-Ryeol; Gupta, Ravi; Kim, Yong Hwan; Wang, Yiming; Kim, Sun Tae

    2016-01-01

    Pathogenesis-related proteins play multiple roles in plant development and biotic and abiotic stress tolerance. Here, we characterize a rice defense related gene named “jasmonic acid inducible pathogenesis-related class 10” (JIOsPR10) to gain an insight into its functional properties. Semi-quantitative RT-PCR analysis showed up-regulation of JIOsPR10 under salt and drought stress conditions. Constitutive over-expression JIOsPR10 in rice promoted shoot and root development in transgenic plants, however, their productivity was unaltered. Further experiments exhibited that the transgenic plants showed reduced susceptibility to rice blast fungus, and enhanced salt and drought stress tolerance as compared to the wild type. A comparative proteomic profiling of wild type and transgenic plants showed that overexpression of JIOsPR10 led to the differential modulation of several proteins mainly related with oxidative stresses, carbohydrate metabolism, and plant defense. Taken together, our findings suggest that JIOsPR10 plays important roles in biotic and abiotic stresses tolerance probably by activation of stress related proteins. PMID:27904462

  16. Endoplasmic reticulum stress induces PRNP prion protein gene expression in breast cancer

    PubMed Central

    2013-01-01

    Introduction High prion protein (PrP) levels are associated with breast, colon and gastric cancer resistance to treatment and with a poor prognosis for the patients. However, little is known about the underlying molecular mechanism(s) regulating human PrP gene (PRNP) expression in cancers. Because endoplasmic reticulum (ER) stress is associated with solid tumors, we investigated a possible regulation of PRNP gene expression by ER stress. Methods Published microarray databases of breast cancer tissues and breast carcinoma cell lines were analyzed for PrP mRNA and ER stress marker immunoglobulin heavy chain binding protein (BiP) levels. Breast cancer tissue microarrays (TMA) were immunostained for BiP and PrP. Breast carcinoma MCF-7, MDA-MB-231, HS578T and HCC1500 cells were treated with three different ER stressors - Brefeldin A, Tunicamycin, Thapsigargin - and levels of PrP mRNA or protein assessed by RT-PCR and Western blot analyses. A human PRNP promoter-luciferase reporter was used to assess transcriptional activation by ER stressors. Site-directed mutagenesis identified the ER stress response elements (ERSE). Chromatin immunoprecipitation (ChIP) analyses were done to identify the ER stress-mediated transcriptional regulators. The role of cleaved activating transcription factor 6α (ΔATF6α) and spliced X-box protein-1 (sXBP1) in PRNP gene expression was assessed with over-expression or silencing techniques. The role of PrP protection against ER stress was assessed with PrP siRNA and by using Prnp null cell lines. Results We find that mRNA levels of BiP correlated with PrP transcript levels in breast cancer tissues and breast carcinoma cell lines. PrP mRNA levels were enriched in the basal subtype and were associated with poor prognosis in breast cancer patients. Higher PrP and BiP levels correlated with increasing tumor grade in TMA. ER stress was a positive regulator of PRNP gene transcription in MCF-7 cells and luciferase reporter assays identified one ER

  17. Emerging Roles of ER Stress and Unfolded Protein Response Pathways in Skeletal Muscle Health and Disease.

    PubMed

    Bohnert, Kyle R; McMillan, Joseph D; Kumar, Ashok

    2017-02-08

    Skeletal muscle is the most abundant tissue in the human body and can adapt its mass as a consequence of physical activity, metabolism, growth factors, and disease conditions. Skeletal muscle contains an extensive network of endoplasmic reticulum (ER), called sarcoplasmic reticulum, which plays an important role in the regulation of proteostasis and calcium homeostasis. In many cell types, environmental and genetic factors that disrupt ER function cause an accumulation of misfolded and unfolded proteins in the ER lumen that ultimately leads to ER stress. To alleviate the stress and restore homeostasis, the ER activates a signaling network called the unfolded protein response (UPR). The UPR has three arms, which regulate protein synthesis and expression of many ER chaperone and regulatory proteins. However, the role of individual UPR pathways in skeletal muscle has just begun to be investigated. Recent studies suggest that UPR pathways play pivotal roles in muscle stem cell homeostasis, myogenic differentiation, and regeneration of injured skeletal muscle. Moreover, markers of ER stress and the UPR are activated in skeletal muscle in diverse conditions such as exercise, denervation, starvation, high fat diet, cancer cachexia, and aging. Accumulating evidence also suggests that ER stress may have important roles in the pathogenesis of inflammatory myopathies and genetic muscle disorders. The purpose of this review article is to discuss the role and potential mechanisms by which ER stress and the individual arms of the UPR regulate skeletal muscle formation, plasticity, and function in various physiological and pathophysiological conditions. This article is protected by copyright. All rights reserved.

  18. Homeodomain-Interacting Protein Kinase (HPK-1) regulates stress responses and ageing in C. elegans

    PubMed Central

    Berber, Slavica; Wood, Mallory; Llamosas, Estelle; Thaivalappil, Priya; Lee, Karen; Liao, Bing Mana; Chew, Yee Lian; Rhodes, Aaron; Yucel, Duygu; Crossley, Merlin; Nicholas, Hannah R

    2016-01-01

    Proteins of the Homeodomain-Interacting Protein Kinase (HIPK) family regulate an array of processes in mammalian systems, such as the DNA damage response, cellular proliferation and apoptosis. The nematode Caenorhabditis elegans has a single HIPK homologue called HPK-1. Previous studies have implicated HPK-1 in longevity control and suggested that this protein may be regulated in a stress-dependent manner. Here we set out to expand these observations by investigating the role of HPK-1 in longevity and in the response to heat and oxidative stress. We find that levels of HPK-1 are regulated by heat stress, and that HPK-1 contributes to survival following heat or oxidative stress. Additionally, we show that HPK-1 is required for normal longevity, with loss of HPK-1 function leading to a faster decline of physiological processes that reflect premature ageing. Through microarray analysis, we have found that HPK-1-regulated genes include those encoding proteins that serve important functions in stress responses such as Phase I and Phase II detoxification enzymes. Consistent with a role in longevity assurance, HPK-1 also regulates the expression of age-regulated genes. Lastly, we show that HPK-1 functions in the same pathway as DAF-16 to regulate longevity and reveal a new role for HPK-1 in development. PMID:26791749

  19. Non-enzymatic protein acylation as a carbon stress regulated by sirtuin deacylases

    PubMed Central

    Wagner, Gregory R.; Hirschey, Matthew D.

    2014-01-01

    Cellular proteins are decorated with a wide range of acetyl and other acyl modifications. Many studies have demonstrated regulation of site-specific acetylation by acetyltransferases and deacetylases. Acylation is emerging as a new type of lysine modification, but less is known about its overall regulatory role. Furthermore, the mechanisms of lysine acylation, its overlap with protein acetylation, and how it influences cellular function are major unanswered questions in the field. In this review, we discuss the known roles of acetyltransferases and deacetylases, and the sirtuins as a conserved family of NAD+-dependent protein deacylases that are important for response to cellular stress and homeostasis. We also consider the evidence for an emerging idea of non-enzymatic protein acylation. Finally, we put forward the hypothesis that protein acylation is a form of protein “carbon stress”, that the deacylases evolved to remove as a part of a global protein quality control network. PMID:24725594

  20. HDLs protect pancreatic β-cells against ER stress by restoring protein folding and trafficking.

    PubMed

    Pétremand, Jannick; Puyal, Julien; Chatton, Jean-Yves; Duprez, Jessica; Allagnat, Florent; Frias, Miguel; James, Richard W; Waeber, Gérard; Jonas, Jean-Christophe; Widmann, Christian

    2012-05-01

    Endoplasmic reticulum (ER) homeostasis alteration contributes to pancreatic β-cell dysfunction and death and favors the development of diabetes. In this study, we demonstrate that HDLs protect β-cells against ER stress induced by thapsigargin, cyclopiazonic acid, palmitate, insulin overexpression, and high glucose concentrations. ER stress marker induction and ER morphology disruption mediated by these stimuli were inhibited by HDLs. Using a temperature-sensitive viral glycoprotein folding mutant, we show that HDLs correct impaired protein trafficking and folding induced by thapsigargin and palmitate. The ability of HDLs to protect β-cells against ER stress was inhibited by brefeldin A, an ER to Golgi trafficking blocker. These results indicate that HDLs restore ER homeostasis in response to ER stress, which is required for their ability to promote β-cell survival. This study identifies a cellular mechanism mediating the beneficial effect of HDLs on β-cells against ER stress-inducing factors.

  1. HDLs Protect Pancreatic β-Cells Against ER Stress by Restoring Protein Folding and Trafficking

    PubMed Central

    Pétremand, Jannick; Puyal, Julien; Chatton, Jean-Yves; Duprez, Jessica; Allagnat, Florent; Frias, Miguel; James, Richard W.; Waeber, Gérard; Jonas, Jean-Christophe; Widmann, Christian

    2012-01-01

    Endoplasmic reticulum (ER) homeostasis alteration contributes to pancreatic β-cell dysfunction and death and favors the development of diabetes. In this study, we demonstrate that HDLs protect β-cells against ER stress induced by thapsigargin, cyclopiazonic acid, palmitate, insulin overexpression, and high glucose concentrations. ER stress marker induction and ER morphology disruption mediated by these stimuli were inhibited by HDLs. Using a temperature-sensitive viral glycoprotein folding mutant, we show that HDLs correct impaired protein trafficking and folding induced by thapsigargin and palmitate. The ability of HDLs to protect β-cells against ER stress was inhibited by brefeldin A, an ER to Golgi trafficking blocker. These results indicate that HDLs restore ER homeostasis in response to ER stress, which is required for their ability to promote β-cell survival. This study identifies a cellular mechanism mediating the beneficial effect of HDLs on β-cells against ER stress-inducing factors. PMID:22399686

  2. Hfq reduces envelope stress by controlling expression of envelope-localized proteins and protein complexes in enteropathogenic Escherichia coli.

    PubMed

    Vogt, Stefanie L; Raivio, Tracy L

    2014-05-01

    Gram-negative bacteria possess several envelope stress responses that detect and respond to damage to this critical cellular compartment. The σ(E) envelope stress response senses the misfolding of outer membrane proteins (OMPs), while the Cpx two-component system is believed to detect the misfolding of periplasmic and inner membrane proteins. Recent studies in several Gram-negative organisms found that deletion of hfq, encoding a small RNA chaperone protein, activates the σ(E) envelope stress response. In this study, we assessed the effects of deleting hfq upon activity of the σ(E) and Cpx responses in non-pathogenic and enteropathogenic (EPEC) strains of Escherichia coli. We found that the σ(E) response was activated in Δhfq mutants of all E. coli strains tested, resulting from the misregulation of OMPs. The Cpx response was activated by loss of hfq in EPEC, but not in E. coli K-12. Cpx pathway activation resulted in part from overexpression of the bundle-forming pilus (BFP) in EPEC Δhfq. We found that Hfq repressed expression of the BFP via PerA, a master regulator of virulence in EPEC. This study shows that Hfq has a more extensive role in regulating the expression of envelope proteins and horizontally acquired virulence genes in E. coli than previously recognized.

  3. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice.

    PubMed

    Liu, Chih-Wei; Chang, Tao-Shan; Hsu, Yu-Kai; Wang, Arthur Z; Yen, Hung-Chen; Wu, Yung-Pei; Wang, Chang-Sheng; Lai, Chien-Chen

    2014-08-01

    Growth and productivity of rice (Oryza sativa L.) are severely affected by salinity. Understanding the mechanisms that protect rice and other important cereal crops from salt stress will help in the development of salt-stress-tolerant strains. In this study, rice seedlings of the same genetic species with various salt tolerances were studied. We first used 2DE to resolve the expressed proteome in rice roots and leaves and then used nanospray liquid chromatography/tandem mass spectrometry to identify the differentially expressed proteins in rice seedlings after salt treatment. The 2DE assays revealed that there were 104 differentially expressed protein spots in rice roots and 59 in leaves. Then, we identified 83 proteins in rice roots and 61 proteins in rice leaves by MS analysis. Functional classification analysis revealed that the differentially expressed proteins from roots could be classified into 18 functional categories while those from leaves could be classified into 11 functional categories. The proteins from rice seedlings that most significantly contributed to a protective effect against increased salinity were cysteine synthase, adenosine triphosphate synthase, quercetin 3-O-methyltransferase 1, and lipoxygenase 2. Further analysis demonstrated that the primary mechanisms underlying the ability of rice seedlings to tolerate salt stress were glycolysis, purine metabolism, and photosynthesis. Thus, we suggest that differentially expressed proteins may serve as marker group for the salt tolerance of rice.

  4. Surfactant protein A2 mutations associated with pulmonary fibrosis lead to protein instability and endoplasmic reticulum stress.

    PubMed

    Maitra, Meenakshi; Wang, Yongyu; Gerard, Robert D; Mendelson, Carole R; Garcia, Christine Kim

    2010-07-16

    Rare heterozygous mutations in the gene encoding surfactant protein A2 (SP-A2, SFTPA2) are associated with adult-onset pulmonary fibrosis and adenocarcinoma of the lung. We have previously shown that two recombinant SP-A2 mutant proteins (G231V and F198S) remain within the endoplasmic reticulum (ER) of A549 cells and are not secreted into the culture medium. The pathogenic mechanism of the mutant proteins is unknown. Here we analyze all common and rare variants of the surfactant protein A2, SP-A2, in both A549 cells and in primary type II alveolar epithelial cells. We show that, in contrast with all other SP-A2 variants, the mutant proteins are not secreted into the medium with wild-type SP-A isoforms, form fewer intracellular dimer and trimer oligomers, are partially insoluble in 0.5% Nonidet P-40 lysates of transfected A549 cells, and demonstrate greater protein instability in chymotrypsin proteolytic digestions. Both the G231V and F198S mutant SP-A2 proteins are destroyed via the ER-association degradation pathway. Expression of the mutant proteins increases the transcription of a BiP-reporter construct, expression of BiP protein, and production of an ER stress-induced XBP-1 spliced product. Human bronchoalveolar wash samples from individuals who are heterozygous for the G231V mutation have similar levels of total SP-A as normal family members, which suggests that the mechanism of disease does not involve an overt lack of secreted SP-A but instead involves an increase in ER stress of resident type II alveolar epithelial cells.

  5. Tauroursodeoxycholic acid reduces ER stress by regulating of Akt-dependent cellular prion protein

    PubMed Central

    Yoon, Yeo Min; Lee, Jun Hee; Yun, Seung Pil; Han, Yong-Seok; Yun, Chul Won; Lee, Hyun Jik; Noh, Hyunjin; Lee, Sei-Jung; Han, Ho Jae; Lee, Sang Hun

    2016-01-01

    Although mesenchymal stem cells (MSCs) are a promising cell source for regenerative medicine, ischemia-induced endoplasmic reticulum (ER) stress induces low MSC engraftment and limits their therapeutic efficacy. To overcome this, we investigated the protective effect of tauroursodeoxycholic acid (TUDCA), a bile acid, on ER stress in MSCs in vitro and in vivo. In ER stress conditions, TUDCA treatment of MSCs reduced the activation of ER stress-associated proteins, including GRP78, PERK, eIF2α, ATF4, IRE1α, JNK, p38, and CHOP. In particular, TUDCA inhibited the dissociation between GRP78 and PERK, resulting in reduced ER stress-mediated cell death. Next, to explore the ER stress protective mechanism induced by TUDCA treatment, TUDCA-mediated cellular prion protein (PrPC) activation was assessed. TUDCA treatment increased PrPC expression, which was regulated by Akt phosphorylation. Manganese-dependent superoxide dismutase (MnSOD) expression also increased significantly in response to signaling through the TUDCA-Akt axis. In a murine hindlimb ischemia model, TUDCA-treated MSC transplantation augmented the blood perfusion ratio, vessel formation, and transplanted cell survival more than untreated MSC transplantation did. Augmented functional recovery following MSC transplantation was blocked by PrPC downregulation. This study is the first to demonstrate that TUDCA protects MSCs against ER stress via Akt-dependent PrPC and Akt-MnSOD pathway. PMID:28004805

  6. A kinase interacting protein (AKIP1) is a key regulator of cardiac stress

    PubMed Central

    Sastri, Mira; Haushalter, Kristofer J.; Panneerselvam, Mathivadhani; Chang, Philip; Fridolfsson, Heidi; Finley, J. Cameron; Ng, Daniel; Schilling, Jan M.; Miyanohara, Atsushi; Day, Michele E.; Hakozaki, Hiro; Petrosyan, Susanna; Koller, Antonius; King, Charles C.; Darshi, Manjula; Blumenthal, Donald K.; Ali, Sameh Saad; Roth, David M.; Patel, Hemal H.; Taylor, Susan S.

    2013-01-01

    cAMP-dependent protein kinase (PKA) regulates a myriad of functions in the heart, including cardiac contractility, myocardial metabolism, and gene expression. However, a molecular integrator of the PKA response in the heart is unknown. Here, we show that the PKA adaptor A-kinase interacting protein 1 (AKIP1) is up-regulated in cardiac myocytes in response to oxidant stress. Mice with cardiac gene transfer of AKIP1 have enhanced protection to ischemic stress. We hypothesized that this adaptation to stress was mitochondrial-dependent. AKIP1 interacted with the mitochondrial localized apoptosis inducing factor (AIF) under both normal and oxidant stress. When cardiac myocytes or whole hearts are exposed to oxidant and ischemic stress, levels of both AKIP1 and AIF were enhanced. AKIP1 is preferentially localized to interfibrillary mitochondria and up-regulated in this cardiac mitochondrial subpopulation on ischemic injury. Mitochondria isolated from AKIP1 gene-transferred hearts showed increased mitochondrial localization of AKIP1, decreased reactive oxygen species generation, enhanced calcium tolerance, decreased mitochondrial cytochrome C release, and enhance phosphorylation of mitochondrial PKA substrates on ischemic stress. These observations highlight AKIP1 as a critical molecular regulator and a therapeutic control point for stress adaptation in the heart. PMID:23319652

  7. Proteomic Analysis Reveals Proteins Involved in Seed Imbibition under Salt Stress in Rice

    PubMed Central

    Xu, Enshun; Chen, Mingming; He, Hui; Zhan, Chengfang; Cheng, Yanhao; Zhang, Hongsheng; Wang, Zhoufei

    2017-01-01

    Enhancement of salinity tolerance during seed germination is very important for direct seeding in rice. In this study, the salt-tolerant japonica landrace Jiucaiqing was used to determine the regulators that are involved in seed imbibition under salt stress. Briefly, the comparative proteomic analysis was conducted between dry (0 h) and imbibed (24 h) seeds with 150 mM NaCl. Under salt stress, the uptake of water increased rapidly before 24 h imbibition (Phase I), followed by a plateau of seed imbibition from 24 to 96 h imbibition (Phase II). We identified 14 proteins involved in seed imbibition, in which the majority of these proteins were involved in energy supply and storage protein. The early imbibition process was mediated by protein catabolism; the most of proteins were down-regulated after 24 h imbibition. Eleven genes in salt stress treated seeds were expressed early during the seed imbibition in comparison to control seeds. By comparison, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (BPM), glutelin (GLU2.2 and GLU2.3), glucose-1-phosphate adenylyltransferase large subunit (GAS8), and cupin domain containing protein (CDP3.1 and CDP3.2) were near the regions of quantitative trait loci (QTLs) for seed dormancy, seed reserve utilization, and seed germination in Jiucaiqing. In particular, CDP3.1 was co-located in the region of qIR-3 for imbibition rate, and qGP-3 for germination percentage. The role of CDP3.1 was verified in enhancing seed germination under salt stress using T-DNA mutant. The identified proteins might be applicable for the improvement of seed germination under salt stress in rice. PMID:28105039

  8. Proteomic Analysis Reveals Proteins Involved in Seed Imbibition under Salt Stress in Rice.

    PubMed

    Xu, Enshun; Chen, Mingming; He, Hui; Zhan, Chengfang; Cheng, Yanhao; Zhang, Hongsheng; Wang, Zhoufei

    2016-01-01

    Enhancement of salinity tolerance during seed germination is very important for direct seeding in rice. In this study, the salt-tolerant japonica landrace Jiucaiqing was used to determine the regulators that are involved in seed imbibition under salt stress. Briefly, the comparative proteomic analysis was conducted between dry (0 h) and imbibed (24 h) seeds with 150 mM NaCl. Under salt stress, the uptake of water increased rapidly before 24 h imbibition (Phase I), followed by a plateau of seed imbibition from 24 to 96 h imbibition (Phase II). We identified 14 proteins involved in seed imbibition, in which the majority of these proteins were involved in energy supply and storage protein. The early imbibition process was mediated by protein catabolism; the most of proteins were down-regulated after 24 h imbibition. Eleven genes in salt stress treated seeds were expressed early during the seed imbibition in comparison to control seeds. By comparison, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (BPM), glutelin (GLU2.2 and GLU2.3), glucose-1-phosphate adenylyltransferase large subunit (GAS8), and cupin domain containing protein (CDP3.1 and CDP3.2) were near the regions of quantitative trait loci (QTLs) for seed dormancy, seed reserve utilization, and seed germination in Jiucaiqing. In particular, CDP3.1 was co-located in the region of qIR-3 for imbibition rate, and qGP-3 for germination percentage. The role of CDP3.1 was verified in enhancing seed germination under salt stress using T-DNA mutant. The identified proteins might be applicable for the improvement of seed germination under salt stress in rice.

  9. LEA proteins are involved in cyst desiccation resistance and other abiotic stresses in Azotobacter vinelandii.

    PubMed

    Rodriguez-Salazar, Julieta; Moreno, Soledad; Espín, Guadalupe

    2017-03-03

    Late embryogenesis abundant (LEA) proteins constitute a large protein family that is closely associated with resistance to abiotic stresses in multiple organisms and protect cells against drought and other stresses. Azotobacter vinelandii is a soil bacterium that forms desiccation-resistant cysts. This bacterium possesses two genes, here named lea1 and lea2, coding for avLEA1 and avLEA2 proteins, both containing 20-mer motifs characteristic of eukaryotic plant LEA proteins. In this study, we found that disruption of the lea1 gene caused a loss of the cysts' viability after 3 months of desiccation, whereas at 6 months, wild-type or lea2 mutant strain cysts remained viable. Vegetative cells of the lea1 mutant were more sensitive to osmotic stress; cysts developed by this mutant were also more sensitive to high temperatures than cysts or vegetative cells of the wild type or of the lea2 mutant. Expression of lea1 was induced several fold during encystment. In addition, the protective effects of these proteins were assessed in Escherichia coli cells. We found that E. coli cells overexpressing avLEA1 were more tolerant to salt stress than control cells; finally, in vitro analysis showed that avLEA1 protein was able to prevent the freeze thaw-induced inactivation of lactate dehydrogenase. In conclusion, avLEA1 is essential for the survival of A. vinelandii in dry conditions and for protection against hyper-osmolarity, two major stress factors that bacteria must cope with for survival in the environment. This is the first report on the role of bacterial LEA proteins on the resistance of cysts to desiccation.

  10. HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress

    NASA Astrophysics Data System (ADS)

    Zhang, Liyong; Chen, Xin; Sharma, Parveen; Moon, Mark; Sheftel, Alex D.; Dawood, Fayez; Nghiem, Mai P.; Wu, Jun; Li, Ren-Ke; Gramolini, Anthony O.; Sorensen, Poul H.; Penninger, Josef M.; Brumell, John H.; Liu, Peter P.

    2014-03-01

    The HECT E3 ubiquitin ligase HACE1 is a tumour suppressor known to regulate Rac1 activity under stress conditions. HACE1 is increased in the serum of patients with heart failure. Here we show that HACE1 protects the heart under pressure stress by controlling protein degradation. Hace1 deficiency in mice results in accelerated heart failure and increased mortality under haemodynamic stress. Hearts from Hace1-/- mice display abnormal cardiac hypertrophy, left ventricular dysfunction, accumulation of LC3, p62 and ubiquitinated proteins enriched for cytoskeletal species, indicating impaired autophagy. Our data suggest that HACE1 mediates p62-dependent selective autophagic turnover of ubiquitinated proteins by its ankyrin repeat domain through protein-protein interaction, which is independent of its E3 ligase activity. This would classify HACE1 as a dual-function E3 ligase. Our finding that HACE1 has a protective function in the heart in response to haemodynamic stress suggests that HACE1 may be a potential diagnostic and therapeutic target for heart disease.

  11. Nuclear Cytoplasmic Trafficking of Proteins is a Major Response of Human Fibroblasts to Oxidative Stress

    PubMed Central

    Baqader, Noor O.; Radulovic, Marko; Crawford, Mark; Stoeber, Kai; Godovac-Zimmermann, Jasminka

    2014-01-01

    We have used a subcellular spatial razor approach based on LC–MS/MS-based proteomics with SILAC isotope labeling to determine changes in protein abundances in the nuclear and cytoplasmic compartments of human IMR90 fibroblasts subjected to mild oxidative stress. We show that response to mild tert-butyl hydrogen peroxide treatment includes redistribution between the nucleus and cytoplasm of numerous proteins not previously associated with oxidative stress. The 121 proteins with the most significant changes encompass proteins with known functions in a wide variety of subcellular locations and of cellular functional processes (transcription, signal transduction, autophagy, iron metabolism, TCA cycle, ATP synthesis) and are consistent with functional networks that are spatially dispersed across the cell. Both nuclear respiratory factor 2 and the proline regulatory axis appear to contribute to the cellular metabolic response. Proteins involved in iron metabolism or with iron/heme as a cofactor as well as mitochondrial proteins are prominent in the response. Evidence suggesting that nuclear import/export and vesicle-mediated protein transport contribute to the cellular response was obtained. We suggest that measurements of global changes in total cellular protein abundances need to be complemented with measurements of the dynamic subcellular spatial redistribution of proteins to obtain comprehensive pictures of cellular function. PMID:25133973

  12. Crystal structure of the protein At3g01520, a eukaryotic universal stress protein-like protein from Arabidopsis thaliana in complex with AMP.

    PubMed

    Kim, Do Jin; Bitto, Eduard; Bingman, Craig A; Kim, Hyun-Jung; Han, Byung Woo; Phillips, George N

    2015-07-01

    Members of the universal stress protein (USP) family are conserved in a phylogenetically diverse range of prokaryotes, fungi, protists, and plants and confer abilities to respond to a wide range of environmental stresses. Arabidopsis thaliana contains 44 USP domain-containing proteins, and USP domain is found either in a small protein with unknown physiological function or in an N-terminal portion of a multi-domain protein, usually a protein kinase. Here, we report the first crystal structure of a eukaryotic USP-like protein encoded from the gene At3g01520. The crystal structure of the protein At3g01520 was determined by the single-wavelength anomalous dispersion method and refined to an R factor of 21.8% (Rfree = 26.1%) at 2.5 Å resolution. The crystal structure includes three At3g01520 protein dimers with one AMP molecule bound to each protomer, comprising a Rossmann-like α/β overall fold. The bound AMP and conservation of residues in the ATP-binding loop suggest that the protein At3g01520 also belongs to the ATP-binding USP subfamily members.

  13. Functional analysis of stress protein data in a flor yeast subjected to a biofilm forming condition.

    PubMed

    Moreno-García, Jaime; Mauricio, Juan Carlos; Moreno, Juan; García-Martínez, Teresa

    2016-06-01

    In this data article, an OFFGEL fractionator coupled to LTQ Orbitrap XL MS equipment and a SGD filtering were used to detect in a biofilm-forming flor yeast strain, the maximum possible number of stress proteins under the first stage of a biofilm formation conditions (BFC) and under an initial stage of fermentation used as reference, so-called non-biofilm formation condition (NBFC). Protein functional analysis - based on cellular components and biological process GO terms - was performed for these proteins through the SGD Gene Ontology Slim Mapper tool. A detailed analysis and interpretation of the data can be found in "Stress responsive proteins of a flor yeast strain during the early stages of biofilm formation" [1].

  14. Calcium affecting protein expression in longan under simulated acid rain stress.

    PubMed

    Pan, Tengfei; Li, Yongyu; Ma, Cuilan; Qiu, Dongliang

    2015-08-01

    Longan (Dimocarpus longana Lour. cv. Wulongling) of uniform one-aged seedlings grown in pots were selected to study specific proteins expressed in leaves under simulated acid rain (SiAR) stress and exogenous Ca(2+) regulation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that there was a protein band specifically expressed under SiAR of pH 2.5 stress for 15 days with its molecular weight of about 23 kD. A 17 kD protein band specifically expressed after SiAR stress 5 days. Compared with pH 2.5, the pH 3.5 of SiAR made a less influence to protein expression. Two-dimensional electrophoresis (2-DE) results showed that six new specific proteins including C4 (20.2 kD pI 6.0), F (24 kD pI 6.35), B3 (22.3 kD pI 6.35), B4 (23.5 kD pI 6.5), C5 (21.8 kD pI 5.6), and C6 (20.2 kD pI 5.6) specifically expressed. C4 always expressed during SiAR stress. F expressed under the stress of pH 2.5 for 15 days and expressed in all pH SiAR stress for 20 days. The expression of proteins including B3, C5, and C6 was related to pH value and stress intensity of SiAR. The expression of B4 resulted from synergistic effects of SiAR and Ca. The expression of G1 (Mr 19.3 kD, pI 4.5), G2 (Mr 17.8 kD, pI 4.65), G3 (Mr 16.6 kD, pI 4.6), and G4 (Mr 14.7 kD, pI 4.4) enhanced under the treatment of 5 mM ethylene glycol tetraacetic acid (EGTA) and 2 mM chlorpromazine (CPZ). These proteins showed antagonistic effects and might be relative to the Ca-calmodulin (Ca-CaM) system of longan in response to SiAR stress.

  15. Integration of the Unfolded Protein and Oxidative Stress Responses through SKN-1/Nrf

    PubMed Central

    Glover-Cutter, Kira M.; Lin, Stephanie; Blackwell, T. Keith

    2013-01-01

    The Unfolded Protein Response (UPR) maintains homeostasis in the endoplasmic reticulum (ER) and defends against ER stress, an underlying factor in various human diseases. During the UPR, numerous genes are activated that sustain and protect the ER. These responses are known to involve the canonical UPR transcription factors XBP1, ATF4, and ATF6. Here, we show in C. elegans that the conserved stress defense factor SKN-1/Nrf plays a central and essential role in the transcriptional UPR. While SKN-1/Nrf has a well-established function in protection against oxidative and xenobiotic stress, we find that it also mobilizes an overlapping but distinct response to ER stress. SKN-1/Nrf is regulated by the UPR, directly controls UPR signaling and transcription factor genes, binds to common downstream targets with XBP-1 and ATF-6, and is present at the ER. SKN-1/Nrf is also essential for resistance to ER stress, including reductive stress. Remarkably, SKN-1/Nrf-mediated responses to oxidative stress depend upon signaling from the ER. We conclude that SKN-1/Nrf plays a critical role in the UPR, but orchestrates a distinct oxidative stress response that is licensed by ER signaling. Regulatory integration through SKN-1/Nrf may coordinate ER and cytoplasmic homeostasis. PMID:24068940

  16. Protein expression changes during cotton fiber elongation in response to drought stress and recovery.

    PubMed

    Zheng, Mi; Meng, Yali; Yang, Changqin; Zhou, Zhiguo; Wang, Youhua; Chen, Binglin

    2014-08-01

    An investigation to better understand the molecular mechanism of cotton (Gossypium hirsutum L.) fiber elongation in response to drought stress and recovery was conducted using a comparative proteomics analysis. Cotton plants (cv. NuCOTN 33B) were subjected to water deprivation for 10 days followed by a recovery period (with watering) of 5 days. The temporal changes in total proteins in cotton fibers were examined using 2DE. The results revealed that 163 proteins are significantly drought responsive. MS analysis led to the identification of 132 differentially expressed proteins that include some known as well as some novel drought-responsive proteins. These drought responsive fiber proteins in NuCOTN 33B are associated with a variety of cellular functions, i.e. signal transduction, protein processing, redox homeostasis, cell wall modification, metabolisms of carbon, energy, lipid, lignin, and flavonoid. The results suggest that the enhancement of the perception of drought stress, a new balance of the metabolism of the biosynthesis of cell wall components and cytoskeleton homeostasis plays an important role in the response of cotton fibers to drought stress. Overall, the current study provides an overview of the molecular mechanism of drought response in cotton fiber cells.

  17. Reversible and irreversible modifications of skeletal muscle proteins in a rat model of acute oxidative stress.

    PubMed

    Fedorova, Maria; Kuleva, Nadezhda; Hoffmann, Ralf

    2009-12-01

    Oxidative stress caused by an imbalance of the production of "reactive oxygen species" (ROS) and cellular scavenging systems is known to a play a key role in the development of various diseases and aging processes. Such elevated ROS levels can damage all components of cells, including proteins, lipids and DNA. Here, we study the influence of highly reactive ROS species on skeletal muscle proteins in a rat model of acute oxidative stress caused by X-ray irradiation at different time points. Protein preparations depleted for functional actin by polymerization were separated by gel electrophoresis in two dimensions by applying first non-reductive and then reductive conditions in SDS-PAGE. This diagonal redox SDS-PAGE revealed significant alterations to intra- and inter-molecular disulfide bridges for several proteins, but especially actin, creatine kinase and different isoforms of the myosin light chain. Though the levels of these reversible modifications were increased by oxidative stress, all proteins followed different kinetics. Moreover, a significant degree of protein was irreversibly oxidized (carbonylated), as revealed by western blot analyses performed at different time points.

  18. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage

    PubMed Central

    Ji, Cheng

    2015-01-01

    Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER) causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR) leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries. PMID:26047032

  19. QTL mapping of protein content and seed characteristics under water-stress conditions in sunflower.

    PubMed

    Ebrahimi, A; Maury, P; Berger, M; Calmon, A; Grieu, P; Sarrafi, A

    2009-05-01

    The purpose of this study was to identify genomic regions controlling seed protein content, kernel and hull weights, and seed density in water-stress conditions in sunflower (Helianthus annuus L.). The experiments consisted of a split-plot design (water treatment and recombinant inbred lines) with three blocks in two environments (greenhouse and field). High significant variation was observed between genotypes for all traits as well as for water treatment x genotype interaction. Several specific and nonspecific QTLs were detected for all traits under well-watered and water-stress conditions. Two SSR markers, ORS671_2 and HA2714, linked to protein content were identified that have no interaction with water treatments in greenhouse conditions. We also detected the E35M60_4 marker associated with kernel weight that had no interaction with water treatments. A specific QTL for protein content was detected with important phenotypic variance (17%) under water-stress conditions. Overlapping QTLs for protein content and seed density were identified in linkage group 15. This region probably has a peliotropic effect on protein content and seed density. QTLs for protein content colocated with grain weight traits were also identified.

  20. Activation of AMP-activated protein kinase inhibits ER stress and renal fibrosis.

    PubMed

    Kim, Hyosang; Moon, Soo Young; Kim, Joon-Seok; Baek, Chung Hee; Kim, Miyeon; Min, Ji Yeon; Lee, Sang Koo

    2015-02-01

    It has been suggested that endoplasmic reticulum (ER) stress facilitates fibrotic remodeling. Therefore, modulation of ER stress may serve as one of the possible therapeutic approaches to renal fibrosis. We examined whether and how activation of AMP-activated protein kinase (AMPK) suppressed ER stress induced by chemical ER stress inducers [tunicamycin (TM) and thapsigargin (TG)] and also nonchemical inducers in tubular HK-2 cells. We further investigated the in vivo effects of AMPK on ER stress and renal fibrosis. Western blot analysis, immunofluorescence, small interfering (si)RNA experiments, and immunohistochemical staining were performed. Metformin (the best known clinical activator of AMPK) suppressed TM- or TG-induced ER stress, as shown by the inhibition of TM- or TG-induced upregulation of glucose-related protein (GRP)78 and phosphorylated eukaryotic initiation factor-2α through induction of heme oxygenase-1. Metformin inhibited TM- or TG-induced epithelial-mesenchymal transitions as well. Compound C (AMPK inhibitor) blocked the effect of metformin, and 5-aminoimidazole-4-carboxamide-1β riboside (another AMPK activator) exerted the same effects as metformin. Transfection with siRNA targeting AMPK blocked the effect of metformin. Consistent with the results of cell culture experiments, metformin reduced renal cortical GRP78 expression and increased heme oxygenase-1 expression in a mouse model of ER stress-induced acute kidney injury by TM. Activation of AMPK also suppressed ER stress by transforming growth factor-β, ANG II, aldosterone, and high glucose. Furthermore, metformin reduced GRP78 expression and renal fibrosis in a mouse model of unilateral ureteral obstruction. In conclusion, AMPK may serve as a promising therapeutic target through reducing ER stress and renal fibrosis.

  1. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury.

    PubMed

    Ansari, Mubeen A; Roberts, Kelly N; Scheff, Stephen W

    2008-08-15

    Oxidative stress, an imbalance between oxidants and antioxidants, contributes to the pathogenesis of traumatic brain injury (TBI). Oxidative neurodegeneration is a key mediator of exacerbated morphological responses and deficits in behavioral recoveries. The present study assessed early hippocampal sequential imbalance to possibly enhance antioxidant therapy. Young adult male Sprague-Dawley rats were subjected to a unilateral moderate cortical contusion. At various times post-TBI, animals were killed and the hippocampus was analyzed for antioxidants (GSH, GSSG, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, glucose-6-phosphate dehydrogenase, superoxide dismutase, and catalase) and oxidants (acrolein, 4-hydroxynonenal, protein carbonyl, and 3-nitrotyrosine). Synaptic markers (synapsin I, postsynaptic density protein 95, synapse-associated protein 97, growth-associated protein 43) were also analyzed. All values were compared with those for sham-operated animals. Significant time-dependent changes in antioxidants were observed as early as 3 h posttrauma and paralleled increases in oxidants (4-hydroxynonenal, acrolein, and protein carbonyl), with peak values obtained at 24-48 h. Time-dependent changes in synaptic proteins (synapsin I, postsynaptic density protein 95, and synapse-associated protein 97) occurred well after levels of oxidants peaked. These results indicate that depletion of antioxidant systems following trauma could adversely affect synaptic function and plasticity. Early onset of oxidative stress suggests that the initial therapeutic window following TBI appears to be relatively short, and it may be necessary to stagger selective types of antioxidant therapy to target specific oxidative components.

  2. Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis

    PubMed Central

    Genereux, Joseph C; Qu, Song; Zhou, Minghai; Ryno, Lisa M; Wang, Shiyu; Shoulders, Matthew D; Kaufman, Randal J; Lasmézas, Corinne I; Kelly, Jeffery W; Wiseman, R Luke

    2015-01-01

    The Unfolded Protein Response (UPR) indirectly regulates extracellular proteostasis through transcriptional remodeling of endoplasmic reticulum (ER) proteostasis pathways. This remodeling attenuates secretion of misfolded, aggregation-prone proteins during ER stress. Through these activities, the UPR has a critical role in preventing the extracellular protein aggregation associated with numerous human diseases. Here, we demonstrate that UPR activation also directly influences extracellular proteostasis through the upregulation and secretion of the ER HSP40 ERdj3/DNAJB11. Secreted ERdj3 binds misfolded proteins in the extracellular space, substoichiometrically inhibits protein aggregation, and attenuates proteotoxicity of disease-associated toxic prion protein. Moreover, ERdj3 can co-secrete with destabilized, aggregation-prone proteins in a stable complex under conditions where ER chaperoning capacity is overwhelmed, preemptively providing extracellular chaperoning of proteotoxic misfolded proteins that evade ER quality control. This regulated co-secretion of ERdj3 with misfolded clients directly links ER and extracellular proteostasis during conditions of ER stress. ERdj3 is, to our knowledge, the first metazoan chaperone whose secretion into the extracellular space is regulated by the UPR, revealing a new mechanism by which UPR activation regulates extracellular proteostasis. PMID:25361606

  3. Shear stress-induced mechanotransduction protein deregulation and vasculopathy in a mouse model of progeria

    PubMed Central

    2014-01-01

    Introduction A mouse model of progeria derived by insertion of the human mutant LMNA gene (mLMNA), producing mutant lamin A, shows loss of smooth muscle cells in the media of the ascending aorta. We hypothesized that high shear stress, in the presence of mutant lamin A, induces this vasculopathy and tried to define the molecular and cellular basis for aortic vasculopathy. Methods Ascending and descending aortas from wild type (WT) and mLMNA+ mice were compared using proteomics, Western blots, PCR and immunostaining. To determine whether high fluidic shear stress, known to occur in the ascending aorta, contributed to the vasculopathy, we exposed descending aortas of mLMNA+ mice, with no apparent vasculopathy, to 75 dynes/cm2 shear stress for 30 minutes using a microfluidic system. Results When the mice were one year of age, expression of several mechanotransduction proteins in the ascending aorta, including vimentin, decreased in mLMNA+ mice but no decrease occurred in the descending aorta. High fluidic shear stress produced a significant reduction in vimentin of mLMNA+ mice but not in similarly treated WT mice. Conclusions The occurrence of mutant lamin A and high shear stress correlate with a reduction in the level of mechanotransduction proteins in smooth muscle cells of the media. Reduction of these proteins may contribute over time to development of vasculopathy in the ascending aorta in progeria syndrome. PMID:24661531

  4. Oligouridylate Binding Protein 1b Plays an Integral Role in Plant Heat Stress Tolerance

    PubMed Central

    Nguyen, Cam Chau; Nakaminami, Kentaro; Matsui, Akihiro; Kobayashi, Shuhei; Kurihara, Yukio; Toyooka, Kiminori; Tanaka, Maho; Seki, Motoaki

    2016-01-01

    Stress granules (SGs), which are formed in the plant cytoplasm under stress conditions, are transient dynamic sites (particles) for mRNA storage. SGs are actively involved in protecting mRNAs from degradation. Oligouridylate binding protein 1b (UBP1b) is a component of SGs. The formation of microscopically visible cytoplasmic foci, referred to as UBP1b SG, was induced by heat treatment in UBP1b-overexpressing Arabidopsis plants (UBP1b-ox). A detailed understanding of the function of UBP1b, however, is still not clear. UBP1b-ox plants displayed increased heat tolerance, relative to control plants, while ubp1b mutants were more sensitive to heat stress than control plants. Microarray analysis identified 117 genes whose expression was heat-inducible and higher in the UBP1b-ox plants. RNA decay analysis was performed using cordycepin, a transcriptional inhibitor. In order to determine if those genes serve as targets of UBP1b, the rate of RNA degradation of a DnaJ heat shock protein and a stress-associated protein (AtSAP3) in UBP1b-ox plants was slower than in control plants; indicating that the mRNAs of these genes were protected within the UBP1b SG granule. Collectively, these data demonstrate that UBP1b plays an integral role in heat stress tolerance in plants. PMID:27379136

  5. Quantitative Phosphoproteomics Reveals the Role of Protein Arginine Phosphorylation in the Bacterial Stress Response*

    PubMed Central

    Schmidt, Andreas; Trentini, Débora Broch; Spiess, Silvia; Fuhrmann, Jakob; Ammerer, Gustav; Mechtler, Karl; Clausen, Tim

    2014-01-01

    Arginine phosphorylation is an emerging protein modification implicated in the general stress response of Gram-positive bacteria. The modification is mediated by the arginine kinase McsB, which phosphorylates and inactivates the heat shock repressor CtsR. In this study, we developed a mass spectrometric approach accounting for the peculiar chemical properties of phosphoarginine. The improved methodology was used to analyze the dynamic changes in the Bacillus subtilis arginine phosphoproteome in response to different stress situations. Quantitative analysis showed that a B. subtilis mutant lacking the YwlE arginine phosphatase accumulated a strikingly large number of arginine phosphorylations (217 sites in 134 proteins), however only a minor fraction of these sites was increasingly modified during heat shock or oxidative stress. The main targets of McsB-mediated arginine phosphorylation comprise central factors of the stress response system including the CtsR and HrcA heat shock repressors, as well as major components of the protein quality control system such as the ClpCP protease and the GroEL chaperonine. These findings highlight the impact of arginine phosphorylation in orchestrating the bacterial stress response. PMID:24263382

  6. Effect of Varying Fluid Shear Stress on Cancer Stem Cell Viability & Protein Expression

    NASA Astrophysics Data System (ADS)

    Domier, Ria; Kim, Yonghyun; Dozier, David; Triantafillu, Ursula

    2013-11-01

    Cancer stem cells cultured in vitro in stirred bioreactors are exposed to shear stress. By observing the effect of shear stress on cancer stem cell viability, laboratory cell growth could be optimized. In addition, metastasized cancer stem cells in vivo are naturally exposed to shear stress, a factor influencing stem cell differentiation, while circulating in the bloodstream. Changes in protein expression after exposure to shear stress could allow for identification and targeting of circulating cancer cells. In this study, blood flow through capillaries was simulated by using a syringe pump to inject suspensions of Kasumi-1 leukemia stem cells into model blood vessels composed of PEEK tubing 125 microns in diameter. The Hagen-Poisseuille equation was used to solve for operating flow rates based on specified amounts of shear stress. After exposure, cell counts and viabilities were observed using an optical microscope and proteins were analyzed using Western blotting. It was observed that at a one minute exposure to stress, cell viability increased as the amount of shear was increased from 10 to 60 dynes per square centimeter. Results from this research are applicable to optimization of large-scale stem cell growth in bioreactors as well as to the design of targeted cancer therapies. Funding from NSF REU grant #1062611 is gratefully acknowledged.

  7. The yeast Snt2 protein coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress.

    PubMed

    Baker, Lindsey A; Ueberheide, Beatrix M; Dewell, Scott; Chait, Brian T; Zheng, Deyou; Allis, C David

    2013-10-01

    Regulation of gene expression is a vital part of the cellular stress response, yet the full set of proteins that orchestrate this regulation remains unknown. Snt2 is a Saccharomyces cerevisiae protein whose function has not been well characterized that was recently shown to associate with Ecm5 and the Rpd3 deacetylase. Here, we confirm that Snt2, Ecm5, and Rpd3 physically associate. We then demonstrate that cells lacking Rpd3 or Snt2 are resistant to hydrogen peroxide (H2O2)-mediated oxidative stress and use chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to show that Snt2 and Ecm5 recruit Rpd3 to a small number of promoters and in response to H2O2, colocalize independently of Rpd3 to the promoters of stress response genes. By integrating ChIP-seq and expression analyses, we identify target genes that require Snt2 for proper expression after H2O2. Finally, we show that cells lacking Snt2 are also resistant to nutrient stress imparted by the TOR (target of rapamycin) pathway inhibitor rapamycin and identify a common set of genes targeted by Snt2 and Ecm5 in response to both H2O2 and rapamycin. Our results establish a function for Snt2 in regulating transcription in response to oxidative stress and suggest Snt2 may also function in multiple stress pathways.

  8. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants.

    PubMed

    Nouri, Mohammad-Zaman; Moumeni, Ali; Komatsu, Setsuko

    2015-08-28

    Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants,especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C₃ or C₄), type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress.

  9. Stress-Responsive Expression, Subcellular Localization and Protein-Protein Interactions of the Rice Metacaspase Family.

    PubMed

    Huang, Lei; Zhang, Huijuan; Hong, Yongbo; Liu, Shixia; Li, Dayong; Song, Fengming

    2015-07-17

    Metacaspases, a class of cysteine-dependent proteases like caspases in animals, are important regulators of programmed cell death (PCD) during development and stress responses in plants. The present study was focused on comprehensive analyses of expression patterns of the rice metacaspase (OsMC) genes in response to abiotic and biotic stresses and stress-related hormones. Results indicate that members of the OsMC family displayed differential expression patterns in response to abiotic (e.g., drought, salt, cold, and heat) and biotic (e.g., infection by Magnaporthe oryzae, Xanthomonas oryzae pv. oryzae and Rhizoctonia solani) stresses and stress-related hormones such as abscisic acid, salicylic acid, jasmonic acid, and 1-amino cyclopropane-1-carboxylic acid (a precursor of ethylene), although the responsiveness to these stresses or hormones varies to some extent. Subcellular localization analyses revealed that OsMC1 was solely localized and OsMC2 was mainly localized in the nucleus. Whereas OsMC3, OsMC4, and OsMC7 were evenly distributed in the cells, OsMC5, OsMC6, and OsMC8 were localized in cytoplasm. OsMC1 interacted with OsLSD1 and OsLSD3 while OsMC3 only interacted with OsLSD1 and that the zinc finger domain in OsMC1 is responsible for the interaction activity. The systematic expression and biochemical analyses of the OsMC family provide valuable information for further functional studies on the biological roles of OsMCs in PCD that is related to abiotic and biotic stress responses.

  10. Stch encodes the 'ATPase core' of a microsomal stress 70 protein.

    PubMed Central

    Otterson, G A; Flynn, G C; Kratzke, R A; Coxon, A; Johnston, P G; Kaye, F J

    1994-01-01

    The stress70 protein chaperone family plays a central role in the processing of cytosolic and secretory proteins. We have cloned a human cDNA, designated Stch, that is conserved in rat tissues and which encodes a novel microsome-associated member of the stress70 protein chaperone family. Stch mRNA is constitutively expressed in all human cell types and is induced by incubation with the calcium ionophore A23187, but not by exposure to heat shock. Inspection of the predicted amino acid sequence reveals that the STCH product contains a unique hydrophobic leader sequence and shares homology within the amino terminal domains of the stress70 gene family, but has a 50 residue insertion within the ATP-binding domains and truncates the carboxyl terminal peptide-binding region. Immunofluorescent and subcellular analyses show that STCH migrates predominantly as a 60 kDa species and is enriched in a membrane-bound microsome fraction. In contrast to purified BiP and dnaK, however, STCH demonstrates ATPase activity that is independent of peptide stimulation. Stch, therefore, encodes a calcium-inducible, microsome-associated ATPase activity with properties similar to a proteolytically cleaved N-terminal HSC70/BiP fragment. This truncated stress70 molecule may allow increased diversity in cellular responses to protein processing requirements. Images PMID:8131751

  11. Role of HSP100 proteins in plant stress tolerance. Final technical report

    SciTech Connect

    Vierling, E.

    1998-08-01

    This research focused on the following areas: characterization of HSP100 genes and their expression during stress and development; requirement of HSP101 for thermotolerance; thermotolerance of plants over-expressing HSP100; and identifying interacting proteins that functionally interact with HSP104.

  12. Induction and function of the phage shock protein extracytoplasmic stress response in Escherichia coli.

    PubMed

    Jovanovic, Goran; Lloyd, Louise J; Stumpf, Michael P H; Mayhew, Antony J; Buck, Martin

    2006-07-28

    The phage shock protein (Psp) F regulon response in Escherichia coli is thought to be induced by impaired inner membrane integrity and an associated decrease in proton motive force (pmf). Mechanisms by which the Psp system detects the stress signal and responds have so far remained undetermined. Here we demonstrate that PspA and PspG directly confront a variety of inducing stimuli by switching the cell to anaerobic respiration and fermentation and by down-regulating motility, thereby subtly adjusting and maintaining energy usage and pmf. Additionally, PspG controls iron usage. We show that the Psp-inducing protein IV secretin stress, in the absence of Psp proteins, decreases the pmf in an ArcB-dependent manner and that ArcB is required for amplifying and transducing the stress signal to the PspF regulon. The requirement of the ArcB signal transduction protein for induction of psp provides clear evidence for a direct link between the physiological redox state of the cell, the electron transport chain, and induction of the Psp response. Under normal growth conditions PspA and PspD control the level of activity of ArcB/ArcA system that senses the redox/metabolic state of the cell, whereas under stress conditions PspA, PspD, and PspG deliver their effector functions at least in part by activating ArcB/ArcA through positive feedback.

