Science.gov

Sample records for 32s 33s 34s

  1. Determination of the sulfur isotope ratio in carbonyl sulfide using gas chromatography/isotope ratio mass spectrometry on fragment ions 32S+, 33S+, and 34S+.

    PubMed

    Hattori, Shohei; Toyoda, Akari; Toyoda, Sakae; Ishino, Sakiko; Ueno, Yuichiro; Yoshida, Naohiro

    2015-01-01

    Little is known about the sulfur isotopic composition of carbonyl sulfide (OCS), the most abundant atmospheric sulfur species. We present a promising new analytical method for measuring the stable sulfur isotopic compositions (δ(33)S, δ(34)S, and Δ(33)S) of OCS using nanomole level samples. The direct isotopic analytical technique consists of two parts: a concentration line and online gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions (32)S(+), (33)S(+), and (34)S(+). The current levels of measurement precision for OCS samples greater than 8 nmol are 0.42‰, 0.62‰, and 0.23‰ for δ(33)S, δ(34)S, and Δ(33)S, respectively. These δ and Δ values show a slight dependence on the amount of injected OCS for volumes smaller than 8 nmol. The isotope values obtained from the GC-IRMS method were calibrated against those measured by a conventional SF6 method. We report the first measurement of the sulfur isotopic composition of OCS in air collected at Kawasaki, Kanagawa, Japan. The δ(34)S value obtained for OCS (4.9 ± 0.3‰) was lower than the previous estimate of 11‰. When the δ(34)S value for OCS from the atmospheric sample is postulated as the global signal, this finding, coupled with isotopic fractionation for OCS sink reactions in the stratosphere, explains the reported δ(34)S for background stratospheric sulfate. This suggests that OCS is a potentially important source for background (nonepisodic or nonvolcanic) stratospheric sulfate aerosols. PMID:25439590

  2. Photoabsorption cross-section measurements of 32S, 33S, 34S, and 36S sulfur dioxide from 190 to 220 nm

    NASA Astrophysics Data System (ADS)

    Endo, Yoshiaki; Danielache, Sebastian O.; Ueno, Yuichiro; Hattori, Shohei; Johnson, Matthew S.; Yoshida, Naohiro; Kjaergaard, Henrik G.

    2015-03-01

    The ultraviolet absorption cross sections of the SO2 isotopologues are essential to understanding the photochemical fractionation of sulfur isotopes in planetary atmospheres. We present measurements of the absorption cross sections of 32SO2, 33SO2, 34SO2, and 36SO2, recorded from 190 to 220 nm at room temperature with a resolution of 0.1 nm (~25 cm-1) made using a dual-beam photospectrometer. The measured absorption cross sections show an apparent pressure dependence and a newly developed analytical model shows that this is caused by underresolved fine structure. The model made possible the calculation of absorption cross sections at the zero-pressure limit that can be used to calculate photolysis rates for atmospheric scenarios. The 32SO2, 33SO2, and 34SO2 cross sections improve upon previously published spectra including fine structure and peak widths. This is the first report of absolute absorption cross sections of the 36SO2 isotopologue for the C1B2-X1A2 band where the amplitude of the vibrational structure is smaller than the other isotopologues throughout the spectrum. Based on the new results, solar UV photodissociation of SO2 produces 34ɛ, 33Ε, and 36Ε isotopic fractionations of +4.6 ± 11.6‰, +8.8 ± 9.0‰, and -8.8 ± 19.6‰, respectively. From these spectra isotopic effects during photolysis in the Archean atmosphere can be calculated and compared to the Archean sedimentary record. Our results suggest that broadband solar UV photolysis is capable of producing the mass-independent fractionation observed in the Archean sedimentary record without involving shielding by specific gaseous compounds in the atmosphere including SO2 itself. The estimated magnitude of 33Ε, for example, is close to the maximum Δ33S observed in the geological record.

  3. Thermal Ionization Mass Spectrometry Techniques for the Determination of d34S and D33S

    NASA Astrophysics Data System (ADS)

    Mann, J. L.; Kelly, W. R.

    2006-12-01

    Mass-dependent (MD) and mass-independent (MI) sulfur isotopic compositions are measured by gas source isotope ratio mass spectrometry (GIRMS) using either SO2 or SF6 gas. The variations in sulfur isotopes are used for tracing sources of sulfur and elucidating the sulfur cycle. The recent discovery of MI sulfur isotopic effects provide a tracer for atmospheric processes that may yield insight into the atmospheric sulfur cycle. Determinations of δ^{34}S and Δ^{33}S as well as sulfur concentration in low concentration (ppb) samples are now possible by multi-collector thermal ionization mass spectrometry (MCTIMS) by measuring arsenic sulfide molecular ions (AsS+) using silica gel as an emitter. δ^{34}S is determined using a ^{33}S/^{36}S double spike to correct for instrumental mass fractionation. It is added to the sample before chemical processing which permits the simultaneous determination of the natural MD isotopic fractionation and the sulfur concentration. The addition of the double spike before sample processing has the important additional advantage that any isotopic fractionation that may occur during the chemistry will be removed by the double spike correction procedure. The accuracy and precision of the double spike technique is comparable to modern GIRMS, but requires about a factor of 10 less sample. Δ^{33}S effects can also be measured by MCTIMS on unspiked samples using internal normalization. In GIRMS Δ^{33}S effects are defined by the following equation: Δ^{33}S = δ^{33}S - k δ^{34}S A resolvable effect is governed by both the precision and reproducibility of the δ^{33}S and δ^{34}S measurements and the k value. It is claimed that effects of 0.05 to 0.20 Δ^{33}S units are resolvable. MI effects in mass 33 using MCTIMS are determined on an unspiked sample using internal normalization. Because mass 33 falls between and adjacent to the masses 32 and 34 that are used for correction the interpolation correction is over the smallest possible

  4. Isotopic 32S/33S ratio as a diagnostic of presolar grains from novae

    NASA Astrophysics Data System (ADS)

    Parikh, A.; Wimmer, K.; Faestermann, T.; Hertenberger, R.; José, J.; Wirth, H.-F.; Hinke, C.; Krücken, R.; Seiler, D.; Steiger, K.; Straub, K.

    2014-10-01

    Measurements of sulphur isotopes in presolar grains can help to identify the astrophysical sites in which these grains were formed. A more precise thermonuclear rate of the 33S(p , γ)34Cl reaction is required, however, to assess the diagnostic ability of sulphur isotopic ratios. We have studied the 33S(3He,d)34Cl proton-transfer reaction at 25 MeV using a high-resolution quadrupole-dipole-dipole-dipole magnetic spectrograph. Deuteron spectra were measured at ten scattering angles between 10° and 55°. Twenty-four levels in 34Cl over Ex = 4.6- 5.9 MeV were observed, including three levels for the first time. Proton spectroscopic factors were extracted for the first time for levels above the 33S + p threshold, spanning the energy range required for calculations of the thermonuclear 33S(p , γ)34Cl rate in classical nova explosions. We have determined a new 33S(p , γ)34Cl rate using a Monte Carlo method and have performed new hydrodynamic nova simulations to determine the impact on nova nucleosynthesis of remaining nuclear physics uncertainties in the reaction rate. We find that these uncertainties lead to a factor of ≤5 variation in the 33S(p , γ)34Cl rate over typical nova peak temperatures, and variation in the ejected nova yields of Ssbnd Ca isotopes by ≤ 20%. In particular, the predicted 32S/33S ratio is 110-130 for the nova model considered, compared to 110-440 with previous rate uncertainties. As recent type II supernova models predict ratios of 130-200, the 32S/33S ratio may be used to distinguish between grains of nova and supernova origin.

  5. 34S/32S fractionation in sulfur cycles catalyzed by anaerobic bacteria.

    PubMed Central

    Fry, B; Gest, H; Hayes, J M

    1988-01-01

    Stable isotopic distributions in the sulfur cycle were studied with pure and mixed cultures of the anaerobic bacteria, Chlorobium vibrioforme and Desulfovibrio vulgaris. D. vulgaris and C. vibrioforme can catalyze three reactions constituting a complete anaerobic sulfur cycle: reduction of sulfate to sulfide (D. vulgaris), oxidation of sulfide to elemental sulfur (C. vibrioforme), and oxidation of sulfur to sulfate (C. vibrioforme). In all experiments, the first and last reactions favored concentration of the light 32S isotope in products (isotopic fractionation factor epsilon = -7.2 and -1.7%, respectively), whereas oxidation of sulfide favored concentration of the heavy 34S isotope in products (epsilon = +1.7%). Experimental results and model calculations suggest that elemental sulfur enriched in 34S versus sulfide may be a biogeochemical marker for the presence of sulfide-oxidizing bacteria in modern and ancient environments. PMID:11536596

  6. 34S/32S fractionation in sulfur cycles catalyzed by anaerobic bacteria

    NASA Technical Reports Server (NTRS)

    Fry, B.; Gest, H.; Hayes, J. M.

    1988-01-01

    Stable isotopic distributions in the sulfur cycle were studied with pure and mixed cultures of the anaerobic bacteria, Chlorobium vibrioforme and Desulfovibrio vulgaris. D. vulgaris and C. vibrioforme can catalyze three reactions constituting a complete anaerobic sulfur cycle: reduction of sulfate to sulfide (D. vulgaris), oxidation of sulfide to elemental sulfur (C. vibrioforme), and oxidation of sulfur to sulfate (C. vibrioforme). In all experiments, the first and last reactions favored concentration of the light 32S isotope in products (isotopic fractionation factor epsilon = -7.2 and -1.7%, respectively), whereas oxidation of sulfide favored concentration of the heavy 34S isotope in products (epsilon = +1.7%). Experimental results and model calculations suggest that elemental sulfur enriched in 34S versus sulfide may be a biogeochemical marker for the presence of sulfide-oxidizing bacteria in modern and ancient environments.

  7. 34S/32S fractionation during sulfate reduction in groundwater treatment systems: reactive transport modeling.

    PubMed

    Gibson, Blair D; Amos, Richard T; Blowes, David W

    2011-04-01

    Isotope ratio measurements provide a tool for indicating the relative significance of biogeochemical reactions and for constraining estimates of the extent and rate of reactions in passive treatment systems. In this paper, the reactive transport model MIN3P is used to evaluate sulfur isotope fractionation in column experiments designed to simulate treatment of contaminated water by microbially mediated sulfate reduction occurring within organic carbon-based and iron and carbon-based permeable reactive barriers. A mass dependent fractionation model was used to determine reaction rates for 32S and 34S compounds during reduction, precipitation, and dissolution reactions and to track isotope-dependent mass transfer during SO4 removal. The δ34S values obtained from the MIN3P model were similar to those obtained from the Rayleigh equation, indicating that there was not a significant difference between the conceptual models. Differences between the MIN3P derived α value and the Rayleigh equation derived value were attributed to minor changes in the dissolution and precipitation rate of gypsum and mathematical differences in the fitting models. The results indicated that the prediction of δ34S was fairly insensitive to differences in the fractionation factor at the concentration ranges measured in the current study. However, more significant differences would be expected at low sulfate conditions.

  8. The (32)S/(33)S abundance as a function of galactocentric radius in the Milky Way

    NASA Technical Reports Server (NTRS)

    Greenhouse, M. A.; Thronson, H. A., Jr.

    1986-01-01

    Astration of heavy elements by the stars of the Milky Way forms a fossil record which may preserve spacial distribution of the mass function for the stars in the galaxy. Sulfur is among the last common element for which the relative abundance of its various isotopes have yet to be completely measured within our galaxy. Explosive oxygen burning in massive stars is thought to be the process which dominates sulfur production within stars. There models predict that the various isotopes (S-32, S-33, S-34) are formed in relative abundance which depend strongly upon the mass of the parent star. This relative abundance is thought to be unaffected by subsequent stellar procesing since all important sinks of sulfur destroy it without regard for isotopic form. Hence the spacial variation of the mass function (MF) can be studied by measuring the abundance variation of sulfur isotopes in the galaxy provided that the product yields for these isotopes are known accurately as a function of stellar mass.

  9. δ34S and Δ33S records of Paleozoic seawater sulfate based on the analysis of carbonate associated sulfate

    NASA Astrophysics Data System (ADS)

    Wu, Nanping; Farquhar, James; Strauss, Harald

    2014-08-01

    This study updates the δ34S and Δ33S temporal records of Paleozoic and early Mesozoic seawater sulfate using analysis of carbonate associated sulfate of biogenic and whole rock carbonate. The time resolution of carbonate samples studied here is on the order of millions of years which is longer than the timescale for homogenization of seawater sulfate-sulfur (one tenth of a million years), but is comparable to the timescale for isotope evolution of sulfate in the oceans. This δ34S record confirms the long-term decreasing trend that is discernible over the 250 million year timescale of sampling, and the Δ33S record of seawater sulfate for the Paleozoic is consistent with an average value of -0.002±0.004‰ (2σ, 540-251 Ma) that is distinct from the positive Δ33S observed today and inferred for the rest of the Cenozoic. Both δ34S and Δ33S records of seawater sulfate suggest the presence of shorter-timescale variations that occur on timescales of tens of millions of years, arguably driven by changes in intensity of sulfide oxidation in cycling of sulfur and/or by rapid changes in sulfur influx to the oceans and its associated sulfur isotopes. The Permian-Triassic boundary marks a transition in co-trajectories of δ34S and Δ33S from in-phase to anti-phase. The biogeochemical forcing that causes this is unclear. This newly calibrated record remains consistent with an earlier assertion (Wu et al., 2010) that the sulfur isotope fractionation (Δ34SSW-PY) between oceanic sulfate (δ34SSW) and coeval sedimentary pyrite (δ34SPY) was smaller during the Paleozoic than in the Cenozoic, and reached lowest values during the Carboniferous. The δ34SIN and Δ33SIN estimates of influx sulfur to the oceans afforded by the isotope mass balance model for each geologic period throughout the Paleozoic reveal a change from higher positive values of δ34SIN (more negative values of Δ33SIN, approximately -0.030‰) to lower positive values of δ34SIN (slightly negative values of

  10. Environmental controls on the 34S/32S ratios of soil and vegetation

    NASA Astrophysics Data System (ADS)

    Balan, S. A.; Laleian, A.; Portier, E.; Amundson, R.

    2010-12-01

    Climate and landscape age strongly affect most soil processes, however their impact on the terrestrial sulfur (S) cycle is poorly known. In this study, we examine how S isotope composition changes in soils and plants along gradients of climate (Tanzania, Hawaii, California, Great Plains) and age (California). As a model, we assume (as is the case for C and N) that soil S pools are largely at steady state, representing the balance between inputs and losses. The same assumption is made for isotopes: the δ34S value of soil S (in most cases dominantly in organic form) represents the value of inputs and the S isotope fractionation between the losses and the soil S it is derived from. While the geographic variation in the isotopic composition of atmospheric S inputs is not well known at this stage, conducting gradient analyses in confined areas (where S inputs should be constant), allows us to examine how forms of S loss vary with climate and time. For the African (Kilimanjaro) transect, as elevation increases, both mean annual precipitation (MAP) and mean annual temperature (MAT) decrease. Mean δ34S values increase with elevation up a value of 17.9‰ at 2545 m, and then decrease from 2990 m, to a minimum of 8.8‰ at 3900 m. The higher δ34S values at lower elevations, where the climate is wetter and warmer, indicate that the forms of S losses are relatively depleted in 34S , suggesting gaseous losses along with sulfate leaching. The Hawaiian transect mirrors that of Africa at comparable MAP and MAT conditions, suggesting both similar sources, but most importantly similar in-soil responses to temperature/moisture combinations. In contrast, the Great Plain soils, which are significantly drier and somewhat cooler than the Kilimanjaro and Hawaii soils, have δ34S values ranging from -3.3 to +3.8‰, likely as a result of a combination of more 34S-depleted atmospheric inputs and smaller losses of S-depleted sulfate given the drier climate. For the Sierra Nevada transect

  11. Correlation of 13C /12C and 34S /32S secular variations

    NASA Astrophysics Data System (ADS)

    Veizer, Ján; Holser, William T.; Wilgus, Cheryl K.

    1980-04-01

    Statistical evaluation of 3056 δ13C measurements in carbonate rocks and fossils shows that they record a 2‰ 13C depletion from the late Proterozoic to the early Paleozoic, a 2.5‰ enrichment to the Permian, and a 1.5‰ depletion to the Cenozoic. These variations, not controlled primarily by facies or alteration phenomena, correlate negatively with the δ34S sulfate secular trend, as confirmed by collation of 1083 δ34S measurements. The correlation suggests that the biologically mediated redox fluxes of the C and S cycles have been approximately balanced through this long span of geological time, generally levelling available oxygen. Such a redox system is consistent with the controlling mechanism proposed by GARRELS and PERRY (1974). Consequently, the sedimentary reservoirs of C organic as well as S bacteriological'have varied through geological time.

  12. The abundance of 28Si32S, 29Si32S, 28Si34S, and 30Si32S in the inner layers of the envelope of IRC+10216

    NASA Astrophysics Data System (ADS)

    Fonfría, J. P.; Cernicharo, J.; Richter, M. J.; Fernández-López, M.; Velilla Prieto, L.; Lacy, J. H.

    2015-10-01

    We present high spectral resolution mid-IR observations of SiS towards the C-rich AGB star IRC+10216 carried out with the Texas Echelon-cross-Echelle Spectrograph mounted on the NASA Infrared Telescope Facility. We have identified 204 ro-vibrational lines of 28Si32S, 26 of 29Si32S, 20 of 28Si34S, and 15 of 30Si32S in the frequency range 720-790 cm-1. These lines belong to bands v = 1-0, 2-1, 3-2, 4-3, and 5-4, and involve rotational levels with Jlow ≲ 90. About 30 per cent of these lines are unblended or weakly blended and can be partially or entirely fitted with a code developed to model the mid-IR emission of a spherically symmetric circumstellar envelope composed of expanding gas and dust. The observed lines trace the envelope at distances to the star ≲35R⋆ (≃0.7 arcsec). The fits are compatible with an expansion velocity of 1 + 2.5(r/R⋆ - 1) km s-1 between 1 and 5R⋆, 11 km s-1 between 5 and 20R⋆, and 14.5 km s-1 outwards. The derived abundance profile of 28Si32S with respect to H2 is 4.9 × 10-6 between the stellar photosphere and 5R⋆, decreasing linearly down to 1.6 × 10-6 at 20R⋆ and to 1.3 × 10-6 at 50R⋆. 28Si32S seems to be rotationally under local thermodynamic equilibrium (LTE) in the region of the envelope probed with our observations and vibrationally out of LTE in most of it. There is a red-shifted emission excess in the 28Si32S lines of band v = 1-0 that cannot be found in the lines of bands v = 2-1, 3-2, 4-3, and 5-4. This excess could be explained by an enhancement of the vibrational temperature around 20R⋆ behind the star. The derived isotopic ratios 28Si/29Si, and 32S/34S are 17 and 14, compatible with previous estimates.

  13. The abundance of 28Si32S, 29Si32S, 28Si34S, and 30Si32S in the inner layers of the envelope of IRC+10216

    PubMed Central

    Fonfría, J. P.; Cernicharo, J.; Richter, M. J.; Fernández-López, M.; Prieto, L. Velilla; Lacy, J. H.

    2016-01-01

    We present high spectral resolution mid-IR observations of SiS towards the C-rich AGB star IRC+10216 carried out with the Texas Echelon-cross-Echelle Spectrograph mounted on the NASA Infrared Telescope Facility. We have identified 204 ro-vibrational lines of 28Si32S, 26 of 29Si32S, 20 of 28Si34S, and 15 of 30Si32S in the frequency range 720 – 790 cm−1. These lines belong to bands v = 1 – 0, 2 – 1, 3 – 2, 4–3, and 5–4, and involve rotational levels with Jlow ≲ 90. About 30 per cent of these lines are unblended or weakly blended and can be partially or entirely fitted with a code developed to model the mid-IR emission of a spherically symmetric circumstellar envelope composed of expanding gas and dust. The observed lines trace the envelope at distances to the star ≲ 35R⋆(≃ 0″.7). The fits are compatible with an expansion velocity of 1+2.5(r/R⋆ −1) km s−1 between 1 and 5R⋆, 11 km s−1 between 5 and 20R⋆, and 14.5 km s−1 outwards. The derived abundance profile of 28Si32S with respect to H2 is 4.9 × 10−6 between the stellar photosphere and 5R⋆, decreasing linearly down to 1.6 × 10−6 at 20R⋆ and to 1.3 × 10−6 at 50R⋆. 28Si32S seems to be rotationally under LTE in the region of the envelope probed with our observations and vibrationally out of LTE in most of it. There is a red-shifted emission excess in the 28Si32S lines of band v = 1 – 0 that cannot be found in the lines of bands v = 2 – 1, 3 – 2, 4 – 3, and 5 – 4. This excess could be explained by an enhancement of the vibrational temperature around 20R⋆ behind the star. The derived isotopic ratios 28Si/29Si, and 32S/34S are 17 and 14, compatible with previous estimates. PMID:26997679

  14. Measurements of 12C/13C, 14N/15N, and 32S/34S ratios in comet Hale-Bopp (C/1995 O1).

    PubMed

    Jewitt, D C; Matthews, H E; Owen, T; Meier, R

    1997-10-01

    The 12C/13C, 14N/15N, and 32S/34S isotope ratios in comet Hale-Bopp (C/1995 O1) were determined through observations taken with the James Clerk Maxwell Telescope. Measurements of rare isotopes in HCN and CS revealed isotope ratios of H12CN/H13CN = 111 +/- 12, HC14N/HC15N = 323 +/- 46, and C32S/C34S = 27 +/- 3. Within the measurement uncertainties, the isotopic ratios are consistent with solar system values. The cometary volatiles thus have an origin in the solar system and show no evidence for an interstellar component.

  15. Sulfur isotope budget (32S, 33S, 34S and 36S) in Pacific-Antarctic ridge basalts: A record of mantle source heterogeneity and hydrothermal sulfide assimilation

    NASA Astrophysics Data System (ADS)

    Labidi, J.; Cartigny, P.; Hamelin, C.; Moreira, M.; Dosso, L.

    2014-05-01

    To better address how Mid-Ocean Ridge Basalt (MORB) sulfur isotope composition can be modified by assimilation and/or by immiscible sulfide fractionation, we report sulfur (S), chlorine (Cl) and copper (Cu) abundances together with multiple sulfur isotope composition for 38 fresh basaltic glasses collected on the Pacific-Antarctic ridge. All the studied glasses - with the exception of 8 off-axis samples - exhibit relatively high Cl/K, as the result of pervasive Cl-rich fluid assimilation. This sample set hence offers an opportunity to document both the upper mantle S isotope composition and the effect of hydrothermal fluids assimilation on the S isotope composition of erupted basalts along segments that are devoid of plume influence.

  16. Neutron and proton transition densities from 32,34S(p,p') at Ep=318 MeV. I. Isoscalar densities for 32S

    NASA Astrophysics Data System (ADS)

    Kelly, J. J.; Khandaker, M. A.; Boberg, P.; Feldman, A. E.; Flanders, B. S.; Hyman, S.; Seifert, H.; Karen, P.; Norum, B. E.; Welch, P.; Nanda, S.; Saha, A.

    1991-11-01

    Differential cross sections and analyzing powers for low-lying states of 32S were measured using 318 MeV protons. The data were analyzed using an empirical effective interaction previously fitted to inelastic scattering data for 16O and 40Ca at the same energy. Transition densities for many states were fitted to the data using general expansions which permit evaluation of uncertainties due to statistical and normalization errors, penetrability and distortion, and incompleteness in momentum space. The accuracy of the procedure was tested by comparing isoscalar densities fitted to (p,p') data for 32S with proton densities fitted to (e,e') data. The good agreement between these analyses supports the quantitative accuracy of densities fitted to (p,p') data. Isoscalar densities were also fitted to data for several states of 32S for which no (e,e') data exist. We find that the experimental densities agree well with the shell model for the first 2+ state, but that the neutron density for the second 2+ state is distinctly different in shape. Good qualitative agreement between the data and the shell model is obtained for the first two 4+ states of 32S. Transition densities were also fitted to the data for the lowest 1-, 3-, and 5- states in 32S. The shape of the 1- transition density is complicated, but the very small matrix element agrees with the approximate selection rule that suppresses isoscalar E1 moments.

  17. Evaluation of the 34S/32S ratio of Soufre de Lacq elemental sulfur isotopic reference material by continuous flow isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Qi, H.P.; Coplen, T.B.

    2003-01-01

    Soufre de Lacq elemental sulfur reference material (IAEA-S-4) isotopically is homogeneous in amounts as small as 41 ??g as determined by continuous flow isotope-ratio mass spectrometry. The ??34S value for this reference material is +16.90 ?? 0.12??? (1??) on a scale (Vienna Can??on Diablo troilite, VCDT) where IAEA-S-1 Ag2S is -0.3??? and IAEA-S-2 Ag2S is +22.67???. Published by Elsevier Science B.V.

  18. Level-scheme investigation of 33S

    NASA Astrophysics Data System (ADS)

    Gavrilov, G. Tz; Goutev, N.; Dimitrov, B. I.; Tonev, D.; Petkov, P.; de Angelis, G.; Recchia, F.; Farnea, E.; Ur, C. A.; Aydin, S.; Bizzeti, P. G.; Bizzeti-Sona, A. M.; Deloncle, I.; Gottardo, A.; Laftchiev, H.; Lunardi, S.; Mengoni, D.; Michelangoli, C.; Napoli, D. R.; Orlandi, R.; Sahin, E.; Stefanova, E. A.; Valente-Dobon, J. J.; Marinov, Tz K.; Yavahchova, M. S.

    2014-09-01

    An angular correlation experiment was carried out for 33 S at Laboratori Nazionali di Legnaro with the gamma-ray detector array GASP. The reaction used was 24Mg(14N,α p)33S at a beam energy of 40MeV. An analysis of DCO ratios and triple gamma coincidences was performed. So far, a new level depopulated by 3 γ -ray transitions has been found and its spin was determined. The work for further extension of the level scheme is in progress.

  19. Electromagnetic transition strengths in 33S

    NASA Astrophysics Data System (ADS)

    Dimitrov, B. I.; Goutev, N.; Gavrilov, G. Tz; Tonev, D.; Petkov, P.; de Angelis, G.; Recchia, F.; Farnea, E.; Ur, C. A.; Aydin, S.; Bizzeti, P. G.; Bizzeti-Sona, A. M.; Deloncle, I.; Gottardo, A.; Laftchiev, H.; Lunardi, S.; Mengoni, D.; Michelangoli, C.; Napoli, D. R.; Orlandi, R.; Sahin, E.; Stefanova, E. A.; Valente-Dobon, J. J.; Marinov, Tz K.; Yavahchova, M. S.

    2014-09-01

    An experiment using the Doppler Shift Attenuation Method was performed for33S at Laboratori Nazionali di Legnaro using the multi-detector array GASP. Excited states were populated in the fusion-evaporation reaction 24Mg(14N,α p)33S. The data were analyzed using the Differential Decay Curve Method with gates set on the shifted component of a directly feeding transition thus eliminating the problem of the unobserved feeding. Reliable and precise lifetimes were determined and the data derived for the reduced transition probabilities are going to be compared to the predictions of shell model calculations.

  20. Branches of {sup 33}S(p,{gamma}){sup 34}Cl at oxygen-neon nova temperatures

    SciTech Connect

    Freeman, B. M.; Wrede, C.; Delbridge, B. G.; Garcia, A.; Knecht, A.; Sallaska, A. L.; Parikh, A.

    2011-04-15

    Recent simulations of classical novae on oxygen-neon white-dwarf stars indicate that the isotopic ratio {sup 32}S/{sup 33}S has the potential to be a remarkable indicator of presolar grains of nova origin. The {sup 33}S(p,{gamma}){sup 34}Cl reaction influences this ratio directly by destroying {sup 33}S in novae. Additionally, {beta}-delayed {gamma} rays from the metastable state of {sup 34}Cl (t{sub 1/2}=32 min) have been suggested to be potential nova observables. We have measured the branches for known {sup 33}S(p,{gamma}){sup 34}Cl resonances that are activated at temperatures relevant to oxygen-neon novae. We provide the first reliable uncertainties on these branches and the first upper limits for several previously unmeasured branches.

  1. Intermittency in {sup 32}S + S and {sup 32}S + Au collisions at the CERN SPS

    SciTech Connect

    Bloomer, M.A.; Jacobs, P.; WA80 Collaboration

    1991-12-01

    Nonstatistical or ``intermittent`` fluctuations of charged particle multiplicities have been investigated at the CERN SPS with the WA80 multiplicity array for {sup 32}S+S and {sup 32}S+Au collisions of varying centrality. Within the phase space domain studied there is no evidence for intermittency in these collisions beyond that accounted for by FRITIOF filtered through a full detector simulation.

  2. Intermittency in sup 32 S + S and sup 32 S + Au collisions at the CERN SPS

    SciTech Connect

    Bloomer, M.A.; Jacobs, P.

    1991-12-01

    Nonstatistical or intermittent'' fluctuations of charged particle multiplicities have been investigated at the CERN SPS with the WA80 multiplicity array for {sup 32}S+S and {sup 32}S+Au collisions of varying centrality. Within the phase space domain studied there is no evidence for intermittency in these collisions beyond that accounted for by FRITIOF filtered through a full detector simulation.

  3. Utilizing pyritic δ34S to characterize the depositional conditions of the Neo-Tethys in the Late Permian

    NASA Astrophysics Data System (ADS)

    Stebbins, A.; Holmes, S. E.; Fernandes, G.; Williams, J. C.; Hannigan, R.

    2013-12-01

    Understanding changes in the sulfur cycle during the end-Permian is an important step in detangling local from global environmental changes occurring at the time. In this study, pyrite δ34S was measured in shales (Gungri Formation, Late Permian) samples collected at five Neo-Tethys PT sections (Attargo, Lingti 1, Lingti 2, Guling, and Mud) from Spiti Valley, Himichal Pradesh, India. Pyritic sulfur was extracted from samples collected at variable resolution, from 10-cm to 50-cm intervals from the P-T Boundary to the base of exposed outcrop, by chromium reduction. δ34S was measured by EA-IRMS (Costech 4010 Elemental Analyzer and Thermo Delta V+Isotope Ratio Mass Spectrometer). One of the main factors controlling the isotopic composition of pyrite is the isotopic fractionation caused by bacterial sulfate reduction (BSR) since the lighter 32S is preferentially reduced over the heavier 34S. In an open marine system, seawater sulfate is refreshed providing sufficient 32S to be continuously reduced. This renewal of sulfate potentially yields fractionations as large as 40-60‰. In these systems, organic matter is typically the limiting factor in BSR, producing a positive correlation between organic carbon and pyritic sulfur. In a closed marine system, where the sulfate supply is not refreshed, the pyrite δ34S values become enriched as BSR uses the heavier 34S isotope due to a lack of 32S. Complete utilization of sulfate produces pyrite δ34S values equal to or greater than the initial seawater sulfate. Additional factors that can influence pyritic δ34S and enhance the "sulfate reservoir" effect include changes in detrital inputs and burial fluxes of both pyrite and sulfate. Therefore, the δ34S incorporated into pyrite potentially contains important information on its formation environment, particularly when used in conjunction with other C-S-Fe proxies such as carbon-to-sulfur ratios (C/S) and degree of pyritization (DOP). These proxies were combined to characterize

  4. Determination of the δ34S of Total Sulfur in Solids: RSIL Lab Code 1800

    USGS Publications Warehouse

    Revesz, Kinga; Coplen, Tyler B.

    2006-01-01

    The purpose of Reston Stable Isotope Laboratory Lab (RSIL) Code 1800 is to determine the δ(34S/32S), abbreviated as δ34S, of total sulfur in a solid sample. A Carlo Erba NC 2500 elemental analyzer (EA) is used to convert total sulfur in a solid sample into SO2 gas. The EA is connected to a continuous flow isotope-ratio mass spectrometer (CF-IRMS), which determines the relative difference in stable sulfur isotope-amount ratio (34S/32S) of the product SO2 gas. The combustion is quantitative; no isotopic fractionation is involved. Samples are placed in tin capsules and loaded into a Costech Zero-Blank Autosampler on the EA. Under computer control, samples are dropped into a heated tube reaction tube that combines both the oxidation and the reduction reactions. The combustion takes place in a He atmosphere that contains an excess of oxygen gas at the oxidation zone at the top of the reaction tube. Combustion products are transported by a He carrier through the reduction zone at the bottom of the reaction tube to remove excess oxygen and through a separate drying tube to remove any water. The gas-phase products, mainly CO2, N2, and SO2, are separated by a gas chromatograph (GC). The gas is then introduced into the isotope-ratio mass spectrometer (IRMS) through a Thermo-Finnigan ConFlo II interface, which also is used to inject SO2 reference gas and He for sample dilution. The IRMS is a Thermo-Finnigan DeltaPlus CF-IRMS. It has a universal triple collector with two wide cups and a narrow cup in the middle. It is capable of measuring mass/charge (m/z) 64 and 66 simultaneously. The ion beams from SO2 are as follows: m/z 64 = SO2 = 32S16O16O; and m/z 66 = SO2 = 34S16O16O primarily.

  5. Determination of the δ34S of sulfate in water; RSIL lab code 1951

    USGS Publications Warehouse

    Revesz, Kinga; Qi, Haiping; Coplen, Tyler B.

    2006-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 1951 is to determine the δ(34S/32S), abbreviated as δ34S, of dissolved sulfate. Dissolved sulfate is collected in the field and precipitated with BaCl2 at pH 3 to 4 as BaSO4 in the laboratory. However, the dissolved organic sulfur (DOS) is oxidized to SO2, and the carbonate is acidified to CO2. Both are degassed from the water sample before the sulfate is precipitated. The precipitated BaSO4 is filtered and dried before introduction into an elemental analyzer (EA) Carlo Erba NC 2500. The EA is used to convert sulfur in a BaSO4 solid sample into SO2 gas, and the EA is connected to a continuous flow isotope-ratio mass spectrometer (CF-IRMS), which determines the differences in the isotope-amount ratios of stable sulfur isotopes (34S/32S) of the product SO2 gas. The combustion is quantitative; no isotopic fractionation is involved. Samples are placed in a tin capsule and loaded into the Costech Zero Blank Autosampler of the EA. Under computer control, samples are dropped into a heated tube reaction tube that combines the oxidation and reduction reactions. The combustion takes place in a helium atmosphere containing an excess of oxygen gas at the oxidation zone at the top of the reaction tube. Combustion products are transported by a helium carrier through the reduction zone at the bottom of the reaction tube to remove excess oxygen and through a separate drying tube to remove any water. The gas-phase products, mainly CO2, N2, and SO2, are separated by a gas chromatograph. The gas is then introduced into the isotope-ratio mass spectrometer (IRMS) through a Finnigan MAT (now Thermo Scientific) ConFlo II interface, which also is used to inject SO2 reference gas and helium for sample dilution. The IRMS is a Thermo Scientific Delta V Plus CF-IRMS. It has a universal triple collector with two wide cups and a narrow cup in the middle. It is capable of measuring mass/charge (m/z) 64 and 66 simultaneously

  6. Pulsed EPR Spectroscopy of 33S-Labeled Molybdenum Cofactor in Catalytically Active Bioengineered Sulfite Oxidase

    PubMed Central

    Klein, Eric L.; Belaidi, Abdel Ali; Raitsimring, Arnold M.; Davis, Amanda C.; Krämer, Tobias; Astashkin, Andrei V.; Neese, Frank; Schwarz, Günter; Enemark, John H.

    2014-01-01

    Molybdenum enzymes contain at least one pyranopterin dithiolate (molybdopterin, MPT) moiety that coordinates Mo through two dithiolate (dithiolene) sulfur atoms. For sulfite oxidase (SO), hyperfine interactions (hfi) and nuclear quadrupole interactions (nqi) of magnetic nuclei (I ≠ 0) near the Mo(V) (d1) center have been measured using high-resolution pulsed electron paramagnetic resonance (EPR) methods and interpreted with the help of the density functional theory (DFT) calculations. These have provided important insights about the active site structure and the reaction mechanism of the enzyme. However, it has not been possible to use EPR to probe the dithiolene sulfurs directly since naturally abundant 32S has no nuclear spin (I = 0). Here we describe direct incorporation of 33S (I = 3/2), the only stable magnetic sulfur isotope, into MPT using controlled in vitro synthesis with purified proteins. The electron spin echo envelope modulation (ESEEM) spectra from 33S-labeled MPT in this catalytically active SO variant are dominated by the ‘inter-doublet’ transition arising from the strong nuclear quadrupole interaction, as also occurs for the 33S-labeled exchangeable equatorial sulfite ligand [Klein, E. L., et al., Inorg. Chem. 2012, 51, 1408 – 1418]. The estimated experimental hfi and nqi parameters for 33S (aiso = 3 MHz and e2Qq/h = 25 MHz) are in good agreement with those predicted by DFT. In addition, the DFT calculations show that the two 33S atoms are indistinguishable by EPR and reveal a strong intermixing between their out-of-plane pz orbitals and the dxy orbital of Mo(V). PMID:24387640

  7. Measurement of the delta34S value in methionine by double spike multi-collector thermal ionization mass spectrometry using Carius tube digestion.

    PubMed

    Mann, Jacqueline L; Kelly, W Robert

    2010-09-15

    Methionine is an essential amino acid and is the primary source of sulfur for humans. Using the double spike ((33)S-(36)S) multi-collector thermal ionization mass spectrometry (MC-TIMS) technique, three sample bottles of a methionine material obtained from the Institute for Reference Materials and Measurements have been measured for delta(34)S and sulfur concentration. The mean delta(34)S value, relative to Vienna Canyon Diablo Troilite (VCDT), determined was 10.34 +/- 0.11 per thousand (n = 9) with the uncertainty reported as expanded uncertainties (U). These delta(34)S measurements include a correction for blank which has been previously ignored in studies of sulfur isotopic composition. The sulfur concentrations for the three bottles range from 56 to 88 microg/g. The isotope composition and concentration results demonstrate the high accuracy and precision of the DS-MC-TIMS technique for measuring sulfur in methionine.

  8. Oxygen isotope corrections for online δ34S analysis

    USGS Publications Warehouse

    Fry, B.; Silva, S.R.; Kendall, C.; Anderson, R.K.

    2002-01-01

    Elemental analyzers have been successfully coupled to stable-isotope-ratio mass spectrometers for online measurements of the δ34S isotopic composition of plants, animals and soils. We found that the online technology for automated δ34S isotopic determinations did not yield reproducible oxygen isotopic compositions in the SO2 produced, and as a result calculated δ34S values were often 1–3‰ too high versus their correct values, particularly for plant and animal samples with high C/S ratio. Here we provide empirical and analytical methods for correcting the S isotope values for oxygen isotope variations, and further detail a new SO2-SiO2 buffering method that minimizes detrimental oxygen isotope variations in SO2.

  9. The possible role of thiosulfate in the precipitation of 34S-rich barite in some Mississippi Valley-type deposits

    USGS Publications Warehouse

    Spirakis, C.S.

    1991-01-01

    The precipitation of extremely 34S-rich barite in the late stage of mineralization in the Mississippi Valleytype deposits of the Illinois-Kentucky district (U.S.A.) may be explained by reactions involving thiosulfate (S2O3=). Inorganic processes are known to concentrate 34S in the sulfonate site of thiosulfate and 32S in the sulfate site. In the mineralizing solution, these inorganic processes may have fractionated sulfur between the two sites by about 40 per mil. At the low temperatures of the late barite stage of mineralization, bacteria are known to metabolize thiosulfate by various reactions. In one of these, dissimilatory reduction, hydrogen sulfide and sulfite are produced. Isotopically light sulfite is preferentially reduced to sulfide by bacteria to leave a residual sulfite enriched in 34S. Part of the residual sulfite may be oxidized to form isotopically heavy sulfate; part may recombine with hydrogen sulfide to form thiosulfate. The recombination also enriches the sulfonate site in 34S and the sulfane site in 32S. Recycling the newly formed thiosulfate through the above steps further enriches sulfite and sulfate from oxidation of sulfite in 34S. During genesis of the ores, the aggregate effect of these reactions may have been the precipitation of extremely 34S-rich barite. The sequence of reactions suggested above requires the presence of organic matter. Previously proposed reactions to account for the precipitation of sulfide minerals and fluorite and for the carbonate paragenesis also require the presence of organic matter. Thus, organic matter in the host rocks may cause the various ore-zone reactions and account for the localization of the ores. ?? 1991 Springer-Verlag.

  10. Determination of the δ34S of low-concentration sulfate in water; RSIL lab code 1949

    USGS Publications Warehouse

    Revesz, Kinga; Qi, Haiping; Coplen, Tyler B.

    2006-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 1949 is to determine the δ(34S/32S), abbreviated as δ34S, of dissolved sulfate having a concentration less than 20 milligrams per liter. Dissolved sulfate is collected on an anion-exchange resin in the field, eluted in the laboratory with 3 M KCl, and precipitated with BaCl2 at pH 3 to 4 as BaSO4. The precipitated BaSO4 is filtered and dried before introduction into an elemental analyzer (EA) Carlo Erba NC 2500. The EA is used to convert sulfur in a BaSO4 solid sample into SO2 gas, and the EA is connected to a continuous flow isotope-ratio mass spectrometer (CF-IRMS), which determines differences in the isotope-amount ratios of stable sulfur isotopes (34S/32S) of the product SO2 gas. The combustion is quantitative; no isotopic fractionation is involved. Samples are placed in a tin capsule and loaded into the Costech Zero Blank Autosampler of the EA. Under computer control, samples are dropped into a heated reaction tube that combines the oxidation and reduction reactions. The combustion takes place in a helium atmosphere containing an excess of oxygen gas at the oxidation zone at the top of the reaction tube. Combustion products are transported by a helium carrier through the reduction zone at the bottom of the reaction tube to remove excess oxygen and through a separate drying tube to remove any water. The gas-phase products, mainly CO2, N2, and SO2, are separated by a gas chromatograph. The gas is then introduced into the isotope-ratio mass spectrometer (IRMS) through a Finnigan MAT (now Thermo Scientific) ConFlo II interface, which is also used to inject SO2 reference gas and helium for sample dilution. The IRMS is a Thermo Scientific Delta V Plus CF-IRMS. It has a universal triple collector with two wide cups and a narrow cup in the middle. It is capable of measuring mass/charge (m/z) 64 and 66 simultaneously. The ion beams from SO2 are as follows: m/z 64 = SO2 = 32S16O16O; m/z 66 = SO2 = 34S

  11. The chemical conditions of the late Archean Hamersley basin inferred from whole rock and pyrite geochemistry with Δ33S and δ34S isotope analyses

    NASA Astrophysics Data System (ADS)

    Gregory, Daniel D.; Large, Ross R.; Halpin, Jacqueline A.; Steadman, Jeffery A.; Hickman, Arthur H.; Ireland, Trevor R.; Holden, Peter

    2015-01-01

    The well-preserved late Archean sedimentary rocks of the Fortescue and Hamersley Basins in Western Australia offer fascinating insights into early earth ocean chemistry prior to the Great Oxidation Event (GOE). In this study, we use a combination of whole rock geochemistry, LA-ICPMS trace element analysis of sedimentary pyrite and pyrrhotite and SHRIMP-SI sulfur isotope analyses to elucidate the chemical changes in these sedimentary rocks. These proxies are used to examine chemical conditions of the ocean during the late Archean. Two to three periods of oxygen enrichment prior to the deposition of banded iron formations (BIF) can be identified. One minor stage of general increase in whole rock enrichment factors and trace element content of pyrite is observed up stratigraphy in the Jeerinah Formation, Fortescue Basin and a more substantial stage is present in the Paraburdoo and Bee Gorge Members of the Wittenoom Formation, Hamersley Basin. Some of the trace element enrichments indicate organic matter burial flux (Ni, Cr, Zn, Co and Cu) which suggests an increase in biological productivity. If the increased biological activity reflects an increase in cyanobacteria activity then an associated increase in oxygen is likely to have occurred during the deposition of the Bee Gorge Member. An increase in atmospheric oxygen would result in continental weathering of sulfide and other minerals, increasing the trace element content of the water column via erosion and avoiding excessive depletion of trace elements due to drawdown in seawater. Since some of these trace elements may also be limiting nutrients (such as Mo and Se) for the cyanobacteria, the degree of biological productivity may have further increased due to the increasing amount of trace elements introduced by oxygenation in a positive feedback loop. These periods of increased productivity and oxygen rise stopped prior to the onset of BIF deposition in the Hamersley Basin. This may be due to the ocean reaching an oxidation threshold, enabling the precipitation of hematite and magnetite BIF. The BIF deposition caused depletion of ocean nutrients such as phosphate, severely limiting the growth of cyanobacteria, and thus limiting further oxygen production.

  12. Revised delta34S reference values for IAEA sulfur isotope reference materials S-2 and S-3.

    PubMed

    Mann, Jacqueline L; Vocke, Robert D; Kelly, W Robert

    2009-04-01

    Revised delta(34)S reference values with associated expanded uncertainties (95% confidence interval (C.I.)) are presented for the sulfur isotope reference materials IAEA-S-2 (22.62 +/- 0.16 per thousand) and IAEA-S-3 (-32.49 +/- 0.16 per thousand). These revised values are determined using two relative-difference measurement techniques, gas source isotope ratio mass spectrometry (GIRMS) and double-spike multi-collector thermal ionization mass spectrometry (MC-TIMS). Gas analyses have traditionally been considered the most robust for relative isotopic difference measurements of sulfur. The double-spike MC-TIMS technique provides an independent method for value-assignment validation and produces revised values that are both unbiased and more precise than previous value assignments. Unbiased delta(34)S values are required to anchor the positive and negative end members of the sulfur delta (delta) scale because they are the basis for reporting both delta(34)S values and the derived mass-independent Delta(33)S and Delta(36)S values.

  13. Improving the {sup 33}S(p,{gamma}){sup 34}Cl Reaction Rate for Models of Classical Nova Explosions

    SciTech Connect

    Parikh, A.; Faestermann, Th.; Kruecken, R.; Bildstein, V.; Bishop, S.; Eppinger, K.; Herlitzius, C.; Lepyoshkina, O.; Maierbeck, P.; Seiler, D.; Wimmer, K.; Hertenberger, R.; Wirth, H.-F.; Fallis, J.; Hager, U.; Hutcheon, D.; Ruiz, Ch.; Buchmann, L.; Ottewell, D.; Freeman, B.

    2011-10-28

    Reduced uncertainty in the thermonuclear rate of the {sup 33}S(p,{gamma}){sup 34}Cl reaction would help to improve our understanding of nucleosynthesis in classical nova explosions. At present, models are generally in concordance with observations that nuclei up to roughly the calcium region may be produced in these explosive phenomena; better knowledge of this rate would help with the quantitative interpretation of nova observations over the S-Ca mass region, and contribute towards the firm establishment of a nucleosynthetic endpoint. As well, models find that the ejecta of nova explosions on massive oxygen-neon white dwarfs may contain as much as 150 times the solar abundance of {sup 33}S. This characteristic isotopic signature of a nova explosion could possibly be observed through the analysis of microscopic grains formed in the environment surrounding a nova and later embedded within primitive meteorites. An improved {sup 33}S(p,{gamma}){sup 34}Cl rate (the principal destruction mechanism for {sup 33}S in novae) would help to ensure a robust model prediction for the amount of {sup 33}S that may be produced. Finally, constraining this rate could confirm or rule out the decay of an isomeric state of {sup 34}Cl(E{sub x} = 146 keV, t{sub 1/2} = 32 m) as a source for observable gamma-rays from novae. We have performed several complementary experiments dedicated to improving our knowledge of the {sup 33}S(p,{gamma}){sup 34}Cl rate, using both indirect methods (measurement of the {sup 34}S({sup 3}He,t){sup 34}Cl and {sup 33}S({sup 3}He,d){sup 34}Cl reactions with the Munich Q3D spectrograph) and direct methods (in normal kinematics at CENPA, University of Washington, and in inverse kinematics with the DRAGON recoil mass separator at TRIUMF). Our results will be used with nova models to facilitate comparisons of model predictions with present and future nova observables.

  14. High Resolution Infrared Studies of the v2, v4 Bands of 34S16O3, Including Both Intensity and Wavenumber Perturbations

    SciTech Connect

    Barber, Jeffrey B.; Masiello, Tony; Chrysostom, Engelene; Nibler, Joseph W.; Maki, Arthur; Weber, Alfons; Blake, Thomas A.; Sams, Robert L.

    2003-06-15

    The infrared spectrum of the v2, v4 bending mode region of 34S-substituted sulfur trioxide, 34S16O3, has been recorded at a resolution of 0.0025 cm-1. The v2 and v4 levels are coupled by a Coriolis interaction, yielding significant spectral shifts that have been successfully analyzed to obtain rovibrational constants for the ground state and both fundamentals. Comparisons are made with 32S16O3 parameters and the Bo rotational constant is found to be 0.348 556 04(28) cm-1, only very slightly larger than the corresponding value of 0.348 543 33(5) cm-1 for 32S16O3. Coriolis and l-type resonance interactions between the v2 and v4 levels produce frequency shifts and strong intensity perturbations in the spectra that are considered for both 34S16O3 and 32S16O3. The resulting analysis yields an average value of+0.62(8) for the dipole derivative ratio (?x/?Q4x) (?z/?Q2) and a positive sign for the product of this ratio with the?y2,4 Coriolis constant, for which experiment gives+0.5940(15) . Ab initio calculations indicate that the signs of?x/?Q4x and?z/?Q2 are both positive and hence?y2,4 is also positive, in agreement with earlier calculations. These signs indicate that the effective charge movement in the xz plane has the same sense of rotation as Q2, Q4x atom motion in this plane that produces a py vibrational angular momentum component, correlated motion that is confirmed by ab initio calculations.

  15. Highly Accurate Potential Energy Surface, Dipole Moment Surface, Rovibrational Energy Levels, and Infrared Line List for (32)S(16)O2 up to 8000 cm(exp -1)

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2014-01-01

    A purely ab initio potential energy surface (PES) was refined with selected (32)S(16)O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (RMS) error for all J=0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm(exp -1). Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296K and covers up to 8,000 cm(exp -1). Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85-90%. Our predictions for (34)S(16)O2 band origins, higher energy (32)S(16)O2 band origins and missing (32)S(16)O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict (32/34)S(16)O2 band origins below 5500 cm(exp -1) with 0.01-0.03 cm(exp -1) uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The Ka-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations.

  16. A mantle origin for Paleoarchean peridotitic diamonds from the Panda kimberlite, Slave Craton: Evidence from 13C-, 15N- and 33,34S-stable isotope systematics

    NASA Astrophysics Data System (ADS)

    Cartigny, Pierre; Farquhar, James; Thomassot, Emilie; Harris, Jeffrey W.; Wing, Bozwell; Masterson, Andy; McKeegan, Kevin; Stachel, Thomas

    2009-11-01

    In order to address diamond formation and origin in the lithospheric mantle underlying the Central Slave Craton, we report N- and C-stable isotopic compositions and N-contents and aggregation states for 85 diamonds of known paragenesis (73 peridotitic, 8 eclogitic and 4 from lower mantle) from the Panda kimberlite (Ekati Mine, Lac de Gras Area, Canada). For 12 peridotitic and two eclogitic sulfide inclusion-bearing diamonds from this sample set, we also report multiple-sulfur isotope ratios. The 73 peridotitic diamonds have a mean δ13C-value of - 5.2‰ and range from - 6.9 to - 3.0‰, with one extreme value at - 14.1‰. The associated δ15N-values range from - 17.0 to + 8.5‰ with a mean value of - 4.0‰. N-contents range from 0 to 1280 ppm. The 8 eclogitic diamonds have δ13C-values ranging from - 11.2 to - 4.4‰ with one extreme value at - 19.4‰. Their δ15N ranges from - 2.1 to + 7.9‰ and N-contents fall between 0 and 3452 ppm. Four diamonds with an inferred lower mantle origin are all Type II (i.e. nitrogen-free) and have a narrow range of δ13C values, between - 4.5 and - 3.5‰. The δ34S of the 14 analyzed peridotitic and eclogitic sulfide inclusions ranges from - 3.5 to +5.7‰. None of them provide evidence for anomalous δ33S-values; observed variations in δ33S are from +0.19 to - 0.33‰, i.e. within the 2 sigma uncertainties of mantle sulfur ( δ33S = 0‰). At Panda, the N contents and the δ13C of sulfide-bearing peridotitic diamonds show narrower ranges than silicate-bearing peridotitic diamonds. This evidence supports the earlier suggestion established from eclogitic diamonds from the Kaapvaal that sulfide-(±silicate) bearing diamonds sample a more restricted portion of sublithospheric mantle than silicate-(no sulfide) bearing diamonds. Our findings at Panda suggest that sulfide-bearing diamonds should be considered as a specific diamond population on a global-scale. Based on our study of δ34S, Δ 33S, δ15N and δ13C, we find no

  17. Detection of Taurine in Biological Tissues by 33S NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Musio, Roberta; Sciacovelli, Oronzo

    2001-12-01

    The potential of 33S NMR spectroscopy for biochemical investigations on taurine (2-aminoethanesulfonic acid) is explored. It is demonstrated that 33S NMR spectroscopy allows the selective and unequivocal identification of taurine in biological samples. 33S NMR spectra of homogenated and intact tissues are reported for the first time, together with the spectrum of a living mollusc. Emphasis is placed on the importance of choosing appropriate signal processing methods to improve the quality of the 33S NMR spectra of biological tissues.

  18. Isotopic Equilibration Between Sulfide and Organic Matter: Implications for Records of Sedimentary δ34S.

    NASA Astrophysics Data System (ADS)

    Raven, M. R.; Sessions, A. L.; Adkins, J. F.; Fischer, W. W.

    2015-12-01

    Records of the sulfur-isotopic composition of sedimentary pyrite have been used to constrain the evolutionary timing of major metabolic pathways, the size of the marine sulfate reservoir, and the redox balance of the planet. It remains a major challenge, however, to explain the enormous range of pyrite δ34S values in the literature and their typical ~10‰ offset relative to sedimentary organic S. We investigate the development of pyrite and organic S records in Santa Barbara Basin, which has suboxic bottom water and high (≥4 wt%) organic matter burial. Concentration and δ34S profiles of major sulfur species (sulfate, sulfide, elemental S, proto-kerogen, pyrite, and extractable organic matter) suggest the occurrence of S-isotope exchange between porewater sulfide and organic S, so we conducted laboratory experiments to test organic S exchangeability with 34S-labelled sulfide-polysulfide solutions. We found that both extractable and proto-kerogen organic matter incorporated significant amounts of label within days, supporting the feasibility of equilibration between sulfide and organic matter in the environment. Unlike organic S, pyrite δ34S values in Santa Barbara Basin sediments are up to 30‰ lower than those for porewater sulfide. We hypothesize that this strongly 34S-depleted pyrite reflects the immediate products of bacterial sulfate reduction at organic-rich structures like microbial biofilms or aggregates and suggest that this δ34S difference between porewater sulfide and pyrite may be a more common than previously recognized. Pyrite δ34S values are not necessarily reflective of porewater sulfide δ34S, suggesting that this common assumption should be revisited. Sedimentary pyrite and organic S are potentially powerful and complementary archives of environmental information. To meaningfully interpret these records, it is essential that we take into account the complex processes affecting sedimentary pyrite and organic sulfur δ34S in modern sediments.

  19. ``Background'' δ34S values of Kupferschiefer sulphides in Poland: pyrite-marcasite nodules

    NASA Astrophysics Data System (ADS)

    Jowett, E. C.; Roth, T.; Rydzewski, A.; Oszczepalski, S.

    1991-04-01

    Regional “background” δ 34S values of pyrite-(marcasite) nodules throughout the Zechstein basin in Poland have been measured to help estimate the proportion of externally derived sulphur in the Kupferschiefer Cu-Ag ores. The δ 34S values of the 17 FeS2 nodules measured range widely, from -25.2 to -51.9%., similar to the previously published -28 to -43%. range in disseminated pyrite in the Kupferschiefer. The wide variation cannot be attributed to pyrite versus marcasite mineralogy, amount of contained chalcopyrite or sphalerite, carbonate versus shale host rock, early versus late formation, percent of included calcite, or to size, shape, or texture. There is also no relation with proximity to the centres of copper mineralization in southwestern Poland where sulphides are typically isotopically heavier. The δ 34S values do, however, vary directly with percent of host-rock fragments included in the nodules. Repeat samples that were washed with acid or hot water show the same wide variation, indicating that contamination by sulphate sulphur in the host rock is not a factor. Neither is organic sulphur because of its small volume. Instead, the sulphur composition may be fundamentally controlled by the formation mechanism of the nodule, whereby 34S-rich sulphide is preferentially concentrated, possibly replacing anhydrite lenses. Alternatively, a network of host rock inclusions might act as a more accessible conduit for later, 34S-rich fluids to infiltrate the nodule and add to earlier, 34S-poor pyrite. In the ore deposits, higher δ 34S values of ore nodules suggest less indigenous sulphur in limestone than shale lithologies. An isotopic temperature of 61 °C from a chalcopyrite-galena pair agrees with other estimates of <105°C. Higher values in ore nodules/veinlets than in adjacent disseminations, and the calculated δ 34Spy value from a pyrite-bornite mixture support the idea that metal-bearing 34S-rich fluids penetrated the Kupfer-schiefer through a network

  20. In situ sulfur isotopes (δ(34)S and δ(33)S) analyses in sulfides and elemental sulfur using high sensitivity cones combined with the addition of nitrogen by laser ablation MC-ICP-MS.

    PubMed

    Fu, Jiali; Hu, Zhaochu; Zhang, Wen; Yang, Lu; Liu, Yongsheng; Li, Ming; Zong, Keqing; Gao, Shan; Hu, Shenghong

    2016-03-10

    The sulfur isotope is an important geochemical tracer in diverse fields of geosciences. In this study, the effects of three different cone combinations with the addition of N2 on the performance of in situ S isotope analyses were investigated in detail. The signal intensities of S isotopes were improved by a factor of 2.3 and 3.6 using the X skimmer cone combined with the standard sample cone or the Jet sample cone, respectively, compared with the standard arrangement (H skimmer cone combined with the standard sample cone). This signal enhancement is important for the improvement of the precision and accuracy of in situ S isotope analysis at high spatial resolution. Different cone combinations have a significant effect on the mass bias and mass bias stability for S isotopes. Poor precisions of S isotope ratios were obtained using the Jet and X cones combination at their corresponding optimum makeup gas flow when using Ar plasma only. The addition of 4-8 ml min(-1) nitrogen to the central gas flow in laser ablation MC-ICP-MS was found to significantly enlarge the mass bias stability zone at their corresponding optimum makeup gas flow in these three different cone combinations. The polyatomic interferences of OO, SH, OOH were also significantly reduced, and the interference free plateaus of sulfur isotopes became broader and flatter in the nitrogen mode (N2 = 4 ml min(-1)). However, the signal intensity of S was not increased by the addition of nitrogen in this study. The laser fluence and ablation mode had significant effects on sulfur isotope fractionation during the analysis of sulfides and elemental sulfur by laser ablation MC-ICP-MS. The matrix effect among different sulfides and elemental sulfur was observed, but could be significantly reduced by line scan ablation in preference to single spot ablation under the optimized fluence. It is recommended that the d90 values of the particles in pressed powder pellets for accurate and precise S isotope analysis should be less than 10 μm. Under the selected optimized analytical conditions, excellent agreements between the determined values and the reference values were achieved for the IAEA-S series standard reference materials and a set of six well-characterized, isotopic homogeneous sulfide standards (PPP-1, MoS2, MASS-1, P-GBW07267, P-GBW07268, P-GBW07270), validating the capability of the developed method for providing high-quality in situ S isotope data in sulfides and elemental sulfur.

  1. In situ sulfur isotopes (δ(34)S and δ(33)S) analyses in sulfides and elemental sulfur using high sensitivity cones combined with the addition of nitrogen by laser ablation MC-ICP-MS.