  13. Middle East Respiratory Coronavirus Accessory Protein 4a Inhibits PKR-Mediated Antiviral Stress Responses

    PubMed Central

    Rabouw, Huib H.; Canton, Javier; Sola, Isabel; Enjuanes, Luis; Bredenbeek, Peter J.; Kikkert, Marjolein; de Groot, Raoul J.; van Kuppeveld, Frank J. M.

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory infections that can be life-threatening. To establish an infection and spread, MERS-CoV, like most other viruses, must navigate through an intricate network of antiviral host responses. Besides the well-known type I interferon (IFN-α/β) response, the protein kinase R (PKR)-mediated stress response is being recognized as an important innate response pathway. Upon detecting viral dsRNA, PKR phosphorylates eIF2α, leading to the inhibition of cellular and viral translation and the formation of stress granules (SGs), which are increasingly recognized as platforms for antiviral signaling pathways. It is unknown whether cellular infection by MERS-CoV activates the stress response pathway or whether the virus has evolved strategies to suppress this infection-limiting pathway. Here, we show that cellular infection with MERS-CoV does not lead to the formation of SGs. By transiently expressing the MERS-CoV accessory proteins individually, we identified a role of protein 4a (p4a) in preventing activation of the stress response pathway. Expression of MERS-CoV p4a impeded dsRNA-mediated PKR activation, thereby rescuing translation inhibition and preventing SG formation. In contrast, p4a failed to suppress stress response pathway activation that is independent of PKR and dsRNA. MERS-CoV p4a is a dsRNA binding protein. Mutation of the dsRNA binding motif in p4a disrupted its PKR antagonistic activity. By inserting p4a in a picornavirus lacking its natural PKR antagonist, we showed that p4a exerts PKR antagonistic activity also under infection conditions. However, a recombinant MERS-CoV deficient in p4a expression still suppressed SG formation, indicating the expression of at least one other stress response antagonist. This virus also suppressed the dsRNA-independent stress response pathway. Thus, MERS-CoV interferes with antiviral stress responses using at least two different mechanisms, with p4a

  14. Global analysis of protein aggregation in yeast during physiological conditions and arsenite stress

    PubMed Central

    Ibstedt, Sebastian; Sideri, Theodora C.; Grant, Chris M.; Tamás, Markus J.

    2014-01-01

    ABSTRACT Protein aggregation is a widespread phenomenon in cells and associated with pathological conditions. Yet, little is known about the rules that govern protein aggregation in living cells. In this study, we biochemically isolated aggregation-prone proteins and used computational analyses to identify characteristics that are linked to physiological and arsenite-induced aggregation in living yeast cells. High protein abundance, extensive physical interactions, and certain structural properties are positively correlated with an increased aggregation propensity. The aggregated proteins have high translation rates and are substrates of ribosome-associated Hsp70 chaperones, indicating that they are susceptible for aggregation primarily during translation/folding. The aggregation-prone proteins are enriched for multiple chaperone interactions, thus high protein abundance is probably counterbalanced by molecular chaperones to allow soluble expression in vivo. Our data support the notion that arsenite interferes with chaperone activity and indicate that arsenite-aggregated proteins might engage in extensive aberrant protein–protein interactions. Expression of aggregation-prone proteins is down-regulated during arsenite stress, possibly to prevent their toxic accumulation. Several aggregation-prone yeast proteins have human homologues that are implicated in misfolding diseases, suggesting that similar mechanisms may apply in disease- and non-disease settings. PMID:25217615

  15. Differential proteins of the optic ganglion in octopus vulgaris under methanol stress revealed using proteomics.

    PubMed

    Huang, Lin; Huang, Qing-Yu; Chen, Hai-Bin; Huang, Fu-Sheng; Huang, He-Qing

    2011-10-01

    An analytical approach using the two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) technique separated the proteome from the optic ganglia of Octopus vulgaris (OVOG). Approximately 600 protein spots were detected from the extraction when applying 150 μg protein to a 2D-PAGE gel in the pH range 5.0-8.0. Compared to the control, significant changes of 18 protein spots were observed in OVOG under the stress of native seawater containing 2% methanol for 72 h. Among these spots, we found that eight were down-regulated and ten were up-regulated in the gels, which were further identified using both peptide mass fingerprinting and database searches. Significant proteins such as glyceraldehyde-3-phosphate dehydrogenase, alpha subunit of succinyl-CoA synthetase, alcohol dehydrogenase, and long-chain specific acyl-CoA dehydrogenase were up-regulated proteins, whereas putative ABC transporter was a down -regulated protein. These differential proteins at the level of subcellular localization were further classified using LOCtree software with a hierarchical system of support vector machines. We found that most of the differential proteins in the gel could be identified as mitochondrial proteins, suggesting that these protective or marker proteins might help to prevent methanol poisoning via the mitochondria in the optical ganglia. The results indicated that both beta-tubulin and beta-actin were potential biomarkers as up-regulated proteins for monitoring methanol toxicosis associated with fish foods such as octopus and shark.

  16. Comparative proteomic analysis of thiol proteins in the liver after oxidative stress induced by diethylnitrosamine.

    PubMed

    Aparicio-Bautista, Diana I; Pérez-Carreón, Julio I; Gutiérrez-Nájera, Nora; Reyes-Grajeda, Juan P; Arellanes-Robledo, Jaime; Vásquez-Garzón, Verónica R; Jiménez-García, Mónica N; Villa-Treviño, Saúl

    2013-12-01

    Conversion of protein -SH groups to disulfides is an early event during protein oxidation, which has prompted great interest in the study of thiol proteins. Chemical carcinogenesis is strongly associated with the formation of reactive oxygen species (ROS). The goal of this study was to detect thiol proteins that are sensitive to ROS generated during diethylnitrosamine (DEN) metabolism in the rat liver. DEN has been widely used to induce experimental hepatocellular carcinoma. We used modified redox-differential gel electrophoresis (redox-DIGE method) and mass spectrometry MALDI-TOF/TOF to identify differential oxidation protein profiles associated with carcinogen exposure. Our analysis revealed a time-dependent increase in the number of oxidized thiol proteins after carcinogen treatment; some of these proteins have antioxidant activity, including thioredoxin, peroxirredoxin 2, peroxiredoxin 6 and glutathione S-transferase alpha-3. According to functional classifications, the identified proteins in our study included chaperones, oxidoreductases, activity isomerases, hydrolases and other protein-binding partners. This study demonstrates that oxidative stress generated by DEN tends to increase gradually through DEN metabolism, causes time-dependent necrosis in the liver and has an oxidative effect on thiol proteins, thereby increasing the number of oxidized thiol proteins. Furthermore, these events occurred during the hepatocarcinogenesis initiation period.

  17. Oxidative stress status accompanying diabetic bladder cystopathy results in the activation of protein degradation pathways

    PubMed Central

    Kanika, Nirmala; Chang, Jinsook; Tong, Yuehong; Tiplitsky, Scott; Lin, Juan; Yohannes, Elizabeth; Tar, Moses; Chance, Mark; Christ, George J.; Melman, Arnold; Davies, Kelvin

    2010-01-01

    Objectives To investigate the role that oxidative stress plays in the development of diabetic cystopathy. Materials and methods Comparative gene expression in the bladder of non-diabetic and streptozotocin (STZ)-induced 2-month-old diabetic rats was carried out using microarray analysis. Evidence of oxidative stress was investigated in the bladder by analyzing glutathione S-transferase activity, lipid peroxidation, and carbonylation and nitrosylation of proteins. The activity of protein degradation pathways was assessed using western blot analysis. Results Analysis of global gene expression showed that detrusor smooth muscle tissue of STZ-induced diabetes undergoes significant enrichment in targets involved in the production or regulation of reactive oxygen species (P = 1.27 × 10−10). The microarray analysis was confirmed by showing that markers of oxidative stress were all significantly increased in the diabetic bladder. It was hypothesized that the sequelae to oxidative stress would be increased protein damage and apoptosis. This was confirmed by showing that two key proteins involved in protein degradation (Nedd4 and LC3B) were greatly up-regulated in diabetic bladders compared to controls by 12.2 ± 0.76 and 4.4 ± 1.0-fold, respectively, and the apoptosis inducing protein, BAX, was up-regulated by 6.76 ± 0.76-fold. Conclusions Overall, the findings obtained in the present study add to the growing body of evidence showing that diabetic cystopathy is associated with oxidative damage of smooth muscle cells, and results in protein damage and activation of apoptotic pathways that may contribute to a deterioration in bladder function. PMID:21518418

  18. Proteomic Profiling of Nitrosative Stress: Protein S-Oxidation Accompanies S-Nitrosylation

    PubMed Central

    2015-01-01

    Reversible chemical modifications of protein cysteine residues by S-nitrosylation and S-oxidation are increasingly recognized as important regulatory mechanisms for many protein classes associated with cellular signaling and stress response. Both modifications may theoretically occur under cellular nitrosative or nitroxidative stress. Therefore, a proteomic isotope-coded approach to parallel, quantitative analysis of cysteome S-nitrosylation and S-oxidation was developed. Modifications of cysteine residues of (i) human glutathione-S-transferase P1-1 (GSTP1) and (ii) the schistosomiasis drug target thioredoxin glutathione reductase (TGR) were studied. Both S-nitrosylation (SNO) and S-oxidation to disulfide (SS) were observed for reactive cysteines, dependent on concentration of added S-nitrosocysteine (CysNO) and independent of oxygen. SNO and SS modifications of GSTP1 were quantified and compared for therapeutically relevant NO and HNO donors from different chemical classes, revealing oxidative modification for all donors. Observations on GSTP1 were extended to cell cultures, analyzed after lysis and in-gel digestion. Treatment of living neuronal cells with CysNO, to induce nitrosative stress, caused levels of S-nitrosylation and S-oxidation of GSTP1 comparable to those of cell-free studies. Cysteine modifications of PARK7/DJ-1, peroxiredoxin-2, and other proteins were identified, quantified, and compared to overall levels of protein S-nitrosylation. The new methodology has allowed identification and quantitation of specific cysteome modifications, demonstrating that nitroxidation to protein disulfides occurs concurrently with S-nitrosylation to protein-SNO in recombinant proteins and living cells under nitrosative stress. PMID:24397869

  19. Glucokinase of Escherichia coli: induction in response to the stress of overexpressing foreign proteins.

    PubMed

    Arora, K K; Pedersen, P L

    1995-06-01

    A variety of stressful conditions, such as heat shock, ethanol, osmotic shock, glucose deprivation, and oxidative stress, are known to induce the synthesis of specific proteins. Here, we report the induction in Escherichia coli of a protein elicited in response to a hitherto unidentified stress condition, i.e., the overexpression of foreign proteins. The induced protein identified as glucokinase (EC 2.7.1.2) is produced at a level > or = 20-fold higher than the level in wild-type E. coli when foreign proteins are expressed under the control of the alkaline phosphatase (phoA) promoter. The bacterial glucokinase is shown to have a mass of approximately 47 kDa determined by a "renaturation activity stain assay" in situ following sodium dodecyl sulfate-poly-acrylamide gel electrophoresis and exhibits a high specificity for the phosphorylation of glucose. The apparent Km values for glucose and ATP for the enzyme are 0.15 and 0.50 mM, respectively, indicating that the E. coli enzyme is a low Km glucose hexokinase. The enzyme cross-reacts with rabbit antisera raised against hexokinase from higher eukaryotes, implicating some sequence similarity with mammalian hexokinases. Under normal conditions, E. coli glucokinase plays a minor role in glucose metabolism. However, under anabolic stress conditions, this glycolytic enzyme may be required to supplement levels of glucose 6-phosphate. Alternatively, glucokinase, which is predicted in analogy to other hexose-utilizing kinases to have structural folds characteristic of hsp 70, may itself, or in combination with other E. coli proteins, function in the stabilization of newly synthesized proteins.

  20. Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress

    PubMed Central

    2012-01-01

    Background The protein secretory pathway must process a wide assortment of native proteins for eukaryotic cells to function. As well, recombinant protein secretion is used extensively to produce many biologics and industrial enzymes. Therefore, secretory pathway dysfunction can be highly detrimental to the cell and can drastically inhibit product titers in biochemical production. Because the secretory pathway is a highly-integrated, multi-organelle system, dysfunction can happen at many levels and dissecting the root cause can be challenging. In this study, we apply a systems biology approach to analyze secretory pathway dysfunctions resulting from heterologous production of a small protein (insulin precursor) or a larger protein (α-amylase). Results HAC1-dependent and independent dysfunctions and cellular responses were apparent across multiple datasets. In particular, processes involving (a) degradation of protein/recycling amino acids, (b) overall transcription/translation repression, and (c) oxidative stress were broadly associated with secretory stress. Conclusions Apparent runaway oxidative stress due to radical production observed here and elsewhere can be explained by a futile cycle of disulfide formation and breaking that consumes reduced glutathione and produces reactive oxygen species. The futile cycle is dominating when protein folding rates are low relative to disulfide bond formation rates. While not strictly conclusive with the present data, this insight does provide a molecular interpretation to an, until now, largely empirical understanding of optimizing heterologous protein secretion. This molecular insight has direct implications on engineering a broad range of recombinant proteins for secretion and provides potential hypotheses for the root causes of several secretory-associated diseases. PMID:22380681

  1. ER stress-induced protein, VIGG, disturbs plant cation homeostasis, which is correlated with growth retardation and robustness to ER stress

    SciTech Connect

    Katoh, Hironori; Fujita, Keiko; Takuhara, Yuki; Ogawa, Atsushi; Suzuki, Shunji

    2011-02-18

    Highlights: {yields} VIGG is an ER stress-induced protein in plant. {yields} We examine the characteristics of VIGG-overexpressing Arabidopsis plants. {yields} VIGG-overexpressing plants reveal growth retardation and robustness to ER stress. {yields} VIGG disturbs cation homeostasis in plant. -- Abstract: VIGG is a putative endoplasmic reticulum (ER) resident protein induced by virus infection and ER stress, and is correlated with fruit quality in grapevine. The present study was undertaken to determine the biological function of VIGG in grapevine. Experiments using fluorescent protein-VIGG fusion protein demonstrated that VIGG is localized in ER and the ER targeting sequence is in the N-terminus. The overexpression of VIGG in Arabidopsis plant led to growth retardation. The rosette leaves of VIGG-overexpressing plants were smaller than those of the control plants and rolled at 42 days after seeding. VIGG-overexpressing plants revealed robustness to ER stress as well as the low expression of ER stress marker proteins, such as the luminal binding proteins. These characteristics of VIGG-overexpressing plants were supported by a microarray experiment that demonstrated the disruption of genes related to ER stress response and flowering, as well as cation mobility, in the plants. Finally, cation homeostasis in the plants was disturbed by the overexpression of VIGG. Taken together, these results suggest that VIGG may disturb cation homeostasis in plant, which is correlated with the robustness to ER stress and growth retardation.

  2. Up-expression of NapA and other oxidative stress proteins is a compensatory response to loss of major Helicobacter pylori stress resistance factors.

    PubMed

    Olczak, Adriana A; Wang, Ge; Maier, Robert J

    2005-11-01

    Twenty-six Helicobacter pylori targeted mutant strains with deficiencies in oxidative stress combating proteins, including 12 double mutant strains were analyzed via physiological and proteomic approaches to distinguish the major expression changes caused by the mutations. Mutations were introduced into both a Mtz(S) and a Mtz(R) strain background. Most of the mutations caused increased growth sensitivity of the strains to oxygen, and they all exhibited clear compensatory up-expression of oxidative stress resistance proteins enabling survival of the bacterium. The most frequent up-expressed oxidative stress resistance factor (observed in 16 of the mutants) was the iron-sequestering protein NapA, linking iron sequestration with oxidative stress resistance. The up-expression of individual proteins in mutants ranged from 2 to 10 fold that of the wild type strain, even when incubated in a low O(2) environment. For example, a considerably higher level of catalase expression (4 fold of that in the wild-type strain) was observed in ahpC napA and ahpC sodB double mutants. A Fur mutant up-expressed ferritin (Pfr) protein 20-fold. In some mutant strains the bacterial DNA is protected from oxidative stress damage apparently via overexpression of oxidative stress-combating proteins such as NapA, catalase or MdaB (an NADPH quinone reductase). Our results show that H. pylori has a variety of ways to compensate for loss of major oxidative stress combating factors.

  3. Dimerization and phosphatase activity of calcyclin-binding protein/Siah-1 interacting protein: the influence of oxidative stress

    PubMed Central

    Topolska-Woś, Agnieszka M.; Shell, Steven M.; Kilańczyk, Ewa; Szczepanowski, Roman H.; Chazin, Walter J.; Filipek, Anna

    2015-01-01

    CacyBP/SIP [calcyclin-binding protein/Siah-1 [seven in absentia homolog 1 (Siah E3 ubiquitin protein ligase 1)] interacting protein] is a multifunctional protein whose activity includes acting as an ERK1/2 phosphatase. We analyzed dimerization of mouse CacyBP/SIP in vitro and in mouse neuroblastoma cell line (NB2a) cells, as well as the structure of a full-length protein. Moreover, we searched for the CacyBP/SIP domain important for dimerization and dephosphorylation of ERK2, and we analyzed the role of dimerization in ERK1/2 signaling in NB2a cells. Cell-based assays showed that CacyBP/SIP forms a homodimer in NB2a cell lysate, and biophysical methods demonstrated that CacyBP/SIP forms a stable dimer in vitro. Data obtained using small-angle X-ray scattering supported a model in which CacyBP/SIP occupies an anti-parallel orientation mediated by the N-terminal dimerization domain. Site-directed mutagenesis established that the N-terminal domain is indispensable for full phosphatase activity of CacyBP/SIP. We also demonstrated that the oligomerization state of CacyBP/SIP as well as the level of post-translational modifications and subcellular distribution of CacyBP/SIP change after activation of the ERK1/2 pathway in NB2a cells due to oxidative stress. Together, our results suggest that dimerization is important for controlling phosphatase activity of CacyBP/SIP and for regulating the ERK1/2 signaling pathway.—Topolska-Woś, A. M., Shell, S. M., Kilańczyk, E., Szczepanowski, R. H., Chazin, W. J., Filipek, A. Dimerization and phosphatase activity of calcyclin-binding protein/Siah-1 interacting protein: the influence of oxidative stress. PMID:25609429

  4. The Pepper CaOSR1 Protein Regulates the Osmotic Stress Response via Abscisic Acid Signaling

    PubMed Central

    Park, Chanmi; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Plants are sessile organisms, and their growth and development is detrimentally affected by environmental stresses such as drought and high salinity. Defense mechanisms are tightly regulated and complex processes, which respond to changing environmental conditions; however, the precise mechanisms that function under adverse conditions remain unclear. Here, we report the identification and functional characterization of the CaOSR1 gene, which functions in the adaptive response to abiotic stress. We found that CaOSR1 gene expression in pepper leaves was up-regulated after exposure to abscisic acid (ABA), drought, and high salinity. In addition, we demonstrated that the fusion protein of CaOSR1 with green fluorescent protein (GFP) is localized in the nucleus. We used CaOSR1-silenced pepper plants and CaOSR1-OX-overexpressing (OX) transgenic Arabidopsis plants to show that the CaOSR1 protein regulates the osmotic stress response. CaOSR1-silenced pepper plants showed increased drought susceptibility, and this was accompanied by a high transpiration rate. CaOSR1-OX plants displayed phenotypes that were hypersensitive to ABA and hyposensitive to osmotic stress, during the seed germination and seedling growth stages; furthermore, these plants exhibited enhanced drought tolerance at the adult stage, and this was characterized by higher leaf temperatures and smaller stomatal apertures because of ABA hypersensitivity. Taken together, our data indicate that CaOSR1 positively regulates osmotic stress tolerance via ABA-mediated cell signaling. These findings suggest an involvement of a novel protein in ABA and osmotic stress signalings in plants. PMID:27446121

  5. The Pepper CaOSR1 Protein Regulates the Osmotic Stress Response via Abscisic Acid Signaling.

    PubMed

    Park, Chanmi; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Plants are sessile organisms, and their growth and development is detrimentally affected by environmental stresses such as drought and high salinity. Defense mechanisms are tightly regulated and complex processes, which respond to changing environmental conditions; however, the precise mechanisms that function under adverse conditions remain unclear. Here, we report the identification and functional characterization of the CaOSR1 gene, which functions in the adaptive response to abiotic stress. We found that CaOSR1 gene expression in pepper leaves was up-regulated after exposure to abscisic acid (ABA), drought, and high salinity. In addition, we demonstrated that the fusion protein of CaOSR1 with green fluorescent protein (GFP) is localized in the nucleus. We used CaOSR1-silenced pepper plants and CaOSR1-OX-overexpressing (OX) transgenic Arabidopsis plants to show that the CaOSR1 protein regulates the osmotic stress response. CaOSR1-silenced pepper plants showed increased drought susceptibility, and this was accompanied by a high transpiration rate. CaOSR1-OX plants displayed phenotypes that were hypersensitive to ABA and hyposensitive to osmotic stress, during the seed germination and seedling growth stages; furthermore, these plants exhibited enhanced drought tolerance at the adult stage, and this was characterized by higher leaf temperatures and smaller stomatal apertures because of ABA hypersensitivity. Taken together, our data indicate that CaOSR1 positively regulates osmotic stress tolerance via ABA-mediated cell signaling. These findings suggest an involvement of a novel protein in ABA and osmotic stress signalings in plants.

  6. SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato.

    PubMed

    Loukehaich, Rachid; Wang, Taotao; Ouyang, Bo; Ziaf, Khurram; Li, Hanxia; Zhang, Junhong; Lu, Yongen; Ye, Zhibiao

    2012-09-01

    Universal stress protein (USP) appears to play an active role in the abiotic stress response, but their functions remain largely unknown in plants. A USP gene (SpUSP) was cloned from wild tomato (Solanum pennellii) and functionally characterized in cultivated tomato in the present study. The SpUSP transcript is abundantly accumulated in leaf stomata and its expression varied with the circadian rhythm. SpUSP was remarkably induced by dehydration, salt stress, oxidative stress, and the phytohormone abscisic acid (ABA) etc. This protein was predominantly localized in the nucleus and cell membrane. Overexpressing SpUSP increased drought tolerance of tomato in the seedling and adult stages. Under drought stress, the ABA content significantly increased in the SpUSP-overexpressing plants, which induced stomatal closure and reduced water loss, leading to the enhancement of drought tolerance. Based on the microarray data, a large number of chlorophyll a/b-binding proteins and photosystem-related genes were up-regulated in the SpUSP-overexpressing plants under drought conditions, which possibly enhanced the stomatal sensivitity to ABA and maintained the photosynthetic function. SpUSP overexpression also alleviated the oxidative damage accompanied by oxidative stress-responsive gene activation and osmolyte accumulation. Annexin (SGN-U314161) was found to interacte with SpUSP in the yeast two-hybrid method. This interaction was further confirmed by the bimolecular fluorescence complementation assay. The present study demonstrated that the annexin-interacting SpUSP plays important roles in the drought tolerance of tomato by influencing ABA-induced stomatal movement, increasing photosynthesis, and alleviating oxidative stress.

  7. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia.

    PubMed

    Bohnert, Kyle R; Gallot, Yann S; Sato, Shuichi; Xiong, Guangyan; Hindi, Sajedah M; Kumar, Ashok

    2016-09-01

    Cachexia is a devastating syndrome that causes morbidity and mortality in a large number of patients with cancer. However, the mechanisms of cancer cachexia remain poorly understood. Accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes stress. The ER responds to this stress through activating certain pathways commonly known as the unfolding protein response (UPR). The main function of UPR is to restore homeostasis, but excessive or prolonged activation of UPR can lead to pathologic conditions. In this study, we examined the role of ER stress and UPR in regulation of skeletal muscle mass in naïve conditions and during cancer cachexia. Our results demonstrate that multiple markers of ER stress are highly activated in skeletal muscle of Lewis lung carcinoma (LLC) and Apc(Min/+) mouse models of cancer cachexia. Treatment of mice with 4-phenylbutyrate (4-PBA), a chemical chaperon and a potent inhibitor of ER stress, significantly reduced skeletal muscle strength and mass in both control and LLC-bearing mice. Blocking the UPR also increased the proportion of fast-type fibers in soleus muscle of both control and LLC-bearing mice. Inhibition of UPR reduced the activity of Akt/mTOR pathway and increased the expression of the components of the ubiquitin-proteasome system and autophagy in LLC-bearing mice. Moreover, we found that the inhibition of UPR causes severe atrophy in cultured myotubes. Our study provides initial evidence that ER stress and UPR pathways are essential for maintaining skeletal muscle mass and strength and for protection against cancer cachexia.-Bohnert, K. R., Gallot, Y. S., Sato, S., Xiong, G., Hindi, S. M., Kumar, A. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia.

  8. SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato

    PubMed Central

    Loukehaich, Rachid; Wang, Taotao; Ye, Zhibiao

    2012-01-01

    Universal stress protein (USP) appears to play an active role in the abiotic stress response, but their functions remain largely unknown in plants. A USP gene (SpUSP) was cloned from wild tomato (Solanum pennellii) and functionally characterized in cultivated tomato in the present study. The SpUSP transcript is abundantly accumulated in leaf stomata and its expression varied with the circadian rhythm. SpUSP was remarkably induced by dehydration, salt stress, oxidative stress, and the phytohormone abscisic acid (ABA) etc. This protein was predominantly localized in the nucleus and cell membrane. Overexpressing SpUSP increased drought tolerance of tomato in the seedling and adult stages. Under drought stress, the ABA content significantly increased in the SpUSP-overexpressing plants, which induced stomatal closure and reduced water loss, leading to the enhancement of drought tolerance. Based on the microarray data, a large number of chlorophyll a/b-binding proteins and photosystem-related genes were up-regulated in the SpUSP-overexpressing plants under drought conditions, which possibly enhanced the stomatal sensivitity to ABA and maintained the photosynthetic function. SpUSP overexpression also alleviated the oxidative damage accompanied by oxidative stress-responsive gene activation and osmolyte accumulation. Annexin (SGN-U314161) was found to interacte with SpUSP in the yeast two-hybrid method. This interaction was further confirmed by the bimolecular fluorescence complementation assay. The present study demonstrated that the annexin-interacting SpUSP plays important roles in the drought tolerance of tomato by influencing ABA-induced stomatal movement, increasing photosynthesis, and alleviating oxidative stress. PMID:22915741

  9. Rice Stress Associated Protein 1 (OsSAP1) Interacts with Aminotransferase (OsAMTR1) and Pathogenesis-Related 1a Protein (OsSCP) and Regulates Abiotic Stress Responses

    PubMed Central

    Kothari, Kamakshi S.; Dansana, Prasant K.; Giri, Jitender; Tyagi, Akhilesh K.

    2016-01-01

    Stress associated proteins (SAPs) are the A20/AN1 zinc-finger containing proteins which can regulate the stress signaling in plants. The rice SAP protein, OsSAP1 has been shown to confer abiotic stress tolerance to plants, when overexpressed, by modulating the expression of endogenous stress-related genes. To further understand the mechanism of OsSAP1-mediated stress signaling, OsSAP1 interacting proteins were identified using yeast two-hybrid analysis. Two novel proteins, aminotransferase (OsAMTR1) and a SCP/TAPS or pathogenesis-related 1 class of protein (OsSCP) were found to interact with OsSAP1. The genes encoding OsAMTR1 and OsSCP were stress-responsive and showed higher expression upon abiotic stress treatments. The role of OsAMTR1 and OsSCP under stress was analyzed by overexpressing them constitutively in Arabidopsis and responses of transgenic plants were assessed under salt and water-deficit stress. The OsAMTR1 and OsSCP overexpressing plants showed higher seed germination, root growth and fresh weight than wild-type plants under stress conditions. Overexpression of OsAMTR1 and OsSCP affected the expression of many known stress-responsive genes which were not affected by the overexpression of OsSAP1. Moreover, the transcript levels of OsSCP and OsAMTR1 were also unaffected by the overexpression of OsSAP1. Hence, it was concluded that OsSAP1 regulates the stress responsive signaling by interacting with these proteins which further regulate the downstream stress responsive gene expression. PMID:27486471

  10. Protective effects of zinc on oxidative stress enzymes in liver of protein-deficient rats.

    PubMed

    Sidhu, Pardeep; Garg, M L; Dhawan, D K

    2005-01-01

    Persons afflicted with protein malnutrition are generally deficient in a variety of essential micronutrients like zinc, copper, iron, and selenium, which in turn affects number of metabolic processes in the body. To evaluate the protective effects of zinc on the enzymes involved in oxidative stress induced in liver of protein-deficient rats, the current study was designed. Zinc sulfate at a dose level of 227 mg/L zinc in drinking water was administered to female Sprague-Dawley normal control as well as protein-deficient rats for a total duration of 8 weeks. The effects of zinc treatment in conditions of protein deficiency were studied on rat liver antioxidant enzymes, which included catalase, glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), glutathione reduced (GSH), and glutathione-S-transferase (GST). Protein deficiency in normal rats resulted in a significant increase in hepatic activities of catalase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase and the levels of lipid peroxidation. A significant inhibition in the levels of reduced glutathione and the enzyme activity of superoxide dismutase has been observed after protein deficiency in normal rats. Interestingly, Zn treatment to protein-deficient animals lowered already raised activity catalase, glutathione peroxidase, and glutathione-S-transferase and levels of lipid peroxidation to significant levels when compared to protein-deficient animals. Also, Zn treatment to the protein-deficient animals resulted in a significant elevation in the levels of GSH and SOD activity as compared to their respective controls, thereby indicating its effectiveness in regulating their levels in adverse conditions. It has also been observed that concentrations of zinc, copper, iron, and selenium were found to be decreased significantly in protein-deficient animals. However, the levels of these elements came back to within normal limits when zinc was administrated

  11. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules

    PubMed Central

    Kroschwald, Sonja; Maharana, Shovamayee; Mateju, Daniel; Malinovska, Liliana; Nüske, Elisabeth; Poser, Ina; Richter, Doris; Alberti, Simon

    2015-01-01

    RNA-protein (RNP) granules have been proposed to assemble by forming solid RNA/protein aggregates or through phase separation into a liquid RNA/protein phase. Which model describes RNP granules in living cells is still unclear. In this study, we analyze P bodies in budding yeast and find that they have liquid-like properties. Surprisingly, yeast stress granules adopt a different material state, which is reminiscent of solid protein aggregates and controlled by protein disaggregases. By using an assay to ectopically nucleate RNP granules, we further establish that RNP granule formation does not depend on amyloid-like aggregation but rather involves many promiscuous interactions. Finally, we show that stress granules have different properties in mammalian cells, where they show liquid-like behavior. Thus, we propose that the material state of RNP granules is flexible and that the solid state of yeast stress granules is an adaptation to extreme environments, made possible by the presence of a powerful disaggregation machine. DOI: http://dx.doi.org/10.7554/eLife.06807.001 PMID:26238190

  12. Dissecting DNA damage response pathways by analyzing protein localization and abundance changes during DNA replication stress

    PubMed Central

    Tkach, Johnny M.; Yimit, Askar; Lee, Anna Y.; Riffle, Michael; Costanzo, Michael; Jaschob, Daniel; Hendry, Jason A.; Ou, Jiongwen; Moffat, Jason; Boone, Charles; Davis, Trisha N.; Nislow, Corey; Brown, Grant W.

    2012-01-01

    Re-localization of proteins is a hallmark of the DNA damage response. We use high-throughput microscopic screening of the yeast GFP fusion collection to develop a systems-level view of protein re-organization following drug-induced DNA replication stress. Changes in protein localization and abundance reveal drug-specific patterns of functional enrichments. Classification of proteins by sub-cellular destination allows the identification of pathways that respond to replication stress. We analyzed pairwise combinations of GFP fusions and gene deletion mutants to define and order two novel DNA damage responses. In the first, Cmr1 forms subnuclear foci that are regulated by the histone deacetylase Hos2 and are distinct from the typical Rad52 repair foci. In a second example, we find that the checkpoint kinases Mec1/Tel1 and the translation regulator Asc1 regulate P-body formation. This method identifies response pathways that were not detected in genetic and protein interaction screens, and can be readily applied to any form of chemical or genetic stress to reveal cellular response pathways. PMID:22842922

  13. Contaminant loading in remote Arctic lakes affects cellular stress-related proteins expression in feral charr.

    USGS Publications Warehouse

    Wiseman, Steve; Jorgensen, Even H.; Maule, Alec G.; Vijayan, Mathilakath M.

    2011-01-01

    The remote Arctic lakes on Bjornoya Island, Norway, offer a unique opportunity to study possible affect of lifelong contaminant exposure in wild populations of landlocked Arctic charr (Salvelinus alpinus). This is because Lake Ellasjoen has persistent organic pollutant (POP) levels that are significantly greater than in the nearby Lake Oyangen. We examined whether this differential contaminant loading was reflected in the expression of protein markers of exposure and effect in the native fish. We assessed the expressions of cellular stress markers, including cytochrome P4501A (Cyp1A), heat shock protein 70 (hsp70), and glucocorticoid receptor (GR) in feral charr from the two lakes. The average polychlorinated biphenyl (PCB) load in the charr liver from Ellasjoen was approximately 25-fold higher than in individuals from Oyangen. Liver Cyp1A protein expression was significantly higher in individuals from Ellasjoen compared with Oyangen, confirming differential PCB exposure. There was no significant difference in hsp70 protein expression in charr liver between the two lakes. However, brain hsp70 protein expression was significantly elevated in charr from Ellasjoen compared with Oyangen. Also, liver GR protein expression was significantly higher in the Ellasjoen charr compared with Oyangen charr. Taken together, our results suggest changes to cellular stress-related protein expression as a possible adaptation to chronic-contaminant exposure in feral charr in the Norwegian high-Arctic.

  14. Proteomic Analysis of Liver Proteins in a Rat Model of Chronic Restraint Stress-Induced Depression

    PubMed Central

    Li, Cong; Guo, Zhengguang; Sun, Wei

    2017-01-01

    Depression is a global mental disorder disease and greatly threatened human health and stress is considered to be one of the important factors that lead to depression. In this study, we used newly developed iTRAQ labeling and high performance liquid chromatography (HPLC) and mass spectrum united analysis technology obtained the 2176 accurate proteins. Successively, we used the GO analysis and IPA software to analyze the 98 differentially expressed proteins of liver in depression rats due to chronic restraint stress, showing a map of proteomics analysis of liver proteins from the aspects of related functions, disease and function analysis, canonical pathway analysis, and associated network. This study provide important information for comprehensively understanding the mechanisms of dysfunction or injury in the liver in depression. PMID:28293639

  15. Protecting from Envelope Stress: Variations on the Phage-Shock-Protein Theme.

    PubMed

    Manganelli, Riccardo; Gennaro, Maria Laura

    2017-03-01

    During envelope stress, critical inner-membrane functions are preserved by the phage-shock-protein (Psp) system, a stress response that emerged from work with Escherichia coli and other Gram-negative bacteria. Reciprocal regulatory interactions and multiple effector functions are well documented in these organisms. Searches for the Psp system across phyla reveal conservation of only one protein, PspA. However, examination of Firmicutes and Actinobacteria reveals that PspA orthologs associate with non-orthologous regulatory and effector proteins retaining functions similar to those in Gram-negative counterparts. Conservation across phyla emphasizes the long-standing importance of the Psp system in prokaryotes, while inter- and intra-phyla variations within the system indicate adaptation to different cell envelope structures, bacterial lifestyles, and/or bacterial morphogenetic strategies.

  16. Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants

    PubMed Central

    Sharma, Manisha; Pandey, Girdhar K.

    2016-01-01

    The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein–protein interactions for fundamental biological functions. Plants are enriched in tandem repeat containing proteins typically distributed into various families. This has been assumed that the occurrence of multigene repeats families in plants enable them to cope up with adverse environmental conditions and allow them to rapidly acclimatize to these conditions. The evolution, structure, and function of repeat proteins have been studied in all kingdoms of life. The presence of repeat proteins is particularly profuse in multicellular organisms in comparison to prokaryotes. The precipitous expansion of repeat proteins in plants is presumed to be through internal tandem duplications. Several repeat protein gene families have been identified in plants. Such as Armadillo (ARM), Ankyrin (ANK), HEAT, Kelch-like repeats, Tetratricopeptide (TPR), Leucine rich repeats (LRR), WD40, and Pentatricopeptide repeats (PPR). The structure and functions of these repeat proteins have been extensively studied in plants suggesting a critical role of these repeating peptides in plant cell physiology, stress and development. In this review, we illustrate the structural, functional, and evolutionary prospects of prolific repeat proteins in plants. PMID:26793205

  17. Universal stress protein Rv2624c alters abundance of arginine and enhances intracellular survival by ATP binding in mycobacteria

    PubMed Central

    Jia, Qiong; Hu, Xinling; Shi, Dawei; Zhang, Yan; Sun, Meihao; Wang, Jianwei; Mi, Kaixia; Zhu, Guofeng

    2016-01-01

    The universal stress protein family is a family of stress-induced proteins. Universal stress proteins affect latency and antibiotic resistance in mycobacteria. Here, we showed that Mycobacterium smegmatis overexpressing M. tuberculosis universal stress protein Rv2624c exhibits increased survival in human monocyte THP-1 cells. Transcriptome analysis suggested that Rv2624c affects histidine metabolism, and arginine and proline metabolism. LC-MS/MS analysis showed that Rv2624c affects the abundance of arginine, a modulator of both mycobacteria and infected THP-1 cells. Biochemical analysis showed that Rv2624c is a nucleotide-binding universal stress protein, and an Rv2624c mutant incapable of binding ATP abrogated the growth advantage in THP-1 cells. Rv2624c may therefore modulate metabolic pathways in an ATP-dependent manner, changing the abundance of arginine and thus increasing survival in THP-1 cells. PMID:27762279

  18. Homeodomain Protein Otp and Activity-Dependent Splicing Modulate Neuronal Adaptation to Stress

    PubMed Central

    Amir-Zilberstein, Liat; Blechman, Janna; Sztainberg, Yehezkel; Norton, William H.J.; Reuveny, Adriana; Borodovsky, Nataliya; Tahor, Maayan; Bonkowsky, Joshua L.; Bally-Cuif, Laure; Chen, Alon; Levkowitz, Gil

    2015-01-01

    SUMMARY Regulation of corticotropin-releasing hormone (CRH) activity is critical for the animal’s adaptation to stressful challenges, and its dysregulation is associated with psychiatric disorders in humans. However, the molecular mechanism underlying this transcriptional response to stress is not well understood. Using various stress paradigms in mouse and zebrafish, we show that the hypothalamic transcription factor Orthopedia modulates the expression of CRH as well as the splicing factor Ataxin 2-Binding Protein-1 (A2BP1/Rbfox-1). We further show that the G protein coupled receptor PAC1, which is a known A2BP1/Rbfox-1 splicing target and an important mediator of CRH activity, is alternatively spliced in response to a stressful challenge. The generation of PAC1-hop messenger RNA isoform by alternative splicing is required for termination of CRH transcription, normal activation of the hypothalamic-pituitary-adrenal axis and adaptive anxiety-like behavior. Our study identifies an evolutionarily conserved biochemical pathway that modulates the neuronal adaptation to stress through transcriptional activation and alternative splicing. PMID:22284183

  19. Ribosomal Protein S14 Unties the MDM2-p53 Loop Upon Ribosomal Stress

    PubMed Central

    Zhou, Xiang; Hao, Qian; Liao, Jun-ming; Zhang, Qi; Lu, Hua

    2013-01-01

    The MDM2-p53 feedback loop is crucially important for restricting p53 level and activity during normal cell growth and proliferation, and is thus subjected to dynamic regulation in order for cells to activate p53 upon various stress signals. Several ribosomal proteins, such as RPL11, RPL5, RPL23, RPL26, or RPS7, have been shown to play a role in regulation of this feedback loop in response to ribosomal stress. Here, we identify another ribosomal protein S14, which is highly associated with 5q-syndrome, as a novel activator of p53 by inhibiting MDM2 activity. We found that RPS14, but not RPS19, binds to the central acidic domain of MDM2, like RPL5 and RPL23, and inhibits its E3 ubiquitin ligase activity toward p53. This RPS14-MDM2 binding was induced upon ribosomal stress caused by actinomycin D or mycophenolic acid. Overexpression of RPS14, but not RPS19, elevated p53 level and activity, leading to G1 or G2 arrest. Conversely, knockdown of RPS14 alleviated p53 induction by these two reagents. Interestingly, knockdown of either RPS14 or RPS19 caused a ribosomal stress that led to p53 activation, which was impaired by further knocking down the level of RPL11 or RPL5. Together, our results demonstrate that RPS14 and RPS19 play distinct roles in regulating the MDM2-p53 feedback loop in response to ribosomal stress. PMID:22391559

  20. Sex and ovarian steroids modulate brain-derived neurotrophic factor (BDNF) protein levels in rat hippocampus under stressful and non-stressful conditions.

    PubMed

    Franklin, Tamara B; Perrot-Sinal, Tara S

    2006-01-01

    Abnormal levels of brain-derived neurotrophic factor (BDNF) are associated with major depression, a disorder with a higher incidence in women than men. Stress affects BDNF levels in various brain regions and thus, a heightened stress response in females could contribute to the development of depression. As well, ovarian hormones directly affect brain levels of BDNF mRNA and protein. Two experiments were performed to investigate the effects of stress and sex and gonadal hormones on BDNF protein levels in CA1, CA3, and dentate gyrus (DG) subregions of the hippocampus. In the first experiment, male and female Sprague-Dawley rats were subjected to one hour of restraint stress or control handling prior to sacrifice. In the second experiment, fifty-one female rats were ovariectomized and separated into stress and control conditions, as described for the first experiment. Stressed and handled groups received a single injection of estrogen (E; 53h prior to stress), estrogen and progesterone (EP; E given at 53h and P given 5h prior to stress), or vehicle (OVX). In both experiments BDNF protein was quantified using an enzyme-linked immunosorbent enzyme assay (ELISA) in micropunches of hippocampus. Gonadally intact females had significantly higher levels of BDNF in CA3, but significantly lower levels in DG, relative to males. In CA3, stress significantly decreased BDNF in both males and females. In DG of ovariectomized female rats, the effects of stress were significantly different following EP vs. vehicle treatment. Thus, stress increased BDNF levels in EP-treated rats but decreased BDNF levels in vehicle-treated rats. Reduced trophic support in DG in the presence of estrogen and progesterone could jeopardize neurogenesis and under certain conditions could be a contributing factor to the hippocampal atrophy associated with stress-induced affective disorders. These results emphasize the need to consider sex, gonadal steroids, and hippocampal subregion when examining the

  1. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.

    PubMed

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.

  2. Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases.

    PubMed

    Gu, Zezong; Nakamura, Tomohiro; Lipton, Stuart A

    2010-06-01

    Overstimulation of N-methyl-D-aspartate (NMDA)-type glutamate receptors accounts, at least in part, for excitotoxic neuronal damage, potentially contributing to a wide range of acute and chronic neurologic diseases. Neurodegenerative disorders including Alzheimer's disease (AD) and Parkinson's disease (PD), manifest deposits of misfolded or aggregated proteins, and result from synaptic injury and neuronal death. Recent studies have suggested that nitrosative stress due to generation of excessive nitric oxide (NO) can mediate excitotoxicity in part by triggering protein misfolding and aggregation, and mitochondrial fragmentation in the absence of genetic predisposition. S-Nitrosylation, or covalent reaction of NO with specific protein thiol groups, represents a convergent signal pathway contributing to NO-induced protein misfolding and aggregation, compromised dynamics of mitochondrial fission-fusion process, thus leading to neurotoxicity. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence suggesting that NO contributes to protein misfolding and aggregation via S-nitrosylating protein-disulfide isomerase or the E3 ubiquitin ligase parkin, and mitochondrial fragmentation through beta-amyloid-related S-nitrosylation of dynamin-related protein-1. Moreover, we also discuss that inhibition of excessive NMDA receptor activity by memantine, an uncompetitive/fast off-rate (UFO) drug can ameliorate excessive production of NO, protein misfolding and aggregation, mitochondrial fragmentation, and neurodegeneration.

  3. Hsp31 Is a Stress Response Chaperone That Intervenes in the Protein Misfolding Process*

    PubMed Central

    Tsai, Chai-jui; Aslam, Kiran; Drendel, Holli M.; Asiago, Josephat M.; Goode, Kourtney M.; Paul, Lake N.; Rochet, Jean-Christophe; Hazbun, Tony R.

    2015-01-01

    The Saccharomyces cerevisiae heat shock protein Hsp31 is a stress-inducible homodimeric protein that is involved in diauxic shift reprogramming and has glyoxalase activity. We show that substoichiometric concentrations of Hsp31 can abrogate aggregation of a broad array of substrates in vitro. Hsp31 also modulates the aggregation of α-synuclein (αSyn), a target of the chaperone activity of human DJ-1, an Hsp31 homolog. We demonstrate that Hsp31 is able to suppress the in vitro fibrillization or aggregation of αSyn, citrate synthase and insulin. Chaperone activity was also observed in vivo because constitutive overexpression of Hsp31 reduced the incidence of αSyn cytoplasmic foci, and yeast cells were rescued from αSyn-generated proteotoxicity upon Hsp31 overexpression. Moreover, we showed that Hsp31 protein levels are increased by H2O2, in the diauxic phase of normal growth conditions, and in cells under αSyn-mediated proteotoxic stress. We show that Hsp31 chaperone activity and not the methylglyoxalase activity or the autophagy pathway drives the protective effects. We also demonstrate reduced aggregation of the Sup35 prion domain, PrD-Sup35, as visualized by fluorescent protein fusions. In addition, Hsp31 acts on its substrates prior to the formation of large aggregates because Hsp31 does not mutually localize with prion aggregates, and it prevents the formation of detectable in vitro αSyn fibrils. These studies establish that the protective role of Hsp31 against cellular stress is achieved by chaperone activity that intervenes early in the protein misfolding process and is effective on a wide spectrum of substrate proteins, including αSyn and prion proteins. PMID:26306045

  4. A novel approach in psoriasis: first usage of known protein oxidation markers to prove oxidative stress.

    PubMed

    Yazici, Cevat; Köse, Kader; Utaş, Serap; Tanrikulu, Esen; Taşlidere, Nazan

    2016-04-01

    Oxidative stress may play a pivotal role in the pathogenesis of psoriasis, an inflammatory/hyperproliferative skin disease characterized by the cutaneous accumulation of neutrophils releasing reactive oxygen species, as revealed in a number of studies. This study was performed to demonstrate the presence of oxidative stress in psoriasis, as measured by protein oxidation markers. Twenty-nine psoriasis patients were selected based on disease severity assessment using body surface area as well as the psoriasis area severity index (PASI), and were grouped as mild (PASI ≤ 10) and moderate-to-severe (PASI > 10). The measured parameters in psoriatic patients and fourteen healthy volunteers were as follows: erythrocyte sedimentation rate (ESR), high sensitive C-reactive protein (CRP), myeloperoxidase (MPO) activity, neopterin, total lipid hydroperoxides (LHP), pyrrolized protein (PP), protein carbonyl compounds (PCC), advanced oxidation protein products (AOPP), thiol levels, along with complete blood count. Except lower thiols, all parameters were found to be higher in total patients as well as in subgroups, compared to controls. There was no significant difference among the subgroups. In conclusion, protein oxidation in psoriatics, not only in moderate-to-severe, but also in mild patients, may be explained by the findings of inflammation, phagocytic cell oxidation, and MPO-hypochlorous acid-oxidation reactions; as reflected by increased total/differential leucocytes counts, CRP, ESR as well as MPO, neopterin, AOPP, PCC, PP, LHP, and decreased thiol levels. Demonstrating the AOPP and PP formation for the first time, oxidants from active neutrophils/monocytes may play an important role in the pathogenesis of psoriasis, leading to oxidative stress, especially by protein oxidation.

  5. Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation endproducts and protein modification.

    PubMed

    Li, Shi-Yan; Du, Min; Dolence, E Kurt; Fang, Cindy X; Mayer, Gabriele E; Ceylan-Isik, Asli F; LaCour, Karissa H; Yang, Xiaoping; Wilbert, Christopher J; Sreejayan, Nair; Ren, Jun

    2005-04-01

    Evidence suggests that aging, per se, is a major risk factor for cardiac dysfunction. Oxidative modification of cardiac proteins by non-enzymatic glycation, i.e. advanced glycation endproducts (AGEs), has been implicated as a causal factor in the aging process. This study was designed to examine the role of aging on cardiomyocyte contractile function, cardiac protein oxidation and oxidative modification. Mechanical properties were evaluated in ventricular myocytes from young (2-month) and aged (24-26-month) mice using a MyoCam system. The mechanical indices evaluated were peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR90) and maximal velocity of shortening/relengthening (+/- dL/dt). Oxidative stress and protein damage were evaluated by glutathione and glutathione disulfide (GSH/GSSG) ratio and protein carbonyl content, respectively. Activation of NAD(P)H oxidase was determined by immunoblotting. Aged myocytes displayed a larger cell cross-sectional area, prolonged TR90, and normal PS, +/- dL/dt and TPS compared with young myocytes. Aged myocytes were less tolerant of high stimulus frequency (from 0.1 to 5 Hz) compared with young myocytes. Oxidative stress and protein oxidative damage were both elevated in the aging group associated with significantly enhanced p47phox but not gp91phox expression. In addition, level of cardiac AGEs was approximately 2.5-fold higher in aged hearts than young ones determined by AGEs-ELISA. A group of proteins with a molecular range between 50 and 75 kDa with pI of 4-7 was distinctively modified in aged heart using one- or two-dimension SDS gel electrophoresis analysis. These data demonstrate cardiac diastolic dysfunction and reduced stress tolerance in aged cardiac myocytes, which may be associated with enhanced cardiac oxidative damage, level of AGEs and protein modification by AGEs.

  6. Contrasting Pathology of the Stress Granule Proteins TIA-1 and G3BP in Tauopathies

    PubMed Central

    Vanderweyde, Tara; Yu, Haung; Varnum, Megan; Liu-Yesucevitz, Liqun; Citro, Allison; Ikezu, Tsuneya; Duff, Karen; Wolozin, Benjamin

    2012-01-01

    Stress induces aggregation of RNA-binding proteins to form inclusions, termed stress granules (SGs). Recent evidence suggests that SG proteins also colocalize with neuropathological structures, but whether this occurs in Alzheimer’s disease is unknown. We examined the relationship between SG proteins and neuropathology in brain tissue from P301L Tau transgenic mice, as well as in cases of Alzheimer’s disease and FTDP-17. The pattern of SG pathology differs dramatically based on the RNA-binding protein examined. SGs positive for T-cell intracellular antigen-1 (TIA-1) or tristetraprolin (TTP) initially do not colocalize with tau pathology, but then merge with tau inclusions as disease severity increases. In contrast, G3BP (ras GAP-binding protein) identifies a novel type of molecular pathology that shows increasing accumulation in neurons with increasing disease severity, but often is not associated with classic markers of tau pathology. TIA-1 and TTP both bind phospho-tau, and TIA-1 overexpression induces formation of inclusions containing phospho-tau. These data suggest that SG formation might stimulate tau pathophysiology. Thus, study of RNA-binding proteins and SG biology highlights novel pathways interacting with the pathophysiology of AD, providing potentially new avenues for identifying diseased neurons and potentially novel mechanisms regulating tau biology. PMID:22699908

  7. Role of stress granules and RNA-binding proteins in neurodegeneration: a mini-review.

    PubMed

    Vanderweyde, Tara; Youmans, Katie; Liu-Yesucevitz, Liqun; Wolozin, Benjamin

    2013-01-01

    The eukaryotic stress response involves translational suppression of non-housekeeping proteins and the sequestration of unnecessary mRNA transcripts into stress granules (SGs). This process is dependent on mRNA-binding proteins (RBPs) that interact with capped mRNA transcripts through RNA recognition motifs, and exhibit reversible aggregation through hydrophobic polyglycine domains, some of which are homologous to yeast prion proteins. The activity and aggregation of RBPs appears to be important in the context of unfolded protein diseases. The discovery that mutations in these RBPs can cause familial motoneuron diseases and familial dementias indicates the importance of these genes to neuronal degeneration. Some disorders linked to mutations in RBPs include: amyotrophic lateral sclerosis, frontotemporal dementia and spinal muscular atrophy. These RBPs also associate with pathological structures in other neurodegenerative diseases, including Huntington's chorea, Creutzfeldt-Jakob disease, and Alzheimer's disease. Interestingly, protein levels of RBPs change across the aging spectrum and may be linked to other age-related disorders, such as type 2 diabetes. The link between SG pathways and proteins linked to neurodegenerative diseases suggests a potential role for common pathways in both processes, such as those involved in translational control, and highlights potentially novel targets for therapeutic intervention in neurodegenerative diseases.