    PubMed

    Fu, Jiali; Hu, Zhaochu; Zhang, Wen; Yang, Lu; Liu, Yongsheng; Li, Ming; Zong, Keqing; Gao, Shan; Hu, Shenghong

    2016-03-10

    The sulfur isotope is an important geochemical tracer in diverse fields of geosciences. In this study, the effects of three different cone combinations with the addition of N2 on the performance of in situ S isotope analyses were investigated in detail. The signal intensities of S isotopes were improved by a factor of 2.3 and 3.6 using the X skimmer cone combined with the standard sample cone or the Jet sample cone, respectively, compared with the standard arrangement (H skimmer cone combined with the standard sample cone). This signal enhancement is important for the improvement of the precision and accuracy of in situ S isotope analysis at high spatial resolution. Different cone combinations have a significant effect on the mass bias and mass bias stability for S isotopes. Poor precisions of S isotope ratios were obtained using the Jet and X cones combination at their corresponding optimum makeup gas flow when using Ar plasma only. The addition of 4-8 ml min(-1) nitrogen to the central gas flow in laser ablation MC-ICP-MS was found to significantly enlarge the mass bias stability zone at their corresponding optimum makeup gas flow in these three different cone combinations. The polyatomic interferences of OO, SH, OOH were also significantly reduced, and the interference free plateaus of sulfur isotopes became broader and flatter in the nitrogen mode (N2 = 4 ml min(-1)). However, the signal intensity of S was not increased by the addition of nitrogen in this study. The laser fluence and ablation mode had significant effects on sulfur isotope fractionation during the analysis of sulfides and elemental sulfur by laser ablation MC-ICP-MS. The matrix effect among different sulfides and elemental sulfur was observed, but could be significantly reduced by line scan ablation in preference to single spot ablation under the optimized fluence. It is recommended that the d90 values of the particles in pressed powder pellets for accurate and precise S isotope analysis should be less than 10 μm. Under the selected optimized analytical conditions, excellent agreements between the determined values and the reference values were achieved for the IAEA-S series standard reference materials and a set of six well-characterized, isotopic homogeneous sulfide standards (PPP-1, MoS2, MASS-1, P-GBW07267, P-GBW07268, P-GBW07270), validating the capability of the developed method for providing high-quality in situ S isotope data in sulfides and elemental sulfur. PMID:26893082

  2. Sulphur tracer experiments in laboratory animals using 34S-labelled yeast.

    PubMed

    Martínez-Sierra, J Giner; Moreno Sanz, F; Herrero Espílez, P; Marchante Gayón, J M; Rodríguez Fernández, J; García Alonso, J I

    2013-03-01

    We have evaluated the use of (34)S-labelled yeast to perform sulphur metabolic tracer experiments in laboratory animals. The proof of principle work included the selection of the culture conditions for the preparation of sulphur labelled yeast, the study of the suitability of this labelled yeast as sulphur source for tracer studies using in vitro gastrointestinal digestion and the administration of the (34)S-labelled yeast to laboratory animals to follow the fate and distribution of (34)S in the organism. For in vitro gastrointestinal digestion, the combination of sodium dodecyl sulphate-polyacrylamide gel electrophoresis and high-performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS) showed that labelled methionine, cysteine and other low molecular weight sulphur-containing biomolecules were the major components in the digested extracts of the labelled yeast. Next, in vivo kinetic experiments were performed in healthy Wistar rats after the oral administration of (34)S-labelled yeast. The isotopic composition of total sulphur in tissues, urine and faeces was measured by double-focusing inductively coupled plasma mass spectrometry after microwave digestion. It was observed that measurable isotopic enrichments were detected in all samples. Finally, initial investigations on sulphur isotopic composition of serum and urine samples by HPLC-ICP-MS have been carried out. For serum samples, no conclusive data were obtained. Interestingly, chromatographic analysis of urine samples showed differential isotope enrichment for several sulphur-containing biomolecules.

  3. THz and Ft-Ir Study of 18-O Isotopologues of Sulfur Dioxide: 32S16O18O and 32S18O_2

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Demaison, J.; Perrin, Agnes; Kwabia Tchana, F.; Manceron, Laurent

    2016-06-01

    Sulfur dioxide is a molecule that have a great interest in different domains: for atmospheric and planetology chemistry, it is also ubiquitous and abundant in interstellar medium. If the 16O species were extensively studied, this is not the case of the 18O isotopologues. The aim of this study is first to complete the rotational spectra of the ground state with these new measurements up to 1.5 THz, previous measurements are up to 1050 GHz for the 32S16O18O species, and 145 GHz concerning the 32S18O_2 species. The second part is making a global fit of the rotational and vibrational transitions for the excited vibrational states. For the v_2 band, we will complete the recent I.R. analysis. About the triad (v_1, 2v_2, v_3): 32S18O_2 species was studied, but not the 32S16O18O one. and 145 GHz concerning the 32S18O_2 species. The second part is making a global fit of the rotational and vibrational transitions for the excited vibrational states. For the v_2 band, we will complete the recent I.R. analysis. About the triad (v_1, 2v_2, v_3): 32S18O_2 species was studied, but not the 32S16O18O one. The FT-IR spectra were recorded on the AILES Beamline at Synchrotron SOLEIL using the Synchrotron light source, coupled to the Bruker IFS125HR Fourier transform spectrometer. The THz spectra were obtained from 150 to 1500 GHz using the Lille's solid state spectrometer. The analysis is in progress, the latest results will be presented. Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged Belov, S. P.; et al., 1998, J. Mol. Spectrosc. 191, 17 Lindermayer, J.; et al., 1985, J. Mol. Spectrosc. 110, 357 Gueye, F.; et al. Mol. Phys. in press Ulenikov, O. N.; et al., 2015, JQSRT 166, 13 Brubach, J.; et al., 2010, AIP Conf. Proc. 1214, 81 Zakharenko, O.; et al., 2015, J. Mol. Spectrosc. 317, 41

  4. MC ICP-MS δ(34)S(VCDT) measurement of dissolved sulfate in environmental aqueous samples after matrix separation by means of an anion exchange membrane.

    PubMed

    Hanousek, Ondrej; Berger, Torsten W; Prohaska, Thomas

    2016-01-01

    Analysis of (34)S/(32)S of sulfate in rainwater and soil solutions can be seen as a powerful tool for the study of the sulfur cycle. Therefore, it is considered as a useful means, e.g., for amelioration and calibration of ecological or biogeochemical models. Due to several analytical limitations, mainly caused by low sulfate concentration in rainwater, complex matrix of soil solutions, limited sample volume, and high number of samples in ecosystem studies, a straightforward analytical protocol is required to provide accurate S isotopic data on a large set of diverse samples. Therefore, sulfate separation by anion exchange membrane was combined with precise isotopic measurement by multicollector inductively coupled plasma mass spectrometry (MC ICP-MS). The separation method proved to be able to remove quantitatively sulfate from matrix cations (Ca, K, Na, or Li) which is a precondition in order to avoid a matrix-induced analytical bias in the mass spectrometer. Moreover, sulfate exchange on the resin is capable of preconcentrating sulfate from low concentrated solutions (to factor 3 in our protocol). No significant sulfur isotope fractionation was observed during separation and preconcentration. MC ICP-MS operated at edge mass resolution has enabled the direct (34)S/(32)S analysis of sulfate eluted from the membrane, with an expanded uncertainty U (k = 2) down to 0.3 ‰ (a single measurement). The protocol was optimized and validated using different sulfate solutions and different matrix compositions. The optimized method was applied in a study on solute samples retrieved in a beech (Fagus sylvatica) forest in the Vienna Woods. Both rainwater (precipitation and tree throughfall) and soil solution δ (34)SVCDT ranged between 4 and 6 ‰, the ratio in soil solution being slightly lower. The lower ratio indicates that a considerable portion of the atmospherically deposited sulfate is cycled through the organic S pool before being released to the soil solution

  5. Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for {sup 32}S{sup 16}O{sub 2} up to 8000 cm{sup −1}

    SciTech Connect

    Huang, Xinchuan E-mail: Timothy.J.Lee@nasa.gov; Schwenke, David W.; Lee, Timothy J. E-mail: Timothy.J.Lee@nasa.gov

    2014-03-21

    A purely ab initio potential energy surface (PES) was refined with selected {sup 32}S{sup 16}O{sub 2} HITRAN data. Compared to HITRAN, the root-mean-squares error (σ{sub RMS}) for all J = 0–80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm{sup −1}. Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296 K and covers up to 8000 cm{sup −1}. Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85%–90%. Our predictions for {sup 34}S{sup 16}O{sub 2} band origins, higher energy {sup 32}S{sup 16}O{sub 2} band origins and missing {sup 32}S{sup 16}O{sub 2} IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict {sup 32/34}S{sup 16}O{sub 2} band origins below 5500 cm{sup −1} with 0.01–0.03 cm{sup −1} uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The K{sub a}-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO{sub 2} IR spectral experimental analysis, as well as elimination of SO{sub 2} lines in high-resolution astronomical observations.

  6. Evaporation residue corss sections for {sup 32}S + {sup 184}W

    SciTech Connect

    Back, B.B.; Blumenthal, D.J.; Davids, C.N.

    1995-08-01

    We recently measured evaporation residue cross sections for the {sup 32}S + {sup 184}W system over a range of beam energies using the Argonne Fragment Mass Analyzer (FMA). Absolute cross sections were obtained on the basis of the recent determination of the transmission probability through the FMA of heavy, slow-moving reaction products. The measurements were carried out using {sup 32}S-beams from the ATLAS superconducting linac at Argonne. Beam energies of 165, 174, 185, 195, 205, 215, 225, 236, 246, and 257 MeV were used. The sliding-seal target chamber is used to allow for measurements at finite angles.

  7. {sup 33}S for Neutron Capture Therapy: Nuclear Data for Monte Carlo Calculations

    SciTech Connect

    Porras, I.; Sabaté-Gilarte, M.; Praena, J.; Quesada, J.M.; Esquinas, P.L.

    2014-06-15

    A study of the nuclear data required for the Monte Carlo simulation of boron neutron capture therapy including the {sup 33}S isotope as an enhancer of the dose at small depths has been performed. In particular, the controversy on the available data for the {sup 33}S(n, α) cross section will be shown, which motivates new measurements. In addition to this, kerma factors for the main components of tissue are calculated with the use of fitting functions. Finally, we have applied these data to a potential neutron capture treatment with boron and sulfur addition to tissue in which part of the hydrogen atoms are replaced by deuterium, which improves the procedure.

  8. Charged particle spectra in {sup 32}S + {sup 32}S interactions at 200 GeV/nucleon from CCD-imaged nuclear collisions in a streamer chamber

    SciTech Connect

    Teitelbaum, L.P.

    1992-04-01

    We have measured the transverse momentum spectra 1/p{sub T} dN/dp{sub T} and rapidity distributions dN/dy of negatively charged hadrons and protons for central {sup 32}S + {sup 32}S interactions at 200 GeV/nucleon incident energy. The negative hadron dN/dy distribution is too broad to be accounted for by thermal models which demand isotropic particle emission. It is compatible with models which emphasize longitudinal dynamics, by either a particle production mechanism, as in the Lund fragmentation model, or by introducing one-dimensional hydrodynamic expansion, as in the Landau model. The proton dN/dy distribution, although showing no evidence for a peak in the target fragmentation region, exhibits limited nuclear stopping power. We estimate the mean rapidity shift of participant target protons to be {Delta}y {approximately} 1.5, greater than observed for pp collisions, less than measured in central pA collisions, and much less than would be observed for a single equilibrated fireball at midrapidity. Both the negative hadron and proton dN/dy distributions can be fit by a symmetric Landau two-fireball model. Although the spectrum possesses a two-component structure, a comparison to pp data at comparable center-of-mass energy shows no evidence for enhanced production at low p{sub T}. The two-component structure can be explained by a thermal and chemical equilibrium model which takes into account the kinematics of resonance decay. Using an expression motivated by longitudinal expansion we find the same temperature for both the protons and negative hadrons at freezeout, T{sub f} {approximately} 170 MeV. We conclude that the charged particle spectra of negative hadrons and protons can be accommodated in a simple collision picture of limited nuclear stopping, evolution through a state of thermal equilibrium, followed by longitudinal hydrodynamic expansion until freezeout.

  9. Charged particle spectra in [sup 32]S + [sup 32]S interactions at 200 GeV/nucleon from CCD-imaged nuclear collisions in a streamer chamber

    SciTech Connect

    Teitelbaum, L.P.

    1992-04-01

    We have measured the transverse momentum spectra 1/p[sub T] dN/dp[sub T] and rapidity distributions dN/dy of negatively charged hadrons and protons for central [sup 32]S + [sup 32]S interactions at 200 GeV/nucleon incident energy. The negative hadron dN/dy distribution is too broad to be accounted for by thermal models which demand isotropic particle emission. It is compatible with models which emphasize longitudinal dynamics, by either a particle production mechanism, as in the Lund fragmentation model, or by introducing one-dimensional hydrodynamic expansion, as in the Landau model. The proton dN/dy distribution, although showing no evidence for a peak in the target fragmentation region, exhibits limited nuclear stopping power. We estimate the mean rapidity shift of participant target protons to be [Delta]y [approximately] 1.5, greater than observed for pp collisions, less than measured in central pA collisions, and much less than would be observed for a single equilibrated fireball at midrapidity. Both the negative hadron and proton dN/dy distributions can be fit by a symmetric Landau two-fireball model. Although the spectrum possesses a two-component structure, a comparison to pp data at comparable center-of-mass energy shows no evidence for enhanced production at low p[sub T]. The two-component structure can be explained by a thermal and chemical equilibrium model which takes into account the kinematics of resonance decay. Using an expression motivated by longitudinal expansion we find the same temperature for both the protons and negative hadrons at freezeout, T[sub f] [approximately] 170 MeV. We conclude that the charged particle spectra of negative hadrons and protons can be accommodated in a simple collision picture of limited nuclear stopping, evolution through a state of thermal equilibrium, followed by longitudinal hydrodynamic expansion until freezeout.

  10. Optical properties of As33S67-xSex bulk glasses studied by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Orava, J.; Šik, J.; Wágner, T.; Frumar, M.

    2008-04-01

    Variable angle spectroscopic ellipsometry (VASE) was employed to study the optical properties of As33S67-xSex (x =0, 17, 33.5, 50, and 67at.%) bulk glasses in the UV-vis-NIR (near infrared) spectral region for photon energies from 0.54to4.13eV (photon wavelengths from 2300to300nm). For data analysis, we employed Tauc-Lorentz (TL) dispersion model in the entire measured near bandgap spectral region and standard Cauchy dispersion model in the spectral region below the bandgap. With increasing Se content (x) in the bulk glass, we observed a linear decrease in optical bandgap energy Egopt from 2.52±0.02eV for As33S67 to 1.75±0.01eV for As33Se67 and linear increase in refractive index nTL in the NIR spectral region, e.g., at 0.80eV from 2.327 for As33S67 to 2.758 for As33Se67. The amplitude A decreased with increasing Se content. The peak transition energy E0 and broadening C had a maximum value for x =33.5at.% and systematically decreased for higher S or Se content in glasses. Our study showed that TL model is suitable to describe dielectric functions of studied chalcogenide bulk glasses in the broad spectral region. The bulk glasses had a higher refractive index compared to thin films of corresponding composition. The bulk glasses with high S content had higher value of optical bandgap energy than was previously reported for thin films. The optical bandgap energy of glasses with higher Se content was very similar to the thin films.

  11. Sources of ground water salinity on islands using 18O, 2H, and 34S.

    PubMed

    Allen, D M

    2004-01-01

    Stable isotopes of 18O and 2H in water, and 34S and 18O in dissolved SO4, are used to verify the interpretation of the chemical evolution and proposed sources of salinity for two islands that have undergone postglacial rebound. Results for delta18O and delta34S in dissolved SO4 on the Gulf Islands, southwest British Columbia, Canada, suggest a three-component mixing between (1) atmospheric SO4 derived largely from recharge of meteoric origin, (2) modern marine SO4 associated with either modern-day salt water intrusion or Pleistocene age sea water, and (3) terrestrial SO4. The age of the marine SO4 is uncertain based on the geochemistry and SO4 isotopes alone. Two options for mixing of saline ground waters are proposed--either between current-day marine SO4 and atmospheric SO4, or between older (Pleistocene age) marine SO4 and atmospheric SO4, delta18O and delta2H compositions are relatively consistent between both islands, with a few samples showing evidence of mixing with water that is a hybrid mixture of Fraser River water and ocean water. The isotopic composition of this hybrid water is approximately delta18O = 10 per thousand. delta18O and delta2H values for many saline ground waters plot close to the global meteoric water line, which is distinctly different from the local meteoric water line. This suggests a meteoric origin for ground waters that is different from the current isotopic composition of meteoric waters. It is proposed these waters may be late Pleistocene in age and were recharged when the island was submerged below sea level and prior to rebound at the end of the last glaciation. PMID:14763614

  12. γ -ray spectroscopy of 33P and 33S after fusion-evaporation reactions

    NASA Astrophysics Data System (ADS)

    Fu, B.; Seidlitz, M.; Blazhev, A.; Bouhelal, M.; Haas, F.; Reiter, P.; Arnswald, K.; Birkenbach, B.; Fransen, C.; Friessner, G.; Hennig, A.; Hess, H.; Hirsch, R.; Lewandowski, L.; Schneiders, D.; Siebeck, B.; Steinbach, T.; Thomas, T.; Vogt, A.; Wendt, A.; Wolf, K.; Zell, K. O.

    2016-09-01

    Excited states with intermediate and high spins in 33P and 33S have been populated using the 26Mg(13C,n p α ) and 26Mg(13C,2 n α ) fusion-evaporation reactions. The level schemes of both nuclei have been considerably extended. Utilizing γ γ angular correlations the spin-parity assignment of the new excited states in 33P has been investigated. The experimentally determined results from both nuclei were compared to 0 ℏ ω and 1 ℏ ω truncated p-sd-pf shell-model calculations utilizing the PSDPF interaction, showing a very good agreement between experiment and theory.

  13. Tracking selenium behaviour in chalk aquifer (northern France): Sr and 34S-sulphates isotopes constraints.

    NASA Astrophysics Data System (ADS)

    Cary, Lise; Benabderraziq, Hind; Elkhattabi, Jamal; Parmentier, Marc; Gourcy, Laurence; Négrel, Philippe

    2014-05-01

    Groundwaters in parts of the Paris Basin (France) are facing increasing selenium (Se) contents that can exceed the drinking water limit of 10 μg/L according to the European Framework Directive in the field of water policy (2000/60/EC). To better understand the groundwater origins and the selenium dynamics, the water chemistry of the Chalk aquifer supplying drinkable water to Lille city was studied. This area is submitted to quantitative and qualitative pressure from industrial, urban and agriculture origins. An integrated study was settled to determine the water sources and dynamics of elements, with a focus on Se. After a large chemical characterisation of the groundwater chemistry in the four field wells, a monthly monitoring was held in four wells and in the Deûle channel. Chemical analysis of major and trace elements, stable isotopes (δ18O, δ2H), strontium isotopes, and δ34S and δ18O of sulphates were realised. The chemical composition of solids sampled at various depths at vicinity of the four wells was also analysed. The specific geochemical signature of groundwater as revealed by Sr isotopes, in addition to element concentrations ratios like Mg/Sr and Se/Sr, highlighted mixture of three main groundwaters bodies: (1) the upstream groundwaters in the recharge area with the most radiogenic 87Sr/86Sr isotopic signature; (2) the confined groundwaters with high Sr concentrations due to water-rock interactions and the lowest 87Sr/86Sr isotopic signature close to the one of the chalk in Paris and London basins; (3) the Se-rich formations of Tertiary and Quaternary. The contents of Se, mainly present as SeV I (and locally as SeIV ), displayed spatial and temporal disparities that can be explained by geological and hydrogeological conditions. Se-rich clayed sediments originating from the dismantling of Se-rich tertiary formations (i.e. Ypresian) overlay the chalk formation and can be found in saturated conditions depending of the water table level. Oxidation of

  14. Sedimentary pyrite δ34S differs from porewater sulfide in Santa Barbara Basin: Proposed role of organic sulfur

    NASA Astrophysics Data System (ADS)

    Raven, Morgan Reed; Sessions, Alex L.; Fischer, Woodward W.; Adkins, Jess F.

    2016-08-01

    Santa Barbara Basin sediments host a complex network of abiotic and metabolic chemical reactions that knit together the carbon, sulfur, and iron cycles. From a 2.1-m sediment core collected in the center of the basin, we present high-resolution profiles of the concentrations and isotopic compositions of all the major species in this system: sulfate, sulfide (∑H2S), elemental sulfur (S0), pyrite, extractable organic sulfur (OS), proto-kerogen S, total organic and dissolved inorganic carbon, and total and reducible iron. Below 10 cm depth, the core is characterized by low apparent sulfate reduction rates (<0.01 mM/yr) except near the sulfate-methane transition zone. Surprisingly, pyrite forming in shallow sediments is ∼30‰ more 34S-depleted than coexisting ∑H2S in porewater. S0 has the same strongly 34S-depleted composition as pyrite where it forms near the sediment-water interface, though not at depth. This pattern is not easily explained by conventional hypotheses in which sedimentary pyrite derives from abiotic reactions with porewater ∑H2S or from the products of S0 disproportionation. Instead, we propose that pyrite formation in this environment occurs within sulfate reducing microbial aggregates or biofilms, where it reflects the isotopic composition of the immediate products of bacterial sulfate reduction. Porewater ∑H2S in Santa Barbara Basin may be more 34S-enriched than pyrite due to equilibration with relatively 34S-enriched OS. The difference between OS and pyrite δ34S values would then reflect the balance between microbial sulfide formation and the abundance of exchangeable OS. Both OS and pyrite δ34S records thus have the potential to provide valuable information about biogeochemical cycles and redox structure in sedimentary paleoenvironments.

  15. The fusion-fission process in the reaction 34S +186W near the interaction barrier

    NASA Astrophysics Data System (ADS)

    Harca, I. M.; Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Chubarian, G.; Hanappe, F.; Piot, J.; Schmitt, C.; Trzaska, W. H.; Vardaci, E.

    2015-02-01

    The reaction 34S +186W at Elab=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF-γ coincidence method is of better use then the γ - γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  16. Challenging fission dynamics around the barrier: The case of 34S + 186W

    NASA Astrophysics Data System (ADS)

    Kozulin, E. M.; Vardaci, E.; Harca, I. M.; Schmitt, C.; Itkis, I.; Knyazheva, G.; Novikov, K.; Bogachev, A.; Dmitriev, S.; Loktev, T.; Azaiez, F.; Matea, I.; Verney, D.; Gottardo, A.; Dorvaux, O.; Piot, J.; Chubarian, G.; Trzaska, W. H.; Hanappe, F.; Borcea, C.; Calinescu, S.; Petrone, C.

    2016-09-01

    The current status of fission dynamics studies in heavy-ion collisions around the Coulomb barrier is illustrated with the 34S + 186W reaction. The fission-fragment mass and total kinetic energy were measured at the ALTO facility at IPN Orsay, France, with a dedicated set-up using the ( v, E) approach. The measurement reveals the presence of an asymmetric fission component on top of a predominantly symmetric distribution. The asymmetric structure, pointed out for the first time, is discussed along with results of previous experiments studying the same reaction. While these analyses suggested the contribution from either quasi-fission or pre-equilibrium fission, we offer an alternative interpretation, in terms of shell-driven compound-nucleus fission. The present measurement demonstrates the critical influence of resolution when addressing puzzling cases, situated at the crossroads of the various channels opened in a heavy-ion collision. Current status in the field clearly calls for innovative measurements involving manifold correlations and new observables. The outcome of the attempt done in this work in this direction, based on the coincident measurement of prompt γ-rays is reported, and encouraging perspectives are discussed.

  17. Significant human impact on the flux and δ(34)S of sulfate from the largest river in North America.

    PubMed

    Killingsworth, Bryan A; Bao, Huiming

    2015-04-21

    Riverine dissolved sulfate (SO4(2-)) flux and sulfur stable isotope composition (δ(34)S) yield information on the sources and processes affecting sulfur cycling on different spatial and temporal scales. However, because pristine preindustrial natural baselines of riverine SO4(2-) flux and δ(34)S cannot be directly measured, anthropogenic impact remains largely unconstrained. Here we quantify natural and anthropogenic SO4(2-) flux and δ(34)S for North America's largest river, the Mississippi, by means of an exhaustive source compilation and multiyear monitoring. Our data and analysis show that, since before industrialization to the present, Mississippi River SO4(2-) has increased in flux from 7.0 to 27.8 Tg SO4(2-) yr(-1), and in mean δ(34)S from -5.0‰, within 95% confidence limits of -14.8‰ to 4.1‰ (assuming normal distribution for mixing model input parameters), to -2.7 ± 1.6‰, reflecting an impressive footprint of bedrocks particular to this river basin and human activities. Our first-order modern Mississippi River sulfate partition is 25 ± 6% natural and 75% ± 6% anthropogenic sources. Furthermore, anthropogenic coal usage is implicated as the dominant source of modern Mississippi River sulfate, with an estimated 47 ± 5% and 13% of total Mississippi River sulfate due to coal mining and burning, respectively. PMID:25803121

  18. Stable isotope (13C, 15N and 34S) analysis of the hair of modern humans and their domestic animals.

    PubMed

    Bol, Roland; Pflieger, Christian

    2002-01-01

    Relationships between dietary status and recent migration were examined by delta(13)C, delta(15)N and delta(34)S analysis of hair samples from 43 modern humans living in a rural community in SW England. The isotopic content of 38 'local' hair samples was compared with that of five recently arrived individuals (from Canada, Chile, Germany and the USA). Hair samples from domestic animals (i.e. mainly cats, dogs, cows and horses) were analysed to examine the difference in delta(13)C, delta(15)N and delta(34)S values between herbivores and carnivores. Generally, modern human hair data from the triple stable isotope (delta(13)C, delta(15)N and delta(34)S) provided enough information to confirm the dietary status and origin of the individual subjects. The dietary intake was generally reflected in the animal hair delta(15)N and delta(13)C values, i.e. highest in the carnivores (cats). However, a non-local origin of food sources given to domesticated omnivores (i.e. dogs) was suggested by their hair delta(34)S values.

  19. Silver photo-diffusion and photo-induced macroscopic surface deformation of Ge33S67/Ag/Si substrate

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Y.; Asaoka, H.; Uozumi, Y.; Kondo, K.; Yamazaki, D.; Soyama, K.; Ailavajhala, M.; Mitkova, M.

    2016-08-01

    Ge-chalcogenide films show various photo-induced changes, and silver photo-diffusion is one of them which attracts lots of interest. In this paper, we report how silver and Ge-chalcogenide layers in Ge33S67/Ag/Si substrate stacks change under light exposure in the depth by measuring time-resolved neutron reflectivity. It was found from the measurement that Ag ions diffuse all over the matrix Ge33S67 layer once Ag dissolves into the layer. We also found that the surface was macroscopically deformed by the extended light exposure. Its structural origin was investigated by a scanning electron microscopy.

  20. Further Exploration of the 33S(α,p)36Cl Reaction Cross Section

    NASA Astrophysics Data System (ADS)

    Skulski, Michael; Anderson, Tyler; Beard, Mary; Collon, Philippe; Lu, Wenting; Ostdiek, Karen

    2015-10-01

    Short-lived radionuclides (SLRs) are extant from the Early Solar System (ESS) and useful for dating products of ESS processes. The SLR 36Cl was potentially produced by solar energetic particles incident on gas and dust in the protoplanetary disk. Measurement of the cross section of the reaction 33S(α,p)36Cl, which contributes significantly to the abundance of 36Cl, is an important input in solar irradiation models regarding the determination of elemental abundances, and is thus of great interest. In a previous measurement performed by Bowers et al. (2013), the cross section of this reaction was studied using a combination of activation of a 4He gas cell and analyzing the produced 36Cl via Accelerator Mass Spectrometry (AMS) over an energy range of 0.7 - 2.42 MeV/A. The result of this measurement was a significantly higher yield of 36Cl than predicted by Hauser-Feshbach cross section calculations. In light of the paper by Mohr (2013), the same activation was repeated at the University of Notre Dame at intermediate energies to study the cross section further, using the same combination of activation and AMS. The results of this measurement will be presented.

  1. Investigation of phosphorous in thin films using the 31P(α,p)34S nuclear reaction

    NASA Astrophysics Data System (ADS)

    Pitthan, E.; Gobbi, A. L.; Stedile, F. C.

    2016-03-01

    Phosphorus detection and quantification were obtained, using the 31P(α,p)34S nuclear reaction and Rutherford Backscattering Spectrometry, in deposited silicon oxide films containing phosphorus and in carbon substrates implanted with phosphorus. It was possible to determine the total amount of phosphorus using the resonance at 3.640 MeV of the 31P(α,p)34S nuclear reaction in samples with phosphorus present in up to 23 nm depth. Phosphorous amounts as low as 4 × 1014 cm-2 were detected. Results obtained by nuclear reaction were in good agreement with those from RBS measurements. Possible applications of phosphorus deposition routes used in this work are discussed.

  2. Vibrational studies of {sup 13}C- and {sup 34}S-labelled bis(ethylenedithio)tetrathiafulvalene (ET) donor molecule

    SciTech Connect

    Ferraro, J.R.; Kini, A.M.; Williams, J.M.; Stout, P.

    1994-06-01

    FT-IR and FT-Raman studies of {sup 13}C- and {sup 34}S-labelled bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF or ET) electron-donor molecules were made and the results presented herein. Assignments for fundamental vibrations in ET were verified. Spectral data confirms that ET has no center-of-symmetry, and that the data can be reconciled by a D-type point group with only slight interactions occurring between the 4 molecules per unit cell.

  3. CYP2D6 P34S Polymorphism and Outcomes of Escitalopram Treatment in Koreans with Major Depression

    PubMed Central

    Han, Kyu-Man; Chang, Hun Soo; Choi, In-Kwang; Ham, Byung-Joo

    2013-01-01

    Objective Cytochrome P450 (CYP) enzymatic activity, which is influenced by CYP genetic polymorphism, is known to affect the inter-individual variation in the efficacy and tolerability of antidepressants in major depressive disorder (MDD). Escitalopram is metabolized by CYP2D6, and recent studies have reported a correlation between clinical outcomes and CYP2D6 genetic polymorphism. The purpose of this study was to determine the relationship between the CYP2D6 P34S polymorphism (C188T, rs1065852) and the efficacy of escitalopram treatment in Korean patients with MDD. Methods A total of 94 patients diagnosed with MDD were recruited for the study and their symptoms were evaluated using the 21-item Hamilton Depression Rating scale (HAMD-21). The association between the CYP2D6 P34S polymorphism and the clinical outcomes (remission and response) was investigated after 1, 2, 4, 8, and 12 weeks of escitalopram treatment using multiple logistic regression analysis and χ2 test. Results The proportion of P allele carriers (PP, PS) in remission status was greater than that of S allele homozygotes (SS) after 8 and 12 weeks of escitalopram treatment. Similarly, P allele carriers exhibited a greater treatment response after 8 and 12 weeks of escitalopram treatment than S allele homozygotes. Conclusion Our results suggest that the P allele of the CYP2D6 P34S polymorphism is a favorable factor in escitalopram treatment for MDD, and that the CYP2D6 P34S polymorphism may be a good genetic marker for predicting escitalopram treatment outcomes. PMID:24302953

  4. Open system sulphate reduction in a diagenetic environment - Isotopic analysis of barite (δ34S and δ18O) and pyrite (δ34S) from the Tom and Jason Late Devonian Zn-Pb-Ba deposits, Selwyn Basin, Canada

    NASA Astrophysics Data System (ADS)

    Magnall, J. M.; Gleeson, S. A.; Stern, R. A.; Newton, R. J.; Poulton, S. W.; Paradis, S.

    2016-05-01

    Highly positive δ34S values in sulphide minerals are a common feature of shale hosted massive sulphide deposits (SHMS). Often this is attributed to near quantitative consumption of seawater sulphate, and for Paleozoic strata of the Selwyn Basin (Canada), this is thought to occur during bacterial sulphate reduction (BSR) in a restricted, euxinic water column. In this study, we focus on drill-core samples of sulphide and barite mineralisation from two Late Devonian SHMS deposits (Tom and Jason, Macmillan Pass, Selwyn Basin), to evaluate this euxinic basin model. The paragenetic relationship between barite, pyrite and hydrothermal base metal sulphides has been determined using transmitted and reflected light microscopy, and backscatter electron imaging. This petrographic framework provides the context for in-situ isotopic microanalysis (secondary ion mass spectrometry; SIMS) of barite and pyrite. These data are supplemented by analyses of δ34S values for bulk rock pyrite (n = 37) from drill-core samples of un-mineralised (barren), siliceous mudstone, to provide a means by which to evaluate the mass balance of sulphur in the host rock. Three generations of barite have been identified, all of which pre-date hydrothermal input. Isotopically, the three generations of barite have overlapping distributions of δ34S and δ18O values (+22.5‰ to +33.0‰ and +16.4‰ to +18.3‰, respectively) and are consistent with an origin from modified Late Devonian seawater. Radiolarian tests, enriched in barium, are abundant within the siliceous mudstones, providing evidence that primary barium enrichment was associated with biologic activity. We therefore propose that barite formed following remobilisation of productivity-derived barium within the sediment, and precipitated within diagenetic pore fluids close to the sediment water interface. Two generations of pyrite are texturally associated with barite: framboidal pyrite (py-I), which has negative δ34S values (-23‰ to -28

  5. Energies of molecular structures in 12C,16O,20Ne,24Mg, and 32S

    NASA Astrophysics Data System (ADS)

    Royer, G.; Ramasamy, G.; Eudes, P.

    2015-11-01

    The energies of the 12C,16O,20Ne,24Mg, and 32S 4 n nuclei have been determined within a generalized liquid drop model and assuming different planar and three-dimensional shapes of the α molecules: linear chain, triangle, square, tetrahedron, pentagon, trigonal bipyramid, square pyramid, hexagon, octahedron, octagon, and cube. The potential barriers governing the entrance and decay channels via α absorption or emission as well as more symmetric binary and ternary reactions have been compared. The rms radii of the linear chains differ from the experimental rms radii of the ground states. The binding energies of the three-dimensional shapes at the contact point are higher than the ones of the planar configurations. The α particle plus A-4 daughter configuration leads always to the lowest potential barrier. The binding energy can be reproduced within the sum of the binding energy of n α particles plus the number of bonds multiplied by 2.4 MeV or by the sum of the binding energies of one α particle and the daughter nucleus plus the Coulomb energy and the proximity energy.

  6. The stable isotopic composition of a phosphorite deposit: δ13C, δ34S, and δ18O

    USGS Publications Warehouse

    Piper, D.Z.; Kolodny, Y.

    1987-01-01

    The stable isotopes of carbon and sulfur in a major marine sedimentary phosphate deposit from the northwestern United States (the Phosphoria Formation of Permian age) characterize the chemical properties of the depositional environment. The δ34S and δ13C analyses suggest deposition under conditions of variable redox from a solution the acidity of which was controlled by reaction with carbonate rocks and exchange with seawater. The δ18O concentration of apetite indicates phosphatization in a shallow sea, during three glacial and intervening interglacial stages. These data tend to corroborate the interpretation of field studies by others, that the apatite formed on a continental shelf in an area of intense oceanic upwelling during several episodes of sea level change. 

  7. 16O + 16O molecular structures of positive- and negative-parity superdeformed bands in 34S

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yasutaka

    2016-05-01

    The structures of excited states in 34S are investigated using the antisymmetrized molecular dynamics and generator coordinate method(GCM). The GCM basis wave functions are calculated via energy variation with a constraint on the quadrupole deformation parameter β. By applying the GCM after parity and angular momentum projections, the coexistence of two positive- and one negative-parity super de formed(SD) bands are predicted, and low-lying states and other deformed bands are obtained. The SD bands have structures of 16O + 16O + two valence neutrons in molecular orbitals around the two 16O cores in a cluster picture. The configurations of the two valence neutrons are δ2 and π2 for the positive-parity SD bands and π1δ1 for the negative parity SD band.

  8. 33S hyperfine interactions in H2S and SO2 and revision of the sulfur nuclear magnetic shielding scale

    NASA Astrophysics Data System (ADS)

    Helgaker, Trygve; Gauss, Jürgen; Cazzoli, Gabriele; Puzzarini, Cristina

    2013-12-01

    Using the Lamb-dip technique, the hyperfine structure in the rotational spectra of H233S and 33SO2 has been resolved and the corresponding parameters—that is, the sulfur quadrupole-coupling and spin-rotation tensors—were determined. The experimental parameters are in good agreement with results from high-level coupled-cluster calculations, provided that up to quadruple excitations are considered in the cluster operator, sufficiently large basis sets are used, and vibrational corrections are accounted for. The 33S spin-rotation tensor for H2S has been used to establish a new sulfur nuclear magnetic shielding scale, combining the paramagnetic part of the shielding as obtained from the spin-rotation tensor with a calculated value for the diamagnetic part as well as computed vibrational and temperature corrections. The value of 716(5) ppm obtained in this way for the sulfur shielding of H2S is in good agreement with results from high-accuracy quantum-chemical calculations but leads to a shielding scale that is about 28 ppm lower than the one suggested previously in the literature, based on the 33S spin-rotation constant of OCS.

  9. Competition between fusion-fission and quasifission processes in the {sup 32}S+{sup 184}W reaction

    SciTech Connect

    Zhang, H. Q.; Zhang, C. L.; Lin, C. J.; Liu, Z. H.; Yang, F.; Nasirov, A. K.; Mandaglio, G.; Manganaro, M.; Giardina, G.

    2010-03-15

    The angular distributions of fission fragments for the {sup 32}S+{sup 184}W reaction at center-of-mass energies of 118.8, 123.1, 127.3, 131.5, 135.8, 141.1, and 144.4 MeV are measured. The experimental fission excitation function is obtained. The anisotropy (A{sub exp}) is found by extrapolating each fission fragment angular distribution. The measured fission cross sections of the {sup 32}S+{sup 182,184}W reaction are decomposed into fusion-fission, quasifission, and fast-fission contributions by the dinuclear system model (DNS). The angular momentum distributions of the dinuclear system and compound nucleus calculated by the DNS model are used to reproduce the experimental capture and fusion excitation functions for both reactions and quantities K{sub 0}{sup 2}, , and A{sub exp}, which characterize angular distributions of the fission products at the considered range of beam energy. The total evaporation residue excitation function for the {sup 32}S+{sup 184}W reaction calculated in the framework of the advanced statistical model is close to the available experimental data only up to about E{sub c.m.}approx =160 MeV. The underestimation of the experimental data at high excitation energies E{sub c.m.}>160 MeV is explained by the fact that the statistical model cannot reproduce the cross section of evaporation residues formed by the nonequilibrium mechanism, that is, without formation of the compound nucleus in the statistical equilibrium state.

  10. Precision Penning Trap Mass Spectrometry of ^32S, ^84,86Kr and ^129,132Xe

    NASA Astrophysics Data System (ADS)

    Redshaw, Matthew

    2005-05-01

    Using a phase coherent technique to measure the cyclotron frequency of single ions in a Penning trap [1], we have performed mass measurements on ^32S and the two most abundant krypton and xenon isotopes ^84Kr, ^86Kr, ^ 129Xe and ^132Xe, to relative precisions of 0.1 ppb. This is a factor of ˜10-100 improvement in precision over current values [2]. [1] M.P. Bradley, J.V. Porto, S. Rainville, J.K. Thompson, and D.E. Pritchard, PRL 83, 4510 (1999). [2] G. Audi, A.H. Wapstra, and C. Thibault, Nucl Phys A729, 337 (2003).

  11. Reaction mechanisms in {sup 24}Mg+{sup 12}C and {sup 32}S+{sup 24}Mg

    SciTech Connect

    Beck, C.; Sanchez i Zafra, A.; Papka, P.; Thummerer, S.; Azaiez, F.; Courtin, S.; Curien, D.; Dorvaux, O.; Lebhertz, D.; Nourreddine, A.; Rousseau, M.; Oertzen, W. von; Gebauer, B.; Kokalova, Tz.; Wheldon, C.; De Angelis, G.; Gadea, A.; Lenzi, S.; Napoli, D. R.; Szilner, S.

    2009-03-04

    The occurrence of 'exotic' shapes in light N = Z{alpha}-like nuclei is investigated for {sup 24}Mg+{sup 12}C and {sup 32}S+{sup 24}Mg. Various approaches of superdeformed and hyperdeformed bands associated with quasimolecular resonant structures with low spin are presented. For both reactions, exclusive data were collected with the Binary Reaction Spectrometer in coincidence with EUROBALL IV installed at the VIVITRON Tandem facility of Strasbourg. Specific structures with large deformation were selectively populated in binary reactions and their associated {gamma}-decays studied. The analysis of the binary and ternary reaction channels is discussed.

  12. The Study of the Groundwater by Using the 34S and 18O of the Sulphates-S18O4 Isotopes

    NASA Astrophysics Data System (ADS)

    Awad, Sadek

    The stable isotope of the sulphur atom (34S) and the 18O of the sulphates (S18O4) give information about the type of the mineralisation of the groundwater existing during the water seepage. The decrease of the concentrations in dissolved SO42- (meq/L) versus the increase of δ18O (‰ vs. SMOW) of the sulphates (S18O42-) confirms a partial reduction of the dissolved sulphates in the water. The Under-saturated waters versus the gypsum do not cause the precipitations of the sulphates. The study of δ34S (‰ CD) vs. Cl- (mg/L) indicates high variations in δ34S (‰ CD) for weak difference in the Cl- (mg/L) content, this is due to the reduction of the dissolved sulphates. Concerning the Jurassic water in Lebanon, an oxidation of the sulphide can take place.

  13. The fusion-fission process in the reaction {sup 34}S+{sup 186}W near the interaction barrier

    SciTech Connect

    Harca, I. M.; Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Hanappe, F.; Piot, J.; Schmitt, C.; Vardaci, E.

    2015-02-24

    The reaction {sup 34}S+{sup 186}W at E{sub lab}=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF–γ coincidence method is of better use then the γ – γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  14. The effect of sulfate concentration on (sub)millimeter-scale sulfide δ 34S in hypersaline cyanobacterial mats over the diurnal cycle

    NASA Astrophysics Data System (ADS)

    Fike, David A.; Finke, Niko; Zha, Jessica; Blake, Garrett; Hoehler, Tori M.; Orphan, Victoria J.

    2009-10-01

    Substantial isotopic fractionations are associated with many microbial sulfur metabolisms and measurements of the bulk δ 34S isotopic composition of sulfur species (predominantly sulfates and/or sulfides) have been a key component in developing our understanding of both modern and ancient biogeochemical cycling. However, the interpretations of bulk δ 34S measurements are often non-unique, making reconstructions of paleoenvironmental conditions or microbial ecology challenging. In particular, the link between the μm-scale microbial activity that generates isotopic signatures and their eventual preservation as a bulk rock value in the geologic record has remained elusive, in large part because of the difficulty of extracting sufficient material at small scales. Here we investigate the potential for small-scale (˜100 μm-1 cm) δ 34S variability to provide additional constraints for environmental and/or ecological reconstructions. We have investigated the impact of sulfate concentrations (0.2, 1, and 80 mM SO 4) on the δ 34S composition of hydrogen sulfide produced over the diurnal (day/night) cycle in cyanobacterial mats from Guerrero Negro, Baja California Sur, Mexico. Sulfide was captured as silver sulfide on the surface of a 2.5 cm metallic silver disk partially submerged beneath the mat surface. Subsequent analyses were conducted on a Cameca 7f-GEO secondary ion mass spectrometer (SIMS) to record spatial δ 34S variability within the mats under different environmental conditions. Isotope measurements were made in a 2-dimensional grid for each incubation, documenting both lateral and vertical isotopic variation within the mats. Typical grids consisted of ˜400-800 individual measurements covering a lateral distance of ˜1 mm and a vertical depth of ˜5-15 mm. There is a large isotopic enrichment (˜10-20‰) in the uppermost mm of sulfide in those mats where [SO 4] was non-limiting (field and lab incubations at 80 mM). This is attributed to rapid recycling of

  15. Seasonal and event variations in δ34S values of stream sulfate in a Vermont forested catchment: Implications for sulfur sources and cycling

    USGS Publications Warehouse

    Shanley, James B.; Mayer, Bernhard; Mitchell, Myron J.; Bailey, Scott W.

    2008-01-01

    Stable sulfur (S) isotope ratios can be used to identify the sources of sulfate contributing to streamwater. We collected weekly and high-flow stream samples for S isotopic analysis of sulfate through the entire water year 2003 plus the snowmelt period of 2004. The study area was the 41-ha forested W-9 catchment at Sleepers River Research Watershed, Vermont, a site known to produce sulfate from weathering of sulfide minerals in the bedrock. The δ34S values of streamwater sulfate followed an annual sinusoidal pattern ranging from about 6.5‰ in early spring to about 10‰ in early fall. During high-flow events, δ34S values typically decreased by 1 to 3‰ from the prevailing seasonal value. The isotopic evidence suggests that stream sulfate concentrations are controlled by: (1) an overall dominance of bedrock-derived sulfate (δ34S ~ 6–14‰); (2) contributions of pedogenic sulfate (δ34S ~ 5–6‰) during snowmelt and storms with progressively diminishing contributions during base flow recession; and (3) minor effects of dissimilatory bacterial sulfate reduction and subsequent reoxidation of sulfides. Bedrock should not be overlooked as a source of S in catchment sulfate budgets.

  16. Direct demonstration of the presence of coordinated sulfate in the reaction pathway of Arabidopsis thaliana sulfite oxidase using 33S labeling and ESEEM spectroscopy

    PubMed Central

    Astashkin, Andrei V.; Johnson-Winters, Kayunta; Klein, Eric L.; Byrne, Robert S.; Hille, Russ; Raitsimring, Arnold M.; Enemark, John H.

    2008-01-01

    Sulfite oxidase from Arabidopsis thaliana has been reduced at pH = 6 with sulfite labeled with 33S (nuclear spin I = 3/2), followed by reoxidation by ferricyanide to generate the Mo(V) state of the active center. To obtain information about the hyperfine interaction (hfi) of 33S with Mo(V), continuous wave EPR and electron spin echo envelope modulation (ESEEM) experiments have been performed. The interpretation of the EPR and ESEEM spectra was facilitated by a theoretical analysis of the nuclear transition frequencies expected for the situation of the nuclear quadrupole interaction being much stronger than the Zeeman and hyperfine interactions. The isotropic hfi constant of 33S determined in these experiments was about 3 MHz, which demonstrates the presence of coordinated sulfate in the sulfite-reduced low-pH form of the plant enzyme. PMID:17983221

  17. Multi-Fragment Production in the 32S+58,64Ni Reactions at 11 A MeV

    NASA Astrophysics Data System (ADS)

    Gramegna, F.; Abbondanno, U.; Bonasera, A.; Bruno, M.; Casini, G.; Cavallaro, S.; Chiari, M.; D'Agostino, M.; Lanchais, A.; Margagliotti, G. V.; Mastinu, P. F.; Milazzo, P. M.; Moroni, A.; Nannini, A.; Ordine, A.; Ricci, R. A.; Tonetto, F.; Travaglini, L.; Vannini, G.; Vannucci, L.

    The characteristic features of the 32S+58,64Ni reaction at 11AMeV have been investigated to evidence the possible rise of multi-fragmentation processes at low excitation energies. The importance of such phenomena consists in the fact that they could represent the signature of a nuclear phase transition from a liquid to a gas region. Evidence of multi-fragment production is displayed by the present data; even if the yield of such events is compatible with the predictions of statistical models, the partition of the mass of the decaying system cannot be easily reproduced. Some preliminary indications of isospin effects are suggested by looking at the differences between the two reacting systems.

  18. 17 CFR 259.405 - Form U-33-S, for annual reports pursuant to Rule 57(b) (§ 250.57 of this chapter).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... citations affecting Form U-33-S, see the List of CFR Sections Affected, which appears in the Finding Aids... HOLDING COMPANY ACT OF 1935 Forms for Statements and Reports From Nonregistered (Exempt) Companies § 259... be filed by a public utility company that is an associate of one or more foreign utility...

  19. 17 CFR 259.405 - Form U-33-S, for annual reports pursuant to Rule 57(b) (§ 250.57 of this chapter).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... citations affecting Form U-33-S, see the List of CFR Sections Affected, which appears in the Finding Aids... HOLDING COMPANY ACT OF 1935 Forms for Statements and Reports From Nonregistered (Exempt) Companies § 259... be filed by a public utility company that is an associate of one or more foreign utility...

  20. Sensitivity enhancement in natural-abundance solid-state 33S MAS NMR spectroscopy employing adiabatic inversion pulses to the satellite transitions

    NASA Astrophysics Data System (ADS)

    Hansen, Michael Ryan; Brorson, Michael; Bildsøe, Henrik; Skibsted, Jørgen; Jakobsen, Hans J.

    2008-02-01

    The WURST (wideband uniform rate smooth truncation) and hyperbolic secant (HS) pulse elements have each been employed as pairs of inversion pulses to induce population transfer (PT) between the four energy levels in natural abundance solid-state 33S (spin I = 3/2) MAS NMR, thereby leading to a significant gain in intensity for the central transition (CT). The pair of inversion pulses are applied to the satellite transitions for a series of inorganic sulfates, the sulfate ions in the two cementitious materials ettringite and thaumasite, and the two tetrathiometallates (NH 4) 2WS 4 and (NH 4) 2MoS 4. These materials all exhibit 33S quadrupole coupling constants ( CQ) in the range 0.1-1.0 MHz, with precise CQ values being determined from analysis of the PT enhanced 33S MAS NMR spectra. The enhancement factors for the WURST and HS elements are quite similar and are all in the range 1.74-2.25 for the studied samples, in excellent agreement with earlier reports on HS enhancement factors (1.6-2.4) observed for other spin I = 3/2 nuclei with similar CQ values (0.3-1.2 MHz). Thus, a time saving in instrument time by a factor up to five has been achieved in natural abundance 33S MAS NMR, a time saving which is extremely welcome for this important low-γ nucleus.

  1. Sensitivity enhancement in natural-abundance solid-state 33S MAS NMR spectroscopy employing adiabatic inversion pulses to the satellite transitions.

    PubMed

    Hansen, Michael Ryan; Brorson, Michael; Bildsøe, Henrik; Skibsted, Jørgen; Jakobsen, Hans J

    2008-02-01

    The WURST (wideband uniform rate smooth truncation) and hyperbolic secant (HS) pulse elements have each been employed as pairs of inversion pulses to induce population transfer (PT) between the four energy levels in natural abundance solid-state (33)S (spin I=3/2) MAS NMR, thereby leading to a significant gain in intensity for the central transition (CT). The pair of inversion pulses are applied to the satellite transitions for a series of inorganic sulfates, the sulfate ions in the two cementitious materials ettringite and thaumasite, and the two tetrathiometallates (NH(4))(2)WS(4) and (NH(4))(2)MoS(4). These materials all exhibit (33)S quadrupole coupling constants (C(Q)) in the range 0.1-1.0 MHz, with precise C(Q) values being determined from analysis of the PT enhanced (33)S MAS NMR spectra. The enhancement factors for the WURST and HS elements are quite similar and are all in the range 1.74-2.25 for the studied samples, in excellent agreement with earlier reports on HS enhancement factors (1.6-2.4) observed for other spin I=3/2 nuclei with similar C(Q) values (0.3-1.2 MHz). Thus, a time saving in instrument time by a factor up to five has been achieved in natural abundance (33)S MAS NMR, a time saving which is extremely welcome for this important low-gamma nucleus. PMID:18082436

  2. Direct measurement of several resonance strengths and energies in 34S(α , γ) 38 Ar within the T = 2 . 2 GK Gamow window with DRAGON

    NASA Astrophysics Data System (ADS)

    Connolly, D.; O'Malley, P.; Akers, C.; Chen, A. A.; Christian, G.; Davids, B.; Erikson, L. E.; Fallis, J.; Fulton, B. R.; Greife, U.; Hager, Ulrike; Hutcheon, D. A.; Ilyushkin, S.; Laird, A. M.; Mahl, A.; Ruiz, C.

    2015-10-01

    Radiative α capture on 34S can impact nucleosynthesis in several astrophysical environments, including oxygen burning, explosive oxygen burning (Type II supernovae), and Type Ia supernovae. However, there exist discrepancies in the literature for the resonance strengths of two strong resonances within the Gamow window for oxygen burning temperatures (E0 +/- Δ / 2 = 3183 +/- 897 keV at T = 2 . 2 GK). Previous measurements suffered from systematic uncertainties inherent in the experimental technique. Furthermore, there are several states in 38Ar in the energy range of interest for which no 34S + α resonance strength/energy measurements have been performed. This measurement was performed in inverse kinematics at the DRAGON recoil separator at TRIUMF in BC, Canada. DRAGON's experimental technique allows direct measurement of quantities such as stopping power and resonance energy, alleviating the need for external inputs and reducing uncertainty. This talk will discuss DRAGON's experimental technique, analysis methods and results.

  3. Tracking photosynthetic sulfide oxidation in a meromictic lake using sulfate δ34S and δ18O

    NASA Astrophysics Data System (ADS)

    Gilhooly, W. P.; Reinhard, C.; Lyons, T. W.; Glass, J. B.

    2012-12-01

    Phototrophic sulfur bacteria oxidize sulfide and fix carbon dioxide in the presence of sunlight without producing oxygen. Environmental conditions in the Paleo- and Mesoproterozoic, when atmospheric oxygen concentrations were at low levels and portions of the oceans were anoxic and sulfidic (euxinic), were conducive to widespread carbon fixation by anoxygenic photosynthesis. This pathway may have helped sustain euxinic conditions in the Proterozoic water column. With limited organic biomarker and geochemical evidence for widespread production of anoxygenic phototrophs, however, additional proxies are needed to fingerprint paleoecological and biogeochemical signals associated with photic zone euxinia. Paired δ34S and δ18O from ancient sulfates (gypsum, barite, or CAS) may offer an added constraint on the history and ecological dominance of photosynthetic S-oxidation. Sulfate-oxygen can fractionate during sulfate reduction, but the extent of isotopic enrichment is controlled either by kinetic isotope effects imparted during intracellular enzymatic steps or equilibrium oxygen exchange with ambient water. An improved understanding of these processes can be gained from modern natural environments. Mahoney Lake is a density-stratified lake located within the White Lake Basin of British Columbia. The euxinic water column supports a dense plate of purple sulfur bacteria (Amoebobacter purpureus) that thrives where free sulfide intercepts the photic zone at ~7 m water depth. We analyzed the isotopic composition of sulfate (δ34SSO4 and δ18OSO4), sulfide (δ34SH2S), and water (δ18OH2O) to track the potentially coupled processes of dissimilatory sulfate reduction and phototrophic sulfide oxidation within this meromictic lake. Large isotopic offsets observed between sulfate and sulfide within the monimolimnion (δ34SSO4-H2S = 51‰) and within pore waters along the oxic margin (δ34SSO4-H2S >50‰) are consistent with sulfate reduction in both the sediments and the anoxic

  4. Identification of anthropogenic and natural inputs of sulfate and chloride into the karstic ground water of Guiyang, SW China: combined delta37Cl and delta34S approach.

    PubMed

    Liu, Cong-Qiang; Lang, Yun-Chao; Satake, Hiroshi; Wu, Jiahong; Li, Si-Liang

    2008-08-01

    Because of active exchange between surface and groundwater of a karstic hydrological system, the groundwater of Guiyang, the capital city of Guizhou Province, southwest China, has been seriously polluted by anthropogenic inputs of NO3-, SO4(2-), Cl-, and Na+. In this work, delta37Cl of chloride and delta34S variations of sulfate in the karstic surface/groundwater system were studied, with a main focus to identify contaminant sources, including their origins. The surface, ground, rain, and sewage water studied showed variable delta37Cl and delta34S values, in the range of -4.1 to +2.0 per thousand, and -20.4 to +20.9 per thousand for delta37Cl and delta34S (SO4(2-)), respectively. The rainwater samples yielded the lowest delta37Cl values among those observed to date for aerosols and rainwater. Chloride in the Guiyang area rain waters emanated from anthropogenic sources rather than being of marine origin, probably derived from HCl (g) emitted by coal combustion. By plotting 1/SO4(2-) vs delta34S and 1/Cl- vs delta37Cl, respectively, we were able to identify some clusters of data, which were assigned as atmospheric deposition (acid rain component), discharge from municipal sewage, paleo-brine components in clastic sedimentary rocks, dissolution of gypsum mainly in dolomite, oxidation of sulfide minerals in coal-containing clastic rocks, and possibly degradation of chlorine-containing organic matter. We conclude that human activities give a significant input of sulfate and chloride ions, as well as other contaminants, into the studied groundwater system through enhanced atmospheric deposition and municipal sewage, and that multiple isotopic tracers constitute a powerful tool to ascertain geochemical characteristics and origin of complex contaminants in groundwater.

  5. A compilation of information on the {sup 32}S(p, {gamma}){sup 33}Cl reaction and properties of excited levels in {sup 33}Cl

    SciTech Connect

    Miller, R.E.; Smith, D.L.

    1997-07-01

    This report documents a survey of the literature, and provides a compilation of data contained therein, for the {sup 32}S(p, {gamma}){sup 33}Cl reaction. Considerable attention is paid to properties of the levels in {sup 33}Cl which are located in the vicinity of excitation of the compound-nuclear system {sup 32}s + p near the proton separation energy for {sup 33}Cl. It is this particular energy region which is especially important for applications in nuclear astrophysics. Summaries of all the located references are provided and numerical data contained in them are compiled in EXFOR format where applicable.

  6. A re-evaluation of /sup 32/S(n,p) cross sections from threshold to 5 MeV

    SciTech Connect

    Fu, C.Y.

    1989-01-01

    Two evaluations of the /sup 32/S(n,p) reaction cross sections, currently being used for the Nagasaki and Hiroshima dosimetry studies, yielded results that differ significantly. These two evaluations were reviewed and both were found to be quite old and without benefit of modern theoretical guidance and recent experimental data, hence inadequate in view of its relative importance for the present application. The necessity for a re-evaluation is further enhanced by the fact that: the present data search has uncovered a relatively high-quality data set that was not known previously, a generalized Bayes-theorem code is now available for averaging the various data sets with uncertainties and generating uncertainties for the results, effects on data combination of differing energy resolution in the various measurements can now be accounted for, and the ENDF/B-VI standards for /sup 238/U(n,f) cross sections have become available for renormalizing two of the available data sets. The re-evaluation is performed to 5 MeV, the upper energy limit for the present purpose. 8 refs., 2 figs.

  7. Identification of lithium-sulfur battery discharge products through 6Li and 33S solid-state MAS and 7Li solution NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Huff, Laura A.; Rapp, Jennifer L.; Baughman, Jessi A.; Rinaldi, Peter L.; Gewirth, Andrew A.

    2015-01-01

    6Li and 33S solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy was used to identify the discharge products in lithium-sulfur (Li-S) battery cathodes. Cathodes were stopped at different potentials throughout battery discharge and measured ex-situ to obtain chemical shifts and T2 relaxation rates of the products formed. The chemical shifts in the spectra of both 6Li and 33S NMR demonstrate that long-chain, soluble lithium polysulfide species formed at the beginning of discharge are indistinguishable from each other (similar chemical shifts), while short-chain, insoluble polysulfide species that form at the end of discharge (presumably Li2S2 and Li2S) have a different chemical shift, thus distinguishing them from the soluble long-chain products. T2 relaxation measurements of discharged cathodes were also performed which resulted in two groupings of T2 rates that follow a trend and support the previous conclusions that long-chain polysulfide species are converted to shorter chain species during discharge. Through the complementary techniques of 1-D 6Li and 33S solid-state MAS NMR spectroscopy, solution 7Li and 1H NMR spectroscopy, and T2 relaxation rate measurements, structural information about the discharge products of Li-S batteries is obtained.

  8. {sup 33}S hyperfine interactions in H{sub 2}S and SO{sub 2} and revision of the sulfur nuclear magnetic shielding scale

    SciTech Connect

    Helgaker, Trygve; Gauss, Jürgen; Cazzoli, Gabriele Puzzarini, Cristina

    2013-12-28

    Using the Lamb-dip technique, the hyperfine structure in the rotational spectra of H{sub 2}{sup 33}S and {sup 33}SO{sub 2} has been resolved and the corresponding parameters—that is, the sulfur quadrupole-coupling and spin–rotation tensors—were determined. The experimental parameters are in good agreement with results from high-level coupled-cluster calculations, provided that up to quadruple excitations are considered in the cluster operator, sufficiently large basis sets are used, and vibrational corrections are accounted for. The {sup 33}S spin-rotation tensor for H{sub 2}S has been used to establish a new sulfur nuclear magnetic shielding scale, combining the paramagnetic part of the shielding as obtained from the spin–rotation tensor with a calculated value for the diamagnetic part as well as computed vibrational and temperature corrections. The value of 716(5) ppm obtained in this way for the sulfur shielding of H{sub 2}S is in good agreement with results from high-accuracy quantum-chemical calculations but leads to a shielding scale that is about 28 ppm lower than the one suggested previously in the literature, based on the {sup 33}S spin-rotation constant of OCS.

  9. Differentiating atmospheric and mineral sources of sulfur during snowmelt using δ 34S, 35S activity, and δ 18O of sulfate and water as tracers

    NASA Astrophysics Data System (ADS)

    Shanley, J. B.; Mayer, B.; Mitchell, M. J.; Michel, R. L.; Bailey, S.; Kendall, C.

    2003-12-01

    The biogeochemical cycling of sulfur was studied during the 2000 snowmelt at Sleepers River Research Watershed in northeastern Vermont, USA using a combination of isotopic, chemical, and hydrometric measurements. The snowpack and 10 streams of varying size and land use were sampled for sulfate concentrations and isotopic analyses of 35S, δ 34S, and δ 18O of sulfate. Values of δ 18O of water were measured at one of the streams. Apportionment of atmospheric and mineral S sources based on δ 34S was possible at 7 of the 10 streams. Weathering of S-containing minerals was a major contributor to sulfate flux in streamwater, but atmospheric contributions exceeded 50% in several of the streams at peak snowmelt and averaged 41% overall. In contrast, δ 18Osulfate values of streamwater remained significantly lower than those of atmospheric sulfate throughout the melt period, indicating that atmospheric sulfate undergoes microbial redox reactions in the soil that replace the oxygen of atmospheric sulfate with isotopically lighter oxygen from soil water. Streamwater 35S activities were low relative to those of the snowpack; the youngest 35S-ages of the atmospheric S component in each of the 7 streams ranged from 184 to 320 days. Atmospheric S contributions to streamwater, as determined by δ 34S values, co-varied both with 35S activity and new water contributions as determined by δ 18Owater. However, the δ 18Osulfate and 35S ages clearly show that this new water carries very little of the atmospheric sulfate entering with the current snowmelt to the stream. Most incoming atmospheric sulfate first cycles through the organic soil S pool and ultimately reaches the stream as pedogenic sulfate.

  10. Organic Matter Sulfurization in the Cariaco Water Column Revealed by High-Sensitivity and Compound-Specific d34S Analyses.

    NASA Astrophysics Data System (ADS)

    Raven, M. R.; Sessions, A. L.; Adkins, J. F.; Thunell, R.

    2015-12-01

    Organic matter burial in marine sediments is a major process in the global carbon cycle, and enhanced organic matter burial is often associated with periods of global climatic and ecological change. Still, we have only a limited understanding of the processes that drive enhanced OM burial during oxygen-deficient conditions. Abiotic OM sulfurization has the potential to enhance the preservation of OM, but for this process to be significant it must compete with heterotrophic remineralization, most of which occurs before sinking particles reach the sea floor. We investigate the sources of sulfur to sinking particles in a modern marine basin using samples from the CARIACO fixed sediment trap time-series, applying recently developed methods for d34S analysis of small (≥20 nmol) sulfur pools and individual volatile organosulfur compounds. Relative to expectations for planktonic biomass, we find that sinking particles are both sulfur-rich and 34S-depleted. Higher apparent fluxes of 34S-depleted organic sulfur are associated with high OM export from the surface ocean, low terrestrial inputs, and high concentrations of both elemental S and the dominant non-polar organosulfur compound, C20 thiophene. We conclude that OM sulfurization is occurring in particles sinking through the Cariaco water column on timescales of days or less. Depending on the frequency of high OM export events, we estimate that this rapid sulfurization delivers roughly half of the total organic S present at 5 cm depth in underlying sediments. Accordingly, many OM-rich deposits in the geologic record may represent the products of water column sulfurization. This process provides a strong mechanistic feedback between oxygen deficiency and OM preservation.

  11. The first data on mass-independent fractionation of sulfur isotopes in sulfides from rocks of the eastern part of the Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Ignat'ev, A. V.; Khanchuk, A. I.; Vysotskii, S. V.; Velivetskaya, T. A.; Levitskii, V. I.; Terekhov, E. N.

    2016-08-01

    The first data on the multi-isotope composition of sulfur (32S, 33S, 34S) in samples from the Fennoscandian Shield were obtained by the laser local method. An anomalous concentration of the stable isotope 33S was registered in some samples. Δ33S ranges from-0.45 to +0.24‰, which indicates the mass-independent fractionation of S isotopes and provides evidence for the processes of primarily sedimentary accumulation of sulfides in the Archean oxygen-free atmosphere.

  12. Formation of [Ni(III)(κ(1)-S2CH)(P(o-C6H3-3-SiMe3-2-S)3)]- via CS2 insertion into nickel(III) hydride containing [Ni(III)(H)(P(o-C6H3-3-SiMe3-2-S)3)]-.

    PubMed

    Lai, Kuan-Ting; Ho, Wei-Chieh; Chiou, Tzung-Wen; Liaw, Wen-Feng

    2013-04-15

    Insertion of CS2 into the thermally unstable nickel(III) hydride [PPN][Ni(H)(P(o-C6H3-3-SiMe3-2-S)3)] (1), freshly prepared from the reaction of [PPN][Ni(OC6H5)P(C6H3-3-SiMe3-2-S)3] and 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (HBpin; pin = OCMe2CMe2O) in tetrahydrofuran at -80 °C via a metathesis reaction, readily affords [PPN][Ni(III)(κ(1)-S2CH)(P(o-C6H3-3-SiMe3-2-S)3)] (2) featuring a κ(1)-S2CH moiety. PMID:23541028

  13. A compilation of information on the {sup 31}P(p,{alpha}){sup 28}Si reaction and properties of excited levels in the compound nucleus {sup 32}S

    SciTech Connect

    Miller, R.E.; Smith, D.L.

    1997-11-01

    This report documents a survey of the literature, and provides a compilation of data contained therein, for the {sup 31}P(p,{alpha}){sup 28}Si reaction. Attention is paid here to resonance states in the compound-nuclear system {sup 32}S formed by {sup 31}P + p, with emphasis on the alpha-particle decay channels, {sup 28}Si + {alpha} which populate specific levels in {sup 28}Si. The energy region near the proton separation energy for {sup 32}S is especially important in this context for applications in nuclear astrophysics. Properties of the excited states in {sup 28}Si are also considered. Summaries of all the located references are provided and numerical data contained in them are compiled in EXFOR format where applicable.

  14. Sub-barrier one- and two-neutron pickup measurements in {sup 32}S+{sup 93}Nb, {sup 98,100}Mo reactions at 180{degrees}

    SciTech Connect

    Roberts, R.B.; Gazes, S.B.; Mason, J.E.

    1993-04-01

    Excitation functions for sub-barrier one- and two-neutron pickup reactions were measured for E{sub lab}{le}106 MeV in {sup 32}S+{sup 93}Nb, {sup 98,100}Mo systems by detecting target-like recoils at 0{degrees} using a recoil mass spectrometer. Measured differential cross sections are compared to those predicted by the DWBA code PTOLEMY. The slopes of transfer probability versus distance of closest approach, are in good agreement with the slopes obtained from binding energies, indicating the absence of a {open_quotes}slope anomaly.{close_quotes} Angle-integrated transfer cross sections derived from measured 180{degrees} yields correlate with fusion enhancements in previously measured fusion yields for the {sup 32}S+{sup 98,100}Mo systems.

  15. Extreme 34S depletions in ZnS at the Mike gold deposit, Carlin Trend, Nevada: Evidence for bacteriogenic supergene sphalerite

    USGS Publications Warehouse

    Bawden, T.M.; Einaudi, M.T.; Bostick, B.C.; Meibom, A.; Wooden, J.; Norby, J.W.; Orobona, M.J.T.; Chamberlain, C.P.

    2003-01-01

    We identified submicrometer-sized framboidal sphalerite (ZnS) below the base of supergene oxidation in a Carlin-type gold deposit of Eocene age in Nevada, United States, where the framboidal sphalerite forms a blanket-like body containing >400,000 metric tons of zinc. Framboidal sphalerite <0.1 ??m in diameter, formed in the early Miocene, ranges from <0.1 to 0.35 mol% FeS; the ??34S values range from -25??? to -70???, the lowest values measured in a marine or terrestrial environment. These S isotope data demonstrate the involvement of sulfate-reducing bacteria and provide the first documentation that sphalerite can form significant supergene sulfide-enrichment blankets.

  16. Calculation of pre-equilibrium effects in neutron-induced cross section on 32,34S isotopes using the EMPIRE 3.2 code

    NASA Astrophysics Data System (ADS)

    Yettou, Leila; Belgaid, Mohamed

    2015-07-01

    In this study, a new version EMPIRE 3.2 code was used in the cross section calculations of (n,p) reactions and in the calculation of proton emission spectra produced by (n,xp) reactions. Exciton model predictions combined with the Kalbach angular distribution systematics were used and some parameters such as those of mean free path, cluster emission in terms of Iwamoto-Harada model, optical model potentials of Morillon for neutrons and protons in the energy range up to 20 MeV, level density for spherical nuclei of Gilbert-Cameron model and width fluctuation correction in terms of compound nucleus have been investigated our calculations. The excitation functions and the proton emission spectra for 32,34S nuclei were calculated, discussed and found in good agreement with available experimental data.

  17. Isotope shift of the 32S 1/2 -22S 1/2 transition in lithium and the nuclear polarizability.

    PubMed

    Puchalski, M; Moro, A M; Pachucki, K

    2006-09-29

    High precision calculation of the isotope shift of the 3(2)S(1/2)-2(2)S(1/2) transition in lithium is presented. The wave function and matrix elements of relativistic operators are obtained by using recursion relations. Apart from the relativistic contribution, we obtain the nuclear polarizability correction for 11Li. The resulting difference of the squared charge radii 11Li-7Li based on the measurements of Sánchez et al. [Phys. Rev. Lett. 96, 033002 (2006)10.1103/PhysRevLett.96.033002] is deltar(ch)(2)=0.157(81) fm(2), which significantly differs from the previous evaluation.

  18. VizieR Online Data Catalog: ExoMol line lists for CS isotopologues (Paulose+, 2015)

    NASA Astrophysics Data System (ADS)

    Paulose, G.; Barton, E. J.; Yurchenko, S. N.; Tennyson, J.

    2015-07-01

    The files comprising this line list are in the standard ExoMol format, and are named XXcYYsst.dat, XXcYYstr.dat, where XX and YY are the mass numbers of the Carbon and Sulphur isotopes, respectively. The isotopologues covered including their nuclear spin degeneracy factors g_ns are: (12C)(32S) g_ns = 1 (12C)(33S) g_ns = 4 (12C)(34S) g_ns = 1 (12C)(36S) g_ns = 1 (13C)(32S) g_ns = 2 (13C)(33S) g_ns = 8 (13C)(34S) g_ns = 2 (13C)(36S) g_ns = 2 The partition functions from 1-3000K in 1K intervals for these isotopologues of CS are also provided in files named XXcYYspf.dat. (24 data files).

  19. Chemical weathering and the role of sulfuric and nitric acids in carbonate weathering: Isotopes (13C, 15N, 34S, and 18O) and chemical constraints

    NASA Astrophysics Data System (ADS)

    Li, Cai; Ji, Hongbing

    2016-05-01

    Multiple isotopes (13C-DIC, 34S and 18O-SO42-, 15N and 18O-NO3-) and water chemistry were used to evaluate weathering rates and associated CO2 consumption by carbonic acid and strong acids (H2SO4 and HNO3) in a typical karst watershed (Wujiang River, Southwest China). The dual sulfate isotopes indicate that sulfate is mainly derived from sulfide oxidation in coal stratum and sulfide-containing minerals, and dual nitrate isotopes indicate that nitrate is mainly derived from soil N and nitrification. The correlation between isotopic compositions and water chemistry suggests that sulfuric and nitric acids, in addition to carbonic acid, are involved in carbonate weathering. The silicate and carbonate weathering rates are 7.2 t km-2 yr-1 and 76 t km-2 yr-1, respectively. In comparison with carbonate weathering rates (43 t km-2 yr-1) by carbonic acid alone, the subsequent increase in rates indicates significant enhancement of weathering when combined with sulfuric and nitric acids. Therefore, the role of sulfuric and nitric acids in the rock weathering should be considered in the global carbon cycle.

  20. The effect of acid rain and altitude on concentration, δ34S, and δ18O of sulfate in the water from Sudety Mountains, Poland

    USGS Publications Warehouse

    Szynkiewicz, Anna; Modelska, Magdalena; Jedrysek, Mariusz Orion; Mastalerz, Maria

    2008-01-01

    Sulfate content, δ34S(SO42−), δ18O(SO42−), and δ18O(H2O) values revealed a remarkable dependence on the altitude. The calculated altitude effects for five season averages of these parameters were − 1.00 mg/l/100 m, − 0.18‰/100 m, − 0.27‰/100 m, and − 0.17‰/100 m, respectively. This dependence on the altitude resulted mainly from the mixing of sulfates of different origins such as anthropogenic sulfate, sulfate produced in the soil within the weathered zone of the massif, and that one from the tree canopy. The oxygen isotope mass balance indicates that, in the study area, about one third of the sulfate delivered to the surface and groundwater by modern precipitation comes from anthropogenic pollution. Further interaction of meteoric water within the weathered rocks causes a continuous decrease of δ18O(SO42−) values resulting from biological transformation of the sulfate due to plant vegetation and decomposition of organic matter.

  1. Investigation of Shell Effects in the Fusion-Fission Process in the Reaction 34S + 186W Near the Interaction Barrier

    NASA Astrophysics Data System (ADS)

    Harca, I. M.; Kozulin, E. M.; Bogachev, A.; Dmitriev, S. N.; Itkis, J.; Knyazheva, G.; Loktev, T.; Novikov, K.; Vardaci, E.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Chubarian, G.; Hanappe, F.; Piot, J.; Schmitt, C.; Trzaska, W. H.

    2015-06-01

    The reaction 34S + 186W at Elab = 160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays coincident with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. The coupling of the ORGAM and CORSET setups enables the FF-γ coincident measurement which offers the opportunity to extract the isotopic distribution of the fragments of different masses formed in the aforementioned reaction and to find the exact neutron multiplicity, the average spin and average angular momenta. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  2. Nuclear orientation in the reaction {sup 34}S+{sup 238}U and synthesis of the new isotope {sup 268}Hs

    SciTech Connect

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Nagame, Y.; Nishinaka, I.; Hofmann, S.; Hessberger, F. P.; Ackermann, D.; Duellmann, Ch. E.; Heinz, S.; Heredia, J. A.; Khuyagbaatar, J.; Kindler, B.; Kojouharov, I.; Lommel, B.; Mann, R.; Schaedel, M.; Antalic, S.; Saro, S.; Aritomo, Y.

    2010-08-15

    The synthesis of isotopes of the element hassium was studied using the reaction {sup 34}S+{sup 238}U{yields}{sup 272}Hs{sup *}. At a kinetic energy of 163.0 MeV in the center-of-mass system we observed one {alpha}-decay chain starting at the isotope {sup 267}Hs. The cross section was 1.8{sub -1.5}{sup +4.2} pb. At 152.0 MeV one decay of the new isotope {sup 268}Hs was observed. It decays with a half-life of 0.38{sub -0.17}{sup +1.8} s by 9479{+-}16 keV {alpha}-particle emission. Spontaneous fission of the daughter nucleus {sup 264}Sg was confirmed. The measured cross section was 0.54{sub -0.45}{sup +1.3} pb. In-beam measurements of fission-fragment mass distributions were performed to obtain information on the fusion probability at various orientations of the deformed target nucleus. The distributions changed from symmetry to asymmetry when the beam energy was changed from above-barrier to sub-barrier values, indicating orientation effects on fusion and/or quasifission. It was found that the distribution of symmetric mass fragments originates not only from fusion-fission, but has a strong component from quasifission. The result was supported by a calculation based on a dynamical description using the Langevin equation, in which the mass distributions for fusion-fission and quasifission fragments were separately determined.

  3. Stable Isotope (δ13C, δ15N, δ34S) Analysis and Satellite Telemetry Depict the Complexity of Gray Wolf (Canis lupus) Diets in Southwest Alaska

    NASA Astrophysics Data System (ADS)

    Stanek, A.; Watts, D. E.; Cohn, B. R.; Spencer, P.; Mangipane, B.; Welker, J. M.

    2010-12-01

    Throughout Alaska, gray wolves (Canis lupus) are a top predator of large ungulates. While they primarily rely on ungulates such as moose (Alces alces) and caribou (Rangifer tarandus) as food, they are opportunistic and use alternative resources. The variation and supplemental protein sources in wolf diet has not been studied extensively on live animals currently using the landscape. With large seasonal influxes of Pacific salmon (Oncorhynchus sp.) into Alaska, terrestrial carnivore use of marine species is of particular interest. Using stable isotope (δ13C, δ15N, δ34S) analysis of wolf guard hair and blood, this study aims to determine the proportion of marine derived nutrients (MDN) in the diet of wolf packs within and surrounding Lake Clark National Park and Preserve and Alaska Peninsula and Becharof National Wildlife Refuges in Southwest Alaska. Satellite telemetry from the animals sampled facilitates quantification of landscape use patterns in correspondence with isotopic traits. Wolf pack territories within and surrounding the Lake Clark region appear to vary in spatial extent and in availability of MDN, such as salmon. Initial analysis shows that two packs with smaller home ranges, centrally located around areas with greater salmon availability, have enriched δ15N values compared to packs that have larger home ranges not centralized around salmon spawning waters. This pattern of isotopic enrichment is found in red blood cells, blood serum and hair, representing diets over different time scales. The enrichment in both blood and hair indicates a sustained use of MDN over the previous six to nine months. In the Lake Clark region, simple mixing model estimates suggest that up to 30% of wolf pack diets may be from marine sources. In contrast, packs with larger home ranges and less access to salmon have stable isotope values representative of a terrestrial diet.

  4. Rare earth element and stable sulphur (δ 34S) isotope study of baryte-copper mineralization in Gulani area, Upper Benue Trough, NE Nigeria

    NASA Astrophysics Data System (ADS)

    El-Nafaty, Jalo Muhammad

    2015-06-01

    The geology of Gulani area comprises of inliers of diorite and granites of the Older Granite suite of the Pan-African (600 ± 150 Ma) age within Cretaceous sediments of the Bima, Yolde and Pindiga Formations and the Tertiary/Quaternary basalts of the Biu Plateau. Epigenetic baryte-copper mineralization occurs as baryte veins within the Bima and Yolde sandstones and fracture-filling malachite in Pan-African granites. Unaltered (distal), hydrothermally altered (proximal) granites and sandstones and vein materials (mineral separates of baryte and chalcopyrite/malachite mineralized rocks) were analysed for rare earth elements (REE) and stable sulphur isotopes. The REE patterns of the unaltered rocks (both granites and sandstones) indicate background values before mineralization, depicted by enriched LREE, depleted HREE and weak negative Eu anomalies typical of Pan-African (calc-alkaline) granites and sandstones derived from them. On the other hand, the hydrothermally altered and mineralized rocks and mineral separates show a distinct baryte and copper mineralization sub-systems characterized by similar high LREE and corresponding low HREE abundances. However, the negative Eu anomalies of the copper sub-system hosted by granites are typical of Pan-African (calc-alkaline) granites. The sandstone host rocks of the baryte sub-system are marked by positive Eu anomalies interpreted as reflecting the injection and subsequent deposition of the baryte-bearing hydrothermal solutions under oxidizing conditions. The baryte mineral separates show δ (34S) isotope range of 12.3-13.1‰ (CDT) indicating sulphur from sedimentary formation sources. This ruled out magmatic source of the sulphur from the nearby Tertiary/Quaternary volcanic rocks of the Biu Plateau as well as ocean water. However, the stable sulphur isotopic determination of the sulphides (chalcopyrite/malachite mineral separates and mineralized rocks) did not yield peaks and therefore no inferences drawn in this regard.

  5. Paired δ34S data from carbonate-associated sulfate and chromium-reducible sulfur across the traditional Lower-Middle Cambrian boundary of W-Gondwana

    NASA Astrophysics Data System (ADS)

    Wotte, Thomas; Strauss, Harald; Fugmann, Artur; Garbe-Schönberg, Dieter

    2012-05-01

    In this study, we present the first high-resolution data from coupled δ34S analyses of carbonate-associated sulfate (CAS) and chromium-reducible sulfur (CRS) from three Lower-Middle Cambrian sections in western Gondwana. CAS and CRS were extracted and analyzed from marine dolostone, limestone, and nodular limestone from Spanish and French successions. In parallel, carbonate samples were also analyzed for δ13Ccarb, δ18Ocarb, and major/trace element concentrations (Ca, Fe, Mg, Mn, Sr). δ34SCAS values vary between 17.6‰ and 33.2‰, with a maximum CAS concentration of ca. 900 ppm. δ34SCRS data show a similar broad range between -5.1‰ and 29.7‰, with maximal CRS contents up to ca. 3700 ppm. Notably, there is little stratigraphic variation in the δ34SCAS data in each of the sections confounding inter-basinal chemostratigraphic correlations. Nonetheless, the absolute differences in δ34SCAS between sections as well as variations in CAS and CRS concentrations are attributed to paleoenvironmental differences between proximal and distal parts of the carbonate ramp, as well as effects of subaerial exposure and riverine input. Thus, the generated δ34SCAS data deliver not only valuable paleoecological and paleoenvironmental information, they also illustrate a heterogeneity in the seawater sulfate sulfur isotopic composition of the western Gondwanan ocean. Consequently, the lack of correlation between our Gondwanan δ34SCAS data and time equivalent sections of Laurentia and Siberia is probably not only caused by the absence of an internationally accepted biostratigraphic correlation, but rather supports the view that sulfate was non-conservative anion in seawater during the Cambrian Period.

  6. Metal-chelate dye-controlled organization of Cd32S14(SPh)40(4-) nanoclusters into three-dimensional molecular and covalent open architecture.

    PubMed

    Zheng, Nanfeng; Lu, Haiwei; Bu, Xianhui; Feng, Pingyun

    2006-04-12

    Chalcogenide II-VI nanoclusters are usually prepared as isolated clusters and have defied numerous efforts to join them into covalent open-framework architecture with conventional templating methods such as protonated amines or inorganic cations commonly used to direct the formation of porous frameworks. Herein, we report the first templated synthesis of II-VI covalent superlattices from large II-VI tetrahedral clusters (i.e., [Cd32S14(SPh)38]2-). Our method takes advantage of low charge density of metal-chelate dyes that is a unique match with three-dimensional II-VI semiconductor frameworks in charge density, surface hydrophilicity-hydrophobicity, and spatial organization. In addition, metal-chelate dyes also serve to tune the optical properties of resulting dye semiconductor composite materials.

  7. Fock-space multireference coupled-cluster calculations of the hyperfine structure of isoelectronic {sup 33}S{sup -} and {sup 35,37}Cl

    SciTech Connect

    Das, Madhulita; Chaudhuri, Rajat K.; Chattopadhyay, Sudip; Mahapatra, Uttam Sinha

    2011-10-15

    Due to its flexibility and possible systematic improvement, the Fock-space (FS) multireference coupled-cluster (MRCC) method remains a very important tool for the computation of energy differences of spectroscopic interest. In the present work, the FS MRCC method for the electron detachment process has been applied to determine the magnetic hyperfine constant A{sub J} and nuclear quadrupole moments Q (related to electric hyperfine constant B{sub J}) for the lowest multiplets of {sup 33}S{sup -}, {sup 35}Cl, and {sup 37}Cl with Dirac-Fock orbitals. In addition, we also report {sup 2}P{sub 3/2}([Ne]3s{sup 2}3p{sup 5}) {yields} {sup 2}P{sub 1/2}([Ne]3s{sup 2}3p{sup 5}) magnetic dipole transition matrix element and electron affinity of {sup 35}Cl (i.e., ionization energy of Cl{sup -}). Calculated properties are in very good agreement with the available new standard or reference values.

  8. Protein Distribution and d34S Variation Within Microbially Formed Metal-Sulfide Colloids Provide Clues to the Mechanism and Kinetics of Extracellular Biomineralization

    NASA Astrophysics Data System (ADS)

    Moreau, J. W.; Weber, P. K.; Martin, M. C.; Webb, R. I.; Hutcheon, I. D.; Banfield, J. F.

    2005-12-01

    Micron-scale spheroidal aggregates of 1-5 nanometer-diameter sphalerite and wurtzite particles form as the result of the activity of sulfate-reducing bacteria (Labrenz et al. 2000, Moreau et al. 2004). Because these particles can also sequester contaminant metal(loid)s such as Pb2+, Cd2+, As3+ and Hg2+, the process provides a model for the study of phenomena that occur during in situ environmental bioremediation. Our analyses have focused on biofilms growing on decaying wood in neutralized acid-mine drainage in subsurface regions of the flooded Piquette Mine near Tennyson, WI. The system experiences nearly constant annual temperatures of 8°C. Spectroscopic and electron diffraction methods revealed that the biogenic sulfides are virtually homogenous in composition (nearly pure ZnS), but contain both (cubic) sphalerite and metastable (hexagonal) wurtzite that reflect size-dependent phase stabilities. In order to explore the kinetics of sulfate reduction and metal sequestration, and to identify forces driving particle aggregation (thus, limiting their mobility in the subsurface), we have isotopically and biochemically characterized ultramicrotomed ZnS aggregates in situ using secondary ion mass spectrometry (nanoSIMS) and synchrotron Fourier transform infra-red spectroscopy (SR-FTIR). Initial nanoSIMS results showed that the spheroidal ZnS aggregates contain fine-scale variations in δ34S and significant organic nitrogen concentrations. SR-FTIR data support the presence of amide I and II absorption features indicative of the presence of polypeptides localized within aggregates. Efforts to isolate and identify candidate proteins are currently under way. We propose that isotopic heterogeneities may reflect open-system variations in the composition of local source sulfate (including via biologically-mediated reoxidation of biogenic sulfide), and/or variation in bacterial sulfate reduction rate over the growth cycle(s) of sulfate-reducers. Furthermore, we suggest that

  9. Biogeochemical Indicators in High- and Low-Arctic Marine and Terrestrial Avian Community Changes: Comparative Isotopic (13C, 15N, and 34S) Studies in Alaska and Greenland

    NASA Astrophysics Data System (ADS)

    Causey, D.; Bargmann, N. A.; Burnham, K. K.; Burnham, J. L.; Padula, V. M.; Johnson, J. A.; Welker, J. M.

    2011-12-01

    Understanding the complex dynamics of environmental change in northern latitudes is of paramount importance today, given documented rapid shifts in sea ice, plant phenology, temperatures, deglaciation, and habitat fidelity. This knowledge is particularly critical for Arctic avian communities, which are integral components by which biological teleconnections are maintained between the mid and northern latitudes. Furthermore, Arctic birds are fundamental to Native subsistence lifestyles and a focus for conservation activities. Avian communities of marine and terrestrial Arctic environments represent a broad spectrum of trophic levels, from herbivores (eg., geese Chen spp.), planktivores (eg., auklets Aethia spp.), and insectivores (eg., passerines: Wheatears Oenanthe spp., Longspurs Calcarius spp.), to predators of marine invertebrates (eg., eiders Somateria spp.), nearshore and offshore fish (eg., cormorants Phalacrocorax spp, puffins Fratercula spp.), even other bird species (eg., gulls Larus spp., falcons Peregrinus spp.). This diversity of trophic interconnections is an integral factor in the dynamics of Arctic ecosystem ecology, and they are key indicators for the strength and trajectories of change. We are especially interested in their feeding ecology, using stable isotope-diet relations to examine historical diets and to predict future feeding ecology by this range of species. Since 2009, we have been studying the foodweb ecology using stable isotopes (δ13C, δ15N, δ34S) of contemporaneous coastal and marine bird communities in High Arctic (Northwest Greenland) and Low Arctic (western Aleutian Islands, AK). We are quantifying the isotopic values of blood, organ tissues, and feathers, and have carried out comparisons between native and lipid-extracted samples. Although geographically distant, these communities comprise similar taxonomic and ecological congeners, including several species common to both (eg., Common Eider, Black-legged Kittiwake, Northern

  10. Sulfur isotope homogeneity of lunar mare basalts

    NASA Astrophysics Data System (ADS)

    Wing, Boswell A.; Farquhar, James

    2015-12-01

    We present a new set of high precision measurements of relative 33S/32S, 34S/32S, and 36S/32S values in lunar mare basalts. The measurements are referenced to the Vienna-Canyon Diablo Troilite (V-CDT) scale, on which the international reference material, IAEA-S-1, is characterized by δ33S = -0.061‰, δ34S ≡ -0.3‰ and δ36S = -1.27‰. The present dataset confirms that lunar mare basalts are characterized by a remarkable degree of sulfur isotopic homogeneity, with most new and published SF6-based sulfur isotope measurements consistent with a single mass-dependent mean isotopic composition of δ34S = 0.58 ± 0.05‰, Δ33S = 0.008 ± 0.006‰, and Δ36S = 0.2 ± 0.2‰, relative to V-CDT, where the uncertainties are quoted as 99% confidence intervals on the mean. This homogeneity allows identification of a single sample (12022, 281) with an apparent 33S enrichment, possibly reflecting cosmic-ray-induced spallation reactions. It also reveals that some mare basalts have slightly lower δ34S values than the population mean, which is consistent with sulfur loss from a reduced basaltic melt prior to eruption at the lunar surface. Both the sulfur isotope homogeneity of the lunar mare basalts and the predicted sensitivity of sulfur isotopes to vaporization-driven fractionation suggest that less than ≈1-10% of lunar sulfur was lost after a potential moon-forming impact event.

  11. Processes affecting δ34S and δ18O values of dissolved sulfate in alluvium along the Canadian River, central Oklahoma, USA

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Breit, George N.; Cozzarelli, Isabelle M.

    2009-01-01

    The δ34S and δ18O values for dissolved sulfate in groundwater are commonly used in aquifer studies to identify sulfate reservoirs and describe biogeochemical processes. The utility of these data, however, often is compromised by mixing of sulfate sources within reservoirs and isotope fractionation during sulfur redox cycling. Our study shows that, after all potential sulfate sources are identified and isotopically characterized, the δ34SSO4 and δ18OSO4 values differentiate processes such as sulfate-source mixing, sulfide oxidation, barite dissolution, and organosulfur decomposition. During bacterial reduction of sulfate, the values reflect kinetic sulfur isotope fractionation and exchange of oxygen isotopes between sulfate and water. Detailed analysis of the chemistry (Cl and SO4 concentrations) and isotopic composition (δ2HH2Oand δ18OH2O) of groundwater in an alluvial aquifer in Central Oklahoma, USA allowed the identification of five distinct end members that supply water to the aquifer (regional groundwater flowing into the study area, river water, leachate from a closed landfill that operated within the site, rain, and surface runoff). The δ34SSO4 and δ18OSO4 values in each end member differentiated three sources of sulfate: sulfate dissolved from Early to Late Permian rocks within the drainage basin (δ34SSO4 = 8–12‰ and δ18OSO4 = 10‰), iron sulfides oxidized by molecular oxygen during low water-table levels (δ34SSO4 = − 16‰ and δ18OSO4 = 10‰), and organosulfur compounds (predominately ester sulfates) from decomposition of vegetation on the surface and from landfill trash buried in the alluvium (δ34SSO4 = 8‰ and δ18OSO4 = 6‰). During bacterial reduction of these sulfate sources, similar isotope fractionation processes are recorded in the parallel trends of increasing δ34SSO4 and δ18OSO4 values. When extensive reduction occurs, the kinetic sulfur isotope fractionation (estimated by εH2S–SO4 = − 23

  12. Characterization of the nicotinic ligand 2-[18F]fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine in vivo.

    PubMed

    Valette, H; Bottlaender, M; Dollé, F; Guenther, I; Coulon, C; Hinnen, F; Fuseau, C; Ottaviani, M; Crouzel, C

    1999-01-01

    The biodistribution of the nicotinic acetylcholine receptor (nAChR) radioligand 2-[18F]fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine ([18F]fluoro-A-85380, half-life of fluorine-18 = 110 min) in selected rat brain areas was assessed in vivo. The radiotracer showed a good penetration in the brain. The regional distribution of the radioligand was consistent with the density of nAChRs determined from previous studies in vitro. Sixty minutes post-injection, the highest uptake was observed in the thalamus, (1% I.D./g tissue), an intermediate one in the frontal cortex (0.78% I.D./g tissue), and the lowest in the cerebellum (0.5% I.D./g tissue). Pretreatment with several nAChR ligands (nicotine, cytisine, epibatidine, unlabeled fluoro-A-85380) substantially reduced uptake of the radioligand in the three cerebral areas. Pretreatment with the nAChR channel blocker mecamylamine or with the muscarinic receptor antagonist dexetimide had no appreciable effect on the uptake of fluoro-A-85380. These results support the high in vivo selectivity and specificity of fluoro-A-85380. Therefore, [18F]fluoro-A-85380 may be useful for positron emission tomography study of nAChRs in humans. PMID:10072197

  13. Tracking atmospheric sulphur pollution from the study of Racomitrium lanuginosum mosses in Iceland: A multi-isotope approach (δ34S, 206Pb/204Pb, δ13C and δ15N)

    NASA Astrophysics Data System (ADS)

    Proust, E.; Widory, D.; Gautason, B.; Rogers, K.; Morrison, J.

    2010-12-01

    Among terrestrial plants, the applicability of mosses as monitoring organisms of atmospheric pollutants is a world-wide accepted technique due to their special biological and morphologic characteristics as nonvascular plants. They are commonly regarded as the best bioindicators of air quality because they can accumulate sulphur (S) and other elements to a far greater level than is necessary for their physiological needs. This study aims at using different isotope systematics δ34S, 206Pb/204Pb, δ13C and δ15N) to help understand the origin of S in the atmophsere of Reykjavik and its vicinity, and especially the potential contribution of surrounding geothermal plants. The selected Icelandic woolly fringe moss (Racomitrium lanuginosum (Hedw.) Brid.) is extremely common in lava fields and gravely and stony areas. Samples were taken in four distinct sampling sites around the city of Reykjavik: Bláfjöll area (south-eastern suburb of the city), and close to three power plants: Hellisheioarvirkjun (northern suburb of the city), Svartsengi (south-western suburb of the city) and Nesjavellir (north-eastern suburb of the city). Results show that, whatever the sampling context is, S is controlled by a binary mixing, between i) a high δ34S (around 16‰) end-member, characteristic of mosses from Hellisheioarvirkjun, and ii) a low δ34S (around -2‰) end-member, characteristic of mosses from Nesjavellir. The multi-isotope approach, confirms this binary relation and helps to constrain the different end-members involved.

  14. Structural Studies of the Molybdenum Center of the Pathogenic R160Q Mutant of Human Sulfite Oxidase by Pulsed EPR Spectroscopy and 17O and 33S Labeling

    PubMed Central

    Astashkin, Andrei V.; Johnson-Winters, Kayunta; Klein, Eric L.; Feng, Changjian; Wilson, Heather L.; Rajagopalan, K. V.; Raitsimring, Arnold M.; Enemark, John H.

    2009-01-01

    Electron paramagnetic resonance (EPR) investigation of the Mo(V) center of the pathogenic R160Q mutant of human sulfite oxidase (hSO) confirms the presence of three distinct species whose relative abundances depend upon pH. Species 1 is exclusively present at pH ≤ 6, and remains in significant amounts even at pH 8. Variable-frequency electron spin echo envelope modulation (ESEEM) studies of this species prepared with 33S-labeled sulfite clearly show the presence of coordinated sulfate, as has previously been found for the “blocked” form of Arabidopsis thaliana at low pH (Astashkin, A. V.; Johnson-Winters, K.; Klein, E. L.; Byrne, R. S.; Hille, R.; Raitsimring, A. M.; Enemark, J. H. J. Am. Chem. Soc. 2007, 129, 14800). The ESEEM spectra of Species 1 prepared in 17O-enriched water show both strongly and weakly magnetically coupled 17O atoms that can be assigned to an equatorial sulfate ligand and the axial oxo ligand, respectively. The nuclear quadrupole interaction (nqi) of the axial oxo ligand is substantially stronger than those found for other oxo-Mo(V) centers studied previously. Additionally, pulsed electron–nuclear double resonance (ENDOR) measurements reveal a nearby weakly coupled exchangeable proton. The structure for Species 1 proposed from the pulsed EPR results using isotopic labeling is a six-coordinate Mo(V) center with an equatorial sulfate ligand that is hydrogen bonded to an exchangeable proton. Six-coordination is supported by the 17O nqi parameters for the axial oxo group of the model compound, (dttd)Mo17O(17Otms), where H2dttd = 2,3:8,9-dibenzo-1,4,7,10-tetrathiadecane; tms = trimethylsilyl. Reduction of R160Q to Mo(V) with Ti(III) gives primarily Species 2, another low pH form, whereas reduction with sulfite at higher pH values gives a mixture of Species 1 and 2, as well as the “primary” high pH form of wild-type SO. The occurrence of significant amounts of the “sulfate-blocked” form of R160Q (Species 1) at physiological p

  15. Application of 34S analysis for elucidating terrestrial, marine and freshwater ecosystems: Evidence of animal movement/husbandry practices in an early Viking community around Lake Mývatn, Iceland

    NASA Astrophysics Data System (ADS)

    Sayle, Kerry L.; Cook, Gordon T.; Ascough, Philippa L.; Hastie, Helen R.; Einarsson, Árni; McGovern, Thomas H.; Hicks, Megan T.; Edwald, Ágústa; Friðriksson, Adolf

    2013-11-01

    Carbon and nitrogen stable isotope ratios (δ13C and δ15N) have been used widely in archaeology to investigate palaeodiet. Sulphur stable isotope ratios (δ34S) have shown great promise in this regard but the potential of this technique within archaeological science has yet to be fully explored. Here we report δ34S, δ13C and δ15N values for 129 samples of animal bone collagen from Skútustaðir, an early Viking age (landnám) settlement in north-east Iceland. This dataset represents the most comprehensive study to date of its kind on archaeological material and the results show a clear offset in δ34S values between animals deriving their dietary resources from terrestrial (mean = +5.6 ± 2.8‰), freshwater (mean = -2.7 ± 1.4‰) or marine (mean = +15.9 ± 1.5‰) reservoirs (with the three food groups being significantly different at 2σ). This offset allows reconstruction of the dietary history of domesticated herbivores and demonstrates differences in husbandry practices and animal movement/trade, which would be otherwise impossible using only δ13C and δ15N values. For example, several terrestrial herbivores displayed enriched bone collagen δ34S values compared to the geology of the Lake Mývatn region, indicating they may have been affected by sea-spray whilst being pastured closer to the coast, before being traded inland. Additionally, the combination of heavy δ15N values coupled with light δ34S values within pig bone collagen suggests that these omnivores were consuming freshwater fish as a significant portion of their diet. Arctic foxes were also found to be consuming large quantities of freshwater resources and radiocarbon dating of both the pigs and foxes confirmed previous studies showing that a large freshwater radiocarbon (14C) reservoir effect exists within the lake. Overall, these stable isotope and 14C data have important implications for obtaining a fuller reconstruction of the diets of the early Viking settlers in Iceland, and may allow

  16. Triple isotope composition of CAS on the MC-ICPMS Neptune

    NASA Astrophysics Data System (ADS)

    Paris, G.; Adkins, J. F.; Sessions, A. L.; Fehrenbacher, J. S.; Spero, H. J.; Fischer, W. W.

    2012-12-01

    Exploring the isotopic composition of sulfur from Carbonate Associated Sulfates (CAS) during geological times provide essential information on the global sulfur cycle and redox budget at the surface of the Earth. For carbonates, existing methods combining extraction of sulfate by precipitation of BaSO4 and analyses by gas source mass spectrometry requires samples usually on the order of magnitude of a few to tens of gram. Recent use of the MC-ICPMS 'Neptune' demonstrated that the analysis of much smaller sulphide samples (Craddock et al., 2008) can still produce precise δ34S values. Thanks to the combination of a low detection limit and the extraction of sulfate by ion chromatography, we are able to work on carbonate samples three orders of magnitude smaller than typical CAS analyses. An Aridus is hooked to the Neptune as an introduction system to drastically decrease oxygen and hydride interferences on the sulfur peaks. Working in High Resolution (M/ΔM=10000), 32S-H interferences can be resolved and the 33S signal can be measured on an interference-free narrow shoulder. This method allows34S /32S and 33S/32S ratios with a 2σ reproducibility of 0.1-0.2 ‰ for δ34S and Δ33S values. This analytical breakthrough helps us to investigate a new category of samples. It becomes possible to work on sample as small as a few milligrams for modern carbonates or 40 mg for samples with sulfate concentrations of only 50 ppm. However, isotopic composition measurement on the Neptune requires the removal of the sample matrix so that samples are analyzed as sodium sulfate diluted in 5% HNO3. The purification of the sample is achieved through Ca++ removal using a micro-column of Dionex AG50X8 resin and then addition of sodium hydroxide. This method allows exchange of Ca++ (and other cations) for H+. Sulfate can then be concentrated by evaporation for analysis on the Neptune. We apply this method to the tests of Orbulina universa that were grown in artificial seawater of

  17. Sulphur isotopes and the search for life: strategies for identifying sulphur metabolisms in the rock record and beyond.

    PubMed

    Johnston, D T; Farquhar, J; Habicht, K S; Canfield, D E

    2008-12-01

    The search for life can only be as successful as our understanding of the tools we use to search for it. Here we present new sulphur isotope data (32S, 33S, 34S, 36S) from a variety of modern marine environments and use these observations, along with previously published work, to contribute to this search. Specifically, we use these new data to gain a sense of life's influences on the sulphur isotope record and to distinguish these biologically influenced signatures from their non-biological counterparts. This treatment extends sulphur isotope analyses beyond traditional (34S/32S) measures and employs trace isotope relationships (33S/32S, 36S/32S), as the inclusion of these isotopes provides unique information about biology and its role in the sulphur cycle through time. In the current study we compare and contrast isotope effects produced by sulphur-utilizing microorganisms (experimental), modern and ancient sedimentary records (observational) and non-biological reactions (theoretical). With our collective search for life now extending to neighbouring planets, we present this study as a first step towards more fully understanding the capability of the sulphur isotope system as a viable tool for life detection, both on Earth and beyond.

  18. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction.

    PubMed

    Shen, Yanan; Farquhar, James; Zhang, Hua; Masterson, Andrew; Zhang, Tonggang; Wing, Boswell A

    2011-02-22

    Global fossil data show that profound biodiversity loss preceded the final catastrophe that killed nearly 90% marine species on a global scale at the end of the Permian. Many hypotheses have been proposed to explain this extinction and yet still remain greatly debated. Here, we report analyses of all four sulphur isotopes ((32)S, (33)S, (34)S and (36)S) for pyrites in sedimentary rocks from the Meishan section in South China. We observe a sulphur isotope signal (negative δ(34)S with negative Δ(33)S) that may have resulted from limitation of sulphate supply, which may be linked to a near shutdown of bioturbation during shoaling of anoxic water. These results indicate that episodic shoaling of anoxic water may have contributed to the profound biodiversity crisis before the final catastrophe. Our data suggest a prolonged deterioration of oceanic environments during the Late Permian mass extinction.

  19. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction.

    PubMed

    Shen, Yanan; Farquhar, James; Zhang, Hua; Masterson, Andrew; Zhang, Tonggang; Wing, Boswell A

    2011-01-01

    Global fossil data show that profound biodiversity loss preceded the final catastrophe that killed nearly 90% marine species on a global scale at the end of the Permian. Many hypotheses have been proposed to explain this extinction and yet still remain greatly debated. Here, we report analyses of all four sulphur isotopes ((32)S, (33)S, (34)S and (36)S) for pyrites in sedimentary rocks from the Meishan section in South China. We observe a sulphur isotope signal (negative δ(34)S with negative Δ(33)S) that may have resulted from limitation of sulphate supply, which may be linked to a near shutdown of bioturbation during shoaling of anoxic water. These results indicate that episodic shoaling of anoxic water may have contributed to the profound biodiversity crisis before the final catastrophe. Our data suggest a prolonged deterioration of oceanic environments during the Late Permian mass extinction. PMID:21343928

  20. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction

    PubMed Central

    Shen, Yanan; Farquhar, James; Zhang, Hua; Masterson, Andrew; Zhang, Tonggang; Wing, Boswell A.

    2011-01-01

    Global fossil data show that profound biodiversity loss preceded the final catastrophe that killed nearly 90% marine species on a global scale at the end of the Permian. Many hypotheses have been proposed to explain this extinction and yet still remain greatly debated. Here, we report analyses of all four sulphur isotopes (32S, 33S, 34S and 36S) for pyrites in sedimentary rocks from the Meishan section in South China. We observe a sulphur isotope signal (negative δ34S with negative Δ33S) that may have resulted from limitation of sulphate supply, which may be linked to a near shutdown of bioturbation during shoaling of anoxic water. These results indicate that episodic shoaling of anoxic water may have contributed to the profound biodiversity crisis before the final catastrophe. Our data suggest a prolonged deterioration of oceanic environments during the Late Permian mass extinction. PMID:21343928

  1. Defining fish community structure in Lake Winnipeg using stable isotopes (δ(13)C, δ(15)N, δ(34)S): implications for monitoring ecological responses and trophodynamics of mercury & other trace elements.

    PubMed

    Ofukany, Amy F A; Wassenaar, Leonard I; Bond, Alexander L; Hobson, Keith A

    2014-11-01

    The ecological integrity of freshwater lakes is influenced by atmospheric and riverine deposition of contaminants, shoreline development, eutrophication, and the introduction of non-native species. Changes to the trophic structure of Lake Winnipeg, Canada, and consequently, the concentrations of contaminants and trace elements measured in tissues of native fishes, are likely attributed to agricultural runoff from the 977,800 km(2) watershed and the arrival of non-native zooplankters and fishes. We measured δ(13)C, δ(15)N, and δ(34)S along with concentrations of 15 trace elements in 17 native fishes from the north and south basins of Lake Winnipeg in 2009 and 2010. After adjusting for differences in isotopic baseline values between the two basins, fishes in the south basin had consistently higher δ(13)C and δ(34)S, and lower δ(15)N. We found little evidence of biomagnification of trace elements at the community level, but walleye (Sander vitreus) and freshwater drum (Aplodinotus grunniens) had higher mercury and selenium concentrations with increased trophic position, coincident with increased piscivory. There was evidence of growth dilution of cobalt, copper, manganese, molybdenum, thallium, and vanadium, and bioaccumulation of mercury, which could be explained by increases in algal (and consequently, lake and fish) productivity. We conclude that the north and south basins of Lake Winnipeg represent very different communities with different trophic structures and trace element concentrations.

  2. Human-Induced Long-Term Shifts in Gull Diet from Marine to Terrestrial Sources in North America's Coastal Pacific: More Evidence from More Isotopes (δ2H, δ34S).

    PubMed

    Hobson, Keith A; Blight, Louise K; Arcese, Peter

    2015-09-15

    Measurements of naturally occurring stable isotopes in tissues of seabirds and their prey are a powerful tool for investigating long-term changes in marine foodwebs. Recent isotopic (δ(15)N, δ(13)C) evidence from feathers of Glaucous-winged Gulls (Larus glaucescens) has shown that over the last 150 years, this species shifted from a midtrophic marine diet to one including lower trophic marine prey and/or more terrestrial or freshwater foods. However, long-term isotopic patterns of δ(15)N and δ(13)C cannot distinguish between the relative importance of lower trophic-level marine foods and terrestrial sources. We examined 48 feather stable-hydrogen (δ(2)H) and -sulfur (δ(34)S) isotope values from this same 150-year feather set and found additional isotopic evidence supporting the hypothesis that gulls shifted to terrestrial and/or freshwater prey. Mean feather δ(2)H and δ(34)S values (± SD) declined from the earliest period (1860-1915; n = 12) from -2.5 ± 21.4 ‰ and 18.9 ± 2.7 ‰, respectively, to -35.5 ± 15.5 ‰ and 14.8 ± 2.4 ‰, respectively, for the period 1980-2009 (n = 12). We estimated a shift of ∼ 30% increase in dependence on terrestrial/freshwater sources. These results are consistent with the hypothesis that gulls increased terrestrial food inputs in response to declining forage fish availability.

  3. Influence of different organic fertilizers on quality parameters and the delta(15)N, delta(13)C, delta(2)H, delta(34)S, and delta(18)O values of orange fruit (Citrus sinensis L. Osbeck).

    PubMed

    Rapisarda, Paolo; Camin, Federica; Fabroni, Simona; Perini, Matteo; Torrisi, Biagio; Intrigliolo, Francesco

    2010-03-24

    To investigate the influence of different types of fertilizers on quality parameters, N-containing compounds, and the delta(15)N, delta(13)C, delta(2)H, delta (34)S, and delta(18)O values of citrus fruit, a study was performed on the orange fruit cv. 'Valencia late' (Citrus sinensis L. Osbeck), which was harvested in four plots (three organic and one conventional) located on the same farm. The results demonstrated that different types of organic fertilizers containing the same amount of nitrogen did not effect important changes in orange fruit quality parameters. The levels of total N and N-containing compounds such as synephrine in fruit juice were not statistically different among the different treatments. The delta(15)N values of orange fruit grown under fertilizer derived from animal origin as well as from vegetable compost were statistically higher than those grown with mineral fertilizer. Therefore, delta(15)N values can be used as an indicator of citrus fertilization management (organic or conventional), because even when applied organic fertilizers are of different origins, the natural abundance of (15)N in organic citrus fruit remains higher than in conventional ones. These treatments also did not effect differences in the delta(13)C, delta(2)H, delta(34)S, and delta(18)O values of fruit.

  4. S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides

    USGS Publications Warehouse

    Ono, Shuhei; Shanks, Wayne C.; Rouxel, O.J.; Rumble, D.

    2007-01-01

    Sulfide sulfur in mid-oceanic ridge hydrothermal vents is derived from leaching of basaltic-sulfide and seawater-derived sulfate that is reduced during high temperature water rock interaction. Conventional sulfur isotope studies, however, are inconclusive about the mass-balance between the two sources because 34S/32S ratios of vent fluid H2S and chimney sulfide minerals may reflect not only the mixing ratio but also isotope exchange between sulfate and sulfide. Here, we show that high-precision analysis of S-33 can provide a unique constraint because isotope mixing and isotope exchange result in different ??33S (?????33S-0.515 ??34S) values of up to 0.04??? even if ??34S values are identical. Detection of such small ??33S differences is technically feasible by using the SF6 dual-inlet mass-spectrometry protocol that has been improved to achieve a precision as good as 0.006??? (2??). Sulfide minerals (marcasite, pyrite, chalcopyrite, and sphalerite) and vent H2S collected from four active seafloor hydrothermal vent sites, East Pacific Rise (EPR) 9-10??N, 13??N, and 21??S and Mid-Atlantic Ridge (MAR) 37??N yield ??33S values ranging from -0.002 to 0.033 and ??34S from -0.5??? to 5.3???. The combined ??34S and ??33S systematics reveal that 73 to 89% of vent sulfides are derived from leaching from basaltic sulfide and only 11 to 27% from seawater-derived sulfate. Pyrite from EPR 13??N and marcasite from MAR 37??N are in isotope disequilibrium not only in ??34S but also in ??33S with respect to associated sphalerite and chalcopyrite, suggesting non-equilibrium sulfur isotope exchange between seawater sulfate and sulfide during pyrite precipitation. Seafloor hydrothermal vent sulfides are characterized by low ??33S values compared with biogenic sulfides, suggesting little or no contribution of sulfide from microbial sulfate reduction into hydrothermal sulfides at sediment-free mid-oceanic ridge systems. We conclude that 33S is an effective new tracer for interplay among

  5. Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth

    NASA Astrophysics Data System (ADS)

    Sansjofre, Pierre; Cartigny, Pierre; Trindade, Ricardo I. F.; Nogueira, Afonso C. R.; Agrinier, Pierre; Ader, Magali

    2016-07-01

    The terminal Neoproterozoic Era (850-542 Ma) is characterized by the most pronounced positive sulfur isotope (34S/32S) excursions in Earth's history, with strong variability and maximum values averaging δ34S~+38‰. These excursions have been mostly interpreted in the framework of steady-state models, in which ocean sulfate concentrations do not fluctuate (that is, sulfate input equals sulfate output). Such models imply a large pyrite burial increase together with a dramatic fluctuation in the isotope composition of marine sulfate inputs, and/or a change in microbial sulfur metabolisms. Here, using multiple sulfur isotopes (33S/32S, 34S/32S and 36S/32S ratios) of carbonate-associated sulfate, we demonstrate that the steady-state assumption does not hold in the aftermath of the Marinoan Snowball Earth glaciation. The data attest instead to the most impressive event of oceanic sulfate drawdown in Earth's history, driven by an increased pyrite burial, which may have contributed to the Neoproterozoic oxygenation of the oceans and atmosphere.

  6. Solvothermal synthesis of a new 3-D mixed-metal sulfide framework, (H1.33tren)[In2.67Sb1.33S8]·tren

    NASA Astrophysics Data System (ADS)

    Lampkin, John D.; Powell, Anthony V.; Chippindale, Ann M.

    2016-11-01

    A new indium(III) antimony(V) sulfide, (H1.33tren)[In2.67Sb1.33S8]·tren, has been prepared solvothermally at 433 K. The compound crystallises in the tetragonal space group I-42d (lattice parameters, a=12.6248(5) and c=19.4387(18) Å at 150 K) and contains adamantane-like T2 supertetrahedral units comprised of corner-sharing InS45- and SbS43- tetrahedra. The adamantane-like units are then linked through sulfur vertices to generate an open, 3-D framework structure containing large pores in which neutral, protonated tren (tris(2-aminoethylene)amine) molecules reside. The presence of the organic components was confirmed by solid-state 13C NMR (10 kHz), combustion and thermogravimetric analysis. The band gap, obtained from UV-vis diffuse reflectance measurements, is 2.7(2) eV. Stirring with either water or alkali-metal salt solution leads to removal of the neutral tren molecules and an ~9% reduction in unit-cell volume on formation of (H1.33tren)[In2.67Sb1.33S8]·(H2O)4.

  7. Applying Statement 34's Capital Asset Requirements.

    ERIC Educational Resources Information Center

    Finden, Randal

    2001-01-01

    Discusses common issues and offers recommendations related to revisions in Governmental Accounting Standards Board Statement 34 wherein the financial reporting of the general fixed-assets account group is eliminated and instead a school district's general capital assets are reported and depreciated on the new statement of net assets and statement…

  8. [Using delta34S-SO4(2-) and Delta15N-NO3-, delta18O-NO3- to Trace the Sources of Sulfur and Nitrate in Lihu Lake Undergound Water, Guangxi, China].

    PubMed

    Li, Rui; Xiao, Qiong; Liu, Wen; Guo, Fang; Pan, Mou-cheng; Yu, Shi

    2015-08-01

    To reveal the temporal and spatial variation pattern of groundwater chemistry in Lihu Lake and explore the causes for the change of water quality through analysis of sulfur isotope and nitrogen-oxygen isotope, so as to provide scientific basis for reasonable exploitation and protection of karst water resources. Several groundwater samples, collected from January to December in 2010 and May, October in 2014 were monitored to analyze the chemical composition of conventional water and the characteristics of delta34S-SO4(2-), and delta15N-NO3-. The results showed that: (1) The hydrochemical type of the underground water was HCO3-Ca type and effected by the seasonal precipitation and human activity, the temporal and spatial variation of the main cations was obvious. (2) The sulfur concentration in the underground river was slightly decreased since the operation of the sewage plant, however, the sulfur concentration was still high. The nitrate pollution aggravated in the year 2014 compared to 2010. Impacted by human activity, the concentration of sulfur and nitrate was higher in the upstream Nandan river, Layi cave and the midstream Liangfeng cave, and Gantianba than in the downstream Xiaolong cave. (3) The delta34S-SO4(2-) value ranged from -4.12%o to -0.93%o. It was inferred that the emission of sulfur oxides through burning coal resulted in the rainwater acidification, which input a large amount of SO4(2-) into the underground water in the form of acid rain. (4) The delta15N-N03- value ranged from 0.26%o to 11.58%o, with an average value of 7.61%o, the delta18O-NO3- value ranged from -2.33%o to 21.76%o, with an average value of 9.38%o. In combination of the composition analysis of nitrogen-oxygen isotope of nitrate, it was believed that soil organic nitrogen, manure and sewage were the main sources of nitrate in the groundwater and the main causes for aggravation of nitrate pollution of the underground water. PMID:26592016

  9. [Using delta34S-SO4(2-) and Delta15N-NO3-, delta18O-NO3- to Trace the Sources of Sulfur and Nitrate in Lihu Lake Undergound Water, Guangxi, China].

    PubMed

    Li, Rui; Xiao, Qiong; Liu, Wen; Guo, Fang; Pan, Mou-cheng; Yu, Shi

    2015-08-01

    To reveal the temporal and spatial variation pattern of groundwater chemistry in Lihu Lake and explore the causes for the change of water quality through analysis of sulfur isotope and nitrogen-oxygen isotope, so as to provide scientific basis for reasonable exploitation and protection of karst water resources. Several groundwater samples, collected from January to December in 2010 and May, October in 2014 were monitored to analyze the chemical composition of conventional water and the characteristics of delta34S-SO4(2-), and delta15N-NO3-. The results showed that: (1) The hydrochemical type of the underground water was HCO3-Ca type and effected by the seasonal precipitation and human activity, the temporal and spatial variation of the main cations was obvious. (2) The sulfur concentration in the underground river was slightly decreased since the operation of the sewage plant, however, the sulfur concentration was still high. The nitrate pollution aggravated in the year 2014 compared to 2010. Impacted by human activity, the concentration of sulfur and nitrate was higher in the upstream Nandan river, Layi cave and the midstream Liangfeng cave, and Gantianba than in the downstream Xiaolong cave. (3) The delta34S-SO4(2-) value ranged from -4.12%o to -0.93%o. It was inferred that the emission of sulfur oxides through burning coal resulted in the rainwater acidification, which input a large amount of SO4(2-) into the underground water in the form of acid rain. (4) The delta15N-N03- value ranged from 0.26%o to 11.58%o, with an average value of 7.61%o, the delta18O-NO3- value ranged from -2.33%o to 21.76%o, with an average value of 9.38%o. In combination of the composition analysis of nitrogen-oxygen isotope of nitrate, it was believed that soil organic nitrogen, manure and sewage were the main sources of nitrate in the groundwater and the main causes for aggravation of nitrate pollution of the underground water.

  10. High resolution analysis of the rotational levels of the (0 0 0), (0 1 0), (1 0 0), (0 0 1), (0 2 0), (1 1 0) and (0 1 1) vibrational states of 34S16O2

    SciTech Connect

    Lafferty, Walter; Flaud, Jean-marie; Sams, Robert L.; Ngom, El Hadji A.

    2008-11-01

    A high resolution (0.0018 cm-1) Fourier transform instrument has been used to record the spectrum of an enriched 34S (95.3 %) sample of sulfur dioxide. A thorough analysis of the ν2, 2ν2 - ν2 , ν1, ν1 + ν2 - ν2, ν3, ν2 + ν3 - ν2, ν1 + ν2 and ν2 + ν3 bands has been carried out leading to a large set of assigned lines. From these lines ground state combination differences were obtained and fitted together with the existing microwave, millimeter, and terahertz rotational lines. An improved set of ground state rotational constants were obtained. Next, the upper state rotational levels were fitted. For the (010), (110), (011) states, a simple Watson type Hamilton sufficed. However, it was necessary to include explicitly interacting terms in the Hamiltonian matrix in order to fit the rotational levels of the (020), (100) and (101) states to within their experimental accuracy. More explicitly, it was necessary to use a ΔK=2 term to model the Fermi interaction between the (020) and (100) levels and a ΔK=3 term to model the Coriolis interaction between the (100) and (001) levels. Precise Hamiltonian constants were derived for the (000), (010), (100), (001), (020), (110) and (011) vibrational states.

  11. Tissue S/N ratios and stable isotopes (delta(34)S and delta(15)N) of epilithic mosses (Haplocladium microphyllum) for showing air pollution in urban cities in Southern China.

    PubMed

    Xiao, Hua-Yun; Tang, Cong-Guo; Xiao, Hong-Wei; Wang, Yan-Li; Liu, Xue-Yan; Liu, Cong-Qiang

    2010-05-01

    In urban cities in Southern China, the tissue S/N ratios of epilithic mosses (Haplocladium microphyllum), varied widely from 0.11 to 0.19, are strongly related to some atmospheric chemical parameters (e.g. rainwater SO(4)(2-)/NH(4)(+) ratios, each people SO(2) emission). If tissue S/N ratios in the healthy moss species tend to maintain a constant ratio of 0.15 in unpolluted area, our study cities can be divided into two classes: class I (S/N > 0.15, S excess) and class II (S/N < 0.15, N excess), possibly indicative of stronger industrial activity and higher density of population, respectively. Mosses in all these cities obtained S and N from rainwater at a similar ratio. Sulphur and N isotope ratios in mosses are found significantly linearly correlated with local coal delta(34)S and NH(4)(+)-N wet deposition, respectively, indicating that local coal and animal NH(3) are the major atmospheric S and N sources.

  12. Sulphur tales from the early Archean world

    NASA Astrophysics Data System (ADS)

    Montinaro, A.; Strauss, H.

    2016-07-01

    Sedimentary and magmatic rocks and their distinct sulphur isotopic signatures indicate the sources and processes of sulphur cycling, in particular through the analysis of all four stable sulphur isotopes (32S, 33S, 34S and 36S). Research over the past 15 years has substantially advanced our understanding of sulphur cycling on the early Earth, most notably through the discovery of mass-independently fractionated sulphur isotopic signatures. A strong atmospheric influence on the early Archean global sulphur cycle is apparent, much in contrast to the modern world. Diverse microbially driven sulphur cycling is clearly discernible, but its importance for Earth surface environments remains to be quantified.

  13. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur

    NASA Astrophysics Data System (ADS)

    Ding, T.; Valkiers, S.; Kipphardt, H.; De Bièvre, P.; Taylor, P. D. P.; Gonfiantini, R.; Krouse, R.

    2001-09-01

    Calibrated values have been obtained for sulfur isotope abundance ratios of sulfur isotope reference materials distributed by the IAEA (Vienna). For the calibration of the measurements, a set of synthetic isotope mixtures were prepared gravimetrically from high purity Ag 2S materials enriched in 32S, 33S, and 34S. All materials were converted into SF 6 gas and subsequently, their sulfur isotope ratios were measured on the SF 5+ species using a special gas source mass spectrometer equipped with a molecular flow inlet system (IRMM's Avogadro II amount comparator). Values for the 32S/ 34S abundance ratios are 22.650 4(20), 22.142 4(20), and 23.393 3(17) for IAEA-S-1, IAEA-S-2, and IAEA-S-3, respectively. The calculated 32S/ 34S abundance ratio for V-CDT is 22.643 6(20), which is very close to the calibrated ratio obtained by Ding et al. (1999). In this way, the zero point of the VCDT scale is anchored firmly to the international system of units SI. The 32S/ 33S abundance ratios are 126.942(47), 125.473(55), 129.072(32), and 126.948(47) for IAEA-S-1, IAEA-S-2, IAEA-S-3, and V-CDT, respectively. In this way, the linearity of the V-CDT scale is improved over this range. The values of the sulfur molar mass for IAEA-S-1 and V-CDT were calculated to be 32.063 877(56) and 32.063 911(56), respectively, the values with the smallest combined uncertainty ever reported for the sulfur molar masses (atomic weights).