  8. A novel transmembrane protein defines the endoplasmic reticulum stress-induced cell death pathway.

    PubMed

    Tamaki, Tomoya; Kamatsuka, Kenta; Sato, Taku; Morooka, Shuntaro; Otsuka, Kosuke; Hattori, Masahiro; Sugiyama, Tomoyasu

    2017-03-08

    Mitochondrial membrane potential (ΔΨm) maintenance is physiologically critical in cells; its loss causes apoptotic signalling and cell death. Accumulating DNA mutations and unfolded proteins in stressed cells activate signalling pathways for cell death induction. Cancer cells often fail to die even in the presence of some death signalling proteins. Here, we report a short hairpin RNA (shRNA) with an artificial sequence, denoted Psi1 shRNA, which leads to ΔΨm loss in HCT116 cells. The Psi1 shRNA target gene was shown to encode transmembrane protein 117 (TMEM117). TMEM117 knockdown led to ΔΨm loss, increased reactive oxygen species levels, up-regulation of an endoplasmic reticulum (ER) stress sensor C/EBP homologous protein and active caspase-3 expression, and cell growth impairment, altering homeostasis towards cell death. TMEM117 levels were down-regulated in response to the ER stressor thapsigargin and decreased when cells showed ΔΨm loss. These results suggested that TMEM117 RNAi allowed apoptotic cell death. Therefore, TMEM117 probably mediates the signalling of ΔΨm loss in ER stress-mediated mitochondria-mediated cell death.

  9. Stress-Induced Translational Control in Potato Tubers May Be Mediated by Polysome-Associated Proteins.

    PubMed Central

    Crosby, JS; Vayda, ME

    1991-01-01

    Potato tubers exhibit distinct responses to wounding and hypoxia that include selective translation of stress-induced mRNAs. Newly synthesized wound-response mRNAs are bound to polysomes, whereas preexisting mRNAs are displaced and degraded. mRNAs that are induced and translated during hypoxic conditions are bound to ribosomes as expected. However, preexisting wound-response mRNAs whose translation is inhibited during hypoxia remain bound to polysomes, indicating that there are at least two distinct mechanisms by which translation is regulated in response to stress conditions. A 32-kD phosphoprotein is associated with polyribosomes from wounded tubers. This protein remains polysome bound as long as wound-response mRNAs are present, even during hypoxia when these mRNAs are no longer translated. However, association of the 32-kD protein with polysomes is not elicited by hypoxic stress alone. The kinase that phosphorylates this protein is active only for the first 24 hr after wounding and is not active during periods of hypoxia. This protein may mediate recognition of the wound-response mRNAs by ribosomes. PMID:12324625

  10. Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death

    SciTech Connect

    Apostolou, Andria; Shen Yuxian; Liang Yan; Luo Jun; Fang Shengyun

    2008-08-01

    The accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress that initiates the unfolded protein response (UPR). UPR activates both adaptive and apoptotic pathways, which contribute differently to disease pathogenesis. To further understand the functional mechanisms of UPR, we identified 12 commonly UPR-upregulated genes by expression microarray analysis. Here, we describe characterization of Armet/MANF, one of the 12 genes whose function was not clear. We demonstrated that the Armet/MANF protein was upregulated by various forms of ER stress in several cell lines as well as by cerebral ischemia of rat. Armet/MANF was localized in the ER and Golgi and was also a secreted protein. Silencing Armet/MANF by siRNA oligos in HeLa cells rendered cells more susceptible to ER stress-induced death, but surprisingly increased cell proliferation and reduced cell size. Overexpression of Armet/MANF inhibited cell proliferation and improved cell viability under glucose-free conditions and tunicamycin treatment. Based on its inhibitory properties for both proliferation and cell death we have demonstrated, Armet is, thus, a novel secreted mediator of the adaptive pathway of UPR.

  11. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress

    PubMed Central

    Ortega-Galisteo, Ana P.; Rodríguez-Serrano, María; Pazmiño, Diana M.; Gupta, Dharmendra K.; Sandalio, Luisa M.; Romero-Puertas, María C.

    2012-01-01

    Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H2O2 level under abiotic stress. PMID:22213812

  12. Accumulation of plant small heat-stress proteins in storage organs.

    PubMed

    Lubaretz, Olga; Zur Nieden, Uta

    2002-06-01

    Plant small heat-stress proteins (sHSPs) have been shown to be expressed not only after exposure to elevated temperatures, but also at particular developmental stages such as embryogenesis, microsporogenesis, and fruit maturation. This paper presents new data on the occurrence of sHSPs in vegetative tissues, their tissue-specific distribution, and cellular localization. We have found sHSPs in 1-year-old twigs of Acer platanoides L. and Sambucus nigra L. and in the liana Aristolochia macrophylla Lamk. exclusively in the winter months. In tendrils of Aristolochia, sHSPs were localized in vascular cambium cells. After budding, in spring, these proteins were no longer present. Furthermore, accumulation of sHSPs was demonstrated in tubers and bulbs of Allium cepa L., Amaryllis ( Hippeastrum hybridum hort.), Crocus albiflorus L., Hyacinthus orientalis L., Narcissus pseudonarcissus L., Tulipa gesneriana L., and Solanum tuberosum L. (potato). In potato tubers and bulb scales of Narcissus the stress proteins were localized in the central vacuoles of storage parenchyma cells. In order to obtain more information on a possible functional correlation between storage proteins and sHSPs, the accumulation of both types of protein in tobacco seeds during seed ripening and germination was monitored. The expression of sHSPs and globulins started simultaneously at about the 17th day after anthesis. During seed germination the sHSPs disappeared in parallel with the storage proteins. Furthermore, in embryos of transgenic tobacco plants, which do not contain any protein bodies or storage proteins, no sHSPs were found. Thus, the occurrence of sHSPs in perennial plant storage organs seems to be associated with the presence of storage proteins.

  13. Comparative Proteomic Analysis Reveals Differential Root Proteins in Medicago sativa and Medicago truncatula in Response to Salt Stress

    PubMed Central

    Long, Ruicai; Li, Mingna; Zhang, Tiejun; Kang, Junmei; Sun, Yan; Cong, Lili; Gao, Yanli; Liu, Fengqi; Yang, Qingchuan

    2016-01-01

    Salt stress is an important abiotic stress that causes decreased crop yields. Root growth and plant activities are affected by salt stress through the actions of specific genes that help roots adapt to adverse environmental conditions. For a more comprehensive understanding of proteins affected by salinity, we used two-dimensional gel electrophoresis and mass spectrometry to characterize the proteome-level changes associated with salt stress response in Medicago sativa cv. Zhongmu-1 and Medicago truncatula cv. Jemalong A17 roots. Our physiological and phenotypic observations indicated that Zhongmu-1 was more salt tolerant than Jemalong A17. We identified 93 and 30 proteins whose abundance was significantly affected by salt stress in Zhongmu-1 and Jemalong A17 roots, respectively. The tandem mass spectrometry analysis of the differentially accumulated proteins resulted in the identification of 60 and 26 proteins in Zhongmu-1 and Jemalong A17 roots, respectively. Function analyses indicated molecule binding and catalytic activity were the two primary functional categories. These proteins have known functions in various molecular processes, including defense against oxidative stress, metabolism, photosynthesis, protein synthesis and processing, and signal transduction. The transcript levels of four identified proteins were determined by quantitative reverse transcription polymerase chain reaction. Our results indicate that some of the identified proteins may play key roles in salt stress tolerance. PMID:27066057

  14. Comparative Proteomic Analysis Reveals Differential Root Proteins in Medicago sativa and Medicago truncatula in Response to Salt Stress.

    PubMed

    Long, Ruicai; Li, Mingna; Zhang, Tiejun; Kang, Junmei; Sun, Yan; Cong, Lili; Gao, Yanli; Liu, Fengqi; Yang, Qingchuan

    2016-01-01

    Salt stress is an important abiotic stress that causes decreased crop yields. Root growth and plant activities are affected by salt stress through the actions of specific genes that help roots adapt to adverse environmental conditions. For a more comprehensive understanding of proteins affected by salinity, we used two-dimensional gel electrophoresis and mass spectrometry to characterize the proteome-level changes associated with salt stress response in Medicago sativa cv. Zhongmu-1 and Medicago truncatula cv. Jemalong A17 roots. Our physiological and phenotypic observations indicated that Zhongmu-1 was more salt tolerant than Jemalong A17. We identified 93 and 30 proteins whose abundance was significantly affected by salt stress in Zhongmu-1 and Jemalong A17 roots, respectively. The tandem mass spectrometry analysis of the differentially accumulated proteins resulted in the identification of 60 and 26 proteins in Zhongmu-1 and Jemalong A17 roots, respectively. Function analyses indicated molecule binding and catalytic activity were the two primary functional categories. These proteins have known functions in various molecular processes, including defense against oxidative stress, metabolism, photosynthesis, protein synthesis and processing, and signal transduction. The transcript levels of four identified proteins were determined by quantitative reverse transcription polymerase chain reaction. Our results indicate that some of the identified proteins may play key roles in salt stress tolerance.

  15. Inflammatory stress of pancreatic beta cells drives release of extracellular heat shock protein 90α.

    PubMed

    Ocaña, Gail J; Pérez, Liliana; Guindon, Lynette; Deffit, Sarah N; Evans-Molina, Carmella; Thurmond, Debbie C; Blum, Janice S

    2017-02-11

    A major obstacle in predicting and preventing the development of autoimmune type 1 diabetes (T1D) in at-risk individuals is the lack of well-established early biomarkers indicative of ongoing beta cell stress during the pre-clinical phase of disease. Recently, serum levels of the alpha cytoplasmic isoform of heat shock protein (HSP) 90 were shown to be elevated in individuals with new-onset T1D. We therefore hypothesized HSP90α could be released from beta cells in response to cellular stress and inflammation associated with the earliest stages of T1D. Here, human beta cell lines and cadaveric islets released HSP90α in response to stress induced by treatment with a combination of pro-inflammatory cytokines including IL-1β, TNF-α, and IFN-γ. Mechanistically, HSP90α release was found to be driven by cytokine-induced endoplasmic reticulum (ER) stress mediated by c-Jun N-terminal kinase (JNK), a pathway that can eventually lead to beta cell apoptosis. Cytokine-induced beta cell HSP90α release and JNK activation were significantly reduced by pre-treating cells with the ER stress-mitigating chemical chaperone tauroursodeoxycholic acid (TUDCA). HSP90α release by cells may thus be a sensitive indicator of stress during inflammation and a useful tool in assessing therapeutic mitigation of cytokine-induced cell damage linked to autoimmunity. This article is protected by copyright. All rights reserved.

  16. The p66(Shc) adaptor protein controls oxidative stress response in early bovine embryos.

    PubMed

    Betts, Dean H; Bain, Nathan T; Madan, Pavneesh

    2014-01-01

    The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2-4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2-4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.

  17. Rice Ribosomal Protein Large Subunit Genes and Their Spatio-temporal and Stress Regulation

    PubMed Central

    Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Madhav, Sheshu M.; Kirti, P. B.

    2016-01-01

    Ribosomal proteins (RPs) are well-known for their role in mediating protein synthesis and maintaining the stability of the ribosomal complex, which includes small and large subunits. In the present investigation, in a genome-wide survey, we predicted that the large subunit of rice ribosomes is encoded by at least 123 genes including individual gene copies, distributed throughout the 12 chromosomes. We selected 34 candidate genes, each having 2–3 identical copies, for a detailed characterization of their gene structures, protein properties, cis-regulatory elements and comprehensive expression analysis. RPL proteins appear to be involved in interactions with other RP and non-RP proteins and their encoded RNAs have a higher content of alpha-helices in their predicted secondary structures. The majority of RPs have binding sites for metal and non-metal ligands. Native expression profiling of 34 ribosomal protein large (RPL) subunit genes in tissues covering the major stages of rice growth shows that they are predominantly expressed in vegetative tissues and seedlings followed by meiotically active tissues like flowers. The putative promoter regions of these genes also carry cis-elements that respond specifically to stress and signaling molecules. All the 34 genes responded differentially to the abiotic stress treatments. Phytohormone and cold treatments induced significant up-regulation of several RPL genes, while heat and H2O2 treatments down-regulated a majority of them. Furthermore, infection with a bacterial pathogen, Xanthomonas oryzae, which causes leaf blight also induced the expression of 80% of the RPL genes in leaves. Although the expression of RPL genes was detected in all the tissues studied, they are highly responsive to stress and signaling molecules indicating that their encoded proteins appear to have roles in stress amelioration besides house-keeping. This shows that the RPL gene family is a valuable resource for manipulation of stress tolerance in

  18. Shotgun Quantitative Proteomic Analysis of Proteins Responding to Drought Stress in Brassica rapa L. (Inbred Line “Chiifu”)

    PubMed Central

    Kwon, Soon-Wook

    2016-01-01

    Through a comparative shotgun quantitative proteomics analysis in Brassica rapa (inbred line Chiifu), total of 3,009 nonredundant proteins were identified with a false discovery rate of 0.01 in 3-week-old plants subjected to dehydration treatment for 0, 24, and 48 h, plants subjected to drought stress. Ribulose-bisphosphate carboxylases, chlorophyll a/b-binding protein, and light harvesting complex in photosystem II were highly abundant proteins in the leaves and accounted for 9%, 2%, and 4%, respectively, of the total identified proteins. Comparative analysis of the treatments enabled detection of 440 differentially expressed proteins during dehydration. The results of clustering analysis, gene ontology (GO) enrichment analysis, and analysis of composite expression profiles of functional categories for the differentially expressed proteins indicated that drought stress reduced the levels of proteins associated with photosynthesis and increased the levels of proteins involved in catabolic processes and stress responses. We observed enhanced expression of many proteins involved in osmotic stress responses and proteins with antioxidant activities. Based on previously reported molecular functions, we propose that the following five differentially expressed proteins could provide target genes for engineering drought resistance in plants: annexin, phospholipase D delta, sDNA-binding transcriptional regulator, auxin-responsive GH3 family protein, and TRAF-like family protein. PMID:27419125

  19. Mitochondrial stress causes increased succination of proteins in adipocytes in response to glucotoxicity.

    PubMed

    Frizzell, Norma; Thomas, Sonia A; Carson, James A; Baynes, John W

    2012-07-15

    2SC [S-(2-succino)-cysteine] is a chemical modification formed by a Michael addition reaction of fumarate with cysteine residues in proteins. Formation of 2SC, termed 'succination' of proteins, increases in adipocytes grown in high-glucose medium and in adipose tissues of Type 2 diabetic mice. However, the metabolic mechanisms leading to increased fumarate and succination of protein in the adipocyte are unknown. Treatment of 3T3 cells with high glucose (30 mM compared with 5 mM) caused a significant increase in cellular ATP/ADP, NADH/NAD+ and Δψm (mitochondrial membrane potential). There was also a significant increase in the cellular fumarate concentration and succination of proteins, which may be attributed to the increase in NADH/NAD+ and subsequent inhibition of tricarboxylic acid cycle NAD+-dependent dehydrogenases. Chemical uncouplers, which dissipated Δψm and reduced the NADH/NAD+ ratio, also decreased the fumarate concentration and protein succination. High glucose plus metformin, an inhibitor of complex I in the electron transport chain, caused an increase in fumarate and succination of protein. Thus excess fuel supply (glucotoxicity) appears to create a pseudohypoxic environment (high NADH/NAD+ without hypoxia), which drives the increase in succination of protein. We propose that increased succination of proteins is an early marker of glucotoxicity and mitochondrial stress in adipose tissue in diabetes.

  20. Characterization of the Bat proteins in the oxidative stress response of Leptospira biflexa

    PubMed Central

    2012-01-01

    Background Leptospires lack many of the homologs for oxidative defense present in other bacteria, but do encode homologs of the Bacteriodes aerotolerance (Bat) proteins, which have been proposed to fulfill this function. Bat homologs have been identified in all families of the phylum Spirochaetes, yet a specific function for these proteins has not been experimentally demonstrated. Results We investigated the contribution of the Bat proteins in the model organism Leptospira biflexa for their potential contributions to growth rate, morphology and protection against oxidative challenges. A genetically engineered mutant strain in which all bat ORFs were deleted did not exhibit altered growth rate or morphology, relative to the wild-type strain. Nor could we demonstrate a protective role for the Bat proteins in coping with various oxidative stresses. Further, pre-exposing L. biflexa to sublethal levels of reactive oxygen species did not appear to induce a general oxidative stress response, in contrast to what has been shown in other bacterial species. Differential proteomic analysis of the wild-type and mutant strains detected changes in the abundance of a single protein only – HtpG, which is encoded by the gene immediately downstream of the bat loci. Conclusion The data presented here do not support a protective role for the Leptospira Bat proteins in directly coping with oxidative stress as previously proposed. L. biflexa is relatively sensitive to reactive oxygen species such as superoxide and H2O2, suggesting that this spirochete lacks a strong, protective defense against oxidative damage despite being a strict aerobe. PMID:23234440

  1. The Rai (Shc C) adaptor protein regulates the neuronal stress response and protects against cerebral ischemia

    PubMed Central

    Troglio, Flavia; Echart, Cinara; Gobbi, Alberto; Pawson, Tony; Pelicci, Pier Giuseppe; De Simoni, Maria Grazia; Pelicci, Giuliana

    2004-01-01

    Rai (Shc C or N-Shc) is a neuron-specific member of the family of Shc-like adaptor proteins. Rai functions in the cytoplasmic propagation of Ret-dependent survival signals and regulates, in vivo, the number of sympathetic neurons. We report here a function of Rai, i.e., the regulation of the neuronal adaptive response to environmental stresses. We demonstrate that (i) primary cultures of cortical neurons from Rai-/- mice are more sensitive to apoptosis induced by hypoxia or oxidative stress; (ii) in Rai-/- mice, ischemia/reperfusion injury induces severe neurological deficits, increased apoptosis and size of the infarct area, and significantly higher mortality; and (iii) Rai functions as a stress-response gene that increases phosphatidylinositol 3-kinase activation and Akt phosphorylation after hypoxic or oxidation insults. These data suggest that Rai has a functional neuroprotective role in brain injury, with possible implications in the treatment of stroke. PMID:15494442

  2. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers.

    PubMed

    Saito, Mak A; McIlvin, Matthew R; Moran, Dawn M; Goepfert, Tyler J; DiTullio, Giacomo R; Post, Anton F; Lamborg, Carl H

    2014-09-05

    Marine primary productivity is strongly influenced by the scarcity of required nutrients, yet our understanding of these nutrient limitations is informed by experimental observations with sparse geographical coverage and methodological limitations. We developed a quantitative proteomic method to directly assess nutrient stress in high-light ecotypes of the abundant cyanobacterium Prochlorococcus across a meridional transect in the central Pacific Ocean. Multiple peptide biomarkers detected widespread and overlapping regions of nutritional stress for nitrogen and phosphorus in the North Pacific Subtropical Gyre and iron in the equatorial Pacific. Quantitative protein analyses demonstrated simultaneous stress for these nutrients at biome interfaces. This application of proteomic biomarkers to diagnose ocean metabolism demonstrated Prochlorococcus actively and simultaneously deploying multiple biochemical strategies for low-nutrient conditions in the oceans.

  3. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology.

    PubMed

    Joly, Nicolas; Engl, Christoph; Jovanovic, Goran; Huvet, Maxime; Toni, Tina; Sheng, Xia; Stumpf, Michael P H; Buck, Martin

    2010-09-01

    The bacterial phage shock protein (Psp) response functions to help cells manage the impacts of agents impairing cell membrane function. The system has relevance to biotechnology and to medicine. Originally discovered in Escherichia coli, Psp proteins and homologues are found in Gram-positive and Gram-negative bacteria, in archaea and in plants. Study of the E. coli and Yersinia enterocolitica Psp systems provides insights into how membrane-associated sensory Psp proteins might perceive membrane stress, signal to the transcription apparatus and use an ATP-hydrolysing transcription activator to produce effector proteins to overcome the stress. Progress in understanding the mechanism of signal transduction by the membrane-bound Psp proteins, regulation of the psp gene-specific transcription activator and the cell biology of the system is presented and discussed. Many features of the action of the Psp system appear to be dominated by states of self-association of the master effector, PspA, and the transcription activator, PspF, alongside a signalling pathway that displays strong conditionality in its requirement.

  4. Deubiquitinase activity is required for the proteasomal degradation of misfolded cytosolic proteins upon heat-stress

    PubMed Central

    Fang, Nancy N.; Zhu, Mang; Rose, Amalia; Wu, Kuen-Phon; Mayor, Thibault

    2016-01-01

    Elimination of misfolded proteins is crucial for proteostasis and to prevent proteinopathies. Nedd4/Rsp5 emerged as a major E3-ligase involved in multiple quality control pathways that target misfolded plasma membrane proteins, aggregated polypeptides and cytosolic heat-induced misfolded proteins for degradation. It remained unclear how in one case cytosolic heat-induced Rsp5 substrates are destined for proteasomal degradation, whereas other Rsp5 quality control substrates are otherwise directed to lysosomal degradation. Here we find that Ubp2 and Ubp3 deubiquitinases are required for the proteasomal degradation of cytosolic misfolded proteins targeted by Rsp5 after heat-shock (HS). The two deubiquitinases associate more with Rsp5 upon heat-stress to prevent the assembly of K63-linked ubiquitin on Rsp5 heat-induced substrates. This activity was required to promote the K48-mediated proteasomal degradation of Rsp5 HS-induced substrates. Our results indicate that ubiquitin chain editing is key to the cytosolic protein quality control under stress conditions. PMID:27698423

  5. The stress protein level under clinorotation in context of the seedling developmental program and the stress response

    NASA Astrophysics Data System (ADS)

    Kozeko, Lyudmyla; Kordyum, Elizabeth

    2006-09-01

    Heat-shock proteins (HSP70 and HSP90) are present in plant cells under the normal growth conditions. At the same time, a variety of environmental disruptions results in their rapid synthesis as a substantial part of adaptation. HSP amounts can be indicative of a cellular stress level. Altered gravity (clinorotation) is unnatural for plants, so it may be a kind of stress. The aim of this study was to analyze the influence of horizontal clinorotation on the HSP70 and HSP90 level during seedling development. Pea (Pisum sativum L.) seedlings grown for 3 days from seed imbibitions in stationary control and under slow clinorotation (2 rpm) are used for this investigation. Western blot analysis indicated that HSP70 and HSP90 were abundant in the embryos of dry seeds and their amount decreased significantly during seed germination. But under horizontal clinorotation, their level in seedlings remained higher compared to the control. Furthermore, a comparison of the influence of horizontal and vertical clinorotation on the HSP level was carried out. On the ELISA data, HSP70 and HSP90 amounts in the 3-day old seedlings were higher after horizontal clinorotation than after vertical. The obtained data show an increased HSP70 and HSP90 level in pea seedlings under clinorotation. Both, rotation and change in the cell position relatively to a gravity vector affect the HSP level.

  6. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster

    SciTech Connect

    Ahamed, Maqusood; Posgai, Ryan; Gorey, Timothy J.; Nielsen, Mark; Hussain, Saber M.; Rowe, John J.

    2010-02-01

    Due to the intensive commercial application of silver nanoparticles (Ag NPs), risk assessment of this nanoparticle is of great importance. Our previous in vitro study demonstrated that Ag NPs caused DNA damage and apoptosis in mouse embryonic stem cells and fibroblasts. However, toxicity of Ag NPs in vivo is largely lacking. This study was undertaken to examine the toxic effects of well-characterized polysaccharide coated 10 nm Ag NPs on heat shock stress, oxidative stress, DNA damage and apoptosis in Drosophila melanogaster. Third instar larvae of D. melanogaster were fed a diet of standard cornmeal media mixed with Ag NPs at the concentrations of 50 and 100 mug/ml for 24 and 48 h. Ag NPs up-regulated the expression of heat shock protein 70 and induced oxidative stress in D. melanogaster. Malondialdehyde level, an end product of lipid peroxidation was significantly higher while antioxidant glutathione content was significantly lower in Ag NPs exposed organisms. Activities of antioxidant enzyme superoxide dismutase and catalase were also significantly higher in the organisms exposed to Ag NPs. Furthermore, Ag NPs up-regulated the cell cycle checkpoint p53 and cell signaling protein p38 that are involved in the DNA damage repair pathway. Moreover, activities of caspase-3 and caspase-9, markers of apoptosis were significantly higher in Ag NPs exposed organisms. The results indicate that Ag NPs in D. melanogaster induce heat shock stress, oxidative stress, DNA damage and apoptosis. This study suggests that the organism is stressed and thus warrants more careful assessment of Ag NPs using in vivo models to determine if chronic exposure presents developmental and reproductive toxicity.

  7. RNA-binding proteins related to stress response and differentiation in protozoa.

    PubMed

    Alves, Lysangela Ronalte; Goldenberg, Samuel

    2016-02-26

    RNA-binding proteins (RBPs) are key regulators of gene expression. There are several distinct families of RBPs and they are involved in the cellular response to environmental changes, cell differentiation and cell death. The RBPs can differentially combine with RNA molecules and form ribonucleoprotein (RNP) complexes, defining the function and fate of RNA molecules in the cell. RBPs display diverse domains that allow them to be categorized into distinct families. They play important roles in the cellular response to physiological stress, in cell differentiation, and, it is believed, in the cellular localization of certain mRNAs. In several protozoa, a physiological stress (nutritional, temperature or pH) triggers differentiation to a distinct developmental stage. Most of the RBPs characterized in protozoa arise from trypanosomatids. In these protozoa gene expression regulation is mostly post-transcriptional, which suggests that some RBPs might display regulatory functions distinct from those described for other eukaryotes. mRNA stability can be altered as a response to stress. Transcripts are sequestered to RNA granules that ultimately modulate their availability to the translation machinery, storage or degradation, depending on the associated proteins. These aggregates of mRNPs containing mRNAs that are not being translated colocalize in cytoplasmic foci, and their numbers and size vary according to cell conditions such as oxidative stress, nutritional status and treatment with drugs that inhibit translation.

  8. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans.

    PubMed

    Al-Amin, Mohammad; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2016-02-01

    Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest.

  9. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity

    PubMed Central

    Barkla, Bronwyn J.

    2016-01-01

    Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised. PMID:28248236

  10. Proteomic profile of carbonylated proteins in rat liver: exercise attenuated oxidative stress may be involved in fatty liver improvement.

    PubMed

    Hu, Xiaofei; Duan, Zhigui; Hu, Hui; Li, Guolin; Yan, Siyu; Wu, Jinfeng; Wang, Jun; Yin, Dazhong; Xie, Qingji

    2013-05-01

    To screen target proteins of oxidative stress which mediate the effects of exercise on preventing nonalcoholic fatty liver disease (NAFLD), the methods for selecting carbonylated proteins were modified, and carbonylated proteins were profiled. The results showed that treadmill training reduced oxidative stress and the levels of intrahepatic triglyceride (IHTG). The changes in IHTG showed a significant positive correlation with oxidative stress as indicated by malondialdehyde level. Further results from proteomics illustrated that 17 functional proteins were susceptible to oxidative modification, and exercise protected three proteins from carbonylation. The latter three proteins may serve as both direct target proteins of oxidative stress and mediators contributing to the beneficial effects of exercise. In particular, a long-chain specific acyl-CoA dehydrogenase (ACADL) which was a key enzyme in lipid metabolism was not carbonylated and with higher activities in exercise group. These findings indicate that this modified technique is practical and powerful in selecting carbonylated proteins. Long-term treadmill training is effective in ameliorating oxidative stress and preventing the accumulation of IHTG. Among the 17 target proteins of oxidative modification, three proteins contribute to the beneficial effects of exercise. Preventing ACADL from carbonylation may be involved in the physiological mechanism of exercise-induced NAFLD improvement.

  11. Characterization of the universal stress protein F from atypical enteropathogenic Escherichia coli and its prevalence in Enterobacteriaceae.

    PubMed

    de Souza, Cristiane S; Torres, Alfredo G; Caravelli, Andressa; Silva, Anderson; Polatto, Juliana M; Piazza, Roxane M F

    2016-12-01

    Atypical enteropathogenic Escherichia coli (aEPEC) are heterogeneous strains in terms of serotypes, adherence patterns and the presence of novel virulence factors. This heterogeneity is intriguing, promoting studies trying to characterize these novel proteins and to better comprehend this pathotype group. In a previous study analyzing low-molecular mass proteomes of four representative aEPEC strains of three different adhesion phenotypes, we classified proteins according to their annotated function, with most of them being involved in metabolism and transport; while some of them were classified as hypothetical proteins. The majority of the hypothetical proteins were homologue products of genes identified in the genome of enterohemorrhagic E. coli. One of the hypothetical proteins was annotated as Z2335, with orthologue in EPEC, and by bioinformatics analysis, this protein was revealed to be the universal stress protein F (UspF). Thus, herein we successfully obtained a recombinant UspF protein from aEPEC, which is a α/β, ATP-binding protein involved in stress response, with comparable protein production among the four studied strains, but showing noteworthy differences when cultivated in different stress conditions, also present in other enterobacterial species, such as Shigella sonnei and Citrobacter freundii. Furthermore, our results confirm that the Usp protein superfamily encompasses a conserved group of proteins involved in stress resistance in aEPEC and other Enterobacteriaceae.

  12. Characterization of the universal stress protein F from atypical enteropathogenic Escherichia coli and its prevalence in Enterobacteriaceae

    PubMed Central

    de Souza, Cristiane S.; Torres, Alfredo G.; Caravelli, Andressa; Silva, Anderson; Polatto, Juliana M.

    2016-01-01

    Abstract Atypical enteropathogenic Escherichia coli (aEPEC) are heterogeneous strains in terms of serotypes, adherence patterns and the presence of novel virulence factors. This heterogeneity is intriguing, promoting studies trying to characterize these novel proteins and to better comprehend this pathotype group. In a previous study analyzing low‐molecular mass proteomes of four representative aEPEC strains of three different adhesion phenotypes, we classified proteins according to their annotated function, with most of them being involved in metabolism and transport; while some of them were classified as hypothetical proteins. The majority of the hypothetical proteins were homologue products of genes identified in the genome of enterohemorrhagic E. coli. One of the hypothetical proteins was annotated as Z2335, with orthologue in EPEC, and by bioinformatics analysis, this protein was revealed to be the universal stress protein F (UspF). Thus, herein we successfully obtained a recombinant UspF protein from aEPEC, which is a α/β, ATP‐binding protein involved in stress response, with comparable protein production among the four studied strains, but showing noteworthy differences when cultivated in different stress conditions, also present in other enterobacterial species, such as Shigella sonnei and Citrobacter freundii. Furthermore, our results confirm that the Usp protein superfamily encompasses a conserved group of proteins involved in stress resistance in aEPEC and other Enterobacteriaceae. PMID:27616205

  13. Neurotoxicity induced by arsenic in Gallus Gallus: Regulation of oxidative stress and heat shock protein response.

    PubMed

    Zhao, Panpan; Guo, Ying; Zhang, Wen; Chai, Hongliang; Xing, Houjuan; Xing, Mingwei

    2017-01-01

    Arsenic, a naturally occurring heavy metal pollutant, is one of the functioning risk factors for neurological toxicity in humans. However, little is known about the effects of arsenic on the nervous system of Gallus Gallus. To investigate whether arsenic induce neurotoxicity and influence the oxidative stress and heat shock proteins (Hsps) response in chickens, seventy-two 1-day-old male Hy-line chickens were treated with different doses of arsenic trioxide (As2O3). The histological changes, antioxidant enzyme activity, and the expressions of Hsps were detected. Results showed slightly histology changes were obvious in the brain tissues exposure to arsenic. The activities of Glutathione peroxidase (GSH-Px) and catalase (CAT) were decreased compared to the control, whereas the malondialdehyde (MDA) content was increased gradually along with increase in diet-arsenic. The mRNA levels of Hsps and protein expressions of Hsp60 and Hsp70 were up-regulated. These results suggested that sub-chronic exposure to arsenic induced neurotoxicity in chickens. Arsenic exposure disturbed the balance of oxidants and antioxidants. Increased heat shock response tried to protect chicken brain tissues from tissues damage caused by oxidative stress. The mechanisms of neurotoxicity induced by arsenic include oxidative stress and heat shock protein response in chicken brain tissues.

  14. Influence of chemical and environmental stresses on metal-binding proteins: Species-dependent effects

    SciTech Connect

    Baer, K.N.

    1988-01-01

    The development of tolerance to cadmium toxicity was investigated in mammals. In adult mice pretreated with 20 mg Cd/kg, no mortality was observed following administration of a 100 mg/kg cadmium challenge dose. In animals receiving prior exposure to cold stress a mortality of 40% was observed, while in animals receiving no pretreatment an 80% mortality was observed following cadmium challenge. Analysis of the metal-binding proteins using G-75 gel-filtration chromatography revealed that MT-like protein was responsible, in part, for the observed tolerance to cadmium toxicity. For example, following 20 mg Cd/kg and cold pretreatment, the MT-like reserve capacity was 56 and 42 nmoles cadmium, respectively, compared to a control value of 12 nmoles cadmium. The influence of pretreatments on the subcellular distribution of cadmium was also examined. The influence of chemical and environmental stresses on metal-binding proteins in teleosts was investigated. Following cadmium exposure, cadmium increased in the MT fraction in both the gill and liver. However, following exposure to environmental stresses such as cold and hypoxia, significant decreases in zinc and copper were observed in the gill MT fraction, as compared to control. In the liver, no significant alterations were observed in the MT fraction, as compared to control.

  15. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling.

    PubMed

    Wase, Nishikant; Black, Paul N; Stanley, Bruce A; DiRusso, Concetta C

    2014-03-07

    Nitrogen starvation induces a global stress response in microalgae that results in the accumulation of lipids as a potential source of biofuel. Using GC-MS-based metabolite and iTRAQ-labeled protein profiling, we examined and correlated the metabolic and proteomic response of Chlamydomonas reinhardtii under nitrogen stress. Key amino acids and metabolites involved in nitrogen sparing pathways, methyl group transfer reactions, and energy production were decreased in abundance, whereas certain fatty acids, citric acid, methionine, citramalic acid, triethanolamine, nicotianamine, trehalose, and sorbitol were increased in abundance. Proteins involved in nitrogen assimilation, amino acid metabolism, oxidative phosphorylation, glycolysis, TCA cycle, starch, and lipid metabolism were elevated compared with nonstressed cultures. In contrast, the enzymes of the glyoxylate cycle, one carbon metabolism, pentose phosphate pathway, the Calvin cycle, photosynthetic and light harvesting complex, and ribosomes were reduced. A noteworthy observation was that citrate accumulated during nitrogen stress coordinate with alterations in the enzymes that produce or utilize this metabolite, demonstrating the value of comparing protein and metabolite profiles to understand complex patterns of metabolic flow. Thus, the current study provides unique insight into the global metabolic adjustments leading to lipid storage during N starvation for application toward advanced biofuel production technologies.

  16. Regulation of the phage-shock-protein stress response in Yersinia enterocolitica.

    PubMed

    Darwin, Andrew J

    2007-01-01

    The phage-shock-protein (Psp) system of Yersinia enterocolitica encodes a stress response that is essential for viability when the secretin component of its Ysc type III secretion system is produced. Therefore, Y enterocolitica psp null mutants are completely avirulent in a mouse model of infection. This article summarizes what is known about the regulation of the Y. enterocolitica Psp system. psp gene expression is induced by the overproduction of secretins, some cytoplasmic membrane proteins, or disruption of the F0F1-ATPase. All of these may deplete the proton-motive force, which could be the inducing signal for the Psp system. None of these Psp triggers induce two other extracytoplasmic stress responses (RpoE and Cpx), which suggests that the inducing signal of the Psp system is specific. The induction of psp gene expression requires the cytoplasmic membrane proteins PspB and PspC, which interact and presumably work together to achieve their regulatory function. However, the regulatory role of PspBC does not completely explain why they are essential for survival during secretin-stress, suggesting that they have a second unrelated role. Finally, current ideas about how PspB/C might sense the inducing trigger(s) are briefly discussed, including a consideration of whether there might be any unidentified signal transduction components that communicate with the Psp system.

  17. Stress protein expression in fish liver as a biomarker for environmental monitoring

    SciTech Connect

    Pereira, C.; Vijayan, M.M.; Iwama, G.K. |

    1995-12-31

    Fish livers play a central role in xenobiotic metabolism and the induction of detoxifying enzymes such as cytochrome P450 in response to environmental pollutants has been well characterized in this organ. However, studies indicate that physiological changes, such as reproductive activity, and environmental variables, such as food availability, modify enzyme activities thereby limiting the use of hepatic enzymes as indicators of contaminant exposure. Stress proteins (SP) are a class of proteins induced by a wide variety of environmental stressors. A rainbow trout (Oncorhynchus mykiss) hepatocyte primary culture has been established to characterize and validate the use of SP expression as biomarkers of contaminant exposure. Hepatocytes were isolated by in situ perfusion of the liver with collagenase and the cells plated and kept at 15{degree}C. SDSPAGE and Western immunoblotting using antibodies raised against trout SP70 were used to determine the production of SP. Stress protein induction in response to heat shock and the toxicants cadmium chloride and {beta}-naphthoflavone have been characterized in the hepatocyte culture. Ongoing studies will describe the effects of bleached kraft pulp mill effluent on the hepatocytes. Modulation of those effects by the stress hormone cortisol is also being studied.

  18. Protein O-GlcNAcylation: A critical regulator of the cellular response to stress

    PubMed Central

    Chatham, John C.; Marchase, Richard B.

    2012-01-01

    The post-translational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide ß-N-acetyl-glucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification that plays a critical role in regulating numerous biological processes. Much of our understanding of the mechanisms underlying the role of O-GlcNAc on cellular function has been in the context of chronic disease processes. However, there is increasing evidence that O-GlcNAc levels are increased in response to stress and that acute augmentation of this response is cytoprotective, at least in the short term. Conversely, a reduction in O-GlcNAc levels appears to be associated with decreased cell survival in response to an acute stress. Here we summarize our current understanding of protein O-GlcNAcylation on the cellular response to stress and in mediating cellular protective mechanisms focusing primarily on the cardiovascular system as an example. We consider the potential link between O-GlcNAcylation and cardiomyocyte calcium homeostasis and explore the parallels between O-GlcNAc signaling and redox signaling. We also discuss the apparent paradox between the reported adverse effects of increased O-GlcNAcylation with its recently reported role in mediating cell survival mechanisms. PMID:22308107

  19. Development and application of an antibody-based protein microarray to assess physiological stress in grizzly bears (Ursus arctos).

    PubMed

    Carlson, Ruth I; Cattet, Marc R L; Sarauer, Bryan L; Nielsen, Scott E; Boulanger, John; Stenhouse, Gordon B; Janz, David M

    2016-01-01

    A novel antibody-based protein microarray was developed that simultaneously determines expression of 31 stress-associated proteins in skin samples collected from free-ranging grizzly bears (Ursus arctos) in Alberta, Canada. The microarray determines proteins belonging to four broad functional categories associated with stress physiology: hypothalamic-pituitary-adrenal axis proteins, apoptosis/cell cycle proteins, cellular stress/proteotoxicity proteins and oxidative stress/inflammation proteins. Small skin samples (50-100 mg) were collected from captured bears using biopsy punches. Proteins were isolated and labelled with fluorescent dyes, with labelled protein homogenates loaded onto microarrays to hybridize with antibodies. Relative protein expression was determined by comparison with a pooled standard skin sample. The assay was sensitive, requiring 80 µg of protein per sample to be run in triplicate on the microarray. Intra-array and inter-array coefficients of variation for individual proteins were generally <10 and <15%, respectively. With one exception, there were no significant differences in protein expression among skin samples collected from the neck, forelimb, hindlimb and ear in a subsample of n = 4 bears. This suggests that remotely delivered biopsy darts could be used in future sampling. Using generalized linear mixed models, certain proteins within each functional category demonstrated altered expression with respect to differences in year, season, geographical sampling location within Alberta and bear biological parameters, suggesting that these general variables may influence expression of specific proteins in the microarray. Our goal is to apply the protein microarray as a conservation physiology tool that can detect, evaluate and monitor physiological stress in grizzly bears and other species at risk over time in response to environmental change.

  20. Development and application of an antibody-based protein microarray to assess physiological stress in grizzly bears (Ursus arctos)

    PubMed Central

    Carlson, Ruth I.; Cattet, Marc R. L.; Sarauer, Bryan L.; Nielsen, Scott E.; Boulanger, John; Stenhouse, Gordon B.; Janz, David M.

    2016-01-01

    A novel antibody-based protein microarray was developed that simultaneously determines expression of 31 stress-associated proteins in skin samples collected from free-ranging grizzly bears (Ursus arctos) in Alberta, Canada. The microarray determines proteins belonging to four broad functional categories associated with stress physiology: hypothalamic–pituitary–adrenal axis proteins, apoptosis/cell cycle proteins, cellular stress/proteotoxicity proteins and oxidative stress/inflammation proteins. Small skin samples (50–100 mg) were collected from captured bears using biopsy punches. Proteins were isolated and labelled with fluorescent dyes, with labelled protein homogenates loaded onto microarrays to hybridize with antibodies. Relative protein expression was determined by comparison with a pooled standard skin sample. The assay was sensitive, requiring 80 µg of protein per sample to be run in triplicate on the microarray. Intra-array and inter-array coefficients of variation for individual proteins were generally <10 and <15%, respectively. With one exception, there were no significant differences in protein expression among skin samples collected from the neck, forelimb, hindlimb and ear in a subsample of n = 4 bears. This suggests that remotely delivered biopsy darts could be used in future sampling. Using generalized linear mixed models, certain proteins within each functional category demonstrated altered expression with respect to differences in year, season, geographical sampling location within Alberta and bear biological parameters, suggesting that these general variables may influence expression of specific proteins in the microarray. Our goal is to apply the protein microarray as a conservation physiology tool that can detect, evaluate and monitor physiological stress in grizzly bears and other species at risk over time in response to environmental change. PMID:27293753

  1. Chronic restraint stress induces sperm acrosome reaction and changes in testicular tyrosine phosphorylated proteins in rats

    PubMed Central

    Arun, Supatcharee; Burawat, Jaturon; Sukhorum, Wannisa; Sampannang, Apichakan; Maneenin, Chanwit; Iamsaard, Sitthichai

    2016-01-01

    Background: Stress is a cause of male infertility. Although sex hormones and sperm quality have been shown to be low in stress, sperm physiology and testicular functional proteins, such as phosphotyrosine proteins, have not been documented. Objective: To investigate the acrosome status and alterations of testicular proteins involved in spermatogenesis and testosterone synthesis in chronic stress in rats. Materials and Methods: In this experimental study, male rats were divided into 2 groups (control and chronic stress (CS), n=7). CS rats were immobilized (4 hr/day) for 42 consecutive days. The blood glucose level (BGL), corticosterone, testosterone, acrosome status, and histopathology were examined. The expressions of testicular steroidogenic acute regulatory (StAR), cytochrome P450 side chain cleavage (CYP11A1), and phosphorylated proteins were analyzed. Results: Results showed that BGL (71.25±2.22 vs. 95.60±3.36 mg/dl), corticosterone level (24.33±4.23 vs. 36.9±2.01 ng/ml), acrosome reacted sperm (3.25±1.55 vs. 17.71±5.03%), and sperm head abnormality (3.29±0.71 vs. 6.21±1.18%) were significantly higher in CS group in comparison with control. In contrast, seminal vesicle (0.41±0.05 vs. 0.24±0.07 g/100g), testosterone level (3.37±0.79 vs. 0.61±0.29 ng/ml), and sperm concentration (115.33±7.70 vs. 79.13±3.65×106 cells/ml) of CS were significantly lower (p<0.05) than controls. Some atrophic seminiferous tubules and low sperm mass were apparent in CS rats. The expression of CYP11A1 except StAR protein was markedly decreased in CS rats. In contrast, a 55 kDa phosphorylated protein was higher in CS testes. Conclusion: CS decreased the expression of CYP11A, resulting in decreased testosterone, and increased acrosome-reacted sperm, assumed to be the result of an increase of 55 kDa phosphorylated protein. PMID:27525328

  2. Transduced Tat-SAG fusion protein protects against oxidative stress and brain ischemic insult.

    PubMed

    Kim, Dae Won; Lee, Sun Hwa; Jeong, Min Seop; Sohn, Eun Jeong; Kim, Mi Jin; Jeong, Hoon Jae; An, Jae Jin; Jang, Sang Ho; Won, Moo Ho; Hwang, In Koo; Cho, Sung-Woo; Kang, Tae-Cheon; Lee, Kil Soo; Park, Jinseu; Yoo, Ki-Yeon; Eum, Won Sik; Choi, Soo Young

    2010-04-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of ischemic brain injury. Sensitive to apoptosis gene (SAG) is a RING-finger protein that exhibits antioxidant activity against a variety of redox reagents. However, the protective effect of SAG in brain ischemic injury is unclear. Here, we investigated the protective effects of a Tat-SAG fusion protein against cell death and ischemic insult. When Tat-SAG fusion protein was added to the culture medium of astrocytes, it rapidly entered the cells and protected them against oxidative stress-induced cell death. Immunohistochemical analysis revealed that, when Tat-SAG fusion protein was intraperitoneally injected into gerbils, wild-type Tat-SAG prevented neuronal cell death in the CA1 region of the hippocampus in response to transient forebrain ischemia. In addition, wild-type Tat-SAG fusion protein decreased lipid peroxidation in the brain compared with mutant Tat-SAG- or vehicle-treated animals. Our results demonstrate that Tat-SAG fusion protein is a tool for the treatment of ischemic insult and it can be used in protein therapy for various disorders related to ROS, including stroke.

  3. Loss of Clcc1 Results in ER Stress, Misfolded Protein Accumulation, and Neurodegeneration

    PubMed Central

    Jia, Yichang; Jucius, Thomas J.; Cook, Susan A.

    2015-01-01

    Folding of transmembrane and secretory proteins occurs in the lumen of the endoplasmic reticulum (ER) before transportation to the cell surface and is monitored by the unfolded protein response (UPR) signaling pathway. The accumulation of unfolded proteins in the ER activates the UPR that restores ER homeostasis by regulating gene expression that leads to an increase in the protein-folding capacity of the ER and a decrease in the ER protein-folding load. However, prolonged UPR activity has been associated with cell death in multiple pathological conditions, including neurodegeneration. Here, we report a spontaneous recessive mouse mutation that causes progressive cerebellar granule cell death and peripheral motor axon degeneration. By positional cloning, we identify the mutation in this strain as a retrotransposon insertion in the Clcc1 gene, which encodes a putative chloride channel localized to the ER. Furthermore, we demonstrate that the C3H/HeSnJ inbred strain has late onset cerebellar degeneration due to this mutation. Interestingly, acute knockdown of Clcc1 expression in cultured cells increases sensitivity to ER stress. In agreement, GRP78, the major HSP70 family chaperone in the ER, is upregulated in Clcc1-deficient granule cells in vivo, and ubiquitinated proteins accumulate in these neurons before their degeneration. These data suggest that disruption of chloride homeostasis in the ER disrupts the protein-folding capacity of the ER, leading to eventual neuron death. PMID:25698737

  4. Apple autophagy-related protein MdATG3s afford tolerance to multiple abiotic stresses.

    PubMed

    Wang, Ping; Sun, Xun; Jia, Xin; Ma, Fengwang

    2017-03-01

    The efficient degradation system of autophagy in plant cells has important roles in removing and recycling intracellular components during normal development or under environmental stresses. Formation of autophagosomes requires the conjugation of ubiquitin-like protein ATG8 to phosphatidylethanolamine (PE). We isolated two ubiquitin-conjugating enzyme E2-like ATG3 homologues from Malus domestica - MdATG3a and MdATG3b - that are crucial for ATG8-PE conjugation. Both share a conserved N-terminal, as well as the catalytic and C-terminal domains of ATG3 with HPC and FLKF motifs. Each promoter was isolated from genomic DNA and contained several cis-acting elements that are involved in responses to environmental stresses or hormones. In addition to having the same cellular localization in the nucleus and cytoplasm, MdATG3a and MdATG3b showed similar expression patterns toward leaf senescence, nitrogen starvation, drought, salinity, and oxidative stress at the transcriptional level. Ectopic expression of either in Arabidopsis conferred tolerance to osmotic or salinity stress and also improved growth performance under nitrogen- or carbon-starvation. Callus lines of 'Orin' apple that over-expressed MdATG3b also displayed better growth performance when nutrient supplies were limited. These overall results demonstrate that, as important autophagy genes, overexpression of MdATG3s can afford tolerance to multiple abiotic stresses at the cellular and whole-plant level.

  5. Thermal preconditioning and heat-shock protein 72 preserve synaptic transmission during thermal stress.

    PubMed

    Kelty, Jonathan D; Noseworthy, Peter A; Feder, Martin E; Robertson, R Meldrum; Ramirez, Jan-Marino

    2002-01-01

    As with other tissues, exposing the mammalian CNS to nonlethal heat stress (i.e., thermal preconditioning) increases levels of heat-shock proteins (Hsps) such as Hsp70 and enhances the viability of neurons under subsequent stress. Using a medullary slice preparation from a neonatal mouse, including the site of the neural network that generates respiratory rhythm (the pre-Bötzinger complex), we show that thermal preconditioning has an additional fundamental effect, protection of synaptic function. Relative to 30 degrees C baseline, initial thermal stress (40 degrees C) greatly increased the frequency of synaptic currents recorded without pharmacological manipulation by approximately 17-fold (p < 0.01) and of miniature postsynaptic currents (mPSCs) elicited by GABA (20-fold) glutamate (10-fold), and glycine (36-fold). Thermal preconditioning (15 min at 40 degrees C) eliminated the increase in frequency of overall synaptic transmission during acute thermal stress and greatly attenuated the frequency increases of GABAergic, glutamatergic, and glycinergic mPSCs (for each, p < 0.05). Moreover, without thermal preconditioning, incubation of slices in solution containing inducible Hsp70 (Hsp72) mimicked the effect of thermal preconditioning on the stress-induced release of neurotransmitter. That preconditioning and exogenous Hsp72 can affect and preserve normal physiological function has important therapeutic implications.