  14. Nicotinic α4β2 Receptor Imaging Agents. Part III. Synthesis and Biological Evaluation of 3-(2-(S)-Azetidinylmethoxy)-5-(3′-18F-Fluoropropyl)Pyridine (18F-Nifzetidine)

    PubMed Central

    Pichika, Rama; Easwaramoorthy, Balu; Christian, Bradley T.; Shi, Bingzhi; Narayanan, Tanjore K.; Collins, Daphne; Mukherjee, Jogeshwar

    2011-01-01

    Thalamic and extrathalamic nicotinic α4β2 receptors found in the brain have been implicated in Alzheimer’s disease, Parkinson’s disease, substance abuse and other disorders. We report here the development of 3-(2-(S)-azetidinylmethoxy)-5-(3′-fluoropropyl)pyridine (nifzetidine) as a new putative high affinity antagonist for nicotinic α4β2 receptors. Nifzetidine in rat brain homogenate assays containing α4β2 sites labeled with 3H-cytisine exhibited a binding affinity, Ki = 0.67 nM. The fluorine-18 analog, 3-(2-(S)-azetidinylmethoxy)-5-(3′-18F-fluoropropyl)pyridine (18F-nifzetidine) was synthesized in 20–40% yield and apparent specific activity was estimated to be above 2 Ci/μmol. Rat brain slices indicated selective binding of 18F-nifzetidine to thalamus, subiculum, striata, cortex and other regions consistent with α4β2 receptor distribution. This selective binding was displaced >85% by 150 μM nicotine. PET imaging studies of 18F-nifzetidine in anesthetized rhesus monkey showed slow uptake in the various brain regions. Retention of 18F-nifzetidine was maximal in the thalamus and lateral geniculate followed by regions of the temporal and frontal cortex. Cerebellum showed the least uptake. Thalamus to cerebellum ratio was about 2.3 at 180 min post-injection and continued to rise. 18F-Nifzetidine shows promise as a new PET imaging agent for α4β2 nAChR. However, the slow kinetics suggests a need for >3 hr PET studies for quantitative studies of the α4β2 nAChRs. PMID:21831652

  15. Combined S-33 and O-18 Isotope Tracing of Intracellular Sulfur Metabolism during Microbial Sulfate Reduction

    NASA Astrophysics Data System (ADS)

    Antler, Gilad; Bosak, Tanja; Ono, Shuhei; Sivan, Orit; Turchyn, Alexandra V.

    2014-05-01

    Microbial sulfate reduction is a key player in the global carbon cycle, oxidizing nearly 50% of organic matter in marine sediments. The biochemical pathway of microbial sulfate reduction fractionates sulfur and oxygen isotopes and these fractionations can be used to reconstruct S cycling in sediments. Sulfur isotope fractionation during microbial sulfate reduction, which partitions lighter sulfur (32S) into sulfide and heavier sulfur (33S and 34S) into the residual sulfate, can be as high as 72o for 34S/32S. The availability and type of organic substrate control the magnitude of sulfur isotope fractionation by influencing the fluxes of and the transfer of electrons to different S species. The partitioning of oxygen in sulfate during microbial sulfate reduction appears to be strongly influenced by the oxygen isotopic composition of water in which the bacteria grow, but its magnitude also seems to correlate with the magnitude of 34S/32S isotope fractionation. In addition, the fractionation of 33S/32S is thought to reflect the reversibility of some intercellular fluxes. We wanted to investigate whether the 18O/16O, 34S/32S and 33S/32S isotope fractionations in sulfate are controlled by the same intracellular processes and conditions. This was done by investigating the combined sulfur and oxygen isotope partitioning by a marine Desulfovibrio sp. grown in pure culture on different organic substrates and in water with different isotopic composition of oxygen. The isotope fractionations of oxygen and sulfur correlated with the cell specific sulfate reduction rates (csSRR), where slower rates yielded higher sulfur fractionation (as high as 60) and higher oxygen isotope fractionation. The trends in 33S/32S and 34S/32S with the changing csSRR was similar to the trends in 18O/16O with the csSRR, suggesting that the same intercellular pathways controlled both oxygen and sulfur isotope signatures during microbial sulfate reduction. The use of water with different isotopic

  16. Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth.

    PubMed

    Sansjofre, Pierre; Cartigny, Pierre; Trindade, Ricardo I F; Nogueira, Afonso C R; Agrinier, Pierre; Ader, Magali

    2016-07-22

    The terminal Neoproterozoic Era (850-542 Ma) is characterized by the most pronounced positive sulfur isotope ((34)S/(32)S) excursions in Earth's history, with strong variability and maximum values averaging δ(34)S∼+38‰. These excursions have been mostly interpreted in the framework of steady-state models, in which ocean sulfate concentrations do not fluctuate (that is, sulfate input equals sulfate output). Such models imply a large pyrite burial increase together with a dramatic fluctuation in the isotope composition of marine sulfate inputs, and/or a change in microbial sulfur metabolisms. Here, using multiple sulfur isotopes ((33)S/(32)S, (34)S/(32)S and (36)S/(32)S ratios) of carbonate-associated sulfate, we demonstrate that the steady-state assumption does not hold in the aftermath of the Marinoan Snowball Earth glaciation. The data attest instead to the most impressive event of oceanic sulfate drawdown in Earth's history, driven by an increased pyrite burial, which may have contributed to the Neoproterozoic oxygenation of the oceans and atmosphere.

  17. Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth

    PubMed Central

    Sansjofre, Pierre; Cartigny, Pierre; Trindade, Ricardo I. F.; Nogueira, Afonso C. R.; Agrinier, Pierre; Ader, Magali

    2016-01-01

    The terminal Neoproterozoic Era (850–542 Ma) is characterized by the most pronounced positive sulfur isotope (34S/32S) excursions in Earth's history, with strong variability and maximum values averaging δ34S∼+38‰. These excursions have been mostly interpreted in the framework of steady-state models, in which ocean sulfate concentrations do not fluctuate (that is, sulfate input equals sulfate output). Such models imply a large pyrite burial increase together with a dramatic fluctuation in the isotope composition of marine sulfate inputs, and/or a change in microbial sulfur metabolisms. Here, using multiple sulfur isotopes (33S/32S, 34S/32S and 36S/32S ratios) of carbonate-associated sulfate, we demonstrate that the steady-state assumption does not hold in the aftermath of the Marinoan Snowball Earth glaciation. The data attest instead to the most impressive event of oceanic sulfate drawdown in Earth's history, driven by an increased pyrite burial, which may have contributed to the Neoproterozoic oxygenation of the oceans and atmosphere. PMID:27447895

  18. Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth.

    PubMed

    Sansjofre, Pierre; Cartigny, Pierre; Trindade, Ricardo I F; Nogueira, Afonso C R; Agrinier, Pierre; Ader, Magali

    2016-01-01

    The terminal Neoproterozoic Era (850-542 Ma) is characterized by the most pronounced positive sulfur isotope ((34)S/(32)S) excursions in Earth's history, with strong variability and maximum values averaging δ(34)S∼+38‰. These excursions have been mostly interpreted in the framework of steady-state models, in which ocean sulfate concentrations do not fluctuate (that is, sulfate input equals sulfate output). Such models imply a large pyrite burial increase together with a dramatic fluctuation in the isotope composition of marine sulfate inputs, and/or a change in microbial sulfur metabolisms. Here, using multiple sulfur isotopes ((33)S/(32)S, (34)S/(32)S and (36)S/(32)S ratios) of carbonate-associated sulfate, we demonstrate that the steady-state assumption does not hold in the aftermath of the Marinoan Snowball Earth glaciation. The data attest instead to the most impressive event of oceanic sulfate drawdown in Earth's history, driven by an increased pyrite burial, which may have contributed to the Neoproterozoic oxygenation of the oceans and atmosphere. PMID:27447895

  19. 1s2s2p{sup 2}3s {sup 6}P-1s2p{sup 3}3s {sup 6}S{sup o} Transitions in O IV

    SciTech Connect

    Lin Bin; Berry, H. Gordon; Shibata, Tomohiro; Livingston, A. Eugene; Savukov, Igor; Garnir, Henri-Pierre; Bastin, Thierry; Desesquelles, J.

    2003-06-01

    The energies and lifetimes of doubly excited sextet states of boron-like O IV, F V, and Ne VI are calculated with the multiconfiguration Hartree-Fock approach, including QED and higher-order corrections, and also with the multiconfiguration Dirac-Fock GRASP code. The wavelengths and transition rates of electric-dipole transitions from the inner-shell excited terms 1s2s2p{sup 2}3s {sup 6}P-1s2p{sup 3}3s {sup 6}S{sup o} are investigated by beam-foil spectroscopy in the XUV spectral region. The predicted transition wavelengths agree with the experiment. The higher-order corrections, fine structures, and spectrum with high wavelength resolution are found to be critically important in these comparisons. Nine new lines have been identified. The ground sextet states of boronlike atoms are metastable and well above several ionization levels. These are possible candidates for XUV and soft x-ray lasers.

  20. Atmospheric record in the Hadean Eon from multiple sulfur isotope measurements in Nuvvuagittuq Greenstone Belt (Nunavik, Quebec).

    PubMed

    Thomassot, Emilie; O'Neil, Jonathan; Francis, Don; Cartigny, Pierre; Wing, Boswell A

    2015-01-20

    Mass-independent fractionation of sulfur isotopes (S-MIF) results from photochemical reactions involving short-wavelength UV light. The presence of these anomalies in Archean sediments [(4-2.5 billion years ago, (Ga)] implies that the early atmosphere was free of the appropriate UV absorbers, of which ozone is the most important in the modern atmosphere. Consequently, S-MIF is considered some of the strongest evidence for the lack of free atmospheric oxygen before 2.4 Ga. Although temporal variations in the S-MIF record are thought to depend on changes in the abundances of gas and aerosol species, our limited understanding of photochemical mechanisms complicates interpretation of the S-MIF record in terms of atmospheric composition. Multiple sulfur isotope compositions (δ(33)S, δ(34)S, and δ(36)S) of the >3.8 billion-year-old Nuvvuagittuq Greenstone Belt (Ungava peninsula) have been investigated to track the early origins of S-MIF. Anomalous S-isotope compositions (Δ(33)S up to +2.2‰) confirm a sedimentary origin of sulfide-bearing banded iron and silica-rich formations. Sharp isotopic transitions across sedimentary/igneous lithological boundaries indicate that primary surficial S-isotope compositions have been preserved despite a complicated metamorphic history. Furthermore, Nuvvuagittuq metasediments recorded coupled variations in (33)S/(32)S, (34)S/(32)S, and (36)S/(32)S that are statistically indistinguishable from those identified several times later in the Archean. The recurrence of the same S-isotope pattern at both ends of the Archean Eon is unexpected, given the complex atmospheric, geological, and biological pathways involved in producing and preserving this fractionation. It implies that, within 0.8 billion years of Earth's formation, a common mechanism for S-MIF production was established in the atmosphere. PMID:25561552

  1. Atmospheric record in the Hadean Eon from multiple sulfur isotope measurements in Nuvvuagittuq Greenstone Belt (Nunavik, Quebec)

    PubMed Central

    Thomassot, Emilie; O’Neil, Jonathan; Francis, Don; Cartigny, Pierre; Wing, Boswell A.

    2015-01-01

    Mass-independent fractionation of sulfur isotopes (S-MIF) results from photochemical reactions involving short-wavelength UV light. The presence of these anomalies in Archean sediments [(4–2.5 billion years ago, (Ga)] implies that the early atmosphere was free of the appropriate UV absorbers, of which ozone is the most important in the modern atmosphere. Consequently, S-MIF is considered some of the strongest evidence for the lack of free atmospheric oxygen before 2.4 Ga. Although temporal variations in the S-MIF record are thought to depend on changes in the abundances of gas and aerosol species, our limited understanding of photochemical mechanisms complicates interpretation of the S-MIF record in terms of atmospheric composition. Multiple sulfur isotope compositions (δ33S, δ34S, and δ36S) of the >3.8 billion-year-old Nuvvuagittuq Greenstone Belt (Ungava peninsula) have been investigated to track the early origins of S-MIF. Anomalous S-isotope compositions (Δ33S up to +2.2‰) confirm a sedimentary origin of sulfide-bearing banded iron and silica-rich formations. Sharp isotopic transitions across sedimentary/igneous lithological boundaries indicate that primary surficial S-isotope compositions have been preserved despite a complicated metamorphic history. Furthermore, Nuvvuagittuq metasediments recorded coupled variations in 33S/32S, 34S/32S, and 36S/32S that are statistically indistinguishable from those identified several times later in the Archean. The recurrence of the same S-isotope pattern at both ends of the Archean Eon is unexpected, given the complex atmospheric, geological, and biological pathways involved in producing and preserving this fractionation. It implies that, within 0.8 billion years of Earth’s formation, a common mechanism for S-MIF production was established in the atmosphere. PMID:25561552

  2. Chemical dynamics of the "St. Lawrence" riverine system: δD H 2O, δ 18O H 2O, δ 13C DIC, δ 34S sulfate, and dissolved 87Sr/ 86Sr

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Telmer, Kevin; Veizer, Ján

    1996-03-01

    Chemical and stable isotope analyses of the St. Clair, Detroit, Niagara, and St. Lawrence rivers ("St. Lawrence" system) and their tributaries show that the chemical and isotopic compositions of the waters are strongly controlled by the geology of their drainage basins. Tributaries draining the Canadian Shield have very low TDS, HCO 3-, SO 42-, Ca 2+, Mg 2+, NO 3-, Sr 2+, higher Si and Fe total, and high 87Sr/ 86Sr ratios (0.710-0.713). The Grand and Thames rivers that drain Paleozoic limestones, dolostones, and evaporites are characterized by opposite attributes. The "St. Lawrence" and the tributaries draining the Canadian Appalachians fall between these two endmembers. The St. Clair, Detroit, and Niagara rivers do not show any pronounced seasonal variations in major component chemistry due to buffering by the Great Lakes. In contrast, pronounced seasonal variations characterize the lower St. Lawrence mainly because of significant tributary inputs into the overall water budget. The δD and δ18O in the "St. Lawrence" range from -60.9 to -44.5‰ and from -8.5 to -6.1‰ SMOW, respectively, much heavier than the comparative values measured for the tributaries (-92.8 to -58.3‰ and -13.1 to -8.5‰). This is a consequence of evaporative loss that, over the residence time of water of 10 2 years, equals about 7% of the water volume in the Great Lakes. The strontium and sulfur isotopic values for the "St. Lawrence" system are relatively uniform, with measured values from 0.70927 to 0.71112 for 87Sr/ 86Sr and from 4.3 to 5.6‰ for sulfate δ34S. Their seasonal variations are also minor. The strontium and sulfur fluxes of the St. Lawrence river are calculated to be 7.84 × 10 8 and 1.09 × 10 11 mol/a, respectively. The relative contributions of the Great Lakes, tributaries, and other sources to these fluxes are 73:16:11% for strontium and 64:13:23% for sulfur. Isotopic composition of dissolved inorganic carbon ( δ13C DIC) in the "St. Lawrence" system ranges from -4

  3. Mantle Sulfur Cycle: A Case for Non-Steady State ?

    NASA Astrophysics Data System (ADS)

    Cartigny, Pierre; Labidi, Jabrane

    2016-04-01

    Data published over the last 5 years show that the early inference that mantle is isotopically homogeneous is no more valid. Instead, new generation data on lavas range over a significant 34S/32S variability of up to 5‰ with δ 34S values often correlated to Sr- and Nd-isotope compositions. This new set of data also reveals the Earth's mantle to have a sub-chondritic 34S/32S ratio, by about ˜ 1‰. We will present at the conference our published and unpublished data on samples characterizing the different mantle components (i.e. EM1, EM2, HIMU and LOMU). All illustrate 34S-enrichments compared to MORB with Δ 33S and Δ 36S values indistinguishable from CDT or chondrites at the 0.03‰ level. These data are consistent with the recycling of subducted components carrying sulfur with Δ 33S and Δ 36S-values close to zero. Archean rocks commonly display Δ 33S and Δ 36S values deviating from zero by 1 to 10 ‰. The lack of variations for Δ 33S and Δ 36S values in present day lava argue against the sampling of any subducted protolith of Archean age in their mantle source. Instead, our data are consistent with the occurrence of Proterozoic subducted sulfur in the source of the EM1, EM2, LOMU and HIMU endmember at the St-Helena island. This is in agreement with the age of those components early derived through the use of the Pb isotope systematic. Currently, the negative δ 34S-values of the depleted mantle seem to be associated with mostly positive values of enriched components. This would be inconsistent with the concept a steady state of sulfur. Assuming that the overall observations of recycled sulfur are not biased, the origin of such a non-steady state remains unclear. It could be related to the relatively compatible behavior of sulfur during partial melting, as the residue of present-day melting can be shown to always contain significant amounts of sulfide (50{%} of what is observed in a fertile source). This typical behavior likely prevents an efficient

  4. Dynamical cluster-decay model for hot and rotating light-mass nuclear systems applied to the low-energy {sup 32}S+{sup 24}Mg{yields}{sup 56}Ni{sup *} reaction

    SciTech Connect

    Gupta, Raj K.; Kumar, Rajesh; Singh, Dalip; Balasubramaniam, M.; Beck, C.

    2005-01-01

    The dynamical cluster-decay model (DCM) is developed further for the decay of hot and rotating compound nuclei (China) formed in light heavy-ion reactions. The model is worked out in terms of only one parameter, namely the neck-length parameter, which is related to the total kinetic energy TKE(T) or effective Q value Q{sub eff}(T) at temperature T of the hot CN and is defined in terms of the CN binding energy and ground-state binding energies of the emitted fragments. The emission of both the light particles (LP), with A{<=}4,Z{<=}2, as well as the complex intermediate mass fragments (IMF), with 42, is considered as the dynamical collective mass motion of preformed clusters through the barrier. Within the same dynamical model treatment, the LPs are shown to have different characteristics compared to those of the IMFs. The systematic variations of the LP emission cross section {sigma}{sub LP} and IMF emission cross section {sigma}{sub IMF} calculated from the present DCM match exactly the statistical fission model predictions. A nonstatistical dynamical description is developed for the first time for emission of light particles from hot and rotating CN. The model is applied to the decay of {sup 56}Ni* formed in the {sup 32}S+{sup 24}Mg reaction at two incident energies E{sub c.m.}=51.6 and 60.5 MeV. Both the IMFs and average TKE{sup lowbar} spectra are found to compare resonably well with the experimental data, favoring asymmetric mass distributions. The LPs' emission cross section is shown to depend strongly on the type of emitted particles and their multiplicities.

  5. Nicotinic α4β2 receptor imaging agents. Part IV. Synthesis and Biological Evaluation of 3-(2-(S)-3,4-dehydropyrrolinylmethoxy)-5-(3’-18F-Fluoropropyl)pyridine (18F-Nifrolene) using PET

    PubMed Central

    Pichika, Rama; Kuruvilla, Sharon A.; Patel, Narmisha; Vu, Kenny; Sinha, Sangamitra; Easwaramoorthy, Balu; Narayanan, Tanjore K.; Shi, Bingzhi; Christian, Bradley; Mukherjee, Jogeshwar

    2012-01-01

    Imaging agents for nicotinic α4β2 receptors in the brain have been underway for studying various CNS disorders. Previous studies from our laboratories have reported the successful development of agonist, 18F-nifene. In attempts to develop potential antagonists, 18F-nifrolidine and 18F-nifzetidine were previously reported. Further optimization of these fluoropropyl derivatives has now been carried out resulting in 3-(2-(S)-3,4-dehydropyrrolinylmethoxy)-5-(3′-Fluoropropyl)pyridine (nifrolene) as a new high affinity agent for nicotinic α4β2 receptors. Nifrolene in rat brain homogenate assays—labeled with 3H-cytisine—exhibited a binding affinity of 0.36 nM. The fluorine-18 analog, 18F-nifrolene, was synthesized in approximately 10–20% yield and specific activity was estimated to be >2000 Ci/mmol. Rat brain slices indicated selective binding to anterior thalamic nuclei, thalamus, subiculum, striata, cortex and other regions consistent with α4β2 receptor distribution. This selective binding was displaced >90% by 300 µM nicotine. Thalamus to cerebellum ratio (>10) was the highest for 18F-nifrolene with several other regions showing selective binding. In vivo rat PET studies exhibited rapid uptake of 18F-nifrolene in the brain with specific retention in the thalamus and other brain regions while clearing out from the cerebellum. Thalamus to cerebellum ratio value in the rat was >4. Administration of nicotine caused a rapid decline in the thalamic 18F-nifrolene suggesting reversible binding to nicotinic receptors. PET imaging studies of 18F-nifrolene in anesthetized rhesus monkey revealed highest binding in the thalamus followed by regions of the lateral cingulated and temporal cortex. Cerebellum showed the least binding. Thalamus to cerebellum ratio in the monkey brain was >3 at 120 min. These ratios of 18F-nifrolene are higher than measured for 18F-nifrolidine and 18F-nifzetidine. 18F-Nifrolene thus shows promise as a new PET imaging agent for α4β2 nAChR. PMID:23141552

  6. Triple isotope composition of sulfur from sulfate on the MC-ICPMS Neptune

    NASA Astrophysics Data System (ADS)

    Paris, G.; Adkins, J. F.; Sessions, A. L.; Subhas, A.; Waldbauer, J.; Fischer, W. W.

    2011-12-01

    We present a new method to measure precise and accurate 34S/32S and 33S/32S ratios from small amounts of sulfate in solution. The sulfur cycle plays an important role in many earth system processes at a variety of timescales. Exploring the isotopic composition of sulfur from Carbonate Associated Sulfates (CAS) during geological times or from dissolved sulfate in modern seawater and porewater can provide important constraints on these processes. For carbonates, existing methods focus on samples rather rich in CAS (>100 ppm) or samples available in large amounts (>1g). Samples with either very low sulfate concentration (e.g., Archean-aged carbonates) and/or limited sample sizes (such as foraminifera) require a more sensitive analytical method. An attractive technique involves MC-ICPMS (multiCollector inductively-coupled plasma mass spectrometry), which has been used successfully for bulk and in-situ δ34S evaluation of sulfate and sulfide minerals (Craddock et al., 2008) and organic compounds (Amrani et al., 2009). Two main advantages of working with a MC-ICPMS (here a ThermoScientific Neptune) compared to conventional SO2 gas source mass spectrometry are an increased sensitivity and the ability to introduce sulfur as either sulfate or sulfide. However, this approach requires removal of the complex sample matrix so samples can be analyzed as sodium sulfate diluted in 5% HNO3. IAEA BaSO4 standards, on the other hand, can be run as dissolved BaSO4 through chelation of Ba with EDTA. Sample purification is achieved through Ca++ removal using either a cation-exchanging membrane or a micro-column of Dionex AG50X8 resin. These two methods allow exchange of Ca++ (or other cations) for H++. Sulfate can then be concentrated by evaporation for subsequent isotope analysis. The membrane is preferred for samples with sulfate concentrations lower than 100 ppm to decrease sulfur contamination from the AG50X8 sulfonyl groups and the resin is favored for samples with sulfate

  7. Triple isotope composition of sulfur from nanomoles of dissolved sulfate on the MC-ICPMS Neptune (Invited)

    NASA Astrophysics Data System (ADS)

    Paris, G.; Sessions, A. L.; Subhas, A. V.; Adkins, J. F.

    2013-12-01

    Over the last decade, the increasing use of Inductively-Coupled plasma mass spectrometer (ICPMS) for measuring the isotopic composition of sulfur helped decreasing significantly the detection limit for analyzing dissolved sulfate, with no loss of precision. Because of intereferences on mass 33 and 36, only the two major isotopes were analyzed. Here, we present a new method to measure precise and accurate 34S /32S and 33S /32S ratios from sulfate in solution. Understanding past and modern sulfur cycle is crucial on many points of view and exploring the isotopic composition of sulfur from Carbonate Associated Sulfate (CAS) during geological times or sulfate from seawater or porewaters provide essential information. For carbonates, existing methods focus on samples rather rich in CAS (>100 ppm) or samples available in important amounts (> 1g). Samples with either very low sulfate concentration (Archean carbonates or continental waters, for instance) and/or samples with limited available amounts (such as foraminifera) require a new analytical method. Isotopic composition of many trace components are successfully measured on MC-ICPMS (MultiCollector ICPMS). The ThermoScientific magnetic sector ICPMS Neptune has already been used successfully for bulk and in-situ δ34S evaluation of sulfate and sulfide minerals [1] and organic compounds [2]. Isotopic composition measurement on the Neptune requires however removal of the complex matrix of the samples so that samples are analyzed as sodium sulfate diluted in 5% HNO3. Sulfate is purified using the AG1X8 anionic resin to remove cations. Because sulfate is not volatile at low temperatures, we use a desolvating membrane (Aridus, Cetac) in order to decrease the various oxygen and S-H interferences on the sulfur peaks. Working at High Resolution (M/ΔM=10000), 32S-H interferences can be resolved and the 33S signal can be measured on an interference-free narrow shoulder. This method allows 34S /32S and 33S /32S ratios measurement

  8. Development of a Tunable Laser Spectroscopic Method for Determining Multiple Sulfur Isotope Composition of Nanomoles of SO2

    NASA Astrophysics Data System (ADS)

    Guo, W.; Christensen, L. E.

    2013-12-01

    Multiple sulfur isotope (32S, 33S, 34S, 36S) analyses of geological material provide important constraints on the sulfur cycles on Earth [1] and other planetary bodies, e.g., Mars [2]. However, most current multiple sulfur isotope measurements are performed on magnetic sector isotope ratio mass spectrometers (IRMS) and thus require relatively large sample size (usually about several micromoles of sulfur, except the MC-ICPMS and SIMS methods) and time-consuming sample preparation procedures. More importantly, these IRMS methods demand relatively sophisticated instrumentation, and are not ideal for field measurements or flight missions. In contrast, laser spectroscopic methods provide opportunities for significantly reducing the sample size requirement and enabling real-time monitoring in the field, and have been proven to be of great importance in the isotopic measurements of many molecules in nature, e.g. CO2, H2O, N2O, CH4. Based on a prototype built for measuring δ34S of SO2 [3], we're developing a new tunable laser spectrometer (TLS) for simultaneously determining the δ34S and Δ33S of nanomoles of pure SO2. We have identified a new spectral window (<1 cm-1 wide) suitable for measuring 32SO2, 33SO2, 34SO2 simultaneously. Ongoing work focuses on increasing the optical path length of the analysis cell and determining the optimal analytical conditions, with the goal of achieving ≤0.5‰ precision in both δ34S and Δ33S over 30 seconds of analysis duration of ~20 nmol of pure SO2. Progress of these developments and comparison with conventional IRMS methods will be presented at the meeting. As a case study, we will also present preliminary TLS results from laboratory low pressure SO2 UV photolysis experiments where δ34S and Δ33S of the residual SO2 are expected to decrease as the photolysis proceeds [4]. Future developments of this method will involve the coupling of a sample introduction system to enable multiple sulfur isotope analysis of samples other than

  9. Sulfur Isotopic Inferences of the Controls on Porewater Sulfate Profiles in the Northern Cascadia Margin Gas Hydrate System

    NASA Astrophysics Data System (ADS)

    Bui, T.; Pohlman, J.; Lapham, L.; Riedel, M.; Wing, B. A.

    2010-12-01

    The flux of methane from gas hydrate bearing seeps in the marine environment is partially mitigated by the anaerobic oxidation of methane coupled with sulfate reduction. Sedimentary porewater sulfate profiles above gas hydrate deposits are frequently used to estimate the efficacy of this important microbial biofilter. However, to differentiate how other processes (e.g., sulfate reduction coupled to organic matter oxidation, sulfide re-oxidation and sulfur disproportionation) affect sulfate profiles, a complete accounting of the sulfur cycle is necessary. To this end, we have obtained the first ever measurements of minor sulfur isotopic ratios (33S/32S, 36S/32S), in conjunction with the more commonly measured 34S -32S ratio, from porewater sulfate above a gas hydrate-bearing seep. Characteristic minor isotopic fractionations, even when major isotopic fractionations are similar in magnitude, help to quantify the contributions of different microbial processes to the overall sulfur cycling in the system. Down to sediment depths of 1.5 to 4 meters, the δ34S values of porewater sulfate generally increased in association with a decrease in sulfate concentrations as would be expected for active sulfate reduction. Of greater interest, covariance between the δ34S values and measured minor isotopic fractionation suggests sulfide reoxidation and sulfur disproportionation are important components of the local sulfur cycle. We hypothesize that sulfide reoxidation is coupled to redox processes involving Fe(III) and Mn(IV) reduction and that the reoxidized forms of sulfur are available for additional methane oxidation. Recognizing that sulfate reduction is only one of several microbial processes controlling sulfate profiles challenges current paradigms for interpreting sulfate profiles and may alter our understanding of methane oxidation at gas hydrate-bearing seeps.

  10. Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis

    NASA Astrophysics Data System (ADS)

    Harris, E.; Sinha, B.; Hoppe, P.; Crowley, J. N.; Ono, S.; Foley, S.

    2011-08-01

    The oxidation of SO2 to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to investigate sources and chemistry of sulfur dioxide and sulfate in the atmosphere, however interpretation of measured sulfur isotope ratios is challenging due to a lack of reliable information on the isotopic fractionation involved in major transformation pathways. This paper presents measurements of the fractionation factors for the major atmospheric oxidation reactions for SO2: Gas-phase oxidation by OH radicals, and aqueous oxidation by H2O2, O3 and a radical chain reaction initiated by iron. The measured fractionation factor for 34S/32S during the gas-phase reaction is αOH = (1.0089±0.0007) - ((4±5)×10-5) T(°C). The measured fractionation factor for 34S/32S during aqueous oxidation by H2O2 or O3 is αaq=(1.0167±0.0019) - ((8.7±3.5) ×10-5) T(°C). The observed fractionation during oxidation by H2O2 and O3 appeared to be controlled primarily by protonation and acid-base equilbria of S(IV) in solution, and there was no significant difference between the fractionation produced by the two oxidants within the experimental error. The isotopic fractionation factor from a radical chain reaction in solution catalysed by iron is αFe = (0.989±0.0043) at 19 °C for 34S/32S. Fractionation was mass-dependent with regards to 33S for all the reactions investigated. The radical chain reaction mechanism was the only measured reaction that had a faster rate for the light isotopes, and will be particularly useful to determine the importance of the transition-metal catalysed oxidation pathway.

  11. High-precision sulfur isotope composition of enstatite meteorites and implications of the formation and evolution of their parent bodies

    NASA Astrophysics Data System (ADS)

    Defouilloy, C.; Cartigny, P.; Assayag, N.; Moynier, F.; Barrat, J.-A.

    2016-01-01

    In order to better understand the formation and evolution of their parent bodies, the three isotope ratios of sulfur were analyzed in 33 enstatite meteorites (24 enstatite chondrites and 9 aubrites). The results show that on average all enstatite chondrite groups are enriched in the lightest isotopes compared to other chondrite groups, with means of δ34S of -0.28 ± 0.22‰ for EH3/4, -0.16 ± 0.16‰ for EH5, -0.32 ± 0.15‰ for EL3, -0.67 ± 0.16‰ for EL6 and -0.64 ± 0.00‰ for EL7 (all 1σ). Aubrites show a larger isotope variability in their composition, with a δ34S varying from -1.350‰ to +0.154‰. Contrary to previously published results, our data show a distinct composition for EL6 compared to other enstatite chondrites. This could be related to an impact-induced loss of isotopically heavy oldhamite (δ34S = by 3.62 ± 3.02‰ (1σ)) on the EL parent body. Although the bulk sulfur in both enstatite meteorites and aubrites does not show any significant Δ33S and Δ36S, the oldhamite fraction shows clear evidence of mass independent fractionation on the 36S/32S ratio (in 3 out of 9 analyzes, Δ36S up to +2.2‰), a signal that is not correlated to any 33S/32S anomaly (in 1 out of 9 analyzes, Δ33S down to -0.085‰). Though a nebular or photochemical origin cannot be ruled out, the most plausible mechanism to produce such isolated non-mass dependent 36S/32S anomalies would be a contribution of FeCl2 containing excesses of 36S due to the decay of 36Cl to the leached oldhamite fraction. Even though the sulfur isotopic composition measured in enstatite meteorites is distinct from the Bulk Silicate Earth (BSE), the isotopically lightest samples of EL6, EL7 and aubrites are approaching the isotopic composition of the BSE and enstatite meteorites remain the meteorites with the sulfur isotopic composition the closest to the terrestrial one.

  12. Microbial sulfate reduction, multiple sulfur isotopes, and the ca. 3.46 Ga Dresser Formation (Western Australia)

    NASA Astrophysics Data System (ADS)

    Mojzsis, S. J.

    2006-12-01

    Cherty barite-containing rocks from the ca. 3.46 Ga Dresser Formation (Warrawoona Group, Pilbara Craton, Australia) show low degrees of metamorphism and slight deformation, which argues against extensive post- diagenetic alteration of the sulfur isotopes. Groves et al. (1981) interpreted the depositional setting as precipitated gypsum replaced by barite in brine ponds separated from the sea by a sand berm. Buick and Dunlop (1990) postulated the origin of the sulfate from originally low sulfate sea water in evaporative briny lagoons locally supplemented by the phototrophic oxidation of volcanogenic sulfide. Van Kranendonk (2006) presented new high-resolution mapping and geochemical analyses that showed the extensive bedded chert + barite units formed during discrete episodes of volcanogenic hydrothermal circulation during exhalative cooling of a felsic magma chamber. In conditions analogous to contemporary S-rich volcanism, a silicic magma chamber with associated caldera collapse and seawater incursions will evolve highly oxidized volatile-laden saline fluids (Scaillet et al., 1998). This leads to the expulsion of oxidized fluids which in the hydrolysis reaction: 4H20 + 4SO2 ↔ H2S + 3H+ + 3HSO4- can stabilize sulfate without the intervention of oxygenic photosynthesizers. Locally recharged submarine brine-pools with reactive SO42- and Ba2+ leached from basalt forms barite. Multiple S-isotopes (^{33}S/^{32}S vs. S^{34}S/^{32}S) of sulfate-sulfide pairs provide a crucial clue to the origin of the sulfur in the Dresser rocks. Barites in sample GSWA 169711 (A-I from Farquhar et al., 2000) have average Δ^{33}S values = -0.98±0.022‰ and average δ34SVCDT = +4.9‰ that form a linear array (r2=0.977) of mass-dependent slope λ = 0.512. Brine pool sulfate rapidly scavenged by Ba2+ makes barite; the solubility of barite is low (ΔH°r = 6.35 kcal mol-1, log K = -9.97), and Ba2+ leached from basalt (average Archean basalt contains 569 ppm Ba; Condie, 1993) was plentiful

  13. 33S NMR cryogenic probe for taurine detection

    NASA Astrophysics Data System (ADS)

    Hobo, Fumio; Takahashi, Masato; Maeda, Hideaki

    2009-03-01

    With the goal of a S33 nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the S33 NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 μM taurine solutions, which is the level of sensitivity necessary for biological samples.

  14. Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp.

    NASA Astrophysics Data System (ADS)

    Sim, Min Sub; Ono, Shuhei; Donovan, Katie; Templer, Stefanie P.; Bosak, Tanja

    2011-08-01

    Sulfur isotope effects produced by microbial dissimilatory sulfate reduction are used to reconstruct the coupled cycling of carbon and sulfur through geologic time, to constrain the evolution of sulfur-based metabolisms, and to track the oxygenation of Earth's surface. In this study, we investigate how the coupling of carbon and sulfur metabolisms in batch and continuous cultures of a recently isolated marine sulfate reducing bacterium DMSS-1, a Desulfovibrio sp ., influences the fractionation of sulfur isotopes. DMSS-1 grown in batch culture on seven different electron donors (ethanol, glycerol, fructose, glucose, lactate, malate and pyruvate) fractionates 34S/ 32S ratio from 6‰ to 44‰, demonstrating that the fractionations by an actively growing culture of a single incomplete oxidizing sulfate reducing microbe can span almost the entire range of previously reported values in defined cultures. The magnitude of isotope effect correlates well with cell specific sulfate reduction rates (from 0.7 to 26.1 fmol/cell/day). DMSS-1 grown on lactate in continuous culture produces a larger isotope effect (21-37‰) than the lactate-grown batch culture (6‰), indicating that the isotope effect also depends on the supply rate of the electron donor and microbial growth rate. The largest isotope effect in continuous culture is accompanied by measurable changes in cell length and cellular yield that suggest starvation. The use of multiple sulfur isotopes in the model of metabolic fluxes of sulfur shows that the loss of sulfate from the cell and the intracellular reoxidation of reduced sulfur species contribute to the increase in isotope effects in a correlated manner. Isotope fractionations produced during sulfate reduction in the pure culture of DMSS-1 expand the previously reported range of triple sulfur isotope effects ( 32S, 33S, and 34S) by marine sulfate reducing bacteria, implying that microbial sulfur disproportionation may have a smaller 33S isotopic fingerprint

  15. Sulfur isotopic analysis of carbonyl sulfide and its application for biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Hattori, Shohei; Kamezaki, Kazuki; Ogawa, Takahiro; Toyoda, Sakae; Katayama, Yoko; Yoshida, Naohiro

    2016-04-01

    Carbonyl sulfide (OCS or COS) is the most abundant gas containing sulfur in the atmosphere, with an average mixing ratio of 500 p.p.t.v. in the troposphere. OCS is suggested as a sulfur source of the stratospheric sulfate aerosols (SSA) which plays an important role in Earth's radiation budget and ozone depletion. Therefore, OCS budget should be validated for prediction of climate change, but the global OCS budget is imbalance. Recently we developed a promising new analytical method for measuring the stable sulfur isotopic compositions of OCS using nanomole level samples: the direct isotopic analytical technique of on-line gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions S+ (Hattori et al., 2015). The first measurement of the δ34S value for atmospheric OCS coupled with isotopic fractionation for OCS sink reactions in the stratosphere (Hattori et al., 2011; Schmidt et al., 2012; Hattori et al., 2012) explains the reported δ34S value for background stratospheric sulfate, suggesting that OCS is a potentially important source for background (nonepisodic or nonvolcanic) stratospheric sulfate aerosols. This new method measuring δ34S values of OCS can be used to investigate OCS sources and sinks in the troposphere to better understand its cycle. It is known that some microorganisms in soil can degrade OCS, but the mechanism and the contribution to the OCS in the air are still uncertain. In order to determine sulfur isotopic enrichment factor of OCS during degradation via microorganisms, incubation experiments were conducted using strains belonging to the genera Mycobacterium, Williamsia and Cupriavidus, isolated from natural soil environments (Kato et al., 2008). As a result, sulfur isotope ratios of OCS were increased during degradation of OCS, indicating that reaction for OC32S is faster than that for OC33S and OC34S. OCS degradation via microorganisms is not mass-independent fractionation (MIF) process, suggesting that this

  16. 33S nuclear magnetic resonance spectroscopy of biological samples obtained with a laboratory model 33S cryogenic probe

    NASA Astrophysics Data System (ADS)

    Hobo, Fumio; Takahashi, Masato; Saito, Yuta; Sato, Naoki; Takao, Tomoaki; Koshiba, Seizo; Maeda, Hideaki

    2010-05-01

    S33 nuclear magnetic resonance (NMR) spectroscopy is limited by inherently low NMR sensitivity because of the quadrupolar moment and low gyromagnetic ratio of the S33 nucleus. We have developed a 10 mm S33 cryogenic NMR probe, which is operated at 9-26 K with a cold preamplifier and a cold rf switch operated at 60 K. The S33 NMR sensitivity of the cryogenic probe is as large as 9.8 times that of a conventional 5 mm broadband NMR probe. The S33 cryogenic probe was applied to biological samples such as human urine, bile, chondroitin sulfate, and scallop tissue. We demonstrated that the system can detect and determine sulfur compounds having SO42- anions and -SO3- groups using the S33 cryogenic probe, as the S33 nuclei in these groups are in highly symmetric environments. The NMR signals for other common sulfur compounds such as cysteine are still undetectable by the S33 cryogenic probe, as the S33 nuclei in these compounds are in asymmetric environments. If we shorten the rf pulse width or decrease the rf coil diameter, we should be able to detect the NMR signals for these compounds.

  17. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase.

    PubMed

    Leavitt, William D; Bradley, Alexander S; Santos, André A; Pereira, Inês A C; Johnston, David T

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major ((34)S/(32)S) and minor ((33)S/(32)S, (36)S/(32)S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in (34)S/(32)S (hereafter, [Formula: see text]) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in (33)S, described as [Formula: see text], is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3-0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in (34)εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of [Formula: see text] is similar to the median value of experimental observations compiled from all known published work, where (34)ε r-p = 16.1‰ (r-p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments ([Formula: see text] 17.3 ± 1.5‰, 2σ) and in modern marine sediments ([Formula: see text] 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the

  18. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S =  17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in

  19. The Fate of Sulfur in Late-Stage Magmatic Processes: Insights From Quadruple Sulfur Isotopes

    NASA Astrophysics Data System (ADS)

    Keller, N. S.; Ono, S.; Shaw, A. M.

    2009-05-01

    Multiple sulfur isotopes (32S, 33S, 34S and 36S) have recently been shown to be useful tracers of fluid-rock interaction in seafloor hydrothermal systems [1]. Here we present the application of multiple sulfur isotopes to subaerial volcanoes with the aim of unraveling the various processes fractionating sulfur in the upper volcanic system. We take advantage of the fact that the ascent of volcanic gases through a hydrothermal system causes complex isotopic fractionation between the quaduple sulfur isotopes. δ34S is thought to trace the source of sulfur as well as magma degassing; at equilibrium, δ33S follows a mass-dependent fractionation relationship such that two phases in equilibrium with each other have equal Δ33S values (Δ33S ≡ ln(δ33S+1) - 0.515×ln(δ34S+1)). Disequilibrium Δ33S values can indicate isotope mixing and other fluid-rock interactions. The ultimate aim of this study is to assess the use of quadruple sulfur isotopes to obtain quantitative information on the sulfur cycle at convergent plate margins. The sulfur mass balance at convergent margins is poorly constrained, partly because late-stage processes are challenging to quantify and lead to large uncertainties in the global output fluxes. Quadruple sulfur isotopes provide a powerful tool to untangle the convoluted history of volcanic systems. Here we report the first quadruple sulfur isotopic values for H2S, SO2 and native sulfur from arc volcanoes. Fumarolic gases (˜100°C) and sulfur sublimates were collected from Poas and Turrialba, two actively degassing volcanoes in Costa Rica. The gases were bubbled in situ through chemical traps to separate H2S from SO2: H2S was reacted to form ZnS, and SO2 to form BaSO4. Sulfur was chemically extracted from the solid phases and precipitated as Ag2S, which was fluorinated to SF6 and analysed by IRMS. Poas and Turrialba have H2S/SO2 ˜1 and 0.01, respectively. δ34SH2S and δ34SSO2 are similar to gases measured at other arcs [2], - 7.9‰ and 0.6

  20. Assay of S for Quantitation of PEG and TNF Ligated Au Nanoparticles using ID-HR-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Mann, J. L.; Vocke, R. D.; Newman, J. D.; Kelly, W. R.

    2009-12-01

    measurements in high-resolution (HR) mode to resolve these interferences reduces the overall signal intensity. To further reduce the effects of the interferences and limit the signal attentuation resulting from running in HR mode, an Aridus II desolvator was used to introduce the sample as a dry aerosol. The signal intensities obtained on the most abundant isotope mass 32 are typically 6 x 10-11 A per ug S/g solution. A small sulfur hydride, however, remains 3 x 10-14 A at mass 33S. By using a 33S enriched spike for isotope dilution, the overall effect of the hydride on mass 33 is significantly reduced (<0.2 %). The samples and standards were spiked in both a 1:1 and 2:1 ratio 32S:33S and the 32S/34S ratio was used as the internal normalization ratio for mass bias determination. Using an iterative procedure, the mass bias and measured 32S/33S ratios were successively corrected until the values converged. This calculation removes the spike contribution to the sample to obtain the mass bias corrected 33S/32S. The corrected 33S/32S ratios were then used in the isotope dilution calculation for S quantitation. Preliminary results on pure sulfur solutions and PEG solutions at a concentration of approximately 1 ppm S (≈ 38 nM PEG/g), show comparable results with rsd’s in the 0.5 to 1% range.

  1. Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis

    NASA Astrophysics Data System (ADS)

    Harris, E.; Sinha, B.; Hoppe, P.; Crowley, J. N.; Ono, S.; Foley, S.

    2012-01-01

    The oxidation of SO2 to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to investigate sources and chemical processes of sulfur dioxide and sulfate in the atmosphere, however interpretation of measured sulfur isotope ratios is challenging due to a lack of reliable information on the isotopic fractionation involved in major transformation pathways. This paper presents laboratory measurements of the fractionation factors for the major atmospheric oxidation reactions for SO2: Gas-phase oxidation by OH radicals, and aqueous oxidation by H2O2, O3 and a radical chain reaction initiated by iron. The measured fractionation factor for 34S/32S during the gas-phase reaction is αOH = (1.0089±0.0007)-((4±5)×10-5) T(°C). The measured fractionation factor for 34S/32S during aqueous oxidation by H2O2 or O3 is αaq = (1.0167±0.0019)-((8.7±3.5) ×10-5)T(°C). The observed fractionation during oxidation by H2O2 and O3 appeared to be controlled primarily by protonation and acid-base equilibria of S(IV) in solution, which is the reason that there is no significant difference between the fractionation produced by the two oxidants within the experimental error. The isotopic fractionation factor from a radical chain reaction in solution catalysed by iron is αFe = (0.9894±0.0043) at 19 °C for 34S/32S. Fractionation was mass-dependent with regards to 33S/32S for all the reactions investigated. The radical chain reaction mechanism was the only measured reaction that had a faster rate for the light isotopes. The results presented in this study will be particularly useful to determine the importance of the transition metal-catalysed oxidation pathway compared to other oxidation pathways, but other main oxidation pathways can not be distinguished based on stable sulfur isotope measurements alone.

  2. Sulfur and Oxygen Isotopic Analysis of a Cosmic Symplectite from a Comet Wild 2 Stardust Terminal Particle

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Berger, E. L.; Nakamura-Messenger, K.; Messenger, S.

    2015-01-01

    Introduction: Analyses of comet 81P/Wild 2 samples re-turned from the Stardust mission have uncovered surprising simi-larities to meteoritic material, including the identification of inner solar system grains [1-3]. The TEM characterization of terminal particle (TP) 4 from Stardust track #147 revealed an assemblage consisting of symplectically intergrown pentlandite and nanocrys-talline maghemite coexisting with high-Ca pyroxene [4]. Mineral-ogically similar cosmic symplectites (COS) containing pentlandite and magnetite in the primitive Acfer 094 meteorite are highly de-pleted in 16O (?17O, ?18O 180 per mille) [5-7]. This isotopic signature is proposed to record alteration with primordial solar nebula water. Conversely, the normal O isotopic composition of the Stardust COS indicates alteration by a different aqueous reservoir, perhaps on the comet [8]. In this study, we analyzed the Wild 2 COS for S isotopes to further constrain its origin. Experimental: Thin sections of TP4 (12 ?m) were produced and their mineralogy was thoroughly characterized by TEM. Two of the sections were analyzed for O isotopes by isotopic imaging in the JSC NanoSIMS 50L. The sample in one of the slices was completely consumed. The remaining material in the adjacent slice was analyzed simultaneously for 16O, 32S, 33S, 34S, and 56Fe16O in electron multipliers using a Cs+ primary ion beam. Quasi-simulta-neous arrival (QSA) can have a significant effect on S isotopic ra-tios when using electron multipliers, resulting in undercounting of 32S [9]. Canyon Diablo troilite (CDT) was measured numerous times to deduce a correction factor for QSA and ensure measure-ment reproducibility. Isotopic ratios are reported relative to CDT. Results and Discussion: The Wild 2 COS is enriched in the heavy S isotopes relative to CDT (?33S = 6.5 +/- 1.6 per mille; ?34S = 5.1 +/- 0.7 per mille; 1?). The degree of 33S enrichment indicates mass-inde-pendent fractionation (MIF) with ?33S = 3.9 +/- 1.7 per mille. MIF of

  3. Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope 'mantle array' in chemical geodynamics

    NASA Astrophysics Data System (ADS)

    Labidi, J.; Cartigny, P.; Jackson, M. G.

    2015-05-01

    To better address how subducted protoliths drive the Earth's mantle sulfur isotope heterogeneity, we report new data for sulfur (S) and copper (Cu) abundances, S speciation and multiple S isotopic compositions (32S, 33S, 34S, 36S) in 15 fresh submarine basaltic glasses from the Samoan archipelago, which defines the enriched-mantle-2 (EM2) endmember. Bulk S abundances vary between 835 and 2279 ppm. About 17 ± 11% of sulfur is oxidized (S6+) but displays no consistent trend with bulk S abundance or any other geochemical tracer. The S isotope composition of both dissolved sulfide and sulfate yield homogeneous Δ33S and Δ36S values, within error of Canyon Diablo Troilite (CDT). In contrast, δ34S values are variable, ranging between +0.11 and +2.79‰ (±0.12‰ 1σ) for reduced sulfur, whereas oxidized sulfur values vary between +4.19 and +9.71‰ (±0.80‰, 1σ). Importantly, δ34S of the reduced S pool correlates with the 87Sr/86Sr ratios of the glasses, in a manner similar to that previously reported for South-Atlantic MORB, extending the trend to δ34S values up to + 2.79 ± 0.04 ‰, the highest value reported for undegassed oceanic basalts. As for EM-1 basalts from the South Atlantic ridge, the linear δ34S-87Sr/86Sr trend requires the EM-2 endmember to be relatively S-rich, and only sediments can account for these isotopic characteristics. While many authors argue that both the EM-1 and EM-2 mantle components record subduction of various protoliths (e.g. upper or lower continental crust, lithospheric mantle versus intra-metasomatized mantle, or others), it is proposed here that they primarily reflect sediment recycling. Their distinct Pb isotope variation can be accounted for by varying the proportion of S-poor recycled oceanic crust in the source of mantle plumes.

  4. Theoretical estimation of equilibrium sulfur isotope fractionations among aqueous sulfite species: Implications for isotope models of microbial sulfate reduction

    NASA Astrophysics Data System (ADS)

    Eldridge, D. L.; Farquhar, J.; Guo, W.

    2015-12-01

    Sulfite (sensu lato), an intermediate in a variety sulfur redox processes, plays a particularly important role in microbial sulfate reduction. It exists intracellularly as multiple species between sets of enzymatic reactions that transform sulfate to sulfide, with the exact speciation depending on pH, T, and ionic strength. However, the complex speciation of sulfite is ignored in current isotope partitioning models of microbial sulfate reduction and simplified solely to the pyramidal SO32- (sulfite sensu stricto), due to a lack of appropriate constraints. We theoretically estimated the equilibrium sulfur isotope fractionations (33S/32S, 34S/32S, 36S/32S) among all documented sulfite species in aqueous solution, including sulfite (SO32-), bisulfite isomers and dimers ((HS)O3-, (HO)SO2-, S2O52-), and SO2(aq), through first principles quantum mechanical calculations. The calculations were performed at B3LYP/6-31+G(d,p) level using cluster models with 30-40 water molecules surrounding the solute. Our calculated equilibrium fractionation factors compare well to the available experimental constraints and suggest that the minor and often-ignored tetrahedral (HS)O3- isomer of bisulfite strongly influences isotope partitioning behavior in the sulfite system under most environmentally relevant conditions, particularly fractionation magnitudes and unusual temperature dependence. For example, we predict that sulfur isotope fractionation between sulfite and bulk bisulfite in solution should have an apparent inverse temperature dependence due to the influence of (HS)O3- and its increased stability at higher temperatures. Our findings highlight the need to appropriately account for speciation/isomerization of sulfur species in sulfur isotope studies. We will also present similar calculation results of other aqueous sulfur compounds (e.g., H2S/HS-, SO42-, S2O32-, S3O62-, and poorly documented SO22- species), and discuss the implication of our results for microbial sulfate

  5. Line Intensities of Isotopic Carbonyl Sulfide (ocs) at 2.5 Micrometer

    NASA Astrophysics Data System (ADS)

    Toth, Robert A.; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.

    2009-06-01

    We have measured line intensities of ^{16}O^{12}C^{32}S, ^{16}O^{13}C^{32}S, ^{16}O^{12}C^{33}S, ^{16}O^{12}C^{34}S, and ^{18}O^{12}C^{32}S in the 2.5 μm region for the first time to support planetary studies of the Venus atmosphere. Laboratory absorption spectra of OCS were recorded at 0.0033 cm^{-1} resolution at room temperature using a Bruker IFS 125-HR Fourier transform spectrometer at the Jet Propulsion Laboratory. Normal samples of OCS were used in this study, and sample impurities and isotopic abundances were determined from mass spectrum analysis. Optical densities sufficient to observe isotopic bands and weaker hot bands were achieved by using a multi-pass White cell and single pass gas cells in various path lengths, which were validated by analyzing near-IR CO_2 spectra. We present line intensities for almost 30 bands of the OCS isotopes excluding ground state bands of ^{16}O^{12}C^{32}S, which we have reported recently. We have Herman-Wallis factors determined for the individual bands. In some cases, it has been observed that band intensities normalized to 100% isotopic species show a significant deviation from that of the primary isotopic species (up to by 12.5%). No earlier measurements have been reported for these bands. Measurement precision and accuracies will be discussed. Research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration. We thank Drs. Stojan Madzunkov, John A. MacAskill, and Murray R. Darrach from the Atomic and Molecular Collision Group at Jet Propulsion Laboratory for recording mass spectrum of the OCS sample used in this work.

  6. Placing an upper limit on cryptic marine sulphur cycling

    NASA Astrophysics Data System (ADS)

    Johnston, D. T.; Gill, B. C.; Masterson, A.; Beirne, E.; Casciotti, K. L.; Knapp, A. N.; Berelson, W.

    2014-09-01

    A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is required to explain the role of oxygen-minimum zones (OMZs) in controlling the fixed nitrogen inventory of the global ocean. Apparent imbalances in geochemical nitrogen budgets have spurred numerous studies to measure the contributions of heterotrophic and autotrophic N2-producing metabolisms (denitrification and anaerobic ammonia oxidation, respectively). Recently, `cryptic' sulphur cycling was proposed as a partial solution to the fundamental biogeochemical problem of closing marine fixed-nitrogen budgets in intensely oxygen-deficient regions. The degree to which the cryptic sulphur cycle can fuel a loss of fixed nitrogen in the modern ocean requires the quantification of sulphur recycling in OMZ settings. Here we provide a new constraint for OMZ sulphate reduction based on isotopic profiles of oxygen (18O/16O) and sulphur (33S/32S, 34S/32S) in seawater sulphate through oxygenated open-ocean and OMZ-bearing water columns. When coupled with observations and models of sulphate isotope dynamics and data-constrained model estimates of OMZ water-mass residence time, we find that previous estimates for sulphur-driven remineralization and loss of fixed nitrogen from the oceans are near the upper limit for what is possible given in situ sulphate isotope data.

  7. Placing an upper limit on cryptic marine sulphur cycling.

    PubMed

    Johnston, D T; Gill, B C; Masterson, A; Beirne, E; Casciotti, K L; Knapp, A N; Berelson, W

    2014-09-25

    A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is required to explain the role of oxygen-minimum zones (OMZs) in controlling the fixed nitrogen inventory of the global ocean. Apparent imbalances in geochemical nitrogen budgets have spurred numerous studies to measure the contributions of heterotrophic and autotrophic N2-producing metabolisms (denitrification and anaerobic ammonia oxidation, respectively). Recently, 'cryptic' sulphur cycling was proposed as a partial solution to the fundamental biogeochemical problem of closing marine fixed-nitrogen budgets in intensely oxygen-deficient regions. The degree to which the cryptic sulphur cycle can fuel a loss of fixed nitrogen in the modern ocean requires the quantification of sulphur recycling in OMZ settings. Here we provide a new constraint for OMZ sulphate reduction based on isotopic profiles of oxygen ((18)O/(16)O) and sulphur ((33)S/(32)S, (34)S/(32)S) in seawater sulphate through oxygenated open-ocean and OMZ-bearing water columns. When coupled with observations and models of sulphate isotope dynamics and data-constrained model estimates of OMZ water-mass residence time, we find that previous estimates for sulphur-driven remineralization and loss of fixed nitrogen from the oceans are near the upper limit for what is possible given in situ sulphate isotope data. PMID:25209667

  8. Placing an upper limit on cryptic marine sulphur cycling.

    PubMed

    Johnston, D T; Gill, B C; Masterson, A; Beirne, E; Casciotti, K L; Knapp, A N; Berelson, W

    2014-09-25

    A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is required to explain the role of oxygen-minimum zones (OMZs) in controlling the fixed nitrogen inventory of the global ocean. Apparent imbalances in geochemical nitrogen budgets have spurred numerous studies to measure the contributions of heterotrophic and autotrophic N2-producing metabolisms (denitrification and anaerobic ammonia oxidation, respectively). Recently, 'cryptic' sulphur cycling was proposed as a partial solution to the fundamental biogeochemical problem of closing marine fixed-nitrogen budgets in intensely oxygen-deficient regions. The degree to which the cryptic sulphur cycle can fuel a loss of fixed nitrogen in the modern ocean requires the quantification of sulphur recycling in OMZ settings. Here we provide a new constraint for OMZ sulphate reduction based on isotopic profiles of oxygen ((18)O/(16)O) and sulphur ((33)S/(32)S, (34)S/(32)S) in seawater sulphate through oxygenated open-ocean and OMZ-bearing water columns. When coupled with observations and models of sulphate isotope dynamics and data-constrained model estimates of OMZ water-mass residence time, we find that previous estimates for sulphur-driven remineralization and loss of fixed nitrogen from the oceans are near the upper limit for what is possible given in situ sulphate isotope data.

  9. Multiple sulfur isotopes fractionations associated with abiotic sulfur transformations in Yellowstone National Park geothermal springs

    PubMed Central

    2014-01-01

    Background The paper presents a quantification of main (hydrogen sulfide and sulfate), as well as of intermediate sulfur species (zero-valent sulfur (ZVS), thiosulfate, sulfite, thiocyanate) in the Yellowstone National Park (YNP) hydrothermal springs and pools. We combined these measurements with the measurements of quadruple sulfur isotope composition of sulfate, hydrogen sulfide and zero-valent sulfur. The main goal of this research is to understand multiple sulfur isotope fractionation in the system, which is dominated by complex, mostly abiotic, sulfur cycling. Results Water samples from six springs and pools in the Yellowstone National Park were characterized by pH, chloride to sulfate ratios, sulfide and intermediate sulfur species concentrations. Concentrations of sulfate in pools indicate either oxidation of sulfide by mixing of deep parent water with shallow oxic water, or surface oxidation of sulfide with atmospheric oxygen. Thiosulfate concentrations are low (<6 μmol L-1) in the pools with low pH due to fast disproportionation of thiosulfate. In the pools with higher pH, the concentration of thiosulfate varies, depending on different geochemical pathways of thiosulfate formation. The δ34S values of sulfate in four systems were close to those calculated using a mixing line of the model based on dilution and boiling of a deep hot parent water body. In two pools δ34S values of sulfate varied significantly from the values calculated from this model. Sulfur isotope fractionation between ZVS and hydrogen sulfide was close to zero at pH < 4. At higher pH zero-valent sulfur is slightly heavier than hydrogen sulfide due to equilibration in the rhombic sulfur–polysulfide – hydrogen sulfide system. Triple sulfur isotope (32S, 33S, 34S) fractionation patterns in waters of hydrothermal pools are more consistent with redox processes involving intermediate sulfur species than with bacterial sulfate reduction. Small but resolved differences in ∆33S among

  10. Thermal neutron capture gamma rays from sulfur isotopes: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Raman, S.; Carlton, R. F.; Wells, J. C.; Jurney, E. T.; Lynn, J. E.

    1985-07-01

    We have carried out a systematic investigation of γ rays after thermal neutron capture by all stable sulfur isotopes (32S, 33S, 34S, and 36S). The measurements were made at the internal target facility at the Los Alamos Omega West Reactor. We detected a larger number of γ rays: ~100 in 33S, ~270 in 34S, ~60 in 35S, and ~15 in 37S. Before developing detailed level schemes, we culled and then consolidated the existing information on energies and Jπ values for levels of these nuclides. Based on the current data, we have constructed detailed decay schemes, which imply that there are significant populations of 26 excited states in 33S, 70 states in 34S, 20 states in 35S, and 7 states in 37S. By checking the intensity balance for these levels and by comparing the total intensity of primary transitions with the total intensity of secondary γ rays feeding the ground state, we have demonstrated the relative completeness of these decay schemes. For strongly populated levels, the branching ratios based on the current measurements are generally better than those available from previous measurements. In all four cases, a few primary electric dipole (E1) transitions account for a large fraction of the capture cross section for that particular nuclide. To understand and explain these transitions, we have recapitulated and further developed the theory of potential capture. Toward this end, we reviewed the theory relating off-resonance neutron capture to the optical-model capture. We studied a range of model-dependent effects (nature and magnitude of imaginary potential, surface diffuseness, etc.) on the potential capture cross section, and we have shown how experimental data may be analyzed using the expression for channel capture suitably modified by a factor that takes into account the model-dependent effects. The calculations of cross sections for most of the primary transitions in the sulfur isotopes are in good agreement with the data. Some discrepancies for weaker

  11. SQUID–SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle

    PubMed Central

    Fischer, Woodward W.; Fike, David A.; Johnson, Jena E.; Raub, Timothy D.; Guan, Yunbin; Kirschvink, Joseph L.; Eiler, John M.

    2014-01-01

    Many aspects of Earth’s early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood—in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes (32S, 33S, and 34S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (∼2.6–2.5 Ga) marine carbonate platform from South Africa. Coupled with petrography, these techniques can untangle the complex history of mineralization in samples containing diverse sulfur-bearing phases. We focused on pyrite nodules, precipitated in shallow sediments. These textures record systematic spatial differences in both mass-dependent and mass-anomalous sulfur-isotopic composition over length scales of even a few hundred microns. Petrography and magnetic imaging demonstrate that mass-anomalous fractionations were acquired before burial and compaction, but also show evidence of postdepositional alteration 500 million y after deposition. Using magnetic imaging to screen for primary phases, we observed large spatial gradients in Δ33S (>4‰) in nodules, pointing to substantial environmental heterogeneity and dynamic mixing of sulfur pools on geologically rapid timescales. In other nodules, large systematic radial δ34S gradients (>20‰) were observed, from low values near their centers increasing to high values near their rims. These fractionations support hypotheses that microbial sulfate reduction was an important metabolism in organic-rich Archean environments—even in an Archean ocean basin dominated by iron chemistry. PMID:24706767

  12. SQUID-SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle.

    PubMed

    Fischer, Woodward W; Fike, David A; Johnson, Jena E; Raub, Timothy D; Guan, Yunbin; Kirschvink, Joseph L; Eiler, John M

    2014-04-15

    Many aspects of Earth's early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood--in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes ((32)S, (33)S, and (34)S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (∼2.6-2.5 Ga) marine carbonate platform from South Africa. Coupled with petrography, these techniques can untangle the complex history of mineralization in samples containing diverse sulfur-bearing phases. We focused on pyrite nodules, precipitated in shallow sediments. These textures record systematic spatial differences in both mass-dependent and mass-anomalous sulfur-isotopic composition over length scales of even a few hundred microns. Petrography and magnetic imaging demonstrate that mass-anomalous fractionations were acquired before burial and compaction, but also show evidence of postdepositional alteration 500 million y after deposition. Using magnetic imaging to screen for primary phases, we observed large spatial gradients in Δ(33)S (>4‰) in nodules, pointing to substantial environmental heterogeneity and dynamic mixing of sulfur pools on geologically rapid timescales. In other nodules, large systematic radial δ(34)S gradients (>20‰) were observed, from low values near their centers increasing to high values near their rims. These fractionations support hypotheses that microbial sulfate reduction was an important metabolism in organic-rich Archean environments--even in an Archean ocean basin dominated by iron chemistry.

  13. SQUID-SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle.

    PubMed

    Fischer, Woodward W; Fike, David A; Johnson, Jena E; Raub, Timothy D; Guan, Yunbin; Kirschvink, Joseph L; Eiler, John M

    2014-04-15

    Many aspects of Earth's early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood--in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes ((32)S, (33)S, and (34)S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (∼2.6-2.5 Ga) marine carbonate platform from South Africa. Coupled with petrography, these techniques can untangle the complex history of mineralization in samples containing diverse sulfur-bearing phases. We focused on pyrite nodules, precipitated in shallow sediments. These textures record systematic spatial differences in both mass-dependent and mass-anomalous sulfur-isotopic composition over length scales of even a few hundred microns. Petrography and magnetic imaging demonstrate that mass-anomalous fractionations were acquired before burial and compaction, but also show evidence of postdepositional alteration 500 million y after deposition. Using magnetic imaging to screen for primary phases, we observed large spatial gradients in Δ(33)S (>4‰) in nodules, pointing to substantial environmental heterogeneity and dynamic mixing of sulfur pools on geologically rapid timescales. In other nodules, large systematic radial δ(34)S gradients (>20‰) were observed, from low values near their centers increasing to high values near their rims. These fractionations support hypotheses that microbial sulfate reduction was an important metabolism in organic-rich Archean environments--even in an Archean ocean basin dominated by iron chemistry. PMID:24706767

  14. Induction of nitric oxide production by the cytostatic macrolide apicularen A [2,4-heptadienamide, N-[(1E)-3-[(3S,5R,7R,9S)-3,4,5,6,7,8,9,10-octahydro-7,14 dihydroxy-1-oxo-5,9-epoxy-1H-2-benzoxacyclododecin-3-yl]-1 propenyl]-, (2Z,4Z)-(9CI)] and possible role of nitric oxide in apicularen A-induced apoptosis in RAW 264.7 cells.

    PubMed

    Hong, JangJa; Yokomakura, Aya; Nakano, Yasuhiro; Ban, Hyun Seung; Ishihara, Kenji; Ahn, Jong-Woong; Zee, OkPyo; Ohuchi, Kazuo

    2005-03-01

    We previously reported that apicularen A [2,4-heptadienamide, N-[(1E)-3-[(3S,5R,7R,9S)-3,4,5,6,7,8,9,10-octahydro-7,14 dihydroxy-1-oxo-5,9-epoxy-1H-2-benzoxacyclododecin-3-yl]-1 propenyl]-, (2Z,4Z)-(9CI)], a highly cytostatic macrolide isolated from the myxobacterial genus Chondromyces, induces apoptosis in the mouse leukemic monocyte cell line RAW 264.7. To analyze the action mechanism of apicularen A for the induction of apoptosis, effects of apicularen A on nitric oxide (NO) production in RAW 264.7 cells were examined. It was demonstrated that apicularen A at 10 and 100 nM induced nitrite production, whereas apicularen B [2,4-heptadienamide, N-[(1E)-3-[(3S,5R,7R,9S)-7-[[2-(acetylamino)-2-deoxy-beta-d-glucopyranosyl]oxy]-3,4,5,6,7,8,9,10-octahydro-14-hydroxy-1-oxo-5,9-epoxy-1H-2-benzoxacyclododecin-3-yl]-1 propenyl]-, (2Z,4Z)-(9CI)], an N-acetyl-glucosamine glycoside of apicularen A, had no effect at 100 nM. The apicularen A-induced nitrite production was accompanied by an increase in the level of inducible nitric-oxide synthase (iNOS) and its mRNA and was suppressed by the NOS inhibitor N(G)-monomethyl-l-arginine acetate (l-NMMA). In addition, apicularen A activated nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) and decreased the level of IkappaB-alpha and increased that of phosphorylated c-Jun N-terminal kinase (JNK). Furthermore, the apicularen A-induced nitrite production was suppressed by the NF-kappaB inhibitor Bay 11-7082 [(E)-3-(4-methylphenylsulfonyl)-2-propenenitrile] and the JNK inhibitor SP600125 [anthra[1,9-cd]pyrazol-6(2H)-one]. These findings suggested that apicularen A activates NF-kappaB and AP-1, thus triggering the expression of iNOS mRNA and iNOS protein and induces NO production. Finally, apicularen A decreased cell growth and survival and cell viability and disrupted the mitochondrial membrane potential. The addition of l-NMMA partially recovered the apicularen A-induced decrease in cell growth and survival and cell viability and the disruption of mitochondrial membrane potential. These findings suggested that NO produced by apicularen A treatment participate partially in the apicularen A-induced apoptosis in RAW 264.7 cells.

  15. Spatially resolved Fe- and S-isotope composition of sedimentary pyrite

    NASA Astrophysics Data System (ADS)

    Rouxel, O.; Bekker, A.; Germain, Y.; Ponzevera, E.

    2012-04-01

    Past studies of iron and sulfur isotope records of sedimentary sulfides over geological time have placed important constraints on the biogeochemical cycle of sulfur and iron and the evolution of ocean chemistry. Since biogeochemical cycles of Fe and S are closely coupled in marine systems, Fe-limitation and S-limitation for pyrite formation in black shales should leave an imprint on the isotopic record of both elements. We developed a technique for accurate and spatially-resolved measurement of 34S/32S, 33S/32S, 56Fe/54Fe, and 57Fe/54Fe isotope ratios in sedimentary pyrite using a combination of solution and laser ablation analysis. Fe- and S-isotope ratios were measured by high-resolution MC-ICP-MS (ThermoElectron Neptune), enabling us to resolve major isobaric interferences on S isotopes and Fe isotopes from O2+, ArN+, and ArO+. A CETAC LSX 213 nm laser was used as the ablation source with He as the sample carrier gas. Fe- and S-isotope ratios were calibrated against several pyrite standards using the conventional "sample-standard bracketing technique". Instrumental mass bias of Fe and S isotopes were also corrected through an internal normalization technique using respectively Ni and Mg of known isotope composition. The long-term reproducibility of S- and Fe-isotope compositions was typically better than 0.2 per mil. We investigated the fine scale variations of d56Fe, d34S and d33S values of diagenetic pyrite nodules in several Devonian, Paleoproterozoic and Archean black shales in order to (1) explore biosignature potential of co-variations of Fe- and S-isotopes at the grain-size scale; (2) assess potential diagenetic effects on Fe-isotope fractionation during sulfide formation; and (3) assess potential mixing between isotopically distinct Fe- and S-pools using multiple S isotope data. Those results will be presented together with bulk stratigraphic S- and Fe-isotopic variations and Fe speciation data in order to establish an Fe isotope mass balance in black

  16. Microbial sulfate reduction within the Iheya North subseafloor hydrothermal system constrained by quadruple sulfur isotopes

    NASA Astrophysics Data System (ADS)

    Aoyama, S.; Nishizawa, M.; Takai, K.; Ueno, Y.

    2012-12-01

    Subseafloor hydrothermal system may host active and abundant microbial community. Sulfate reduction may be one of the dominant microbial metabolisms among the subseafloor ecosystem. In order to demonstrate and quantify the potential sulfate reducing activity, we analyzed sulfur isotopes (32S/33S/34S/36S) of pore water sulfate extracted from core samples at the Iheya North hydrothermal system in the Okinawa drilled by CHIKYU, 2009 (IODP Leg 331). After drilling, core samples were divided into several sections. Then, pore water was extracted on board, and stored with cadmium chloride for fixing hydrogen sulfide. In our laboratory, the samples were first divided into sulfide precipitate and supernatant liquid by centrifugation. Then, dissolved sulfate was precipitated as BaSO4 by addition of barium chloride into the supernatant liquid. After weighing, the barium sulfate was converted into silver sulfide and subsequently sulfur hexafluoride, which was purified by GC and then introduced into mass spectrometer (MAT253) through newly developed microvolume inlet for precisely determining quadruple sulfur isotopic composition. Based on pore water chemistry and temperature profile, the subseafloor environment are divided into Unit-1, -2 and -3 with depth below surface. In Unit-1 (0-10 mbsf), fresh seawater is circulated, whereas in Unit-3 (>40 mbsf), hot hydrothermal fluid (>150 degrees Celsius) is stored below anhydrite cap. The Unit-2 is the mixing zone between the hydrothermal fluid and seawater. We found that the δ34S value of sulfate in the mixing zone was higher than those expected by simple mixing between seawater sulfate in Unit-1 (-20‰) and the hydrothermal component in Unit-3 (-16‰). The observed 34S-enrichment and decreased sulfate concentration suggest sulfate reduction took place in this hydrothermal system. Based on our model calculation assuming the mixing and reduction, apparent isotope effect for 33ɛ, 34ɛ and 36ɛ are estimated to be -16.5‰, -32.2

  17. Multiple sulfur isotope fractionation and mass transfer processes during pyrite precipitation and recrystallization: An experimental study at 300 and 350 °C

    NASA Astrophysics Data System (ADS)

    Syverson, Drew D.; Ono, Shuhei; Shanks, Wayne C.; Seyfried, William E.

    2015-09-01

    Equilibrium multiple sulfur isotope fractionation factors (33S/32S and 34S/32S) between aqueous SO4, H2S, and coexisting pyrite under hydrothermal conditions were determined experimentally at 300-350 °C and 500 bars. Two different experimental techniques were used to determine the fractionation factors and the rate of S isotope exchange between pyrite and constituent aqueous species, H2S and SO4; (1) closed system gold capsule pyrite-H2S exchange experiments and (2) complimentary time-series experiments at 300 and 350 °C, 500 bars using flexible gold cell hydrothermal equipment, which allowed monitoring the multiple S isotope composition of dissolved S species during pyrite precipitation and subsequent recrystallization. The three isotope technique was applied to the multiple S isotope data to demonstrate equilibrium S isotope fractionation between pyrite and H2S. Results at 350 °C indicate ln34αPyrite/H2S = -1.9‰ and ln33αPyrite/H2S = -1.0‰. The ln34αPyrite/H2S is not only different in magnitude but also in sign from the commonly used value of 1‰ from Ohmoto and Rye (1979). This experimental study also demonstrated initial S isotope disequilibrium amongst the aqueous S-species and pyrite during rapid precipitation, despite aqueous speciation indicating pyrite saturation at all stages. Textural, crystallographic, and S isotope interpretations suggest that pyrite formed by means of the FeS pathway. The initial S isotope disequilibrium between formed pyrite and dissolved S-species was effectively erased and approached isotopic equilibrium upon recrystallization during the course of 4297 h. Interpretation of seafloor hydrothermal vent sulfides using the revised equilibrium 34S/32S fractionation between pyrite and H2S suggests that pyrite is close to S isotope equilibrium with vent H2S, contrary to previous conclusions. The experimental data reported here broaden the range of pyrite formation mechanisms at seafloor hydrothermal vents, in that mineral

  18. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur.

    PubMed

    Canfield, D E; Thamdrup, B

    1994-12-23

    Bacteria that disproportionate elemental sulfur fractionate sulfur isotopes such that sulfate is enriched in sulfur-34 by 12.6 to 15.3 per mil and sulfide is depleted in sulfur-34 by 7.3 to 8.6 per mil. Through a repeated cycle of sulfide oxidation to S0 and subsequent disproportionation, these bacteria can deplete sedimentary sulfides in sulfur-34. A prediction, borne out by observation, is that more extensive sulfide oxidation will lead to sulfides that are more depleted in sulfur-34. Thus, the oxidative part of the sulfur cycle creates circumstances by which sulfides become more depleted in sulfur-34 than would be possible with sulfate-reducing bacteria alone.

  19. The Production of 34S-Depleted Sulfide During Bacterial Disproportionation of Elemental Sulfur

    NASA Astrophysics Data System (ADS)

    Canfield, Donald E.; Thamdrup, Bo

    1994-12-01

    Bacteria that disproportionate elemental sulfur fractionate sulfur isotopes such that sulfate is enriched in sulfur-34 by 12.6 to 15.3 per mil and sulfide is depleted in sulfur-34 by 7.3 to 8.6 per mil. Through a repeated cycle of sulfide oxidation to S^0 and subsequent disproportionation, these bacteria can deplete sedimentary sulfides in sulfur-34. A prediction, borne out by observation, is that more extensive sulfide oxidation will lead to sulfides that are more depleted in sulfur-34. Thus, the oxidative part of the sulfur cycle creates circumstances by which sulfides become more depleted in sulfur-34 than would be possible with sulfate-reducing bacteria alone.

  20. Experiments on δ34S mixing between organic and inorganic sulfur species during thermal maturation

    USGS Publications Warehouse

    Amrani, Alon; Said-Ahamed, Ward; Lewan, Michael D.; Aizenshtat, Zeev

    2006-01-01

    Reduced sulfur species were studied to constrain isotopic exchange-mixing with synthetic polysulfide cross-linked macromolecules (PCLM), model sulfur containing molecules and natural sulfur-rich kerogen, asphalt and oil of the Dead Sea area. PCLM represents protokerogens that are rich in sulfur and thermally unstable. Mixing rates of PCLM with HS-(aq) (added as (NH4)2S(aq)) at low to moderate temperatures (50–200 °C) are rapid. Elemental sulfur and H2S(gas) fully mix isotopes with PCLM during pyrolysis conditions at 200 °C. During these reactions significant structural changes of the PCLM occur to form polysulfide dimers, thiolanes and thiophenes. As pyrolysis temperatures or reaction times increase, the PCLM thermal products are transformed to more aromatic sulfur compounds. Isotopic mixing rates increase with increasing pyrolysis temperature and time. Polysulfide bonds (S–S) in the PCLM are responsible for most of these structural and isotopic changes because of their low stability. Conversely, sulfur isotope mixing does not occur between dibenzothiophene (aromatic S) or hexadecanthiol (C–SH) and HS-(aq) at 200 °C after 48 h. This shows that rates of sulfur isotope mixing are strongly dependent on the functionality of the sulfur in the organic matter. The order of isotopic mixing rates for organic matter is kerogen > asphalt > oil, which is inverse to their sulfur thermal stability. Asphalt and oil with more refractory sulfur show significantly lower isotopes mixing rates than the kerogen with more labile sulfur. Based on the findings of the present study we suggest that sulfur isotopes mixing can occur from early diagenesis into catagenesis and result in isotopic homogenization of the inorganic and organic reduced sulfur pools.

  1. Late Ordovician Seawater Sulfate δ34S in Well-preserved Brachiopods

    NASA Astrophysics Data System (ADS)

    Present, T. M.; Paris, G.; Burke, A.; Fischer, W. W.; Adkins, J. F.

    2014-12-01

    In the end-Ordovician Hirnantian stage, pyrite-sulfur and carbon isotope excursions coincide with a mass extinction and major glaciation [1]. The sulfur isotopic composition of Carbonate Associated Sulfate (δ34SCAS) is routinely measured as a proxy for the composition of ancient seawater sulfate, which offers a measure of Earth's surface redox balance during this time. However, the variance among bulk-rock CAS samples commonly greatly exceeds analytical precision. CAS analytical techniques typically require large samples (normally >30g CaCO3), so integration of different synsedimentary and diagenetic components may explain this scatter. Using a new sulfur isotope MC-ICP-MS analytical technique [2], we analyzed 5-10mg of well-preserved secondary layer fibrous calcite of brachiopod fossils collected from Late Ordovician-early Silurian sections on Anticosti Island, Canada, and compared these values to those obtained from texture-specific sampling of other carbonate phases found in these rocks. Brachiopod secondary layer calcites show a range of δ34SCAS values with only 2‰ variability—much less than the 21‰ range observed among less well-preserved and/or diagenetic components. Notably, micrite— a phase often valued for CAS analysis— is as much as 15‰ lower than brachiopods in the same hand sample. Recrystallized fossils and late diagenetic cements are enriched up to 6‰ from brachiopods. Thus, diagenetic processes can strongly impact and overprint CAS signals, even in carbonate rocks of exceptionally low thermal maturity. Our analysis of brachiopod CAS from these sections indicates that there was no marine sulfate excursion coeval with the Hirnantian carbon isotope excursion and glacial maximum. These observations support Jones and Fike's interpretation of the noisier bulk-rock δ34SCAS record from Anticosti Island [1]. In addition, we measured the sulfur isotopic composition of CAS in a modern brachiopod to confirm that it provides a robust archive of seawater sulfate. A modern Terebratalia transversa from San Pedro, CA (20.52±0.11‰, V-CDT) is very slightly depleted relative to modern seawater (20.97±0.10‰, V-CDT) [2]. We are further exploring the range of modern brachiopod CAS. [1] Jones & Fike (2013) EPSL 363, 144-155. [2] Paris et al. (2013) Chem. Geol. 345, 50-61.

  2. Experiments on δ 34S mixing between organic and inorganic sulfur species during thermal maturation

    NASA Astrophysics Data System (ADS)

    Amrani, Alon; Said-Ahamed, Ward; Lewan, Michael D.; Aizenshtat, Zeev

    2006-10-01

    Reduced sulfur species were studied to constrain isotopic exchange-mixing with synthetic polysulfide cross-linked macromolecules (PCLM), model sulfur containing molecules and natural sulfur-rich kerogen, asphalt and oil of the Dead Sea area. PCLM represents protokerogens that are rich in sulfur and thermally unstable. Mixing rates of PCLM with HS-(aq) (added as (NH 4) 2S (aq)) at low to moderate temperatures (50-200 °C) are rapid. Elemental sulfur and H 2S (gas) fully mix isotopes with PCLM during pyrolysis conditions at 200 °C. During these reactions significant structural changes of the PCLM occur to form polysulfide dimers, thiolanes and thiophenes. As pyrolysis temperatures or reaction times increase, the PCLM thermal products are transformed to more aromatic sulfur compounds. Isotopic mixing rates increase with increasing pyrolysis temperature and time. Polysulfide bonds (S-S) in the PCLM are responsible for most of these structural and isotopic changes because of their low stability. Conversely, sulfur isotope mixing does not occur between dibenzothiophene (aromatic S) or hexadecanthiol (C-SH) and HS-(aq) at 200 °C after 48 h. This shows that rates of sulfur isotope mixing are strongly dependent on the functionality of the sulfur in the organic matter. The order of isotopic mixing rates for organic matter is kerogen > asphalt > oil, which is inverse to their sulfur thermal stability. Asphalt and oil with more refractory sulfur show significantly lower isotopes mixing rates than the kerogen with more labile sulfur. Based on the findings of the present study we suggest that sulfur isotopes mixing can occur from early diagenesis into catagenesis and result in isotopic homogenization of the inorganic and organic reduced sulfur pools.

  3. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.; Thamdrup, B.

    1994-01-01

    Bacteria that disproportionate elemental sulfur fractionate sulfur isotopes such that sulfate is enriched in sulfur-34 by 12.6 to 15.3 per mil and sulfide is depleted in sulfur-34 by 7.3 to 8.6 per mil. Through a repeated cycle of sulfide oxidation to S0 and subsequent disproportionation, these bacteria can deplete sedimentary sulfides in sulfur-34. A prediction, borne out by observation, is that more extensive sulfide oxidation will lead to sulfides that are more depleted in sulfur-34. Thus, the oxidative part of the sulfur cycle creates circumstances by which sulfides become more depleted in sulfur-34 than would be possible with sulfate-reducing bacteria alone.

  4. Thermal-neutron capture for A=26-35

    SciTech Connect

    Chunmei, Z.; Firestone, R.B.

    2001-06-01

    The prompt gamma-ray data of thermal- neutron captures fornuclear mass number A=26-35 had been evaluated and published in "ATOMICDATA AND NUCLEAR DATA TABLES, 26, 511 (1981)". Since that time themanyexperimental data of the thermal-neutron captures have been measuredand published. The update of the evaluated prompt gamma-ray data is verynecessary for use in PGAA of high-resolution analytical prompt gamma-rayspectroscopy. Besides, the evaluation is also very needed in theEvaluated Nuclear Structure Data File, ENSDF, because there are no promptgamma-ray data in ENSDF. The levels, prompt gamma-rays and decay schemesof thermal-neutron captures for nuclides (26Mg, 27Al, 28Si, 29Si, 30Si,31P, 32S, 33S, 34S, and 35Cl) with nuclear mass number A=26-35 have beenevaluated on the basis of all experimental data. The normalizationfactors, from which absolute prompt gamma-ray intensity can be obtained,and necessary comments are given in the text. The ENSDF format has beenadopted in this evaluation. The physical check (intensity balance andenergy balance) of evaluated thermal-neutron capture data has been done.The evaluated data have been put into Evaluated Nuclear Structure DataFile, ENSDF. This evaluation may be considered as an update of the promptgamma-ray from thermal-neutron capture data tables as published in"ATOMIC DATA AND NUCLEAR DATA TABLES, 26, 511 (1981)".

  5. Thermal-neutron capture for A=36-44

    SciTech Connect

    Chunmei, Z.; Firestone, R.B.

    2003-01-01

    The prompt gamma-ray data of thermal- neutron captures fornuclear mass number A=26-35 had been evaluated and published in "ATOMICDATA AND NUCLEAR DATA TABLES, 26, 511 (1981)". Since that time the manyexperimental data of the thermal-neutron captures have been measured andpublished. The update of the evaluated prompt gamma-ray data is verynecessary for use in PGAA of high-resolution analytical prompt gamma-rayspectroscopy. Besides, the evaluation is also very needed in theEvaluated Nuclear Structure Data File, ENSDF, because there are no promptgamma-ray data in ENSDF. The levels, prompt gamma-rays and decay schemesof thermal-neutron captures fornuclides (26Mg, 27Al, 28Si, 29Si, 30Si,31P, 32S, 33S, 34S, and 35Cl) with nuclear mass number A=26-35 have beenevaluated on the basis of all experimental data. The normalizationfactors, from which absolute prompt gamma-ray intensity can be obtained,and necessary comments are given in the text. The ENSDF format has beenadopted in this evaluation. The physical check (intensity balance andenergy balance) of evaluated thermal-neutron capture data has been done.The evaluated data have been put into Evaluated Nuclear Structure DataFile, ENSDF. This evaluation may be considered as an update of the promptgamma-ray from thermal-neutron capture data tables as published in"ATOMIC DATA AND NUCLEAR DATA TABLES, 26, 511 (1981)".

  6. Dense cavity walls traced by CS in the L1157-B1 protostellar shocked region

    NASA Astrophysics Data System (ADS)

    Gomez-Ruiz, Arturo; Codella, Claudio; Lefloch, Bertrand; Benedettini, Milena; Busquet, Gemma; Nisini, Brunella; Ceccarelli, Cecilia; Cabrit, Sylvie; Viti, Serena

    2013-07-01

    In the framework of the CHESS Key Program, an unbiased spectral survey performed with Herschel and IRAM, in the frequency range from 97 to 600 GHz, have provided a chemical census of the protostellar shock L1157-B1. Here we focus on the study of carbon monosulfide (CS), a standard tracer of high-density gas. We have detected a total of 18 emission lines, with E_u up to 183 K, due to four isotopologues (^12C^32S, ^12C^34S, ^13C^32S, and ^12C^33S). The unprecedented sensitivity of the survey allow us to carefully analyze the line profiles. These profiles can be well fitted by two exponential laws: I ∝ exp(-|v/v0|) with v0 = 4.4, and 2.5 km s-1. Remarkably these two exponential laws are the same as those found in the CO line profiles by Lefloch et al. (2012), and named g2 and g3 components, respectively. These components have been related to the cavity walls produced by the B1 shock and the older B2 shock, respectively. An important characteristic of the lines profiles is that the emission of high-J CS transitions (E_u > 60 K) comes only from the g2 component. Using the LVG approximation, the CS solutions constrain n >= 10^4.5 cm^-3. In addition, when contrasted with the CO results (that already constrained T_k of 90 K and 40 K for g2 and g3, respectively), we see that the LVG can provide strong constrains to the gas density, in this case about 5 x 10^5 cm^-3 for both g2 and g3 components. Thus, the combination of CO and CS is a powerful tool to constrain both n and T_k. Our CS observations show therefore that this molecule is highlighting the dense cavity walls produced by the episodic outflow.

  7. Non-Mass Dependent Isotope Fractionations of Rarefied Gases (O2, SF6) Under a Thermal Gradient

    NASA Astrophysics Data System (ADS)

    Sun, T.; Bao, H.; Oxy-Anion Stable Isotope Consortium

    2010-12-01

    Thermal diffusion induced isotope fractionation has long been intensely studied both experimentally and theoretically. It was usually used for small scale isotope separations in nuclear industry, both in gas and liquid phase. Previous research focus has mainly been on convective, high pressure and binary mixture systems, serving the purpose of efficient isotope separations. However, multiple-isotope behavior of rarefied gases under a thermal gradient has not been carefully examined, especially for a non-convective system. In addition to the limited practical applications of such a system, the lack of interest is largely due to the fact that thermal diffusion has never been considered outside the classical thermodynamic and kinetic realm and that the associated multiple isotope fractionation has to be mass dependent. When an otherwise homogeneous gas is superimposed by a thermal gradient, the coupled thermal and chemical diffusions occur. The multiple isotope (16O, 17O, 18O, or 32S, 33S, 34S, and 36S) fractionations associated with the dynamic process are indeed predicted to be entirely mass dependent as we calculate from Jones and Furry (1946) and Huang et al (2010). However, our thermal-gradient experiments on O2 and SF6 have proven otherwise. We found that a simple superimposed external thermal gradient on low pressure O2 or SF6 gas in a closed (but not isolated) system can produce measurable non-mass-dependent 17O or 33S anomalies. A series tests were conducted using two sets of apparatus to constrain the controlling factors. We obtained up to -0.51 or +0.82‰ (s. d., 1σ = 0.03) for the Δ17O and -0.111‰ (1σ = 0.018) for the Δ33S from different ends of our thermal gradients. We found that the magnitude of the 17O or 33S anomaly is a function of the initial gas pressure, temperature gradient, experimental duration, average temperature of the whole apparatus, and the geometry of the apparatus. The λ value (lnα17/lnα18 or lnα33/lnα34) ranges from ~ -0

  8. Fourier Transform Microwave Spectrum of CO{_2} -(CH{_3}){_2} S

    NASA Astrophysics Data System (ADS)

    Kawashima, Yoshiyuki; Moritani, Takayuki; Hirota, Eizi

    2012-06-01

    In spite of the fact that the oxygen and sulfur atoms belong to the same group in the periodic table, oxygen-containing molecules and their corresponding sulfur analogues often exhibit characteristic differences in their chemical and physical properties. We have been interested in these differences and have investigated, in a systematic way using Fourier transform microwave (FTMW) spectroscopy combined with ab initio molecular orbital calculations, complexes consisting of dimethyl ether (DME)/dimethyl sulfide (DMS) and ethylene oxide (EO)/ ethylene sulfide (ES), each being attached to either one of rare gas atoms (Rg), CO, N{_2}, or CO{_2}. Among others the CO{_2}-DMS complex should be mentioned, which, in sharp contrast with its counterpart: CO{_2}-DME behaves anomalously, presumably because of low-frequency internal motions, and we have decided to explore it in detail by a FTMW spectrometer. We have generated the CO{_2}-DMS complex by supersonic expansion of a CO{_2} and DMS mixture diluted with Ar, and have scanned the frequency region from 5 to 24 GHz to record the rotational spectra of the complex. We have found it difficult to fit the observed transition frequencies to the ordinary rotational Hamiltonian, but have succeeded to assign 75 transitions by sum rules among the observed transition frequencies. We are suspecting the anomalous behavior of the complex to be caused by a low-frequency torsion of the moieties. In the case of the CO{_2}-DME, the internal rotations of the two methyl groups of the DME were shown to be locked to the CO{_2} by hydrogen bonding, whereas, for the CO{_2}-DMS, we have observed internal-rotation splittings of the two methyl groups of the DMS, indicating the structure of the CO{_2}-DMS complex being considerably different from that of the CO{_2}-DME. We will report the structure at the potential minima and the internal motion of the CO{_2}-DMS, in comparison with the results predicted by quantum chemical calculations. Y. Kawashima, A. Sato, Y. Orita, and E. Hirota J. Phys. Chem. A 116, 1224 2012. J. J. Newby, R. A. Peebles, and S. A. Peebles J. Phys. Chem. A 108, 11234 2004.

  9. Sulfur and oxygen isotope study of sulfate reduction in experiments with natural populations from Fællestrand, Denmark

    NASA Astrophysics Data System (ADS)

    Farquhar, James; Canfield, Don E.; Masterson, Andrew; Bao, Huiming; Johnston, David

    2008-06-01

    This study investigates the sulfur and oxygen isotope fractionations of dissimilatory sulfate reduction and works to reconcile the relationships between the oxygen and sulfur isotopic and elemental systems. We report results of experiments with natural populations of sulfate-reducing bacteria using sediment and seawater from a marine lagoon at Fællestrand on the northern shore of the island of Fyn, Denmark. The experiments yielded relatively large magnitude sulfur isotope fractionations for dissimilatory sulfate reduction (up to approximately 45‰ for 34S/32S) with higher δ18O accompanying higher δ34S, similar to that observed in previous studies. The seawater used in the experiments was spiked by addition of 17O-labeled water and the 17O content of residual sulfate was found to depend on the fraction of sulfate reduced in the experiments. The 17O data provides evidence for recycling of sulfur from metabolic intermediates and for an 18O/16O fractionation of ∼25-30‰ for dissimilatory sulfate reduction. The close correlation between the 17O data and the sulfur isotope data suggests that isotopic exchange between cell water and external water (reactor water) was rapid under experimental conditions. The molar ratio of oxygen exchange to sulfate reduction was found to be about 2.5. This value is slightly lower than observed in studies of natural ecosystems [e.g., Wortmann U. G., Chernyavsky B., Bernasconi S. M., Brunner B., Böttcher M. E. and Swart P. K. (2007) Oxygen isotope biogeochemistry of pore water sulfate in the deep biosphere: dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130). Geochim. Cosmochim. Acta71, 4221-4232]. Using recent models of sulfur isotope fractionations we find that our combined sulfur and oxygen isotopic data places constraints on the proportion of sulfate recycled to the medium (78-96%), the proportion of sulfur intermediate sulfite that was recycled by way of APS to sulfate

  10. Microbial sulfate reduction within the Iheya North subseafloor hydrothermal system constrained by quadruple sulfur isotopes

    NASA Astrophysics Data System (ADS)

    Aoyama, Shinnosuke; Nishizawa, Manabu; Takai, Ken; Ueno, Yuichiro

    2014-07-01

    Subseafloor hydrothermal systems may host spatially extended and numerically abundant microbial communities sustained by sulfate reduction as one of the important terminal electron accepting metabolisms. In order to estimate microbial sulfate reduction in a subseafloor hydrothermal regime, we analyzed sulfur isotopes (S32/S33/S34/S36) of pore-water sulfate and mineralized sulfide in the upper 100 m of sedimentary sequences at the Iheya North hydrothermal field in the Okinawa Trough recovered in Integrated Ocean Drilling Program Expedition 331 (IODP Exp 331). On the basis of the pore water chemistry and temperature profiles, the subseafloor environment is divided into three hydrogeologic units. In the topmost Unit-1, relatively fresh seawater is recharged, and the bottommost Unit-3 is characterized by predominance of endmember-like high-temperature hydrothermal fluid (>300 °C) underlying the impermeable cap rock layers. Intermediate Unit-2 is subject to mixing between the hydrothermal fluid and seawater. The δ34S values of sulfate in the Unit-2 mixing zone were found to be more 34S-enriched than the values expected from simple mixing model of seawater sulfate in the Unit-1 with the hydrothermal fluid in the Unit-3. The observed SSO434-enrichment and sulfate concentration [SO2-4]-depletion suggest sulfate reduction is taking place below the seafloor. Based on our model calculation, the isotope discrimination (ε34) is estimated to be -21‰. This large isotope discrimination together with slight Δ33S‧ enrichment and Δ36S‧ depletion reveals that sulfate reduction is caused by microbial processes but not by thermochemical processes. In addition, our numerical simulation points out that sulfate may be reduced prior to presently undergoing mixing with high-temperature fluid, probably within the seawater recharge zone. Despite the abundant input of hydrothermal H2S, mineralized sulfide below 10 m seafloor (mbsf) shows characteristic sulfur isotopic signatures that

  11. High-Precision Stable Isotope Analyses with the NanoSIMS 50L (Invited)

    NASA Astrophysics Data System (ADS)

    Hauri, E. H.; Wang, J.; Papineau, D.; Hillion, F.

    2009-12-01

    The in situ measurement of isotope ratios at high precision has always been a goal of secondary ion mass spectrometery (SIMS). The NanoSIMS 50L is a third-generation ion microprobe developed by Cameca and modified in collaboration with the Carnegie Institution of Washington. This instrument encorporates a number of design and functional improvements over the stock NS50, including precise stepper motor control over all slits, apertures and stage movements, a larger magnet, and a modified multicollector (6 moveable and 1 fixed) capable of holding both Faraday cups and miniature multi-dynode electron multipliers. The instrument is capable of attaining a minimum beam diameter of <50 nanometers with Cs and <200 nanometers with oxygen, a factor of 5-10 improvement over the IMS6F/7F/1280 generation of instruments. The CIW instrument is also the first NanoSIMS to be fitted with multiple Faradays and associated high-precision electrometers. Most tests to date have been performed on conductive Fe-bearing sulfides mouted in indium and polished with near-zero relief. With Cs, a routine primary beam diameter of 100 nm is obtained with 1-2pA of current, sufficient to yield 1MHz of 32S from pyrite at >6000 MRP. A 2.5 nA Cs beam with a diameter of 700 nm yields 90 pA of 32S from pyrite at >6000 MRP, sufficient to analyze 32S-33S-34S on Faraday cups and 36S in EM @ >10,000 cps. Specification tests immediately after installation in 2005 demonstrated a reproducibility of <0.3‰ (1σ) in 10 analyses within a single sputter crater on Balmat pyrite, and this was subsequently improved to 0.15‰ (1σ) in 2006. Further tests showed that reproducibility on separate craters of a single grain, and separate craters in separate Balmat pyrite grains located in different holes of the sample holder, were improved to better than 0.2‰ (1σ) through careful attention to reproducibility of sample height (Z-axis control) and centering of the secondary ion beam in the entrance slit of the mass

  12. Negligible sulfur isotope fractionation during partial melting: Evidence from Garrett transform fault basalts, implications for the late-veneer and the hadean matte

    NASA Astrophysics Data System (ADS)

    Labidi, J.; Cartigny, P.

    2016-10-01

    We report the quadruple sulfur isotope compositions, sulfur contents and speciation major and trace elements (including copper and chlorine abundances) of eleven basalts collected in the Garrett transform fault. We combine these data to discuss the absence of S isotopic fractionation along both partial melting and low-pressure fractional crystallization. The variations of K2O/TiO2 and La/SmN-ratios (respectively between 0.017 and 0.067, and between 0.31 and 0.59) suggest a range of depletion in Garrett lavas that includes ultra depleted samples (K2O/TiO2 < 0.03). The remarkable level of incompatible element depletion is consistent with re-melting of a depleted source. Contrasting with incompatible element depletion, all samples display similar S and Cu abundance (at a given major-element composition) to mid-ocean ridge basalts (MORB). This indicates that Garrett Intra Transform Lavas (ITL) are sulfide saturated as MORB are. Copper content for Garrett parental melts (MgO >8%) are ∼80 ppm, indistinguishable from MORBs. This requires their mantle sources, variably depleted in incompatible element, to host residual sulfide buffering the Cu content of all erupted melts. We calculate a minimum S content for the source of ultra-depleted Garrett lavas of 100 ± 40ppmS, i.e. roughly a factor of 2 below the MORB mantle source. After exclusion of a single sample with Cl/K ratio >0.1 that likely experienced hydrothermal sulfide assimilation, Garrett ITLs display homogeneous δ34 S, Δ33 S and Δ36 S values with averages of - 0.68 ± 0.08 ‰, + 0.010 ± 0.005 ‰ and - 0.04 ± 0.04 ‰, respectively (all 1σ, n = 10). The δ34 S values display no relationship with either K2O/TiO2 variations or extent sulfide fractionation. From these observations, we derive a 34S/32S fractionation factor between exsolved sulfides and sulfide dissolved in silicate melts of 1.0000 ± 0.0003. The S isotopic fractionation during partial melting can thus be considered as negligible, and both

  13. Impact-Related Sulfur Recycling in the Ancient Martian Crust; Evidence from S Multi-Isotope Systematics of Regolith Breccia NWA 7533

    NASA Astrophysics Data System (ADS)

    Lorand, J.-P.; Labidi, J.; Thomassot, E.; Rollion-Bard, C.; Belluci, J.; Whitehouse, M.; Nemchin, A.; Hewins, R. H.; Humayun, M.; Farquhar, J.; Zanda, B.; Remusat, L.; Pont, S.

    2016-08-01

    Sulfur isotopes indicate that NWA 7533 pyrite formed from recycling of photochemically processed sulfur onto the martian surface. Sulfate reduction into sulfides could have produced negative delta 34S coupled with a small non-zero value of delta 33S.

  14. Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate-pyrite δ34S

    NASA Astrophysics Data System (ADS)

    Jones, David S.; Fike, David A.

    2013-02-01

    Geochemical records of the end-Ordovician Hirnantian Stage show parallel positive excursions in the stable isotope compositions of sedimentary pyrite sulfur (δ34Spyr), organic carbon (δ13Corg), and carbonate carbon (δ13Ccarb); these isotope excursions coincide with the end Ordovician glaciation and mass extinction. A relative increase in pyrite burial (fpyr) attributed to marine anoxia has been invoked to explain the sulfur isotope excursion and link oceanic redox conditions to the extinction of marine fauna. An increase in fpyr would necessarily generate a parallel excursion of equal magnitude in the isotopic composition of coeval marine sulfate (δ34SSO4). Here we present new high-resolution paired sulfur isotope data from carbonate-associated sulfate (δ34SCAS) and pyrite from the Hirnantian Stage of western Anticosti Island (Québec, Canada). These data document a positive 20‰ enrichment in δ34Spyr (comparable in magnitude to previous reports), but no parallel excursion in δ34SCAS. This pattern provides new constraints on the origin of the δ34Spyr excursion and the nature of carbon-sulfur coupling through Hirnantian time. Specifically, these observations preclude enhanced pyrite burial as the cause of the Hirnantian δ34Spyr excursion and suggest the possible role of anoxia in the mass extinction may need to be reevaluated. Rather, the global δ34Spyr excursion is best explained by a transient reduction in the isotopic fractionations expressed during microbial sulfur cycling (εpyr). The εpyr record shows a strong inverse correlation with δ13C, suggesting a mechanistic link between carbon cycling and processes controlling εpyr during the Hirnantian. Changes in sea level or marine redox state associated with glaciation could further impact the expression of the biological fractionation (e.g., through syndepositional sediment reworking and/or chemocline migration and resultant restricted exchange of porewater sulfate). The magnitude of isotopic fractionation during microbial sulfate reduction is partially controlled by metabolic rates, which are sensitive to the abundance, type, and lability of metabolically relevant substrates. Environmental change associated with the end Ordovician glaciation may have elevated the flux of organic material to marine sediments or caused an increase in physical reworking of sediments, leading to increased microbial sulfate reduction rates and reduced εpyr. As such, the Hirnantian δ34Spyr excursion may be viewed as a dynamic biological response to global climate change, highlighting the connections between the carbon and sulfur biogeochemical cycles.

  15. Sulfur isotope homogeneity of oceanic DMSP and DMS

    PubMed Central

    Amrani, Alon; Said-Ahmad, Ward; Shaked, Yeala; Kiene, Ronald P.

    2013-01-01

    Oceanic emissions of volatile dimethyl sulfide (DMS) represent the largest natural source of biogenic sulfur to the global atmosphere, where it mediates aerosol dynamics. To constrain the contribution of oceanic DMS to aerosols we established the sulfur isotope ratios (34S/32S ratio, δ34S) of DMS and its precursor, dimethylsulfoniopropionate (DMSP), in a range of marine environments. In view of the low oceanic concentrations of DMS/P, we applied a unique method for the analysis of δ34S at the picomole level in individual compounds. Surface water DMSP collected from six different ocean provinces revealed a remarkable consistency in δ34S values ranging between +18.9 and +20.3‰. Sulfur isotope composition of DMS analyzed in freshly collected seawater was similar to δ34S of DMSP, showing that the in situ fractionation between these species is small (<+1‰). Based on volatilization experiments, emission of DMS to the atmosphere results in a relatively small fractionation (−0.5 ± 0.2‰) compared with the seawater DMS pool. Because δ34S values of oceanic DMS closely reflect that of DMSP, we conclude that the homogenous δ34S of DMSP at the ocean surface represents the δ34S of DMS emitted to the atmosphere, within +1‰. The δ34S of oceanic DMS flux to the atmosphere is thus relatively constant and distinct from anthropogenic sources of atmospheric sulfate, thereby enabling estimation of the DMS contribution to aerosols. PMID:24167289

  16. Mass Independent Fractionation of Sulphur Isotopes in Precambrian Sedimentary Rocks: Indicator for Changes in Atmospheric Composition and the Operation of the Global Sulphur Cycle

    NASA Astrophysics Data System (ADS)

    Peters, M.; Farquhar, J.; Strauss, H.

    2005-12-01

    Large mass independent fractionation (MIF) of sulphur isotopes in sedimentary rocks older than 2.3 Ga and the absence of this isotopic anomaly in younger rocks seem to be the consequence of a change in Earth's atmospheric composition from essentially oxygen-free or to oxygen-rich conditions. MIF is produced by photochemical reactions of volcanogenic sulphur dioxide with UV radiation in the absence of an ozone shield. The products of such processes are elemental sulphur with positive and sulphate with negative Δ33S values. Here we present isotope data (32S, 33S, 34S) for sedimentary pyrites from Archaean and Palaeoproterozoic rocks of the Kaapvaal Craton (South Africa), the Pilbara Craton (Australia) and the Greenland Shield (Isua Supercrustal Belt). Their ages range from 3.85 to 2.47 Ga. Large positive Δ33S values up to +9.13 ‰ in several Archaean units from the Kapvaal and Pilbara Cratons are attributed to low atmospheric oxygen at that time. Interestingly, very low Δ33S values between -0.28 and +0.57 ‰ appear to characterize the Witwatersrand succession of South Africa (3.0 Ga). This rather small MIF signature was previously detected in rocks of the same age in Western Australia (OHMOTO et al., 2005). The signature is interpreted as a global signal, which could be the consequence of a shielding effect induced by one or more atmospheric components. The most probable chemical compounds for this process are methane and carbon dioxide. Rocks of the Kameeldoorns Fm. (2.71 Ga), Kaapvaal Craton, display also low values between -0.46 and +0.33 ‰, which are consistent with the small (absent) MIF signal in rocks of the Hardey Fm. (2.76 Ga) of Western Australia (OHMOTO et al., 2005). Very low carbon isotope values between -51 and -40 ‰ in late Archaean kerogens (2.6 - 2.8 Ga) indicate a high concentration of methane in the atmosphere (PAVLOV et al., 2001). This high methane level could produce an organic haze, which absorbed most of the UV radiation and prevented

  17. Sulfur in presolar silicon carbide grains from asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    Hoppe, Peter; Lodders, Katharina; Fujiya, Wataru

    2015-06-01

    We studied 14 presolar SiC mainstream grains for C-, Si-, and S-isotopic compositions and S elemental abundances. Ten grains have low levels of S contamination and CI chondrite-normalized S/Si ratios between 2 × 10-5 and 2 × 10-4. All grains have S-isotopic compositions compatible within 2σ of solar values. Their mean S isotope composition deviates from solar by at most a few percent, and is consistent with values observed for the carbon star IRC+10216, believed to be a representative source star of the grains, and the interstellar medium. The isotopic data are also consistent with stellar model predictions of low-mass asymptotic giant branch (AGB) stars. In a δ33S versus δ34S plot the data fit along a line with a slope of 1.8 ± 0.7, suggesting imprints from galactic chemical evolution. The observed S abundances are lower than expected from equilibrium condensation of CaS in solid solution with SiC under pressure and temperature conditions inferred from the abundances of more refractory elements in SiC. Calcium to S abundance ratios are generally above unity, contrary to expectations for stoichiometric CaS solution in the grains, possibly due to condensation of CaC2 into SiC. We observed a correlation between Mg and S abundances suggesting solid solution of MgS in SiC. The low abundances of S in mainstream grains support the view that the significantly higher abundances of excess 32S found in some Type AB SiC grains are the result of in situ decay of radioactive 32Si from born-again AGB stars that condensed into AB grains.

  18. A Detailed Record of Archean Biogochemical Cycles and Seawater Chemistry Preserved in Black Shales of the Abitibi Greenstone Belt

    NASA Astrophysics Data System (ADS)

    Scott, C.; Planavsky, N. J.; Bates, S. M.; Wing, B. A.; Lyons, T. W.

    2011-12-01

    Geological and biological evolution are intimately linked within the Earth System through the medium of seawater. Thus, in order to track the co-evolution of Life and Earth during the Archean Eon we must determine how biogeochemical cycles responded to and initiated changes in the composition of Archean seawater. Among our best records of biogeochemical cycles and seawater chemistry are organic carbon-rich black shales. Here we present a detailed multi-proxy study of 2.7 Ga black shales from the Abitibi Greenstone Belt, Canada. Abitibi shales demonstrate extreme enrichments in total organic carbon (up to 15 wt. %) and total sulfur (up to 6 wt. %) reflecting vigorous biogeochemical cycling in the basin, likely driven by cyanobacteria. The speciation of reactive Fe minerals indicates that pyrite formed in a sulfidic water column (euxinia) and that dissolved Fe was the limiting reactant. The deposition of more than 50 m of euxinic black shales suggests that the Fe-rich conditions reflected by Archean BIF deposition were not necessarily ubiquitous. Biologically significant trace metals fall into two categories. Metals that can be delivered to seawater in large quantities from hydrothermal sources (e.g., Cu and Zn) are enriched in the shales, reflecting their relative abundance in seawater. Conversely, metals that are primarily delivered to the ocean during oxidative weathering of the continents (e. g., Mo and V) are largely absent from the shales, reflecting depleted seawater inventories. Thus, trace metal supply at 2.7 Ga was still dominated by geological processes. Biological forcing of trace metal inventories, through oxidative weathering of the continents, was not initiated until 2.5 Ga, when Mo enrichments are first observed in the Mt. McRae Shale, Hamersley Basin. Multiple sulfur isotope analysis (32S, 33S, 34S) of disseminated pyrite displays large mass independent fractionations (Δ33S up to 6 %) reflecting a sulfur cycle dominated by atmospheric processes

  19. Herschel observations of extra-ordinary sources: H{sub 2}S as a probe of dense gas and possibly hidden luminosity toward the Orion KL hot core

    SciTech Connect

    Crockett, N. R.; Bergin, E. A.; Neill, J. L.; Black, J. H.; Blake, G. A.; Kleshcheva, M.

    2014-02-01

    We present Herschel/HIFI observations of the light hydride H{sub 2}S obtained from the full spectral scan of the Orion Kleinmann-Low nebula (Orion KL) taken as part of the Herschel Observations of EXtra-Ordinary Sources GT (guaranteed time) key program. In total, we observe 52, 24, and 8 unblended or slightly blended features from H{sub 2} {sup 32}S, H{sub 2} {sup 34}S, and H{sub 2} {sup 33}S, respectively. We only analyze emission from the so-called hot core, but emission from the plateau, extended ridge, and/or compact ridge are also detected. Rotation diagrams for ortho and para H{sub 2}S follow straight lines given the uncertainties and yield T {sub rot} = 141 ± 12 K. This indicates H{sub 2}S is in local thermodynamic equilibrium and is well characterized by a single kinetic temperature or an intense far-IR radiation field is redistributing the population to produce the observed trend. We argue the latter scenario is more probable and find that the most highly excited states (E {sub up} ≳ 1000 K) are likely populated primarily by radiation pumping. We derive a column density, N {sub tot}(H{sub 2} {sup 32}S) = 9.5 ± 1.9 × 10{sup 17} cm{sup –2}, gas kinetic temperature, T {sub kin} = 120±{sub 10}{sup 13} K, and constrain the H{sub 2} volume density, n{sub H{sub 2}} ≳ 9 × 10 {sup 7} cm{sup –3}, for the H{sub 2}S emitting gas. These results point to an H{sub 2}S origin in markedly dense, heavily embedded gas, possibly in close proximity to a hidden self-luminous source (or sources), which are conceivably responsible for Orion KL's high luminosity. We also derive an H{sub 2}S ortho/para ratio of 1.7 ± 0.8 and set an upper limit for HDS/H{sub 2}S of <4.9 × 10 {sup –3}.

  20. A Line List for Hydrogen Sulfide

    NASA Astrophysics Data System (ADS)

    Azzam, Ala'a. A. A.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2013-06-01

    H_2S is being studied as part of the ExoMol project (www.exomol.com) with the aim of producing an accurate and comprehensive list of line positions and intensitiesfor temperatures up to 2000 K. This will provide an important resource for atmospheric modelling of extrasolar planets and cool stars, as well as for the laboratory investigations and pollution studies. A recently computed, variational ro-vibrational hot line list is presented. These computations used the DVR3D and potential energy surface (PES) refined to reproduce the measured data. An ab initio dipole moment surface (DMS) is used for the transitions intensity calculations. Many dipole moment surfaces were constructed at different levels of theory and basis sets, and compared to the available intensity measurements. Our best surface was constructed at over 7000 geometries using CCSD(T)/aug-cc-pV(6+d)Z level of theory with added relativistic and core-electron corrections. The anomalous behavior of H_2S intensities is well-known, and our calculations reproduce this behaviour quantitatively. O With Martin-Drumel and Pirali, we have measured pure rotational transition frequencies of H_2S at room temperature in the 45 to 360 cm^{-1} (1.4 to 10.5 THz) region using a Fourier transform spectrometer located at the AILES beamline of the SOLEIL synchrotron. About 1700 lines were detected belonging to the ground vibrational state of H_{2}^{32}S, H_{2}^{33}S and H_{2}^{34}S. 60% of these lines are recorded and assigned for the first time, sampling levels as high as J = 26 and K_a = 18. Our variational calculations were used to identify 214 rotational lines of H_{2}^{32}S in its first excited bending vibrational state for the first time. J. Tennyson, M. A. Kostin, P. Barletta, G. J. Harris, O. L. Polyansky, J. Ramanlal and N. F. Zobov Comput. Phys. Commun.{163}(85), 2004. T. Cours, P. Rosmus, and V. G. Tyuterev J. Chem. Phys. {117}(223), 2002. A. A. A. Azzam, S. N. Yurchenko, J. Tennyson, M. Martin-Drumel and O

  1. Herschel Observations of EXtra-Ordinary Sources: H2S as a Probe of Dense Gas and Possibly Hidden Luminosity Toward the Orion KL Hot Core

    NASA Astrophysics Data System (ADS)

    Crockett, N. R.; Bergin, E. A.; Neill, J. L.; Black, J. H.; Blake, G. A.; Kleshcheva, M.

    2014-02-01

    We present Herschel/HIFI observations of the light hydride H2S obtained from the full spectral scan of the Orion Kleinmann-Low nebula (Orion KL) taken as part of the Herschel Observations of EXtra-Ordinary Sources GT (guaranteed time) key program. In total, we observe 52, 24, and 8 unblended or slightly blended features from H2 32S, H2 34S, and H2 33S, respectively. We only analyze emission from the so-called hot core, but emission from the plateau, extended ridge, and/or compact ridge are also detected. Rotation diagrams for ortho and para H2S follow straight lines given the uncertainties and yield T rot = 141 ± 12 K. This indicates H2S is in local thermodynamic equilibrium and is well characterized by a single kinetic temperature or an intense far-IR radiation field is redistributing the population to produce the observed trend. We argue the latter scenario is more probable and find that the most highly excited states (E up >~ 1000 K) are likely populated primarily by radiation pumping. We derive a column density, N tot(H2 32S) = 9.5 ± 1.9 × 1017 cm-2, gas kinetic temperature, T kin = 120+/- ^{13}_{10} K, and constrain the H2 volume density, n_H_2 >~ 9 × 10 7 cm-3, for the H2S emitting gas. These results point to an H2S origin in markedly dense, heavily embedded gas, possibly in close proximity to a hidden self-luminous source (or sources), which are conceivably responsible for Orion KL's high luminosity. We also derive an H2S ortho/para ratio of 1.7 ± 0.8 and set an upper limit for HDS/H2S of <4.9 × 10 -3. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  2. Using multiple sulfur isotopes to link biological isotope fractionation in a sedimentary protolith to a magmatic Ni-sulfide deposit: Voisey's Bay Ni deposit, Labrador, Canada

    NASA Astrophysics Data System (ADS)

    Hiebert, R. S.; Bekker, A.; Wing, B. A.

    2012-12-01

    It is generally accepted that crustal contamination is required for the formation of significant magmatic Ni-Cu-PGE sulfide deposits. Either the addition of external S or SiO2 promote early sulfide saturation. The most direct indicator of S addition by this contaminant is S isotopes. However, the traditional use of δ34S values is inadequate in deposits where Archean sedimentary sulfides incorporated into these deposits might not have significantly different δ34S values from those of mantle S. Even in sediments that have variable δ34S values, δ34S signature can be reset to magmatic values by equilibrating large amounts of silicate magma with initial sulfide melt. However, sedimentary rocks contain isotope evidence of biological fractionation processes in the relationship between δ33S and δ34S values. We used multiple S isotope data to constrain the relationship between δ33S and δ34S values, identify biological S isotope fractionation in the metamorphosed sedimentary rocks of the Tasiuyak Gneiss, and compare this relationship to that in the Voisey's Bay magmatic Ni-deposit. The Voisey's Bay Ni-sulfide deposit, Labrador is hosted by a troctolitic conduit system. The Voisey's Bay intrusion is a part of the Nain plutonic suite and intruded at approximately 1.3 Ga along the boundary between the Proterozoic Tasiuyak Gneiss of the Churchill province and Archean gneisses of the Nain province. The general model suggests assimilation of a large amount of sulfidic Tasiuyak gneiss, leading to sulfur saturation prior to emplacement, even though the Tasiuyak gneiss does not have a high concentration of sulfur. High-temperature equilibrium relationships are not present in our measured δ33S and δ34S values from the Voisey's Bay deposit. Instead they indicate that a kinetic process is responsible for S isotope fractionations in the mineralization and troctolite, similar to that recorded by the Tasiuyak gneiss. The observed relationship between δ33S and δ34S values is

  3. Sulfur Isotope Trends in Archean Microbialite Facies Record Early Oxygen Production and Consumption

    NASA Astrophysics Data System (ADS)

    Zerkle, A.; Meyer, N.; Izon, G.; Poulton, S.; Farquhar, J.; Claire, M.

    2014-12-01

    The major and minor sulfur isotope composition (δ34S and Δ33S) of pyrites preserved in ~2.65-2.5 billion-year-old (Ga) microbialites record localized oxygen production and consumption near the mat surface. These trends are preserved in two separate drill cores (GKF01 and BH1-Sacha) transecting the Campbellrand-Malmani carbonate platform (Ghaap Group, Transvaal Supergroup, South Africa; Zerkle et al., 2012; Izon et al., in review). Microbialite pyrites possess positive Δ33S values, plotting parallel to typical Archean trends (with a Δ33S34S slope of ~0.9) but enriched in 34S by ~3 to 7‰. We propose that these 34S-enriched pyrites were formed from a residual pool of sulfide that was partially oxidized via molecular oxygen produced by surface mat-dwelling cyanobacteria. Sulfide, carrying the range of Archean Δ33S values, could have been produced deeper within the microbial mat by the reduction of sulfate and elemental sulfur, then fractionated upon reaction with O2 produced by oxygenic photosynthesis. Preservation of this positive 34S offset requires that: 1) sulfide was only partially (50­­-80%) consumed by oxidation, meaning H2S was locally more abundant (or more rapidly produced) than O2, and 2) the majority of the sulfate produced via oxidation was not immediately reduced to sulfide, implying either that the sulfate pool was much larger than the sulfide pool, or that the sulfate formed near the mat surface was transported and reduced in another part of the system. Contrastingly, older microbialite facies (> 2.7 Ga; Thomazo et al., 2013) appear to lack these observed 34S enrichments. Consequently, the onset of 34S enrichments could mark a shift in mat ecology, from communities dominated by anoxygenic photosynthesizers to cyanobacteria. Here, we test these hypotheses with new spatially resolved mm-scale trends in sulfur isotope measurements from pyritized stromatolites of the Vryburg Formation, sampled in the lower part of the BH1-Sacha core. Millimeter

  4. Organosulfur Compounds: Molecular and Isotopic Evolution from Biota to Oil and Gas

    NASA Astrophysics Data System (ADS)

    Amrani, Alon

    2014-05-01

    Organosulfur compounds (OSCs) play important roles in the formation, preservation, and thermal degradation of sedimentary organic matter and the associated petroleum generation. Improved analytical techniques for S isotope analysis have recently enhanced our understanding of the mechanisms for OSC formation and maturation and their associated S isotope distributions. The close interaction of OSCs with inorganic S species throughout their formation and maturation affects their 34S/32S isotopic ratio (δ34S), forming specific signatures for distinct sources and processes. Ultimately, thermal maturation homogenizes the δ34S values of different fractions and individual compounds. Reservoir processes such as thermochemical sulfate reduction (TSR) introduce exogenous and isotopically distinct S into hydrocarbons and can significantly change the δ34S of petroleum or kerogen. Specific OSCs react at different rates and thus can be used to evaluate the extent of processes such as TSR. This article reviews factors that affect the 34S/32S isotopic distribution of OSCs along pathways of formation, diagenesis, and thermal alteration.

  5. An update on the Thermal Gradient Induced Non -Mass-Dependent Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Sun, T.; Niles, P. B.; Bao, H.; Socki, R. A.

    2012-12-01

    Mass flow and compositional gradient (elemental and isotope separation) occur when fluid(s) or gas(es) in an enclosure is subjected to a thermal gradient, and the phenomenon is named thermal diffusion. Gas phase thermal diffusion has been experimentally and theoretically investigated for more than a century, although there has not been a satisfactory theory to date. Nevertheless, theories predict that when dealing with a multi-isotope system, such as O16-O17-O18, S32-S33-S34-S36, or Ne20-Ne21-Ne22, the mass difference is the only term in the thermal diffusion separation factors that distinguish one isotope pair from another. Thus a mass dependent relationship is expected. For O-bearing molecules the α17O/ α 18O is expected to be at 0.5 to 0.515, and for S-bearing molecules the α33S/ α 34S at 0.5 to 0.508, where α is isotope fractionation factor between cold and warm reservoirs. We recently reported that thermal diffusion generates non-mass dependent (NMD) isotope fractionation for low-pressure O2 and SF6 gases. The observed NMD phenomenon in the simple thermal-diffusion experiments demands quantitative validation and theoretical explanation. It was suggested that additional (not mass related) terms need to be theoretically considered in the order to account for the observations. In addition to the pressure and temperature dependency illustrated in our earlier report, the role of turbulence, batch gas effects, and whether it is only a transient, non-equilibrium effect have been examined in this study. We report here new results on low-pressure O2 gas thermal diffusion. (1) In a purely diffusive vertical two-bulb setting with colder reservoir at lower position, time course experiments showed that the NMD effect persists after the system reaches isotopic steady state between warmer and colder compartments, suggesting that the effect is not a transient one. (2) When the average temperature approaching condensation point for O2, the 17O switches to migrating

  6. Exploring the in vitro formation of trimethylarsine sulfide from dimethylthioarsinic acid in anaerobic microflora of mouse cecum using HPLC-ICP-MS and HPLC-ESI-MS

    SciTech Connect

    Kubachka, Kevin M.; Kohan, Michael C.; Herbin-Davis, Karen; Creed, John T. Thomas, David J.