  6. Cerebrovascular expression of proteins related to inflammation, oxidative stress and neurotoxicity is altered with aging

    PubMed Central

    2010-01-01

    Background Most neurodegenerative diseases are age-related disorders; however, how aging predisposes the brain to disease has not been adequately addressed. The objective of this study is to determine whether expression of proteins in the cerebromicrovasculature related to inflammation, oxidative stress and neurotoxicity is altered with aging. Methods Brain microvessels are isolated from Fischer 344 rats at 6, 12, 18 and 24 months of age. Levels of interleukin (IL)-1β and IL-6 RNA are determined by RT-PCR and release of cytokines into the media by ELISA. Vessel conditioned media are also screened by ELISA for IL-1α, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α, (TNFα), and interferon γ (IFNγ). Immunofluorescent analysis of brain sections for IL-1β and IL-6 is performed. Results Expression of IL-1β and IL-6, both at RNA and protein levels, significantly (p < 0.01) decreases with age. Levels of MCP-1, TNFα, IL-1α, and IFNγ are significantly (p < 0.05-0.01) lower in 24 month old rats compared to 6 month old animals. Immunofluorescent analysis of brain vessels also shows a decline in IL-1β and IL-6 in aged rats. An increase in oxidative stress, assessed by increased carbonyl formation, as well as a decrease in the antioxidant protein manganese superoxide dismutase (MnSOD) is evident in vessels of aged animals. Finally, addition of microvessel conditioned media from aged rats to neuronal cultures evokes significant (p < 0.001) neurotoxicity. Conclusions These data demonstrate that cerebrovascular expression of proteins related to inflammation, oxidative stress and neurotoxicity is altered with aging and suggest that the microvasculature may contribute to functional changes in the aging brain. PMID:20937133

  7. Proteomic analysis of stress-related proteins in transgenic broccoli harboring a gene for cytokinin production during postharvest senescence.

    PubMed

    Liu, Mao-Sen; Li, Hui-Chun; Chang, You-Min; Wu, Min-Tze; Chen, Long-Fang Oliver

    2011-09-01

    Our previous study revealed a cytokinin-related retardation of post-harvest floret yellowing in transgenic broccoli (Brassica oleracea var. italica) that harbored the bacterial isopentenyltransferase (ipt) gene. We aimed to investigate the underlining mechanism of this delayed post-harvest senescence. We used 2D electrophoresis and liquid chromatography-electrospray ionization-mass spectrometry/mass spectrometry for a proteomics analysis of heads of ipt-transgenic and non-transgenic inbred lines of broccoli at harvest and after four days post-harvest storage. At harvest, we found an accumulation of stress-responsive proteins involved in maintenance of protein folding (putative protein disulfide isomerase, peptidyl-prolyl cis-trans isomerase and chaperonins), scavenging of reactive oxygen species (Mn superoxide dismutase), and stress protection [myrosinase-binding protein, jasmonate inducible protein, dynamin-like protein, NADH dehydrogenase (ubiquinone) Fe-S protein 1 and stress-inducible tetratricopeptide repeat-containing protein]. After four days' post-harvest storage of non-transgenic broccoli florets, the levels of proteins involved in protein folding and carbon fixation were decreased, which indicates cellular degradation and a change in metabolism toward senescence. In addition, staining for antioxidant enzyme activity of non-transgenic plants after post-harvest storage revealed a marked decrease in activity of Fe-superoxide dismutase and ascorbate peroxidase. Thus, the accumulation of stress-responsive proteins and antioxidant enzyme activity in ipt-transgenic broccoli are most likely associated with retardation of post-harvest senescence.

  8. Endoplasmic Reticulum Stress and Unfolded Protein Response in Cartilage Pathophysiology; Contributing Factors to Apoptosis and Osteoarthritis

    PubMed Central

    Hughes, Alexandria; Oxford, Alexandra E.; Tawara, Ken; Jorcyk, Cheryl L.; Oxford, Julia Thom

    2017-01-01

    Chondrocytes of the growth plate undergo apoptosis during the process of endochondral ossification, as well as during the progression of osteoarthritis. Although the regulation of this process is not completely understood, alterations in the precisely orchestrated programmed cell death during development can have catastrophic results, as exemplified by several chondrodystrophies which are frequently accompanied by early onset osteoarthritis. Understanding the mechanisms that underlie chondrocyte apoptosis during endochondral ossification in the growth plate has the potential to impact the development of therapeutic applications for chondrodystrophies and associated early onset osteoarthritis. In recent years, several chondrodysplasias and collagenopathies have been recognized as protein-folding diseases that lead to endoplasmic reticulum stress, endoplasmic reticulum associated degradation, and the unfolded protein response. Under conditions of prolonged endoplasmic reticulum stress in which the protein folding load outweighs the folding capacity of the endoplasmic reticulum, cellular dysfunction and death often occur. However, unfolded protein response (UPR) signaling is also required for the normal maturation of chondrocytes and osteoblasts. Understanding how UPR signaling may contribute to cartilage pathophysiology is an essential step toward therapeutic modulation of skeletal disorders that lead to osteoarthritis. PMID:28335520

  9. Endoplasmic Reticulum Stress and Unfolded Protein Response in Cartilage Pathophysiology; Contributing Factors to Apoptosis and Osteoarthritis.

    PubMed

    Hughes, Alexandria; Oxford, Alexandra E; Tawara, Ken; Jorcyk, Cheryl L; Oxford, Julia Thom

    2017-03-20

    Chondrocytes of the growth plate undergo apoptosis during the process of endochondral ossification, as well as during the progression of osteoarthritis. Although the regulation of this process is not completely understood, alterations in the precisely orchestrated programmed cell death during development can have catastrophic results, as exemplified by several chondrodystrophies which are frequently accompanied by early onset osteoarthritis. Understanding the mechanisms that underlie chondrocyte apoptosis during endochondral ossification in the growth plate has the potential to impact the development of therapeutic applications for chondrodystrophies and associated early onset osteoarthritis. In recent years, several chondrodysplasias and collagenopathies have been recognized as protein-folding diseases that lead to endoplasmic reticulum stress, endoplasmic reticulum associated degradation, and the unfolded protein response. Under conditions of prolonged endoplasmic reticulum stress in which the protein folding load outweighs the folding capacity of the endoplasmic reticulum, cellular dysfunction and death often occur. However, unfolded protein response (UPR) signaling is also required for the normal maturation of chondrocytes and osteoblasts. Understanding how UPR signaling may contribute to cartilage pathophysiology is an essential step toward therapeutic modulation of skeletal disorders that lead to osteoarthritis.

  10. Mumps Virus Induces Protein-Kinase-R-Dependent Stress Granules, Partly Suppressing Type III Interferon Production

    PubMed Central

    Hashimoto, Shin; Yamamoto, Soh; Ogasawara, Noriko; Sato, Toyotaka; Yamamoto, Keisuke; Katoh, Hiroshi; Kubota, Toru; Shiraishi, Tsukasa; Kojima, Takashi; Himi, Tetsuo; Tsutsumi, Hiroyuki; Yokota, Shin-ichi

    2016-01-01

    Stress granules (SGs) are cytoplasmic granular aggregations that are induced by cellular stress, including viral infection. SGs have opposing antiviral and proviral roles, which depend on virus species. The exact function of SGs during viral infection is not fully understood. Here, we showed that mumps virus (MuV) induced SGs depending on activation of protein kinase R (PKR). MuV infection strongly induced interferon (IFN)-λ1, 2 and 3, and IFN-β through activation of IFN regulatory factor 3 (IRF3) via retinoic acid inducible gene-I (RIG-I) and the mitochondrial antiviral signaling (MAVS) pathway. MuV-induced IFNs were strongly upregulated in PKR-knockdown cells. MuV-induced SG formation was suppressed by knockdown of PKR and SG marker proteins, Ras-GTPase-activating protein SH3-domain-binding protein 1 and T-cell-restricted intracellular antigen-1, and significantly increased the levels of MuV-induced IFN-λ1. However, viral titer was not altered by suppression of SG formation. PKR was required for induction of SGs by MuV infection and regulated type III IFN (IFN-λ1) mRNA stability. MuV-induced SGs partly suppressed type III IFN production by MuV; however, the limited suppression was not sufficient to inhibit MuV replication in cell culture. Our results provide insight into the relationship between SGs and IFN production induced by MuV infection. PMID:27560627

  11. Dietary live yeast alters metabolic profiles, protein biosynthesis and thermal stress tolerance of Drosophila melanogaster.

    PubMed

    Colinet, Hervé; Renault, David

    2014-04-01

    The impact of nutritional factors on insect's life-history traits such as reproduction and lifespan has been excessively examined; however, nutritional determinant of insect's thermal tolerance has not received a lot of attention. Dietary live yeast represents a prominent source of proteins and amino acids for laboratory-reared drosophilids. In this study, Drosophila melanogaster adults were fed on diets supplemented or not with live yeast. We hypothesized that manipulating nutritional conditions through live yeast supplementation would translate into altered physiology and stress tolerance. We verified how live yeast supplementation affected body mass characteristics, total lipids and proteins, metabolic profiles and cold tolerance (acute and chronic stress). Females fed with live yeast had increased body mass and contained more lipids and proteins. Using GC/MS profiling, we found distinct metabolic fingerprints according to nutritional conditions. Metabolite pathway enrichment analysis corroborated that live yeast supplementation was associated with amino acid and protein biosyntheses. The cold assays revealed that the presence of dietary live yeast greatly promoted cold tolerance. Hence, this study conclusively demonstrates a significant interaction between nutritional conditions and thermal tolerance.

  12. Heat shock (stress response) proteins and renal ischemia/reperfusion injury.

    PubMed

    Kelly, Katherine J

    2005-01-01

    Acute renal failure occurs frequently, may be increasing, carries an unacceptably high mortality, yet there is no specific treatment. The induction of stress response (heat shock) proteins (HSPs) is a highly conserved response that protects many cell types from diverse physiological and environmental stressors. HSP families of different sizes function as molecular chaperones that facilitate the folding of enzymes and other proteins into functional conformations. After injury, HSPs are believed to facilitate the restoration of normal function by assisting in the refolding of denatured proteins and degradation of irreparably damaged proteins and toxic metabolites, limitation of aggregation of damaged peptides and aiding appropriate folding of newly synthesized essential polypeptides. HSPs may also regulate apoptosis and immune functions. We have demonstrated protection from the functional deficits and histological evidence of experimental ischemic renal injury with heat stress 6 but not 48 h prior to ischemia. Limitation of the induction of HSPs (either with a short period of hyperthermia or pharmacologically) attenuated the protection observed. Other investigators have demonstrated a correlation between the levels of HSP25 and renal ischemic preconditioning in the mouse. Several pharmacological agents have been shown to increase HSP expression. Enhancement of these endogenous protective mechanisms has potential benefit in human disease.

  13. Loss of Ribosomal Protein L11 Blocks Stress Activation of the Bacillus subtilis Transcription Factor ςB

    PubMed Central

    Zhang, Shuyu; Scott, Janelle M.; Haldenwang, W. G.

    2001-01-01

    ςB, the general stress response sigma factor of Bacillus subtilis, is activated when the cell's energy levels decline or the bacterium is exposed to environmental stress (e.g., heat shock, ethanol). Physical stress activates ςB through a collection of regulatory kinases and phosphatases (the Rsb proteins) which catalyze the release of ςB from an anti-ςB factor inhibitor. The means by which diverse stresses communicate with the Rsb proteins is unknown; however, a role for the ribosome in this process was suggested when several of the upstream members of the ςB stress activation cascade (RsbR, -S, and -T) were found to cofractionate with ribosomes in crude B. subtilis extracts. We now present evidence for the involvement of a ribosome-mediated process in the stress activation of ςB. B. subtilis strains resistant to the antibiotic thiostrepton, due to the loss of ribosomal protein L11 (RplK), were found to be blocked in the stress activation of ςB. Neither the energy-responsive activation of ςB nor stress-dependent chaperone gene induction (a ςB-independent stress response) was inhibited by the loss of L11. The Rsb proteins required for stress activation of ςB are shown to be active in the RplK− strain but fail to be triggered by stress. The data demonstrate that the B. subtilis ribosomes provide an essential input for the stress activation of ςB and suggest that the ribosomes may themselves be the sensors for stress in this system. PMID:11244072

  14. The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in environmental stress monitored by expression of the stress response protein Hsp12p.

    PubMed

    Nisamedtinov, Ildar; Lindsey, George G; Karreman, Robert; Orumets, Kerti; Koplimaa, Mariane; Kevvai, Kaspar; Paalme, Toomas

    2008-09-01

    The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in different environmental stress conditions during both respiratory growth and aerobic fermentative growth in the presence of excess glucose was investigated by monitoring the level and rate of expression of the stress response protein Hsp12p using the fluorescent fusion construct Hsp12p-Gfp2p. The initial expression level and the rate of Hsp12p synthesis was significantly greater under glucose-limited conditions in the chemostat (D<0.14 h(-1)) compared with when excess glucose was present in the auxostat. Decreasing the dilution rate and the glucose concentration further in the A-stat resulted in increased Hsp12p expression, which was more marked when a rapid rather than a gradual change was affected. Common stress factors such as NaCl, ethanol and elevated temperature caused stress responses in both D-stat and auxo-accelerostat culture. The magnitude of the stress response depended on the stress factor, cultivation conditions as well as the rate of change of the stress factor. The rate of Hsp12p synthesis increased due to all applied stresses, with the observed increase between 2 and 20 times lower when the stress was applied gradually rather than rapidly. The results suggested that the Hsp12p expression rate is a good indicator of applied stress in S. cerevisiae.

  15. Changes in the protein patterns in pea (Pisum sativum L.) roots under the influence of long- and short-term chilling stress and post-stress recovery.

    PubMed

    Badowiec, Anna; Swigonska, Sylwia; Weidner, Stanisław

    2013-10-01

    Amongst many factors restricting geographical distribution of plants and crop productivity, low temperature is one of the most important. To gain better understanding of the molecular response of germinating pea (Pisum sativum L.) to low temperature, we investigated the influence of long and short chilling stress as well as post-stress recovery on the alterations in the root proteomes. The impact of long stress was examined on the pea seeds germinating in the continuous chilling conditions of 10 °C for 8 days (LS). To examine the impact of short stress, pea seeds germinating for 72 h in the optimal temperature of 20 °C were subjected to 24-h chilling (SS). Additionally, both stress treatments were followed by 24 h of recovery in the optimal conditions (accordingly LSR and SR). Using the 2D gel electrophoresis and MALDI-TOF MS protein identification, it was revealed, that most of the proteins undergoing regulation under the applied conditions were implicated in metabolism, protection against stress, cell cycle regulation, cell structure maintenance and hormone synthesis, which altogether may influence root growth and development in the early stages of plant life. The obtained results have shown that most of detected alterations in the proteome patterns of pea roots are dependent on stress duration. However, there are some analogical response pathways which are triggered regardless of stress length. The functions of proteins which accumulation has been changed by chilling stress and post-stress recovery are discussed here in relation to their impact on pea roots development.

  16. Effects of prebiotic, protein level, and stocking density on performance, immunity, and stress indicators of broilers.

    PubMed

    Houshmand, M; Azhar, K; Zulkifli, I; Bejo, M H; Kamyab, A

    2012-02-01

    An experiment was conducted to determine the effects of period on the performance, immunity, and some stress indicators of broilers fed 2 levels of protein and stocked at a normal or high stocking density. Experimental treatments consisted of a 2 × 2 × 2 factorial arrangement with 2 levels of prebiotic (with or without prebiotic), 2 levels of dietary CP [NRC-recommended or low CP level (85% of NRC-recommended level)], and 2 levels of stocking density (10 birds/m(2) as the normal density or 16 birds/m(2) as the high density), for a total of 8 treatments. Each treatment had 5 replicates (cages). Birds were reared in 3-tiered battery cages with wire floors in an open-sided housing system under natural tropical conditions. Housing and general management practices were similar for all treatment groups. Starter and finisher diets in mash form were fed from 1 to 21 d and 22 to 42 d of age, respectively. Supplementation with a prebiotic had no significant effect on performance, immunity, and stress indicators (blood glucose, cholesterol, corticosterone, and heterophil:lymphocyte ratio). Protein level significantly influenced broiler performance but did not affect immunity or stress indicators (except for cholesterol level). The normal stocking density resulted in better FCR and also higher antibody titer against Newcastle disease compared with the high stocking density. However, density had no significant effect on blood levels of glucose, cholesterol, corticosterone, and the heterophil:lymphocyte ratio. Significant interactions between protein level and stocking density were observed for BW gain and final BW. The results indicated that, under the conditions of this experiment, dietary addition of a prebiotic had no significant effect on the performance, immunity, and stress indicators of broilers.

  17. Stress-activated protein kinase-mediated down-regulation of the cell integrity pathway mitogen-activated protein kinase Pmk1p by protein phosphatases.

    PubMed

    Madrid, Marisa; Núñez, Andrés; Soto, Teresa; Vicente-Soler, Jero; Gacto, Mariano; Cansado, José

    2007-11-01

    Fission yeast mitogen-activated protein kinase (MAPK) Pmk1p is involved in morphogenesis, cytokinesis, and ion homeostasis as part of the cell integrity pathway, and it becomes activated under multiple stresses, including hyper- or hypotonic conditions, glucose deprivation, cell wall-damaging compounds, and oxidative stress. The only protein phosphatase known to dephosphorylate and inactivate Pmk1p is Pmp1p. We show here that the stress-activated protein kinase (SAPK) pathway and its main effector, Sty1p MAPK, are essential for proper deactivation of Pmk1p under hypertonic stress in a process regulated by Atf1p transcription factor. We demonstrate that tyrosine phosphatases Pyp1p and Pyp2p, and serine/threonine phosphatase Ptc1p, that negatively regulate Sty1p activity and whose expression is dependent on Sty1p-Atf1p function, are involved in Pmk1p dephosphorylation under osmostress. Pyp1p and Ptc1p, in addition to Pmp1p, also control the basal level of MAPK Pmk1p activity in growing cells and associate with, and dephosphorylate Pmk1p both in vitro and in vivo. Our results with Ptc1p provide the first biochemical evidence for a PP2C-type phosphatase acting on more than one MAPK in yeast cells. Importantly, the SAPK-dependent down-regulation of Pmk1p through Pyp1p, Pyp2p, and Ptc1p was not complete, and Pyp1p and Ptc1p phosphatases are able to negatively regulate MAPK Pmk1p activity by an alternative regulatory mechanism. Our data also indicate that Pmk1p phosphorylation oscillates as a function of the cell cycle, peaking at cell separation during cytokinesis, and that Pmp1p phosphatase plays a main role in regulating this process.

  18. Stress-activated Protein Kinase-mediated Down-Regulation of the Cell Integrity Pathway Mitogen-activated Protein Kinase Pmk1p by Protein Phosphatases

    PubMed Central

    Madrid, Marisa; Núñez, Andrés; Soto, Teresa; Vicente-Soler, Jero; Cansado, José

    2007-01-01

    Fission yeast mitogen-activated protein kinase (MAPK) Pmk1p is involved in morphogenesis, cytokinesis, and ion homeostasis as part of the cell integrity pathway, and it becomes activated under multiple stresses, including hyper- or hypotonic conditions, glucose deprivation, cell wall-damaging compounds, and oxidative stress. The only protein phosphatase known to dephosphorylate and inactivate Pmk1p is Pmp1p. We show here that the stress-activated protein kinase (SAPK) pathway and its main effector, Sty1p MAPK, are essential for proper deactivation of Pmk1p under hypertonic stress in a process regulated by Atf1p transcription factor. We demonstrate that tyrosine phosphatases Pyp1p and Pyp2p, and serine/threonine phosphatase Ptc1p, that negatively regulate Sty1p activity and whose expression is dependent on Sty1p-Atf1p function, are involved in Pmk1p dephosphorylation under osmostress. Pyp1p and Ptc1p, in addition to Pmp1p, also control the basal level of MAPK Pmk1p activity in growing cells and associate with, and dephosphorylate Pmk1p both in vitro and in vivo. Our results with Ptc1p provide the first biochemical evidence for a PP2C-type phosphatase acting on more than one MAPK in yeast cells. Importantly, the SAPK-dependent down-regulation of Pmk1p through Pyp1p, Pyp2p, and Ptc1p was not complete, and Pyp1p and Ptc1p phosphatases are able to negatively regulate MAPK Pmk1p activity by an alternative regulatory mechanism. Our data also indicate that Pmk1p phosphorylation oscillates as a function of the cell cycle, peaking at cell separation during cytokinesis, and that Pmp1p phosphatase plays a main role in regulating this process. PMID:17761528

  19. Emergency Spatiotemporal Shift: The Response of Protein Kinase D to Stress Signals in the Cardiovascular System

    PubMed Central

    Wood, Brent M.; Bossuyt, Julie

    2017-01-01

    Protein Kinase D isoforms (PKD 1-3) are key mediators of neurohormonal, oxidative, and metabolic stress signals. PKDs impact a wide variety of signaling pathways and cellular functions including actin dynamics, vesicle trafficking, cell motility, survival, contractility, energy substrate utilization, and gene transcription. PKD activity is also increasingly linked to cancer, immune regulation, pain modulation, memory, angiogenesis, and cardiovascular disease. This increasing complexity and diversity of PKD function, highlights the importance of tight spatiotemporal control of the kinase via protein–protein interactions, post-translational modifications or targeting via scaffolding proteins. In this review, we focus on the spatiotemporal regulation and effects of PKD signaling in response to neurohormonal, oxidant and metabolic signals that have implications for myocardial disease. Precise targeting of these mechanisms will be crucial in the design of PKD-based therapeutic strategies. PMID:28174535

  20. Stress-induced protein CSP 310: a third uncoupling system in plants.

    PubMed

    Kolesnichenko, A V; Pobezhimova, T P; Grabelnych, O I; Voinikov, V K

    2002-06-01

    Addition of the cold-stress-related protein CSP 310 to mitochondria isolated from winter wheat ( Triticum aestivum L. cv. Zalarinka), winter rye ( Secale cereale L. cv. Dymka), maize ( Zea mays L. cv. VIR 36) and pea ( Pisum sativum L. cv. Marat) caused an increase in non-phosphorylative respiration. This increase was inhibited by KCN, indicating that the protein is not a CN-resistant alternative oxidase. Unlike plant mitochondrial uncoupling proteins such as PUMP, the uncoupling action of CSP 310 did not depend on the presence of free fatty acids in the incubation medium. We propose that the mechanism of the uncoupling action of CSP 310 differs from that of other known plant uncoupling systems and that the CSP 310 uncoupling system is a third uncoupling system in cereals.

  1. KvLEA, a New Isolated Late Embryogenesis Abundant Protein Gene from Kosteletzkya virginica Responding to Multiabiotic Stresses

    PubMed Central

    Tang, Xiaoli; Wang, Hongyan; Chu, Liye; Shao, Hongbo

    2016-01-01

    The LEA proteins are a kind of hydrophilic proteins, playing main functions in desiccation tolerance. However, their importance as a kind of stress proteins in abiotic stress is being clarified little by little. In this study we isolated, cloned, and identified the first KvLEA gene in Kosteletzkya virginica. Bioinformatic analysis showed that the protein encoded by this gene had common properties of LEA proteins and the multiple sequences alignment and phylogenetic analysis further showed that this protein had high homology with two Arabidopsis LEA proteins. Gene expression analysis revealed that this gene had a higher expression in root and it was induced obviously by salt stress. Moreover, the transcripts of KvLEA were also induced by other abiotic stresses including drought, high temperature, chilling, and ABA treatment. Among these abiotic stresses, ABA treatment brought about the biggest changes to this gene. Collectively, our research discovered a novel LEA gene and uncovered its involvement in multiabiotic stresses in K. virginica. This research not only enriched studies on LEA gene in plant but also would accelerate more studies on K. virginica in the future. PMID:27123459

  2. [Free radical modification of proteins in brain structure of Sprague-Dawley rats and some behaviour indicators after prenatal stress].

    PubMed

    V'iushina, A V; Pritvorova, A V; Flerov, M A

    2012-08-01

    We studied the influence of late prenatal stress on free radical oxidation processes in Sprague-Dawley rats cortex, striatum, hippocampus, hypothalamus proteins. It was shown that after prenatal stress most changes were observed in hypothalamus and hippocampus. It was shown that in hypothalamus spontaneous oxidation level increased, but level of induced oxidation decreased, the opposite changes were found in hippocampus. Simultaneously minor changes of protein modification were observed in cortex and striatum. It was shown that prenatal stress changed both correlation of proteins free radical oxidation in studied structures and values of these data regarding to control. In test of "open field" motor activity in rats after prenatal stress decreased and time of freezing and grooming increased; opposite, in T-labyrinth motor activity and time of grooming in rats after prenatal stress increased, but time of freezing decreased.

  3. Normal Cellular Prion Protein Protects against Manganese-induced Oxidative Stress and Apoptotic Cell Death

    PubMed Central

    Choi, Christopher J.; Anantharam, Vellareddy; Saetveit, Nathan J.; Houk, Robert. S.; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2012-01-01

    The normal prion protein is abundantly expressed in the CNS, but its biological function remains unclear. The prion protein has octapeptide repeat regions that bind to several divalent metals, suggesting that the prion proteins may alter the toxic effect of environmental neurotoxic metals. In the present study, we systematically examined whether prion protein modifies the neurotoxicity of manganese (Mn) by comparing the effect of Mn on mouse neural cells expressing prion protein (PrPC -cells) and prion-knockout (PrPKO -cells). Exposure to Mn (10 μM-1 mM) for 24 hr produced a dose-dependent cytotoxic response in both PrPC -cells and PrPKO -cells. Interestingly, PrPC -cells (EC50 117.6μM) were more resistant to Mn-induced cytotoxicity, as compared to PrPKO -cells (EC50 59.9μM), suggesting a protective role for PrPC against Mn neurotoxicity. Analysis of intracellular Mn levels showed less Mn accumulation in PrPC -cells as compared to PrPKO -cells. Furthermore, Mn-induced mitochondrial depolarization and ROS generation were significantly attenuated in PrPC -cells as compared to PrPKO -cells. Measurement of antioxidant status revealed similar basal levels of glutathione (GSH) in PrPC -cells and PrPKO -cells; however, Mn treatment caused greater depletion of GSH in PrPKO -cells. Mn-induced mitochondrial depolarization and ROS production were followed by time- and dose-dependent activation of the apoptotic cell death cascade involving caspase-9 and -3. Notably, DNA fragmentation induced by both Mn treatment and oxidative stress-inducer hydrogen peroxide (100μM) was significantly suppressed in PrPC -cells as compared to PrPKO -cells. Together, these results demonstrate that prion protein interferes with divalent metal Mn uptake and protects against Mn-induced oxidative stress and apoptotic cell death. PMID:17483122

  4. Characterization of fragile X mental retardation protein recruitment and dynamics in Drosophila stress granules.

    PubMed

    Gareau, Cristina; Houssin, Elise; Martel, David; Coudert, Laetitia; Mellaoui, Samia; Huot, Marc-Etienne; Laprise, Patrick; Mazroui, Rachid

    2013-01-01

    The RNA-binding protein Fragile X Mental Retardation (FMRP) is an evolutionarily conserved protein that is particularly abundant in the brain due to its high expression in neurons. FMRP deficiency causes fragile X mental retardation syndrome. In neurons, FMRP controls the translation of target mRNAs in part by promoting dynamic transport in and out neuronal RNA granules. We and others have previously shown that upon stress, mammalian FMRP dissociates from translating polysomes to localize into neuronal-like granules termed stress granules (SG). This localization of FMRP in SG is conserved in Drosophila. Whether FMRP plays a key role in SG formation, how FMRP is recruited into SG, and whether its association with SG is dynamic are currently unknown. In contrast with mammalian FMRP, which has two paralog proteins, Drosophila FMR1 (dFMRP) is encoded by a single gene that has no paralog. Using this genetically simple model, we assessed the role of dFMRP in SG formation and defined the determinants required for its recruitment in SG as well as its dynamics in SG. We show that dFMRP is dispensable for SG formation in vitro and ex vivo. FRAP experiments showed that dFMRP shuttles in and out SG. The shuttling activity of dFMRP is mediated by a protein-protein interaction domain located at the N-terminus of the protein. This domain is, however, dispensable for the localization of dFMRP in SG. This localization of dFMRP in SG requires the KH and RGG motifs which are known to mediate RNA binding, as well as the C-terminal glutamine/asparagine rich domain. Our studies thus suggest that the mechanisms controlling the recruitment of FMRP into SG and those that promote its shuttling between granules and the cytosol are uncoupled. To our knowledge, this is the first demonstration of the regulated shuttling activity of a SG component between RNA granules and the cytosol.

  5. Synthesis of a select group of proteins by Neisseria gonorrhoeae in response to thermal stress.

    PubMed

    Woods, M L; Bonfiglioli, R; McGee, Z A; Georgopoulos, C

    1990-03-01

    We report the thermal conditions that induce the heat shock response in Neisseria gonorrhoeae. Under conditions of thermal stress, Neisseria gonorrhoeae synthesizes heat shock proteins (hsps), which differ quantitatively from conventionally studied gonococcal proteins. Gonococci accelerate the rate of synthesis of the hsps as early as 5 min after the appropriate stimulus is applied, with synthesis continuing for 30 min, as demonstrated by in vivo labeling experiments with L-[35S]methionine. Two of the gonococcal hsps are immunologically cross-reactive with the hsps of Escherichia coli, DnaK and GroEL, as demonstrated by Western blot (immunoblot) analysis. Ten hsps can be identified on two-dimensional autoradiograms of whole gonococci (total protein). Four hsps can be identified on two-dimensional autoradiograms of 1% N-lauroylsarcosine (sodium salt) (Sarkosyl)-insoluble membrane fractions. Two of the hsps from the 1% Sarkosyl-insoluble fraction are found exclusively in this fraction, suggesting that they are membrane proteins. The identification of this group of proteins will facilitate further study of the function of these proteins and provide insight into the possible role of hsps in disease pathogenesis.

  6. Recruitment into stress granules prevents irreversible aggregation of FUS protein mislocalized to the cytoplasm

    PubMed Central

    Shelkovnikova, Tatyana A; Robinson, Hannah K; Connor-Robson, Natalie; Buchman, Vladimir L

    2013-01-01

    Fused in sarcoma (FUS) belongs to the group of RNA-binding proteins implicated as underlying factors in amyotrophic lateral sclerosis (ALS) and certain other neurodegenerative diseases. Multiple FUS gene mutations have been linked to hereditary forms, and aggregation of FUS protein is believed to play an important role in pathogenesis of these diseases. In cultured cells, FUS variants with disease-associated amino acid substitutions or short deletions affecting nuclear localization signal (NLS) and causing cytoplasmic mislocalization can be sequestered into stress granules (SGs). We demonstrated that disruption of motifs responsible for RNA recognition and binding not only prevents SG recruitment, but also dramatically increases the protein propensity to aggregate in the cell cytoplasm with formation of juxtanuclear structures displaying typical features of aggresomes. Functional RNA-binding domains from TAR DNA-binding protein of 43 kDa (TDP-43) fused to highly aggregation-prone C-terminally truncated FUS protein restored the ability to enter SGs and prevented aggregation of the chimeric protein. Truncated FUS was also able to trap endogenous FUS molecules in the cytoplasmic aggregates. Our data indicate that RNA binding and recruitment to SGs protect cytoplasmic FUS from aggregation, and loss of this protection may trigger its pathological aggregation in vivo. PMID:24013423

  7. Catalytic inactive heme oxygenase-1 protein regulates its own expression in oxidative stress.

    PubMed

    Lin, Qing S; Weis, Sebastian; Yang, Guang; Zhuang, Tiangang; Abate, Aida; Dennery, Phyllis A

    2008-03-01

    Heme oxygenase-1 (HO-1) catalyzes the degradation of heme and forms antioxidant bile pigments as well as the signaling molecule carbon monoxide. HO-1 is inducible in response to a variety of chemical and physical stress conditions to function as a cytoprotective molecule. Therefore, it is important to maintain the basal level of HO-1 expression even when substrate availability is limited. We hypothesized that the HO-1 protein itself could regulate its own expression in a positive feedback manner, and that this positive feedback was important in the HO-1 gene induction in response to oxidative stress. In cultured NIH 3T3 cells, transfection of HO-1 cDNA or intracellular delivery of pure HO-1 protein resulted in activation of a 15-kb HO-1 promoter upstream of luciferase as visualized by bioluminescent technology and increased HO-1 mRNA and protein levels. These effects were independent of HO activity because an enzymatically inactive mutant form of HO-1 similarly activated the HO-1 promoter and incubation with HO inhibitor metalloporphyrin SnPP did not affect the promoter activation. In addition, HO-1-specific siRNA significantly reduced hemin and cadmium chloride-mediated HO-1 induction. Furthermore, deletion analyses demonstrated that the E1 and E2 distal enhancers of the HO-1 promoter are required for this HO-1 autoregulation. These experiments document feed-forward autoregulation of HO-1 in oxidative stress and suggest that HO-1 protein has a role in the induction process. We speculate that this mechanism may be useful for maintaining HO-1 expression when substrate is limited and may also serve to up-regulate other genes to promote cytoprotection and to modulate cell proliferation.

  8. Evidence of lipid peroxidation and protein phosphorylation in cells upon oxidative stress photo generated by fullerols

    SciTech Connect

    Vileno, B.; Miller, L.; Sienkiewicz, A; Marcoux, P.R.; Forro, L.

    2010-09-27

    An oxidative stress (OS) state is characterized by the generation of Reactive Oxygen Species (ROS) in a biological system above its capacity to counterbalance them. Exposure to OS induces the accumulation of intracellular ROS, which in turn causes cell damage in the form of protein, lipid, and/or DNA oxidations. Such conditions are believed to be linked to numerous diseases or simply to the ageing of tissues. However, the controlled generation of ROS via photosensitizing drugs or photosensitizers (PS) is now widely used to treat various tumors and other infections. Here we present a method to track the chemical changes in a cell after exposure to oxidative stress. OS is induced via fullerols, a custom made water soluble derivative of fullerene (C{sub 60}), under visible light illumination. Synchrotron-based Fourier Transform InfraRed Microspectroscopy (S-FTIRM) was used to assess the chemical makeup of single cells after OS exposure. Consequently, a chemical fingerprint of oxidative stress was probed in this study through an increase in the bands linked with lipid peroxidation (carbonyl ester group at 1740 cm{sup -1}) and protein phosphorylation (asymmetric phosphate stretching at 1240 cm{sup -1}).

  9. Effects of prenatal protein malnutrition and neonatal stress on CNS responsiveness.

    PubMed

    Kehoe, P; Mallinson, K; Bronzino, J; McCormick, C M

    2001-12-14

    Maturation of the nervous system and consequent behavior depends in part on prenatal nutritional factors and postnatal environmental stimulation. In particular, the hypothalamus and the hippocampus are two important CNS areas that are vulnerable to such pre- and postnatal manipulations. Therefore, the present study was undertaken to explore the effects of both prenatal protein malnutrition and neonatal isolation stress on hypothalamic and hippocampal functioning in infant rats. Specifically, we assessed the levels of plasma corticosterone, as well as dopamine, serotonin and their metabolites in both the hypothalamus and hippocampus in rat pups that had been prenatally malnourished (6% casein diet) and isolated from nest, dam, and siblings for 1 h daily during postnatal days (PND) 2 through 8. We found that on PND 9 malnourished pups weighed less, had smaller hypothalami and a suppressed corticosterone response to acute and chronic isolation stress. However, their dopamine metabolism in the hypothalamus was increased following acute isolation on PND 9 as seen in isolated controls. Prenatal protein malnutrition also resulted in a significant elevation in serotonin in both brain areas, increased 5HIAA in the hypothalamus, and decreased dopamine in the hippocampus. Repeated isolation caused a reduction in 5HIAA in both brain parts, but only in control pups. These pre- and postnatal challenges may each cause a specific pattern of modifications in the CNS and, in combination, may be additive, particularly in the hypothalamic-pituitary-adrenal (HPA) stress response and the serotonergic functioning in both the hypothalamus and hippocampus, a finding with important clinical implications.

  10. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress

    SciTech Connect

    Bryantsev, A.L.; Chechenova, M.B.; Shelden, E.A. . E-mail: eshelden@wsu.edu

    2007-01-01

    During stress, the mammalian small heat shock protein Hsp27 enters cell nuclei. The present study examines the requirements for entry of Hsp27 into nuclei of normal rat kidney (NRK) renal epithelial cells, and for its interactions with specific nuclear structures. We find that phosphorylation of Hsp27 is necessary for the efficient entry into nuclei during heat shock but not sufficient for efficient nuclear entry under control conditions. We further report that Hsp27 is recruited to an RNAse sensitive fraction of SC35 positive nuclear speckles, but not other intranuclear structures, in response to heat shock. Intriguingly, Hsp27 phosphorylation, in the absence of stress, is sufficient for recruitment to speckles found in post-anaphase stage mitotic cells. Additionally, pseudophosphorylated Hsp27 fused to a nuclear localization peptide (NLS) is recruited to nuclear speckles in unstressed interphase cells, but wildtype and nonphosphorylatable Hsp27 NLS fusion proteins are not. The expression of NLS-Hsp27 mutants does not enhance colony forming abilities of cells subjected to severe heat shock, but does regulate nuclear speckle morphology. These data demonstrate that phosphorylation, but not stress, mediates Hsp27 recruitment to an RNAse soluble fraction of nuclear speckles and support a site-specific role for Hsp27 within the nucleus.

  11. Hypoxic Stress Facilitates Acute Activation and Chronic Down-Regulation of Fanconi Anemia Proteins

    PubMed Central

    Scanlon, Susan E.; Glazer, Peter M.

    2014-01-01

    Hypoxia induces genomic instability through replication stress and dysregulation of vital DNA repair pathways. The Fanconi anemia (FA) proteins, FANCD2 and FANCI, are key members of a DNA repair pathway that responds to replicative stress, suggesting that they undergo regulation by hypoxic conditions. Here acute hypoxic stress activates the FA pathway via ubiquitination of FANCD2 and FANCI in an ATR-dependent manner. In addition, the presence of an intact FA pathway is required for preventing hypoxia-induced DNA damage measurable by the comet assay, limiting the accumulation of γH2AX (a marker of DNA damage or stalled replication), and protecting cells from hypoxia-induced apoptosis. Furthermore, prolonged hypoxia induces transcriptional repression of FANCD2 in a manner analogous to the hypoxic down-regulation of BRCA1 and RAD51. Thus, hypoxia-induced FA pathway activation plays a key role in maintaining genome integrity and cell survival, while FA protein down-regulation with prolonged hypoxia contributes to genomic instability. PMID:24688021

  12. Effects of maternal protein-energy malnutrition and cold stress on neutrophil function of bovine neonates.

    PubMed

    Woodard, L F; Eckblad, W P; Olson, D P; Bull, R C; Everson, D O

    1980-08-01

    The effects of maternal protein or calorie deprivation (or both) on the bactericidal activity of neutrophils and sera from newborn calves subjected to cold stress were studied. Nutritional deficiencies in the dam had little effect on in vitro bactericidal activity of neutrophils and base-line sera taken at birth. Neutrophils obtained at birth destroyed Staphylococcus aureus but not Escherichia coli when incubated with either unheated or heated autologous base-line sera. Heat treatment of base-line sera to inactivate complement did not alter bacterial growth. When incubated in the presence of autologous base-line sera, neutrophils from 3-day-old calves were no more active in the destruction of either bacterium than were neutrophils from newborn calves. However, addition of day 3 (immunoglobulin-containing) sera enabled day 3 neutrophils to destroy E coli (P < 0.0001). The increased destruction of E coli by day 3 neutrophils and day 3 sera was not affected by heat treatment of the sera. Maternal protein deficiency significantly increased (P < 0.05) destruction of E coli by day 3 neutrophils and sera. This effect was independent of energy levels. There were no differences observed in the bactericidal activity of neutrophils and sera taken from calves exposed to 1 C or 21 C environmental chambers for 3 days. Also, cold stress-nutritional stress interactions were not detected.

  13. The Tudor Staphylococcal Nuclease Protein of Entamoeba histolytica Participates in Transcription Regulation and Stress Response

    PubMed Central

    Cázares-Apátiga, Javier; Medina-Gómez, Christian; Chávez-Munguía, Bibiana; Calixto-Gálvez, Mercedes; Orozco, Esther; Vázquez-Calzada, Carlos; Martínez-Higuera, Aarón; Rodríguez, Mario A.

    2017-01-01

    Entamoeba histolytica is the protozoa parasite responsible of human amoebiasis, disease that causes from 40,000 to 100,000 deaths annually worldwide. However, few are known about the expression regulation of molecules involved in its pathogenicity. Transcription of some virulence-related genes is positively controlled by the cis-regulatory element named URE1. Previously we identified the transcription factor that binds to URE1, which displayed a nuclear and cytoplasmic localization. This protein belongs to the Tudor Staphyococcal nuclease (TSN) family, which in other systems participates in virtually all pathways of gene expression, suggesting that this amoebic transcription factor (EhTSN; former EhURE1BP) could also play multiple functions in E. histolytica. The aim of this study was to identify the possible cellular events where EhTSN is involved. Here, we found that EhTSN in nucleus is located in euchromatin and close to, but not into, heterochromatin. We also showed the association of EhTSN with proteins involved in transcription and that the knockdown of EhTSN provokes a diminishing in the mRNA level of the EhRabB gene, which in its promoter region contains the URE1 motif, confirming that EhTSN participates in transcription regulation. In cytoplasm, this protein was found linked to the membrane of small vesicles and to plasma membrane. Through pull-down assays and mass spectrometry we identity thirty two candidate proteins to interact with EhTSN. These proteins participate in transcription, metabolism, signaling, and stress response, among other cellular processes. Interaction of EhTSN with some candidate proteins involved in metabolism, and signaling was validated by co-immunoprecipitation or co-localization. Finally we showed the co-localization of EhTSN and HSP70 in putative stress granules during heat shock and that the knockdown of EhTSN increases the cell death during heat shock treatment, reinforcing the hypothesis that EhTSN has a role during stress

  14. Cold-stress-induced modulation of antioxidant defence: role of stressed conditions in tissue injury followed by protein oxidation and lipid peroxidation

    NASA Astrophysics Data System (ADS)

    Şahin, E.; Gümüşlü, S.

    The aim of this study was to determine the effects of cold stress on antioxidant enzyme activities and examine protein oxidation and lipid peroxidation in various tissues (brain, liver, kidney, heart and stomach). Twenty male Wistar rats (3 months old) weighing 220 +/- 20 g were used. The rats were randomly divided into two groups of ten: the control group and the cold stress group. Cold stress was applied to the animals by maintaining them in a cold room (5 °C) for 15 min/day for 15 days. Blood samples were taken for measuring plasma corticosterone levels. Tissues were obtained from each rat for measuring the antioxidant enzyme activities, protein oxidation and lipid peroxidation. Corticosterone levels were increased in the cold stress group. Copper, zinc superoxide dismutase activities were increased in the brains, livers and kidneys, whereas they decreased in the hearts and stomachs of rats in the cold stress group. Catalase activities were increased in the brains, livers, kidneys and hearts, whereas they decreased in the stomachs of rats in the cold stress group. Selenium-dependent glutathione peroxidase activities were increased in the brain, liver, heart and stomach. Reduced glutathione levels were decreased, while levels of protein carbonyl, conjugated diene and thiobarbituric-acid-reactive substances were increased in all tissues of the cold stress group. These results lead us to conclude that cold stress can disrupt the balance in an oxidant/antioxidant system and cause oxidative damage to several tissues by altering the enzymatic and non-enzymatic antioxidant status, protein oxidation and lipid peroxidation.

  15. Skin Mucus of Gilthead Sea Bream (Sparus aurata L.). Protein Mapping and Regulation in Chronically Stressed Fish

    PubMed Central

    Pérez-Sánchez, Jaume; Terova, Genciana; Simó-Mirabet, Paula; Rimoldi, Simona; Folkedal, Ole; Calduch-Giner, Josep A.; Olsen, Rolf E.; Sitjà-Bobadilla, Ariadna

    2017-01-01

    The skin mucus of gilthead sea bream was mapped by one-dimensional gel electrophoresis followed by liquid chromatography coupled to high resolution mass spectrometry using a quadrupole time-of-flight mass analyzer. More than 2,000 proteins were identified with a protein score filter of 30. The identified proteins were represented in 418 canonical pathways of the Ingenuity Pathway software. After filtering by canonical pathway overlapping, the retained proteins were clustered in three groups. The mitochondrial cluster contained 59 proteins related to oxidative phosphorylation and mitochondrial dysfunction. The second cluster contained 79 proteins related to antigen presentation and protein ubiquitination pathways. The third cluster contained 257 proteins where proteins related to protein synthesis, cellular assembly, and epithelial integrity were over-represented. The latter group also included acute phase response signaling. In parallel, two-dimensional gel electrophoresis methodology identified six proteins spots of different protein abundance when comparing unstressed fish with chronically stressed fish in an experimental model that mimicked daily farming activities. The major changes were associated with a higher abundance of cytokeratin 8 in the skin mucus proteome of stressed fish, which was confirmed by immunoblotting. Thus, the increased abundance of markers of skin epithelial turnover results in a promising indicator of chronic stress in fish. PMID:28210224

  16. Using co-expression analysis and stress-based screens to uncover Arabidopsis peroxisomal proteins involved in drought response

    DOE PAGES

    Li, Jiying; Hu, Jianping; Bassham, Diane

    2015-09-14

    Peroxisomes are essential organelles that house a wide array of metabolic reactions important for plant growth and development. However, our knowledge regarding the role of peroxisomal proteins in various biological processes, including plant stress response, is still incomplete. Recent proteomic studies of plant peroxisomes significantly increased the number of known peroxisomal proteins and greatly facilitated the study of peroxisomes at the systems level. The objectives of this study were to determine whether genes that encode peroxisomal proteins with related functions are co-expressed in Arabidopsis and identify peroxisomal proteins involved in stress response using in silico analysis and mutant screens. Usingmore » microarray data from online databases, we performed hierarchical clustering analysis to generate a comprehensive view of transcript level changes for Arabidopsis peroxisomal genes during development and under abiotic and biotic stress conditions. Many genes involved in the same metabolic pathways exhibited co-expression, some genes known to be involved in stress response are regulated by the corresponding stress conditions, and function of some peroxisomal proteins could be predicted based on their coexpression pattern. Since drought caused expression changes to the highest number of genes that encode peroxisomal proteins, we subjected a subset of Arabidopsis peroxisomal mutants to a drought stress assay. Mutants of the LON2 protease and the photorespiratory enzyme hydroxypyruvate reductase 1 (HPR1) showed enhanced susceptibility to drought, suggesting the involvement of peroxisomal quality control and photorespiration in drought resistance. Lastly, our study provided a global view of how genes that encode peroxisomal proteins respond to developmental and environmental cues and began to reveal additional peroxisomal proteins involved in stress response, thus opening up new avenues to investigate the role of peroxisomes in plant adaptation to

  17. Using co-expression analysis and stress-based screens to uncover Arabidopsis peroxisomal proteins involved in drought response

    SciTech Connect

    Li, Jiying; Hu, Jianping; Bassham, Diane

    2015-09-14

    Peroxisomes are essential organelles that house a wide array of metabolic reactions important for plant growth and development. However, our knowledge regarding the role of peroxisomal proteins in various biological processes, including plant stress response, is still incomplete. Recent proteomic studies of plant peroxisomes significantly increased the number of known peroxisomal proteins and greatly facilitated the study of peroxisomes at the systems level. The objectives of this study were to determine whether genes that encode peroxisomal proteins with related functions are co-expressed in Arabidopsis and identify peroxisomal proteins involved in stress response using in silico analysis and mutant screens. Using microarray data from online databases, we performed hierarchical clustering analysis to generate a comprehensive view of transcript level changes for Arabidopsis peroxisomal genes during development and under abiotic and biotic stress conditions. Many genes involved in the same metabolic pathways exhibited co-expression, some genes known to be involved in stress response are regulated by the corresponding stress conditions, and function of some peroxisomal proteins could be predicted based on their coexpression pattern. Since drought caused expression changes to the highest number of genes that encode peroxisomal proteins, we subjected a subset of Arabidopsis peroxisomal mutants to a drought stress assay. Mutants of the LON2 protease and the photorespiratory enzyme hydroxypyruvate reductase 1 (HPR1) showed enhanced susceptibility to drought, suggesting the involvement of peroxisomal quality control and photorespiration in drought resistance. Lastly, our study provided a global view of how genes that encode peroxisomal proteins respond to developmental and environmental cues and began to reveal additional peroxisomal proteins involved in stress response, thus opening up new avenues to investigate the role of peroxisomes in plant adaptation to

  18. Homology-Based Modeling of Universal Stress Protein from Listeria innocua Up-Regulated under Acid Stress Conditions

    PubMed Central

    Tremonte, Patrizio; Succi, Mariantonietta; Coppola, Raffaele; Sorrentino, Elena; Tipaldi, Luca; Picariello, Gianluca; Pannella, Gianfranco; Fraternali, Franca

    2016-01-01

    An Universal Stress Protein (USP) expressed under acid stress condition by Listeria innocua ATCC 33090 was investigated. The USP was up-regulated not only in the stationary phase but also during the exponential growth phase. The three dimensional (3D) structure of USP was predicted using a combined proteomic and bioinformatics approach. Phylogenetic analysis showed that the USP from Listeria detected in our study was distant from the USPs of other bacteria (such as Pseudomonas spp., Escherichia coli, Salmonella spp.) and clustered in a separate and heterogeneous class including several USPs from Listeria spp. and Lactobacillus spp. An important information on the studied USP was obtained from the 3D-structure established through the homology modeling procedure. In detail, the Model_USP-691 suggested that the investigated USP had a homo-tetrameric quaternary structure. Each monomer presented an architecture analogous to the Rossmann-like α/β-fold with five parallel β-strands, and four α-helices. The analysis of monomer-monomer interfaces and quality of the structure alignments confirmed the model reliability. In fact, the structurally and sequentially conserved hydrophobic residues of the β-strand 5 (in particular the residues V146 and V148) were involved in the inter-chains contact. Moreover, the highly conserved residues I139 and H141 in the region α4 were involved in the dimer association and functioned as hot spots into monomer–monomer interface assembly. The hypothetical assembly of dimers was also supported by the large interface area and by the negative value of solvation free energy gain upon interface interaction. Finally, the structurally conserved ATP-binding motif G-2X-G-9X-G(S/T-N) suggested for a putative role of ATP in stabilizing the tetrameric assembly of the USP. Therefore, the results obtained from a multiple approach, consisting in the application of kinetic, proteomic, phylogenetic and modeling analyses, suggest that Listeria USP could

  19. Effect of water stress and foliar boron application on seed protein oil fatty acids and nitrogen metabolism in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of water stress and foliar boron (FB) application on soybean (Glycine max (L) Merr.) seed composition and nitrogen metabolism have not been well investigated. Therefore, the objective of this study was to investigate the effects of water stress and FB on seed protein, oil, fatty acids, nitra...

  20. Tyrosine Phosphorylation Based Homo-dimerization of Arabidopsis RACK1A Proteins Regulates Oxidative Stress Signaling Pathways in Yeast

    PubMed Central

    Sabila, Mercy; Kundu, Nabanita; Smalls, Deana; Ullah, Hemayet

    2016-01-01

    Scaffold proteins are known as important cellular regulators that can interact with multiple proteins to modulate diverse signal transduction pathways. RACK1 (Receptor for Activated C Kinase 1) is a WD-40 type scaffold protein, conserved in eukaryotes, from Chlamydymonas to plants and humans, plays regulatory roles in diverse signal transduction and stress response pathways. RACK1 in humans has been implicated in myriads of neuropathological diseases including Alzheimer and alcohol addictions. Model plant Arabidopsis thaliana genome maintains three different RACK1 genes termed RACK1A, RACK1B, and RACK1C with a very high (85–93%) sequence identity among them. Loss of function mutation in Arabidopsis indicates that RACK1 proteins regulate diverse environmental stress signaling pathways including drought and salt stress resistance pathway. Recently deduced crystal structure of Arabidopsis RACK1A- very first among all of the RACK1 proteins, indicates that it can potentially be regulated by post-translational modifications, like tyrosine phosphorylations and sumoylation at key residues. Here we show evidence that RACK1A proteins, depending on diverse environmental stresses, are tyrosine phosphorylated. Utilizing site-directed mutagenesis of key tyrosine residues, it is found that tyrosine phosphorylation can potentially dictate the homo-dimerization of RACK1A proteins. The homo-dimerized RACK1A proteins play a role in providing UV-B induced oxidative stress resistance. It is proposed that RACK1A proteins ability to function as scaffold protein may potentially be regulated by the homo-dimerized RACK1A proteins to mediate diverse stress signaling pathways. PMID:26941753

  1. Tyrosine Phosphorylation Based Homo-dimerization of Arabidopsis RACK1A Proteins Regulates Oxidative Stress Signaling Pathways in Yeast.