    2009-09-01

    Although metabolism of arsenicals to form methylated oxoarsenical species has been extensively studied, less is known about the formation of thiolated arsenical species that have recently been detected as urinary metabolites. Indeed, their presence suggests that the metabolism of ingested arsenic is more complex than previously thought. Recent reports have shown that thiolated arsenicals can be produced by the anaerobic microflora of the mouse cecum, suggesting that metabolism prior to systemic absorption may be a significant determinant of the pattern and extent of exposure to various arsenic-containing species. Here, we examined the metabolism of {sup 34}S labeled dimethylthioarsinic acid ({sup 34}S-DMTA{sup V}) by the anaerobic microflora of the mouse cecum using HPLC-ICP-MS and HPLC-ESI-MS/MS to monitor for the presence of various oxo- and thioarsenicals. The use of isotopically enriched {sup 34}S-DMTA{sup V} made it possible to differentiate among potential metabolic pathways for production of the trimethylarsine sulfide (TMAS{sup V}). Upon in vitro incubation in an assay containing anaerobic microflora of mouse cecum, {sup 34}S-DMTA{sup V} underwent several transformations. Labile {sup 34}S was exchanged with more abundant {sup 32}S to produce {sup 32}S-DMTA{sup V}, a thiol group was added to yield DMDTA{sup V}, and a methyl group was added to yield {sup 34}S-TMAS{sup V}. Because incubation of {sup 34}S-DMTA{sup V} resulted in the formation of {sup 34}S-TMAS{sup V}, the pathway for its formation must preserve the arsenic-sulfur bond. The alternative metabolic pathway postulated for formation of TMAS{sup V} from dimethylarsinic acid (DMA{sup V}) would proceed via a dimethylarsinous acid (DMA{sup III}) intermediate and would necessitate the loss of {sup 34}S label. Structural confirmation of the metabolic product was achieved using HPLC-ESI-MS/MS. The data presented support the direct methylation of DMTA{sup V} to TMAS{sup V}. Additionally, the detection of

  7. Exploring the in vitro formation of trimethylarsine sulfide from dimethylthioarsinic acid in anaerobic microflora of mouse cecum using HPLC-ICP-MS and HPLC-ESI-MS.

    PubMed

    Kubachka, Kevin M; Kohan, Michael C; Herbin-Davis, Karen; Creed, John T; Thomas, David J

    2009-09-01

    Although metabolism of arsenicals to form methylated oxoarsenical species has been extensively studied, less is known about the formation of thiolated arsenical species that have recently been detected as urinary metabolites. Indeed, their presence suggests that the metabolism of ingested arsenic is more complex than previously thought. Recent reports have shown that thiolated arsenicals can be produced by the anaerobic microflora of the mouse cecum, suggesting that metabolism prior to systemic absorption may be a significant determinant of the pattern and extent of exposure to various arsenic-containing species. Here, we examined the metabolism of 34S labeled dimethylthioarsinic acid (34S-DMTA(V)) by the anaerobic microflora of the mouse cecum using HPLC-ICP-MS and HPLC-ESI-MS/MS to monitor for the presence of various oxo- and thioarsenicals. The use of isotopically enriched 34S-DMTA(V) made it possible to differentiate among potential metabolic pathways for production of the trimethylarsine sulfide (TMAS(V)). Upon in vitro incubation in an assay containing anaerobic microflora of mouse cecum, 34S-DMTA(V) underwent several transformations. Labile 34S was exchanged with more abundant 32S to produce 32S-DMTA(V), a thiol group was added to yield DMDTA(V), and a methyl group was added to yield 34S-TMAS(V). Because incubation of 34S-DMTA(V) resulted in the formation of 34S-TMAS(V), the pathway for its formation must preserve the arsenic-sulfur bond. The alternative metabolic pathway postulated for formation of TMAS(V) from dimethylarsinic acid (DMA(V)) would proceed via a dimethylarsinous acid (DMA(III)) intermediate and would necessitate the loss of 34S label. Structural confirmation of the metabolic product was achieved using HPLC-ESI-MS/MS. The data presented support the direct methylation of DMTA(V) to TMAS(V). Additionally, the detection of isotopically pure 34S-TMAS(V) raises questions about the sulfur exchange properties of TMAS(V) in the cecum material

  8. Sulfur sources of sedimentary "buckshot" pyrite in the Auriferous Conglomerates of the Mesoarchean Witwatersrand and Ventersdorp Supergroups, Kaapvaal Craton, South Africa

    NASA Astrophysics Data System (ADS)

    Guy, B. M.; Ono, S.; Gutzmer, J.; Lin, Y.; Beukes, N. J.

    2014-08-01

    Large rounded pyrite grains (>1 mm), commonly referred to as "buckshot" pyrite grains, are a characteristic feature of the auriferous conglomerates (reefs) in the Witwatersrand and Ventersdorp supergroups, Kaapvaal Craton, South Africa. Detailed petrographic analyses of the reefs indicated that the vast majority of the buckshot pyrite grains are of reworked sedimentary origin, i.e., that the pyrite grains originally formed in the sedimentary environment during sedimentation and diagenesis. Forty-one of these reworked sedimentary pyrite grains from the Main, Vaal, Basal, Kalkoenkrans, Beatrix, and Ventersdorp Contact reefs were analyzed for their multiple sulfur isotope compositions (δ34S, Δ33S, and Δ36S) to determine the source of the pyrite sulfur. In addition, five epigenetic pyrite samples (pyrite formed after sedimentation and lithification) from the Middelvlei and the Ventersdorp Contact reefs were measured for comparison. The δ34S, Δ33S, and Δ36S values of all 41 reworked sedimentary pyrite grains indicate clear signatures of mass-dependent and mass-independent fractionation and range from -6.8 to +13.8 ‰, -1.7 to +1.7 ‰, and -3.9 to +0.9 ‰, respectively. In contrast, the five epigenetic pyrite samples display a very limited range of δ34S, Δ33S, and Δ36S values (+0.7 to +4.0 ‰, -0.3 to +0.0 ‰. and -0.3 to +0.1 ‰, respectively). Despite the clear signatures of mass-independent sulfur isotope fractionation, very few data points plot along the primary Archean photochemical array suggesting a weak photolytic control over the data set. Instead, other factors command a greater degree of influence such as pyrite paragenesis, the prevailing depositional environment, and non-photolytic sulfur sources. In relation to pyrite paragenesis, reworked syngenetic sedimentary pyrite grains (pyrite originally precipitated along the sediment-water interface) are characterized by negative δ34S and Δ33S values, suggesting open system conditions with respect

  9. Multiple sulphur and oxygen isotopes reveal microbial sulphur cycling in spring waters in the Lower Engadin, Switzerland.

    PubMed

    Strauss, Harald; Chmiel, Hannah; Christ, Andreas; Fugmann, Artur; Hanselmann, Kurt; Kappler, Andreas; Königer, Paul; Lutter, Andreas; Siedenberg, Katharina; Teichert, Barbara M A

    2016-01-01

    Highly mineralized springs in the Scuol-Tarasp area of the Lower Engadin and in the Albula Valley near Alvaneu, Switzerland, display distinct differences with respect to the source and fate of their dissolved sulphur species. High sulphate concentrations and positive sulphur (δ(34)S) and oxygen (δ(18)O) isotopic compositions argue for the subsurface dissolution of Mesozoic evaporitic sulphate. In contrast, low sulphate concentrations and less positive or even negative δ(34)S and δ(18)O values indicate a substantial contribution of sulphate sulphur from the oxidation of sulphides in the crystalline basement rocks or the Jurassic sedimentary cover rocks. Furthermore, multiple sulphur (δ(34)S, Δ(33)S) isotopes support the identification of microbial sulphate reduction and sulphide oxidation in the subsurface, the latter is also evident through the presence of thick aggregates of sulphide-oxidizing Thiothrix bacteria.

  10. Multiple sulphur and oxygen isotopes reveal microbial sulphur cycling in spring waters in the Lower Engadin, Switzerland.

    PubMed

    Strauss, Harald; Chmiel, Hannah; Christ, Andreas; Fugmann, Artur; Hanselmann, Kurt; Kappler, Andreas; Königer, Paul; Lutter, Andreas; Siedenberg, Katharina; Teichert, Barbara M A

    2016-01-01

    Highly mineralized springs in the Scuol-Tarasp area of the Lower Engadin and in the Albula Valley near Alvaneu, Switzerland, display distinct differences with respect to the source and fate of their dissolved sulphur species. High sulphate concentrations and positive sulphur (δ(34)S) and oxygen (δ(18)O) isotopic compositions argue for the subsurface dissolution of Mesozoic evaporitic sulphate. In contrast, low sulphate concentrations and less positive or even negative δ(34)S and δ(18)O values indicate a substantial contribution of sulphate sulphur from the oxidation of sulphides in the crystalline basement rocks or the Jurassic sedimentary cover rocks. Furthermore, multiple sulphur (δ(34)S, Δ(33)S) isotopes support the identification of microbial sulphate reduction and sulphide oxidation in the subsurface, the latter is also evident through the presence of thick aggregates of sulphide-oxidizing Thiothrix bacteria. PMID:25922968

  11. USE OF SLACK-WATER ENVIRONMENTS BY COHO SALMON JUVENILES IN A COASTAL OREGON STREAM AS INDICATED BY 34S STABLE ISOTOPE ANALYSIS

    EPA Science Inventory

    Stable isotopes of sulfur are rarely used in studies of elemental cycling, trophic position or use of marine-derived nutrients by salmonids. The main reason for this probably is the reluctance on the part of isotope labs to expose their instruments to SO2 (because of its corrosi...

  12. Stable sulfur and nitrogen isotopic compositions of crude oil fractions from Southern Germany

    NASA Astrophysics Data System (ADS)

    Hirner, A. V.; Graf, W.; Treibs, R.; Melzer, A. N.; Hahn-Weinheimer, P.

    1984-11-01

    Eleven samples of crude oil from the Molasse Basin of Southern Germany were fractionated and their contents of sulfur and nitrogen as well as the stable isotope compositions of these elements ( 34S /32S and 15N /14N , resp.) investigated. According to the δ34S determinations, all crude oils from the Tertiary base of the Western and Eastern Molasse belong to one oil family and differ significantly from the Triassic and Liassic oils in the Western Molasse. An enrichment of 34S was observed with increasing polarity of crude oil fractions. The isotope distributions of sulfur in the polar constituents of the biodegraded oils from the sandstones of Ampfing, however, approach a homogeneous distribution. The nitrogen isotope distribution is rather uniform in Southern German oils. A regional differentiation can be recognized, although the overall isotopic variation is small. The δ15N values of the crudes and asphaltenes do not correlate.

  13. HNCO Abundances in Galaxies: Tracing the Evolutionary State of Starbursts

    NASA Astrophysics Data System (ADS)

    Martín, Sergio; Martín-Pintado, J.; Mauersberger, R.

    2009-03-01

    The chemistry in the central regions of galaxies is expected to be strongly influenced by their nuclear activity. To find the best tracers of nuclear activity is of key importance to understand the processes taking place in the most obscured regions of galactic nuclei. In this work, we present multiline observations of CS, C34S, HNCO, and C18O in a sample of 11 bright galaxies prototypical for different types of activity. The 32S/34S isotopic ratio is ~10, supporting the idea of an isotopical 34S enrichment due to massive star formation in the nuclear regions of galaxies. Although C32S and C34S do not seem to be significantly affected by the activity type, the HNCO abundance appears highly contrasted among starbursts (SBs). We observed HNCO abundance variations of nearly 2 orders of magnitude. The HNCO molecule is shown to be a good tracer of the amount of molecular material fueling the SB and therefore can be used as a diagnostics of the evolutionary state of a nuclear SB.

  14. Mass Dependency of Isotope Fractionation of Gases Under Thermal Gradient and Its Possible Implications for Planetary Atmosphere Escaping Process

    NASA Technical Reports Server (NTRS)

    Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard

    2014-01-01

    Physical processes that unmix elements/isotopes of gas molecules involve phase changes, diffusion (chemical or thermal), effusion and gravitational settling. Some of those play significant roles for the evolution of chemical and isotopic compositions of gases in planetary bodies which lead to better understanding of surface paleoclimatic conditions, e.g. gas bubbles in Antarctic ice, and planetary evolution, e.g. the solar-wind erosion induced gas escaping from exosphere on terrestrial planets.. A mass dependent relationship is always expected for the kinetic isotope fractionations during these simple physical processes, according to the kinetic theory of gases by Chapman, Enskog and others [3-5]. For O-bearing (O16, -O17, -O18) molecules the alpha O-17/ alpha O-18 is expected at 0.5 to 0.515, and for S-bearing (S32,-S33. -S34, -S36) molecules, the alpha S-33/ alpha S-34 is expected at 0.5 to 0.508, where alpha is the isotope fractionation factor associated with unmixing processes. Thus, one isotope pair is generally proxied to yield all the information for the physical history of the gases. However, we recently] reported the violation of mass law for isotope fractionation among isotope pairs of multiple isotope system during gas diffusion or convection under thermal gradient (Thermal Gradient Induced Non-Mass Dependent effect, TGI-NMD). The mechanism(s) that is responsible to such striking observation remains unanswered. In our past studies, we investigated polyatomic molecules, O2 and SF6, and we suggested that nuclear spin effect could be responsible to the observed NMD effect in a way of changing diffusion coefficients of certain molecules, owing to the fact of negligible delta S-36 anomaly for SF6.. On the other hand, our results also showed that for both diffusion and convection under thermal gradient, this NMD effect is increased by lower gas pressure, bigger temperature gradient and lower average temperature, which indicate that the nuclear spin effect may

  15. Analysis of High-Resolution Infrared and CARS Spectra of ³⁴S¹⁸O₃

    SciTech Connect

    Masiello, Tony; Vulpanovici, Nicolae; Barber, Jeffrey B.; Chrysostom, Engelene; Nibler, Joseph W.; Maki, Arthur; Blake, Thomas A.; Sams, Robert L.; Weber, Alfons

    2004-09-11

    As part of a series of investigations of isotopic forms of sulfur trioxide, high-resolution infrared and coherent anti-Stokes Raman spectroscopies were used to study the fundamental modes and several hot bands of 32S18O3. Hot bands originating from the v2 and v4 bending mode levels have been found to couple strongly to the IR-inactive v1 symmetric stretching mode through indirect Coriolis interactions and Fermi resonances. Coriolis coupling effects are particularly noticeable in 32S18O3 due to the close proximity of the v2 and v4 fundamental vibrations, whose deperturbed wavenumber values are 486.488 13(4) and 504.284 77(4) cm-1. The uncertainties in the last digits are shown in parentheses and are two standard deviations. From the infrared transitions, accurate rovibrational constants are deduced for all of the mixed states, leading to deperturbed values for v1, and of 1004.68(2), 0.000 713(2), and 0.000 348(2) cm-1, respectively. The Be value is found to be 0.310 820(2) cm-1, yielding an equilibrium bond length re of 141.7333(4) pm that is, within experimental error, identical to the value of 141.7339(3) pm reported previously for 34S18O3. With this work, precise and accurate spectroscopic constants have now been determined in a systematic and consistent manner for all the fundamental vibrational modes of the sulfur trioxide D3h isotopomeric forms 32S16O3, 34S16O3, 32S18O3, and 34S18O3.

  16. A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite. II. Data analysis

    NASA Astrophysics Data System (ADS)

    Persson, C. M.; Olofsson, A. O. H.; Koning, N.; Bergman, P.; Bernath, P.; Black, J. H.; Frisk, U.; Geppert, W.; Hasegawa, T. I.; Hjalmarson, Å.; Kwok, S.; Larsson, B.; Lecacheux, A.; Nummelin, A.; Olberg, M.; Sandqvist, Aa.; Wirström, E. S.

    2007-12-01

    Aims:We investigate the physical and chemical conditions in a typical star forming region, including an unbiased search for new molecules in a spectral region previously unobserved. Methods: Due to its proximity, the Orion KL region offers a unique laboratory of molecular astrophysics in a chemically rich, massive star forming region. Several ground-based spectral line surveys have been made, but due to the absorption by water and oxygen, the terrestrial atmosphere is completely opaque at frequencies around 487 and 557 GHz. To cover these frequencies we used the Odin satellite to perform a spectral line survey in the frequency ranges 486-492 GHz and 541-577 GHz, filling the gaps between previous spectral scans. Odin's high main beam efficiency, ηmb = 0.9, and observations performed outside the atmosphere make our intensity scale very well determined. Results: We observed 280 spectral lines from 38 molecules including isotopologues, and, in addition, 64 unidentified lines. A few U-lines have interesting frequency coincidences such as ND and the anion SH^-. The beam-averaged emission is dominated by CO, H2O, SO2, SO, 13CO and CH3OH. Species with the largest number of lines are CH3OH, (CH3)_2O, SO2, 13CH3OH, CH3CN and NO. Six water lines are detected including the ground state rotational transition 1{1,0}-1{0,1} of o-H2O, its isotopologues o-H218O and o-H217O, the Hot Core tracing p-H2O transition 6{2,4}-7{1,7}, and the 2{0, 2}-1{1,1} transition of HDO. Other lines of special interest are the 1{0}-0{ 0} transition of NH3 and its isotopologue 15NH3. Isotopologue abundance ratios of D/H, 12C/13C, 32S/34S, 34S/33S, and 18O/17O are estimated. The temperatures, column densities and abundances in the various subregions are estimated, and we find very high gas-phase abundances of H2O, NH3, SO2, SO, NO, and CH3OH. A comparison with the ice inventory of ISO sheds new light on the origin of the abundant gas-phase molecules. Odin is a Swedish-led satellite project funded

  17. Single cell visualization of sulfur cycling in intertidal microbial mats

    NASA Astrophysics Data System (ADS)

    Dawson, K.; Green, A.; Orphan, V. J.

    2014-12-01

    Chemoautrophic microbial mats form in shallow intertidal pools adjacent to sulfidic hydrothermal vents in San Pedro, CA. Sulfide is primarily geologically derived. However, microscopy revealed deltaproteobacteria closely associated with Beggiatoa -like filaments, indicating an additional biogenic sulfide source, derived from sulfate reduction or sulfur disproportionation. At small scales the intercellular interaction of sulfide producing and sulfide consuming bacteria may play a important role in biogeochemical sulfur cycling. We explored the intracellular transfer of biologically derived sulfide in this system with triple and quadruple stable isotope labeling experiments: 13C, 15N, 33S, and 34S. Silicon wafers colonized by microbial mats in situ, were then incubated with 34SO42- or 34SO42- and 33S0 as well as 13C-acetate and 15NH4+and analyzed by fluorescent in situ hybridization (FISH) coupled to nanometer-scale secondary ion mass spectrometry (NanoSIMS). We observed enrichment of 34S and 33S in both deltaproteobacteria and sulfide oxidizing gammaproteobacteria. Greater enrichment relative to killed controls occurred in deltaproteobacteria than the sulfide oxidizers during both sulfate reducing (Δ34Sdelta-killed = 240‰, Δ34Sgamma-killed = 40‰) and sulfur disproportionating incubations (Δ33Sdelta-killed = 1730‰, Δ33Sgamma-killed = 1050‰). These results provide a direct visualization of interspecies sulfur transfer and indicate that biogenic sulfide derived from either sulfate or intermediate oxidation state sulfur species plays a role in sulfur cycling in this system.

  18. Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for ³²S¹⁶O₂ up to 8000 cm⁻¹.

    PubMed

    Huang, Xinchuan; Schwenke, David W; Lee, Timothy J

    2014-03-21

    A purely ab initio potential energy surface (PES) was refined with selected (32)S(16)O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (σ(RMS)) for all J = 0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm(-1). Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296 K and covers up to 8000 cm(-1). Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85%-90%. Our predictions for (34)S(16)O2 band origins, higher energy (32)S(16)O2 band origins and missing (32)S(16)O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict (32/34)S(16)O2 band origins below 5500 cm(-1) with 0.01-0.03 cm(-1) uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The K(a)-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations. PMID:24655184

  19. The minor sulfur isotope composition of Cretaceous and Cenozoic seawater sulfate

    NASA Astrophysics Data System (ADS)

    Masterson, A. L.; Wing, Boswell A.; Paytan, Adina; Farquhar, James; Johnston, David T.

    2016-06-01

    The last 125 Myr capture major changes in the chemical composition of the ocean and associated geochemical and biogeochemical cycling. The sulfur isotopic composition of seawater sulfate, as proxied in marine barite, is one of the more perplexing geochemical records through this interval. Numerous analytical and geochemical modeling approaches have targeted this record. In this study we extend the empirical isotope record of seawater sulfate to therefore include the two minor sulfur isotopes, 33S and 36S. These data record a distribution of values around means of Δ33S and Δ36S of 0.043 ± 0.016‰ and -0.39 ± 0.15‰, which regardless of δ34S-based binning strategy is consistent with a signal population of values throughout this interval. We demonstrate with simple box modeling that substantial changes in pyrite burial and evaporite sulfate weathering can be accommodated within the range of our observed isotopic values.

  20. Sulfur isotope values in the sulfidic Frasassi cave system, central Italy: A case study of a chemolithotrophic S-based ecosystem

    NASA Astrophysics Data System (ADS)

    Zerkle, Aubrey L.; Jones, Daniel S.; Farquhar, James; Macalady, Jennifer L.

    2016-01-01

    Sulfide oxidation forms a critical step in the global sulfur cycle, although this process is notoriously difficult to constrain due to the multiple pathways and highly reactive intermediates involved. Multiple sulfur isotopes (δ34S and Δ33S) can provide a powerful tool for unravelling sulfur cycling processes in modern (and ancient) environments, although they have had limited application to systems with well-resolved oxidative S cycling. In this study, we report the major (δ34S) and minor (Δ33S) isotope values of sulfur compounds in streams and sediments from the sulfidic Frasassi cave system, Marche Region, Italy. These microaerophilic cave streams host prominent white biofilms dominated by chemolithotrophic organisms that oxidize sulfide to S0, allowing us to estimate S isotope fractionations associated with in situ sulfide oxidation and to evaluate any resulting isotope biosignatures. Our results demonstrate that chemolithotrophic sulfide oxidation produces 34S enrichments in the S0 products that are larger than those previously measured in laboratory experiments, with 34εS0-H2S of up to 8‰ calculated. These small reverse isotope effects are similar to those produced during phototrophic sulfide oxidation (⩽7‰), but distinct from the small normal isotope effects previously calculated for abiotic oxidation of sulfide with O2 (∼-5‰). An inverse correlation between the magnitude of 34εS0-H2S effects and sulfide availability, along with substantial differences in Δ33S, both support complex sulfide oxidation pathways and intracellular recycling of S intermediates by organisms inhabiting the biofilms. At the ecosystem level, we calculate fractionations of less than 40‰ between sulfide and sulfate in the water column and in the sediments. These fractionations are smaller than those typically calculated for systems dominated by sulfate reduction (>50‰), and contrast with the commonly held assumption that oxidative recycling of sulfide generally

  1. Using stable isotopes to monitor forms of sulfur during desulfurization processes: A quick screening method

    USGS Publications Warehouse

    Liu, Chao-Li; Hackley, Keith C.; Coleman, D.D.; Kruse, C.W.

    1987-01-01

    A method using stable isotope ratio analysis to monitor the reactivity of sulfur forms in coal during thermal and chemical desulfurization processes has been developed at the Illinois State Geological Survey. The method is based upon the fact that a significant difference exists in some coals between the 34S/32S ratios of the pyritic and organic sulfur. A screening method for determining the suitability of coal samples for use in isotope ratio analysis is described. Making these special coals available from coal sample programs would assist research groups in sorting out the complex sulfur chemistry which accompanies thermal and chemical processing of high sulfur coals. ?? 1987.

  2. Stable isotope ratio mass spectrometry of nanogram quantities of boron and sulfur

    NASA Astrophysics Data System (ADS)

    Wieser, Michael Eugene

    1998-09-01

    Instrumentation and analytical techniques were developed to measure isotope abundances from nanograms of sulfur and boron. Sulfur isotope compositions were determined employing continuous flow isotope ratio mass spectroscopy (CF-IRMS) procedures and AsS+ thermal ionization mass spectrometry techniques (AsS+-TIMS). Boron isotope abundances were determined by BO2/sp--TIMS. CF-IRMS measurements realized δ34S values from 10 μg sulfur with precisions of ±0.3/perthous. To extend sulfur isotope measurements to much smaller samples, a TIMS procedure was developed to measure 75As32S+ and 75As34S+ at masses 108 and 109 from 200 ng S on a Finnigan MAT 262 with an ion counter. This is possibly the smallest amount of sulfur which has been successfully analyzed isotopically. The internal precision of 32S/34S ratios measured by AsS+-TIMS was better than ±0.15 percent. δ34S-values calculated relative to the measured 32S/34S value of an IAEA AG2S standard (S-1) agreed with those determined by CF-IRMS to within ±3/perthous. The increasing sensitivity of S-isotope analyses permits hiterto impossible investigations e.g. sulfur in tree rings and ice cores. Boron isotope abundances were measured as BO2/sp- from 50 ng B using an older thermal ionization mass spectrometer which had been extensively upgraded including the addition of computer control electronics, sensitive ion current amplification and fiber optic data bus. The internal precisions of the measured 11B/10B ratios were ±0.15 percent and the precisions of δ11B values calculated relative to the accepted international standard (SRM-951) were ±3/perthous. Two applications of boron isotope abundance variations were initiated (1) ground waters of Northern Alberta and (2) coffee beans in different regions of the world. In the first it was demonstrated that boron isotopes could be used to trace boron released during steam injection of oil sands into the surrounding environment. Data from the second study suggest that boron

  3. Sulfur isotope composition of metasomatised mantle xenoliths from the Bultfontein kimberlite (Kimberley, South Africa): Contribution from subducted sediments and the effect of sulfide alteration on S isotope systematics

    NASA Astrophysics Data System (ADS)

    Giuliani, Andrea; Fiorentini, Marco L.; Martin, Laure A. J.; Farquhar, James; Phillips, David; Griffin, William L.; LaFlamme, Crystal

    2016-07-01

    Sulfur isotopes are a powerful geochemical tracer in high-temperature processes, but have rarely been applied to the study of mantle metasomatism. In addition, there are very limited S isotope data on sub-continental lithospheric mantle (SCLM) material. For cratonic regions, these data are restricted to sulfide inclusions in diamonds. To provide new constraints on the S isotope composition of the SCLM and on the source(s) of mantle metasomatic fluids beneath the diamondiferous Kimberley region (South Africa), we investigated the S isotope systematics of five metasomatised mantle xenoliths from the Bultfontein kimberlite. Pentlandite and chalcopyrite in these xenoliths were analysed by in situ secondary-ion mass spectrometry (SIMS), with bulk-rock material measured by gas source isotope ratio mass spectrometry techniques. Based on previous studies, the xenoliths experienced different types of metasomatism to one another at distinct times (∼180 and ∼90-80 Ma). Contained pentlandite grains show variable alteration to heazlewoodite (i.e. Ni sulfide) + magnetite. The in situ S isotope analyses of pentlandite exhibit a relatively restricted range between -5.9 and - 1.4 ‰δ34 S (compared to VCDT), with no statistically meaningful differences between samples. Chalcopyrite only occurs in one sample and shows δ34 S values between -5.4 and - 1.0 ‰. The bulk-rock Ssulfide isotope analyses vary between -3.4 and + 0.8 ‰δ34 S. Importantly, the only sample hosting dominantly fresh sulfides shows a bulk-rock δ34 S value consistent with the mean value for the sulfides, whereas the other samples exhibit higher bulk 34S/32S ratios. The differences between bulk-rock and average in situδ34 S values are directly correlated with the degree of sulfide alteration. This evidence indicates that the elevated 34S/32S ratios in the bulk samples are not due to the introduction of heavy S (commonly as sulfates) and are best explained by isotopic fractionation coupled with the removal

  4. Mass-dependent and Mass-independent Sulphur Isotope Fractionation Accompanying Thermal- and Photo-chemical Decomposition of Sulphur Bearing Organic Compounds

    NASA Astrophysics Data System (ADS)

    Oduro, Harry; Izon, Gareth; Ono, Shuhei

    2014-05-01

    The bimodal S-isotope record, specifically the transition from mass independent (MIF) to mass dependent fractionation (MDF), is perhaps the most widely cited line of evidence for an irreversible rise in atmospheric oxygen at ca. 2.4Ga. The production and preservation of S-MIF, manifested in both Δ33S and Δ36S, within the geological record are linked to atmospheric O2 via a number of arguments. However, to date, the only mechanism capable of generating S-MIF consistent with the Archaean sedimentary records involves gas-phase ultraviolet irradiation of SO21 photolysis. More recently, Δ33S S-MIF trends have been reported from en vitro thermochemical sulphate reduction (TSR) experiments, prompting authors to question the importance of S-MIF as a proxy for Earth oxidation2. Importantly, whilst emerging TSR experiments3,4 affirm the reported Δ33S trends2, these experiments fail to identify correlated S-MIF between Δ33S and Δ36S values3,4. Realization that S-MIF is confined to Δ33S during TSR, precludes TSR as a mechanism responsible for the origin of the Archaean S-MIF record but strongly suggests the effect originating from a magnetic isotope effect (MIE) associated with 33S nucleus3,4. Clearly, photochemical and thermochemical processes impart different Δ36S/Δ33S trends with significant variation in δ34S; however, a complete experimental elucidation of mechanisms responsible for the S-MIF and S-MIE signatures is lacking. Interestingly, a complete understanding of the S-isotope chemistry during thermal- and photo-chemical decomposition may reveal wavelength and thermal dependence archived in the sedimentary record. Here we extend the experimental database to explore the magnitude and sign of Δ36S/Δ33S and δ34S produced during both photo- and thermochemical processes. Here the organic sulphur compounds (OSC) utilized in these experiments carries diagnostic Δ36S/Δ33S patterns that differ from those reported from photolysis experiment SO2 and from the

  5. Sulfur isotope evidence for penetration of MVT fluids into igneous basement rocks, southeast Missouri, USA

    NASA Astrophysics Data System (ADS)

    Shelton, K. L.; Burstein, I. B.; Hagni, R. D.; Vierrether, C. B.; Grant, S. K.; Hennigh, Q. T.; Bradley, M. F.; Brandom, R. T.

    1995-08-01

    Previous studies of galena and sphalerite from Paleozoic MVT deposits in the Viburnum Trend, southeast Missouri documented large variations in δ34S values throughout the ore-forming event. The present study of Cu-Fe-sulfides reveals a similar δ34S variation that reflects two end-member sulfur reservoirs whose relative importance varied both temporally and spatially. More 34S-enriched sulfides (δ34S approaching 25‰) indicate introduction of sulfur from basinal sedimentary sources, whereas more 32S-enriched sulfides (δ34S < 5‰) may reflect fluids moving through underlying granitic basement. Two areas containing Precambrian, igneous-hosted FeCu mineralization in southeast Missouri (West and Central Domes of Boss-Bixby) were investigated to elucidate their relationship to Cu-rich MVT orebodies hosted nearby within the overlying Cambrian Bonneterre Dolomite. Mineralization at Boss-Bixby is composed of an early phase of iron oxide deposition followed by Cu-Fe-sulfides. The Central Dome is faulted and its mineralization is more fracture-controlled than the typically podiform ores of the West Dome. The δ34S values of West Dome sulfides are 0.9 to 6.5‰ and pyrite-chalcopyrite indicate a temperature of 525° ± 50 °C. These data indicate an igneous source of sulfur during Precambrian ore deposition. In contrast, δ34S values of Central Dome sulfides are 9.4 to 20.0‰ and pyrite-chalcopyrite indicate temperatures of 275° ± 50 °C. Similar δ34S values are obtained for chalcopyrite from the overlying MVT deposits. We speculate that deeply circulating, basin-derived MVT fluids mobilized sulfur and copper from the underlying igneous basement and redeposited them in overlying Curich MVT orebodies, as well as overprinting earlier Precambrian sulfides of the Central Dome with a later, Paleozoic MVT sulfur isotope signature. Many models for MVT fluid circulation in the Midcontinent region of North America assume that igneous basement rocks are an impermeable boundary

  6. Exploring Archean seawater sulfate via triple S isotopes in carbonate associated sulfate.

    NASA Astrophysics Data System (ADS)

    Paris, G.; Fischer, W. W.; Sessions, A. L.; Adkins, J. F.

    2015-12-01

    Multiple sulfur isotope ratios in Archean sedimentary rocks provide powerful insights into the behavior of the ancient sulfur cycle, the redox state of fluid Earth, and the timing of the rise of atmospheric oxygen [1]. The Archean sulfur isotope record is marked by pronounced mass-independent fractionation (Δ33S≠0)—signatures widely interpreted as the result of SO2 photolysis from "short-wavelength" UV light resulting in a reduced phase carrying positive Δ33S values (ultimately recorded in pyrite) and an oxidized phase carrying negative Δ33S values carried by sulfate [2]. Support for this hypothesis rests on early laboratory experiments and observations of negative Δ33S from barite occurrences in mixed volcanic sedimentary strata in Mesoarchean greenstone terrains. Despite forming the framework for understanding Archean sulfur cycle processes, this hypothesis is still largely untested, notably due to the lack of sulfate minerals in Archean strata. Using a new MC-ICP-MS approach combined with petrography and X-ray spectroscopy we have generated a growing S isotope dataset from CAS extracted from Archean carbonates from a range of sedimentary successions, including: the 2.6 to 2.521 Ga Campbellrand-Malmani carbonate platform (Transvaal Supergroup, South Africa), 2.7 Ga Cheshire Formation (Zimbabwe), and 2.9 Ga Steep Rock Formation (Canada). Importantly, we observe positive δ34S and Δ33S values across a range of different lithologies and depositional environments. These results demonstrate that dissolved sulfate in seawater was characterized by positive Δ33S values—a result that receives additional support from recent laboratory and theoretical experiments [e.g. 4, 5]. [1] Farquhar et al., 2000, Science [2] Farquhar et al., 2001, Journal of Geophysical Research: Planets [3] Paris et al., 2014, Science. [4] Whitehill et al., 2013, Proceedings of the National Academy of Sciences. [5] Claire et al., 2014 Geochimica et Cosmochimica Acta

  7. Biosignatures in chimney structures and sediment from the Loki's Castle low-temperature hydrothermal vent field at the Arctic Mid-Ocean Ridge.

    PubMed

    Jaeschke, Andrea; Eickmann, Benjamin; Lang, Susan Q; Bernasconi, Stefano M; Strauss, Harald; Früh-Green, Gretchen L

    2014-05-01

    We investigated microbial life preserved in a hydrothermally inactive silica–barite chimney in comparison with an active barite chimney and sediment from the Loki's Castle low-temperature venting area at the Arctic Mid-Ocean Ridge (AMOR) using lipid biomarkers. Carbon and sulfur isotopes were used to constrain possible metabolic pathways. Multiple sulfur (dδ34S, Δ33S) isotopes on barite over a cross section of the extinct chimney range between 21.1 and 22.5 % in δ34S, and between 0.020 and 0.034 % in Δ33S, indicating direct precipitation from seawater. Biomarker distributions within two discrete zones of this silica–barite chimney indicate a considerable difference in abundance and diversity of microorganisms from the chimney exterior to the interior. Lipids in the active and inactive chimney barite and sediment were dominated by a range of 13C-depleted unsaturated and branched fatty acids with δ13C values between -39.7 and -26.7 %, indicating the presence of sulfur-oxidizing and sulfate-reducing bacteria. The majority of lipids (99.5 %) in the extinct chimney interior that experienced high temperatures were of archaeal origin. Unusual glycerol monoalkyl glycerol tetraethers (GMGT) with 0–4 rings were the dominant compounds suggesting the presence of mainly (hyper-) thermophilic archaea. Isoprenoid hydrocarbons with δ13C values as low as -46 % also indicated the presence of methanogens and possibly methanotrophs.

  8. Tracing sources of sulfur in the Florida everglades

    USGS Publications Warehouse

    Bates, A.L.; Orem, W.H.; Harvey, J.W.; Spiker, E. C.

    2002-01-01

    We examined concentrations and sulfur isotopic ratios (34S/32S, expressed as ??34S in parts per thousand [???] units) of sulfate in surface water, ground water, and rain water from sites throughout the northern Everglades to establish the sources of sulfur to the ecosystem. The geochemistry of sulfur is of particular interest in the Everglades because of its link, through processes mediated by sulfate -reducing bacteria, to the production of toxic methylmercury in this wetland ecosystem. Methylmercury, a neurotoxin that is bioaccumulated, has been found in high concentrations in freshwater fish from the Everglades, and poses a potential threat to fish-eating wildlife and to human health through fish consumption. Results show that surface water in large portions of the Everglades is heavily contaminated with sulfate, with the highest concentrations observed in canals and marsh areas receiving canal discharge. Spatial patterns in the range of concentrations and ??34S values of sulfate in surface water indicate that the major source of sulfate in sulfur-contaminated marshes is water from canals draining the Everglades Agricultural Area. Shallow ground water underlying the Everglades and rain water samples had much lower sulfate concentrations and ??34S values distinct from those found in surface water. The ??34S results implicate agricultural fertilizer as a major contributor to the sulfate contaminating the Everglades, but ground water under the Everglades Agricultural Area (EAA) may also be a contributing source. The contamination of the northern Everglades with sulfate from canal discharge may be a key factor in controlling the distribution and extent of methylmercury production in the Everglades.

  9. Sulfur isotope mass-independent fractionation in impact deposits of the 3.2 billion-year-old Mapepe Formation, Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    van Zuilen, M. A.; Philippot, P.; Whitehouse, M. J.; Lepland, A.

    2014-10-01

    Theoretical and experimental studies have shown that atmospheric SO2 isotopologue self-shielding effects in the 190-220 nm region of the solar spectrum are the likely cause for mass independent fractionation of sulfur isotopes (S-MIF). The main products of this photochemical reaction - SO3 and S0 - typically define a compositional array of ca. Δ33S34S = 0.06-0.14. This is at odds with the generally observed trend in Archean sulfides, which broadly defines an array of ca. Δ33S34S = 0.9. Various explanations have been proposed, including a diminution of δ34S caused by chemical and biogenic mass-dependent fractionation of sulfur isotopes (S-MDF), mixing with photolytic products produced during felsic volcanic events, or partial blocking of the low-wavelength part of the spectrum due to the presence of reduced atmospheric gases or an organic haze. Early in Earth history large meteorite impacts would have ejected dust and gas clouds into the atmosphere that shielded solar radiation and affected global climate. It is thus likely that at certain time intervals of high meteorite flux the atmosphere was significantly perturbed, having an effect on atmospheric photochemistry and possibly leaving anomalous sulfur isotopic signatures in the rock record. Here we describe the sulfur isotopic signatures in sulfides of spherule beds S2, S3 and S4 of the Barberton Greenstone Belt, South Africa. In particular, in spherule bed S3 - and to a lesser extent S4 - a trend of ca. Δ33S34S = 0.23 is observed that closely follows the expected trend for SO2-photolysis in the 190-220 nm spectral range. This suggests that an impact dust cloud (deposited as spherule beds), which sampled the higher region of the atmosphere, specifically incorporated products of SO2 photolysis in the 190-220 nm range, and blocked photochemical reactions at higher wavelengths (250-330 nm band). By implication, the generally observed Archean trend appears to be the result of mixing of different MIF

  10. Leishmaniasis Worldwide and Global Estimates of Its Incidence

    PubMed Central

    Vélez, Iván D.; Bern, Caryn; Herrero, Mercé; Desjeux, Philippe; Cano, Jorge; Jannin, Jean

    2012-01-01

    As part of a World Health Organization-led effort to update the empirical evidence base for the leishmaniases, national experts provided leishmaniasis case data for the last 5 years and information regarding treatment and control in their respective countries and a comprehensive literature review was conducted covering publications on leishmaniasis in 98 countries and three territories (see ‘Leishmaniasis Country Profiles Text S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31, S32, S33, S34, S35, S36, S37, S38, S39, S40, S41, S42, S43, S44, S45, S46, S47, S48, S49, S50, S51, S52, S53, S54, S55, S56, S57, S58, S59, S60, S61, S62, S63, S64, S65, S66, S67, S68, S69, S70, S71, S72, S73, S74, S75, S76, S77, S78, S79, S80, S81, S82, S83, S84, S85, S86, S87, S88, S89, S90, S91, S92, S93, S94, S95, S96, S97, S98, S99, S100, S101’). Additional information was collated during meetings conducted at WHO regional level between 2007 and 2011. Two questionnaires regarding epidemiology and drug access were completed by experts and national program managers. Visceral and cutaneous leishmaniasis incidence ranges were estimated by country and epidemiological region based on reported incidence, underreporting rates if available, and the judgment of national and international experts. Based on these estimates, approximately 0.2 to 0.4 cases and 0.7 to 1.2 million VL and CL cases, respectively, occur each year. More than 90% of global VL cases occur in six countries: India, Bangladesh, Sudan, South Sudan, Ethiopia and Brazil. Cutaneous leishmaniasis is more widely distributed, with about one-third of cases occurring in each of three epidemiological regions, the Americas, the Mediterranean basin, and western Asia from the Middle East to Central Asia. The ten countries with the highest estimated case counts, Afghanistan, Algeria, Colombia, Brazil, Iran, Syria, Ethiopia, North Sudan, Costa

  11. Leishmaniasis worldwide and global estimates of its incidence.

    PubMed

    Alvar, Jorge; Vélez, Iván D; Bern, Caryn; Herrero, Mercé; Desjeux, Philippe; Cano, Jorge; Jannin, Jean; den Boer, Margriet

    2012-01-01

    As part of a World Health Organization-led effort to update the empirical evidence base for the leishmaniases, national experts provided leishmaniasis case data for the last 5 years and information regarding treatment and control in their respective countries and a comprehensive literature review was conducted covering publications on leishmaniasis in 98 countries and three territories (see 'Leishmaniasis Country Profiles Text S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31, S32, S33, S34, S35, S36, S37, S38, S39, S40, S41, S42, S43, S44, S45, S46, S47, S48, S49, S50, S51, S52, S53, S54, S55, S56, S57, S58, S59, S60, S61, S62, S63, S64, S65, S66, S67, S68, S69, S70, S71, S72, S73, S74, S75, S76, S77, S78, S79, S80, S81, S82, S83, S84, S85, S86, S87, S88, S89, S90, S91, S92, S93, S94, S95, S96, S97, S98, S99, S100, S101'). Additional information was collated during meetings conducted at WHO regional level between 2007 and 2011. Two questionnaires regarding epidemiology and drug access were completed by experts and national program managers. Visceral and cutaneous leishmaniasis incidence ranges were estimated by country and epidemiological region based on reported incidence, underreporting rates if available, and the judgment of national and international experts. Based on these estimates, approximately 0.2 to 0.4 cases and 0.7 to 1.2 million VL and CL cases, respectively, occur each year. More than 90% of global VL cases occur in six countries: India, Bangladesh, Sudan, South Sudan, Ethiopia and Brazil. Cutaneous leishmaniasis is more widely distributed, with about one-third of cases occurring in each of three epidemiological regions, the Americas, the Mediterranean basin, and western Asia from the Middle East to Central Asia. The ten countries with the highest estimated case counts, Afghanistan, Algeria, Colombia, Brazil, Iran, Syria, Ethiopia, North Sudan, Costa Rica

  12. A new 33-s period in the SSS X-ray light curve of the nova LMC 2009a and confirmation of the 35 s modulation in KT Eri

    NASA Astrophysics Data System (ADS)

    Ness, J.-U.; Kuulkers, E.; Henze, M.; Schwarz, G.; Osborne, J. P.; Beardmore, A. P.; Dobrotka, A.; Piro, A. L.; Starrfield, S.

    2014-05-01

    In addition to four known systems with super soft source (SSS) X-ray emission ( We have searched for similar oscillations in all XMM-Newton and Chandra observations of all objects containing SSS emission, that is persistent SSS and novae during their SSS phase. ...

  13. Multiple Sulfur Isotopic Composition of Sulfate in the Fresh Water, Deception Island, South Shetland Islands, Antarctica

    NASA Astrophysics Data System (ADS)

    Lee, I.; Lee, J.; Seo, J.; Park, B.; Farquhar, J.; Kaufman, A. J.; Kim, K.

    2008-12-01

    Isotopic compositions of sulfur (δ33S, δ34S, δ36S) from sulfate of the fresh water in Deception island were measured to provide the information on the sources of sulfate in the surface water and to check the possibility of mass independent fractionation of sulfur in this area. Most part of the Deception Island is covered by volcanic rocks from the recent activities not exceeding 200 ka. To south and north of the Deception Island, plutonic rocks of granitic composition ranging from Mesozoic to Cenozoic are widely distributed. Because of the recent volcanic activities in Deception Island (most recent eruptions in 1970), sulfur containing aerosols produced in the stratosphere might have been added and could contribute the mass independent signature to the hydrologic system. The δ34S values of sulfate extracted from water samples at Deception Island range from 8.1 to 17.3 per mil. The Δ33S values of sulfate extracted from water samples at Deception island range from 0.000 to 0.046 per mil. Δ36S values of sulfate extracted from water samples range from -0.257 to 0.186 per mil. These waters represent the concentration from Antarctic snow and ice. In Antarctic region the natural source of sulfate dissolved in water could be originated from marine biogenic source (DMS), sea-salt, volcanic source, or other continental sources. The δ34S values of water sulfate at Deception Island well support the dominance of marine biogenic origin for the source of sulfur. Mass independent sulfur isotope anomalies are known to be produced through photochemical reactions and have been reported in Precambrian rock samples, recent atmospheric aerosols, and ice cores containing the volcanic erupted ashes piercing through stratosphere. Isotopic composition of sulfate in fresh water indicates that only mass-dependent fractionation was prevailing for sulfur isotopic system at Deception Island.

  14. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere.

    PubMed

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆(33)S and ∆(36)S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ(34)S values at ∼+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆(33)S between -1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ(34)S peak at +9‰ is associated with non-(33)S-anomalous barites displaying negative ∆(36)S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere.

  15. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere.

    PubMed

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆(33)S and ∆(36)S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ(34)S values at ∼+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆(33)S between -1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ(34)S peak at +9‰ is associated with non-(33)S-anomalous barites displaying negative ∆(36)S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere. PMID:27330111

  16. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere

    NASA Astrophysics Data System (ADS)

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆33S and ∆36S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ34S values at ˜+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆33S between -1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ34S peak at +9‰ is associated with non-33S-anomalous barites displaying negative ∆36S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere.

  17. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere

    NASA Astrophysics Data System (ADS)

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆33S and ∆36S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ34S values at ˜+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆33S between ‑1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ34S peak at +9‰ is associated with non–33S-anomalous barites displaying negative ∆36S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere.

  18. Correlation between multielement stable isotope ratio and geographical origin in Peretta cows' milk cheese.

    PubMed

    Manca, G; Franco, M A; Versini, G; Camin, F; Rossmann, A; Tola, A

    2006-03-01

    The aim of this study was to characterize the isotopic composition and protect "Peretta" cows' milk cheese, a typical product of Sardinia, against other cheeses of the same appearance sold under the same name, but made of raw materials from northern Europe. The study was concerned with 3 types of cheese: those produced in local dairies from milk from free-grazing or pasture-grazing cows in Sardinia (local dairy product), cheeses made on an industrial scale from milk produced by intensive farming in Sardinia (factory cheese), and cheeses made with raw materials imported from other countries (imported product). To distinguish the Sardinian cheeses from the imported product, the stable isotope ratios 13C/12C, 15N/14N, D/H, 34S/32S, and (18)O/(16)O were used. Determination of the isotopic data delta13C, delta15N, delta2H, and delta34S was performed in the casein fraction, whereas delta(18)O and delta13C were determined in the glycerol fraction. Measurements were performed by isotope ratio mass spectrometry. A comparison between mean values of the isotope ratios by statistical analysis (ANOVA and Tukey's test) showed that the greatest difference between the 3 types of cheese (local dairy, factory, and imported products) was in the 13C/12C, 34S/32S, and (18)O/(16)O isotope ratios. In the other parameters, either no differences (delta15N) or minimal differences (delta2H) were found. Evaluation of the data by multivariate statistical analysis (principal component analysis and hierarchical cluster analysis) revealed that the isotope characteristics of the factory products were similar to those of the cheeses produced from imported raw materials, whereas a difference was found between the local dairy-produced cheeses and the products in the other 2 categories. PMID:16507675

  19. Sulfur Isotopic Compositions of Individual Aerosol Particles from Below and Within Stratocumulus Clouds over the Southeast Pacific Ocean During VOCALS

    NASA Astrophysics Data System (ADS)

    Bose, M.; Anderson, J. R.; Twohy, C. H.; Williams, P.

    2012-12-01

    The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) was a large multi-national field experiment that collected data and samples from a region of the southeast Pacific with the world's largest stratocumulus cloud systems. Samples examined here are residues of cloud droplets and ambient particles from below the clouds collected during flights of the NCAR C-130 off the coast of Chile. Selected samples were studied using scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS) in order to contribute to the understanding of the source of non-sea-salt sulfate in this region. Particles in the size range from 0.2 to 1μm diameter on holey and lacey carbon were characterized by SEM combined with energy dispersive spectrometry (EDS), thus identifying sulfur-containing particles. Subsequently, sulfur ion imaging of identified sea salt, ammonium sulfate and sodium sulfate particles was done with the Cameca Ametek NanoSIMS 50L at Arizona State University. A <1pA Cs+ beam was rastered over 5×5μm2 or 10×10μm2 areas while secondary ions (12C-, 16O-, 32S-, 34S-, 35Cl-) and secondary electrons were collected simultaneously at high mass resolution (m/Δm>10000). Each measurement typically consists of 5 to 8 frames (~5.4 min/frame). NIST barium sulfate and ammonium sulfate particles were used as isotopic standards. Preliminary analyses on a small pool of VOCALS individual particles show a wide range in sulfur isotopic compositions (δ34S = -56 to +41‰). In addition, the in-cloud particles are enriched in 32S, while the ambient particles exhibit 34S excesses. Isotopic data on a large inventory of particles is being currently acquired, which will be presented at the meeting. Data will be used to investigate sulfur sources (marine vs. continental) and the processing of aerosols through sulfate formation.

  20. Correlation between multielement stable isotope ratio and geographical origin in Peretta cows' milk cheese.

    PubMed

    Manca, G; Franco, M A; Versini, G; Camin, F; Rossmann, A; Tola, A

    2006-03-01

    The aim of this study was to characterize the isotopic composition and protect "Peretta" cows' milk cheese, a typical product of Sardinia, against other cheeses of the same appearance sold under the same name, but made of raw materials from northern Europe. The study was concerned with 3 types of cheese: those produced in local dairies from milk from free-grazing or pasture-grazing cows in Sardinia (local dairy product), cheeses made on an industrial scale from milk produced by intensive farming in Sardinia (factory cheese), and cheeses made with raw materials imported from other countries (imported product). To distinguish the Sardinian cheeses from the imported product, the stable isotope ratios 13C/12C, 15N/14N, D/H, 34S/32S, and (18)O/(16)O were used. Determination of the isotopic data delta13C, delta15N, delta2H, and delta34S was performed in the casein fraction, whereas delta(18)O and delta13C were determined in the glycerol fraction. Measurements were performed by isotope ratio mass spectrometry. A comparison between mean values of the isotope ratios by statistical analysis (ANOVA and Tukey's test) showed that the greatest difference between the 3 types of cheese (local dairy, factory, and imported products) was in the 13C/12C, 34S/32S, and (18)O/(16)O isotope ratios. In the other parameters, either no differences (delta15N) or minimal differences (delta2H) were found. Evaluation of the data by multivariate statistical analysis (principal component analysis and hierarchical cluster analysis) revealed that the isotope characteristics of the factory products were similar to those of the cheeses produced from imported raw materials, whereas a difference was found between the local dairy-produced cheeses and the products in the other 2 categories.

  1. Isotopic and Geochemical Tracers for U(VI) Reduction and U Mobility at an in Situ Recovery U Mine.

    PubMed

    Basu, Anirban; Brown, Shaun T; Christensen, John N; DePaolo, Donald J; Reimus, Paul W; Heikoop, Jeffrey M; Woldegabriel, Giday; Simmons, Ardyth M; House, Brian M; Hartmann, Matt; Maher, Kate

    2015-05-19

    In situ recovery (ISR) uranium (U) mining mobilizes U in its oxidized hexavalent form (U(VI)) by oxidative dissolution of U from the roll-front U deposits. Postmining natural attenuation of residual U(VI) at ISR mines is a potential remediation strategy. Detection and monitoring of naturally occurring reducing subsurface environments are important for successful implementation of this remediation scheme. We used the isotopic tracers (238)U/(235)U (δ(238)U), (234)U/(238)U activity ratio, and (34)S/(32)S (δ(34)S), and geochemical measurements of U ore and groundwater collected from 32 wells located within, upgradient, and downgradient of a roll-front U deposit to detect U(VI) reduction and U mobility at an ISR mining site at Rosita, TX, USA. The δ(238)U in Rosita groundwater varies from +0.61‰ to -2.49‰, with a trend toward lower δ(238)U in downgradient wells. The concurrent decrease in U(VI) concentration and δ(238)U with an ε of 0.48‰ ± 0.08‰ is indicative of naturally occurring reducing environments conducive to U(VI) reduction. Additionally, characteristic (234)U/(238)U activity ratio and δ(34)S values may also be used to trace the mobility of the ore zone groundwater after mining has ended. These results support the use of U isotope-based detection of natural attenuation of U(VI) at Rosita and other similar ISR mining sites.

  2. Crystal structure of (+)-methyl (E)-3-[(2S,4S,5R)-2-amino-5-hy-droxy-meth-yl-2-tri-chloro-methyl-1,3-dioxolan-4-yl]-2-methyl-prop-2-enoate.

    PubMed

    Oishi, Takeshi; Yasushima, Daichi; Yuasa, Kihiro; Sato, Takaaki; Chida, Noritaka

    2016-03-01

    In the title compound, C10H14Cl3NO5, the five-membered dioxolane ring adopts an envelope conformation. The C atom at the flap, which is bonded to the hy-droxy-methyl substituent, deviates from the mean plane of other ring atoms by 0.357 (5) Å. There are two intra-molecular hydrogen bonds (O-H⋯N and N-H⋯O) between the hy-droxy and amino groups, so that O- and N-bound H atoms involved in these hydrogen bonds are each disordered with equal occupancies of 0.50. The methyl 2-methyl-prop-2-enoate substituent also shows a disordered structure over two sets of sites with refined occupancies of 0.482 (5) and 0.518 (5). In the crystal, mol-ecules are connected into a dimer by an O-H⋯O hydrogen bond. The dimers are further linked by N-H⋯O, C-H⋯N and C-H⋯O inter-actions, extending a sheet structure parallel to ([Formula: see text]01). PMID:27006804

  3. Multiple sulfur and carbon isotope composition of sediments from the Belingwe Greenstone Belt (Zimbabwe): A biogenic methane regulation on mass independent fractionation of sulfur during the Neoarchean?

    NASA Astrophysics Data System (ADS)

    Thomazo, Christophe; Nisbet, Euan G.; Grassineau, Nathalie V.; Peters, Marc; Strauss, Harald

    2013-11-01

    To explore the linkage between mass-independent sulfur isotope fractionation (MIF-S) and δ13Corg excursions during the Neoarchean, as well as the contemporary redox state and biogeochemical cycling of carbon and sulfur, we report the results of a detailed carbon and multiple sulfur (δ34S, δ33S, δ36S) isotopic study of the ∼2.7 Ga Manjeri and ∼2.65 Ga Cheshire formations of the Ngezi Group (Belingwe Greenstone Belt, Zimbabwe). Multiple sulfur isotope data show non-zero Δ33S and Δ36S values for sediments older than 2.4 Ga (i.e. prior to the Great Oxidation Event, GOE), indicating MIF-S thought to be associated with low atmospheric oxygen concentration. However, in several 2.7-2.5 Ga Neoarchean localities, small-scale variations in MIF-S signal (magnitude) seem to correlate with negative excursion in δ13Corg, possibly reflecting a global connection between the relative reaction rate of different MIF-S source reaction and sulfur exit channels and the biogenic flux of methane into the atmosphere during periods of localized, microbiologically mediated, shallow surface-water oxygenation. The Manjeri Formation black shales studied here display a wide range of δ13Corg between -35.4‰ and -16.2‰ (average of -30.3 ± 6.0‰, 1σ), while the Cheshire Formation shales have δ13Corg between -47.7‰ and -35.1‰ (average -41.3 ± 3‰, 1σ). The δ34S values of sedimentary sulfides from Manjeri Formation vary between -15.15‰ and +2.37‰ (average -1.71 ± 4.76‰, 1σ), showing very small and mostly negative Δ33S values varying from -0.58‰ to 0.87‰ (average 0.02 ± 0.43‰, 1σ). Cheshire Formation black shale sulfide samples measured in this study have δ34S values ranging from -2.11‰ to 2.39‰ (average 0.25 ± 1.08‰, 1σ) and near zero and solely positive Δ33S anomalies between 0.14‰ and 1.17‰ (average 0.56 ± 0.29‰, 1σ). Moreover, Δ36S/Δ33S in the two formations are comparable with a slope of -1.38 (Manjeri Formation) and -1.67 (Cheshire

  4. Sulfur and Hydrogen Isotope Anomalies in Organic Compounds from the Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Cooper, G. W.; Thiemens, M. H.; Jackson, T.; Chang, S.

    1995-09-01

    Carbon, hydrogen and sulfur isotopic measurements have been made on individual members of a recently discovered class of organic sulfur compounds, alkyl sulfonates, in the Murchison meteorite. Cooper and Chang (1) reported the first carbon isotopic measurements of Murchison organic sulfonates, providing insight into potential synthetic mechanisms of these, and possibly other, organic species. Hydrogen isotopic measurements of the sulfonates now reveal deuterium excesses ranging from +660 to +2730 per mil. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low temperature astrophysical environment consistent with that of dense molecular clouds. Measurement of the sulfur isotopes provide further constraints on the origin and mechanism of formation of these organic molecules. Recently, there has been growing documentation of sulfur isotopic anomalies in meteoritic material. Thiemens and Jackson (2) have shown that some bulk ureilites possess excess 33S and Thiemens et al. (3) have reported excess 33S in an oldhamite separate from Norton County. Rees and Thode (4) reported a large 33S excess in an Allende acid residue, however, attempts to verify this measurement have been unsuccessful, possibly due to the heterogeneous nature of the carrier phase. With the recognition that sulfur isotopes may reflect nebular chemistry, identification of potential carriers is of considerable interest. In the present study the three stable isotopes of sulfur were measured in methane sulfonate extracted from the Murchison meteorite. The isotopic composition was found to be delta 33S=2.48, delta 34S=2.49 and delta 36S = 6.76 per mil. Based upon analysis of more than 60 meteoritic, and numerous terrestrial samples, the mass fractionation lines are defined by 33Delta = delta 33S-0.50 delta 34S and 36Delta = delta 36S -1.97 delta 34S. From these relations a 33Delta = 1.24 per mil and 36Delta = 0.89 per mil is observed. These anomalies

  5. Combined Sulfur K-edge XANES Spectroscopy and Stable Isotope Analysis of Fulvic Acids and Groundwater Sulfate Identify Sulfur Cycling in a Karstic Catchment Area

    SciTech Connect

    Einsiedl,F.; Schafer, T.; Northrup, P.

    2007-01-01

    Chemical and isotope analyses on groundwater sulfate, atmospheric deposition sulfate and fulvic acids (FAs) associated sulfur were used to determine the S cycling in a karstic catchment area of the Franconian Alb, Southern Germany. Sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy provided information on the oxidation state and the mechanism of the incorporation of sulfur in FAs. During base flow {delta}{sup 34}S values of groundwater sulfate were slightly depleted to those of recent atmospheric sulfate deposition with mean amount-weighted {delta}{sup 34}S values of around + 3{per_thousand}. The {delta}{sup 18}O values of groundwater sulfate shifted to lower values compared to those of atmospheric deposition and indicated steadiness from base flow to peak flow. The reduced sulfur species (S{sub -1}/thiol; S{sub 0}/thiophene, disulfide, S{sub +2}2/sulfoxide) of soil FAs averaged around 49% of the total sulfur and {delta}{sup 34}S value in FAs was found to be 0.5{per_thousand}. The formation of polysulfides and thiols in FAs in concert with a decreasing isotope value of {delta}{sup 34}S in FAs with respect to those of atmospheric deposition sulfate suggests oxidation of H{sub 2}S, enriched in the {sup 32}S isotope, with organic material. The depletion of {delta}{sup 18}O-SO{sub 4}{sup 2-} by several per mil in groundwater sulfate with respect to those of atmospheric deposition is, therefore, consistent with the hypothesis that SO{sub 4}{sup 2-} has been cycled through the organic S pool as well as that groundwater sulfate is formed by oxidation of H{sub 2}S with organic matter in the mineral soil of the catchment area.

  6. Carbon and sulfur isotopic signatures of ancient life and environment at the microbial scale: Neoarchean shales and carbonates.

    PubMed

    Williford, K H; Ushikubo, T; Lepot, K; Kitajima, K; Hallmann, C; Spicuzza, M J; Kozdon, R; Eigenbrode, J L; Summons, R E; Valley, J W

    2016-03-01

    An approach to coordinated, spatially resolved, in situ carbon isotope analysis of organic matter and carbonate minerals, and sulfur three- and four-isotope analysis of pyrite with an unprecedented combination of spatial resolution, precision, and accuracy is described. Organic matter and pyrite from eleven rock samples of Neoarchean drill core express nearly the entire range of δ(13) C, δ(34) S, Δ(33) S, and Δ(36) S known from the geologic record, commonly in correlation with morphology, mineralogy, and elemental composition. A new analytical approach (including a set of organic calibration standards) to account for a strong correlation between H/C and instrumental bias in SIMS δ(13) C measurement of organic matter is identified. Small (2-3 μm) organic domains in carbonate matrices are analyzed with sub-permil accuracy and precision. Separate 20- to 50-μm domains of kerogen in a single ~0.5 cm(3) sample of the ~2.7 Ga Tumbiana Formation have δ(13) C = -52.3 ± 0.1‰ and -34.4 ± 0.1‰, likely preserving distinct signatures of methanotrophy and photoautotrophy. Pyrobitumen in the ~2.6 Ga Jeerinah Formation and the ~2.5 Ga Mount McRae Shale is systematically (13) C-enriched relative to co-occurring kerogen, and associations with uraniferous mineral grains suggest radiolytic alteration. A large range in sulfur isotopic compositions (including higher Δ(33) S and more extreme spatial gradients in Δ(33) S and Δ(36) S than any previously reported) are observed in correlation with morphology and associated mineralogy. Changing systematics of δ(34) S, Δ(33) S, and Δ(36) S, previously investigated at the millimeter to centimeter scale using bulk analysis, are shown to occur at the micrometer scale of individual pyrite grains. These results support the emerging view that the dampened signature of mass-independent sulfur isotope fractionation (S-MIF) associated with the Mesoarchean continued into the early Neoarchean, and that the connections

  7. 99Tcm-MAG3 renogram deconvolution in normal subjects and in normal functioning kidney grafts.

    PubMed

    González, A; Puchal, R; Bajén, M T; Mairal, L; Prat, L; Martin-Comin, J

    1994-09-01

    This study provides values of transit times obtained by 99Tcm- mercaptoacetyl triglycine (99Tcm-MAG3) renogram deconvolution for both normal subjects and kidney graft recipients. The analysis included 50 healthy kidney units from 25 volunteers and 28 normal functioning kidney grafts. The parameters calculated for the whole kidney (WK) and for the renal parenchyma (P) were: mean transit time (MTT) and times at 20% (T20) and 80% (T80) of renal retention function initial height. For healthy kidneys the WK MTT was 174 +/- 27 s and P MTT 148 +/- 22 s. The WK T20 values were 230 +/- 33 s and P T20 231 +/- 34 s. The WK T80 was 108 +/- 19 s and P T80 106 +/- 12 s. Whole kidney and parenchymal values of transit times for normal functioning kidney grafts do not present significant differences with respect to healthy kidneys. PMID:7816379

  8. Atmospheric influence of Earth's earliest sulfur cycle

    PubMed

    Farquhar; Bao; Thiemens

    2000-08-01

    Mass-independent isotopic signatures for delta(33)S, delta(34)S, and delta(36)S from sulfide and sulfate in Precambrian rocks indicate that a change occurred in the sulfur cycle between 2090 and 2450 million years ago (Ma). Before 2450 Ma, the cycle was influenced by gas-phase atmospheric reactions. These atmospheric reactions also played a role in determining the oxidation state of sulfur, implying that atmospheric oxygen partial pressures were low and that the roles of oxidative weathering and of microbial oxidation and reduction of sulfur were minimal. Atmospheric fractionation processes should be considered in the use of sulfur isotopes to study the onset and consequences of microbial fractionation processes in Earth's early history.

  9. Cometary Isotopic Measurements

    NASA Astrophysics Data System (ADS)

    Bockelée-Morvan, Dominique; Calmonte, Ursina; Charnley, Steven; Duprat, Jean; Engrand, Cécile; Gicquel, Adeline; Hässig, Myrtha; Jehin, Emmanuël; Kawakita, Hideyo; Marty, Bernard; Milam, Stefanie; Morse, Andrew; Rousselot, Philippe; Sheridan, Simon; Wirström, Eva

    2015-12-01

    Isotopic ratios in comets provide keys for the understanding of the origin of cometary material, and the physical and chemical conditions in the early Solar Nebula. We review here measurements acquired on the D/H, 14N/15N, 16O/18O, 12C/13C, and 32S/34S ratios in cometary grains and gases, and discuss their cosmogonic implications. The review includes analyses of potential cometary material available in collections on Earth, recent measurements achieved with the Herschel Space Observatory, large optical telescopes, and Rosetta, as well as recent results obtained from models of chemical-dynamical deuterium fractionation in the early solar nebula. Prospects for future measurements are presented.

  10. A thiosulfate shunt in the sulfur cycle of marine sediments.

    PubMed

    Jørgensen, B B

    1990-07-13

    The oxidation of sulfide, generated by bacterial sulfate reduction, is a key process in the biogeochemistry of marine sediments, yet the pathways and oxidants are poorly known. By the use of (35)S-tracer studies of the S cycle in marine and freshwater sediments, a novel shunt function of thiosulfate (S(2)O(3)(2-)) was identified. The S(2)O(3)(2-) constituted 68 to 78 percent of the immediate HS(-)-oxidation products and was concurrently (i) reduced back to HS(-), (ii) oxidized to SO(4)(2-), and (iii) disproportionated to HS(-) + SO(4)(2-). The small thiosulfate pool is thus involved in a dynamic HS(-) - S(2)O(3)(2-) cycle in anoxic sediments. The disproportionation of thiosulfate may help account for the large difference in isotopic composition ((34)S/(32)S) of sulfate and sulfides in sediments and sedimentary rocks.

  11. Multimodal information Management: Evaluation of Auditory and Haptic Cues for NextGen Communication Displays

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Bittner, Rachel M.; Anderson, Mark R.

    2012-01-01

    Auditory communication displays within the NextGen data link system may use multiple synthetic speech messages replacing traditional ATC and company communications. The design of an interface for selecting amongst multiple incoming messages can impact both performance (time to select, audit and release a message) and preference. Two design factors were evaluated: physical pressure-sensitive switches versus flat panel "virtual switches", and the presence or absence of auditory feedback from switch contact. Performance with stimuli using physical switches was 1.2 s faster than virtual switches (2.0 s vs. 3.2 s); auditory feedback provided a 0.54 s performance advantage (2.33 s vs. 2.87 s). There was no interaction between these variables. Preference data were highly correlated with performance.

  12. Sulfur Isotope Variation in Basaltic Melt Inclusions from Krakatau Revealed by a Newly Developed Secondary Ion Mass Spectrometry Technique for Silicate Glasses

    NASA Astrophysics Data System (ADS)

    Mandeville, C. W.; Shimizu, N.; Kelley, K. A.; Cheek, L.

    2008-12-01

    Sulfur is a ubiquitous element with variable valance states (S2-, S0, S4+, S6+) allowing for its participation in a wide variety of chemical and biogeochemical processes. However, its potential as an isotopic tracer in magmatic processes has not been fully developed and is crucial to understanding of sulfur recycling in subduction zones and between Earth's major reservoirs, mantle, lithosphere and coupled hydrosphere-atmosphere. Previous studies of silicate glasses and melt inclusions have been hampered by lack of an in situ isotopic measurement technique with spatial resolution of 10 to 100 microns. We have developed a new secondary ion mass spectrometry (SIMS) analytical technique for measurement of 34S/32S ratios in silicate glasses utilizing the IMS 1280 at Woods Hole Oceanographic Institution. A beam of 133Cs+ ions with 13 keV energy and current of 1-2 nA is focused onto a 10 micron spot and rastered over 30 × 30 microns. A Normal Incidence Electron Gun was used to compensate excess charge. The rastered beam is then centered to the optical axis of the machine, and a mechanical aperture is placed on the image plane to limit the area of analysis to the central 15 × 15 microns. The energy slit width was adjusted to 50 eV. A mass resolving power of 5500 was sufficient for eliminating mass interferences. A suite of synthetic and natural glasses with δ34SVCDT values spanning from - 5.6‰ to 18.5‰ with SiO2 from 44-72 weight % were measured. Magnitude of the instrumental mass fractionation (α) for 34S/32S ratios is 0.991 and is constant for all the glasses measured despite their compositions. Precision of individual measurements of 34S/32S ratios is 0.4 ‰, or better. Preliminary δ34S measurements of olivine-hosted basaltic melt inclusions in pre- 1883 basaltic scoria from Krakatau volcano Indonesia vary from -5.6 to 7.9‰ with sulfur concentrations from 490 to 2170 ppm, respectively. Host olivines are Fo77-80 and inclusions generally need minor to no post

  13. Hydrated sulfates on Mars's surface: water cycle and S isotope tracking

    NASA Astrophysics Data System (ADS)

    Caracas, R.; Bobocioiu, E.

    2014-12-01

    We study a range of hydrated sulfate minerals from first-principles calculations based on density-functional and density-functional perturbation theory. We report the results extensively on the WURM website (http://wurm.info, Caracas and Bobcioiu, 2011). We find that hydration has a more pronounced effect on the spectroscopic properties than cation replacement. The Raman spectra of all phases present clear SO4 features that are easily identifiable. We use this to show one can use the vibrational spectroscopic information as an identification tool in a remote environment, like the Martian surface. Based on the computed vibrational results we analyze the S isotope partitioning. We observe that in general hydration favors enrichment in the lighter S isotope 32S with respect to the heavier 34S, which is accumulated in the less hydrous structures. Thus we show for the first time that the signature of 34S/32S partitioning could be observed by in situ spectroscopy on the surface of Mars. Finally we compute hydration energies. For example, in the hydrated magnesium sulfate series we find that epsomite and meridianiite with, respectively 7 and 11 water molecules per MgSO4 unit are particularly stable with respect to other individual or combinations of hydration states (Bobocioiu and Caracas, 2014). This can be related to the diurnal cycle of hydration and dehydration and hence it can improve the modeling of the water circulation on Mars. References: E. Bobocioiu, R. Caracas (2014) Stability and spectroscopy of Mg sulfate minerals. Role of hydration on sulfur isotope partitioning. Amer. Mineral., 99, 1216-1220. R. Caracas, E. Bobocioiu (2011) The WURM project - a freely available web-based repository of computed physical data for minerals. Amer. Mineral. 96, 437-444.

  14. Triple sulfur isotope composition of Late Archean seawater sulfate

    NASA Astrophysics Data System (ADS)

    Paris, G.; Fischer, W. W.; Sessions, A. L.; Adkins, J. F.

    2013-12-01

    Multiple sulfur isotope ratios in Archean sedimentary rocks have provided powerful insights into the behavior of the ancient sulfur cycle, the redox state of fluid Earth, and the timing of the rise of atmospheric oxygen [1]. Most processes fractionate sulfur isotopes in proportion to their mass differences, but the Archean sulfur isotope record is marked by pronounced mass-independent fractionation (MIF, Δ33S≠0). The origin of these signatures has been traditionally interpreted as the result of photolysis of SO2 from short wavelength UV light, with positive Δ33S values recorded in pyrite and negative Δ33S values in sulfate-bearing phases [2]. This long-held hypothesis rests on observations of negative Δ33S from enigmatic barite occurrences from mixed volcanic sedimentary strata in Mesoarchean greenstone terrains. Despite forming the framework for understanding Archean sulfur cycle processes [3], it is largely untested [3]. It is largely untested. Consequently, the biggest challenge to our current understanding of the early sulfur cycle is a poor understanding of the isotopic composition of seawater sulfate. Sulfate evaporite minerals are absent from Archean strata and the sulfur isotope record is written entirely by measurements of pyrite. Carbonate associated sulfate (CAS) provides an important archive for assaying the isotopic composition of ancient seawater sulfate It has been exploited in many studies of Phanerozoic and Proterozoic sulfate but have been only marginally used thus far for Archean samples because of the extremely low concentration of CAS in limestones and dolomites from this era. We have developed a novel MC-ICP-MS approach to solve this problem [4]. This new method lowers the detection limit by up to three orders of magnitude for δ34S and Δ33S measurements, enabling to work on a few nmols of sulfate which represent only tens of mg of sample powders micromilled from specific carbonate textures. Two stratigraphic sections from the 2

  15. On the isotopic fingerprint exerted on carbonyl sulfide by the stratosphere

    NASA Astrophysics Data System (ADS)

    Schmidt, J. A.; Hattori, S.; Yoshida, N.; Nanbu, S.; Johnson, M. S.; Schinke, R.

    2012-09-01

    The isotopic fractionation in OCS photolysis is studied theoretically from first principles. UV absorption cross sections for OCS, OC33S, OC34S, OC36S and O13CS are calculated using the time-depedent quantum mechanical formalism and recent potential energy surfaces for the lowest four singlet and lowest four triplet electronic states. The calculated isotopic fractionations as a function of wavelength are in good agreement with recent measurements by Hattori et al. (2011) and indicate that photolysis leads to only a small enrichment of 34S in the remaining pool of OCS. A simple stratospheric model is constructed taking into account the main stratospheric sink reactions of OCS and it is found that stratospheric removal overall slightly favors light OCS in constrast to the findings of Leung et al. (2002). These results show, based on isotopic considerations, that OCS is an acceptable source of background stratosperic sulfate aerosol in agreement with a recent model study of Brühl et al. (2012). The 13C isotopic fractionation due to photolysis of OCS is significant and will leave a strong signal in the pool of remaining OCS making it a candidate for tracing using the ACE-FTS and MIPAS data sets.

  16. An isotopic analysis of ionising radiation as a source of sulphuric acid

    NASA Astrophysics Data System (ADS)

    Enghoff, M. B.; Bork, N.; Hattori, S.; Meusinger, C.; Nakagawa, M.; Pedersen, J. O. P.; Danielache, S.; Ueno, Y.; Johnson, M. S.; Yoshida, N.; Svensmark, H.

    2012-06-01

    Sulphuric acid is an important factor in aerosol nucleation and growth. It has been shown that ions enhance the formation of sulphuric acid aerosols, but the exact mechanism has remained undetermined. Furthermore some studies have found a deficiency in the sulphuric acid budget, suggesting a missing source. In this study the production of sulphuric acid from SO2 through a number of different pathways is investigated. The production methods are standard gas phase oxidation by OH radicals produced by ozone photolysis with UV light, liquid phase oxidation by ozone, and gas phase oxidation initiated by gamma rays. The distributions of stable sulphur isotopes in the products and substrate were measured using isotope ratio mass spectrometry. All methods produced sulphate enriched in 34S and we find an enrichment factor (δ34S) of 8.7 ± 0.4‰ (1 standard deviation) for the UV-initiated OH reaction. Only UV light (Hg emission at 253.65 nm) produced a clear non-mass-dependent excess of 33S. The pattern of isotopic enrichment produced by gamma rays is similar, but not equal, to that produced by aqueous oxidation of SO2 by ozone. This, combined with the relative yields of the experiments, suggests a mechanism in which ionising radiation may lead to hydrated ion clusters that serve as nanoreactors for S(IV) to S(VI) conversion.

  17. An isotope view on ionising radiation as a source of sulphuric acid

    NASA Astrophysics Data System (ADS)

    Enghoff, M. B.; Bork, N.; Hattori, S.; Meusinger, C.; Nakagawa, M.; Pedersen, J. O. P.; Danielache, S.; Ueno, Y.; Johnson, M. S.; Yoshida, N.; Svensmark, H.

    2012-02-01

    Sulphuric acid is an important factor in aerosol nucleation and growth. It has been shown that ions enhance the formation of sulphuric acid aerosols, but the exact mechanism has remained undetermined. Furthermore some studies have found a deficiency in the sulphuric acid budget, suggesting a missing source. In this study the production of sulphuric acid from SO2 through a number of different pathways is investigated. The production methods are standard gas phase oxidation by OH radicals produced by ozone photolysis with UV light, liquid phase oxidation by ozone, and gas phase oxidation initiated by gamma rays. The distributions of stable sulphur isotopes in the products and substrate were measured using isotope ratio mass spectrometry. All methods produced sulphate enriched in 34S and we find a δ34S value of 8.7 ± 0.4‰ (1 standard deviation) for the UV-initiated OH reaction. Only UV light (Hg emission at 253.65 nm) produced a clear non-mass-dependent excess of 33S. The pattern of isotopic enrichment produced by gamma rays is similar, but not equal, to that produced by aqueous oxidation of SO2 by ozone. This, combined with the relative yields of the experiments, suggests a mechanism in which ionising radiation may lead to hydrated ion clusters that serve as nanoreactors for S(IV) to S(VI) conversion.

  18. An isotopic view of ionising radiation as a source of sulphuric acid

    NASA Astrophysics Data System (ADS)

    Enghoff, M. B.; Bork, N.; Hattori, S.; Meusinger, C.; Nakagawa, M.; Pedersen, J. O. P.; Danielache, S. O.; Ueno, Y.; Johnson, M. S.; Yoshida, N.; Svensmark, H.

    2012-04-01

    Sulphuric acid is an important factor in aerosol nucleation and growth. It has been shown that ions enhance the formation of sulphuric acid aerosols, but the exact mechanism remains undetermined. Furthermore some studies have found a deficiency in the sulphuric acid budget, suggesting a missing source. In this study the production of sulphuric acid from SO2 through a number of different pathways is investigated. The production methods are standard gas phase oxidation by OH radicals produced by ozone photolysis with UV light, liquid phase oxidation by ozone, and gas phase oxidation initiated by gamma rays. The distributions of stable sulphur isotopes in the products and substrate were measured using isotope ratio mass spectrometry. All methods produced sulphate enriched in 34S and we find a d34S value of 8.7 ± 0.4 ‰ (1 standard deviation) for the UV-initiated OH reaction. Only UV light (Hg emission at 253.65 nm) produced a clear non-mass-dependent excess of 33S. The pattern of isotopic enrichment produced by gamma rays is similar, but not equal, to that produced by aqueous oxidation of SO2 by ozone. This, combined with the relative yields of the experiments, suggests a mechanism in which ionising radiation may lead to hydrated ion clusters that serve as nanoreactors for S(IV) to S(VI) conversion.

  19. A Multi-Technique Approach to Understanding Camp-Wide Mineralization Processes in Archean VMS Deposits

    NASA Astrophysics Data System (ADS)

    Sharman, E. R.; Wing, B.; Taylor, B.; Jonasson, I.; Farquhar, J.; Dubé, B.

    2009-05-01

    Volcanogenic Massive Sulphide (VMS) deposits form on or below the seafloor, in association with submarine extrusive volcanism, and reflect the hydrothermal concentration of ore-forming components originating from various reservoirs within the submarine environment. A defining question about VMS deposits is the relative contributions of different sulfur sources to mineralization. Standard models for VMS formation include contributions from reduction of seawater sulfate, remobilization of sedimentary sulfur, and volcanic sources (e.g., direct magmatic degassing, hydrothermal dissolution of sulfides in volcanic wall rocks). We are using an array of geochemical techniques to assess a suite of sulphide mineral separates collected from numerous VMS deposits within the Archean Noranda camp of the Abitibi Belt, Superior Province, Canada. These techniques include ICP-MS analyses of dissolved sulphide separates, microprobe analysis, and multiple sulphur isotope analyses. Multiple sulphur isotope analysis provides a new and powerful tool for interpreting Archean ore deposits. In pre-2.45 Ga rocks, multiple sulphur isotope analyses (δ33S, δ34S, and δ36S) document mass-independent sulphur isotope fractionation (δ33S≠0.515×δ34S, δ36S≠1.9×δ34S), likely expressed because of the lack of an oxygenated atmosphere. Ore-forming processes in VMS deposits cannot create mass-independent fractionation; they can only dilute it away. Trace element geochemistry of sulphides has been used to identify where in a VMS system these minerals form, with contributions from sources such as sea-water, or from a plume having different geochemical 'footprints'. Coupled with multiple sulphur isotope measurements, trace element geochemistry can be used to help identify sulphur sources within Archean VMS deposits and can be used to interpret camp-wide ore-forming processes and controls on mineralization. This will in turn allow for a more comprehensive understanding of VMS mineralization

  20. Sulfur concentration and isotopic variation in apatites from granitic to granodioritic plutons of a Cretaceous Cordilleran Batholith

    NASA Astrophysics Data System (ADS)

    Economos, R. C.

    2012-12-01

    Apatite is a common igneous accessory mineral with a high saturation temperature which can therefore crystallize over a significant portion of magmatic compositional space. Sulfur presents an opportunity to identify zoning in apatites. Unlike other trace elements, sulfur is relatively immobile in the apatite crystal structure and can be present in typical concentrations up to 1500 - 2000 ppm (or 0.5 to 1 wt% SO3). Sulfur concentration zoning in igneous apatites from ore producing magmatic systems has been identified (Streck and Dilles, 1998), but the interpretation of the cause of this zoning remains an open question. δ34S isotopic ratios of whole apatites have been used to track isotopic evolution associated with changes in magma fO2 and eruptive degassing (Rye, 2005). The presented work combines sulfur concentration mapping in zoned apatite crystals with in-situ SIMS 34S and 32S isotope measurements. Apatites were extracted from granite to granodiorite samples from the Cadiz Valley Batholith in the central Mojave Desert. This batholith is related to the pulse of Cretaceous Cordilleran magmatism that generated large batholiths in the Sierra Nevada and the Penninsular Ranges. The Mojave segment of the Cretaceous arc is unique in their construction into a full thickness of continental crust which exerted a strong influence on magmatic compositions. Apatite grains were mounted parallel to C axes, ground until grains were approximately bisected, and analyzed by Electron Microprobe at UCLA, for CaO, P2O5, SO3 and SiO2. Grains were surveyed and those yielding anomalous SO3 contents were investigated by micron-scale concentration mapping. Typical SO3 concentrations of apatites from all samples were ~0.2 wt%, while 8 to 10% of apatite grains from two samples contained cores with concentrations ranging up to 0.5 wt%. The sulfur zoning in these samples is oscillatory, in some grains representing 5 to 6 repetitions of high and low concentrations. Based on these textures

  1. Evaluating the earliest traces of Archean sub-seafloor life by NanoSIMS

    NASA Astrophysics Data System (ADS)

    Mcloughlin, N.; Grosch, E. G.; Kilburn, M.; Wacey, D.

    2012-12-01

    The Paleoarchean sub-seafloor has been proposed as an environment for the emergence of life with titanite microtextures in pillow lavas argued to be the earliest traces of microbial micro-tunneling (Furnes et al. 2004). Here we use a nano-scale ion microprobe (NanoSIMS) to evaluate possible geochemical traces of life in 3.45 Ga pillow lavas of the Barberton Greenstone Belt, South Africa. We investigated both surface and drill core samples from the original "Biomarker" outcrop in the Hooggenoeg Fm. Pillow lava metavolcanic glass contain clusters of segmented microcrystalline titanite filaments, ~4μm across and <200μm in length. Their size, shape and distribution have been directly compared to those found in recent oceanic crust. Thus it has been argued that they are the mineralized remains of tunnels formed by microbes that etched volcanic glass in the Archean sub-seafloor (Furnes et al 2004; Banerjee et al. 2006). Elemental mapping by NanoSIMS was undertaken to investigate reports of enrichments in carbon (possibly also nitrogen) along the margins of the microtextures previously interpreted as decayed cellular remains. We mapped for 12C-, 26CN-, 32S- along with 16O-, 28Si-, 24Mg+,27Al+, 40Ca+, 48Ti+ and 56Fe+ in chlorite and quartz hosted examples. The 12C- or 26CN- linings were not found along the margins of the microtextures in neither the original, nor the drill core samples, despite NanoSIMS being a more sensitive and higher-spatial-resolution technique than earlier microprobe X-ray maps. The absence of organic linings in these samples excludes a key line of evidence previously used to support the biogenicity of the microtextures. Sulfur isotopes 32S and 34S were measured by NanoSIMS on two types of sulfide: i) small sulfides (1-15μm) intimately associated with the microtextures and; ii) larger sulfides (10-60μm) that cross-cut the microtextures and are disseminated near a quartz-carbonate vein. The sulfide inclusions in the microtextures have strongly

  2. Analysis of High-Resolution Infrared and CARS Spectra of ³⁴S¹⁸O₃

    SciTech Connect

    Masiello, Tony; Barber, Jeffrey B.; Chrysostom, Engelene; Nibler, Joseph W.; Maki, Arthur; Weber, Alfons; Blake, Thomas A.; Sams, Robert L.

    2004-01-01

    Three fundamental modes and several hot bands of 34S18O3 have been investigated using both infrared spectroscopy and coherent anti-Stokes Raman scattering spectroscopy (CARS). Coriolis coupling effects are particularly noticeable in 34S18O3 due to the close proximity of the v2 and v4 fundamental vibrations, whose wavenumber values are 477.508 64(5) and 502.055 65(4) cm-1. The uncertainties in the last digits are shown in parentheses and are two standard deviations. Hot band transitions from v2, v4 levels give access to infrared inactive v2, v4 combination/overtone levels which interact strongly with levels of the Raman-active v1 symmetric stretching mode due to indirect Coriolis couplings, l-resonances, and Fermi resonances. The result is a complex v1 CARS Q- branch spectrum that is the most perturbed of the four SO3 isotopomers we have studied. The relative importance of these interaction terms on the v1 CARS spectrum is examined in some detail and accurate rovibrational constants are determined for all of the mixed states, leading to deperturbed values of 1004.662(24), 0.000 350 3(9), and 0.000 706 6(12) cm-1 for v1, α1B, and α1C, respectively. The B e value is found to be 0.310 817(12) cm-1, which gives an equilibrium bond length re of 141.7339(3) pm, in excellent agreement with values of 141.7340(1) and 141.7347(7) pm reported earlier for 32S16O3 and 34S16O3.

  3. Microwave spectra and gas phase structural parameters for N-hydroxypyridine-2(1H)-thione.

    PubMed

    Daly, Adam M; Mitchell, Erik G; Sanchez, Daniel A; Block, Eric; Kukolich, Stephen G

    2011-12-22

    The microwave spectrum for N-hydroxypyridine-2(1H)-thione (pyrithione) was measured in the frequency range 6-18 GHz, providing accurate rotational constants and nitrogen quadrupole coupling strengths for three isotopologues, C(5)H(4)(32)S(14)NOH, C(5)H(4)(32)S(14)NOD, and C(5)H(4)(34)S(14)NOH. Pyrithione was found to be in a higher concentration in the gas phase than the other tautomer, 2-mercaptopyridine-N-oxide (MPO). Microwave spectroscopy is best suited to determine which structure predominates in the gas phase. The measured rotational constants were used to accurately determine the coordinates of the substituted atoms and provided sufficient data to determine some of the important structural parameters for pyrithione, the only tautomer observed in the present work. The spectra were obtained using a pulsed-beam Fourier transform microwave spectrometer, with sufficient resolution to allow accurate measurements of the (14)N nuclear quadrupole hyperfine interactions. Ab initio calculations provided structural parameters and quadrupole coupling strengths that are in very good agreement with measured values. The experimental rotational constants for the parent compound are A = 3212.10(1), B = 1609.328(7), and C = 1072.208(6) MHz, yielding the inertial defect Δ(0) = -0.023 amu·Å(2) for the C(5)H(4)(32)S(14)NOH isotopologue. The observed near zero inertial defect clearly indicates a planar structure. The least-squares fit structural analysis yielded the experimental bond lengths R(O-H) = 0.93(2) Å, R(C-S) = 1.66(2) Å, and angle (N-O-H) = 105(4)° for the ground state structure.

  4. Microwave spectra and gas phase structural parameters for N-hydroxypyridine-2(1H)-thione.

    PubMed

    Daly, Adam M; Mitchell, Erik G; Sanchez, Daniel A; Block, Eric; Kukolich, Stephen G

    2011-12-22

    The microwave spectrum for N-hydroxypyridine-2(1H)-thione (pyrithione) was measured in the frequency range 6-18 GHz, providing accurate rotational constants and nitrogen quadrupole coupling strengths for three isotopologues, C(5)H(4)(32)S(14)NOH, C(5)H(4)(32)S(14)NOD, and C(5)H(4)(34)S(14)NOH. Pyrithione was found to be in a higher concentration in the gas phase than the other tautomer, 2-mercaptopyridine-N-oxide (MPO). Microwave spectroscopy is best suited to determine which structure predominates in the gas phase. The measured rotational constants were used to accurately determine the coordinates of the substituted atoms and provided sufficient data to determine some of the important structural parameters for pyrithione, the only tautomer observed in the present work. The spectra were obtained using a pulsed-beam Fourier transform microwave spectrometer, with sufficient resolution to allow accurate measurements of the (14)N nuclear quadrupole hyperfine interactions. Ab initio calculations provided structural parameters and quadrupole coupling strengths that are in very good agreement with measured values. The experimental rotational constants for the parent compound are A = 3212.10(1), B = 1609.328(7), and C = 1072.208(6) MHz, yielding the inertial defect Δ(0) = -0.023 amu·Å(2) for the C(5)H(4)(32)S(14)NOH isotopologue. The observed near zero inertial defect clearly indicates a planar structure. The least-squares fit structural analysis yielded the experimental bond lengths R(O-H) = 0.93(2) Å, R(C-S) = 1.66(2) Å, and angle (N-O-H) = 105(4)° for the ground state structure. PMID:22070758

  5. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients.

    PubMed

    Balter, Vincent; Nogueira da Costa, Andre; Bondanese, Victor Paky; Jaouen, Klervia; Lamboux, Aline; Sangrajrang, Suleeporn; Vincent, Nicolas; Fourel, François; Télouk, Philippe; Gigou, Michelle; Lécuyer, Christophe; Srivatanakul, Petcharin; Bréchot, Christian; Albarède, Francis; Hainaut, Pierre

    2015-01-27

    The widespread hypoxic conditions of the tumor microenvironment can impair the metabolism of bioessential elements such as copper and sulfur, notably by changing their redox state and, as a consequence, their ability to bind specific molecules. Because competing redox state is known to drive isotopic fractionation, we have used here the stable isotope compositions of copper ((65)Cu/(63)Cu) and sulfur ((34)S/(32)S) in the blood of patients with hepatocellular carcinoma (HCC) as a tool to explore the cancer-driven copper and sulfur imbalances. We report that copper is (63)Cu-enriched by ∼0.4‰ and sulfur is (32)S-enriched by ∼1.5‰ in the blood of patients compared with that of control subjects. As expected, HCC patients have more copper in red blood cells and serum compared with control subjects. However, the isotopic signature of this blood extra copper burden is not in favor of a dietary origin but rather suggests a reallocation in the body of copper bound to cysteine-rich proteins such as metallothioneins. The magnitude of the sulfur isotope effect is similar in red blood cells and serum of HCC patients, implying that sulfur fractionation is systemic. The (32)S-enrichment of sulfur in the blood of HCC patients is compatible with the notion that sulfur partly originates from tumor-derived sulfides. The measurement of natural variations of stable isotope compositions, using techniques developed in the field of Earth sciences, can provide new means to detect and quantify cancer metabolic changes and provide insights into underlying mechanisms.

  6. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients

    PubMed Central

    Balter, Vincent; Nogueira da Costa, Andre; Bondanese, Victor Paky; Jaouen, Klervia; Lamboux, Aline; Sangrajrang, Suleeporn; Vincent, Nicolas; Fourel, François; Télouk, Philippe; Gigou, Michelle; Lécuyer, Christophe; Srivatanakul, Petcharin; Bréchot, Christian; Albarède, Francis; Hainaut, Pierre

    2015-01-01

    The widespread hypoxic conditions of the tumor microenvironment can impair the metabolism of bioessential elements such as copper and sulfur, notably by changing their redox state and, as a consequence, their ability to bind specific molecules. Because competing redox state is known to drive isotopic fractionation, we have used here the stable isotope compositions of copper (65Cu/63Cu) and sulfur (34S/32S) in the blood of patients with hepatocellular carcinoma (HCC) as a tool to explore the cancer-driven copper and sulfur imbalances. We report that copper is 63Cu-enriched by ∼0.4‰ and sulfur is 32S-enriched by ∼1.5‰ in the blood of patients compared with that of control subjects. As expected, HCC patients have more copper in red blood cells and serum compared with control subjects. However, the isotopic signature of this blood extra copper burden is not in favor of a dietary origin but rather suggests a reallocation in the body of copper bound to cysteine-rich proteins such as metallothioneins. The magnitude of the sulfur isotope effect is similar in red blood cells and serum of HCC patients, implying that sulfur fractionation is systemic. The 32S-enrichment of sulfur in the blood of HCC patients is compatible with the notion that sulfur partly originates from tumor-derived sulfides. The measurement of natural variations of stable isotope compositions, using techniques developed in the field of Earth sciences, can provide new means to detect and quantify cancer metabolic changes and provide insights into underlying mechanisms. PMID:25583489

  7. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients

    NASA Astrophysics Data System (ADS)

    Balter, Vincent; Nogueira da Costa, Andre; Paky Bondanese, Victor; Jaouen, Klervia; Lamboux, Aline; Sangrajrang, Suleeporn; Vincent, Nicolas; Fourel, François; Télouk, Philippe; Gigou, Michelle; Lécuyer, Christophe; Srivatanakul, Petcharin; Bréchot, Christian; Albarède, Francis; Hainaut, Pierre

    2015-01-01

    The widespread hypoxic conditions of the tumor microenvironment can impair the metabolism of bioessential elements such as copper and sulfur, notably by changing their redox state and, as a consequence, their ability to bind specific molecules. Because competing redox state is known to drive isotopic fractionation, we have used here the stable isotope compositions of copper (65Cu/63Cu) and sulfur (34S/32S) in the blood of patients with hepatocellular carcinoma (HCC) as a tool to explore the cancer-driven copper and sulfur imbalances. We report that copper is 63Cu-enriched by ∼0.4‰ and sulfur is 32S-enriched by ∼1.5‰ in the blood of patients compared with that of control subjects. As expected, HCC patients have more copper in red blood cells and serum compared with control subjects. However, the isotopic signature of this blood extra copper burden is not in favor of a dietary origin but rather suggests a reallocation in the body of copper bound to cysteine-rich proteins such as metallothioneins. The magnitude of the sulfur isotope effect is similar in red blood cells and serum of HCC patients, implying that sulfur fractionation is systemic. The 32S-enrichment of sulfur in the blood of HCC patients is compatible with the notion that sulfur partly originates from tumor-derived sulfides. The measurement of natural variations of stable isotope compositions, using techniques developed in the field of Earth sciences, can provide new means to detect and quantify cancer metabolic changes and provide insights into underlying mechanisms.

  8. A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia

    NASA Astrophysics Data System (ADS)

    Ingham, Edwina S.; Cook, Nigel J.; Cliff, John; Ciobanu, Cristiana L.; Huddleston, Adam

    2014-01-01

    depositional conditions and sources of both sulfide and uranium mineralization and an improved understanding of pyrite geochemistry can also underpin an effective vector for uranium exploration at Beverley North and other sedimentary systems of the Lake Eyre Basin, as well as in comparable geological environments elsewhere. Average intensity of 32S signal in counts per second × 108.Drift corrected 34S/32S prior to IMF calibration.Two-sigma propagated uncertainty on individual measurements.

  9. Sulfur Isotope Systematics and the Link Between Fluctuating Sulfate Levels and P Recycling in a Low Sulfate, Permanently Anoxic Lake (Lake McCarrons, MN): Implications for the Precambrian Rise of Oxygen

    NASA Astrophysics Data System (ADS)

    Gomes, M. L.; Hurtgen, M. T.

    2009-12-01

    Seawater sulfate concentrations have been used to track the rise of oxygen in the Precambrian ocean-atmosphere system because the primary mode of sulfate delivery to the ocean is the oxidative weathering of sulfides on land. Ancient seawater sulfate concentrations have been inferred from the extent of sulfur (S) isotope fractionation incurred during bacterial sulfate reduction (BSR) where organisms preferentially utilize 32S (over 34S) in the process of reducing of sulfate to sulfide. Within this context, increased variability in δ34Spyrite values in Proterozoic (~2.3 Ga) sediments—along with a corresponding increase in the isotopic difference between sulfate and pyrite (Δ34S)—has been attributed to an increase in seawater sulfate concentrations (from <1 mM to >1 mM) and inferentially Earth-surface oxygen levels. However, most S isotope studies have been calibrated using modern marine sediments that contain sulfate-reducing bacteria that are adapted to the high concentration of sulfate in the modern ocean (~28mM). In order to better understand S isotope systematics within a low sulfate system and to improve our interpretive construct for S isotope results generated from ancient strata, we explore the magnitude of S isotope fractionations associated with microbial activity in the water column and sediments of a low sulfate (<300 µM), permanently anoxic lake in Minnesota (Lake McCarrons). Furthermore, we explore the link between fluctuating sulfate levels and phosphorus (P) recycling in low sulfate systems by conducting lab incubation experiments under low and varying sulfate concentrations using sediment collected from Lake McCarrons. The results indicate: (1) surface water sulfate levels are ~275 µM and fall to ~130 µM at the sediment-water interface; (2) the S isotope difference between surface water sulfate and bottom water sulfide is ~5‰ (Δ34S) while in situ S isotope fractionations associated with BSR at the sediment-water interface approach 35

  10. Biogeochemistry of sulfur in the Vienna Woods: Study of sulfur stable isotope ratios by MC-ICP-MS as indicator of biogeochemical S cycling

    NASA Astrophysics Data System (ADS)

    Hanousek, Ondrej; Berger, Torsten W.; Prohaska, Thomas

    2014-05-01

    Sulfur entering forest ecosystems originates mainly from combustion of fossil fuels. This source of sulfur has been strongly (by more than 95 %) reduced in last decades and recently, higher sulfur output (in soil solution or stream water) than sulfur input (in rain water) in an ecosystem was registered in many monitored forest ecosystems. This unbalance may be caused by weathering of sulfur-bearing rocks, desorption of sulfur adsorbed in soil in the past or (re)mineralization of organic sulfur compounds. This 'negative' balance leads to mobilization of base cations along with SO42- and as such to an acidification of soils. As hypothesis, δ34S/32S depletion in stream water will be observed if a considerable proportion of atmospherically deposited sulfate is cycled through the organic S pool. Rain water and soil solutions samples were collected for this study at 3 sites (beech stands) in the Vienna Woods, Austria twice a month from May 2010 to April 2012. Due to the expected sulfate concentration gradient with respect to the distance from a tree, sampling was carried out at 5 intervals from a stem. The sulfur concentration in the samples was determined by ion chromatography. Sulfur isotope ratios (δ34S/32SV CDT) were analyzed by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) in edge-resolution mode. The method was validated using IAEA-S-1 and IAEA-S-2 isotopic certified reference materials. The combined standard uncertainty of the measurement (uc = 0.10 %, k = 1) proves the suitability of the developed method. The concentration of sulfur in rain water showed expected behavior, with a seasonal maximum in winter months, in contrast to the corresponding δ34S/32SV CDT isotope ratios, where no or low seasonal trends were observed. The sulfur isotope ratios in soil solution samples show a dependence on the distance from a tree stem and the sampling depth with lower δ34S/32SV CDT ratios as compared to the precipitation. The measured isotopic

  11. Protein phosphorylation stoichiometry by simultaneous ICP-QMS determination of phosphorus and sulfur oxide ions: a multivariate optimization of plasma operating conditions.

    PubMed

    Ciavardelli, Domenico; Sacchetta, Paolo; Federici, Giorgio; Di Ilio, Carmine; Urbani, Andrea

    2010-02-15

    Molecular mass spectrometry (MS) analysis of protein phosphorylation is partially limited by the molecular specie specificity of the analytical responses that might impair both qualitative and quantitative performances. Elemental MS, such as inductively coupled plasma mass spectrometry (ICP-MS) can overcome these drawbacks; in fact, analytical performance is theoretically independent of the molecular structure of a target analyte naturally containing the elements of interest. Nevertheless, isobaric interferences derived from sample matrix and laboratory environment can hinder the quantitative determination of both phosphorus (P) and sulfur (S) as (31)P(+) and (32)S(+) by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) under standard plasma conditions. These interferences may be overcome by quantifying P and S as oxide ions (31)P(16)O(+) and (32)S(16)O(+), respectively. In this study, we present a systematic investigation on the effect of plasma instrumental conditions on the oxide ion responses by a design of experiment approach for the simultaneous ICP-QMS determination of P and S ((31)P(16)O(+) and (32)S(16)O(+), respectively) in protein samples without the use of dynamic reaction, collision reaction cells or pre-addition of oxygen as reactant gas in the torch. The proposed method was evaluated in terms of limit of detection, limit of quantification, linearity, repeatability, and trueness. Moreover, detection and quantification capabilities of the optimized method were compared to the standard plasma mode for determination of (31)P(+) and (34)S(+). Spectral and non-spectral interferences affecting the quantification of (31)P(+), (31)P(16)O(+) and (32)S(16)O(+) were also studied. The suitability of inorganic elemental standards for P and S quantification in proteins was assessed. The method was applied to quantify the phosphorylation stoichiometry of commercially available caseins (bovine beta-casein, native and dephosphorylated alpha-casein) and

  12. Crystal structure of (+)-methyl (E)-3-[(2S,4S,5R)-2-amino-5-hy­droxy­meth­yl-2-tri­chloro­methyl-1,3-dioxolan-4-yl]-2-methyl­prop-2-enoate

    PubMed Central

    Oishi, Takeshi; Yasushima, Daichi; Yuasa, Kihiro; Sato, Takaaki; Chida, Noritaka

    2016-01-01

    In the title compound, C10H14Cl3NO5, the five-membered dioxolane ring adopts an envelope conformation. The C atom at the flap, which is bonded to the hy­droxy­methyl substituent, deviates from the mean plane of other ring atoms by 0.357 (5) Å. There are two intra­molecular hydrogen bonds (O—H⋯N and N—H⋯O) between the hy­droxy and amino groups, so that O- and N-bound H atoms involved in these hydrogen bonds are each disordered with equal occupancies of 0.50. The methyl 2-methyl­prop-2-enoate substituent also shows a disordered structure over two sets of sites with refined occupancies of 0.482 (5) and 0.518 (5). In the crystal, mol­ecules are connected into a dimer by an O—H⋯O hydrogen bond. The dimers are further linked by N—H⋯O, C—H⋯N and C—H⋯O inter­actions, extending a sheet structure parallel to (01). PMID:27006804

  13. Timing and genesis of base-metal mineralisation in black shales of the Upper Permian Ravnefjeld Formation, Wegener Halvø, East Greenland

    NASA Astrophysics Data System (ADS)

    Pedersen, Mikael; Nielsen, Jesper K.; Boyce, Adrian J.; Fallick, Anthony E.

    2003-01-01

    , enriched in 34S due to preferential removal of 32S by sulphate-reducing bacteria and precipitation of diagenetic pyrite in the near-seafloor environment. We suggest that the sulphide-dominated pore water was trapped in the shale formation prior to introduction of base-metal-bearing fluids through fractures in the underlying carbonates, and that sulphide precipitation took place when the two fluids met. δ34S values of carbonate-hosted base-metal sulphides fall within the same range as the shale-hosted ones. The relationship between barite and sulphides and evidence for pre-mineralisation entrapment of liquid hydrocarbons in the carbonates suggest that the sulphide in this case is derived by in-situ thermochemical sulphate reduction (TSR). Measured fractionation between sulphide and sulphate ranges from 18.5 to 24.4‰, suggesting temperatures of TSR around 70 to 100 °C. Vitrinite reflectance measurements in mineralised shale samples are all between 1.7 and 2.0%, except for samples taken close to a Tertiary dyke giving ca. 3.0%. Vitrinite reflectance data are comparable to previously published data from unmineralised shale samples in the area and could not be proven to correlate with the degree of mineralisation. This indicates that any early hydrothermal effect has been overprinted later, probably during deep burial in the Late Cretaceous to Early Tertiary as previously proposed.

  14. Sulfur mass-independent fractionation during photolysis and photoexcitation of SO2 and CS2 and implications to the source reactions for Archean sulfur isotope anomaly

    NASA Astrophysics Data System (ADS)

    Ono, S.; Whitehill, A. R.; Oduro, H. D.

    2012-12-01

    Signatures of sulfur mass-independent fractionations (S-MIF) in Archean sedimentary rocks provide critical constraints on the atmospheric oxygen level of an early atmosphere and documents fundamental difference in early sulfur biogeochemical cycle from that of today. Archcean sulfide and sulfate minerals often yield correlated relationships among δ34S, Δ33S and Δ36S values. Our goal is to use this S-MIF pattern to pinpoint the S-MIF source reaction(s), and to constrain early atmospheric conditions beyond the oxygen level. Such an effort may lead to a new hypothesis about the cause of the Great Oxidation Event at 2.4 Billion years ago. We will present new results of laboratory photochemical experiments that are designed to calibrate the pattern of S-MIF during the photochemistry of SO2 and CS2 as a function of UV spectrum regions, partial pressure of SO2 and CS2 (0.1 mbar and above) and total N2 pressure (0.25 to 1.0 bar). Both SO2 and CS2 exhibit high energy absorption band (190 to 220 nm) that leads to direct photolysis (SO2 → SO + O or CS2 → CS + S), and low energy band (>240 nm for SO2 and 280 nm for CS2) that excites molecules to low lying electronic states under dissociation thresholds. Broadband UV light sources (Xenon or Deuterium arc lamps) are used in combination with a series of bandpass (200±35 nm), longpass (250 or 280 nm) filters to isolate specific electronic transitions. Excited state SO2 is trapped by acetylene and excited state CS2 polymerizes in the reactor, and are collected for sulfur isotope ratio analysis. Although SO2 photolysis under 190 to 220 nm is thought to be the main Archean S-MIF source reaction, its S-MIF is characterized by high δ34S values (up to 140 ‰) and relatively low Δ36S/Δ33S values (-3.3 to -5.9) compared to Archean data (-0.9 to -1.5). Strong pSO2 dependence suggests S-MIF is primarily due to isotopologue self-shielding at least under our experimental conditions. In contrast, SO2 photoexciation under >250 nm

  15. Geochemistry of pyrite from diamictites of the Hamersley Basin, Western Australia with implications for the GOE and Paleoproterozoic ice ages.

    NASA Astrophysics Data System (ADS)

    Swanner, Elizabeth; Cates, Nicole; Pecoits, Ernesto; Bekker, Andrey; Konhauser, Kurt O.; Mojzsis, Stephen J.

    2013-04-01

    Sediments of the ca. 2400 Ma Turee Creek Group of Western Australia span the oxygenation of Earth's surface resulting from the 'Great Oxidation Event' (GOE). Diamictite within the Boolgeeda Iron Formation from the Boundary Ridge section at Duck Creek Syncline have been correlated to the glaciogenic Meteorite Bore Member of the Turee Creek Group at Hardey Syncline (Martin, 1999). The Meteorite Bore Member is thought to be correlative and time-equivalent with the Paleoproterozoic glacial diamictites of North America. If diamictite units at Boundary Ridge represent worldwide Paleoproterozoic glaciations, they should record the disappearance of mass independently fractionated (MIF) sulfur. Triple S-isotope compositions for pyrites from the Boundary Ridge sections measured by in situ multi-collector ion microprobe yielded both mass-dependent and mass-independently fractionated (MIF) S isotope values (Δ33S values from -0.65 to 6.27). Trace element heterogeneities were found by measurements at multiple spatial scales within rounded pyrites in the Boundary Ridge section, signifying multiple generations of pyrite from sulfur processed in an anoxic atmosphere. S-isotope data from pyrite in the Boundary Ridge diamictites analyzed in this study and previous work (Williford et al., 2011) define multiple δ34S vs. δ33S arrays, linked to a source of detrital pyrite from the overlying Hamersley and Fortescue groups. Authigenic pyrite in an overlying shale unit from Boundary Ridge plot along the terrestrial fractionation line but retain positive MIF-S and detrital pyrite, results that are incompatible with a correlation to North American Paleoproterozoic glacially-influenced successions where the MIF-S signal permanently disappears. The diamictites at the Duck Creek Syncline are older than the Meteorite Bore Member because of their stratigraphic position within the Boolgeeda Iron Formation underlying the Turee Creek Group, which is separated from the Meteorite Bore Member by

  16. SO2 photoexcitation mechanism links mass-independent sulfur isotopic fractionation in cryospheric sulfate to climate impacting volcanism.

    PubMed

    Hattori, Shohei; Schmidt, Johan A; Johnson, Matthew S; Danielache, Sebastian O; Yamada, Akinori; Ueno, Yuichiro; Yoshida, Naohiro

    2013-10-29

    Natural climate variation, such as that caused by volcanoes, is the basis for identifying anthropogenic climate change. However, knowledge of the history of volcanic activity is inadequate, particularly concerning the explosivity of specific events. Some material is deposited in ice cores, but the concentration of glacial sulfate does not distinguish between tropospheric and stratospheric eruptions. Stable sulfur isotope abundances contain additional information, and recent studies show a correlation between volcanic plumes that reach the stratosphere and mass-independent anomalies in sulfur isotopes in glacial sulfate. We describe a mechanism, photoexcitation of SO2, that links the two, yielding a useful metric of the explosivity of historic volcanic events. A plume model of S(IV) to S(VI) conversion was constructed including photochemistry, entrainment of background air, and sulfate deposition. Isotopologue-specific photoexcitation rates were calculated based on the UV absorption cross-sections of (32)SO2, (33)SO2, (34)SO2, and (36)SO2 from 250 to 320 nm. The model shows that UV photoexcitation is enhanced with altitude, whereas mass-dependent oxidation, such as SO2 + OH, is suppressed by in situ plume chemistry, allowing the production and preservation of a mass-independent sulfur isotope anomaly in the sulfate product. The model accounts for the amplitude, phases, and time development of Δ(33)S/δ(34)S and Δ(36)S/Δ(33)S found in glacial samples. We are able to identify the process controlling mass-independent sulfur isotope anomalies in the modern atmosphere. This mechanism is the basis of identifying the magnitude of historic volcanic events. PMID:23417298

  17. SO2 photoexcitation mechanism links mass-independent sulfur isotopic fractionation in cryospheric sulfate to climate impacting volcanism

    PubMed Central

    Hattori, Shohei; Schmidt, Johan A.; Johnson, Matthew S.; Danielache, Sebastian O.; Yamada, Akinori; Ueno, Yuichiro; Yoshida, Naohiro

    2013-01-01

    Natural climate variation, such as that caused by volcanoes, is the basis for identifying anthropogenic climate change. However, knowledge of the history of volcanic activity is inadequate, particularly concerning the explosivity of specific events. Some material is deposited in ice cores, but the concentration of glacial sulfate does not distinguish between tropospheric and stratospheric eruptions. Stable sulfur isotope abundances contain additional information, and recent studies show a correlation between volcanic plumes that reach the stratosphere and mass-independent anomalies in sulfur isotopes in glacial sulfate. We describe a mechanism, photoexcitation of SO2, that links the two, yielding a useful metric of the explosivity of historic volcanic events. A plume model of S(IV) to S(VI) conversion was constructed including photochemistry, entrainment of background air, and sulfate deposition. Isotopologue-specific photoexcitation rates were calculated based on the UV absorption cross-sections of 32SO2, 33SO2, 34SO2, and 36SO2 from 250 to 320 nm. The model shows that UV photoexcitation is enhanced with altitude, whereas mass-dependent oxidation, such as SO2 + OH, is suppressed by in situ plume chemistry, allowing the production and preservation of a mass-independent sulfur isotope anomaly in the sulfate product. The model accounts for the amplitude, phases, and time development of Δ33S34S and Δ36S/Δ33S found in glacial samples. We are able to identify the process controlling mass-independent sulfur isotope anomalies in the modern atmosphere. This mechanism is the basis of identifying the magnitude of historic volcanic events. PMID:23417298

  18. Advances in the measurement of sulfur isotopes by multi-collector ICP-MS (MC-ICP- MS)

    NASA Astrophysics Data System (ADS)

    Ridley, W. I.; Wilson, S. A.; Anthony, M. W.

    2006-12-01

    The demonstrated capability to measure 34S/32S by MC-ICP-MS with a precision (2ó) of ~0.2 per mil has many potential applications in geochemistry. However, a number of obstacles limit this potential. First, to achieve the precision indicated above requires sufficient mass resolution to separate isobaric interferences of 16O2 and 17O2 on 32S and 34S, respectively. These requirements for high resolution mean overall instrument sensitivity is reduced. Second, current methods preclude analysis of samples with complex matrices, a common characteristic of sulfur-bearing geologic materials. Here, we describe and discuss a method that provides both efficient removal of matrix constituents, and provides pre-concentration of S, thus overcoming these obstacles. The method involves the separation of sulfur from matrix constituents by high pressure (1000 psi) ion chromatography (HPIC), followed by isotope measurement using MC-ICP-MS. This combination allows for analysis of liquid samples with a wide range of S concentrations. A powerful advantage of this technique is the efficient separation of many sulfur species from matrix cations and anions (for instance in a seawater or acid mine drainage matrix), as well as the separation of sulfur species, e.g., sulfate, sulfite, thiosulfate, thiocynate, from each other for isotope analysis. The automated HPIC system uses a carbonate-bicarbonate eluent with eluent suppression, and has sufficient baseline separation to collect the various sulfur species as pure fractions. The individual fractions are collected over a specific time interval based upon a pre-determined elution profile and peak retention times. The addition of a second ion exchange column into the system allows pre-concentration of sulfur species by 2-3 orders of magnitude for samples that otherwise would have sulfur concentrations too low to provide precise isotopic ratios. The S isotope ratios are measured by MC-ICP-MS using a desolvating sample introduction system, a

  19. Stable isotope biogeochemistry of the sulfur cycle in modern marine sediments: I. Seasonal dynamics in a temperate intertidal sandy surface sediment.

    PubMed

    Böttcher, Michael; Hespenheide, Britta; Brumsack, Hans-Jürgen; Bosselmann, Katja

    2004-12-01

    A biogeochemical and stable isotope geochemical study was carried out in surface sediments of an organic-matter poor temperate intertidal sandy surface sediment (German Wadden Sea of the North Sea) to investigate the activity of sulfate-reducing bacteria and the dynamics of the vertical partitioning of sedimentary sulfur, iron, and manganese species in relation to the availability of total organic carbon (TOC) and mud contents. The contents and stable isotopic compositions ((34)S/(32)S) of total reduced inorganic sulfur species (TRIS) and dissolved sulfate were measured. Maximum oxygen penetration depths were estimated from the onset of a blackening of the sediments due to FeS accumulation and ranged from 5 to 10 mm below surface (mmbsf). A zone of relatively moderate relative organic-matter enrichment was found between 5 and 20 mmbsf leading to enhanced activities of sulfate-reducing bacteria with sulfate-reduction rates (SRR) up to 350 nmol cm(-3) d(-1). Below this zone, microbial SRR dropped significantly. Depth integrated SRR seem to depend not only on temperature but also on the availability of reactive organic matter. The sulfur-isotopic composition of TRIS was depleted in (34)S by 33-40 per thousand with respect to coexisting dissolved sulfate (constant at about +21 per thousand vs. Vienna-Canyon Diablo Troilite (V-CDT)). Since sulfate reduction is not limited by dissolved sulfate (open system), depth variations of the isotopic composition of TRIS reflect changes in overall isotope effect due to superimposed microbial and abiotic reactions. Most of the solid-phase iron and manganese was bonded to (non-reactive) heavy minerals. However, a layer of reactive Fe(III) and Mn(IV) oxi(hydroxi)des was found in the uppermost sediment section due to re-oxidation of dissolved Fe(II) and Mn(II) species at the sediment-water interface. Metal cycling below the surface is at least partially coupled to intense sulfur cycling.

  20. Geochemistry of brachiopods: Oxygen and carbon isotopic records of Paleozoic oceans

    NASA Astrophysics Data System (ADS)

    Veizer, Ján; Fritz, Peter; Jones, Brian

    1986-08-01

    Combined trace element and isotope studies of 319 brachiopods, covering the Ordovician to Permian time span, show that δ 13C and δ 18O in well preserved specimens varied during the Paleozoic. The overall δ 13C secular trend is in accord with the previously published observations, but its details are obscured by vital isotopic fractionation effects at generic level. Nonetheless, the results suggest that the negative correlation between marine δ 13C carbonate and δ 34S sulphate deteriorates at time scales of ⩽ 10 6 years, due to the long residence time, and thus slow response, of SO 42- in the ocean. For oxygen isotopes, all Devonian and older specimens have δ 18O of ⩽ -4%, while the well preserved Permian samples have near-present day δ 18O of about -1% (PDB). This isotopic dichotomy is probably not due to post-depositional phenomena, salinity, or biogenic fractionation effects. This leaves open the perennial arguments for a change in 18O /16O of sea water versus warmer ancient oceans. The present data are difficult to explain solely by the temperature alternative. The coincidence of the proposed shift in δ 18O with the large Late Paleozoic changes in marine 87Sr /86Sr , 13C /12C , 34S /32S , and "sea level stands" argues for a tectonic cause and for a change in 18O /16O of sea water, although such explanation is difficult to reconcile with global balance considerations and with isotopic patterns observed in alteration products of ancient basalts and ophiolites. Whatever the precise cause, or combination of causes, the implications for tectonism and/or paleoclimatology are of first order significance.

  1. A strategy for fast screening and identification of sulfur derivatives in medicinal Pueraria species based on the fine isotopic pattern filtering method using ultra-high-resolution mass spectrometry.

    PubMed

    Yang, Min; Zhou, Zhe; Guo, De-an

    2015-09-24

    Sulfurous compounds are commonly present in plants, fungi, and animals. Most of them were reported to possess various bioactivities. Isotopic pattern filter (IPF) is a powerful tool for screening compounds with distinct isotope pattern. Over the past decades, the IPF was used mainly to study Cl- and Br-containing compounds. To our knowledge, the algorithm was scarcely used to screen S-containing compounds, especially when combined with chromatography analyses, because the (34)S isotopic ion is drastically affected by (13)C2 and (18)O. Thus, we present a new method for a fine isotopic pattern filter (FIPF) based on the separated M + 2 ions ((12)C(x)(1)H(y)(16)O(z)(32)S(13)C2(18)O, (12)C(x+2)(1)H(y)(16)O(z+1)(34)S, tentatively named M + 2OC and M + 2S) with an ultra-high-resolution mass (100,000 FWHM @ 400 m/z) to screen sulfur derivatives in traditional Chinese medicines (TCM).This finer algorithm operates through convenient filters, including an accurate mass shift of M + 2OC and M + 2S from M and their relative intensity compared to M. The method was validated at various mass resolutions, mass accuracies, and screening thresholds of flexible elemental compositions. Using the established FIPF method, twelve S-derivatives were found in the popular medicinal used Pueraria species, and 9 of them were tentatively identified by high-resolution multiple stage mass spectrometry (HRMS(n)). The compounds were used to evaluate the sulfurous compounds' situation in commercially purchased Pueraria products. The strategy presented here provides a promising application of the IPF method in a new field. PMID:26423627

  2. Stable Isotope Phenotyping via Cluster Analysis of NanoSIMS Data As a Method for Characterizing Distinct Microbial Ecophysiologies and Sulfur-Cycling in the Environment.

    PubMed

    Dawson, Katherine S; Scheller, Silvan; Dillon, Jesse G; Orphan, Victoria J

    2016-01-01

    Stable isotope probing (SIP) is a valuable tool for gaining insights into ecophysiology and biogeochemical cycling of environmental microbial communities by tracking isotopically labeled compounds into cellular macromolecules as well as into byproducts of respiration. SIP, in conjunction with nanoscale secondary ion mass spectrometry (NanoSIMS), allows for the visualization of isotope incorporation at the single cell level. In this manner, both active cells within a diverse population as well as heterogeneity in metabolism within a homogeneous population can be observed. The ecophysiological implications of these single cell stable isotope measurements are often limited to the taxonomic resolution of paired fluorescence in situ hybridization (FISH) microscopy. Here we introduce a taxonomy-independent method using multi-isotope SIP and NanoSIMS for identifying and grouping phenotypically similar microbial cells by their chemical and isotopic fingerprint. This method was applied to SIP experiments in a sulfur-cycling biofilm collected from sulfidic intertidal vents amended with (13)C-acetate, (15)N-ammonium, and (33)S-sulfate. Using a cluster analysis technique based on fuzzy c-means to group cells according to their isotope ((13)C/(12)C, (15)N/(14)N, and (33)S/(32)S) and elemental ratio (C/CN and S/CN) profiles, our analysis partitioned ~2200 cellular regions of interest (ROIs) into five distinct groups. These isotope phenotype groupings are reflective of the variation in labeled substrate uptake by cells in a multispecies metabolic network dominated by Gamma- and Deltaproteobacteria. Populations independently grouped by isotope phenotype were subsequently compared with paired FISH data, demonstrating a single coherent deltaproteobacterial cluster and multiple gammaproteobacterial groups, highlighting the distinct ecophysiologies of spatially-associated microbes within the sulfur-cycling biofilm from White Point Beach, CA.