    PubMed

    Sabila, Mercy; Kundu, Nabanita; Smalls, Deana; Ullah, Hemayet

    2016-01-01

    Scaffold proteins are known as important cellular regulators that can interact with multiple proteins to modulate diverse signal transduction pathways. RACK1 (Receptor for Activated C Kinase 1) is a WD-40 type scaffold protein, conserved in eukaryotes, from Chlamydymonas to plants and humans, plays regulatory roles in diverse signal transduction and stress response pathways. RACK1 in humans has been implicated in myriads of neuropathological diseases including Alzheimer and alcohol addictions. Model plant Arabidopsis thaliana genome maintains three different RACK1 genes termed RACK1A, RACK1B, and RACK1C with a very high (85-93%) sequence identity among them. Loss of function mutation in Arabidopsis indicates that RACK1 proteins regulate diverse environmental stress signaling pathways including drought and salt stress resistance pathway. Recently deduced crystal structure of Arabidopsis RACK1A- very first among all of the RACK1 proteins, indicates that it can potentially be regulated by post-translational modifications, like tyrosine phosphorylations and sumoylation at key residues. Here we show evidence that RACK1A proteins, depending on diverse environmental stresses, are tyrosine phosphorylated. Utilizing site-directed mutagenesis of key tyrosine residues, it is found that tyrosine phosphorylation can potentially dictate the homo-dimerization of RACK1A proteins. The homo-dimerized RACK1A proteins play a role in providing UV-B induced oxidative stress resistance. It is proposed that RACK1A proteins ability to function as scaffold protein may potentially be regulated by the homo-dimerized RACK1A proteins to mediate diverse stress signaling pathways.

  2. Oxidative stress induces mitochondrial dysfunction and a protective unfolded protein response in RPE cells.

    PubMed

    Cano, Marisol; Wang, Lei; Wan, Jun; Barnett, Bradley P; Ebrahimi, Katayoon; Qian, Jiang; Handa, James T

    2014-04-01

    How cells degenerate from oxidative stress in aging-related disease is incompletely understood. This study's intent was to identify key cytoprotective pathways activated by oxidative stress and determine the extent of their protection. Using an unbiased strategy with microarray analysis, we found that retinal pigmented epithelial (RPE) cells treated with cigarette smoke extract (CSE) had overrepresented genes involved in the antioxidant and unfolded protein response (UPR). Differentially expressed antioxidant genes were predominantly located in the cytoplasm, with no induction of genes that neutralize superoxide and H2O2 in the mitochondria, resulting in accumulation of superoxide and decreased ATP production. Simultaneously, CSE induced the UPR sensors IRE1α, p-PERK, and ATP6, including CHOP, which was cytoprotective because CHOP knockdown decreased cell viability. In mice given intravitreal CSE, the RPE had increased IRE1α and decreased ATP and developed epithelial-mesenchymal transition, as suggested by decreased LRAT abundance, altered ZO-1 immunolabeling, and dysmorphic cell shape. Mildly degenerated RPE from early age-related macular degeneration (AMD) samples had prominent IRE1α, but minimal mitochondrial TOM20 immunolabeling. Although oxidative stress is thought to induce an antioxidant response with cooperation between the mitochondria and the ER, herein we show that mitochondria become impaired sufficiently to induce epithelial-mesenchymal transition despite a protective UPR. With similar responses in early AMD samples, these results suggest that mitochondria are vulnerable to oxidative stress despite a protective UPR during the early phases of aging-related disease.

  3. Cold- and salinity stress-induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C.

    PubMed

    Vashisht, Ajay Amar; Pradhan, Arun; Tuteja, Renu; Tuteja, Narendra

    2005-10-01

    Helicases are involved in the metabolism of nucleic acid; this is very sensitive to the abiotic stresses that reduce plant growth and productivity. However, the molecular targets responsible for this sensitivity have not been well studied. Here we report on the isolation and characterization of cold- and salinity stress-induced pea DNA helicase 47 (PDH47). The transcript of PDH47 was induced in both shoots and roots under cold (4 degrees C) and salinity (300 mm NaCl) stress, but there was no change in response to drought stress. Tissue-specific differential regulation was observed under heat (37 degrees C) stress. ABA treatment did not alter expression of PDH47 in shoots but induced its mRNA in roots, indicating a role for PDH47 in both the ABA-independent and ABA-dependent pathways in abiotic stress. The purified recombinant protein (47 kDa) contains ATP-dependent DNA and RNA helicase and DNA-dependent ATPase activities. With the help of photoaffinity labeling, PDH47 was labeled by [alpha-32P]-ATP. PDH47 is a unique bipolar helicase that contains both 3' to 5' and 5' to 3' directional helicase activities. Anti-PDH47 antibodies immunodeplete the activities of PDH47 and inhibit in vitro translation of protein. Furthermore, the PDH47 protein showed upregulation of protein synthesis. The activities of PDH47 are stimulated after phosphorylation by protein kinase C at Ser and Thr residues. Western blot analysis and in vivo immunostaining, followed by confocal microscopy, showed PDH47 to be localized in both the nucleus and cytosol. The discovery of cold- and salinity stress-induced DNA helicase should make an important contribution to a better understanding of DNA metabolism and stress signaling in plants. Its bipolar helicase activities may also be involved in distinct cellular processes in stressed conditions.

  4. The Unfolded Protein Response Supports Plant Development and Defense as well as Responses to Abiotic Stress

    PubMed Central

    Bao, Yan; Howell, Stephen H.

    2017-01-01

    The unfolded protein response (UPR) is a stress response conserved in eukaryotic organisms and activated by the accumulation of misfolded proteins in the endoplasmic reticulum (ER). Adverse environmental conditions disrupt protein folding in the ER and trigger the UPR. Recently, it was found that the UPR can be elicited in the course of plant development and defense. During vegetative plant development, the UPR is involved in normal root growth and development, the effect of which can be largely attributed to the influence of the UPR on plant hormone biology. The UPR also functions in plant reproductive development by protecting male gametophyte development from heat stress. In terms of defense, the UPR has been implicated in virus and microbial defense. Viral defense represents a double edge sword in that various virus infections activate the UPR, however, in a number of cases, the UPR actually supports viral infections. The UPR also plays a role in plant immunity to bacterial infections, again through the action of plant hormones in regulating basal immunity responses. PMID:28360918

  5. Twenty years of research on Asr (ABA-stress-ripening) genes and proteins.

    PubMed

    González, Rodrigo M; Iusem, Norberto D

    2014-05-01

    Investigating how plants cope with different abiotic stresses-mainly drought and extreme temperatures-is pivotal for both understanding the underlying signaling pathways and improving genetically engineered crops. Plant cells are known to react defensively to mild and severe dehydration by initiating several signal transduction pathways that result in the accumulation of different proteins, sugar molecules and lipophilic anti-oxidants. Among the proteins that build up under these adverse conditions are members of the ancestral ASR (ABA-stress-ripening) family, which is conserved in the plant kingdom but lacks orthologs in Arabidopsis. This review provides a comprehensive summary of the state of the art regarding ASRs, going back to the original description and cloning of the tomato ASR cDNA. That seminal discovery sparked worldwide interest amongst research groups spanning multiple fields: biochemistry, cell biology, evolution, physiology and epigenetics. As these proteins function as both chaperones and transcription factors; this review also covers the progress made on relevant molecular features that account for these dual roles-including the recent identification of their target genes-which may inspire future basic research. In addition, we address reports of drought-tolerant ASR-transgenic plants of different species, highlighting the influential work of authors taking more biotechnological approaches.

  6. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses

    PubMed Central

    Ben Amor, Besma; Wirth, Sonia; Merchan, Francisco; Laporte, Philippe; d’Aubenton-Carafa, Yves; Hirsch, Judith; Maizel, Alexis; Mallory, Allison; Lucas, Antoine; Deragon, Jean Marc; Vaucheret, Herve; Thermes, Claude; Crespi, Martin

    2009-01-01

    Long non-protein coding RNAs (npcRNA) represent an emerging class of riboregulators, which either act directly in this long form or are processed to shorter miRNA and siRNA. Genome-wide bioinformatic analysis of full-length cDNA databases identified 76 Arabidopsis npcRNAs. Fourteen npcRNAs were antisense to protein-coding mRNAs, suggesting cis-regulatory roles. Numerous 24-nt siRNA matched to five different npcRNAs, suggesting that these npcRNAs are precursors of this type of siRNA. Expression analyses of the 76 npcRNAs identified a novel npcRNA that accumulates in a dcl1 mutant but does not appear to produce trans-acting siRNA or miRNA. Additionally, another npcRNA was the precursor of miR869 and shown to be up-regulated in dcl4 but not in dcl1 mutants, indicative of a young miRNA gene. Abiotic stress altered the accumulation of 22 npcRNAs among the 76, a fraction significantly higher than that observed for the RNA binding protein-coding fraction of the transcriptome. Overexpression analyses in Arabidopsis identified two npcRNAs as regulators of root growth during salt stress and leaf morphology, respectively. Hence, together with small RNAs, long npcRNAs encompass a sensitive component of the transcriptome that have diverse roles during growth and differentiation. PMID:18997003

  7. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress

    PubMed Central

    Antonucci, Laura; Fagman, Johan B.; Kim, Ju Youn; Todoric, Jelena; Gukovsky, Ilya; Mackey, Mason; Ellisman, Mark H.; Karin, Michael

    2015-01-01

    Pancreatic acinar cells possess very high protein synthetic rates as they need to produce and secrete large amounts of digestive enzymes. Acinar cell damage and dysfunction cause malnutrition and pancreatitis, and inflammation of the exocrine pancreas that promotes development of pancreatic ductal adenocarcinoma (PDAC), a deadly pancreatic neoplasm. The cellular and molecular mechanisms that maintain acinar cell function and whose dysregulation can lead to tissue damage and chronic pancreatitis are poorly understood. It was suggested that autophagy, the principal cellular degradative pathway, is impaired in pancreatitis, but it is unknown whether impaired autophagy is a cause or a consequence of pancreatitis. To address this question, we generated Atg7Δpan mice that lack the essential autophagy-related protein 7 (ATG7) in pancreatic epithelial cells. Atg7Δpan mice exhibit severe acinar cell degeneration, leading to pancreatic inflammation and extensive fibrosis. Whereas ATG7 loss leads to the expected decrease in autophagic flux, it also results in endoplasmic reticulum (ER) stress, accumulation of dysfunctional mitochondria, oxidative stress, activation of AMPK, and a marked decrease in protein synthetic capacity that is accompanied by loss of rough ER. Atg7Δpan mice also exhibit spontaneous activation of regenerative mechanisms that initiate acinar-to-ductal metaplasia (ADM), a process that replaces damaged acinar cells with duct-like structures. PMID:26512112

  8. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants

    PubMed Central

    Durian, Guido; Rahikainen, Moona; Alegre, Sara; Brosché, Mikael; Kangasjärvi, Saijaliisa

    2016-01-01

    Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants. PMID:27375664

  9. Characterization of heat-shock proteins in Escherichia coli strains under thermal stress in vitro.

    PubMed

    Urban-Chmiel, Renata; Dec, Marta; Puchalski, Andrzej; Wernicki, Andrzej

    2013-12-01

    The aim of this study was to evaluate the effect of heat stress in in vitro conditions on the induction of heat-shock protein (Hsp)70 by Escherichia coli cells, and to determine the localization of Hsps in cell fractions. The material consisted of wild strains of E. coli isolated from the digestive tract of calves, suspended in an exponential-phase culture and subjected to 41.5 °C for 2 h. Individual fractions were analysed by SDS-PAGE and two-dimensional electrophoresis. Western blotting with mouse anti-Hsp70 and anti-Hsp60 mAbs was used to identify the proteins. Electrophoretic analysis of the heat-treated cells detected Hsp70 in all three fractions, cytoplasmic, periplasmic and membrane, which was confirmed by Western blotting. The proteins obtained had diverse localizations in the pH gradient in two-dimensional electrophoresis, which may indicate changes in their conformation and physical properties leading to stabilization and protection of intracellular structures in stress conditions. The presence of these Hsps in different cell fractions indicates a very strong protective adaptation in the bacteria in unfavourable conditions, which is critical for the organism infected by them.

  10. Magnesium proteinate is more protective than magnesium oxide in heat-stressed quail.

    PubMed

    Sahin, N; Onderci, M; Sahin, K; Cikim, G; Kucuk, O

    2005-07-01

    We evaluated the effects of dietary supplementation with Mg-oxide and Mg-proteinate on performance; nutrient digestibilities; malondialdehyde (MDA) concentrations in serum, liver, and thigh meat; and serum cholesterol and triacylglycerol concentrations in Japanese quail (Coturnix coturnix japonica) exposed to high ambient temperature. The birds (n = 360; 10 d old) were randomly assigned to 12 treatment groups consisting of 6 replicates of 5 birds each in a 2 x 2 x 3 factorial arrangement (temperature, Mg source, Mg level). Birds were maintained in temperature-controlled rooms at 22 degrees C for 24 h/d or 34 degrees C for 8 h/d (0900-1700 h) and fed a basal diet or that diet supplemented with 1 or 2 g Mg-oxide or Mg-proteinate/kg of diet. Heat exposure decreased (P = 0.0001) live weight gain, feed intake, feed efficiency, and carcass weight in quail fed the basal diet. A linear increase in feed intake (P = 0.008) and body weight (P = 0.001), and improvements in feed efficiency (P = 0.001), carcass weight (P < 0.0001), digestibility of dry matter, organic matter, crude protein, and ether extract were found in Mg-supplemented, heat-stressed quail. The effects of Mg-proteinate were greater than those of Mg-oxide (P < or = 0.0001). Serum Mg (P = 0.001) concentration increased, whereas the concentration of MDA in serum (P = 0.0001), liver (P = 0.04), and thigh meat (P = 0.0001) and serum triglyceride and cholesterol concentrations decreased linearly (P = 0.001) with the level of Mg in the diet. Interactions between dietary Mg source, temperature, and level of supplementation (P < or = 0.05) were found for several variables. Results of the present study suggest that supplementation with Mg-proteinate is more protective than Mg-oxide in reducing the negative effects of heat stress in quail.

  11. Moonlight-like proteins of the cell wall protect sessile cells of Candida from oxidative stress.

    PubMed

    Serrano-Fujarte, Isela; López-Romero, Everardo; Cuéllar-Cruz, Mayra

    2016-01-01

    Biofilms of Candida species are associated with high morbidity and hospital mortality. Candida forms biofilms by adhering to human host epithelium through cell wall proteins (CWP) and simultaneously neutralizing the reactive oxygen species (ROS) produced during the respiratory burst by phagocytic cells. The purpose of this paper is to identify the CWP of Candida albicans, Candida glabrata, Candida krusei and Candida parapsilosis expressed after exposure to different concentrations of H2O2 using a proteomic approach. CWP obtained from sessile cells, both treated and untreated with the oxidizing agent, were resolved by one and two-dimensional (2D-PAGE) gels and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Some of these proteins were identified and found to correspond to moonlighting CWP such as: (i) glycolytic enzymes, (ii) heat shock, (iii) OSR proteins, (iv) general metabolic enzymes and (v) highly conserved proteins, which are up- or down-regulated in the presence or absence of ROS. We also found that the expression of these CWP is different for each Candida species. Moreover, RT-PCR assays allowed us to demonstrate that transcription of the gene coding for Eno1, one of the moonlight-like CWP identified in response to the oxidant agent, is differentially regulated. To our knowledge this is the first demonstration that, in response to oxidative stress, each species of Candida, differentially regulates the expression of moonlighting CWP, which may protect the organism from the ROS generated during phagocytosis. Presumptively, these proteins allow the pathogen to adhere and form a biofilm, and eventually cause invasive candidiasis in the human host. We propose that, in addition to the antioxidant mechanisms present in Candida, the moonlighting CWP also confer protection to these pathogens from oxidative stress.

  12. SKK4, a novel activator of stress-activated protein kinase-1 (SAPK1/JNK).

    PubMed

    Lawler, S; Cuenda, A; Goedert, M; Cohen, P

    1997-09-01

    A cDNA was cloned and expressed that encodes human stress-activated protein kinase kinase-4 (SKK4), a novel MAP kinase kinase family member whose mRNA is widely expressed in human tissues. SKK4 activated SAPK1/JNK in vitro, but not SAPK2a/p38, SAPK2b/p38beta, SAPK3/ERK6 or SAPK4. It appears to be the mammalian homologue of HEP, an activator of SAPK1/JNK in Drosophila. In human epithelial KB cells SKK4 and SKK1/MKK4 (another activator of SAPK1/JNK) were both activated by stressful stimuli, but only SKK4 was activated by proinflammatory cytokines. The identification of SKK4 explains why the major SAPK1/JNK activator detected in many mammalian cell extracts is chromatographically separable from SKK1/MKK4.

  13. Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation.

    PubMed

    Meyerovich, Kira; Ortis, Fernanda; Allagnat, Florent; Cardozo, Alessandra K

    2016-07-01

    Insulin-secreting pancreatic β-cells are extremely dependent on their endoplasmic reticulum (ER) to cope with the oscillatory requirement of secreted insulin to maintain normoglycemia. Insulin translation and folding rely greatly on the unfolded protein response (UPR), an array of three main signaling pathways designed to maintain ER homeostasis and limit ER stress. However, prolonged or excessive UPR activation triggers alternative molecular pathways that can lead to β-cell dysfunction and apoptosis. An increasing number of studies suggest a role of these pro-apoptotic UPR pathways in the downfall of β-cells observed in diabetic patients. Particularly, the past few years highlighted a cross talk between the UPR and inflammation in the context of both type 1 (T1D) and type 2 diabetes (T2D). In this article, we describe the recent advances in research regarding the interplay between ER stress, the UPR, and inflammation in the context of β-cell apoptosis leading to diabetes.

  14. Mutations in the SPTLC1 protein cause mitochondrial structural abnormalities and endoplasmic reticulum stress in lymphoblasts.

    PubMed

    Myers, Simon J; Malladi, Chandra S; Hyland, Ryan A; Bautista, Tara; Boadle, Ross; Robinson, Phillip J; Nicholson, Garth A

    2014-07-01

    Mutations in serine palmitoyltransferase long chain subunit 1 (SPTLC1) cause the typical length-dependent axonal degeneration hereditary sensory neuropathy type 1 (HSN1). Transmission electron microscopy studies on SPTLC1 mutant lymphoblasts derived from patients revealed specific structural abnormalities of mitochondria. Swollen mitochondria with abnormal cristae were clustered around the nucleus, with some mitochondria being wrapped in rough endoplasmic reticulum (ER) membranes. Total mitochondrial counts revealed a significant change in mitochondrial numbers between healthy and diseased lymphocytes but did not reveal any change in length to width ratios nor were there any changes to cellular function. However, there was a notable change in ER homeostasis, as assessed using key ER stress markers, BiP and ERO1-Lα, displaying reduced protein expression. The observations suggest that SPTLC1 mutations cause mitochondrial abnormalities and ER stress in HSN1 cells.

  15. Protein Tyrosine Nitration during Development and Abiotic Stress Response in Plants

    PubMed Central

    Mata-Pérez, Capilla; Begara-Morales, Juan C.; Chaki, Mounira; Sánchez-Calvo, Beatriz; Valderrama, Raquel; Padilla, María N.; Corpas, Francisco J.; Barroso, Juan B.

    2016-01-01

    In recent years, the study of nitric oxide (NO) in plant systems has attracted the attention of many researchers. A growing number of investigations have shown the significance of NO as a signal molecule or as a molecule involved in the response against (a)biotic processes. NO can be responsible of the post-translational modifications (NO-PTM) of target proteins by mechanisms such as the nitration of tyrosine residues. The study of protein tyrosine nitration during development and under biotic and adverse environmental conditions has increased in the last decade; nevertheless, there is also an endogenous nitration which seems to have regulatory functions. Moreover, the advance in proteome techniques has enabled the identification of new nitrated proteins, showing the high variability among plant organs, development stage and species. Finally, it may be important to discern between a widespread protein nitration because of greater RNS content, and the specific nitration of key targets which could affect cell-signaling processes. In view of the above point, we present a mini-review that offers an update about the endogenous protein tyrosine nitration, during plant development and under several abiotic stress conditions. PMID:27895655

  16. Killing Me Softly: Connotations to Unfolded Protein Response and Oxidative Stress in Alzheimer's Disease

    PubMed Central

    Pająk, Beata; Kania, Elżbieta; Orzechowski, Arkadiusz

    2016-01-01

    This review is focused on the possible causes of mitochondrial dysfunction in AD, underlying molecular mechanisms of this malfunction, possible causes and known consequences of APP, Aβ, and hyperphosphorylated tau presence in mitochondria, and the contribution of altered lipid metabolism (nonsterol isoprenoids) to pathological processes leading to increased formation and accumulation of the aforementioned hallmarks of AD. Abnormal protein folding and unfolded protein response seem to be the outcomes of impaired glycosylation due to metabolic disturbances in geranylgeraniol intermediary metabolism. The origin and consecutive fate of APP, Aβ, and tau are emphasized on intracellular trafficking apparently influenced by inaccurate posttranslational modifications. We hypothesize that incorrect intracellular processing of APP determines protein translocation to mitochondria in AD. Similarly, without obvious reasons, the passage of Aβ and tau to mitochondria is observed. APP targeted to mitochondria blocks the activity of protein translocase complex resulting in poor import of proteins central to oxidative phosphorylation. Besides, APP, Aβ, and neurofibrillary tangles of tau directly or indirectly impair mitochondrial biochemistry and bioenergetics, with concomitant generation of oxidative/nitrosative stress. Limited protective mechanisms are inadequate to prevent the free radical-mediated lesions. Finally, neuronal loss is observed in AD-affected brains typically by pathologic apoptosis. PMID:26881014

  17. Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli

    PubMed Central

    Castaño-Cerezo, Sara; Bernal, Vicente; Post, Harm; Fuhrer, Tobias; Cappadona, Salvatore; Sánchez-Díaz, Nerea C; Sauer, Uwe; Heck, Albert JR; Altelaar, AF Maarten; Cánovas, Manuel

    2014-01-01

    Although protein acetylation is widely observed, it has been associated with few specific regulatory functions making it poorly understood. To interrogate its functionality, we analyzed the acetylome in Escherichia coli knockout mutants of cobB, the only known sirtuin-like deacetylase, and patZ, the best-known protein acetyltransferase. For four growth conditions, more than 2,000 unique acetylated peptides, belonging to 809 proteins, were identified and differentially quantified. Nearly 65% of these proteins are related to metabolism. The global activity of CobB contributes to the deacetylation of a large number of substrates and has a major impact on physiology. Apart from the regulation of acetyl-CoA synthetase, we found that CobB-controlled acetylation of isocitrate lyase contributes to the fine-tuning of the glyoxylate shunt. Acetylation of the transcription factor RcsB prevents DNA binding, activating flagella biosynthesis and motility, and increases acid stress susceptibility. Surprisingly, deletion of patZ increased acetylation in acetate cultures, which suggests that it regulates the levels of acetylating agents. The results presented offer new insights into functional roles of protein acetylation in metabolic fitness and global cell regulation. PMID:25518064

  18. Catecholamine Stress Hormones Regulate Cellular Iron Homeostasis by a Posttranscriptional Mechanism Mediated by Iron Regulatory Protein

    PubMed Central

    Tapryal, Nisha; Vivek G, Vishnu; Mukhopadhyay, Chinmay K.

    2015-01-01

    Adequate availability of iron is important for cellular energy metabolism. Catecholamines such as epinephrine and norepinephrine promote energy expenditure to adapt to conditions that arose due to stress. To restore the energy balance, epinephrine/norepinephrine-exposed cells may face higher iron demand. So far, no direct role of epinephrine/norepinephrine in cellular iron homeostasis has been reported. Here we show that epinephrine/norepinephrine regulates iron homeostasis components such as transferrin receptor-1 and ferritin-H in hepatic and skeletal muscle cells by promoting the binding of iron regulatory proteins to iron-responsive elements present in the UTRs of transferrin receptor-1 and ferritin-H transcripts. Increased transferrin receptor-1, decreased ferritin-H, and increased iron-responsive element-iron regulatory protein interaction are also observed in liver and muscle tissues of epinephrine/norepinephrine-injected mice. We demonstrate the role of epinephrine/norepinephrine-induced generation of reactive oxygen species in converting cytosolic aconitase (ACO1) into iron regulatory protein-1 to bind iron-responsive elements present in UTRs of transferrin receptor-1 and ferritin-H. Our study further reveals that mitochondrial iron content and mitochondrial aconitase (ACO2) activity are elevated by epinephrine/norepinephrine that are blocked by the antioxidant N-acetyl cysteine and iron regulatory protein-1 siRNA, suggesting involvement of reactive oxygen species and iron regulatory protein-1 in this mechanism. This study reveals epinephrine and norepinephrine as novel regulators of cellular iron homeostasis. PMID:25572399

  19. Killing Me Softly: Connotations to Unfolded Protein Response and Oxidative Stress in Alzheimer's Disease.

    PubMed

    Pająk, Beata; Kania, Elżbieta; Orzechowski, Arkadiusz

    2016-01-01

    This review is focused on the possible causes of mitochondrial dysfunction in AD, underlying molecular mechanisms of this malfunction, possible causes and known consequences of APP, Aβ, and hyperphosphorylated tau presence in mitochondria, and the contribution of altered lipid metabolism (nonsterol isoprenoids) to pathological processes leading to increased formation and accumulation of the aforementioned hallmarks of AD. Abnormal protein folding and unfolded protein response seem to be the outcomes of impaired glycosylation due to metabolic disturbances in geranylgeraniol intermediary metabolism. The origin and consecutive fate of APP, Aβ, and tau are emphasized on intracellular trafficking apparently influenced by inaccurate posttranslational modifications. We hypothesize that incorrect intracellular processing of APP determines protein translocation to mitochondria in AD. Similarly, without obvious reasons, the passage of Aβ and tau to mitochondria is observed. APP targeted to mitochondria blocks the activity of protein translocase complex resulting in poor import of proteins central to oxidative phosphorylation. Besides, APP, Aβ, and neurofibrillary tangles of tau directly or indirectly impair mitochondrial biochemistry and bioenergetics, with concomitant generation of oxidative/nitrosative stress. Limited protective mechanisms are inadequate to prevent the free radical-mediated lesions. Finally, neuronal loss is observed in AD-affected brains typically by pathologic apoptosis.

  20. Protein depletion and metabolic stress in elderly patients who have a fracture of the hip.

    PubMed

    Patterson, B M; Cornell, C N; Carbone, B; Levine, B; Chapman, D

    1992-02-01

    A prospective study was performed to determine the effect of protein depletion and postoperative nutritional status on the outcome in sixty-three elderly patients who had been admitted to the hospital because of a fracture of the hip. The parameters that were used to determine the degree of protein depletion included levels of albumin, of prealbumin, and of transferrin; total lymphocyte count; and nitrogen-balance studies. The outcomes that were examined were the development of complications, the length of the stay in the hospital, the ability to return to the pre-fracture level of function, and over-all survivorship. The hypothesis was that the acute fracture and the subsequent operation are severe stresses in these elderly, often compromised patients. The results supported the hypothesis. Thirty-seven patients (58 per cent) in the study group were in a protein-depleted state during the period of hospitalization. The patients who were protein-depleted had a higher prevalence of complications, were less likely to return to their pre-fracture environment, and tended to stay in the hospital longer, as compared with the nonprotein-depleted patients. Survivorship analysis showed that protein-depleted patients had a significantly lower probability of survival one year after the fracture of the hip (p = 0.02). Elderly patients who sustain the trauma of a fracture of the hip should be managed appropriately with regard to intake of nutrients in the postoperative period.

  1. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis.

    PubMed Central

    Mosser, D D; Caron, A W; Bourget, L; Denis-Larose, C; Massie, B

    1997-01-01

    Resistance to stress-induced apoptosis was examined in cells in which the expression of hsp70 was either constitutively elevated or inducible by a tetracycline-regulated transactivator. Heat-induced apoptosis was blocked in hsp70-expressing cells, and this was associated with reduced cleavage of the common death substrate protein poly(ADP-ribose) polymerase (PARP). Heat-induced cell death was correlated with the activation of the stress-activated protein kinase SAPK/JNK (c-Jun N-terminal kinase). Activation of SAPK/JNK was strongly inhibited in cells in which hsp70 was induced to a high level, indicating that hsp70 is able to block apoptosis by inhibiting signaling events upstream of SAPK/JNK activation. In contrast, SAPK/JNK activation was not inhibited by heat shock in cells with constitutively elevated levels of hsp70. Cells that constitutively overexpress hsp70 resist apoptosis induced by ceramide, a lipid signaling molecule that is generated by apoptosis-inducing treatments and is linked to SAPK/JNK activation. Similar to heat stress, resistance to ceramide-induced apoptosis occurs in spite of strong SAPK/JNK activation. Therefore, hsp70 is also able to inhibit apoptosis at some point downstream of SAPK/JNK activation. Since PARP cleavage is prevented in both cell lines, these results suggest that hsp70 is able to prevent the effector steps of apoptotic cell death. Processing of the CED-3-related protease caspase-3 (CPP32/Yama/apopain) is inhibited in hsp70-expressing cells; however, the activity of the mature enzyme is not affected by hsp70 in vitro. Caspase processing may represent a critical heat-sensitive target leading to cell death that is inhibited by the chaperoning function of hsp70. The inhibition of SAPK/JNK signaling and apoptotic protease effector steps by hsp70 likely contributes to the resistance to stress-induced apoptosis seen in transiently induced thermotolerance. PMID:9271409

  2. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids

    PubMed Central

    Kalinina, Tatyana S.; Bulygina, Veta V.; Lanshakov, Dmitry A.; Babluk, Ekaterina V.

    2015-01-01

    Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons. PMID:26624017

  3. Stress-Dependent Changes in the CacyBP/SIP Interacting Protein S100A6 in the Mouse Brain.

    PubMed

    Bartkowska, Katarzyna; Swiatek, Izabela; Aniszewska, Agata; Jurewicz, Ewelina; Turlejski, Kris; Filipek, Anna; Djavadian, Rouzanna L

    2017-01-01

    The CacyBP/SIP target S100A6 is widely present in the nervous system, and its up-regulation is associated with certain neurodegenerative diseases. Here, we examined the involvement of S100A6 protein in stress responses in mice. Using Western blotting, we observed a marked change in brainstem structures, whereby stressed mice showed approximately one-third the protein level produced in the control group. A decreased level of S100A6 protein in stressed animals was also detected in the olfactory bulb and the cerebellum and stress-related structures such as the hippocampus and the hypothalamus. Additionally, using immunohistochemistry, high levels of S100A6 expression were observed in astrocytes localized in the border zones of all brain ventricles, tanycytes of the ventro-lateral walls of the hypothalamus, including the arcuate nucleus (ARH) and low levels of this protein were in neurons of the olfactory bulb, the hippocampus, the thalamus, the cerebral cortex, the brainstem and the cerebellum. Although S100A6-expressing cells in all these brain structures did not change their phenotype in response to stress, the intensity of immunofluorescent labeling in all studied structures was lower in stressed mice than in control animals. For example, in the ARH, where extremely strong immunostaining was observed, the number of immunolabeled fibers was decreased by approximately half in the stressed group compared with the controls. Although these results are descriptive and do not give clue about functional role of S100A6 in stress, they indicate that the level of S100A6 decreases in several brain structures in response to chronic mild stress, suggesting that this protein may modify stress responses.

  4. Stress-Dependent Changes in the CacyBP/SIP Interacting Protein S100A6 in the Mouse Brain

    PubMed Central

    Bartkowska, Katarzyna; Swiatek, Izabela; Aniszewska, Agata; Jurewicz, Ewelina; Turlejski, Kris; Filipek, Anna; Djavadian, Rouzanna L.

    2017-01-01

    The CacyBP/SIP target S100A6 is widely present in the nervous system, and its up-regulation is associated with certain neurodegenerative diseases. Here, we examined the involvement of S100A6 protein in stress responses in mice. Using Western blotting, we observed a marked change in brainstem structures, whereby stressed mice showed approximately one-third the protein level produced in the control group. A decreased level of S100A6 protein in stressed animals was also detected in the olfactory bulb and the cerebellum and stress-related structures such as the hippocampus and the hypothalamus. Additionally, using immunohistochemistry, high levels of S100A6 expression were observed in astrocytes localized in the border zones of all brain ventricles, tanycytes of the ventro-lateral walls of the hypothalamus, including the arcuate nucleus (ARH) and low levels of this protein were in neurons of the olfactory bulb, the hippocampus, the thalamus, the cerebral cortex, the brainstem and the cerebellum. Although S100A6-expressing cells in all these brain structures did not change their phenotype in response to stress, the intensity of immunofluorescent labeling in all studied structures was lower in stressed mice than in control animals. For example, in the ARH, where extremely strong immunostaining was observed, the number of immunolabeled fibers was decreased by approximately half in the stressed group compared with the controls. Although these results are descriptive and do not give clue about functional role of S100A6 in stress, they indicate that the level of S100A6 decreases in several brain structures in response to chronic mild stress, suggesting that this protein may modify stress responses. PMID:28068373

  5. Soybean PM2 protein (LEA3) confers the tolerance of Escherichia coli and stabilization of enzyme activity under diverse stresses.

    PubMed

    Liu, Yun; Zheng, Yizhi; Zhang, Yuqin; Wang, Weimao; Li, Ranhui

    2010-05-01

    Late embryogenesis abundant (LEA) proteins are closely associated with the tolerance of diverse stresses in organisms. To elucidate the function of group 3 LEA proteins, the soybean PM2 protein (LEA3) was expressed in E. coli and the protective function of the PM2 protein was assayed both in vivo and in vitro. The results of a spot assay and survival ratio demonstrated that the expression of the PM2 protein conferred the tolerance to the E. coli recombinant for different temperature conditions (4, -20 or 50 degrees C) or high-salinity stresses (120 mmol/l MgCl(2) or 120 mmol/l CaCl(2)). In addition, it was demonstrated that the in vitro addition of the PM2 protein could prevent the lactate dehydrogenase (LDH) inactivation normally induced by freeze-thaw. In the 62 degrees C condition, the PM2 protein (1:5 mass ratio to LDH) effectively prevented the LDH thermo-denaturation by acting synergistically with trehalose (62.5 microg/ml), although the PM2 protein alone at this concentration showed little protective effect on LDH activity. Furthermore, the results showed that the PM2 protein could partially prevent the thermo-denaturation of the bacterial proteome after boiling for 2 min. Based on these results, we propose that the PM2 protein itself, or together with trehalose, conferred the tolerance to the E. coli recombinant against diverse stresses by protecting proteins and enzyme activity under low- or high- temperature conditions.

  6. Oxidative stress proteins as an indicator of a low quality of eucalyptus clones for the pulp and paper industry.

    PubMed

    Britto, D S; Pirovani, C P; Gonzalez, E R; Silva, J F; Gesteira, A S; Cascardo, J C M

    2012-10-19

    Eucalyptus is a genus widely cultivated in many tropical and subtropical regions of the world as one of the main sources of raw materials for the pulp and paper industry. Identification of clones and selection of genotypes with desirable agronomic characteristics would be useful. We assessed eucalyptus full-sibs that varied in wood quality, using a combination of two-dimensional gel electrophoresis and mass spectrometry to identify differentially expressed proteins as candidates for quality markers. Thirty-one differently expressed proteins were identified, including three proteins of clone X1, four of clone X2, and 12 each of clones X3 and X4. These proteins are involved in various biological processes, including polyphosphate biosynthesis, catalytic activity, nucleotide excision repair, cellular metabolic processes, cell redox homeostasis, response to salt stress, response to temperature, oxidation and reduction processes, cellular water homeostasis, and protein phosphorylation. In the cambial region of each clone, the proteins ketol-acid reductoisomerase, uncharacterized protein MG428, receptor-like serine/threonine-protein kinase and a heat shock protein were found in larger quantities in clone X4 than in clone X1. These proteins are known to be related to protection against oxidative stress and biosynthesis of lignin. A high buildup of proteins involved in response to stress in the cambial region of eucalyptus would indicate clones with undesirable characteristics for use in the pulp and paper industry.

  7. Overexpression of a stress-responsive U-box protein gene VaPUB affects the accumulation of resistance related proteins in Vitis vinifera 'Thompson Seedless'.

    PubMed

    Jiao, Li; Zhang, Yali; Lu, Jiang

    2017-03-01

    Many U-box proteins have been identified and characterized as important factors against environmental stresses such as chilling, heat, salinity and pathogen attack in plant. Our previous research reported the cloning of a novel U-box protein gene VaPUB from Vitis amurensis 'Zuoshanyi' grape and suggested a function of it in related to cold stress in the model plant Arabidopsis system. In this study, the role of VaPUB in response to biotic and abiotic stress was further analyzed in the homologous grapevine system by studying the transcript regulation and the protein accumulation in VaPUB transgenic vines. The expression analysis assay shown that VaPUB was significantly up-regulated 6 h after cold treatment and as early as 2 h post inoculation with Plasmopara viticola, a pathogen causing downy mildew disease in grapevine. Over-expressing VaPUB in V. Vinifera 'Thompson Seedless' affected the microstructure of leaves. The proteome assay shown that the accumulation of pathogenesis-related protein PR10 and many proteins involved in carbon and energy metabolism, oxidation reaction and protein metabolism were significantly altered in transgenic vines. In comparison with wild type plants, the expression level of PR10 family genes was significantly decreased in VaPUB transgenic vines under P. viticola treatment or cold stress. Results from this study showed that the U-box protein gene PUB quickly responded to both biotic stress and abiotic stress and significantly influenced the accumulation of resistance related proteins in grapevine.

  8. S-Bacillithiolation Protects Conserved and Essential Proteins Against Hypochlorite Stress in Firmicutes Bacteria

    PubMed Central

    Chi, Bui Khanh; Roberts, Alexandra A.; Huyen, Tran Thi Thanh; Bäsell, Katrin; Becher, Dörte; Albrecht, Dirk; Hamilton, Chris J.

    2013-01-01

    Abstract Aims: Protein S-bacillithiolations are mixed disulfides between protein thiols and the bacillithiol (BSH) redox buffer that occur in response to NaOCl in Bacillus subtilis. We used BSH-specific immunoblots, shotgun liquid chromatography (LC)–tandem mass spectrometry (MS/MS) analysis and redox proteomics to characterize the S-bacillithiolomes of B. subtilis, B. megaterium, B. pumilus, B. amyloliquefaciens, and Staphylococcus carnosus and also measured the BSH/oxidized bacillithiol disulfide (BSSB) redox ratio after NaOCl stress. Results: In total, 54 proteins with characteristic S-bacillithiolation (SSB) sites were identified, including 29 unique proteins and eight proteins conserved in two or more of these bacteria. The methionine synthase MetE is the most abundant S-bacillithiolated protein in Bacillus species after NaOCl exposure. Further, S-bacillithiolated proteins include the translation elongation factor EF-Tu and aminoacyl-tRNA synthetases (ThrS), the DnaK and GrpE chaperones, the two-Cys peroxiredoxin YkuU, the ferredoxin–NADP+ oxidoreductase YumC, the inorganic pyrophosphatase PpaC, the inosine-5′-monophosphate dehydrogenase GuaB, proteins involved in thiamine biosynthesis (ThiG and ThiM), queuosine biosynthesis (QueF), biosynthesis of aromatic amino acids (AroA and AroE), serine (SerA), branched-chain amino acids (YwaA), and homocysteine (LuxS and MetI). The thioredoxin-like proteins, YphP and YtxJ, are S-bacillithiolated at their active sites, suggesting a function in the de-bacillithiolation process. S-bacillithiolation is accompanied by a two-fold increase in the BSSB level and a decrease in the BSH/BSSB redox ratio in B. subtilis. Innovation: Many essential and conserved proteins, including the dominant MetE, were identified in the S-bacillithiolome of different Bacillus species and S. carnosus using shotgun-LC-MS/MS analyses. Conclusion: S-bacillithiolation is a widespread redox control mechanism among Firmicutes bacteria that protects

  9. Oxidative stress affects FET proteins localization and alternative pre-mRNA processing in cellular models of ALS.

    PubMed

    Svetoni, Francesca; Caporossi, Daniela; Paronetto, Maria Paola

    2014-10-01

    FUS/TLS, EWS and TAF15 are members of the FET family of DNA and RNA binding proteins, involved in multiple steps of DNA and RNA processing and implicated in the regulation of gene expression and cell-signaling. All members of the FET family contribute to human pathologies, as they are involved in sarcoma translocations and neurodegenerative diseases. Mutations in FUS/TLS, in EWSR1 and in TAF15 genescause Amyotrophic Lateral Sclerosis (ALS), a fatal human neurodegenerative disease that affects primarily motor neurons and is characterized by the progressive loss of motor neurons and degradation of the neuromuscular junctions.ALS-associated FET mutations cause FET protein relocalization into cytoplasmic aggregates, thus impairing their normal function. Protein aggregation has been suggested as a co-opting factor during the disease pathogenesis. Cytoplasmic mislocalization of FET proteins contributes to the formation of cytoplasmic aggregates that may alter RNA processing and initiate motor neuron degeneration. Interestingly, oxidative stress, which is implicated in the pathogenesis of ALS, triggers the accumulation of mutant FUS in cytoplasmic stress granules where it binds and sequester wild-type FUS.In order to evaluate the role of FET proteins in ALS and their involvement in the response to oxidative stress, we have developed cellular models of ALS expressing ALS-related FET mutants in neuroblastoma cell lines. Upon treatment with sodium arsenite, cells were analysed by immunofluorescence to monitor the localization of wild-type and mutated FET proteins. Furthermore, we have characterized signal transduction pathways and cell survival upon oxidative stress in our cellular models of ALS. Interestingly, we found that EWS mutant proteins display a different localization from FUS mutants and neither wild-type nor mutated EWS protein translocate into stress granules upon oxidative stress treatment. Collectively, our data provide a new link between the oxidative stress

  10. Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats.

    PubMed

    Bozi, Luiz H M; Jannig, Paulo R; Rolim, Natale; Voltarelli, Vanessa A; Dourado, Paulo M M; Wisløff, Ulrik; Brum, Patricia C

    2016-11-01

    Cardiac endoplasmic reticulum (ER) stress through accumulation of misfolded proteins plays a pivotal role in cardiovascular diseases. In an attempt to reestablish ER homoeostasis, the unfolded protein response (UPR) is activated. However, if ER stress persists, sustained UPR activation leads to apoptosis. There is no available therapy for ER stress relief. Considering that aerobic exercise training (AET) attenuates oxidative stress, mitochondrial dysfunction and calcium imbalance, it may be a potential strategy to reestablish cardiac ER homoeostasis. We test the hypothesis that AET would attenuate impaired cardiac ER stress after myocardial infarction (MI). Wistar rats underwent to either MI or sham surgeries. Four weeks later, rats underwent to 8 weeks of moderate-intensity AET. Myocardial infarction rats displayed cardiac dysfunction and lung oedema, suggesting heart failure. Cardiac dysfunction in MI rats was paralleled by increased protein levels of UPR markers (GRP78, DERLIN-1 and CHOP), accumulation of misfolded and polyubiquitinated proteins, and reduced chymotrypsin-like proteasome activity. These results suggest an impaired cardiac protein quality control. Aerobic exercise training improved exercise capacity and cardiac function of MI animals. Interestingly, AET blunted MI-induced ER stress by reducing protein levels of UPR markers, and accumulation of both misfolded and polyubiquinated proteins, which was associated with restored proteasome activity. Taken together, our study provide evidence for AET attenuation of ER stress through the reestablishment of cardiac protein quality control, which contributes to better cardiac function in post-MI heart failure rats. These results reinforce the importance of AET as primary non-pharmacological therapy to cardiovascular disease.

  11. Extracellular Vesicles Isolated from the Leaf Apoplast Carry Stress-Response Proteins.

    PubMed

    Rutter, Brian D; Innes, Roger W

    2017-01-01

    Exosomes are extracellular vesicles (EVs) that play a central role in intercellular signaling in mammals by transporting proteins and small RNAs. Plants are also known to produce EVs, particularly in response to pathogen infection. The contents of plant EVs have not been analyzed, however, and their function is unknown. Here, we describe a method for purifying EVs from the apoplastic fluids of Arabidopsis (Arabidopsis thaliana) leaves. Proteomic analyses of these EVs revealed that they are highly enriched in proteins involved in biotic and abiotic stress responses. Consistent with this finding, EV secretion was enhanced in plants infected with Pseudomonas syringae and in response to treatment with salicylic acid. These findings suggest that EVs may represent an important component of plant immune responses.

  12. Extracellular Vesicles Isolated from the Leaf Apoplast Carry Stress-Response Proteins1[OPEN

    PubMed Central

    2017-01-01

    Exosomes are extracellular vesicles (EVs) that play a central role in intercellular signaling in mammals by transporting proteins and small RNAs. Plants are also known to produce EVs, particularly in response to pathogen infection. The contents of plant EVs have not been analyzed, however, and their function is unknown. Here, we describe a method for purifying EVs from the apoplastic fluids of Arabidopsis (Arabidopsis thaliana) leaves. Proteomic analyses of these EVs revealed that they are highly enriched in proteins involved in biotic and abiotic stress responses. Consistent with this finding, EV secretion was enhanced in plants infected with Pseudomonas syringae and in response to treatment with salicylic acid. These findings suggest that EVs may represent an important component of plant immune responses. PMID:27837092

  13. Effect of oxidative stress on the expression of thin filament-associated proteins in gastric smooth muscle cells.

    PubMed

    Al-Shboul, Othman Abdullah; Mustafa, Ayman; Mohammad, Mukhallad; Al-Shehabat, Mustafa; Yousef, Asmaa; Al-Hashimi, Farah

    2014-09-01

    Thin filament-associated proteins such as calponin, caldesmon, and smoothelin are believed to regulate acto-myosin interaction and thus, muscle contraction. Oxidative stress has been found to affect the normal contractile behavior of smooth muscle and is involved in the pathogenesis of a number of human diseases such as diabetes mellitus, hypertension, and atherosclerosis. However, very little is known about the effect of oxidative stress on the expression of smooth muscle contractile proteins. The aim of the current study is to investigate the effect of oxidative stress on the expression of thin filament-associated proteins in rat gastric smooth muscle. Single smooth muscle cells of the stomach obtained from Sprague-Dawley rats were used. Muscle cells were treated with hydrogen peroxide (H2O2) (500 μM) for 30 min or the peroxynitrite donor 3-morpholinosydnonimine (SIN-1) (1 mM) for 90 min to induce oxidative stress. Calponin, caldesmon, and smoothelin expressions were measured via specifically designed enzyme-linked immunosorbent assay. We found that exposure to exogenous H2O2 or incubation of dispersed gastric muscle cells with SIN-1 significantly increased the expression of calponin, caldesmon, and smoothelin proteins. In conclusion: oxidative stress increases the expression of thin filament-associated proteins in gastric smooth muscle, suggesting an important role in gastrointestinal motility disorders associated with oxidative stress.

  14. Autophagy, a Conserved Mechanism for Protein Degradation, Responds to Heat, and Other Abiotic Stresses in Capsicum annuum L.

    PubMed Central

    Zhai, Yufei; Guo, Meng; Wang, Hu; Lu, Jinping; Liu, Jinhong; Zhang, Chong; Gong, Zhenhui; Lu, Minghui

    2016-01-01

    Abiotic stresses negatively affect plants growth and development by inducing protein denaturation, and autophagy degrades the damaged proteins to alleviate their toxicity, however, little is known about the involvement of autophagy in pepper (Capsicum annuum L.) tolerances to abiotic stresses. In this study, we identified autophagy-related gene (ATG) members in the whole genome of pepper by HMM method and analyzed their expression profiles in response to heat and other abiotic stresses by quantitative real-time PCR. The results showed that the CaATG contained 15 core ATG members including 29 ATG proteins with their respective conserved functional domains, involving the whole process of autophagy. Under normal environmental condition, the expression of CaATG genes showed tissue- and developmental stage-specific patterns, while under abiotic stresses of salt, drought, heat, cold and carbohydrate starvation, the accumulation of autophagosome punctate increased and the expression level of CaATG genes changed with stress type-dependent pattern, which indicates the linkage of autophagy in pepper response to abiotic stresses. After treated with heat stress, both the number of up-regulated CaATG genes and the increment of autophagosome punctate were higher in pepper thermotolerant line R9 than those in thermosensitive line B6, implying an association of autophagy with heat tolerance. In addition, CaATG6 was predicted to interact with CaHSP90 family members. Our study suggests that autophagy is connected to pepper tolerances to heat and other abiotic stresses. PMID:26904087

  15. A highly conserved protein of unknown function is required by Sinorhizobium meliloti for symbiosis and environmental stress protection.

    PubMed

    Davies, Bryan W; Walker, Graham C

    2008-02-01

    We report here the first characterization of the Sinorhizobium meliloti open reading frame SMc01113. The SMc01113 protein is a member of a highly conserved protein family, universal among bacteria. We demonstrate that the SMc01113 gene is absolutely required for S. meliloti symbiosis with alfalfa and also for the protection of the bacterium from a wide range of environmental stresses.

  16. The Adaptogens Rhodiola and Schizandra Modify the Response to Immobilization Stress in Rabbits by Suppressing the Increase of Phosphorylated Stress-activated Protein Kinase, Nitric Oxide and Cortisol

    PubMed Central

    Panossian, Alexander; Hambardzumyan, Marina; Hovhanissyan, Areg; Wikman, Georg

    2007-01-01

    Adaptogens possess anti-fatigue and anti-stress activities that can increase mental and physical working performance against a background of fatigue or stress. The aim of the present study was to ascertain which mediators of stress response are significantly involved in the mechanisms of action of adaptogens, and to determine their relevance as biochemical markers for evaluating anti-stress effects in rabbits subjected to restraint stress. Blood levels of stress-activated protein kinase (SAPK/JNK), the phosphorylated kinase p-SAPK/p-JNK, nitric oxide (NO), cortisol, testosterone, prostaglandin E2, leukotriene B4 and thromboxane B2 were determined in groups of animals prior to daily oral administration of placebo, rhodioloside or extracts of Eleutherococcus senticosus, Schizandra chinensis, Rhodiola rosea, Bryonia alba and Panax ginseng over a 7 day period. Ten minutes after the final treatment, animals were immobilized for 2 hours and blood levels of the markers re-determined. In the placebo group, only p-SAPK/p-JNK, NO and cortisol were increased significantly (by 200–300% cf basal levels) following restraint stress, whilst in animals that had received multiple doses of adaptogens/stress-protectors, the levels of NO and cortisol remained practically unchanged after acute stress. Rhodioloside and extracts of S. chinensis and R. rosea were the most active inhibitors of stress-induced p-SAPK/p-JNK. E. senticosus, B. alba and P. ginseng exerted little effect on p-SAPK/p-JNK levels. It is suggested that the inhibitory effects of R. rosea and S. chinensis on p-SAPK/p-JNK activation may be associated with their antidepressant activity as well as their positive effects on mental performance under stress. PMID:21901061

  17. Stress

    MedlinePlus

    ... flu shot, are less effective for them. Some people cope with stress more effectively than others. It's important to know your limits when it comes to stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  18. TBL2 is a novel PERK-binding protein that modulates stress-signaling and cell survival during endoplasmic reticulum stress.

    PubMed

    Tsukumo, Yoshinori; Tsukahara, Satomi; Furuno, Aki; Iemura, Shun-ichiro; Natsume, Toru; Tomida, Akihiro

    2014-01-01

    Under ER stress, PKR-like ER-resident kinase (PERK) phosphorylates translation initiation factor eIF2α, resulting in repression of global protein synthesis and concomitant upregulation of the translation of specific mRNAs such as activating transcription factor 4 (ATF4). This PERK function is important for cell survival under ER stress and poor nutrient conditions. However, mechanisms of the PERK signaling pathway are not thoroughly understood. Here we identify transducin (beta)-like 2 (TBL2) as a novel PERK-binding protein. We found that TBL2 is an ER-localized type-I transmembrane protein and preferentially binds to the phosphorylated form of PERK, but not another eIF2α kinase GCN2 or ER-resident kinase IRE1, under ER stress. Immunoprecipitation analysis using various deletion mutants revealed that TBL2 interacts with PERK via the N-terminus proximal region and also associates with eIF2α via the WD40 domain. In addition, TBL2 knockdown can lead to impaired ATF4 induction under ER stress or poor nutrient conditions such as glucose and oxygen deprivation. Consistently, TBL2 knockdown rendered cells vulnerable to stresses similarly to PERK knockdown. Thus, TBL2 serves as a potential regulator of the PERK pathway.

  19. Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis.

    PubMed

    Nakai, Yusuke; Nakahira, Yoichi; Sumida, Hiroki; Takebayashi, Kosuke; Nagasawa, Yumiko; Yamasaki, Kanako; Akiyama, Masako; Ohme-Takagi, Masaru; Fujiwara, Sumire; Shiina, Takashi; Mitsuda, Nobutaka; Fukusaki, Eiichiro; Kubo, Yasuyuki; Sato, Masa H

    2013-03-01

    Plants adapt to abiotic and biotic stresses by activating abscisic acid-mediated (ABA) abiotic stress-responsive and salicylic acid-(SA) or jasmonic acid-mediated (JA) biotic stress-responsive pathways, respectively. Although the abiotic stress-responsive pathway interacts antagonistically with the biotic stress-responsive pathways, the mechanisms that regulate these pathways remain largely unknown. In this study, we provide insight into the function of vascular plant one-zinc-finger proteins (VOZs) that modulate various stress responses in Arabidopsis. The expression of many stress-responsive genes was changed in the voz1voz2 double mutant under normal growth conditions. Consistent with altered stress-responsive gene expression, freezing- and drought-stress tolerances were increased in the voz1voz2 double mutant. In contrast, resistance to a fungal pathogen, Colletotrichum higginsianum, and to a bacterial pathogen, Pseudomonas syringae, was severely impaired. Thus, impairing VOZ function simultaneously conferred increased abiotic tolerance and biotic stress susceptibility. In a chilling stress condition, both the VOZ1 and VOZ2 mRNA expression levels and the VOZ2 protein level gradually decreased. VOZ2 degradation during cold exposure was completely inhibited by the addition of the 26S proteasome inhibitor, MG132, a finding that suggested that VOZ2 degradation is dependent on the ubiquitin/26S proteasome system. In voz1voz2, ABA-inducible transcription factor CBF4 expression was enhanced significantly even under normal growth conditions, despite an unchanged endogenous ABA content. A finding that suggested that VOZs negatively affect CBF4 expression in an ABA-independent manner. These results suggest that VOZs function as both negative and positive regulators of the abiotic and biotic stress-responsive pathways, and control Arabidopsis adaptation to various stress conditions.

  20. Association of heat shock protein 70 expression with rat myocardial cell damage during heat stress in vitro and in vivo.

    PubMed

    Chen, H B; Zhang, X C; Cheng, Y F; Abdelnasir, A; Tang, S; Kemper, N; Hartung, J; Bao, E D

    2015-03-20

    To investigate the mechanism of sudden death as a result of stress-induced damage to heart tissue and myocardial cells and to investigate the cardioprotective role of Hsp70 during heat stress, the distribution and expression of Hsp70 was evaluated in the heart cells of heat-stressed rats in vivo and heat-stressed H9c2 cells in vitro. After exposure to heat stress at 42°C for different durations, we observed a significant induction of CK, CK-MB, and LDH as well as pathologic lesions characterized by acute degeneration, suggesting that cell damage occurs from the onset of heat stress. Immunocytochemistry showed that Hsp70 was distributed mainly in the cytoplasm of myocardial cells in vivo and in vitro. Hsp70-positive signals in the cytoplasm were more prominent in intact areas than in degenerated areas after 60 min of heat stress. Hsp70 protein levels in myocardial cells in vitro decreased from the beginning to the end of heat stress. Hsp70 protein levels in rat heart tissues in vivo decreased gradually with prolonged heat stress, with a slight increase at the beginning of heat stress. These results indicate that Hsp70 plays a role in the response of cardiac cells to heat stress and that decreased Hsp70 levels are associated with damage to rat myocardial cells in vitro and in vivo. Significant differences were found in hsp70 mRNA, which began to increase after 20 min of heat stress in vitro and after 40 min in vivo. This indicates that hysteresis is involved in mRNA expression after heat stress in vivo.

  1. The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress

    PubMed Central

    Shu, Sheng; Yuan, Yinghui; Chen, Jie; Sun, Jin; Zhang, Wenhua; Tang, Yuanyuan; Zhong, Min; Guo, Shirong

    2015-01-01

    Polyamines can alleviate the inhibitory effects of salinity on plant growth by regulating photosynthetic efficiency. However, little information is available to explain the specific mechanisms underlying the contribution of polyamines to salt tolerance of the photosynthetic apparatus. Here, we investigated the role of putrescine (Put) on the photosynthetic apparatus of cucumber seedlings under salt stress. We found that NaCl stress resulted in severe ion toxicity and oxidative stress in cucumber chloroplasts. In addition, salinity caused a significant increase in the saturated fatty acid contents of thylakoid membranes. Put altered unsaturated fatty acid content, thereby alleviating the disintegration of thylakoid grana lamellae and reducing the number of plastoglobuli in thylakoid membranes. BN-PAGE revealed Put up-regulated the expression of ATP synthase, CP47, D1, Qb, and psbA proteins and down-regulated CP24, D2, and LHCII type III in NaCl-stressed thylakoid membranes. qRT-PCR analysis of gene expression was used to compare transcript and protein accumulation among 10 candidate proteins. For five of these proteins, induced transcript accumulation was consistent with the pattern of induced protein accumulation. Our results suggest that Put regulates protein expression at transcriptional and translational levels by increasing endogenous polyamines levels in thylakoid membranes, which may stabilise photosynthetic apparatus under salt stress. PMID:26435404

  2. The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress.

    PubMed

    Shu, Sheng; Yuan, Yinghui; Chen, Jie; Sun, Jin; Zhang, Wenhua; Tang, Yuanyuan; Zhong, Min; Guo, Shirong

    2015-10-05

    Polyamines can alleviate the inhibitory effects of salinity on plant growth by regulating photosynthetic efficiency. However, little information is available to explain the specific mechanisms underlying the contribution of polyamines to salt tolerance of the photosynthetic apparatus. Here, we investigated the role of putrescine (Put) on the photosynthetic apparatus of cucumber seedlings under salt stress. We found that NaCl stress resulted in severe ion toxicity and oxidative stress in cucumber chloroplasts. In addition, salinity caused a significant increase in the saturated fatty acid contents of thylakoid membranes. Put altered unsaturated fatty acid content, thereby alleviating the disintegration of thylakoid grana lamellae and reducing the number of plastoglobuli in thylakoid membranes. BN-PAGE revealed Put up-regulated the expression of ATP synthase, CP47, D1, Qb, and psbA proteins and down-regulated CP24, D2, and LHCII type III in NaCl-stressed thylakoid membranes. qRT-PCR analysis of gene expression was used to compare transcript and protein accumulation among 10 candidate proteins. For five of these proteins, induced transcript accumulation was consistent with the pattern of induced protein accumulation. Our results suggest that Put regulates protein expression at transcriptional and translational levels by increasing endogenous polyamines levels in thylakoid membranes, which may stabilise photosynthetic apparatus under salt stress.

  3. Role of serine threonine protein phosphatase type 5 (PP5) in the regulation of stress induced signaling networks and cancer

    PubMed Central

    Golden, Teresa; Swingle, Mark; Honkanen, Richard E.

    2008-01-01

    Although the aberrant actions of protein kinases have long been known to contribute to tumor promotion and carcinogenesis, roles for proteins phosphatases in the development of human cancer have only emerged in the last decade. In this review, we discuss the data obtained from studies examining the biological and pathological roles of a serine/threonine protein phosphate, PP5, which suggest that PP5 is a potentially important regulator of both hormone- and stress-induced networks that enable a cell to respond appropriately to genomic stress. PMID:18253812

  4. Universal Stress Protein Exhibits a Redox-Dependent Chaperone Function in Arabidopsis and Enhances Plant Tolerance to Heat Shock and Oxidative Stress

    PubMed Central

    Jung, Young Jun; Melencion, Sarah Mae Boyles; Lee, Eun Seon; Park, Joung Hun; Alinapon, Cresilda Vergara; Oh, Hun Taek; Yun, Dae-Jin; Chi, Yong Hun; Lee, Sang Yeol

    2015-01-01

    Although a wide range of physiological information on Universal Stress Proteins (USPs) is available from many organisms, their biochemical, and molecular functions remain unidentified. The biochemical function of AtUSP (At3g53990) from Arabidopsis thaliana was therefore investigated. Plants over-expressing AtUSP showed a strong resistance to heat shock and oxidative stress, compared with wild-type and Atusp knock-out plants, confirming the crucial role of AtUSP in stress tolerance. AtUSP was present in a variety of structures including monomers, dimers, trimers, and oligomeric complexes, and switched in response to external stresses from low molecular weight (LMW) species to high molecular weight (HMW) complexes. AtUSP exhibited a strong chaperone function under stress conditions in particular, and this activity was significantly increased by heat treatment. Chaperone activity of AtUSP was critically regulated by the redox status of cells and accompanied by structural changes to the protein. Over-expression of AtUSP conferred a strong tolerance to heat shock and oxidative stress upon Arabidopsis, primarily via its chaperone function. PMID:26734042

  5. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution

    PubMed Central

    Maida, Adriano; Zota, Annika; Sjøberg, Kim A.; Sijmonsma, Tjeerd P.; Pfenninger, Anja; Christensen, Marie M.; Gantert, Thomas; Fuhrmeister, Jessica; Rothermel, Ulrike; Schmoll, Dieter; Heikenwälder, Mathias; Iovanna, Juan L.; Stemmer, Kerstin; Herzig, Stephan; Rose, Adam J.

    2016-01-01

    Dietary protein intake is linked to an increased incidence of type 2 diabetes (T2D). Although dietary protein dilution (DPD) can slow the progression of some aging-related disorders, whether this strategy affects the development and risk for obesity-associated metabolic disease such as T2D is unclear. Here, we determined that DPD in mice and humans increases serum markers of metabolic health. In lean mice, DPD promoted metabolic inefficiency by increasing carbohydrate and fat oxidation. In nutritional and polygenic murine models of obesity, DPD prevented and curtailed the development of impaired glucose homeostasis independently of obesity and food intake. DPD-mediated metabolic inefficiency and improvement of glucose homeostasis were independent of uncoupling protein 1 (UCP1), but required expression of liver-derived fibroblast growth factor 21 (FGF21) in both lean and obese mice. FGF21 expression and secretion as well as the associated metabolic remodeling induced by DPD also required induction of liver-integrated stress response–driven nuclear protein 1 (NUPR1). Insufficiency of select nonessential amino acids (NEAAs) was necessary and adequate for NUPR1 and subsequent FGF21 induction and secretion in hepatocytes in vitro and in vivo. Taken together, these data indicate that DPD promotes improved glucose homeostasis through an NEAA insufficiency–induced liver NUPR1/FGF21 axis. PMID:27548521

  6. The unconventional secretion of stress-inducible protein 1 by a heterogeneous population of extracellular vesicles.

    PubMed

    Hajj, Glaucia N M; Arantes, Camila P; Dias, Marcos Vinicios Salles; Roffé, Martín; Costa-Silva, Bruno; Lopes, Marilene H; Porto-Carreiro, Isabel; Rabachini, Tatiana; Lima, Flávia R; Beraldo, Flávio H; Prado, Marco A M; Prado, Marco M A; Linden, Rafael; Martins, Vilma R

    2013-09-01

    The co-chaperone stress-inducible protein 1 (STI1) is released by astrocytes, and has important neurotrophic properties upon binding to prion protein (PrP(C)). However, STI1 lacks a signal peptide and pharmacological approaches pointed that it does not follow a classical secretion mechanism. Ultracentrifugation, size exclusion chromatography, electron microscopy, vesicle labeling, and particle tracking analysis were used to identify three major types of extracellular vesicles (EVs) released from astrocytes with sizes ranging from 20-50, 100-200, and 300-400 nm. These EVs carry STI1 and present many exosomal markers, even though only a subpopulation had the typical exosomal morphology. The only protein, from those evaluated here, present exclusively in vesicles that have exosomal morphology was PrP(C). STI1 partially co-localized with Rab5 and Rab7 in endosomal compartments, and a dominant-negative for vacuolar protein sorting 4A (VPS4A), required for formation of multivesicular bodies (MVBs), impaired EV and STI1 release. Flow cytometry and PK digestion demonstrated that STI1 localized to the outer leaflet of EVs, and its association with EVs greatly increased STI1 activity upon PrP(C)-dependent neuronal signaling. These results indicate that astrocytes secrete a diverse population of EVs derived from MVBs that contain STI1 and suggest that the interaction between EVs and neuronal surface components enhances STI1-PrP(C) signaling.

  7. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution.

    PubMed

    Maida, Adriano; Zota, Annika; Sjøberg, Kim A; Schumacher, Jonas; Sijmonsma, Tjeerd P; Pfenninger, Anja; Christensen, Marie M; Gantert, Thomas; Fuhrmeister, Jessica; Rothermel, Ulrike; Schmoll, Dieter; Heikenwälder, Mathias; Iovanna, Juan L; Stemmer, Kerstin; Kiens, Bente; Herzig, Stephan; Rose, Adam J

    2016-09-01

    Dietary protein intake is linked to an increased incidence of type 2 diabetes (T2D). Although dietary protein dilution (DPD) can slow the progression of some aging-related disorders, whether this strategy affects the development and risk for obesity-associated metabolic disease such as T2D is unclear. Here, we determined that DPD in mice and humans increases serum markers of metabolic health. In lean mice, DPD promoted metabolic inefficiency by increasing carbohydrate and fat oxidation. In nutritional and polygenic murine models of obesity, DPD prevented and curtailed the development of impaired glucose homeostasis independently of obesity and food intake. DPD-mediated metabolic inefficiency and improvement of glucose homeostasis were independent of uncoupling protein 1 (UCP1), but required expression of liver-derived fibroblast growth factor 21 (FGF21) in both lean and obese mice. FGF21 expression and secretion as well as the associated metabolic remodeling induced by DPD also required induction of liver-integrated stress response-driven nuclear protein 1 (NUPR1). Insufficiency of select nonessential amino acids (NEAAs) was necessary and adequate for NUPR1 and subsequent FGF21 induction and secretion in hepatocytes in vitro and in vivo. Taken together, these data indicate that DPD promotes improved glucose homeostasis through an NEAA insufficiency-induced liver NUPR1/FGF21 axis.

  8. Antibody responses in protein-energy restricted beef cows and their cold stressed progeny.

    PubMed Central

    Olson, D P; Bull, R C

    1986-01-01

    Antibody titers were measured in serum and colostral whey of pregnant beef cows immunized with tetanus toxoid and chicken red blood cells while being fed diets either restricted or nonrestricted in protein and/or metabolizable energy during the last 150 days of gestation. Serum antibody titers were also measured in the colostrum-fed, cold and noncold stressed progeny that were actively immunized with dinitrophenol conjugated to keyhole limpet hemocyanin. In general, there were no major or sustained differences in humoral immune responses to injection of tetanus toxoid or chicken red blood cells between cows fed diets that were adequate or restricted in protein or metabolizable energy. In the few cases where serum antibody titers to tetanus toxoid or chicken red blood cells differed (P less than 0.05) between adequately fed or restricted cows, the differences were no greater than twofold. Anti-chicken red blood cell titers were uniformly low (P less than 0.05) by a magnitude of two to threefold in colostral whey of cows restricted in protein and/or metabolizable energy when compared to titers in cows fed adequate amounts of protein and metabolizable energy. With one exception, neither maternal dietary restriction nor cold exposure had a major effect on the ability of the calves to absorb antitetanus toxoid and chicken red blood cell antibodies from colostrum. The humoral immune responses of all calves to injection of keyhole limpet hemocyanin and dinitrophenol were similar in magnitude. PMID:3091232

  9. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response

    NASA Technical Reports Server (NTRS)

    Sorescu, George P.; Sykes, Michelle; Weiss, Daiana; Platt, Manu O.; Saha, Aniket; Hwang, Jinah; Boyd, Nolan; Boo, Yong C.; Vega, J. David; Taylor, W. Robert; Jo, Hanjoong

    2003-01-01

    Atherosclerosis is now viewed as an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions, including oscillatory shear stress (OS), in branched arteries. In contrast, the arterial regions exposed to laminar shear (LS) are relatively lesion-free. The mechanisms underlying the opposite effects of OS and LS on the inflammatory and atherogenic processes are not clearly understood. Here, through DNA microarrays, protein expression, and functional studies, we identify bone morphogenic protein 4 (BMP4) as a mechanosensitive and pro-inflammatory gene product. Exposing endothelial cells to OS increased BMP4 protein expression, whereas LS decreased it. In addition, we found BMP4 expression only in the selective patches of endothelial cells overlying foam cell lesions in human coronary arteries. The same endothelial patches also expressed higher levels of intercellular cell adhesion molecule-1 (ICAM-1) protein compared with those of non-diseased areas. Functionally, we show that OS and BMP4 induced ICAM-1 expression and monocyte adhesion by a NFkappaB-dependent mechanism. We suggest that BMP4 is a mechanosensitive, inflammatory factor playing a critical role in early steps of atherogenesis in the lesion-prone areas.

  10. Synthesis of Mycoplasma arginine deiminase in E. coli using stress-responsive proteins.

    PubMed

    Ahn, Keum-Young; Lee, Boram; Han, Kyung-Yeon; Song, Jong-Am; Lee, Doo Sung; Lee, Jeewon

    2014-09-01

    We found Escherichia coli proteins, elongation factor Ts (Tsf), and malate dehydrogenase (Mdh) that can exist in the form of native and soluble proteins even under stress situation such as heat shock and protein denaturing condition. To examine their property as solubility enhancers, aggregation-prone Mycoplasma arginine deiminase (mADI), which has been suggested as anti-cancer agent, was fused to the C-terminal of each of them and cloned into pET28a to be expressed in the E. coli cytoplasm. When mADI was fused to fusion partners (Mdh, Tsf), a significant portion of the recombinant mADI was expressed in a soluble fraction (>90%) whereas the directly expressed mADI was aggregated to the inclusion body. In addition, recombinant mADI released from the fusion tag retained its soluble form and presented its specific enzymatic activity of converting l-arginine into citrulline (>10 U/mg). These results show that Tsf and Mdh could serve as effective solubility enhancers for aggregation-prone proteins (e.g. mADI in this case) when used as fusion expression partners in bacterial expression systems.

  11. The Alfin-like homeodomain finger protein AL5 suppresses multiple negative factors to confer abiotic stress tolerance in Arabidopsis.

    PubMed

    Wei, Wei; Zhang, Yu-Qin; Tao, Jian-Jun; Chen, Hao-Wei; Li, Qing-Tian; Zhang, Wan-Ke; Ma, Biao; Lin, Qing; Zhang, Jin-Song; Chen, Shou-Yi

    2015-03-01

    Plant homeodomain (PHD) finger proteins affect processes of growth and development by changing transcription and reading epigenetic histone modifications, but their functions in abiotic stress responses remain largely unclear. Here we characterized seven Arabidopsis thaliana Alfin1-like PHD finger proteins (ALs) in terms of the responses to abiotic stresses. ALs localized to the nucleus and repressed transcription. Except AL6, all the ALs bound to G-rich elements. Mutations of the amino acids at positions 34 and 35 in AL6 caused loss of ability to bind to G-rich elements. Expression of the AL genes responded differentially to osmotic stress, salt, cold and abscisic acid treatments. AL5-over-expressing plants showed higher tolerance to salt, drought and freezing stress than Col-0. Consistently, al5 mutants showed reduced stress tolerance. We used ChIP-Seq assays to identify eight direct targets of AL5, and found that AL5 binds to the promoter regions of these genes. Knockout mutants of five of these target genes exhibited varying tolerances to stresses. These results indicate that AL5 inhibits multiple signaling pathways to confer stress tolerance. Our study sheds light on mechanisms of AL5-mediated signaling in abiotic stress responses, and provides tools for improvement of stress tolerance in crop plants.

  12. PLIN2 is a Key Regulator of the Unfolded Protein Response and Endoplasmic Reticulum Stress Resolution in Pancreatic β Cells

    PubMed Central

    Chen, Elaine; Tsai, Tsung Huang; Li, Lan; Saha, Pradip; Chan, Lawrence; Chang, Benny Hung-Junn

    2017-01-01

    Progressive pancreatic β cell failure underlies the transition of impaired glucose tolerance to overt diabetes; endoplasmic reticulum (ER) stress expedites β cell failure in this situation. ER stress can be elicited by lipotoxicity and an increased demand for insulin in diabetes. We previously reported that the lipid droplet protein perilipin 2 (PLIN2) modulates lipid homeostasis in the liver. Here, we show that PLIN2 modulates the unfolded protein response (UPR) and ER stress in pancreatic β cells. PLIN2 expression goes up when β cells are exposed to a lipid load or to chemical ER stress inducers. Downregulation of PLIN2 ameliorates the effects of fatty acid- and chemical-induced ER stress, whereas PLIN2 overexpression exacerbates them. Diabetic Akita mice, which carry a heterozygous C96Y Ins2 mutation, exhibit elevated PLIN2 expression and ER stress in their β cells. Genetic ablation of Plin2 in Akita mice leads to mitigation of ER stress, forestalling β cell apoptosis, partially restoring β cell mass, and ameliorating diabetes. Mechanistic experiments showed that PLIN2 downregulation is associated with enhanced autophagic flux and accelerated ER stress resolution. In sum, we have identified a crucial role for PLIN2 in modulating autophagy, ER stress resolution, and β cell apoptosis and survival. PMID:28102311

  13. p53 Superfamily proteins in marine bivalve cancer and stress biology.

    PubMed

    Walker, Charles W; Van Beneden, Rebecca J; Muttray, Annette F; Böttger, S Anne; Kelley, Melissa L; Tucker, Abraham E; Thomas, W Kelley

    2011-01-01

    The human p53 tumour suppressor protein is inactivated in many cancers and is also a major player in apoptotic responses to cellular stress. The p53 protein and the two other members of this protein family (p63, p73) are encoded by distinct genes and their functions have been extensively documented for humans and some other vertebrates. The structure and relative expression levels for members of the p53 superfamily have also been reported for most major invertebrate taxa. The functions of homologous proteins have been investigated for only a few invertebrates (specifically, p53 in flies, nematodes and recently a sea anemone). These studies of classical model organisms all suggest that the gene family originally evolved to mediate apoptosis of damaged germ cells or to protect germ cells from genotoxic stress. Here, we have correlated data from a number of molluscan and other invertebrate sequencing projects to provide a framework for understanding p53 signalling pathways in marine bivalve cancer and stress biology. These data suggest that (a) the two identified p53 and p63/73-like proteins in soft shell clam (Mya arenaria), blue mussel (Mytilus edulis) and Northern European squid (Loligo forbesi) have identical core sequences and may be splice variants of a single gene, while some molluscs and most other invertebrates have two or more distinct genes expressing different p53 family members; (b) transcriptional activation domains (TADs) in bivalve p53 and p63/73-like protein sequences are 67-69% conserved with human p53, while those in ecdysozoan, cnidarian, placozoan and choanozoan eukaryotes are ≤33% conserved; (c) the Mdm2 binding site in the transcriptional activation domain is 100% conserved in all sequenced bivalve p53 proteins (e.g. Mya, Mytilus, Crassostrea and Spisula) but is not present in other non-deuterostome invertebrates; (d) an Mdm2 homologue has been cloned for Mytilus trossulus; (e) homologues for both human p53 upstream regulatory and

  14. Cellular and Molecular Mechanisms of Heat Stress-Induced Up-Regulation of Occludin Protein Expression

    PubMed Central

    Dokladny, Karol; Ye, Dongmei; Kennedy, John C.; Moseley, Pope L.; Ma, Thomas Y.

    2008-01-01

    The heat stress (HS)-induced increase in occludin protein expression has been postulated to be a protective response against HS-induced disruption of the intestinal epithelial tight junction barrier. The aim of this study was to elucidate the cellular and molecular processes that mediate the HS-induced up-regulation of occludin expression in Caco-2 cells. Exposure to HS (39°C or 41°C) resulted in increased expression of occludin protein; this was preceded by an increase in occludin mRNA transcription and promoter activity. HS-induced activation of heat shock factor-1 (HSF-1) resulted in cytoplasmic-to-nuclear translocation of HSF-1 and binding to its binding motif in the occludin promoter region. HSF-1 activation was associated with an increase in occludin promoter activity, mRNA transcription, and protein expression; which were abolished by the HSF-1 inhibitor quercetin. Targeted HSF-1 knock-down by siRNA transfection inhibited the HSF-1-induced increase in occulin expression and junctional localization of occulin protein. Site-directed mutagenesis of the HSF-1 binding motif in the occludin promoter region inhibited HS-induced binding of HSF-1 to the occludin promoter region and subsequent promoter activity. In conclusion, our data show for the first time that the HS-induced increase in occludin protein expression is mediated by HSF-1 activation and subsequent binding of HSF-1 to the occludin promoter, which initiates a series of molecular and cellular events culminating in increased junctional localization of occludin protein. PMID:18276783

  15. Structure of the Periplasmic Stress Response Protein CpxP▿†

    PubMed Central

    Thede, Gina L.; Arthur, David C.; Edwards, Ross A.; Buelow, Daelynn R.; Wong, Julia L.; Raivio, Tracy L.; Glover, J. N. Mark

    2011-01-01

    CpxP is a novel bacterial periplasmic protein with no homologues of known function. In Gram-negative enteric bacteria, CpxP is thought to interact with the two-component sensor kinase, CpxA, to inhibit induction of the Cpx envelope stress response in the absence of protein misfolding. CpxP has also been shown to facilitate DegP-mediated proteolysis of misfolded proteins. Six mutations that negate the ability of CpxP to function as a signaling protein are localized in or near two conserved LTXXQ motifs that define a class of proteins with similarity to CpxP, Pfam PF07813. To gain insight into how these mutations might affect CpxP signaling and/or proteolytic adaptor functions, the crystal structure of CpxP from Escherichia coli was determined to 2.85-Å resolution. The structure revealed an antiparallel dimer of intertwined α-helices with a highly basic concave surface. Each protomer consists of a long, hooked and bent hairpin fold, with the conserved LTXXQ motifs forming two diverging turns at one end. Biochemical studies demonstrated that CpxP maintains a dimeric state but may undergo a slight structural adjustment in response to the inducing cue, alkaline pH. Three of the six previously characterized cpxP loss-of-function mutations, M59T, Q55P, and Q128H, likely result from a destabilization of the protein fold, whereas the R60Q, D61E, and D61V mutations may alter intermolecular interactions. PMID:21317318

  16. Apple F-Box Protein MdMAX2 Regulates Plant Photomorphogenesis and Stress Response

    PubMed Central

    An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2016-01-01

    MAX2 (MORE AXILLARY GROWTH2) is involved in diverse physiological processes, including photomorphogenesis, the abiotic stress response, as well as karrikin and strigolactone signaling-mediated shoot branching. In this study, MdMAX2, an F-box protein that is a homolog of Arabidopsis MAX2, was identified and characterized. Overexpression of MdMAX2 in apple calli enhanced the accumulation of anthocyanin. Ectopic expression of MdMAX2 in Arabidopsis exhibited photomorphogenesis phenotypes, including increased anthocyanin content and decreased hypocotyl length. Further study indicated that MdMAX2 might promote plant photomorphogenesis by affecting the auxin signaling as well as other plant hormones. Transcripts of MdMAX2 were noticeably up-regulated in response to NaCl and Mannitol treatments. Moreover, compared with the wild-type, the MdMAX2-overexpressing apple calli and Arabidopsis exhibited increased tolerance to salt and drought stresses. Taken together, these results suggest that MdMAX2 plays a positive regulatory role in plant photomorphogenesis and stress response. PMID:27909441

  17. Overexpression of mitochondrial uncoupling protein conferred resistance to heat stress and Botrytis cinerea infection in tomato.

    PubMed

    Chen, Shuangchen; Liu, Airong; Zhang, Shaojie; Li, Cong; Chang, Rui; Liu, Dilin; Ahammed, Golam Jalal; Lin, Xiaomin

    2013-12-01

    The mitochondrial uncoupling protein genes improve plant stress tolerance by minimizing oxidative damage. However, the underlying mechanism of redox homeostasis and antioxidant signaling associated with reactive oxygen species (ROS) accumulation remained poorly understood. We introduced LeUCP gene into tomato line Ailsa Craig via Agrobacterium-mediated method. Transgenic lines were confirmed for integration into the tomato genome using PCR and Southern blot hybridization. One to three copies of the transgene were integrated into the tomato nuclear genome. Transcription of LeUCP in various transgenic lines was determined using real-time PCR. Transgenic tomato overexpressing LeUCP showed higher growth rate, chlorophyll content, maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching coefficient (qP) and electron transport rate (ETR), increased contents of AsA and proline, higher AsA/DHA ratio and GalLDH activity, reduced ROS accumulation, and enhanced heat stress tolerance compared with the control plants. The transgenic tomato plants also exhibited significant increases in tolerance against the necrotrophic fungus Botrytis cinerea. Taken together, our results suggest that LeUCP may play a pivotal role in controlling a broad range of abiotic and biotic stresses in plants by increasing redox level and antioxidant capacity, elevating electron transport rate, lowering H2O2 and lipid peroxidation accumulation.

  18. Lipopolysaccharide Binding Protein and Oxidative Stress in a Multiple Sclerosis Model.

    PubMed

    Escribano, Begoña M; Medina-Fernández, Francisco J; Aguilar-Luque, Macarena; Agüera, Eduardo; Feijoo, Montserrat; Garcia-Maceira, Fe I; Lillo, Rafael; Vieyra-Reyes, Patricia; Giraldo, Ana I; Luque, Evelio; Drucker-Colín, René; Túnez, Isaac

    2017-01-01

    Recent findings in experimental autoimmune encephalomyelitis (EAE) suggest that altering certain bacterial populations present in the gut may lead to a proinflammatory condition, that could result in the development of multiple sclerosis (MS). Also, Reactive Oxygen Species seem to be involved in the course of MS. In this study, it has been aimed to relate all these variables starting from an analysis of the lipopolysaccharide (LPS) and LPS-binding protein (LBP) with the determination of parameters related to oxidative stress in the blood, brain and spinal cord. For this purpose, samples obtained from EAE rats and relapsing-remitting (RRMS) MS patients were used. In addition, EAE rats were treated with Natalizumab, N-acetyl-cysteine and dimethyl fumarate. Natalizumab was also employed in RRMS. The results of this study revealed an improvement in the clinical symptoms of the EAE and MS with the treatments, as well as a reduction in the oxidative stress parameters and in LBP. Correlations between the clinical variables of the disease, i.e. oxidative damage and LBP, were established. Although the conclusions of this research are indeed relevant, further investigation would be necessary to establish the intrinsic mechanisms of the MS-oxidative stress-microbiota relationship.

  19. Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management.

    PubMed

    Singh, Amarjeet; Pandey, Amita; Srivastava, Ashish K; Tran, Lam-Son Phan; Pandey, Girdhar K

    2016-12-01

    Protein phosphatases (PPs) counteract kinases in reversible phosphorylation events during numerous signal transduction pathways in eukaryotes. Type 2C PPs (PP2Cs) represent the major group of PPs in plants, and recent discovery of novel abscisic acid (ABA) receptors (ABARs) has placed the PP2Cs at the center stage of the major signaling pathway regulating plant responses to stresses and plant development. Several studies have provided deep insight into vital roles of the PP2Cs in various plant processes. Global analyses of the PP2C gene family in model plants have contributed to our understanding of their genomic diversity and conservation, across plant species. In this review, we discuss the genomic and structural accounts of PP2Cs in plants. Recent advancements in their interaction paradigm with ABARs and sucrose nonfermenting related kinases 2 (SnRK2s) in ABA signaling are also highlighted. In addition, expression analyses and important roles of PP2Cs in the regulation of biotic and abiotic stress responses, potassium (K(+)) deficiency signaling, plant immunity and development are elaborated. Knowledge of functional roles of specific PP2Cs could be exploited for the genetic manipulation of crop plants. Genetic engineering using PP2C genes could provide great impetus in the agricultural biotechnology sector in terms of imparting desired traits, including a higher degree of stress tolerance and productivity without a yield penalty.

  20. Cth2 Protein Mediates Early Adaptation of Yeast Cells to Oxidative Stress Conditions.

    PubMed

    Castells-Roca, Laia; Pijuan, Jordi; Ferrezuelo, Francisco; Bellí, Gemma; Herrero, Enrique

    2016-01-01

    Cth2 is an mRNA-binding protein that participates in remodeling yeast cell metabolism in iron starvation conditions by promoting decay of the targeted molecules, in order to avoid excess iron consumption. This study shows that in the absence of Cth2 immediate upregulation of expression of several of the iron regulon genes (involved in high affinity iron uptake and intracellular iron redistribution) upon oxidative stress by hydroperoxide is more intense than in wild type conditions where Cth2 is present. The oxidative stress provokes a temporary increase in the levels of Cth2 (itself a member of the iron regulon). In such conditions Cth2 molecules accumulate at P bodies-like structures when the constitutive mRNA decay machinery is compromised. In addition, a null Δcth2 mutant shows defects, in comparison to CTH2 wild type cells, in exit from α factor-induced arrest at the G1 stage of the cell cycle when hydroperoxide treatment is applied. The cell cycle defects are rescued in conditions that compromise uptake of external iron into the cytosol. The observations support a role of Cth2 in modulating expression of diverse iron regulon genes, excluding those specifically involved in the reductive branch of the high-affinity transport. This would result in immediate adaptation of the yeast cells to an oxidative stress, by controlling uptake of oxidant-promoting iron cations.

  1. Cth2 Protein Mediates Early Adaptation of Yeast Cells to Oxidative Stress Conditions

    PubMed Central

    Ferrezuelo, Francisco; Bellí, Gemma; Herrero, Enrique

    2016-01-01

    Cth2 is an mRNA-binding protein that participates in remodeling yeast cell metabolism in iron starvation conditions by promoting decay of the targeted molecules, in order to avoid excess iron consumption. This study shows that in the absence of Cth2 immediate upregulation of expression of several of the iron regulon genes (involved in high affinity iron uptake and intracellular iron redistribution) upon oxidative stress by hydroperoxide is more intense than in wild type conditions where Cth2 is present. The oxidative stress provokes a temporary increase in the levels of Cth2 (itself a member of the iron regulon). In such conditions Cth2 molecules accumulate at P bodies-like structures when the constitutive mRNA decay machinery is compromised. In addition, a null Δcth2 mutant shows defects, in comparison to CTH2 wild type cells, in exit from α factor-induced arrest at the G1 stage of the cell cycle when hydroperoxide treatment is applied. The cell cycle defects are rescued in conditions that compromise uptake of external iron into the cytosol. The observations support a role of Cth2 in modulating expression of diverse iron regulon genes, excluding those specifically involved in the reductive branch of the high-affinity transport. This would result in immediate adaptation of the yeast cells to an oxidative stress, by controlling uptake of oxidant-promoting iron cations. PMID:26824473

  2. Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades

    PubMed Central

    2009-01-01

    Background Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. Results To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Conclusion Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences. PMID:19821996

  3. VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression

    PubMed Central

    Pitzschke, Andrea; Djamei, Armin; Teige, Markus; Hirt, Heribert

    2009-01-01

    The plant pathogen Agrobacterium tumefaciens transforms plant cells by delivering its T-DNA into the plant cell nucleus where it integrates into the plant genome and causes tumor formation. A key role of VirE2-interacting protein 1 (VIP1) in the nuclear import of T-DNA during Agrobacterium-mediated plant transformation has been unravelled and VIP1 was shown to undergo nuclear localization upon phosphorylation by the mitogen-activated protein kinase MPK3. Here, we provide evidence that VIP1 encodes a functional bZIP transcription factor that stimulates stress-dependent gene expression by binding to VIP1 response elements (VREs), a DNA hexamer motif. VREs are overrepresented in promoters responding to activation of the MPK3 pathway such as Trxh8 and MYB44. Accordingly, plants overexpressing VIP1 accumulate high levels of Trxh8 and MYB44 transcripts, whereas stress-induced expression of these genes is impaired in mpk3 mutants. Trxh8 and MYB44 promoters are activated by VIP1 in a VRE-dependent manner. VIP1 strongly enhances expression from a synthetic promoter harboring multiple VRE copies and directly interacts with VREs in vitro and in vivo. Chromatin immunoprecipitation assays of the MYB44 promoter confirm that VIP1 binding to VREs is enhanced under conditions of MPK3 pathway stimulation. These results provide molecular insight into the cellular mechanism of target gene regulation by the MPK3 pathway. PMID:19820165

  4. Cantharidins Induce ER Stress and a Terminal Unfolded Protein Response in OSCC

    PubMed Central

    Xi, Y.; Garshott, D.M.; Brownell, A.L.; Yoo, G.H.; Lin, H.-S.; Freeburg, T.L.; Yoo, N.G.; Kaufman, R.J.; Callaghan, M.U.

    2015-01-01

    Mortality and morbidity associated with oral squamous cell carcinoma (OSCC) remain unacceptably high with disfiguring treatment options and a death rate of 1 per hour in the United States. The approval of cituximab for advanced OSCC has been the only new treatment for these patients since the 1970s, although it has not significantly increased overall survival. To address the paucity of effective new therapies, we undertook a high-throughput screen to discover small molecules and natural products that could induce endoplasmic reticulum (ER) stress and enforce a terminal unfolded protein response (UPR) in OSCC. The terpenoid cantharidin (CNT), previously used to treat various malignancies in culture-specific medical practices for over 2,000 y, emerged as a hit. CNT and its analog, cantharidic acid, potently induced protein and gene expression profiles consistent with the activation of ER stress, the UPR, and apoptosis in OSCC cells. Murine embryonic fibroblasts null for the UPR-associated transcription factors Atf4 or Chop were significantly protected from CNT, implicating a key role for the UPR in the death response. These data validate that our high-throughput screen can identify novel modulators of UPR signaling and that such compounds might provide a new therapeutic approach to treating patients with OSCC. PMID:25425581

  5. Arabidopsis MDA1, a nuclear-encoded protein, functions in chloroplast development and abiotic stress responses.

    PubMed

    Robles, Pedro; Micol, José Luis; Quesada, Víctor

    2012-01-01

    Most chloroplast and mitochondrial proteins are encoded by nuclear genes, whose functions remain largely unknown because mutant alleles are lacking. A reverse genetics screen for mutations affecting the mitochondrial transcription termination factor (mTERF) family in Arabidopsis thaliana allowed us to identify 75 lines carrying T-DNA insertions. Two of them were homozygous for insertions in the At4g14605 gene, which we dubbed MDA1 (MTERF DEFECTIVE IN Arabidopsis1). The mda1 mutants exhibited altered chloroplast morphology and plant growth, and reduced pigmentation of cotyledons, leaves, stems and sepals. The mda1 mutations enhanced salt and osmotic stress tolerance and altered sugar responses during seedling establishment, possibly as a result of reduced ABA sensitivity. Loss of MDA1 function caused up-regulation of the RpoTp/SCA3 nuclear gene encoding a plastid RNA polymerase and modified the steady-state levels of chloroplast gene transcripts. Double mutant analyses indicated that MDA1 and the previously described mTERF genes SOLDAT10 and RUG2 act in different pathways. Our findings reveal a new role for mTERF proteins in the response to abiotic stress, probably through perturbed ABA retrograde signalling resulting from a disruption in chloroplast homeostasis.

  6. The absence of protein--sparing effects utilizing crystalline amino acids in stressed patients.

    PubMed Central

    Ching, N; Mills, C J; Grossi, C; Angers, J W; Jham, G; Zurawinsky, H; Nealon, T F

    1979-01-01

    The protein-sparing effects of the peripheral infusion of crystalline amino acids (PAA) was studied metabolically in selected surgical patients subjected to various degrees of stress. Twenty-one patients (sixteen cancer patients receiving chemotherapy and/or radiotherapy, three with major abdominal traumatic injuries and four with paralytic ileus) were infused with 2 1/24 hours of a solution of 4.2% Travasol amino acids with only 5% glucose as a source of nonprotein calories. One-half of the cancer patients were also allowed ad libitum oral intake of a regular hospital diet or Vivonex-HN. The nutritional status was evaluated by measuring changes in body weight, serum albumin levels and nitrogen balance. Body weight decreased in only the trauma patients. When these solutions were the sole source of nutrients all patients were in negative nitrogen balance and had significant decreases in their serum albumin levels. Serum albumin levels were preserved only when extra sources of calories were provided. The infusion of the crystalline amino acids without adequate levels of nonprotein energy did not conserve protein in these stressed patients. PMID:116604

  7. Application of Universal Stress Proteins in Probing the Dynamics of Potent Degraders in Complex Terephthalate Metagenome

    PubMed Central

    Mbah, Andreas N.; Isokpehi, Raphael D.

    2013-01-01

    The culture-independent strategies to study microbial diversity and function have led to a revolution in environmental genomics, enabling fundamental questions about the distribution of microbes and their influence on bioremediation to be addressed. In this research we used the expression of universal stress proteins as a probe to determine the changes in degrading microbial population from a highly toxic terephthalate wastewater to a less toxic activated sludge bioreactor. The impact of relative toxicities was significantly elaborated at the levels of genus and species. The results indicated that 23 similar prokaryotic phyla were represented in both metagenomes irrespective of their relative abundance. Furthermore, the following bacteria taxa Micromonosporaceae, Streptomyces, Cyanothece sp. PCC 7822, Alicyclobacillus acidocaldarius, Bacillus halodurans, Leuconostoc mesenteroides, Lactococcus garvieae, Brucellaceae, Ralstonia solanacearum, Verminephrobacter eiseniae, Azoarcus, Acidithiobacillus ferrooxidans, Francisella tularensis, Methanothermus fervidus, and Methanocorpusculum labreanum were represented only in the activated sludge bioreactor. These highly dynamic microbes could serve as taxonomic biomarkers for toxic thresholds related to terephthalate and its derivatives. This paper, highlights the application of universal stress proteins in metagenomics analysis. Dynamics of microbial consortium of this nature can have future in biotechnological applications in bioremediation of toxic chemicals and radionuclides. PMID:24151583

  8. Analysis of Copper-Binding Proteins in Rice Radicles Exposed to Excess Copper and Hydrogen Peroxide Stress.

    PubMed

    Zhang, Hongxiao; Xia, Yan; Chen, Chen; Zhuang, Kai; Song, Yufeng; Shen, Zhenguo

    2016-01-01

    Copper (Cu) is an essential micronutrient for plants, but excess Cu can inactivate and disturb the protein function due to unavoidable binding to proteins at the cellular level. As a redox-active metal, Cu toxicity is mediated by the formation of reactive oxygen species (ROS). Cu-binding structural motifs may alleviate Cu-induced damage by decreasing free Cu(2+) activity in cytoplasm or scavenging ROS. The identification of Cu-binding proteins involved in the response of plants to Cu or ROS toxicity may increase our understanding the mechanisms of metal toxicity and tolerance in plants. This study investigated change of Cu-binding proteins in radicles of germinating rice seeds under excess Cu and oxidative stress using immobilized Cu(2+) affinity chromatography, two-dimensional electrophoresis, and mass spectra analysis. Quantitative image analysis revealed that 26 protein spots showed more than a 1.5-fold difference in abundances under Cu or H2O2 treatment compared to the control. The identified Cu-binding proteins were involved in anti-oxidative defense, stress response and detoxification, protein synthesis, protein modification, and metabolism regulation. The present results revealed that 17 out of 24 identified Cu-binding proteins have a similar response to low concentration Cu (20 μM Cu) and H2O2 stress, and 5 out of 24 were increased under low and high concentration Cu (100 μM Cu) but unaffected under H2O2 stress, which hint Cu ions can regulate Cu-binding proteins accumulation by H2O2 or no H2O2 pathway to cope with excess Cu in cell. The change pattern of these Cu-binding proteins and their function analysis warrant to further study the roles of Cu ions in these Cu-binding proteins of plant cells.

  9. Analysis of Copper-Binding Proteins in Rice Radicles Exposed to Excess Copper and Hydrogen Peroxide Stress

    PubMed Central

    Zhang, Hongxiao; Xia, Yan; Chen, Chen; Zhuang, Kai; Song, Yufeng; Shen, Zhenguo

    2016-01-01

    Copper (Cu) is an essential micronutrient for plants, but excess Cu can inactivate and disturb the protein function due to unavoidable binding to proteins at the cellular level. As a redox-active metal, Cu toxicity is mediated by the formation of reactive oxygen species (ROS). Cu-binding structural motifs may alleviate Cu-induced damage by decreasing free Cu2+ activity in cytoplasm or scavenging ROS. The identification of Cu-binding proteins involved in the response of plants to Cu or ROS toxicity may increase our understanding the mechanisms of metal toxicity and tolerance in plants. This study investigated change of Cu-binding proteins in radicles of germinating rice seeds under excess Cu and oxidative stress using immobilized Cu2+ affinity chromatography, two-dimensional electrophoresis, and mass spectra analysis. Quantitative image analysis revealed that 26 protein spots showed more than a 1.5-fold difference in abundances under Cu or H2O2 treatment compared to the control. The identified Cu-binding proteins were involved in anti-oxidative defense, stress response and detoxification, protein synthesis, protein modification, and metabolism regulation. The present results revealed that 17 out of 24 identified Cu-binding proteins have a similar response to low concentration Cu (20 μM Cu) and H2O2 stress, and 5 out of 24 were increased under low and high concentration Cu (100 μM Cu) but unaffected under H2O2 stress, which hint Cu ions can regulate Cu-binding proteins accumulation by H2O2 or no H2O2 pathway to cope with excess Cu in cell. The change pattern of these Cu-binding proteins and their function analysis warrant to further study the roles of Cu ions in these Cu-binding proteins of plant cells. PMID:27582750

  10. Heat shock proteins in porcine ovary: synthesis, accumulation and regulation by stress and hormones.

    PubMed

    Sirotkin, Alexander V; Bauer, Miroslav

    2011-07-01

    The present studies aimed to understand the interrelationships between stress, hormones and heat shock proteins (HSPs) in the ovary. We examined (1) whether HSP70.2, HSP72 and HSP105/110 can be produced and accumulated in porcine ovarian tissue, (2) whether these HSPs could be indicators of stress, i.e. whether two kinds of stress (high temperatures and malnutrition/serum deprivation) can affect them, and (3) whether some hormonal regulators of ovarian functions (insulin-like growth factor (IGF)-I, leptin and follicle-stimulating hormone (FSH)) can affect these HSPs and response of ovaries to HSP-related stress. We analysed the expression of HSP70.2, HSP72 and HSP105/110 mRNA (by using real-time reverse transcriptase polymerase chain reaction) in porcine ovarian granulosa cells, as well as the accumulation of HSP70 protein (by using sodium dodecyl sulphate polyacrylamide gel electrophoresis-Western) in either whole ovarian follicles and granulose cells cultured at normal (37.5°C) or high (41.5°C) temperature, with and without serum and with and without IGF-I, leptin and FSH. Expression of mRNA for HSP70.2, HSP72 and HSP105/110 in ovarian granulosa cells and accumulation of HSP70 protein in whole ovarian follicles and granulosa cells were demonstrated. In all the groups, addition of either IGF-I, leptin and FSH reduced the expression of HSP70.2, HSP72 and HSP105/110 mRNA. Both high temperature, serum deprivation and their combination resulted in increase in mRNAs for all three analysed HSPs. Additions of either IGF-I, leptin and FSH prevented the stimulatory effect of both high temperature and serum deprivation on the transcription of HSP70.2, HSP72 and HSP105/110. In contrast, high temperature reduced accumulation of peptide HSP70 in both ovarian follicles and granulosa cell. Serum deprivation promoted accumulation of HSP70 in granulosa cells, but not in ovarian follicles. Addition of IGF-I, leptin and FSH was able to alter accumulation of HSP70 in both follicles

  11. Universal Stress Proteins Are Important for Oxidative and Acid Stress Resistance and Growth of Listeria monocytogenes EGD-e In Vitro and In Vivo

    PubMed Central

    Mohamed, Walid; Mraheil, Mobarak Abu; Mukherjee, Krishnendu; Billion, André; Aharonowitz, Yair; Chakraborty, Trinad; Hain, Torsten

    2011-01-01

    Background Pathogenic bacteria maintain a multifaceted apparatus to resist damage caused by external stimuli. As part of this, the universal stress protein A (UspA) and its homologues, initially discovered in Escherichia coli K-12 were shown to possess an important role in stress resistance and growth in several bacterial species. Methods and Findings We conducted a study to assess the role of three homologous proteins containing the UspA domain in the facultative intracellular human pathogen Listeria monocytogenes under different stress conditions. The growth properties of three UspA deletion mutants (Δlmo0515, Δlmo1580 and Δlmo2673) were examined either following challenge with a sublethal concentration of hydrogen peroxide or under acidic conditions. We also examined their ability for intracellular survival within murine macrophages. Virulence and growth of usp mutants were further characterized in invertebrate and vertebrate infection models. Tolerance to acidic stress was clearly reduced in Δlmo1580 and Δlmo0515, while oxidative stress dramatically diminished growth in all mutants. Survival within macrophages was significantly decreased in Δlmo1580 and Δlmo2673 as compared to the wild-type strain. Viability of infected Galleria mellonella larvae was markedly higher when injected with Δlmo1580 or Δlmo2673 as compared to wild-type strain inoculation, indicating impaired virulence of bacteria lacking these usp genes. Finally, we observed severely restricted growth of all chromosomal deletion mutants in mice livers and spleens as compared to the load of wild-type bacteria following infection. Conclusion This work provides distinct evidence that universal stress proteins are strongly involved in listerial stress response and survival under both in vitro and in vivo growth conditions. PMID:21980369

  12. The effects of heat stress on protein metabolism in lactating Holstein cows.

    PubMed

    Gao, S T; Guo, J; Quan, S Y; Nan, X M; Fernandez, M V Sanz; Baumgard, L H; Bu, D P

    2017-04-05

    Heat stress (HS) decreases milk protein synthesis beyond what would be expected based on the concomitant reduction in feed intake. The aim of the present study was to evaluate the direct effects of HS on milk protein production. Four multiparous, lactating Holstein cows (101 ± 10 d in milk, 574 ± 36 kg of body weight, 38 ± 2 kg of milk/d) were individually housed in environmental chambers and randomly allocated to 1 of 2 groups in a crossover design. The study was divided into 2 periods with 2 identical experimental phases (control phase and trial phase) within each period. During phase 1 or control phase (9 d), all cows were housed in thermal neutral conditions (TN; 20°C, 55% humidity) and fed ad libitum. During phase 2 or treatment phase (9 d), group 1 was exposed to cyclical HS conditions (32 to 36°C, 40% humidity) and fed ad libitum, whereas group 2 remained in TN conditions but was pair-fed (PFTN) to their HS counterparts to eliminate the confounding effects of dissimilar feed intake. After a 30-d washout period in TN conditions, the study was repeated (period 2), inverting the environmental treatments of the groups relative to period 1: group 2 was exposed to HS and group 1 to PFTN conditions. Compared with PFTN conditions, HS decreased milk yield (17.0%), milk protein (4.1%), milk protein yield (19%), 4% fat-corrected milk (23%), and fat yield (19%). Apparent digestibility of dry matter, organic matter, neutral detergent fiber, acid detergent fiber, crude protein, and ether extract was increased (11.1-42.9%) in HS cows, as well as rumen liquor ammonia (before feeding 33.2%; after feeding 29.5%) and volatile fatty acid concentration (45.3%) before feeding. In addition, ruminal pH was reduced (9.5 and 6% before and after feeding, respectively) during HS. Heat stress decreased plasma free amino acids (AA; 17.1%) and tended to increase and increased blood, urine, and milk urea nitrogen (17.2, 243, and 24.5%, respectively). Further, HS cows had reduced

  13. Dietary whey protein stimulates mitochondrial activity and decreases oxidative stress in mouse female brain.

    PubMed

    Shertzer, Howard G; Krishan, Mansi; Genter, Mary Beth

    2013-08-26

    In humans and experimental animals, protein-enriched diets are beneficial for weight management, muscle development, managing early stage insulin resistance and overall health. Previous studies have shown that in mice consuming a high fat diet, whey protein isolate (WPI) reduced hepatosteatosis and insulin resistance due in part to an increase in basal metabolic rate. In the current study, we examined the ability of WPI to increase energy metabolism in mouse brain. Female C57BL/6J mice were fed a normal AIN-93M diet for 12 weeks, with (WPI group) or without (Control group) 100g WPI/L drinking water. In WPI mice compared to controls, the oxidative stress biomarkers malondialdehyde and 4-hydroxyalkenals were 40% lower in brain homogenates, and the production of hydrogen peroxide and superoxide were 25-35% less in brain mitochondria. Brain mitochondria from WPI mice remained coupled, and exhibited higher rates of respiration with proportionately greater levels of cytochromes a+a3 and c+c1. These results suggested that WPI treatment increased the number or improved the function of brain mitochondria. qRT-PCR revealed that the gene encoding a master regulator of mitochondrial activity and biogenesis, Pgc-1alpha (peroxisome proliferator-activated receptor-gamma coactivator-1alpha) was elevated 2.2-fold, as were the PGC-1alpha downstream genes, Tfam (mitochondrial transcription factor A), Gabpa/Nrf-2a (GA-binding protein alpha/nuclear respiratory factor-2a), and Cox-6a1 (cytochrome oxidase-6a1). Each of these genes had twice the levels of transcript in brain tissue from WPI mice, relative to controls. There was no change in the expression of the housekeeping gene B2mg (beta-2 microglobulin). We conclude that dietary whey protein decreases oxidative stress and increases mitochondrial activity in mouse brain. Dietary supplementation with WPI may be a useful clinical intervention to treat conditions associated with oxidative stress or diminished mitochondrial activity in the

  14. Cold Stress and Nitrogen Deficiency Affected Protein Expression of Psychrotrophic Dyadobacter psychrophilus B2 and Pseudomonas jessenii MP1.

    PubMed

    Suyal, Deep C; Kumar, Saurabh; Yadav, Amit; Shouche, Yogesh; Goel, Reeta

    2017-01-01

    Nitrogen (N) deficiency and low temperature conditions are the prominent facet of Western Himalayan agro-ecosystems. A slight change in the environment alters the protein expression of the microorganisms. Therefore, proteomes of the two psychrotrophs Dyadobacter psychrophilus B2 and Pseudomonas jessenii MP1 were analyzed using two dimensional electrophoresis and MALDI-TOF-MS, to determine the physiological response of altitudinally different but indigenous microorganisms in response to cold stress under N depleting conditions. Functional assessment of 150 differentially expressed proteins from both the psychrotrophs revealed several mechanisms might be involved in cold stress adaptation, protein synthesis/modifications, energy metabolism, cell growth/maintenance, etc. In both the proteomes, abundance of the proteins related to energy production and stress were significantly increased while, proteins related to biosynthesis and energy consuming processes decreased. ATP synthase subunit alpha, beta, ATP-dependent Clp protease, Enolase, groL HtpG and N(2)-fixation sustaining protein CowN proteins were found to be expressed in both B2 and MP1, similarly to previously studied diazotrophs under low temperature N2 fixing conditions and therefore, can be considered as a biomarker for monitoring the nitrogen fixation in cold niches. Nevertheless, in both the diazotrophs, a good fraction of the proteins were related to hypothetical proteins which are still uncharacterized, thereby, suggesting the need for in-depth studies on cold adapted diazotrophs and their adaptive mechanisms.

  15. Cold Stress and Nitrogen Deficiency Affected Protein Expression of Psychrotrophic Dyadobacter psychrophilus B2 and Pseudomonas jessenii MP1

    PubMed Central

    Suyal, Deep C.; Kumar, Saurabh; Yadav, Amit; Shouche, Yogesh; Goel, Reeta

    2017-01-01

    Nitrogen (N) deficiency and low temperature conditions are the prominent facet of Western Himalayan agro-ecosystems. A slight change in the environment alters the protein expression of the microorganisms. Therefore, proteomes of the two psychrotrophs Dyadobacter psychrophilus B2 and Pseudomonas jessenii MP1 were analyzed using two dimensional electrophoresis and MALDI–TOF–MS, to determine the physiological response of altitudinally different but indigenous microorganisms in response to cold stress under N depleting conditions. Functional assessment of 150 differentially expressed proteins from both the psychrotrophs revealed several mechanisms might be involved in cold stress adaptation, protein synthesis/modifications, energy metabolism, cell growth/maintenance, etc. In both the proteomes, abundance of the proteins related to energy production and stress were significantly increased while, proteins related to biosynthesis and energy consuming processes decreased. ATP synthase subunit alpha, beta, ATP-dependent Clp protease, Enolase, groL HtpG and N(2)-fixation sustaining protein CowN proteins were found to be expressed in both B2 and MP1, similarly to previously studied diazotrophs under low temperature N2 fixing conditions and therefore, can be considered as a biomarker for monitoring the nitrogen fixation in cold niches. Nevertheless, in both the diazotrophs, a good fraction of the proteins were related to hypothetical proteins which are still uncharacterized, thereby, suggesting the need for in-depth studies on cold adapted diazotrophs and their adaptive mechanisms. PMID:28352263

  16. Transmembrane START domain proteins: in silico identification, characterization and expression analysis under stress conditions in chickpea (Cicer arietinum L.).

    PubMed

    Satheesh, Viswanathan; Chidambaranathan, Parameswaran; Jagannadham, Prasanth Tejkumar; Kumar, Vajinder; Jain, Pradeep K; Chinnusamy, Viswanathan; Bhat, Shripad R; Srinivasan, R

    2016-01-01

    Steroidogenic acute regulatory related transfer (StART) proteins that are involved in transport of lipid molecules, play a myriad of functions in insects, mammals and plants. These proteins consist of a modular START domain of approximately 200 amino acids which binds and transfers the lipids. In the present study we have performed a genome-wide search for all START domain proteins in chickpea. The search identified 36 chickpea genes belonging to the START domain family. Through a phylogenetic tree reconstructed with Arabidopsis, rice, chickpea, and soybean START proteins, we were able to identify four transmembrane START (TM-START) proteins in chickpea. These four proteins are homologous to the highly conserved mammalian phosphatidylcholine transfer proteins. Multiple sequence alignment of all the transmembrane containing START proteins from Arabidopsis, rice, chickpea, and soybean revealed that the amino acid residues to which phosphatidylcholine binds in mammals, is also conserved in all these plant species, implying an important functional role and a very similar mode of action of all these proteins across dicots and monocots. This study characterizes a few of the not so well studied transmembrane START superfamily genes that may be involved in stress signaling. Expression analysis in various tissues showed that these genes are predominantly expressed in flowers and roots of chickpea. Three of the chickpea TM-START genes showed induced expression in response to drought, salt, wound and heat stress, suggesting their role in stress response.

  17. The ER stress sensor PERK luminal domain functions as a molecular chaperone to interact with misfolded proteins

    SciTech Connect

    Wang, Peng; Li, Jingzhi; Sha, Bingdong

    2016-11-29

    PERK is one of the major sensor proteins which can detect the protein-folding imbalance generated by endoplasmic reticulum (ER) stress. It remains unclear how the sensor protein PERK is activated by ER stress. It has been demonstrated that the PERK luminal domain can recognize and selectively interact with misfolded proteins but not native proteins. Moreover, the PERK luminal domain may function as a molecular chaperone to directly bind to and suppress the aggregation of a number of misfolded model proteins. The data strongly support the hypothesis that the PERK luminal domain can interact directly with misfolded proteins to induce ER stress signaling. To illustrate the mechanism by which the PERK luminal domain interacts with misfolded proteins, the crystal structure of the human PERK luminal domain was determined to 3.2 Å resolution. Two dimers of the PERK luminal domain constitute a tetramer in the asymmetric unit. Superimposition of the PERK luminal domain molecules indicated that the β-sandwich domain could adopt multiple conformations. It is hypothesized that the PERK luminal domain may utilize its flexible β-sandwich domain to recognize and interact with a broad range of misfolded proteins.

  18. The ER stress sensor PERK luminal domain functions as a molecular chaperone to interact with misfolded proteins.

    PubMed

    Wang, Peng; Li, Jingzhi; Sha, Bingdong

    2016-12-01

    PERK is one of the major sensor proteins which can detect the protein-folding imbalance generated by endoplasmic reticulum (ER) stress. It remains unclear how the sensor protein PERK is activated by ER stress. It has been demonstrated that the PERK luminal domain can recognize and selectively interact with misfolded proteins but not native proteins. Moreover, the PERK luminal domain may function as a molecular chaperone to directly bind to and suppress the aggregation of a number of misfolded model proteins. The data strongly support the hypothesis that the PERK luminal domain can interact directly with misfolded proteins to induce ER stress signaling. To illustrate the mechanism by which the PERK luminal domain interacts with misfolded proteins, the crystal structure of the human PERK luminal domain was determined to 3.2 Å resolution. Two dimers of the PERK luminal domain constitute a tetramer in the asymmetric unit. Superimposition of the PERK luminal domain molecules indicated that the β-sandwich domain could adopt multiple conformations. It is hypothesized that the PERK luminal domain may utilize its flexible β-sandwich domain to recognize and interact with a broad range of misfolded proteins.

  19. Mitochondrial efficiency and exercise economy following heat stress: a potential role of uncoupling protein 3.

    PubMed

    Salgado, Roy M; Sheard, Ailish C; Vaughan, Roger A; Parker, Daryl L; Schneider, Suzanne M; Kenefick, Robert W; McCormick, James J; Gannon, Nicholas P; Van Dusseldorp, Trisha A; Kravitz, Len R; Mermier, Christine M

    2017-02-01

    Heat stress has been reported to reduce uncoupling proteins (UCP) expression, which in turn should improve mitochondrial efficiency. Such an improvement in efficiency may translate to the systemic level as greater exercise economy. However, neither the heat-induced improvement in mitochondrial efficiency (due to decrease in UCP), nor its potential to improve economy has been studied. Determine: (i) if heat stress in vitro lowers UCP3 thereby improving mitochondrial efficiency in C2C12 myocytes; (ii) whether heat acclimation (HA) in vivo improves exercise economy in trained individuals; and (iii) the potential improved economy during exercise at altitude. In vitro, myocytes were heat stressed for 24 h (40°C), followed by measurements of UCP3, mitochondrial uncoupling, and efficiency. In vivo, eight trained males completed: (i) pre-HA testing; (ii) 10 days of HA (40°C, 20% RH); and (iii) post-HA testing. Pre- and posttesting consisted of maximal exercise test and submaximal exercise at two intensities to assess exercise economy at 1600 m (Albuquerque, NM) and 4350 m. Heat-stressed myocytes displayed significantly reduced UCP3 mRNA expression and, mitochondrial uncoupling (77.1 ± 1.2%, P < 0.0001) and improved mitochondrial efficiency (62.9 ± 4.1%, P < 0.0001) compared to control. In humans, at both 1600 m and 4350 m, following HA, submaximal exercise economy did not change at low and moderate exercise intensities. Our findings indicate that while heat-induced reduction in UCP3 improves mitochondrial efficiency in vitro, this is not translated to in vivo improvement of exercise economy at 1600 m or 4350 m.

  20. Involvement of Reactive Oxygen Species and Mitochondrial Proteins in Biophoton Emission in Roots of Soybean Plants under Flooding Stress.

    PubMed

    Kamal, Abu Hena Mostafa; Komatsu, Setsuko

    2015-05-01

    To understand the mechanism of biophoton emission, ROS and mitochondrial proteins were analyzed in soybean plants under flooding stress. Enzyme activity and biophoton emission were increased in the flooding stress samples when assayed in reaction mixes specific for antioxidant enzymes and reactive oxygen species; although the level of the hydroxyl radicals was increased at day 4 (2 days of flooding) compared to nonflooding at day 4, the emission of biophotons did not change. Mitochondria were isolated and purified from the roots of soybean plants grown under flooding stress by using a Percoll gradient, and proteins were analyzed by a gel-free proteomic technique. Out of the 98 mitochondrial proteins that significantly changed abundance under flooding stress, 47 increased and 51 decreased at day 4. The mitochondrial enzymes fumarase, glutathione-S-transferase, and aldehyde dehydrogenase increased at day 4 in protein abundance and enzyme activity. Enzyme activity and biophoton emission decreased at day 4 by the assay of lipoxygenase under stress. Aconitase, acyl CoA oxidase, succinate dehydrogenase, and NADH ubiquinone dehydrogenase were up-regulated at the transcription level. These results indicate that oxidation and peroxide scavenging might lead to biophoton emission and oxidative damage in the roots of soybean plants under flooding stress.

  1. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans.

    PubMed

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S; Greenstein, David; Navarro, Rosa E

    2016-04-07

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline-the immortal cell lineage required for sexual reproduction-protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures.

  2. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans

    PubMed Central

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S.; Greenstein, David; Navarro, Rosa E.

    2016-01-01

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline—the immortal cell lineage required for sexual reproduction—protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. PMID:26865701

  3. ATR-FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance.

    PubMed

    Lahlali, Rachid; Jiang, Yunfei; Kumar, Saroj; Karunakaran, Chithra; Liu, Xia; Borondics, Ferenc; Hallin, Emil; Bueckert, Rosalind

    2014-01-01

    With climate change, pea will be more frequently subjected to heat stress in semi-arid regions like Saskatchewan during flowering. The pollen germination percentage of two pea cultivars was reduced by heat stress (36°C) with an important decrease in cultivar 'CDC Golden' compared to 'CDC Sage.' Lipids, protein and other pollen coat compositions of whole intact pollen grains of both pea cultivars were investigated using mid infrared (mid-IR) attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. Curve fitting of ATR absorbance spectra in the protein region enabled estimation and comparison of different protein secondary structures between the two cultivars. CDC Sage had relatively greater amounts of α-helical structures (48.6-43.6%; band at 1654 cm(-1)) and smaller amounts of β-sheets (41.3-46%) than CDC Golden. The CDC Golden had higher amounts of β-sheets (46.3-51.7%) compared to α-helical structures (35.3-36.2%). Further, heat stress resulted in prominent changes in the symmetrical and asymmetrical CH2 bands from lipid acyl chain, ester carbonyl band, and carbohydrate region. The intensity of asymmetric and symmetric CH2 vibration of heat stressed CDC Golden was reduced considerably in comparison to the control and the decrease was higher compared to CDC Sage. In addition, CDC Golden showed an increase in intensity at the oxidative band of 3015 cm(-1). These results reveal that the whole pollen grains of both pea cultivars responded differently to heat stress. The tolerance of CDC Sage to heat stress (expressed as pollen germination percentage) may be due to its protein richness with α-helical structures which would protect against the destructive effects of dehydration due to heat stress. The low pollen germination percentage of CDC Golden after heat stress may be also due to its sensitivity to lipid changes due to heat stress.

  4. Peroxide Sensors for the Fission Yeast Stress-activated Mitogen-activated Protein Kinase Pathway

    PubMed Central

    Buck, Vicky; Quinn, Janet; Pino, Teresa Soto; Martin, Humberto; Saldanha, Jose; Makino, Kozo; Morgan, Brian A.; Millar, Jonathan B.A.

    2001-01-01

    The Schizosaccharomyces pombe stress-activated Sty1p/Spc1p mitogen-activated protein (MAP) kinase regulates gene expression through the Atf1p and Pap1p transcription factors, homologs of human ATF2 and c-Jun, respectively. Mcs4p, a response regulator protein, acts upstream of Sty1p by binding the Wak1p/Wis4p MAP kinase kinase kinase. We show that phosphorylation of Mcs4p on a conserved aspartic acid residue is required for activation of Sty1p only in response to peroxide stress. Mcs4p acts in a conserved phospho-relay system initiated by two PAS/PAC domain-containing histidine kinases, Mak2p and Mak3p. In the absence of Mak2p or Mak3p, Sty1p fails to phosphorylate the Atf1p transcription factor or induce Atf1p-dependent gene expression. As a consequence, cells lacking Mak2p and Mak3p are sensitive to peroxide attack in the absence of Prr1p, a distinct response regulator protein that functions in association with Pap1p. The Mak1p histidine kinase, which also contains PAS/PAC repeats, does not regulate Sty1p or Atf1p but is partially required for Pap1p- and Prr1p-dependent transcription. We conclude that the transcriptional response to free radical attack is initiated by at least two distinct phospho-relay pathways in fission yeast. PMID:11179424

  5. The effect of exercise-intensity on skeletal muscle stress kinase and insulin protein signaling

    PubMed Central

    Trewin, Adam; Levinger, Itamar; Shaw, Christopher S.; Stepto, Nigel K.

    2017-01-01

    Background Stress and mitogen activated protein kinase (SAPK) signaling play an important role in glucose homeostasis and the physiological adaptation to exercise. However, the effects of acute high-intensity interval exercise (HIIE) and sprint interval exercise (SIE) on activation of these signaling pathways are unclear. Methods Eight young and recreationally active adults performed a single cycling session of HIIE (5 x 4 minutes at 75% Wmax), SIE (4 x 30 second Wingate sprints), and continuous moderate-intensity exercise work-matched to HIIE (CMIE; 30 minutes at 50% of Wmax), separated by a minimum of 1 week. Skeletal muscle SAPK and insulin protein signaling were measured immediately, and 3 hours after exercise. Results SIE elicited greater skeletal muscle NF-κB p65 phosphorylation immediately after exercise (SIE: ~40%; HIIE: ~4%; CMIE; ~13%; p < 0.05) compared to HIIE and CMIE. AS160Ser588 phosphorylation decreased immediately after HIIE (~-27%; p < 0.05), and decreased to the greatest extent immediately after SIE (~-60%; p < 0.05). Skeletal muscle JNK (~42%; p < 0.05) and p38 MAPK (~171%; p < 0.05) phosphorylation increased, and skeletal muscle AktSer473 phosphorylation (~-32%; p < 0.05) decreased, to a similar extent immediately after all exercise protocols. AS160Ser588 phosphorylation was similar to baseline three hours after SIE (~-12%; p > 0.05), remained lower 3 hours after HIIE (~-34%; p < 0.05), and decreased 3 hours after CMIE (~-33%; p < 0.05). Conclusion Despite consisting of less total work than CMIE and HIIE, SIE proved to be an effective stimulus for the activation of stress protein kinase signaling pathways linked to exercise-mediated adaptation of skeletal muscle. Furthermore, post-exercise AS160Ser588 phosphorylation decreased in an exercise-intensity and post-exercise time-course dependent manner. PMID:28182793

  6. Temperature tolerance and stress proteins as mechanisms of invasive species success.

    PubMed

    Zerebecki, Robyn A; Sorte, Cascade J B

    2011-04-26

    Invasive species are predicted to be more successful than natives as temperatures increase with climate change. However, few studies have examined the physiological mechanisms that theoretically underlie this differential success. Because correlative evidence suggests that invasiveness is related to the width of a species' latitudinal range, it has been assumed--but largely untested--that range width predicts breadth of habitat temperatures and physiological thermotolerances. In this study, we use empirical data from a marine community as a case study to address the hypotheses that (1) geographic temperature range attributes are related to temperature tolerance, leading to greater eurythermality in invasive species, and (2) stress protein expression is a subcellular mechanism that could contribute to differences in thermotolerance. We examined three native and six invasive species common in the subtidal epibenthic communities of California, USA. We assessed thermotolerance by exposing individuals to temperatures between 14°C and 31°C and determining the temperature lethal to 50% of individuals (LT(50)) after a 24 hour exposure. We found a strong positive relationship between the LT(50) and both maximum habitat temperatures and the breadth of temperatures experience across the species' ranges. In addition, of the species in our study, invasives tended to inhabit broader habitat temperature ranges and higher maximum temperatures. Stress protein expression may contribute to these differences: the more thermotolerant, invasive species Diplosoma listerianum expressed higher levels of a 70-kDa heat-shock protein than the less thermotolerant, native Distaplia occidentalis for which levels declined sharply above the LT(50). Our data highlight differences between native and invasive species with respect to organismal and cellular temperature tolerances. Future studies should address, across a broader phylogenetic and ecosystem scope, whether this physiological mechanism

  7. Drought stress delays endosperm development and misregulates genes associated with cytoskeleton organization and grain quality proteins in developing wheat seeds.

    PubMed

    Begcy, Kevin; Walia, Harkamal

    2015-11-01

    Drought stress is a major yield-limiting factor for wheat. Wheat yields are particularly sensitive to drought stress during reproductive development. Early seed development stage is an important determinant of seed size, one of the yield components. We specifically examined the impact of drought stress imposed during postzygotic early seed development in wheat. We imposed a short-term drought stress on plants with day-old seeds and observed that even a short-duration drought stress significantly reduced the size of developing seeds as well as mature seeds. Drought stress delayed the developmental transition from syncytial to cellularized stage of endosperm. Coincident with reduced seed size and delayed endosperm development, a subset of genes associated with cytoskeleton organization was misregulated in developing seeds under drought-stressed. Several genes linked to hormone pathways were also differentially regulated in response to drought stress in early seeds. Notably, drought stress strongly repressed the expression of wheat storage protein genes such as gliadins, glutenins and avenins as early as 3 days after pollination. Our results provide new insights on how some of the early seed developmental events are impacted by water stress, and the underlying molecular pathways that can possibly impact both grain size and quality in wheat.

  8. The Involvement of Wheat F-Box Protein Gene TaFBA1 in the Oxidative Stress Tolerance of Plants

    PubMed Central

    Zhou, Shu-Mei; Kong, Xiang-Zhu; Kang, Han-Han; Sun, Xiu-Dong; Wang, Wei

    2015-01-01

    As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT). The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD), were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants’ tolerance to multiple stress conditions. PMID:25906259

  9. The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants.

    PubMed

    Zhou, Shu-Mei; Kong, Xiang-Zhu; Kang, Han-Han; Sun, Xiu-Dong; Wang, Wei

    2015-01-01

    As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT). The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD), were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants' tolerance to multiple stress conditions.

  10. Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis.

    PubMed

    Osakabe, Yuriko; Mizuno, Shinji; Tanaka, Hidenori; Maruyama, Kyonoshin; Osakabe, Keishi; Todaka, Daisuke; Fujita, Yasunari; Kobayashi, Masatomo; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2010-03-19

    RPK1 (receptor-like protein kinase 1) localizes to the plasma membrane and functions as a regulator of abscisic acid (ABA) signaling in Arabidopsis. In our current study, we investigated the effect of RPK1 disruption and overproduction upon plant responses to drought stress. Transgenic Arabidopsis overexpressing the RPK1 protein showed increased ABA sensitivity in their root growth and stomatal closure and also displayed less transpirational water loss. In contrast, a mutant lacking RPK1 function, rpk1-1, was found to be resistant to ABA during these processes and showed increased water loss. RPK1 overproduction in these transgenic plants thus increased their tolerance to drought stress. We performed microarray analysis of RPK1 transgenic plants and observed enhanced expression of several stress-responsive genes, such as Cor15a, Cor15b, and rd29A, in addition to H(2)O(2)-responsive genes. Consistently, the expression levels of ABA/stress-responsive genes in rpk1-1 had decreased compared with wild type. The results suggest that the overproduction of RPK1 enhances both the ABA and drought stress signaling pathways. Furthermore, the leaves of the rpk1-1 plants exhibit higher sensitivity to oxidative stress upon ABA-pretreatment, whereas transgenic plants overproducing RPK1 manifest increased tolerance to this stress. Our current data suggest therefore that RPK1 overproduction controls reactive oxygen species homeostasis and enhances both water and oxidative stress tolerance in Arabidopsis.

  11. Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress.

    PubMed

    Wang, Lingxia; Liu, Xiao; Liang, Meng; Tan, Fanglin; Liang, Wenyu; Chen, Yiyong; Lin, Yongxiang; Huang, Li; Xing, Jianhong; Chen, Wei

    2014-01-01

    Salt stress is a major abiotic stress that limits crop productivity in many regions of the world. A comparative proteomic approach to identify salt stress-responsive proteins and to understand the molecular mechanisms was carried out in the woody halophyte Kandelia candel. Four-leaf-old K. candel seedlings were exposed to 150 (control), 300, 450, and 600 mM NaCl for 3 days. Proteins extracted from the leaves of K. candel seedlings were separated by two-dimensional gel electrophoresis (2-DE). More than 900 protein spots were detected on each gel, and 53 differentially expressed protein spots were located with at least two-fold differences in abundance on 2-DE maps, of which 48 were identified by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF-TOF/MS). The results showed that K. candel could withstand up to 450 mM NaCl stress by up-regulating proteins that are mainly involved in photosynthesis, respiration and energy metabolism, Na(+) compartmentalization, protein folding and assembly, and signal transduction. Physiological data, including superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR) activities, hydrogen peroxide (H2O2) and superoxide anion radicals (O2(-)) contents, as well as Na(+) content and K(+)/Na(+) ratios all correlated well with our proteomic results. This study provides new global insights into woody halophyte salt stress responses. Identification of differentially expressed proteins promotes better understanding of the molecular basis for salt stress reduction in K. candel.

  12. Proteomic Analysis of Salt-Responsive Proteins in the Leaves of Mangrove Kandelia candel during Short-Term Stress

    PubMed Central

    Liang, Meng; Tan, Fanglin; Liang, Wenyu; Chen, Yiyong; Lin, Yongxiang; Huang, Li; Xing, Jianhong; Chen, Wei

    2014-01-01

    Salt stress is a major abiotic stress that limits crop productivity in many regions of the world. A comparative proteomic approach to identify salt stress-responsive proteins and to understand the molecular mechanisms was carried out in the woody halophyte Kandelia candel. Four-leaf-old K. candel seedlings were exposed to 150 (control), 300, 450, and 600 mM NaCl for 3 days. Proteins extracted from the leaves of K. candel seedlings were separated by two-dimensional gel electrophoresis (2-DE). More than 900 protein spots were detected on each gel, and 53 differentially expressed protein spots were located with at least two-fold differences in abundance on 2-DE maps, of which 48 were identified by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF-TOF/MS). The results showed that K. candel could withstand up to 450 mM NaCl stress by up-regulating proteins that are mainly involved in photosynthesis, respiration and energy metabolism, Na+ compartmentalization, protein folding and assembly, and signal transduction. Physiological data, including superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR) activities, hydrogen peroxide (H2O2) and superoxide anion radicals (O2−) contents, as well as Na+ content and K+/Na+ ratios all correlated well with our proteomic results. This study provides new global insights into woody halophyte salt stress responses. Identification of differentially expressed proteins promotes better understanding of the molecular basis for salt stress reduction in K. candel. PMID:24416157

  13. Popeye domain containing proteins are essential for stress-mediated modulation of cardiac pacemaking in mice

    PubMed Central

    Froese, Alexander; Breher, Stephanie S.; Waldeyer, Christoph; Schindler, Roland F.R.; Nikolaev, Viacheslav O.; Rinné, Susanne; Wischmeyer, Erhard; Schlueter, Jan; Becher, Jan; Simrick, Subreena; Vauti, Franz; Kuhtz, Juliane; Meister, Patrick; Kreissl, Sonja; Torlopp, Angela; Liebig, Sonja K.; Laakmann, Sandra; Müller, Thomas D.; Neumann, Joachim; Stieber, Juliane; Ludwig, Andreas; Maier, Sebastian K.; Decher, Niels; Arnold, Hans-Henning; Kirchhof, Paulus; Fabritz, Larissa; Brand, Thomas

    2012-01-01

    Cardiac pacemaker cells create rhythmic pulses that control heart rate; pacemaker dysfunction is a prevalent disorder in the elderly, but little is known about the underlying molecular causes. Popeye domain containing (Popdc) genes encode membrane proteins with high expression levels in cardiac myocytes and specifically in the cardiac pacemaking and conduction system. Here, we report the phenotypic analysis of mice deficient in Popdc1 or Popdc2. ECG analysis revealed severe sinus node dysfunction when freely roaming mutant animals were subjected to physical or mental stress. In both mutants, bradyarrhythmia developed in an age-dependent manner. Furthermore, we found that the conserved Popeye domain functioned as a high-affinity cAMP-binding site. Popdc proteins interacted with the potassium channel TREK-1, which led to increased cell surface expression and enhanced current density, both of which were negatively modulated by cAMP. These data indicate that Popdc proteins have an important regulatory function in heart rate dynamics that is mediated, at least in part, through cAMP binding. Mice with mutant Popdc1 and Popdc2 alleles are therefore useful models for the dissection of the mechanisms causing pacemaker dysfunction and could aid in the development of strategies for therapeutic intervention. PMID:22354168

  14. A Novel Peptide from Soybean Protein Isolate Significantly Enhances Resistance of the Organism under Oxidative Stress

    PubMed Central

    Ma, Heran; Liu, Rui; Zhao, Ziyuan; Zhang, Zhixian; Cao, Yue; Ma, Yudan; Guo, Yi; Xu, Li

    2016-01-01

    Recent studies have indicated that protein hydrolysates have broad biological effects. In the current study we describe a novel antioxidative peptide, FDPAL, from soybean protein isolate (SPI). The aim of this study was to purify and characterize an antioxidative peptide from SPI and determine its antioxidative mechanism. LC–MS/MS was used to isolate and identify the peptide from SPI. The sequence of the peptide was determined to be Phe-Asp-Pro-Ala-Leu (FDPAL, 561 Da). FDPAL can cause significant enhancement of resistance to oxidative stress both in cells as well as simple organisms. In Caenorhabditis elegans (C. elegans), FDPAL can up-regulate the expression of certain genes associated with resistance. The antioxidant activity of this peptide can be attributed to the presence of a specific amino acid sequence. Results from our work suggest that FDPAL can facilitate potential applications of proteins carrying this sequence in the nutraceutical, bioactive material and clinical medicine areas, as well as in cosmetics and health care products. PMID:27455060

  15. Universal Stress Proteins as New Targets for Environmental and Therapeutic Interventions of Schistosomiasis

    PubMed Central

    Masamba, Priscilla; Adenowo, Abiola Fatimah; Oyinloye, Babatunji Emmanuel; Kappo, Abidemi Paul

    2016-01-01

    In spite of various control measures and eradication methods that have been in progress, schistosomiasis still prevails as one of the most prevalent debilitating parasitic diseases, typically affecting the poor and the underprivileged that are predominantly concentrated in sub-Saharan Africa. The parasitic schistosome blood fluke responsible for causing the disease completes its complex developmental cycle in two hosts: humans and freshwater snails, where they physically undergo gross modifications to endure the different conditions associated with each host. Just like any other organism, the worm possesses mechanisms that help them respond to environmental insults. It has been hypothesized that a special class of proteins known as Universal Stress Proteins (USPs) are up-regulated during sudden environmental changes, thus assisting the worm to tolerate the unfavourable conditions associated with its developmental cycle. The position of praziquantel as the drug of choice against all schistosome infections has been deemed vulnerable due to mounting concerns over drug pressure and so the need for alternative treatment is now a matter of urgency. Therefore, this review seeks to explore the associations and possible roles of USPs in schistosomiasis as well as the functioning of these proteins in the schistosomulae stage in order to develop new therapeutic interventions against this disease. PMID:27706050

  16. Rit-mediated Stress Resistance Involves a p38-Mitogen- and Stress-activated Protein Kinase 1 (MSK1)-dependent cAMP Response Element-binding Protein (CREB) Activation Cascade*

    PubMed Central

    Shi, Geng-Xian; Cai, Weikang; Andres, Douglas A.

    2012-01-01

    The cAMP response element (CRE)-binding protein (CREB) is a key regulatory factor of gene transcription, and plays an essential role in development of the central nervous system and for neuroprotection. Multiple signaling pathways have been shown to contribute to the regulation of CREB-dependent transcription, including both ERK and p38 mitogen-activated protein (MAP) kinases cascades. Recent studies have identified the Ras-related small G-protein, Rit, as a central regulator of a p38-MK2-HSP27 signaling cascade that functions as a critical survival mechanism for cells adapting to stress. Here, we examine the contribution of Rit-p38 signaling to the control of stress-dependent gene transcription. Using a pheochromocytoma cell model, we find that a novel Rit-p38-MSK1/2 pathway plays a critical role in stress-mediated CREB activation. RNAi-mediated Rit silencing, or inhibition of p38 or MSK1/2 kinases, was found to disrupt stress-mediated CREB-dependent transcription, resulting in increased cell death. Furthermore, ectopic expression of active Rit stimulates CREB-Ser133 phosphorylation, induces expression of the anti-apoptotic Bcl-2 and BclXL proteins, and promotes cell survival. These data indicate that the Rit-p38-MSK1/2 signaling pathway may have an important role in the stress-dependent regulation of CREB-dependent gene expression. PMID:23038261

  17. Quercetin and vitamin E attenuate Bonny Light crude oil-induced alterations in testicular apoptosis, stress proteins and steroidogenic acute regulatory protein in Wistar rats.

    PubMed

    Ebokaiwe, Azubuike P; Mathur, Premendu P; Farombi, Ebenezer O

    2016-10-01

    Studies have shown the reproductive effects of Bonny Light crude oil (BLCO) via the mechanism of oxidative stress and testicular apoptosis. We investigated the protective role of quercetin and vitamin E on BLCO-induced testicular apoptosis. Experimental rats were divided into four groups of four each. Animals were orally administered 2 ml/kg corn oil (control: group 1), BLCO-800 mg/kg body weight + 10 mg/kg quercetin (group 2), BLCO-800 mg/kg body weight + 50 mg/kg vitamin E (group 3) and BLCO-800 mg/kg body weight only (group 4) for 7 d. Protein levels of caspase 3, FasL, NF-kB, steroidogenic acute regulatory protein and stress response proteins were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunofluorescence staining was used to quantify the expression of caspase 3, FasL and NF-kB. Apoptosis was quantified by the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Administration of BLCO resulted in a significant increase in the levels of stress response proteins and apoptosis-related proteins by 50% and above after 7 d following BLCO exposure and a concomitant increase in expression of caspase 3, FasL and NF-kB expression by immunofluorescence staining. Apoptosis showed a significant increase in TUNEL positive cells. Co-administration with quercetin or vitamin E reversed BLCO-induced apoptosis and levels of stress protein, relative to control. These findings suggest that quercetin and vitamin E may confer protection against BLCO-induced testicular oxidative stress-related apoptosis.

  18. Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice

    PubMed Central

    2012-01-01

    Background The rice roots are highly salt-sensitive organ and primary root growth is rapidly suppressed by salt stress. Sucrose nonfermenting 1-related protein kinase2 (SnRK2) family is one of the key regulator of hyper-osmotic stress signalling in various plant cells. To understand early salt response of rice roots and identify SnRK2 signaling components, proteome changes of transgenic rice roots over-expressing OSRK1, a rice SnRK2 kinase were investigated. Results Proteomes were analyzed by two-dimensional electrophoresis and protein spots were identified by LC-MS/MS from wild type and OSRK1 transgenic rice roots exposed to 150 mM NaCl for either 3 h or 7 h. Fifty two early salt -responsive protein spots were identified from wild type rice roots. The major up-regulated proteins were enzymes related to energy regulation, amino acid metabolism, methylglyoxal detoxification, redox regulation and protein turnover. It is noted that enzymes known to be involved in GA-induced root growth such as fructose bisphosphate aldolase and methylmalonate semialdehyde dehydrogenase were clearly down-regulated. In contrast to wild type rice roots, only a few proteins were changed by salt stress in OSRK1 transgenic rice roots. A comparative quantitative analysis of the proteome level indicated that forty three early salt-responsive proteins were magnified in transgenic rice roots at unstressed condition. These proteins contain single or multiple potential SnRK2 recognition motives. In vitro kinase assay revealed that one of the identified proteome, calreticulin is a good substrate of OSRK1. Conclusions Our present data implicate that rice roots rapidly changed broad spectrum of energy metabolism upon challenging salt stress, and suppression of GA signaling by salt stress may be responsible for the rapid arrest of root growth and development. The broad spectrum of functional categories of proteins affected by over-expression of OSRK1 indicates that OSRK1 is an upstream regulator of

  19. Hepatitis C Virus (HCV) Induces Formation of Stress Granules Whose Proteins Regulate HCV RNA Replication and Virus Assembly and Egress

    PubMed Central

    Heim, Markus H.; Boyd, Bryan; Wieland, Stefan

    2012-01-01

    Stress granules (SGs) are cytoplasmic structures that are induced in response to environmental stress, including viral infections. Here we report that hepatitis C virus (HCV) triggers the appearance of SGs in a PKR- and interferon (IFN)-dependent manner. Moreover, we show an inverse correlation between the presence of stress granules and the induction of IFN-stimulated proteins, i.e., MxA and USP18, in HCV-infected cells despite high-level expression of the corresponding MxA and USP18 mRNAs, suggesting that interferon-stimulated gene translation is inhibited in stress granule-containing HCV-infected cells. Finally, in short hairpin RNA (shRNA) knockdown experiments, we found that the stress granule proteins T-cell-restricted intracellular antigen 1 (TIA-1), TIA1-related protein (TIAR), and RasGAP-SH3 domain binding protein 1 (G3BP1) are required for efficient HCV RNA and protein accumulation at early time points in the infection and that G3BP1 and TIA-1 are required for intracellular and extracellular infectious virus production late in the infection, suggesting that they are required for virus assembly. In contrast, TIAR downregulation decreases extracellular infectious virus titers with little effect on intracellular RNA content or infectivity late in the infection, suggesting that it is required for infectious particle release. Collectively, these results illustrate that HCV exploits the stress granule machinery at least two ways: by inducing the formation of SGs by triggering PKR phosphorylation, thereby downregulating the translation of antiviral interferon-stimulated genes, and by co-opting SG proteins for its replication, assembly, and egress. PMID:22855484

  20. Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress.

    PubMed

    Garaigorta, Urtzi; Heim, Markus H; Boyd, Bryan; Wieland, Stefan; Chisari, Francis V

    2012-10-01

    Stress granules (SGs) are cytoplasmic structures that are induced in response to environmental stress, including viral infections. Here we report that hepatitis C virus (HCV) triggers the appearance of SGs in a PKR- and interferon (IFN)-dependent manner. Moreover, we show an inverse correlation between the presence of stress granules and the induction of IFN-stimulated proteins, i.e., MxA and USP18, in HCV-infected cells despite high-level expression of the corresponding MxA and USP18 mRNAs, suggesting that interferon-stimulated gene translation is inhibited in stress granule-containing HCV-infected cells. Finally, in short hairpin RNA (shRNA) knockdown experiments, we found that the stress granule proteins T-cell-restricted intracellular antigen 1 (TIA-1), TIA1-related protein (TIAR), and RasGAP-SH3 domain binding protein 1 (G3BP1) are required for efficient HCV RNA and protein accumulation at early time points in the infection and that G3BP1 and TIA-1 are required for intracellular and extracellular infectious virus production late in the infection, suggesting that they are required for virus assembly. In contrast, TIAR downregulation decreases extracellular infectious virus titers with little effect on intracellular RNA content or infectivity late in the infection, suggesting that it is required for infectious particle release. Collectively, these results illustrate that HCV exploits the stress granule machinery at least two ways: by inducing the formation of SGs by triggering PKR phosphorylation, thereby downregulating the translation of antiviral interferon-stimulated genes, and by co-opting SG proteins for its replication, assembly, and egress.

  1. Protein Expression Profile of Rat Type Two Alveolar Epithelial Cells During Hyperoxic Stress and Recovery

    NASA Astrophysics Data System (ADS)

    Bhargava, Maneesh

    Rationale: In rodent model systems, the sequential changes in lung morphology resulting from hyperoxic injury are well characterized, and are similar to changes in human acute respiratory distress syndrome (ARDS). In the injured lung, alveolar type two (AT2) epithelial cells play a critical role restoring the normal alveolar structure. Thus characterizing the changes in AT2 cells will provide insights into the mechanisms underpinning the recovery from lung injury. Methods: We applied an unbiased systems level proteomics approach to elucidate molecular mechanisms contributing to lung repair in a rat hyperoxic lung injury model. AT2 cells were isolated from rat lungs at predetermined intervals during hyperoxic injury and recovery. Protein expression profiles were determined by using iTRAQRTM with tandem mass spectrometry. Results: Of 959 distinct proteins identified, 183 significantly changed in abundance during the injury-recovery cycle. Gene Ontology enrichment analysis identified cell cycle, cell differentiation, cell metabolism, ion homeostasis, programmed cell death, ubiquitination, and cell migration to be significantly enriched by these proteins. Gene Set Enrichment Analysis of data acquired during lung repair revealed differential expression of gene sets that control multicellular organismal development, systems development, organ development, and chemical homeostasis. More detailed analysis identified activity in two regulatory pathways, JNK and miR 374. A Short Time-series Expression Miner (STEM) algorithm identified protein clusters with coherent changes during injury and repair. Conclusion: Coherent changes occur in the AT2 cell proteome in response to hyperoxic stress. These findings offer guidance regarding the specific molecular mechanisms governing repair of the injured lung.

  2. Natural polyphenols down-regulate universal stress protein in Mycobacterium tuberculosis: An in-silico approach

    PubMed Central

    Aanandhi, M. Vijey; Bhattacherjee, Debojit; George, P. Samuel Gideon; Ray, Anirban

    2014-01-01

    Universal stress protein (USP) is a novel target to overcome the tuberculosis resistance. Our present study enlightens the possibilities of some natural polyphenols as an antioxidant for USP. The study has shown some molecular simulations of some selected natural antioxidants with USP. We have considered USP (Rv1636) strain for homology modeling and the selected template was taken for the docking study. Curcumin, catechin, reservetrol has shown ARG 136 (1.8Å) hydrogen bonding and two ionic bonding with carboxyl group of curcumin with LEU 130 (3.3Å) and ASN 144 (3.4Å) respectively. INH was taken for the standard molecule to perform molecular simulation. It showed poor binding interaction with the target, that is, −5.18 kcal, and two hydrogen bonding with SER 140 (1.887Å), ARG 147 (2.064Å) respectively. The study indicates possible new generation curcumin analogue for future therapy to down-regulate USP. PMID:25364695

  3. Stress-evoked tyrosine phosphorylation of signal regulatory protein α regulates behavioral immobility in the forced swim test.

    PubMed

    Ohnishi, Hiroshi; Murata, Takaaki; Kusakari, Shinya; Hayashi, Yuriko; Takao, Keizo; Maruyama, Toshi; Ago, Yukio; Koda, Ken; Jin, Feng-Jie; Okawa, Katsuya; Oldenborg, Per-Arne; Okazawa, Hideki; Murata, Yoji; Furuya, Nobuhiko; Matsuda, Toshio; Miyakawa, Tsuyoshi; Matozaki, Takashi

    2010-08-04

    Severe stress induces changes in neuronal function that are implicated in stress-related disorders such as depression. The molecular mechanisms underlying the response of the brain to stress remain primarily unknown, however. Signal regulatory protein alpha (SIRPalpha) is an Ig-superfamily protein that undergoes tyrosine phosphorylation and binds the protein tyrosine phosphatase Shp2. Here we show that mice expressing a form of SIRPalpha that lacks most of the cytoplasmic region manifest prolonged immobility (depression-like behavior) in the forced swim (FS) test. FS stress induced marked tyrosine phosphorylation of SIRPalpha in the brain of wild-type mice through activation of Src family kinases. The SIRPalpha ligand CD47 was important for such SIRPalpha phosphorylation, and CD47-deficient mice also manifested prolonged immobility in the FS test. Moreover, FS stress-induced tyrosine phosphorylation of both the NR2B subunit of the NMDA subtype of glutamate receptor and the K+-channel subunit Kvbeta2 was regulated by SIRPalpha. Thus, tyrosine phosphorylation of SIRPalpha is important for regulation of depression-like behavior in the response of the brain to stress.

  4. Acute Footshock Stress Induces Time-Dependent Modifications of AMPA/NMDA Protein Expression and AMPA Phosphorylation.

    PubMed

    Bonini, Daniela; Mora, Cristina; Tornese, Paolo; Sala, Nathalie; Filippini, Alice; La Via, Luca; Milanese, Marco; Calza, Stefano; Bonanno, Gianbattista; Racagni, Giorgio; Gennarelli, Massimo; Popoli, Maurizio; Musazzi, Laura; Barbon, Alessandro

    2016-01-01

    Clinical studies on patients with stress-related neuropsychiatric disorders reported functional and morphological changes in brain areas where glutamatergic transmission is predominant, including frontal and prefrontal areas. In line with this evidence, several preclinical works suggest that glutamate receptors are targets of both rapid and long-lasting effects of stress. Here we found that acute footshock- (FS-) stress, although inducing no transcriptional and RNA editing alterations of ionotropic AMPA and NMDA glutamate receptor subunits, rapidly and transiently modulates their protein expression, phosphorylation, and localization at postsynaptic spines in prefrontal and frontal cortex. In total extract, FS-stress increased the phosphorylation levels of GluA1 AMPA subunit at Ser(845) immediately after stress and of GluA2 Ser(880) 2 h after start of stress. At postsynaptic spines, stress induced a rapid decrease of GluA2 expression, together with an increase of its phosphorylation at Ser(880), suggesting internalization of GluA2 AMPA containing receptors. GluN1 and GluN2A NMDA receptor subunits were found markedly upregulated in postsynaptic spines, 2 h after start of stress. These results suggest selected time-dependent changes in glutamatergic receptor subunits induced by acute stress, which may suggest early and transient enhancement of AMPA-mediated currents, followed by a transient activation of NMDA receptors.

  5. Acute Footshock Stress Induces Time-Dependent Modifications of AMPA/NMDA Protein Expression and AMPA Phosphorylation

    PubMed Central

    Bonini, Daniela; Mora, Cristina; Tornese, Paolo; Sala, Nathalie; Filippini, Alice; La Via, Luca; Milanese, Marco; Calza, Stefano; Bonanno, Gianbattista; Racagni, Giorgio; Gennarelli, Massimo; Popoli, Maurizio; Musazzi, Laura; Barbon, Alessandro

    2016-01-01

    Clinical studies on patients with stress-related neuropsychiatric disorders reported functional and morphological changes in brain areas where glutamatergic transmission is predominant, including frontal and prefrontal areas. In line with this evidence, several preclinical works suggest that glutamate receptors are targets of both rapid and long-lasting effects of stress. Here we found that acute footshock- (FS-) stress, although inducing no transcriptional and RNA editing alterations of ionotropic AMPA and NMDA glutamate receptor subunits, rapidly and transiently modulates their protein expression, phosphorylation, and localization at postsynaptic spines in prefrontal and frontal cortex. In total extract, FS-stress increased the phosphorylation levels of GluA1 AMPA subunit at Ser845 immediately after stress and of GluA2 Ser880 2 h after start of stress. At postsynaptic spines, stress induced a rapid decrease of GluA2 expression, together with an increase of its phosphorylation at Ser880, suggesting internalization of GluA2 AMPA containing receptors. GluN1 and GluN2A NMDA receptor subunits were found markedly upregulated in postsynaptic spines, 2 h after start of stress. These results suggest selected time-dependent changes in glutamatergic receptor subunits induced by acute stress, which may suggest early and transient enhancement of AMPA-mediated currents, followed by a transient activation of NMDA receptors. PMID:26966584

  6. Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance

    PubMed Central

    Soda, Neelam; Sharan, Ashutosh; Gupta, Brijesh K.; Singla-Pareek, Sneh L.; Pareek, Ashwani

    2016-01-01

    Soil salinity is being perceived as a major threat to agriculture. Plant breeders and molecular biologist are putting their best efforts to raise salt-tolerant crops. The discovery of the Saltol QTL, a major QTL localized on chromosome I, responsible for salt tolerance at seedling stage in rice has given new hopes for raising salinity tolerant rice genotypes. In the present study, we have functionally characterized a Saltol QTL localized cytoskeletal protein, intermediate filament like protein (OsIFL), of rice. Studies related to intermediate filaments are emerging in plants, especially with respect to their involvement in abiotic stress response. Our investigations clearly establish that the heterologous expression of OsIFL in three diverse organisms (bacteria, yeast and tobacco) provides survival advantage towards diverse abiotic stresses. Screening of rice cDNA library revealed OsIFL to be strongly interacting with metallothionein protein. Bimolecular fluorescence complementation assay further confirmed this interaction to be occurring inside the nucleus. Overexpression of OsIFL in transgenic tobacco plants conferred salinity stress tolerance by maintaining favourable K+/Na+ ratio and thus showed protection from salinity stress induced ion toxicity. This study provides the first evidence for the involvement of a cytoskeletal protein in salinity stress tolerance in diverse organisms. PMID:27708383

  7. Insights into the Response of Soybean Mitochondrial Proteins to Various Sizes of Aluminum Oxide Nanoparticles under Flooding Stress.

    PubMed

    Mustafa, Ghazala; Komatsu, Setsuko

    2016-12-02

    Rapid developments in nanotechnology have led to the increasing use of nanoparticles (NPs) in the agricultural sector. For possible interactions between NPs and crops under flooding stress to be investigated, the molecular mechanisms in soybeans affected by exposure to various sizes of Al2O3 NPs were analyzed using a proteomic technique. In plants exposed to 30-60 nm Al2O3 NPs, the length of the root including hypocotyl was increased, and proteins related to glycolysis were suppressed. Exposure to 30-60 nm Al2O3 NPs mediated the scavenging activity of cells by regulating the ascorbate/glutathione pathway. Hierarchical clustering analysis indicated that ribosomal proteins were also increased upon exposure to flooding-stressed plants with 30-60 nm Al2O3 NPs. Mitochondrion was the target organelle of Al2O3 NPs under flooding-stress conditions. Mitochondrial proteomic analysis revealed that the abundance of voltage-dependent anion channel protein was increased upon exposure to flooding-stressed soybeans with 135 nm Al2O3 NPs, indicating the permeability of the mitochondrial membrane was increased. Furthermore, isocitrate dehydrogenase was increased upon exposure of plants to 5 nm Al2O3 NPs under flooding conditions. These results suggest that Al2O3 NPs of various sizes affect mitochondrial proteins under flooding stress by regulating membrane permeability and tricarboxylic acid cycle activity.

  8. Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction.

    PubMed

    Linke, Wolfgang A

    2008-03-01

    Mechanical stress signals transmitted through the heart walls during hemodynamic loading are sensed by the myocytes, which respond with changes in contractile performance and gene expression. External forces play an important role in physiological heart development and hypertrophy, but disruption of the well-balanced stress-sensing machinery causes mechanical dysregulation, cardiac remodelling, and heart failure. Nodal points of mechanosensing in the cardiomyocytes may reside in the Z-disk, I-band, and M-band regions of the sarcomeres. Longitudinal linkage of these regions is provided by the titin filament, and several 'hot spots' along this giant protein, in complex with some of its >20 ligands, may be pivotal to the myofibrillar stress or stretch response. This review outlines the known interaction partners of titin, highlights the putative stress/stretch-sensor complexes at titin's NH(2) and COOH termini and their role in myopathies, and summarizes the known disease-associated mutations in those titin regions. Another focus is the elastic I-band titin section, which interacts with a diverse number of proteins and whose main function is as a determinant of diastolic distensibility and passive stiffness. The discussion centers on recent insights into the plasticity, mechanical role, and regulation of the elastic titin springs during cardiac development and in human heart disease. Titin and titin-based protein complexes are now recognized as integral parts of the mechanosensitive protein network and as critical components in cardiomyocyte stress/stretch signalling.

  9. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    PubMed

    Kwon, Kwang-Chul; Verma, Dheeraj; Jin, Shuangxia; Singh, Nameirakpam D; Daniell, Henry

    2013-01-01

    Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a

  10. Role of the Porphyromonas gingivalis iron-binding protein PG1777 in oxidative stress resistance

    PubMed Central

    McKenzie, Rachelle M. E.; Henry, Leroy G.; Boutrin, Marie-Claire; Ximinies, Alexia

    2016-01-01

    Whole genome sequencing of the response of Porphyromonas gingivalis W83 to hydrogen peroxide revealed an upregulation of several uncharacterized, novel genes. Under conditions of prolonged oxidative stress in P. gingivalis, increased expression of a unique transcriptional unit carrying the grpE, dnaJ and three other hypothetical genes (PG1777, PG1778 and PG1779) was observed. The transcriptional start site of this operon appears to be located 91 bp upstream of the translational start, with a potential − 10 region at − 3 nt and a − 35 region at − 39 nt. Isogenic P. gingivalis mutants FLL273 (PG1777 : : ermF-ermAM) and FLL293 (PG1779 : : ermF-ermAM) showed increased sensitivity to and decreased survival after treatment with hydrogen peroxide. P. gingivalis FLL273 showed a fivefold increase in the formation of spontaneous mutants when compared with the parent strain after exposure to hydrogen peroxide. The recombinant PG1777 protein displayed iron-binding properties when incubated with FeSO4 and Fe(NH4)2(SO4).6H2O. The rPG1777 protein protected DNA from degradation when exposed to hydrogen peroxide in the presence of iron. Taken together, the data suggest that the grpE-dnaJ-PG1777-PG1778-PG1779 transcriptional unit may play an important role in oxidative stress resistance in P. gingivalis via its ability to protect against DNA damage. PMID:26581883

  11. Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus.

    PubMed

    Beavers, William N; Skaar, Eric P

    2016-08-01

    Staphylococcus aureus is a ubiquitous, versatile and dangerous pathogen. It colonizes over 30% of the human population, and is one of the leading causes of death by an infectious agent. During S. aureus colonization and invasion, leukocytes are recruited to the site of infection. To combat S. aureus, leukocytes generate an arsenal of reactive species including superoxide, hydrogen peroxide, nitric oxide and hypohalous acids that modify and inactivate cellular macromolecules, resulting in growth defects or death. When S. aureus colonization cannot be cleared by the immune system, antibiotic treatment is necessary and can be effective. Yet, this organism quickly gains resistance to each new antibiotic it encounters. Therefore, it is in the interest of human health to acquire a deeper understanding of how S. aureus evades killing by the immune system. Advances in this field will have implications for the design of future S. aureus treatments that complement and assist the host immune response. In that regard, this review focuses on how S. aureus avoids host-generated oxidative stress, and discusses the mechanisms used by S. aureus to survive oxidative damage including antioxidants, direct repair of damaged proteins, sensing oxidant stress and transcriptional changes. This review will elucidate areas for studies to identify and validate future antimicrobial targets.

  12. A short report: PAMM, a novel antioxidant protein, induced by oxidative stress

    PubMed Central

    Xu, Yan; Morse, Leslie R.; da Silva, Raquel Assed Bezerra; Wang, Dianhua; Battaglino, Ricardo A.

    2015-01-01

    Reactive oxygen species (ROS) play a central role in estrogen deficiency-induced bone loss. We previously identified and characterized a novel member of the Peroxiredoxin (PRX) like 2 family that we called PAMM: Peroxiredoxin Activated in M-CSF stimulated Monocytes, a redox regulatory protein that modulates osteoclast differentiation in vitro. In this study, we report increased PAMM expression in H2O2-treated cells and in bones from ovariectomized (OVX) mice 4 weeks after surgery, models for oxidative stress in vitro and in vivo, respectively. We also detected increased PAMM abundance and phosphorylated Akt in OVX mice treated with estrogen. In addition, Wortmannin, a specific PI3Kinase inhibitor and Rapamycin, an inhibitor of the PI3Kinase/Akt pathway, blocked Akt phosphorylation and stimulation of PAMM expression by M-CSF. These results indicate that M-CSF-induced PAMM expression is mediated by Akt phosphorylation. Our data also suggest that estrogen-induced PAMM expression is mediated by phosphorylation of Akt. These findings point to PAMM as a potential candidate for Akt-mediated protection against oxidative stress. PMID:26402163

  13. Differential isoform expression and protein localization from alternatively spliced Apetala2 in peanut under drought stress.

    PubMed

    Park, So-Yon; Grabau, Elizabeth

    2016-11-01

    APETALA2 (AP2) belongs to the AP2/Ethylene Responsive Factor (ERF) family and regulates expression levels of downstream stress responsive genes as a transcription factor. In this study, we cloned six different isoforms of AhAP2 from peanut (Arachis hypogaea). Four isoforms (AhAP2.1, AhAP2.2, AhAP2.3 and AhAP2.4) had both AP2/ERF DNA binding domains and ERF-associated amphiphilic repression (EAR) motifs. Two isoforms (AhAP2.5 and AhAP2.6) only had an EAR suppressor domain. After agroinfiltration, AhAP2.1, AhAP2.3, and AhAP2.4 fused to yellow fluorescent protein (YFP) showed localization to the nucleolus, which is the site of transcription and ribosome biogenesis. AhAP2.2-YFP showed a dispersed signal in the nucleus. AhAP2.5 and AhAP2.6 fused to YFP localized to both the nucleus and cytoplasm. In addition, increased levels of AhAP2.1 and AhAP2.2 transcripts were observed in drought-treated peanut leaves, suggesting differential transcriptional regulation under drought stress conditions.

  14. A STRESS-RESPONSIVE NAC1-Regulated Protein Phosphatase Gene Rice Protein Phosphatase18 Modulates Drought and Oxidative Stress Tolerance through Abscisic Acid-Independent Reactive Oxygen Species Scavenging in Rice1[W][OPEN

    PubMed Central

    You, Jun; Zong, Wei; Hu, Honghong; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2014-01-01

    Plants respond to abiotic stresses through a complexity of signaling pathways, and the dephosphorylation mediated by protein phosphatase (PP) is an important event in this process. We identified a rice (Oryza sativa) PP2C gene, OsPP18, as a STRESS-RESPONSIVE NAC1 (SNAC1)-regulated downstream gene. The ospp18 mutant was more sensitive than wild-type plants to drought stress at both the seedling and panicle development stages. Rice plants with OsPP18 suppressed through artificial microRNA were also hypersensitive to drought stress. Microarray analysis of the mutant revealed that genes encoding reactive oxygen species (ROS) scavenging enzymes were down-regulated in the ospp18 mutant, and the mutant exhibited reduced activities of ROS scavenging enzymes and increased sensitivity to oxidative stresses. Overexpression of OsPP18 in rice led to enhanced osmotic and oxidative stress tolerance. The expression of OsPP18 was induced by drought stress but not induced by abscisic acid (ABA). Although OsPP18 is a typical PP2C with enzymatic activity, it did not interact with SNF1-RELATED PROTEIN KINASE2 protein kinases, which function in ABA signaling. Meanwhile, the expression of ABA-responsive genes was not affected in the ospp18 mutant, and the ABA sensitivities of the ospp18 mutant and OsPP18-overexpressing plants were also not altered. Together, these findings suggest that OsPP18 is a unique PP2C gene that is regulated by SNAC1 and confers drought and oxidative stress tolerance by regulating ROS homeostasis through ABA-independent pathways. PMID:25318938

  15. C-Terminus of Heat Shock Cognate 70 Interacting Protein Increases Following Stroke and Impairs Survival Against Acute Oxidative Stress

    PubMed Central

    Stankowski, Jeannette N.; Zeiger, Stephanie L.H.; Cohen, Evan L.; DeFranco, Donald B.; Cai, Jiyang

    2011-01-01

    Abstract The decision to remove or refold oxidized, denatured, or misfolded proteins by heat shock protein 70 and its binding partners is critical to determine cell fate under pathophysiological conditions. Overexpression of the ubiquitin ligase C-terminus of HSC70 interacting protein (CHIP) can compensate for failure of other ubiquitin ligases and enhance protein turnover and survival under chronic neurological stress. The ability of CHIP to alter cell fate after acute neurological injury has not been assessed. Using postmortem human tissue samples, we provide the first evidence that cortical CHIP expression is increased after ischemic stroke. Oxygen glucose deprivation in vitro led to rapid protein oxidation, antioxidant depletion, proteasome dysfunction, and a significant increase in CHIP expression. To determine if CHIP upregulation enhances neural survival, we overexpressed CHIP in vitro and evaluated cell fate 24 h after acute oxidative stress. Surprisingly, CHIP overexpressing cells fared worse against oxidative injury, accumulated more ubiquitinated and oxidized proteins, and experienced decreased proteasome activity. Conversely, using small interfering RNA to decrease CHIP expression in primary neuronal cultures improved survival after oxidative stress, suggesting that increases in CHIP observed after stroke like injuries are likely correlated with diminished survival and may negatively impact the neuroprotective potential of heat shock protein 70. Antioxid. Redox Signal. 14, 1787–1801. PMID:20677910

  16. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L. ) reproductive tissues

    SciTech Connect

    Dupuis, I.; Dumas, C. )

    1990-10-01

    This study was conducted to investigate the response of maize (Zea mays) male and female mature reproductive tissues to temperature stress. We have tested the fertilization abilities of the stressed spikelets and pollen using in vitro pollination-fertilization to determine their respective tolerance to stress. The synthesis of heat shock proteins (HSPs) was also analyzed in male and female tissues using electrophoresis of {sup 35}S-labeled proteins and fluorography, to establish a relationship between the physiological and molecular responses. Pollen, spikelets, and pollinated spikelets were exposed to selected temperatures (4, 28, 32, 36, or 40{degree}C) and tested using an in vitro fertilization system. The fertilization rate is highly reduced when pollinated spikelets are exposed to temperatures over 36{degree}C. When pollen and spikelets are exposed separately to temperature stress, the female tissues appear resistant to 4 hours of cold stress (4{degree}C) or heat stress (40{degree}C). Under heat shock conditions, the synthesis of a typical set of HSPs is induced in the female tissues. In contrast, the mature pollen is sensitive to heat stress and is responsible for the failure of fertilization at high temperatures. At the molecular level, no heat shock response is detected in the mature pollen.

  17. SUCROSE NON-FERMENTING 1-RELATED PROTEIN KINASE 2 (SNRK2): A FAMILY OF PROTEIN KINASES INVOLVED IN HYPEROSMOTIC STRESS SIGNALING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our understanding of plant adaptation to abiotic stresses, which include drought, salinity, non-optimal temperatures and poor soil nutrition, is still limiting although significant strides have been made in identifying some of the gene players and signaling partners. Several protein kinases get acti...

  18. Calmodulin-binding proteins in bryophytes: identification of abscisic acid-, cold-, and osmotic stress-induced genes encoding novel membrane-bound transporter-like proteins.

    PubMed

    Takezawa, Daisuke; Minami, Anzu

    2004-04-30

    Plant responses to environmental stresses are mediated in part by signaling processes involving cytosolic Ca2+ and a Ca(2+)-binding protein, calmodulin. Screening with radiolabeled calmodulin of a cDNA library of the moss Physcomitrella patens resulted in identification of genes encoding novel membrane transporter-like proteins, MCamb1 and MCamb2. These proteins each had a central hydrophobic domain with two putative membrane spans and N- and C-terminal hydrophilic domains, and showed sequence similarity to mammalian inward rectifier potassium channels. Calmodulin binds to MCamb1 and MCamb2 via interaction with basic amphiphilic amino acids in the C-terminal domain. Levels of MCamb1 and MCamb2 transcripts increased dramatically following treatment with low temperature, hyperosmotic solutes, and the stress hormone abscisic acid, all of which were previously shown to increase cellular tolerance to freezing stress. These results suggest that calmodulin participates in cellular signaling events leading to enhancement of stress resistance through regulation of novel transporter-like proteins.

  19. Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions.

    PubMed

    Kamal, Abu Hena Mostafa; Komatsu, Setsuko

    2016-02-01

    To know the molecular systems basically flooding conditions in soybean, biophoton emission measurements and proteomic analyses were carried out for flooding-stressed roots under light and dark conditions. Photon emission was analyzed using a photon counter. Gel-free quantitative proteomics were performed to identify significant changes proteins using the nano LC-MS along with SIEVE software. Biophoton emissions were significantly increased in both light and dark conditions after flooding stress, but gradually decreased with continued flooding exposure compared to the control plants. Among the 120 significantly identified proteins in the roots of soybean plants, 73 and 19 proteins were decreased and increased in the light condition, respectively, and 4 and 24 proteins were increased and decreased, respectively, in the dark condition. The proteins were mainly functionally grouped into cell organization, protein degradation/synthesis, and glycolysis. The highly abundant lactate/malate dehydrogenase proteins were decreased in flooding-stressed roots exposed to light, whereas the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme was increased in both light and dark conditions. Notably, however, specific enzyme assays revealed that the activities of these enzymes and biophoton emission were sharply increased after 3 days of flooding stress. This finding suggests that the source of biophoton emission in roots might involve the chemical excitation of electron or proton through enzymatic or non-enzymatic oxidation and reduction reactions. Moreover, the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme may play important roles in responses in flooding stress of soybean under the light condition and as a contributing factor to biophoton emission.

  20. Effects of heat shock protein 90 expression on pectoralis major oxidation in broilers exposed to acute heat stress.

    PubMed

    Hao, Y; Gu, X H

    2014-11-01

    This study was conducted to determine the effects of heat shock protein 90 (HSP90) expression on pH, lipid peroxidation, heat shock protein 70 (HSP70), and glucocorticoid receptor (GR) expression of pectoralis major in broilers exposed to acute heat stress. In total, 90 male broilers were randomly allocated to 3 groups: control (CON), heat stress (HS), or geldanamycin treatment (GA). On d 41, the broilers in the GA group were injected intraperitoneally with GA (5 μg/kg of BW), and the broilers in the CON and HS groups were injected intraperitoneally with saline. Twenty-four hours later, the broilers in the CON group were moved to environmental chambers controlled at 22°C for 2 h, and the broilers in the HS and GA groups were moved to environmental chambers controlled at 40°C for 2 h. The pH values of the pectoralis major after 30 min and 24 h of chilling after slaughter of HS and GA broilers were significantly lower (P < 0.01) than those of the CON broilers. Heat stress caused significant increases in sera corticosterone and lactic dehydrogenase, the activity of malondialdehyde and superoxide dismutase, the expression of HSP90 and HSP70, and nuclear expression of GR protein in the pectoralis major (P < 0.05). Heat stress induced a significant decrease in GR protein expression in the cytoplasm and GR mRNA expression. Furthermore, the low expression of HSP90 significantly increased levels of lactic dehydrogenase and malondialdehyde and GR protein expression in the cytoplasm under heat stress (P < 0.01), and significantly decreased nuclear GR protein expression (P < 0.01). Heat shock protein 90 was positively correlated with corticosterone and superoxide dismutase activities (P < 0.01), and HSP90 mRNA was negatively correlated with pH after chilling for 24 h. The results demonstrated that HSP90 plays a pivotal role in protecting cells from oxidation.

  1. Priming of pathogenesis related-proteins and enzymes related to oxidative stress by plant growth promoting rhizobacteria on rice plants upon abiotic and biotic stress challenge.

    PubMed

    García-Cristobal, J; García-Villaraco, A; Ramos, B; Gutierrez-Mañero, J; Lucas, J A

    2015-09-01

    Two plant growth promoting rhizobacteria (PGPR) were tested to evaluate their capacity to prime rice seedlings against stress challenge (salt and Xanthomonas campestris infection). As is accepted that plants respond to biotic and abiotic stresses by generation of reactive oxygen species (ROS), enzyme activities related to oxidative stress (ascorbate peroxidase (APX, EC 1.11.1.11), guaiacol peroxidase (GPX, EC 1.11.1.7), glutathione reductase (GR, EC 1.6.4.2) and superoxide dismutase (SOD, EC 1.15.1.1)) as well as the pathogenesis-related proteins (PRs) ß-1,3-glucanase (PR2, EC 3.2.1.6) and chitinase (PR3, EC 3.2.1.14) were measured at 3 time points after stress challenge. In addition, photosynthetic parameters related with fluorescence emission of photosystem II (F0, Fv/Fm, ΦPSII and NPQ) were also measured although they were barely affected. Both strains were able to protect rice seedlings against salt stress. AMG272 reduced the salt symptoms over 47% with regard to control, and L81 over 90%. Upon pathogen challenge, 90% protection was achieved by both strains. All enzyme activities related to oxidative stress were modified by the two PGPR, especially APX and SOD upon salinity stress challenge, and APX and GR upon pathogen presence. Both bacteria induced chitinase activity 24 and 48 h after pathogen inoculation, and L81 induced ß-1,3-Glucanase activity 48 h after pathogen inoculation, evidencing the priming effect. These results indicate that these strains could be used as bio-fortifying agents in biotechnological inoculants in order to reduce the effects of different stresses, and indirectly reduce the use of agrochemicals.

  2. Metastasis suppressor NM23 limits oxidative stress in mammals by preventing activation of stress-activated protein kinases/JNKs through its nucleoside diphosphate kinase activity.

    PubMed

    Peuchant, Evelyne; Bats, Marie-Lise; Moranvillier, Isabelle; Lepoivre, Michel; Guitton, Jérôme; Wendum, Dominique; Lacombe, Marie-Lise; Moreau-Gaudry, François; Boissan, Mathieu; Dabernat, Sandrine

    2017-04-01

    NME1 (nonmetastatic expressed 1) gene, which encodes nucleoside diphosphate kinase (NDPK) A [also known as nonmetastatic clone 23 (NM23)-H1 in humans and NM23-M1 in mice], is a suppressor of metastasis, but several lines of evidence-mostly from plants-also implicate it in the regulation of the oxidative stress response. Here, our aim was to investigate the physiologic relevance of NDPK A with respect to the oxidative stress response in mammals and to study its molecular basis. NME1-knockout mice died sooner, suffered greater hepatocyte injury, and had lower superoxide dismutase activity than did wild-type (WT) mice in response to paraquat-induced acute oxidative stress. Deletion of NME1 reduced total NDPK activity and exacerbated activation of the stress-related MAPK, JNK, in the liver in response to paraquat. In a mouse transformed hepatocyte cell line and in primary cultures of normal human keratinocytes, MAPK activation in response to H2O2 and UVB, respectively, was dampened by expression of NM23-M1/NM23-H1, dependent on its NDPK catalytic activity. Furthermore, excess or depletion of NM23-M1/NM23-H1 NDPK activity did not affect the intracellular bulk concentration of nucleoside di- and triphosphates. NME1-deficient mouse embryo fibroblasts grew poorly in culture, were more sensitive to stress than WT fibroblasts, and did not immortalize, which suggested that they senesce earlier than do WT fibroblasts. Collectively, these results indicate that the NDPK activity of NM23-M1/NM23-H1 protects cells from acute oxidative stress by inhibiting activation of JNK in mammal models.-Peuchant, E., Bats, M.-L., Moranvillier, I., Lepoivre, M., Guitton, J., Wendum, D., Lacombe, M.-L., Moreau-Gaudry, F., Boissan, M., Dabernat, S. Metastasis suppressor NM23 limits oxidative stress in mammals by preventing activation of stress-activated protein kinases/JNKs through its nucleoside diphosphate kinase activity.

  3. Experimental Priapism is Associated with Increased Oxidative Stress and Activation of Protein Degradation Pathways in Corporal Tissue

    PubMed Central

    Kanika, Nirmala D.; Melman, Arnold; Davies, Kelvin P.

    2010-01-01

    Priapism is a debilitating disease for which there is at present no clinically accepted pharmacologic intervention. It has been estimated that priapism lasting more than 24 hours in patients is associated with a 44–90% rate of erectile dysfunction (ED). In this investigation we determined in two animal models of priapism (opiorpin-induced priapism in the rat and priapism in a mouse model of sickle cell disease) if there is evidence for an increase in markers of oxidative stress in corporal tissue. In both animal models we demonstrate that priapism results in increased levels of lipid peroxidation, glutathione S-transferase activity, and oxidatively damaged proteins in corporal tissue. Using Western blot analysis we demonstrated there is up regulation of the ubiquitination ligase proteins, Nedd-4 and Mdm-2, and the lysososomal autophage protein, LC3. The anti-apoptotic protein, Bcl-2, was also up regulated. Overall, we demonstrate that priapism is associated with increased oxidative stress in corporal tissue and the activation of protein degradation pathways. Since oxidative stress is known to mediate the development of ED resulting from several etiologies (for example ED resulting from diabetes and aging) we suggest that damage to erectile tissue resulting from priapism might be prevented by treatments targeting oxidative stress. PMID:21085184

  4. Experimental priapism is associated with increased oxidative stress and activation of protein degradation pathways in corporal tissue.

    PubMed

    Kanika, N D; Melman, A; Davies, K P

    2010-01-01

    Priapism is a debilitating disease for which there is at present no clinically accepted pharmacological intervention. It has been estimated that priapism lasting more than 24 h in patients is associated with a 44-90% rate of ED. In this investigation, we determined in two animal models of priapism (opiorphin-induced priapism in the rat and priapism in a mouse model of sickle cell disease) if there is evidence for an increase in markers of oxidative stress in corporal tissue. In both animal models, we demonstrate that priapism results in increased levels of lipid peroxidation, glutathione S-transferase activity and oxidatively damaged proteins in corporal tissue. Using western blot analysis, we demonstrated there is upregulation of the ubiquitination ligase proteins, Nedd-4 and Mdm-2, and the lysosomal autophage protein, LC3. The antiapoptotic protein, Bcl-2, was also upregulated. Overall, we demonstrate that priapism is associated with increased oxidative stress in corporal tissue and the activation of protein degradation pathways. As oxidative stress is known to mediate the development of ED resulting from several etiologies (for example, ED resulting from diabetes and aging), we suggest that damage to erectile tissue resulting from priapism might be prevented by treatments targeting oxidative stress.

  5. Chronic social defeat stress leads to changes of behaviour and memory-associated proteins of young mice.

    PubMed

    Jianhua, Fan; Wei, Wei; Xiaomei, Liao; Shao-Hui, Wang

    2017-01-01

    It is well known that social defeat stress can induce depressive behaviours and cognitive impairment. However, the molecular mechanism by which only a minority of stress-exposed individuals are affected is not clear. In this study, thirty 3-week-old male c57BL/6 mice were exposed to 30 days of social defeat stress, following which susceptible (socially avoidant) and unsusceptible (socially interactive) mice were identified using social investigation. Twenty-four hours after the last episode of defeat, separate groups of mice were tested in the sucrose preference, open field, elevated plus-maze and Morris water maze behavioural assays. Also, the levels of memory-associated proteins in the hippocampus were examined, including postsynaptic density 95 (PSD95), postsynaptic density 93 (PSD93), and Protein kinase A (PKA). The levels of PSD95, PSD93, and PKA were significantly lower in susceptible mice. We also found that the upstream regulatory factor of these proteins, phosphorylated Camp-Responsive Element-Binding Protein (CREB), was reduced after social defeat in the susceptible group only, while the level of histone deacetylase 6 (HDAC6) was significantly elevated. These data suggest that memory-associated proteins and phosphorylated CREB may play important roles in memory impairment and behavioural responses to chronic stress.

  6. Detection of antibody responses against Mycobacterium avium subsp. paratuberculosis stress-associated proteins within 30 weeks after infection in cattle.

    PubMed

    Kawaji, Satoko; Nagata, Reiko; Whittington, Richard J; Mori, Yasuyuki

    2012-11-15

    In this study, humoral immune responses in cattle against Mycobacterium avium subsp. paratuberculosis (MAP) stress-associated recombinant proteins were assessed longitudinally by ELISA during the first 30 weeks after MAP infection. A total of 11 MAP genes previously identified by proteomic analysis were selected for cloning and expression. These included possible general stress-associated proteins of MAP and proteins expressed in vivo in MAP-infected sheep at an early stage of infection. An increase in the antibody levels against 5 recombinant antigen preparations (MAP1027c, MAP1339, MAP1588c, MAP1589c and MAP2411) was seen in MAP-infected calves (n=16) but not in control calves (n=3) over the time examined. Antibody responses were recorded as early as two weeks post-inoculation, and 87.5% of the inoculated cattle responded to at least one of the five immunogenic antigen preparations within the first 30 weeks of infection, suggesting that these proteins identified in the in vitro models of stress were also expressed in vivo in MAP-infected cattle at a relatively early stage after infection and therefore stimulate the host's immune system. It has been assumed that the sensitivity of antibody ELISA tests is dependent on the stage of infection and the age of the animals. However, we have provided some evidence that humoral immunity occurs at an early stage of paratuberculosis and can be detected using appropriate antigens such as MAP stress-associated proteins.

  7. Combinatory effects of temperature stress and nonionic organic pollutants on stress protein (hsp70) gene expression in the freshwater sponge Ephydatia fluviatilis

    SciTech Connect

    Mueller, W.E.G.; Koziol, C.; Dapper, J.; Kurelec, B.; Batel, R.; Rinkevich, B.

    1995-07-01

    This is the first documentation of a heat shock protein (hsp) response in sponges. Subjecting the freshwater sponge Ephydatia fluviatilis to temperature stress (18 to 33 C; 2 h) resulted in an increased expression (>10 times) of the M{sub r}70,000 (hsp70). The induction of hsp70 could be demonstrated on the level of gene expression and by quantification of the hsp70 protein. Temperature stress also resulted in a 25% reduction of sponge cell proliferation. A mixture of nonionic organic compound was extracted from water from the polluted Schwarzbach River (S. Hesse, Germany) by adsorption onto XAD-7 resin. Concentrations of this Schwarzbach River water extract at two and four items ambient levels resulted in decreases in cell proliferation by 53.6 and 99.4%, respectively. However, when cells were exposed to these levels of the Schwarzbach River water extract directly following a temperature stress (33 C for 2 h), cell proliferation was less affected by the extract than the absence of the temperature stress. In addition, the combination of temperature stress and exposure to the Schwarzbach River water extract resulted in higher levels of hsp70 than were observed for each stressor by itself. Northern and Western blotting as well as precipitation assay confirmed the interaction between heat treatment and exposure to different amounts of nonionic organic pollutants on the level of mRNA and protein expression of hsp70. From these data the authors conclude that a sublethal treatment of sponge with heat results in a higher tolerance of the animals to chemical stressors. These results are relevant to the real-world situation where organisms are often exposed simultaneously to a variety of stressors, in contrast to many laboratory exposures that aim to elucidate the effects of individual stressors.

  8. Heterologous Expression of MeLEA3: A 10 kDa Late Embryogenesis Abundant Protein of Cassava, Confers Tolerance to Abiotic Stress in Escherichia coli with Recombinant Protein Showing In Vitro Chaperone Activity.

    PubMed

    Barros, Nicolle L F; da Silva, Diehgo T; Marques, Deyvid N; de Brito, Fabiano M; dos Reis, Savio P; de Souza, Claudia R B

    2015-01-01

    Late embryogenesis abundant (LEA) proteins are small molecular weight proteins involved in acquisition of tolerance to drought, salinity, high temperature, cold, and freezing stress in many plants. Previous studies revealed a cDNA sequence coding for a 10 kDa atypical LEA protein, named MeLEA3, predicted to be located into mitochondria with potential role in salt stress response of cassava (Manihot esculenta Crantz). Here we aimed to produce the recombinant MeLEA3 protein by heterologous expression in Escherichia coli and evaluate the tolerance of bacteria expressing this protein under abiotic stress. Our result revealed that the recombinant MeLEA3 protein conferred a protective function against heat and salt stress in bacterial cells. Also, the recombinant MeLEA3 protein showed in vitro chaperone activity by protection of NdeI restriction enzyme activity under heat stress.

  9. Effects of thermal stress of protein synthesis and gene expression in Brassica napus

    SciTech Connect

    Halle, J.R.; Ghosh, S.; Dumbroff, E.B.; Heikkila, J.J. )

    1989-04-01

    Leaf segments of Brassica napus were exposed to 22{degrees}, 35{degrees}, 38{degrees} or 40{degrees}C for up to 4 h. Analysis of radiolabelled proteins by 2-D SDS-PAGE and fluorography revealed two major groups of heat shock proteins (HSPs). One group comprised HSPs, 70, 76 and 87, with pIs ranging from 5.7 to 6.1, whereas the second group had molecular weights ranging from 23 to 16 kD and pIs from 5.6 to 6.9. Immunoblot analysis using antibodies directed against the large (RLSU) and small (RSSU) subunits of ribulose-1,5-bisphosphate carboxylase (RUBISCO) showed that increasing temperatures from 35{degrees} to 38{degrees} or 40{degrees}C or the duration of thermal stress from 1 to 5 h did not affect levels of the RSSU (15 kd) whereas levels of the RLSU (52 kD) fell sharply. Nevertheless, RUBISCO activity was not adversely affected at 38{degree}C for periods of up to 5 h. The increase observed in HSP 70 during heat shock was transcriptionally regulated, but the decrease in the RLSU was not accompanied by any detectable change in levels of its mRNA.

  10. Enterococcus faecalis zinc-responsive proteins mediate bacterial defence against zinc overload, lysozyme and oxidative stress.

    PubMed

    Abrantes, Marta C; Kok, Jan; Silva Lopes, Maria de Fátima

    2014-12-01

    Two Enterococcus faecalis genes encoding the P-type ATPase EF1400 and the putative SapB protein EF0759 were previously shown to be strongly upregulated in the presence of high concentrations of zinc. In the present work, we showed that a Zn(2+)-responsive DNA-binding motif (zim) is present in the promoter regions of these genes. Both proteins were further studied with respect to their involvement in zinc homeostasis and invasion of the host. EF0759 contributed to intramacrophage survival by an as-yet unknown mechanism(s). EF1400, here renamed ZntAEf, is an ATPase with specificity for zinc and plays a role in dealing with several host defences, i.e. zinc overload, oxidative stress and lysozyme; it provides E. faecalis cells with the ability to survive inside macrophages. As these three host defence mechanisms are important at several sites in the host, i.e. inside macrophages and in saliva, this work suggested that ZntAEf constitutes a crucial E. faecalis defence mechanism that is likely to contribute to the ability of this bacterium to endure life inside its host.

  11. Immunogenicity of the meningococcal stress protein MSP63 during natural infection.

    PubMed Central

    Pannekoek, Y; Schuurman, I G; Dankert, J; van Putten, J P

    1993-01-01

    Acute- and convalescent-phase sera from 40 patients with meningococcal disease were evaluated for immunoreactivity with the meningococcal member of the hsp60 stress protein family. The IgG response was measured by ELISA, using bacterial cell lysate of the corresponding patients' strain, and purified hsp60 proteins from Neisseria meningitidis (MSP63), Escherichia coli (GroEL) and Mycobacterium bovis BCG (65K) as antigens. Analysis of the antibody responses revealed that 24/35 patients (69%) with elevated anti-meningococcal titres, generated anti-MSP63 antibodies during the time course of infection. Twelve of these patients generated antibodies specific for MSP63, in six patients anti-MSP63 levels exceeded anti-GroEL/65K antibodies. In the remaining six patients, equal levels of anti-MSP63 and anti-GroEL/65K were measured. We conclude that MSP63 is expressed and immunogenic during natural meningococcal infection, and that individual subjects have a restricted response to the antigen, resulting in the recognition of Neisseria-specific hsp60 epitopes and/or cross-reactive hsp60 determinants. Images Fig. 1 PMID:8370163

  12. Methionine sulfoxides in serum proteins as potential clinical biomarkers of oxidative stress

    PubMed Central

    Suzuki, Satoko; Kodera, Yoshio; Saito, Tatsuya; Fujimoto, Kazumi; Momozono, Akari; Hayashi, Akinori; Kamata, Yuji; Shichiri, Masayoshi

    2016-01-01

    Oxidative stress contributes to the pathophysiology of a variety of diseases, and circulating biomarkers of its severity remains a topic of great interest for researchers. Our peptidomic strategy enables accurate and reproducible analysis of circulating proteins/peptides with or without post-translational modifications. Conventional wisdom holds that hydrophobic methionines exposed to an aqueous environment or experimental handling procedures are vulnerable to oxidation. However, we show that the mass spectra intensity ratio of oxidized to non-oxidized methionine residues in serum tryptic proteins can be accurately quantified using a single drop of human serum and give stable and reproducible results. Our data demonstrate that two methionine residues in serum albumin (Met-111 and Met-147) are highly oxidized to methionine sulfoxide in patients with diabetes and renal failure and in healthy smokers versus non-smoker controls. This label-free mass spectrometry approach to quantify redox changes in methionine residues should facilitate the identification of additional circulating biomarkers suitable for predicting the development or progression of human diseases. PMID:27929071

  13. Protective ability against oxidative stress of brewers' spent grain protein hydrolysates.

    PubMed

    Vieira, Elsa F; da Silva, Diana Dias; Carmo, Helena; Ferreira, Isabel M P L V O

    2017-08-01

    The protein fraction of Brewers' spent grain (BSG) was used as substrate to obtain hydrolysates with antioxidant activity. Three enzymatic approaches were applied: brewer's spent yeast (BSY) proteases, Neutrase® and Alcalase®, at the same proteolytic activity (1U/mL), using an enzyme/substrate ratio of 10:100 (v/v), at 50°C, 4h. Total Phenolic Content (TPC) and Ferric Ion Reducing Antioxidant Power (FRAP) of hydrolysates and fractions <10kDa and <3kDa were assayed. Additionally, the protective ability of <10kDa fractions against oxidative stress on Caco-2 and HepG2 cells was investigated. Alcalase® hydrolysate presented significantly (p<0.05) higher TPC and FRAP (0.083mgGAE/mgdw; 0.101mgTE/mgdw, respectively) than Neutrase® and BSY hydrolysates. The three BSG protein hydrolysates (fraction <10kDa) exerted protective effect against free-radical induced cytotoxicity in Caco-2 and HepG2 cell lines, but the strongest effect was observed for BSY hydrolysates, therefore, it presents greater potential as functional ingredient.

  14. Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism.

    PubMed

    Cowley, F C; Barber, D G; Houlihan, A V; Poppi, D P

    2015-04-01

    The effects of heat stress on dairy production can be separated into 2 distinct causes: those effects that are mediated by the reduced voluntary feed intake associated with heat stress, and the direct physiological and metabolic effects of heat stress. To distinguish between these, and identify their effect on milk protein and casein concentration, mid-lactation Holstein-Friesian cows (n = 24) were housed in temperature-controlled chambers and either subjected to heat stress [HS; temperature-humidity index (THI) ~78] or kept in a THI<70 environment and pair-fed with heat-stressed cows (TN-R) for 7 d. A control group of cows was kept in a THI<70 environment with ad libitum feeding (TN-AL). A subsequent recovery period (7 d), with THI<70 and ad libitum feeding followed. Intake accounted for only part of the effects of heat stress. Heat stress reduced the milk protein concentration, casein number, and casein concentration and increased the urea concentration in milk beyond the effects of restriction of intake. Under HS, the proportion in total casein of αS1-casein increased and the proportion of αS2-casein decreased. Because no effect of HS on milk fat or lactose concentration was found, these effects appeared to be the result of specific downregulation of mammary protein synthesis, and not a general reduction in mammary activity. No residual effects were found of HS or TN-R on milk production or composition after THI<70 and ad libitum intake were restored. Heat-stressed cows had elevated blood concentrations of urea and Ca, compared with TN-R and TN-AL. Cows in TN-R had higher serum nonesterified fatty acid concentrations than cows in HS. It was proposed that HS and TN-R cows may mobilize different tissues as endogenous sources of energy.

  15. The stress granule protein Vgl1 and poly(A)-binding protein Pab1 are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Morita, Takahiro; Satoh, Ryosuke; Umeda, Nanae; Kita, Ayako; Sugiura, Reiko

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Stress granules (SGs) as a mechanism of doxorubicin tolerance. Black-Right-Pointing-Pointer We characterize the role of stress granules in doxorubicin tolerance. Black-Right-Pointing-Pointer Deletion of components of SGs enhances doxorubicin sensitivity in fission yeast. Black-Right-Pointing-Pointer Doxorubicin promotes SG formation when combined with heat shock. Black-Right-Pointing-Pointer Doxorubicin regulates stress granule assembly independent of eIF2{alpha} phosphorylation. -- Abstract: Doxorubicin is an anthracycline antibiotic widely used for chemotherapy. Although doxorubicin is effective in the treatment of several cancers, including solid tumors and leukemias, the basis of its mechanism of action is not completely understood. Here, we describe the effects of doxorubicin and its relationship with stress granules formation in the fission yeast, Schizosaccharomyces pombe. We show that disruption of genes encoding the components of stress granules, including vgl1{sup +}, which encodes a multi-KH type RNA-binding protein, and pab1{sup +}, which encodes a poly(A)-binding protein, resulted in greater sensitivity to doxorubicin than seen in wild-type cells. Disruption of the vgl1{sup +} and pab1{sup +} genes did not confer sensitivity to other anti-cancer drugs such as cisplatin, 5-fluorouracil, and paclitaxel. We also showed that doxorubicin treatment promoted stress granule formation when combined with heat shock. Notably, doxorubicin treatment did not induce hyperphosphorylation of eIF2{alpha}, suggesting that doxorubicin is involved in stress granule assembly independent of eIF2{alpha} phosphorylation. Our results demonstrate the usefulness of fission yeast for elucidating the molecular targets of doxorubicin toxicity and suggest a novel drug-resistance mechanism involving stress granule assembly.

  16. Nuclear Proteomics Reveals the Role of Protein Synthesis and Chromatin Structure in Root Tip of Soybean during the Initial Stage of Flooding Stress.

    PubMed

    Yin, Xiaojian; Komatsu, Setsuko

    2016-07-01

    To identify the upstream events controlling the regulation of flooding-responsive proteins in soybean, proteomic analysis of nuclear proteins in root tip was performed. By using nuclear fractions, which were highly enriched, a total of 365 nuclear proteins were changed in soybean root tip at initial stage of flooding stress. Four exon-junction complex-related proteins and NOP1/NOP56, which function in upstream of 60S preribosome biogenesis, were decreased in flooded soybean. Furthermore, proteomic analysis of crude protein extract revealed that the protein translation was suppressed by continuous flooding stress. Seventeen chromatin structure-related nuclear proteins were decreased in response to flooding stress. Out of them, histone H3 was clearly decreased with protein abundance and mRNA expression levels at the initial flooding stress. Additionally, a number of protein synthesis-, RNA-, and DNA-related nuclear proteins were decreased in a time-dependent manner. mRNA expressions of genes encoding the significantly changed flooding-responsive nuclear proteins were inhibited by the transcriptional inhibitor, actinomycin D. These results suggest that protein translation is suppressed through inhibition of preribosome biogenesis- and mRNA processing-related proteins in nuclei of soybean root tip at initial flooding stress. In addition, flooding stress may regulate histone variants with gene expression in root tip.

  17. Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment.

    PubMed

    Chattopadhyay, Arnab; Subba, Pratigya; Pandey, Aarti; Bhushan, Deepti; Kumar, Rajiv; Datta, Asis; Chakraborty, Subhra; Chakraborty, Niranjan

    2011-07-01

    Abiotic stress causes diverse biochemical and physiological changes in plants and limits crop productivity. Plants respond and adapt to such stress by altering their cellular metabolism and activating various defense machineries. To understand the molecular basis of stress tolerance in plants, we have developed differential proteomes in a hardy legume, grasspea (Lathyrus sativus L.). Five-week-old grasspea seedlings were subjected independently to high salinity, low temperature and abscisic acid treatment for duration of 36h. The physiological changes of stressed seedlings were monitored, and correlated with the temporal changes of proteome using two-dimensional gel electrophoresis. Approximately, 400 protein spots were detected in each of the stress proteome with one-fourth showing more than 2-fold differences in expression values. Eighty such proteins were subjected to LC-tandem MS/MS analyses that led to the identification of 48 stress-responsive proteins (SRPs) presumably involved in a variety of functions, including metabolism, signal transduction, protein biogenesis and degradation, and cell defense and rescue. While 33 proteins were responsive to all three treatments, 15 proteins were expressed in stress-specific manner. Further, we explored the possible role of ROS in triggering the stress-induced degradation of large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase (Rubisco). These results might help in understanding the spectrum of stress-regulated proteins and the biological processes they control as well as having implications for strategies to improve stress adaptation in plants.

  18. Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate.

    PubMed

    Liu, Z; Lv, Y; Zhao, N; Guan, G; Wang, J

    2015-07-30

    Over the past few decades, understandings and evidences concerning the role of endoplasmic reticulum (ER) stress in deciding the cell fate have been constantly growing. Generally, during ER stress, the signal transductions are mainly conducted by three ER stress transducers: protein kinase R-like endoplasmic reticulum kinase (PERK), inositol-requiring kinase 1 (IRE1) and activating transcription factor 6 (ATF6). Consequently, the harmful stimuli from the ER stress transducers induce apoptosis and autophagy, which share several crosstalks and eventually decide the cell fate. The dominance of apoptosis or autophagy induced by ER stress depends on the type and degree of the stimuli. When ER stress is too severe and prolonged, apoptosis is induced to eliminate the damaged cells; however, when stimuli are mild, cell survival is promoted to maintain normal physiological functions by inducing autophagy. Although all the three pathways participate in ER stress-induced apoptosis and autophagy, PERK shows several unique characteristics by interacting with some specific downstream effectors. Notably, there are some preliminary findings on PERK-dependent mechanisms switching autophagy and apoptosis. In this review, we particularly focused on the novel, intriguing and complicated role of PERK in ER stress-decided cell fate, and also discussed more roles of PERK in restoring cellular homeostasis. However, more in-depth knowledge of PERK in the future would facilitate our understanding about many human diseases and benefit in searching for new molecular therapeutic targets.

  19. Mitogen- and stress-activated protein kinase 1 modulates photic entrainment of the suprachiasmatic circadian clock.

    PubMed

    Cao, Ruifeng; Butcher, Greg Q; Karelina, Kate; Arthur, J Simon; Obrietan, Karl

    2013-01-01

    The master circadian clock in mammals, the suprachiasmatic nucleus (SCN), is under the entraining influence of the external light cycle. At a mechanistic level, intracellular signaling via the p42/44 mitogen-activated protein kinase pathway appears to play a central role in light-evoked clock entrainment; however, the precise downstream mechanisms by which this pathway influences clock timing are not known. Within this context, we have previously reported that light stimulates activation of the mitogen-activated protein kinase effector mitogen-stress-activated kinase 1 (MSK1) in the SCN. In this study, we utilised MSK1(-/-) mice to further investigate the potential role of MSK1 in circadian clock timing and entrainment. Locomotor activity analysis revealed that MSK1 null mice entrained to a 12 h light/dark cycle and exhibited circadian free-running rhythms in constant darkness. Interestingly, the free-running period in MSK1 null mice was significantly longer than in wild-type control animals, and MSK1 null mice exhibited a significantly greater variance in activity onset. Further, MSK1 null mice exhibited a significant reduction in the phase-delaying response to an early night light pulse (100 lux, 15 min), and, using an 8 h phase-advancing 'jet-lag' experimental paradigm, MSK1 knockout animals exhibited a significantly delayed rate of re-entrainment. At the molecular level, early night light-evoked cAMP response element-binding protein (CREB) phosphorylation, histone phosphorylation and Period1 gene expression were markedly attenuated in MSK1(-/-) animals relative to wild-type mice. Together, these data provide key new insights into the molecular mechanisms by which MSK1 affects the SCN clock.

  20. A one-carbon modification of protein lysine associated with elevated oxidative stress in human substantia nigra.

    PubMed

    Floor, Erik; Maples, Anne M; Rankin, Carolyn A; Yaganti, Vamsee M; Shank, Sylvan S; Nichols, Grant S; O'Laughlin, Michael; Galeva, Nadezhda A; Williams, Todd D

    2006-04-01

    We describe for the first time a naturally occurring lysine modification that is converted to methyllysine by reduction with sodium borohydride. This modification is approximately 1.7 times as abundant in soluble proteins from human substantia nigra pars compacta as in proteins from other brain regions, possibly as a result of elevated oxidative stress in the nigra. Proteins from cultured PC12 cells exposed to oxidative stress conditions also contain elevated levels of this lysine modification. The abundance of the naturally occurring modification is roughly 0.08 nmoles/mg protein in either unstressed brain or PC12 cells. Modification levels remain stable in isolated proteins incubated for 2 h at 37 degrees C in pH 7 buffer. We propose that the endogenous modification is the lysine Schiff base, epsilon-N-methylenelysine, and that lysine modifications may result from a reaction with formaldehyde in vivo. Rat brain contains approximately 60 nmoles/g wet weight of formaldehyde, which probably includes both free and reversibly bound forms. Adding approximately 35 microm HCHO to PC12 cell growth medium introduces methylenelysine modifications in cell proteins and impairs cell viability. The existence of this post-translational modification suggests new mechanisms of oxidative stress that may contribute to tissue degeneration, including loss of nigral dopamine neurons during normal aging and in Parkinson's disease.

  1. Stress proteins hsp60 and hsp70 in three species of amphipods exposed to cadmium, diazinon, dieldrin and fluoranthene

    SciTech Connect

    Werner, I.; Nagel, R.

    1997-11-01

    To investigate the use of stress proteins hsp60 and hsp70 as sublethal biomarkers for contaminant exposure in sediments, two infaunal (Ampelisca abdita, estuarine; Rhepoxynius abronius, marine) and one epifaunal (Hyalella azteca, freshwater) amphipod species were exposed for 24 h to solutions of the heavy metal cadmium, the pesticides diazinon and dieldrin, and the polycyclic aromatic hydrocarbon fluoranthene. All three species are routinely used in standard sediment toxicity tests. Analysis of hsp60 and hsp70 was performed using western blotting techniques with subsequent comparative quantification by densitometry. Results demonstrated compound and species-specific induction of stress protein synthesis. Whereas one member of the hsp70 protein family showed the most sensitive response to xenobiotic compounds in H. azteca, several members of the hsp60 protein family were the main proteins induced in A. abdita and R. abronius. Sensitivity of the detected stress protein response was highest in H. azteca with significant effects at concentrations 110-, 50-, >1,000-, and >1-fold lower than LC50 values for cadmium, diazinon, dieldrin, and fluoranthene, respectively. The corresponding values were >5 (cadmium), 0.7 (diazinon), >1 (dieldrin), and 2.9 (fluoranthene) for A. abdita, and >2 (cadmium), 3.1 (diazinon), > 100 (dieldrin), and >2.9 (fluoranthene) for R. abronius.

  2. Differential induction of heme oxygenase and other stress proteins in cultured hippocampal astrocytes and neurons by inorganic lead.

    PubMed

    Cabell, Leigh; Ferguson, Charles; Luginbill, Deana; Kern, Marcey; Weingart, Adam; Audesirk, Gerald

    2004-07-01

    We examined the effects of exposure to inorganic lead (Pb2+) on the induction of stress proteins in cultured hippocampal neurons and astrocytes, with particular emphasis on the induction of heme oxygenase-1 (HO-1). In radiolabeled neuronal cultures, Pb2+ exposure had no significant effect on the synthesis of any protein at any concentration (up to 250 microM) or duration of exposure (up to 4 days). In radiolabeled astrocyte cultures, however, Pb2+ exposure (100 nM to 100 microM; 1-4 days) increased synthesis of proteins with approximate molecular weights of 23, 32, 45, 57, 72, and 90 kDa. Immunoblot experiments showed that Pb2+ exposure (100 nM to 10 microM, 1-14 days) induces HO-1 synthesis in astrocytes, but not in neurons; this is probably the 32-kDa protein. The other heme oxygenase isoform, HO-2, is present in both neurons and astrocytes, but is not inducible by Pb2+ at concentrations up to 100 microM. HO-1 can be induced by a variety of stimuli. We found that HO-1 induction in astrocytes is increased by combined exposure to Pb2+ and many other stresses, including heat, nitric oxide, H2O2, and superoxide. One of the stimuli that may induce HO-1 is oxidative stress. Lead exposure causes oxidative stress in many cell types, including astrocytes. Induction of HO-1 by Pb2+ is reduced by the hydroxyl radical scavengers dimethylthiourea (DMTU) and mannitol, but not by inhibitors of calmodulin, calmodulin-dependent protein kinases, protein kinase C, or extracellular signal-regulated kinases (ERK). Therefore, we conclude that oxidative stress is an important mechanism by which Pb2+ induces HO-1 synthesis in astrocytes.

  3. The Function of FK506-Binding Protein 13 in Protein Quality Control Protects Plasma Cells from Endoplasmic Reticulum Stress-Associated Apoptosis

    PubMed Central

    Jeong, Mini; Jang, Eunkyeong; Choi, Suk San; Ji, Changhoon; Lee, Kyungho; Youn, Jeehee

    2017-01-01

    Plasma cells (PCs) are exposed to intense endoplasmic reticulum (ER) stress imposed by enormous rates of immunoglobulin (Ig) synthesis and secretion. Therefore, protein homeostasis is crucial for the survival of PCs, but its molecular mechanism remains largely unknown. Here, we found marked overexpression of FK506-binding protein 13 (FKBP13) in long-lived PCs from autoimmune mice and investigated its function using a plasmacytoma cell line secreting IgA. FKBP13 expression was induced largely in the lumen of ER in response to treatment with an ER stressor tunicamycin or overexpression of an adaptive unfolded protein response (UPR) protein X-box binding protein 1 (XBP1). Silencing of FKBP13 expression led to induction of molecules involved in the terminal UPR and ER stress-associated apoptosis. FKBP13 interacted with Ig, facilitated its ubiquitination, and lowered the extent of ER stress. FKBP13 overexpression caused a significant reduction in secreted IgA in plasmacytoma cells, and FKBP13 knockdown exerted an opposite effect. Rapamycin interfered with the interaction between FKBP13 and IgA and enhanced the amount of secreted IgA. Importantly, the level of FKBP13 was inversely correlated with the amount of secreted antibody in long-lived PCs from autoimmune mice. These results suggest that FKBP13 is a marker of long-lived PCs and a component of XBP1-dependent ER protein homeostasis. FKBP13 is likely to act as a molecular chaperone that delivers misfolded ER clients, including Ig, to ER-associated degradation, so reducing proteotoxic stress on the PC. Our data reveal a novel cytoprotective role for FKBP13 in long-lived PCs occurring at the expense of antibody production. PMID:28303141

  4. Differential accumulation of a 24-kd dehydrin protein in wheat seedlings correlates with drought stress tolerance at grain filling.

    PubMed

    Lopez, C G; Banowetz, G; Peterson, C J; Kronstad, W E

    2001-01-01

    The Pacific Northwest (PNW), an important region for wheat production in the USA, is often subject to water deficits during sowing and grain filling. These deficits reduce the quality and yield of the crop. As a consequenc