  3. Temperament, age and weather predict social interaction in the sheep flock.

    PubMed

    Doyle, Rebecca E; Broster, John C; Barnes, Kirsty; Browne, William J

    2016-10-01

    The aim of the current study was to investigate the social relationships between individual sheep, and factors that influence this, through the novel application of the statistical multiple membership multiple classification (MMMC) model. In study one 49 ewes (ranging between 1 and 8 years old) were fitted with data loggers, which recorded when pairs of sheep were within 4m or less of each other, within a social group, for a total of 6days. In study two proximity data were collected from 45 ewes over 17days, as were measures of ewe temperament, weight and weather. In study 1 age difference significantly influenced daily contact time, with sheep of the same age spending an average of 20min 43s together per day, whereas pairs with the greatest difference in age spent 16min 33s together. Maximum daily temperature also significantly affected contact time, being longer on hotter days (34min 40s hottest day vs. 18min 17s coolest day), as did precipitation (29min 33s wettest day vs. 10min 32s no rain). Vocalisation in isolation, as a measure of temperament, also affected contacts, with sheep with the same frequency of vocalisations spending more time together (27min 16s) than those with the greatest difference in vocalisations (19min 36s). Sheep behaviour in the isolation box test (IBT) was also correlated over time, but vocalisations and movement were not correlated. Influences of age, temperature and rain on social contact are all well-established and so indicate that MMMC modelling is a useful way to analyse social structures of the flock. While it has been demonstrated that personality factors affect social relationships in non-human animals, the finding that vocalisation in isolation influences pair social contact in sheep is a novel one.

  4. Temperament, age and weather predict social interaction in the sheep flock.

    PubMed

    Doyle, Rebecca E; Broster, John C; Barnes, Kirsty; Browne, William J

    2016-10-01

    The aim of the current study was to investigate the social relationships between individual sheep, and factors that influence this, through the novel application of the statistical multiple membership multiple classification (MMMC) model. In study one 49 ewes (ranging between 1 and 8 years old) were fitted with data loggers, which recorded when pairs of sheep were within 4m or less of each other, within a social group, for a total of 6days. In study two proximity data were collected from 45 ewes over 17days, as were measures of ewe temperament, weight and weather. In study 1 age difference significantly influenced daily contact time, with sheep of the same age spending an average of 20min 43s together per day, whereas pairs with the greatest difference in age spent 16min 33s together. Maximum daily temperature also significantly affected contact time, being longer on hotter days (34min 40s hottest day vs. 18min 17s coolest day), as did precipitation (29min 33s wettest day vs. 10min 32s no rain). Vocalisation in isolation, as a measure of temperament, also affected contacts, with sheep with the same frequency of vocalisations spending more time together (27min 16s) than those with the greatest difference in vocalisations (19min 36s). Sheep behaviour in the isolation box test (IBT) was also correlated over time, but vocalisations and movement were not correlated. Influences of age, temperature and rain on social contact are all well-established and so indicate that MMMC modelling is a useful way to analyse social structures of the flock. While it has been demonstrated that personality factors affect social relationships in non-human animals, the finding that vocalisation in isolation influences pair social contact in sheep is a novel one. PMID:27542918

  5. Stable Isotope Phenotyping via Cluster Analysis of NanoSIMS Data As a Method for Characterizing Distinct Microbial Ecophysiologies and Sulfur-Cycling in the Environment

    PubMed Central

    Dawson, Katherine S.; Scheller, Silvan; Dillon, Jesse G.; Orphan, Victoria J.

    2016-01-01

    Stable isotope probing (SIP) is a valuable tool for gaining insights into ecophysiology and biogeochemical cycling of environmental microbial communities by tracking isotopically labeled compounds into cellular macromolecules as well as into byproducts of respiration. SIP, in conjunction with nanoscale secondary ion mass spectrometry (NanoSIMS), allows for the visualization of isotope incorporation at the single cell level. In this manner, both active cells within a diverse population as well as heterogeneity in metabolism within a homogeneous population can be observed. The ecophysiological implications of these single cell stable isotope measurements are often limited to the taxonomic resolution of paired fluorescence in situ hybridization (FISH) microscopy. Here we introduce a taxonomy-independent method using multi-isotope SIP and NanoSIMS for identifying and grouping phenotypically similar microbial cells by their chemical and isotopic fingerprint. This method was applied to SIP experiments in a sulfur-cycling biofilm collected from sulfidic intertidal vents amended with 13C-acetate, 15N-ammonium, and 33S-sulfate. Using a cluster analysis technique based on fuzzy c-means to group cells according to their isotope (13C/12C, 15N/14N, and 33S/32S) and elemental ratio (C/CN and S/CN) profiles, our analysis partitioned ~2200 cellular regions of interest (ROIs) into five distinct groups. These isotope phenotype groupings are reflective of the variation in labeled substrate uptake by cells in a multispecies metabolic network dominated by Gamma- and Deltaproteobacteria. Populations independently grouped by isotope phenotype were subsequently compared with paired FISH data, demonstrating a single coherent deltaproteobacterial cluster and multiple gammaproteobacterial groups, highlighting the distinct ecophysiologies of spatially-associated microbes within the sulfur-cycling biofilm from White Point Beach, CA. PMID:27303371

  6. Stable Isotope Phenotyping via Cluster Analysis of NanoSIMS Data As a Method for Characterizing Distinct Microbial Ecophysiologies and Sulfur-Cycling in the Environment.

    PubMed

    Dawson, Katherine S; Scheller, Silvan; Dillon, Jesse G; Orphan, Victoria J

    2016-01-01

    Stable isotope probing (SIP) is a valuable tool for gaining insights into ecophysiology and biogeochemical cycling of environmental microbial communities by tracking isotopically labeled compounds into cellular macromolecules as well as into byproducts of respiration. SIP, in conjunction with nanoscale secondary ion mass spectrometry (NanoSIMS), allows for the visualization of isotope incorporation at the single cell level. In this manner, both active cells within a diverse population as well as heterogeneity in metabolism within a homogeneous population can be observed. The ecophysiological implications of these single cell stable isotope measurements are often limited to the taxonomic resolution of paired fluorescence in situ hybridization (FISH) microscopy. Here we introduce a taxonomy-independent method using multi-isotope SIP and NanoSIMS for identifying and grouping phenotypically similar microbial cells by their chemical and isotopic fingerprint. This method was applied to SIP experiments in a sulfur-cycling biofilm collected from sulfidic intertidal vents amended with (13)C-acetate, (15)N-ammonium, and (33)S-sulfate. Using a cluster analysis technique based on fuzzy c-means to group cells according to their isotope ((13)C/(12)C, (15)N/(14)N, and (33)S/(32)S) and elemental ratio (C/CN and S/CN) profiles, our analysis partitioned ~2200 cellular regions of interest (ROIs) into five distinct groups. These isotope phenotype groupings are reflective of the variation in labeled substrate uptake by cells in a multispecies metabolic network dominated by Gamma- and Deltaproteobacteria. Populations independently grouped by isotope phenotype were subsequently compared with paired FISH data, demonstrating a single coherent deltaproteobacterial cluster and multiple gammaproteobacterial groups, highlighting the distinct ecophysiologies of spatially-associated microbes within the sulfur-cycling biofilm from White Point Beach, CA. PMID:27303371

  7. A new occurrence of ambient inclusion trails from the ~1900-million-year-old Gunflint Formation, Ontario: nanocharacterization and testing of potential formation mechanisms.

    PubMed

    Wacey, D; Saunders, M; Kong, C; Kilburn, M R

    2016-09-01

    Ambient inclusion trails (AITs) are tubular microstructures thought to form when a microscopic mineral crystal is propelled through a fine-grained rock matrix. Here, we report a new occurrence of AITs from a fossilized microbial mat within the 1878-Ma Gunflint Formation, at Current River, Ontario. The AITs are 1-15 μm in diameter, have pyrite as the propelled crystal, are infilled with chlorite and have been propelled through a microquartz (chert) or chlorite matrix. AITs most commonly originate at the boundary between pyrite- and chlorite-rich laminae and chert-filled fenestrae, with pyrite crystals propelled into the fenestrae. A subset of AITs originate within the fenestrae, rooted either within the chert or within patches of chlorite. Sulphur isotope data ((34) S/(32) S) obtained in situ from AIT pyrite have a δ(34) S of -8.5 to +8.0 ‰, indicating a maximum of ~30 ‰ fractionation from Palaeoproterozoic seawater sulphate (δ(34) S ≈ +20 ‰). Organic carbon is common both at the outer margins of the fenestrae and in patches of chlorite where most AITs originate, and can be found in smaller quantities further along some AITs towards the terminal pyrite grain. We infer that pyrite crystals now found within the AITs formed via the action of heterotrophic sulphate-reducing bacteria during early diagenesis within the microbial mat, as pore waters were becoming depleted in seawater sulphate. Gases derived from this process such as CO2 and H2 S were partially trapped within the microbial mat, helping produce birds-eye fenestrae, while rapid microquartz precipitation closed porosity. We propose that propulsion of the pyrite crystals to form AITs was driven by two complementary mechanisms during burial and low-grade metamorphism: firstly, thermal decomposition of residual organic material providing CO2 , and potentially CH4 , as propulsive gases, plus organic acids to locally dissolve the microquartz matrix; and secondly, reactions involving clay minerals that

  8. Geochemistry of Peruvian near-surface sediments

    NASA Astrophysics Data System (ADS)

    Böning, Philipp; Brumsack, Hans-Jürgen; Böttcher, Michael E.; Schnetger, Bernhard; Kriete, Cornelia; Kallmeyer, Jens; Borchers, Sven Lars

    2004-11-01

    Sixteen short sediment cores were recovered from the upper edge (UEO), within (WO) and below (BO) the oxygen minimum zone (OMZ) off Peru during cruise 147 of R/V Sonne. Solids were analyzed for major/trace elements, total organic carbon, total inorganic carbon, total sulfur, the stable sulfur isotope composition (δ 34S) of pyrite, and sulfate reduction rates (SRR). Pore waters were analyzed for dissolved sulfate/sulfide and δ 34S of sulfate. In all cores highest SRR were observed in the top 5 cm where pore water sulfate concentrations varied little due to resupply of sulfate by sulfide oxidation and/or diffusion of sulfate from bottom water. δ 34S of dissolved sulfate showed only minor downcore increases. Strong 32S enrichments in sedimentary pyrite (to -48‰ vs. V-CDT) are due to processes in the oxidative part of the sulfur cycle in addition to sulfate reduction. Manganese and Co are significantly depleted in Peruvian upwelling sediments most likely due to mobilization from particles settling through the OMZ, whereas release of both elements from reducing sediments only seems to occur in near-coastal sites. Cadmium, Mo and Re are exceptionally enriched in WO sediments (<600 m water depth). High Re and moderate Cd and Mo enrichments are seen in BO sediments (>600 m water depth). Re/Mo ratios indicate anoxic and suboxic conditions for WO and BO sediments, respectively. Cadmium and Mo downcore profiles suggest considerable contribution to UEO/WO sediments by a biodetrital phase, whereas Re presumably accumulates via diffusion across the sediment-water interface to precipitation depth. Uranium is distinctly enriched in WO sediments (due to sulfidic conditions) and in some BO sediments (due to phosphorites). Silver transfer to suboxic BO sediments is likely governed by diatomaceous matter input, whereas in anoxic WO sediments Ag is presumably trapped due to sulfide precipitation. Cadmium, Cu, Zn, Ni, Cr, Ag, and T1 predominantly accumulate via biogenic pre

  9. A new occurrence of ambient inclusion trails from the ~1900-million-year-old Gunflint Formation, Ontario: nanocharacterization and testing of potential formation mechanisms.

    PubMed

    Wacey, D; Saunders, M; Kong, C; Kilburn, M R

    2016-09-01

    Ambient inclusion trails (AITs) are tubular microstructures thought to form when a microscopic mineral crystal is propelled through a fine-grained rock matrix. Here, we report a new occurrence of AITs from a fossilized microbial mat within the 1878-Ma Gunflint Formation, at Current River, Ontario. The AITs are 1-15 μm in diameter, have pyrite as the propelled crystal, are infilled with chlorite and have been propelled through a microquartz (chert) or chlorite matrix. AITs most commonly originate at the boundary between pyrite- and chlorite-rich laminae and chert-filled fenestrae, with pyrite crystals propelled into the fenestrae. A subset of AITs originate within the fenestrae, rooted either within the chert or within patches of chlorite. Sulphur isotope data ((34) S/(32) S) obtained in situ from AIT pyrite have a δ(34) S of -8.5 to +8.0 ‰, indicating a maximum of ~30 ‰ fractionation from Palaeoproterozoic seawater sulphate (δ(34) S ≈ +20 ‰). Organic carbon is common both at the outer margins of the fenestrae and in patches of chlorite where most AITs originate, and can be found in smaller quantities further along some AITs towards the terminal pyrite grain. We infer that pyrite crystals now found within the AITs formed via the action of heterotrophic sulphate-reducing bacteria during early diagenesis within the microbial mat, as pore waters were becoming depleted in seawater sulphate. Gases derived from this process such as CO2 and H2 S were partially trapped within the microbial mat, helping produce birds-eye fenestrae, while rapid microquartz precipitation closed porosity. We propose that propulsion of the pyrite crystals to form AITs was driven by two complementary mechanisms during burial and low-grade metamorphism: firstly, thermal decomposition of residual organic material providing CO2 , and potentially CH4 , as propulsive gases, plus organic acids to locally dissolve the microquartz matrix; and secondly, reactions involving clay minerals that

  10. Mass independent fractionation of sulfur isotopes during thermochemical reduction of native sulfur, sulfite and sulfate by amino acids

    NASA Astrophysics Data System (ADS)

    Watanabe, Y.; Naraoka, H.; Ohmoto, H.

    2006-05-01

    Mass independent fractionation of sulfur isotopes (MIF-S) is recognized when the Δ33S value (= δ33S-0.515xδ34S) of a sample falls outside the range of 0±0.2 permil and the 33-34θ value (= ln33α/ ln34α) lies outside the range of 0.515±.005 (Farquhar and Wing, 2003). Previous investigators have concluded that the only mechanisms to create MIF-S are photochemical reactions between sulfur-bearing gases (SO2, H2S) and UV. Based on comparisons of the geochemical characteristics of Archean sedimentary rocks between those with large MIF-S values (e.g., the 2.5 Ga McRae and 2.7 Ga Jeerinah shales) and those with no (or very small) MIF- S values (e.g., 2.76 Ga Hardey shales and 2.92 Ga Mosquito Creek shales), we have developed a hypothesis that MIF-S in sedimentary rocks may have been created by reactions among organic-rich sediments, sulfur- bearing solid compounds, and sulfur-bearing hydrothermal fluids at T = 100-200°C during the early diagenetic stage of sediments. Most abundant organic compounds in immature sediments are amino acids. For these reasons, we have conducted series of laboratory experiments to investigate sulfur isotope fractionations during reactions between a variety of amino acids (alanine, glycine, hystidine, etc.) and native sulfur, sodium sulfite or sodium sulfate at 150-200°C. Previous researchers used a variety of organic compounds (sugars, methane, xylene, etc) and/or ferrous- bearing minerals to investigate non-bacterial sulfate reduction, but they failed to demonstrate thermochemical sulfate reduction at temperatures below 230°C. However, we were able to reduce sulfate (S6+), as well as sulfite (S4+) and native sulfur (S0), to hydrogen sulfide (S2-) even at 150°C using simple and common amino acids (e.g., alanine and glycine). The reduction rates generally decreased: (a) from native sulfur, to sulfite, and to sulfate; (b) from simple amino acids to more complex amino acids (e.g., histidine); and (c) with decreasing temperatures. The

  11. Meteoritic Sulfur Isotopic Analysis

    NASA Technical Reports Server (NTRS)

    Thiemens, Mark H.

    1996-01-01

    Funds were requested to continue our program in meteoritic sulfur isotopic analysis. We have recently detected a potential nucleosynthetic sulfur isotopic anomaly. We will search for potential carriers. The documentation of bulk systematics and the possible relation to nebular chemistry and oxygen isotopes will be explored. Analytical techniques for delta(sup 33), delta(sup 34)S, delta(sup 36)S isotopic analysis were improved. Analysis of sub milligram samples is now possible. A possible relation between sulfur isotopes and oxygen was detected, with similar group systematics noted, particularly in the case of aubrites, ureilites and entstatite chondrites. A possible nucleosynthetic excess S-33 has been noted in bulk ureilites and an oldhamite separate from Norton County. High energy proton (approximately 1 GeV) bombardments of iron foils were done to experimentally determine S-33, S-36 spallogenic yields for quantitation of isotopic measurements in iron meteorites. Techniques for measurement of mineral separates were perfected and an analysis program initiated. The systematic behavior of bulk sulfur isotopes will continue to be explored.

  12. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia

    NASA Astrophysics Data System (ADS)

    Wacey, David; Kilburn, Matt R.; Saunders, Martin; Cliff, John; Brasier, Martin D.

    2011-10-01

    Sulphur isotope data from early Archaean rocks suggest that microbes with metabolisms based on sulphur existed almost 3.5 billion years ago, leading to suggestions that the earliest microbial ecosystems were sulphur-based. However, morphological evidence for these sulphur-metabolizing bacteria has been elusive. Here we report the presence of microstructures from the 3.4-billion-year-old Strelley Pool Formation in Western Australia that are associated with micrometre-sized pyrite crystals. The microstructures we identify exhibit indicators of biological affinity, including hollow cell lumens, carbonaceous cell walls enriched in nitrogen, taphonomic degradation, organization into chains and clusters, and δ13C values of -33 to -46‰ Vienna PeeDee Belemnite (VPDB). We therefore identify them as microfossils of spheroidal and ellipsoidal cells and tubular sheaths demonstrating the organization of multiple cells. The associated pyrite crystals have Δ33S values between -1.65 and +1.43‰ and δ34S values ranging from -12 to +6‰ Vienna Canyon Diablo Troilite (VCDT). We interpret the pyrite crystals as the metabolic by-products of these cells, which would have employed sulphate-reduction and sulphur-disproportionation pathways. These microfossils are about 200 million years older than previously described microfossils from Palaeoarchaean siliciclastic environments.

  13. Os, Nd, O and S isotope constraints on country rock contamination in the conduit-related Eagle Cu-Ni-(PGE) deposit, Midcontinent Rift System, Upper Michigan

    NASA Astrophysics Data System (ADS)

    Ding, Xin; Ripley, Edward M.; Shirey, Steven B.; Li, Chusi

    2012-07-01

    The Eagle Cu-Ni-(PGE) deposit is hosted by mafic to ultramafic intrusive rocks associated with the Marquette-Baraga dike swarm in northern Michigan. Sulfide mineralization formed in a conduit system during early stages in the development of the ∼1.1 Ga Midcontinent Rift System. The conduit environment represents a prime location for melt-rock interaction. In order to better assess the extent of country rock contamination in the Eagle system, a combined trace element, Nd, Os, O and S isotope study of country rocks, sulfide-bearing igneous rocks and massive sulfide was undertaken. Both the Eagle and the weakly mineralized East Eagle intrusion show trace element patterns that are similar to those of picritic basalts that formed during early stages of rift development. The trace element, Os, Nd, and O isotopic values of the igneous rocks are consistent with <5% of bulk contamination by Paleoproterozoic and Archean country rocks. Both the Re-Os and Sm-Nd system provide isochrons that are in agreement with the 1107 Ma U-Pb baddeleyite age of the intrusive rocks. Calculated γOs(1100) and εNd(1100) values for the magmas are +34 and -2. δ18O values of pyroxene in feldspathic pyroxenite range from 6.5‰ to 6.6‰ and provide the only indication that bulk contamination may locally have exceeded 20%. Sulfur isotopic values of disseminated and massive sulfide in the Eagle intrusion range from 0.3‰ to 4.6‰. The δ34S values are much lower than those that characterize most of the country rocks, but could still be indicative of a contribution of S from country rocks of up to ∼50%. Δ33S values of the disseminated and massive sulfides range from -0.10‰ to 0.09‰ indicating a source in Paleoproterozoic country rocks. Semi-massive sulfide in the Eagle deposit has δ34S values between 2.2‰ and 5.3‰, and Δ33S values show a broad range between -0.86‰ and 0.86‰ indicating a major contribution from an Archean source. Isotopic data from the Eagle deposit strongly

  14. Sulfur-containing flavors: gas phase structures of dihydro-2-methyl-3-thiophenone.

    PubMed

    Mouhib, Halima; Van, Vinh; Stahl, Wolfgang

    2013-08-01

    Dihydro-2-methyl-3-thiophenone was investigated using a combination of quantum chemical calculations and molecular beam Fourier transform microwave spectroscopy. The substance is present in coffee, roasted peanuts, and whiskey. The microwave spectrum was recorded under molecular beam conditions in the frequency range from 9 to 14 GHz. We report on the two main conformers of dihydro-2-methyl-3-thiophenone, for which highly accurate rotational constants and centrifugal distortion constants were obtained. No splittings due to internal rotation of the methyl group could be observed in the microwave spectrum. This is in agreement with the theoretical predictions of the barrier heights, which have been determined to be more than 1000 cm(-1) at the MP2/6-311++G(d,p) level of theory. In addition to the most abundant (32)S-isotopologue of the main conformer, also the (34)S-isotopologue was assigned, which occurs with a natural abundance of about 4%. Using the experimental rotational constants, different quantum chemical calculations were validated for the two observed conformers. To complete the theoretical investigation of dihydro-2-methyl-3-thiophenone, different transition states were optimized to understand the intramolecular conversion between the two conformers at the MP2/6-311++G(d,p) level. The transition states were optimized using the Berny algorithm.

  15. Determination of total sulfur at microgram per gram levels in geological materials by oxidation of sulfur into sulfate with in situ generation of bromine using isotope dilution high-resolution ICPMS.

    PubMed

    Makishima, A; Nakamura, E

    2001-06-01

    We have developed a new, simple, and accurate method for the determination of total sulfur at microgram per gram levels in milligram-sized silicate materials with isotope dilution high-resolution inductively coupled plasma mass spectrometry equipped with a flow injection system. In this method, sulfur can be quantitatively oxidized by bromine into sulfate with achievement of isotope equilibrium between the sample and spike. Detection limits for 32S+ and 34S+ in the ideal solution and silicate samples were 1 and 6 ng mL(-1) and 0.07 and 0.3 microg g(-1), respectively. The total blank was 46 ng, so that a 40-mg silicate sample containing 10 mirog g(-1) sulfur can be measured with a blank correction of < 10%. This total blank can be lowered to 8 ng if a low-blank air system is used for evaporations. To evaluate the applicability of this method, we analyzed not only silicate reference materials with sulfur content of 5.25-489 microg g(-1) and sample sizes of 13-40 mg but also the Allende meteorite with a sulfur content of 2%. The reproducibility for various rock types was < 9%, even though blank corrections in some samples of low sulfur content were up to 24%. This method is suitable for analyzing geological samples as well environmental samples such as soils, sediments, and water samples.

  16. Geochemistry of a permeable reactive barrier for metals and acid mine drainage

    SciTech Connect

    Benner, S.G.; Blowes, D.W.; Herbert, R.B. Jr.; Ptacek, C.J.; Gould, W.D.

    1999-08-15

    A permeable reactive barrier, designed to remove metals and generate alkalinity by promoting sulfate reduction and metal sulfide precipitation, was installed in August 1995 into an aquifer containing effluent from mine tailings. Passage of groundwater through the barrier results in striking improvement in water quality. Dramatic changes in concentrations of SO{sub 4}, Fe, trace metals, and alkalinity are observed. Populations of sulfate reducing bacteria are 10,000 times greater, and bacterial activity, as measured by dehydrogenase activity, is 10 times higher within the barrier compared to the up-gradient aquifer. Dissolved sulfide concentrations increase by 0.2--120 mg/L, and the isotope {sup 34}S is enriched relative to {sup 32}S in the dissolved phase SO{sub 4}{sup 2{minus}} within the barrier. Water chemistry, coupled with geochemical speciation modeling, indicates the pore water in the barrier becomes supersaturated with respect to amorphous Fe sulfide. Solid phase analysis of the reactive mixture indicates the accumulation of Fe monosulfide precipitates. Shifts in the saturated states of carbonate, sulfate, and sulfide minerals and most of the observed changes in water chemistry in the barrier and down-gradient aquifer can be attributed, either directly or indirectly, to bacterially mediated sulfate reduction.

  17. The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies recorded in the Neoproterozoic Johnnie Formation, Death Valley, USA

    NASA Astrophysics Data System (ADS)

    Kaufman, A. J.; Corsetti, F. A.

    2004-12-01

    Carbonates within the Rainstorm Member in the terminal Neoproterozoic Johnnie Formation of Death Valley, California record a remarkable negative δ 13C anomaly to a nadir of near -11‰ , accompanied by a dramatic rise in trace sulfate abundance (>500 ppm) and drop in carbonate associated sulfate δ 34S values from 26.6‰ to 15.8‰ . The carbonates, including the laterally extensive Johnnie Oolite, were deposited during marine flooding atop a sequence boundary best observed in cratonward sections. A similarly dramatic carbon isotope anomaly is recorded in broadly equivalent successions that post-date known Marinoan glacial deposits and pre-date the Precambrian-Cambrian boundary in Oman, India, China, Australia, and Namibia. The cause of the carbon and sulfur isotopic excursions was likely associated with a rise in atmospheric O2, which resulted in 1) the oxidation of exposed continental shelf sediments rich in fossil organic matter and sulfides, providing a source of 12C, 32S, and sulfate; and 2) the ventilation of the oceans. Large metazoan fossils (Ediacaran animals) first appear directly above this anomaly, suggesting that a critical threshold with respect to atmospheric O2 had been crossed at this time. A negative δ 13C excursion of similar magnitude occurs in overlying strata at the Precambrian-Cambrian boundary, which may reflect similar processes.

  18. (SO2)-S-34-O-16: High-resolution analysis of the (030),(101), (111), (002) and (201) vibrational states; determination of equilibrium rotational constants for sulfur dioxide and anharmonic vibrational constants

    SciTech Connect

    Lafferty, Walter; Flaud, Jean-marie; Ngom, El Hadji A.; Sams, Robert L.

    2009-01-02

    High resolution Fourier transform spectra of a sample of sulfur dioxide, enriched in 34S (95.3%). were completely analyzed leading to a large set of assigned lines. The experimental levels derived from this set of transitions were fit to within their experimental uncertainties using Watson-type Hamiltonians. Precise band centers, rotational and centrifugal distortion constants were determined. The following band centers in cm-1 were obtained: ν0(3ν2)=1538.720198(11), ν0(ν1+ν3)=2475.828004(29), ν0(ν1+ν2+ν3)=2982.118600(20), ν0(2ν3)=2679.800919(35), and ν0(2ν1+ν3)=3598.773915(38). The rotational constants obtained in this work have been fit together with the rotational constants of lower lying vibrational states [ W.J. Lafferty, J.-M. Flaud, R.L. Sams and EL Hadjiabib, in press] to obtain equilibrium constants as well as vibration-rotation constants. These equilibrium constants have been fit together with those of 32S16O2 [J.-M. Flaud and W.J. Lafferty, J. Mol. Spectrosc. 16 (1993) 396-402] leading to an improved equilibrium structure. Finally the observed band centers have been fit to obtain anharmonic rotational constants.

  19. Sulfur-containing flavors: gas phase structures of dihydro-2-methyl-3-thiophenone.

    PubMed

    Mouhib, Halima; Van, Vinh; Stahl, Wolfgang

    2013-08-01

    Dihydro-2-methyl-3-thiophenone was investigated using a combination of quantum chemical calculations and molecular beam Fourier transform microwave spectroscopy. The substance is present in coffee, roasted peanuts, and whiskey. The microwave spectrum was recorded under molecular beam conditions in the frequency range from 9 to 14 GHz. We report on the two main conformers of dihydro-2-methyl-3-thiophenone, for which highly accurate rotational constants and centrifugal distortion constants were obtained. No splittings due to internal rotation of the methyl group could be observed in the microwave spectrum. This is in agreement with the theoretical predictions of the barrier heights, which have been determined to be more than 1000 cm(-1) at the MP2/6-311++G(d,p) level of theory. In addition to the most abundant (32)S-isotopologue of the main conformer, also the (34)S-isotopologue was assigned, which occurs with a natural abundance of about 4%. Using the experimental rotational constants, different quantum chemical calculations were validated for the two observed conformers. To complete the theoretical investigation of dihydro-2-methyl-3-thiophenone, different transition states were optimized to understand the intramolecular conversion between the two conformers at the MP2/6-311++G(d,p) level. The transition states were optimized using the Berny algorithm. PMID:23815419

  20. Sulfuric acid speleogenesis of Carlsbad Cavern and its relationship to hydrocarbons, Delaware basin, New Mexico and Texas

    SciTech Connect

    Hill, C.A. )

    1990-11-01

    Sulfur-isotope data and pH-dependence of the mineral endellite support the hypothesis that Carlsbad Cavern and other caves in the Guadalupe Mountains were dissolved primarily by sulfuric acid rather than by carbonic acid. Floor gypsum deposits up to 10 m thick and native sulfur in the caves are significantly enriched in {sup 32}S; {delta}{sup 34}S values as low as {minus}25.8 {per thousand} (CDT) indicate that the cave sulfur and gypsum are the end products of microbial reactions associated with hydrocarbons. A model for a genetic connection between hydrocarbons in the basin and caves in the Guadalupe Mountains is proposed. As the Guadalupe Mountains were uplifted during the late Pliocene-Pleistocene, oil and gas moved updip in the basin. The gas reacted with sulfate anions derived from dissolution of the Castile anhydrite to form H{sub 2}S, CO{sub 2}, and castile limestone. The hydrogen sulfide rose into the Capitan reef along joints, forereef carbonate beds, or Bell Canyon siliciclastic beds and there reacted with oxygenated groundwater to form sulfuric acid and Carlsbad Cavern. A sulfuric-acid mode of dissolution may be responsible for large-scale porosity of some Delaware basin reservoirs and for oil-field karst reservoirs in other petroleum basins of the world. 8 figs.

  1. High resolution spectroscopy of sulfur trioxide and carbon suboxide

    NASA Astrophysics Data System (ADS)

    Masiello, Tony

    High resolution spectroscopy was used to study the properties of two simple polyatomic molecules, sulfur trioxide, SO3, and carbon suboxide, C3O2. The fundamental modes and several hot bands of the 18O isotopic forms of SO3 (32S18O 3 and 34S18O3) have been investigated using both infrared spectroscopy and coherent anti-Stokes Raman scattering spectroscopy (CARS). The Raman-active symmetric stretching mode, nu 1, shows complex Q-branch patterns due to indirect Coriolis couplings, l-resonances, and Fermi resonances with infrared inaccessible nu2, nu4 combination/overtone levels. 18O isotopic substitution changes the character of these interactions in such a way that their effect on the nu1 CARS spectrum is unique among the different isotopomers studied. Accurate rovibrational constants are determined for all of the mixed states for the first time, leading to deperturbed values for the nu1 band origin of 1004.661(24) and 1004.693(23) for 34S18O 3 and 32S18O3 respectively. The strong Coriolis coupling is very noticeable in these species due to the close proximity of the nu2 and nu4 fundamental vibrations. The effect that this and other interaction terms have on the nu1 CARS spectrum of 34S18O3 is examined by selectively turning off the coupling between the hot bands. A global force field analysis was performed with the fundamental frequency values of all of the isotopomers studied that revealed a counterintuitive trend in the bond lengths between sulfur oxide species. In addition, band center frequencies for all the mixed 16O-18O isotopic species are computed. High-resolution CARS Spectroscopy was also used to study the nu 1 symmetric CO stretching mode of the quasi-linear molecule carbon suboxide, C3O2. Q-branches are seen that originate from the ground state and from thermally-populated levels of the unusually low frequency nu7 bending mode. The intensity variation of these on cooling to about 110 K in a jet expansion requires reversal of the order of assignment

  2. No oxygen isotope exchange between water and APS-sulfate at surface temperature: Evidence from quantum chemical modeling and triple-oxygen isotope experiments

    NASA Astrophysics Data System (ADS)

    Kohl, Issaku E.; Asatryan, Rubik; Bao, Huiming

    2012-10-01

    In both laboratory experiments and natural environments where microbial dissimilatory sulfate reduction (MDSR) occurs in a closed system, the δ34S ((34S/32S)sample/(34S/32S)standard - 1) for dissolved SO42- has been found to follow a typical Rayleigh-Distillation path. In contrast, the corresponding δ18O ((18O/16O)sample/(18O/16O)standard) - 1) is seen to plateau with an apparent enrichment of between 23‰ and 29‰ relative to that of ambient water under surface conditions. This apparent steady-state in the observed difference between δ18O and δ18OO can be attributed to any of these three steps: (1) the formation of adenosine-5'-phosphosulfate (APS) from ATP and SO42-, (2) oxygen exchange between sulfite (or other downstream sulfoxy-anions) and water later in the MDSR reaction chain and its back reaction to APS and sulfate, and (3) the re-oxidation of produced H2S or precursor sulfoxy-anions to sulfate in environments containing Fe(III) or O2. This study examines the first step as a potential pathway for water oxygen incorporation into sulfate. We examined the structures and process of APS formation using B3LYP/6-31G(d,p) hybrid density functional theory, implemented in the Gaussian-03 program suite, to predict the potential for oxygen exchange. We conducted a set of in vitro, enzyme-catalyzed, APS formation experiments (with no further reduction to sulfite) to determine the degree of oxygen isotope exchange between the APS-sulfate and water. Triple-oxygen-isotope labeled water was used in the reactor solutions to monitor oxygen isotope exchange between water and APS sulfate. The formation and hydrolysis of APS were identified as potential steps for oxygen exchange with water to occur. Quantum chemical modeling indicates that the combination of sulfate with ATP has effects on bond strength and symmetry of the sulfate. However, these small effects impart little influence on the integrity of the SO42- tetrahedron due to the high activation energy required for

  3. Discovery of (1R,5S)-N-[3-Amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]- 3-[2(S)-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1-oxobutyl]- 6,6-dimethyl-3-azabicyclo[3.1.0]hexan-2(S)-carboxamide (SCH 503034), a Selective, Potent, Orally Bioavailable Hepatitis C Virus NS3 Protease Inhibitor: A Potential Therapeutic Agent for the Treatment of Hepatitis C Infection

    SciTech Connect

    Venkatraman, Srikanth; Bogen, Stephane L.; Arasappan, Ashok; Bennett, Frank; Chen, Kevin; Jao, Edwin; Liu, Yi-Tsung; Lovey, Raymond; Hendrata, Siska; Huang, Yuhua; Pan, Weidong; Parekh, Tejal; Pinto, Patrick; Popov, Veljko; Pike, Russel; Ruan, Sumei; Santhanam, Bama; Vibulbhan, Bancha; Wu, Wanli; Yang, Weiying; Kong, Jianshe; Liang, Xiang; Wong, Jesse; Liu, Rong; Butkiewicz, Nancy; Chase, Robert; Hart, Andrea; Agrawal, Sony; Ingravallo, Paul; Pichardo, John; Kong, Rong; Baroudy, Bahige; Malcolm, Bruce; Guo, Zhuyan; Prongay, Andrew; Madison, Vincent; Broske, Lisa; Cui, Xiaoming; Cheng, Kuo-Chi; Hsieh, Yunsheng; Brisson, Jean-Marc; Prelusky, Danial; Korfmacher, Walter; White, Ronald; Bogdanowich-Knipp, Susan; Pavlovsky, Anastasia; Bradley, Prudence; Saksena, Anil K.; Ganguly, Ashit; Piwinski, John; Girijavallabhan, Viyyoor; Njoroge, F. George

    2008-06-30

    Hepatitis C virus (HCV) infection is the major cause of chronic liver disease, leading to cirrhosis and hepatocellular carcinoma, which affects more than 170 million people worldwide. Currently the only therapeutic regimens are subcutaneous interferon-{alpha} or polyethylene glycol (PEG)-interferon-{alpha} alone or in combination with oral ribavirin. Although combination therapy is reasonably successful with the majority of genotypes, its efficacy against the predominant genotype (genotype 1) is moderate at best, with only about 40% of the patients showing sustained virological response. Herein, the SAR leading to the discovery of 70 (SCH 503034), a novel, potent, selective, orally bioavailable NS3 protease inhibitor that has been advanced to clinical trials in human beings for the treatment of hepatitis C viral infections is described. X-ray structure of inhibitor 70 complexed with the NS3 protease and biological data are also discussed.

  4. A high-resolution Sulphur Isotope Record of Neoarchean Atmospheric Chemistry: Deciphering the Driver of Atmospheric Bi-stability in the Prelude to the GOE.

    NASA Astrophysics Data System (ADS)

    Izon, G. J.; Zerkle, A.; Newton, R.; Poulton, S.; Eigenbrode, J.; Farquhar, J.; Claire, M.

    2014-12-01

    Quantitative estimates of the composition of the Late Archean atmosphere are integral to deciphering the drivers of planetary oxygenation in the early Paleoproterozoic. However, the majority of geochemical proxies from marine sediments only inform on planetary redox via inference, making direct constraints on the ancient atmosphere difficult to place. Fortunately, the quadruple S-isotope (QSI) record (δ34S, Δ33S, and Δ36S) is implicitly tied to the composition of the ancient atmosphere. We have generated coupled QSI and δ13COrg records from two cores through the Transvaal basin in South Africa (GKF01 and BH1-Sacha) and from three time-equivalent cores through the Hammersley basin in Western Australia. These records reveal similar, apparently synchronous, co-variation between deviations from "typical" Neoarchean Δ36S/Δ33S values and negative δ13COrg values (C-S anomalies). We have interpreted these trends to reflect increased incorporation of 13C-depleted substrates (methane) into sedimentary matter following apparently episodically enhanced methanogenesis in the prelude to the GOE. These records suggest the terminal Neoarchean atmosphere operated in a bi-stable fashion, oscillating between a clear skies and organic-rich hazy state (Zerkle et al., 2010; Izon et al., in review). We speculate that these C-S anomalies reflect enhanced nutrient availability, facilitating the proliferation of an oxygenic photosynthetic/methanogenic biosphere, concomitantly amplifying biogenic CH4 and O2 fluxes and altering atmospheric chemistry. Here we present a new S- and C-isotope data set, derived at unprecedented resolution, encompassing the youngest C-S anomaly identified in core GKF01. These analyses will be combined with Fe-speciation and trace-metal data to elucidate whether atmospheric methane levels were regulated by climatically driven changes in nutrient fluxes to the marine biosphere. Taken together, our research serves as an initial foray to determine how, and why

  5. Spatial distributions of sulphur species and sulphate-reducing bacteria provide insights into sulphur redox cycling and biodegradation hot-spots in a hydrocarbon-contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Einsiedl, Florian; Pilloni, Giovanni; Ruth-Anneser, Bettina; Lueders, Tillman; Griebler, Christian

    2015-05-01

    Dissimilatory sulphate reduction (DSR) has been proven to be one of the most relevant redox reactions in the biodegradation of contaminants in groundwater. However, the possible role of sulphur species of intermediate oxidation state, as well as the role of potential re-oxidative sulphur cycling in biodegradation particularly at the groundwater table are still poorly understood. Here we used a combination of stable isotope measurements of SO42-, H2S, and S0 as well as geochemical profiling of sulphur intermediates with special emphasis on SO32-, S2O32-, and S0 to unravel possible sulphur cycling in the biodegradation of aromatics in a hydrocarbon-contaminated porous aquifer. By linking these results to the quantification of total bacterial rRNA genes and respiratory genes of sulphate reducers, as well as pyrotag sequencing of bacterial communities over depth, light is shed on possible key-organisms involved. Our results substantiate the role of DSR in biodegradation of hydrocarbons (mainly toluene) in the highly active plume fringes above and beneath the plume core. In both zones the concentration of sulphur intermediates (S0, SO32- and S2O32-) was almost twice that of other sampling-depths, indicating intense sulphur redox cycling. The dual isotopic fingerprint of oxygen and sulphur in dissolved sulphate suggested a re-oxidation of reduced sulphur compounds to sulphate especially at the upper fringe zone. An isotopic shift in δ34S of S0 of nearly +4‰ compared to the δ34S values of H2S from the same depth linked to a high abundance (∼10%) of sequence reads related to Sulphuricurvum spp. (Epsilonproteobacteria) in the same depth were indicative of intensive oxidation of S0 to sulphate in this zone. At the lower plume fringe S0 constituted the main inorganic sulphur species, possibly formed by abiotic re-oxidation of H2S with Fe(III)oxides subsequent to sulphate reduction. These results provide first insights into intense sulphur redox cycling in a hydrocarbon

  6. An integrated sulfur isotope model for Namibian shelf sediments

    NASA Astrophysics Data System (ADS)

    Dale, Andrew W.; Brüchert, Volker; Alperin, Marc; Regnier, Pierre

    2009-04-01

    In this study the sulfur cycle in the organic-rich mud belt underlying the highly productive upwelling waters of the Namibian shelf is quantified using a 1D reaction-transport model. The model calculates vertical concentration and reaction rate profiles in the top 500 cm of sediment which are compared to a comprehensive dataset which includes carbon, sulfur, nitrogen and iron compounds as well as sulfate reduction (SR) rates and stable sulfur isotopes ( 32S, 34S). The sulfur dynamics in the well-mixed surface sediments are strongly influenced by the activity of the large sulfur bacteria Thiomargaritanamibiensis which oxidize sulfide (H 2S) to sulfate ( SO42-) using sea water nitrate ( NO3-) as the terminal electron acceptor. Microbial sulfide oxidation (SOx) is highly efficient, and the model predicts intense cycling between SO42- and H 2S driven by coupled SR and SOx at rates exceeding 6.0 mol S m -2 y -1. More than 96% of the SR is supported by SOx, and only 2-3% of the SO42- pool diffuses directly into the sediment from the sea water. A fraction of the SO42- produced by Thiomargarita is drawn down deeper into the sediment where it is used to oxidize methane anaerobically, thus preventing high methane concentrations close to the sediment surface. Only a small fraction of total H 2S production is trapped as sedimentary sulfide, mainly pyrite (FeS 2) and organic sulfur (S org) (˜0.3 wt.%), with a sulfur burial efficiency which is amongst the lowest values reported for marine sediments (<1%). Yet, despite intense SR, FeS 2 and S org show an isotope composition of ˜5 ‰ at 500 cm depth. These heavy values were simulated by assuming that a fraction of the solid phase sulfur exchanges isotopes with the dissolved sulfide pool. An enrichment in H 2S of 34S towards the sediment-water interface suggests that Thiomargarita preferentially remove H 232S from the pore water. A fractionation of 20-30‰ was estimated for SOx (ɛ SOx) with the model, along with a maximum

  7. Assessment of paleo-oxygenation conditions on the Agua Nueva Formation (Cenomanian-Turonian), Central Mexico

    NASA Astrophysics Data System (ADS)

    Nuñez, F.; Canet, C.; Barragan-Manzo, R.; Alfonso, P.

    2013-05-01

    Organic-carbon-rich, laminated sediments are characteristic and widespread in the global stratigraphic record of the mid-Cretaceous, mainly during the Oceanic Anoxic Events (OAE's). In central-eastern Mexico, deposits of the Agua Nueva Formation are constituted by dark-gray, carbonaceous and laminated limestone with pyritic layers related to the Cenomanian-Turonian OAE 2. Herein, through different proxies, variations of paleo-redox conditions are studied in detail on a stratigraphic section of the Agua Nueva Formation. A first approach to redox conditions comes from the analysis of the stratigraphic record. Laminated fabrics and the paucity of bioturbation are typical features of a poorly oxygenated sedimentary environment. The presence of well-preserved fish remains and inoceramid bivalve shells is also consistent with those conditions. On the other hand, discrete light-colored and bioturbated thin levels indicate limited increases in the dissolved oxygen content. Geochemical proxies include δ13C in carbonates, δ34S in pyrite and the concentration of various redox-sensitive trace-elements. δ13C (VPDB) ranges from 0.39‰ to 1.30‰, whereas δ34Spy (VCDT) is between -41.23‰ and -11.27‰. The stratigraphic variation patterns of both isotopic values (δ13C and δ34S) are roughly opposite, reflecting changes in the burial of organic matter (OM) and, consequently, in the rate of bacterial sulphate reduction. Thus, positive 13C-rich carbonates represent lower free oxygen condition which enhanced burial flux of OM, tend to shift δ13C of carbonates toward positive values and triggered the incorporation of 32S into the sulfide by bacteria. This situation is also suggested by an enrichment of the sediments in V, Ni, Cr, Cu, Co, Zn, Mo and U. The abundance and size distribution of pyrite framboids proved to be in good agreement with the geochemical results. They also suggest dysoxic to anoxic conditions for the stratigraphic section studied. Both parameters have been

  8. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lazarov, Marina; Horn, Ingo

    2015-09-01

    Copper isotope compositions in Cu-bearing metals and minerals have been measured by deep (194 nm) ultraviolet femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (UV-fsLA-MC-ICP-MS). Pure Cu-metal, brass, and several Cu-rich minerals (chalcopyrite, enargite, covellite, malachite and cuprite) have been investigated. A long-term reproducibility of better than 0.08‰ at the 95% confidence limit on the NIST SRM 976 (National Institute of Standards and Technology) Cu-metal standard has been achieved with this technique. The δ65Cu values for all samples have been calculated by standard-sample-standard bracketing with NIST SRM 976. All analyses have been carried out using Ni as a mass discrimination monitor added by nebulization prior to entering the plasma torch. For further verification samples have been analysed by conventional solution nebulization MC-ICP-MS and the results obtained have been compared with those from UV-fsLA-MC-ICP-MS. Several potential matrix-induced molecular interferences on the mineral copper isotope ratio, such as (32S33S)+ and (32S-16O17O)+ do not affect the Cu isotope measurements on sulfides, while hydrides, such as Zn-H or doubly-charged Sn2 + that interfere Ni isotopes can be either neglected or stripped by calculation. Matrix independent Cu-isotope measurements are sensitive to the energy density (fluence) applied onto the sample and can produce artificial shifts in the obtained δ65Cu values which are on the order of 3‰ for Cu-metal, 0.5‰ for brass and 0.3‰ for malachite when using energy density of up to 2 J/cm2 for ablation. A positive correlation between applied energy density and the magnitude of the isotope ratio shift has been found in the energy density range from 0.2 to 1.3 J/cm2 which is below the ablation threshold for ns-laser ablation. The results demonstrate that by using appropriate low fluence it is possible to measure Cu isotopic ratios in native copper and Cu-bearing sulfides

  9. A Rare Glimpse of Paleoarchean Life: Geobiology of an Exceptionally Preserved Microbial Mat Facies from the 3.4 Ga Strelley Pool Formation, Western Australia.

    PubMed

    Duda, Jan-Peter; Van Kranendonk, Martin J; Thiel, Volker; Ionescu, Danny; Strauss, Harald; Schäfer, Nadine; Reitner, Joachim

    2016-01-01

    Paleoarchean rocks from the Pilbara Craton of Western Australia provide a variety of clues to the existence of early life on Earth, such as stromatolites, putative microfossils and geochemical signatures of microbial activity. However, some of these features have also been explained by non-biological processes. Further lines of evidence are therefore required to convincingly argue for the presence of microbial life. Here we describe a new type of microbial mat facies from the 3.4 Ga Strelley Pool Formation, which directly overlies well known stromatolitic carbonates from the same formation. This microbial mat facies consists of laminated, very fine-grained black cherts with discontinuous white quartz layers and lenses, and contains small domical stromatolites and wind-blown crescentic ripples. Light- and cathodoluminescence microscopy, Raman spectroscopy, and time of flight-secondary ion mass spectrometry (ToF-SIMS) reveal a spatial association of carbonates, organic material, and highly abundant framboidal pyrite within the black cherts. Nano secondary ion mass spectrometry (NanoSIMS) confirmed the presence of distinct spheroidal carbonate bodies up to several tens of μm that are surrounded by organic material and pyrite. These aggregates are interpreted as biogenic. Comparison with Phanerozoic analogues indicates that the facies represents microbial mats formed in a shallow marine environment. Carbonate precipitation and silicification by hydrothermal fluids occurred during sedimentation and earliest diagenesis. The deciphered environment, as well as the δ13C signature of bulk organic matter (-35.3‰), are in accord with the presence of photoautotrophs. At the same time, highly abundant framboidal pyrite exhibits a sulfur isotopic signature (δ34S = +3.05‰; Δ33S = 0.268‰; and Δ36S = -0.282‰) that is consistent with microbial sulfate reduction. Taken together, our results strongly support a microbial mat origin of the black chert facies, thus providing

  10. A Rare Glimpse of Paleoarchean Life: Geobiology of an Exceptionally Preserved Microbial Mat Facies from the 3.4 Ga Strelley Pool Formation, Western Australia.

    PubMed

    Duda, Jan-Peter; Van Kranendonk, Martin J; Thiel, Volker; Ionescu, Danny; Strauss, Harald; Schäfer, Nadine; Reitner, Joachim

    2016-01-01

    Paleoarchean rocks from the Pilbara Craton of Western Australia provide a variety of clues to the existence of early life on Earth, such as stromatolites, putative microfossils and geochemical signatures of microbial activity. However, some of these features have also been explained by non-biological processes. Further lines of evidence are therefore required to convincingly argue for the presence of microbial life. Here we describe a new type of microbial mat facies from the 3.4 Ga Strelley Pool Formation, which directly overlies well known stromatolitic carbonates from the same formation. This microbial mat facies consists of laminated, very fine-grained black cherts with discontinuous white quartz layers and lenses, and contains small domical stromatolites and wind-blown crescentic ripples. Light- and cathodoluminescence microscopy, Raman spectroscopy, and time of flight-secondary ion mass spectrometry (ToF-SIMS) reveal a spatial association of carbonates, organic material, and highly abundant framboidal pyrite within the black cherts. Nano secondary ion mass spectrometry (NanoSIMS) confirmed the presence of distinct spheroidal carbonate bodies up to several tens of μm that are surrounded by organic material and pyrite. These aggregates are interpreted as biogenic. Comparison with Phanerozoic analogues indicates that the facies represents microbial mats formed in a shallow marine environment. Carbonate precipitation and silicification by hydrothermal fluids occurred during sedimentation and earliest diagenesis. The deciphered environment, as well as the δ13C signature of bulk organic matter (-35.3‰), are in accord with the presence of photoautotrophs. At the same time, highly abundant framboidal pyrite exhibits a sulfur isotopic signature (δ34S = +3.05‰; Δ33S = 0.268‰; and Δ36S = -0.282‰) that is consistent with microbial sulfate reduction. Taken together, our results strongly support a microbial mat origin of the black chert facies, thus providing

  11. Thermochemical Reduction Experiments of Native Sulfur, Sulfite, and Sulfate by Amino Acids at 150 - 200°C

    NASA Astrophysics Data System (ADS)

    Naraoka, H.; Watanabe, Y.; Ohmoto, H.

    2006-12-01

    We have conducted series of laboratory experiments to investigate geochemical characteristics (e.g., kinetics and sulfur isotope fractionations) of redox reactions between a variety of amino acids (alanine, glycine, hystidine, etc.) and native sulfur, sodium sulfite or sodium sulfate at 150 - 200°C. While previous researchers failed to demonstrate thermochemical sulfate reduction (TSR) at temperatures below 230°C using a variety of organic compounds (sugars, methane, xylene, etc), in our series of experiments, all S-species were reduced to H2S by amino acids without presence of initial H2S and at neutral pH (i.e., pH = 6) even at 150°C. The reduction rates generally decreased: (a) from native sulfur, to sulfite, and to sulfate; (b) from simple amino acids to more complex amino acids, particularly with aromatic functional groups (e.g., histidine); and (c) with decreasing temperatures. The rates of sulfite and S0 reduction were, respectively, approximately 2 and 3 orders of magnitude faster than those of sulfate. The kinetic isotope effects (Δ34S = δ34SH2S - δ34Sreactant) generally increased with increasing valence of the starting S-compounds. However, they have very complex trends for particularly experiments using sulfate. They fluctuated between positive and negative in others, and continued to increase or decrease in some runs up to +10 or -10 per mil. These variations likely associated with changes in S/C ratios of initial mixtures, and probably occurred because the generation of reductants (i.e., CH4, H2, and NH4+) from the solid mixtures varied; the kinetic isotope effects associated with sulfate reduction by NH4+ may be quite different from those associated with reduction by H2 and/or CH4. The Δ^{33}S values of run products (H2S) generally increased from +0.16 per mil to +0.61 per mil with decreasing rates of sulfate reduction.

  12. Volcanic sulfate aerosol formation in the troposphere

    NASA Astrophysics Data System (ADS)

    Martin, Erwan; Bekki, Slimane; Ninin, Charlotte; Bindeman, Ilya

    2014-11-01

    The isotopic composition of volcanic sulfate provides insights into the atmospheric chemical processing of volcanic plumes. First, mass-independent isotopic anomalies quantified by Δ17O and to a lesser extent Δ33S and Δ36S in sulfate depend on the relative importance of different oxidation mechanisms that generate sulfate aerosols. Second, the isotopic composition of sulfate (δ34S and δ18O) could be an indicator of fractionation (distillation/condensation) processes occurring in volcanic plumes. Here we present analyses of O- and S isotopic compositions of volcanic sulfate absorbed on very fresh volcanic ash from nine moderate historical eruptions in the Northern Hemisphere. Most of our volcanic sulfate samples, which are thought to have been generated in the troposphere or in the tropopause region, do not exhibit any significant mass-independent fractionation (MIF) isotopic anomalies, apart from those from an eruption of a Mexican volcano. Coupled to simple chemistry model calculations representative of the background atmosphere, our data set suggests that although H2O2 (a MIF-carrying oxidant) is thought to be by far the most efficient sulfur oxidant in the background atmosphere, it is probably quickly consumed in large dense tropospheric volcanic plumes. We estimate that in the troposphere, at least, more than 90% of volcanic secondary sulfate is not generated by MIF processes. Volcanic S-bearing gases, mostly SO2, appear to be oxidized through channels that do not generate significant isotopically mass-independent sulfate, possibly via OH in the gas phase and/or transition metal ion catalysis in the aqueous phase. It is also likely that some of the sulfates sampled were not entirely produced by atmospheric oxidation processes but came out directly from volcanoes without any MIF anomalies.

  13. A Rare Glimpse of Paleoarchean Life: Geobiology of an Exceptionally Preserved Microbial Mat Facies from the 3.4 Ga Strelley Pool Formation, Western Australia

    PubMed Central

    Duda, Jan-Peter; Van Kranendonk, Martin J.; Thiel, Volker; Ionescu, Danny; Strauss, Harald; Schäfer, Nadine; Reitner, Joachim

    2016-01-01

    Paleoarchean rocks from the Pilbara Craton of Western Australia provide a variety of clues to the existence of early life on Earth, such as stromatolites, putative microfossils and geochemical signatures of microbial activity. However, some of these features have also been explained by non-biological processes. Further lines of evidence are therefore required to convincingly argue for the presence of microbial life. Here we describe a new type of microbial mat facies from the 3.4 Ga Strelley Pool Formation, which directly overlies well known stromatolitic carbonates from the same formation. This microbial mat facies consists of laminated, very fine-grained black cherts with discontinuous white quartz layers and lenses, and contains small domical stromatolites and wind-blown crescentic ripples. Light- and cathodoluminescence microscopy, Raman spectroscopy, and time of flight—secondary ion mass spectrometry (ToF-SIMS) reveal a spatial association of carbonates, organic material, and highly abundant framboidal pyrite within the black cherts. Nano secondary ion mass spectrometry (NanoSIMS) confirmed the presence of distinct spheroidal carbonate bodies up to several tens of μm that are surrounded by organic material and pyrite. These aggregates are interpreted as biogenic. Comparison with Phanerozoic analogues indicates that the facies represents microbial mats formed in a shallow marine environment. Carbonate precipitation and silicification by hydrothermal fluids occurred during sedimentation and earliest diagenesis. The deciphered environment, as well as the δ13C signature of bulk organic matter (-35.3‰), are in accord with the presence of photoautotrophs. At the same time, highly abundant framboidal pyrite exhibits a sulfur isotopic signature (δ34S = +3.05‰; Δ33S = 0.268‰; and Δ36S = -0.282‰) that is consistent with microbial sulfate reduction. Taken together, our results strongly support a microbial mat origin of the black chert facies, thus

  14. A COMPLETE SPECTROSCOPIC CHARACTERIZATION OF SO AND ITS ISOTOPOLOGUES UP TO THE TERAHERTZ DOMAIN

    SciTech Connect

    Martin-Drumel, M. A.; Hindle, F.; Mouret, G.; Cuisset, A.; Cernicharo, J.

    2015-02-01

    In order to obtain accurate terahertz center frequencies for SO and its isotopologues, we have studied the absorption spectrum of SO, {sup 34}SO, and {sup 33}SO up to 2.5 THz using continuous-wave terahertz photomixing based on a frequency comb providing an accuracy down to 10 kHz. Sulfur monoxide was produced in a radio frequency discharge of air in a cell containing pure sulfur. Together with the strong absorption signal of the main isotopologue, transitions of {sup 34}SO ({sup 34}S: 4.21%) and {sup 33}SO ({sup 33}S: 0.75%) were observed in natural abundance. The newly observed transitions constitute an extension of the observed rotational quantum numbers of the molecule toward higher N values, allowing an improvement of the molecular parameters for the three species. An isotopically invariant fit has been performed based on pure rotational and ro-vibrational transitions of all SO isotopologues, enabling their accurate line position prediction at higher frequencies. Thanks to this new set of parameters, it is now possible to predict with very high accuracy the frequencies of the ro-vibrational lines. This should enable the research of SO in the mid-IR using ground-based IR telescopes, space-based telescope archives (Infrared Space Observatory, Spitzer), and future space missions such as the James Webb Space Telescope. This set of parameters is particularly well adapted for the detection of SO lines in O-rich evolved stars or in molecular clouds in absorption against bright IR sources.

  15. A Molecular Line Survey of the Highly Evolved Carbon Star CIT 6

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Kwok, Sun; Dinh-V-Trung

    2009-02-01

    We present a spectral-line survey of the C-rich envelope CIT 6 in the 2 mm and 1.3 mm bands carried out with the Arizona Radio Observatory 12 m telescope and the Heinrich Hertz Submillimeter Telescope. The observations cover the frequency ranges of 131--160 GHz, 219--244 GHz, and 252--268 GHz with a typical sensitivity limit of TR < 10 mK. A total of 74 individual emission features are detected, of which 69 are identified to arise from 21 molecular species and isotopologues, with five faint lines remaining unidentified. Two new molecules (C4H and CH3CN) and seven new isotopologues (C17O, 29SiC2, 29SiO, 30SiO, 13CS, C33S, and C34S) are detected in this object for the first time. The column densities, excitation temperatures, and fractional abundances of the detected molecules are determined using rotation-diagram analysis. Comparison of the spectra of CIT 6 to that of IRC+10216 suggests that the spectral properties of CIT 6 are generally consistent with those of IRC+10216. For most of the molecular species, the intensity ratios of the lines detected in the two objects are in good agreement with each other. Nevertheless, there is evidence suggesting enhanced emission from CN and HC3N and depleted emission from HCN, SiS, and C4H in CIT 6. Based on their far-IR spectra, we find that CIT 6 probably has a lower dust-to-molecular ratio than IRC+10216. To investigate the chemical evolution of evolved stars, we compare the molecular abundances in the asymptotic giant branch envelopes CIT 6 and IRC+10216 and those in the bright proto-planetary nebula CRL 618. The implication on the circumstellar chemistry is discussed.

  16. A MOLECULAR LINE SURVEY OF THE EXTREME CARBON STAR CRL 3068 AT MILLIMETER WAVELENGTHS

    SciTech Connect

    Zhang Yong; Kwok, Sun; Nakashima, Jun-ichi E-mail: sunkwok@hku.hk

    2009-08-01

    We present the results of a molecular line survey of the extreme carbon star CRL 3068. The observations were carried out with the Arizona Radio Observatory (ARO) 12 m telescope and the Heinrich Hertz Submillimeter Telescope (SMT) at the {lambda} 2 mm and {lambda} 1.3 mm atmospheric windows. The observations cover the frequency bands from 130 to 162 GHz and 219.5 to 267.5 GHz. The typical sensitivities achieved are T{sub R} < 15 mK and T{sub R} < 7 mK for the ARO 12 m and SMT, respectively. Seventy-two individual emission features belonging to 23 molecular species and isotopologues were detected. Only three faint lines remain unidentified. The species c-C{sub 3}H, CH{sub 3}CN, SiC{sub 2}, and the isotopologues, C{sup 17}O, C{sup 18}O, HC{sup 15}N, HN{sup 13}C, C{sup 33}S, C{sup 34}S, {sup 13}CS, {sup 29}SiS, and {sup 30}SiS are detected in this object for the first time. Rotational-diagram analysis is carried out to determine the column densities and excitation temperatures. The isotopic ratios of the elements C, N, O, S, and Si have also been estimated. The results are consistent with stellar CNO processing and suggest that CRL 3068 is more carbon rich than IRC+10216 and CIT 6. It is also shown that the chemical composition in CRL 3068 is somewhat different from that in IRC+10216 with a more extensive synthesis of cyclic and long-chain molecules in CRL 3068. The results will provide valuable clues for better understanding circumstellar chemistry.

  17. The Fundamental Structure of UV-Irradiated Cloud Edges: Combined ALMA and IRAM-30m Observations of the Orion Bar

    NASA Astrophysics Data System (ADS)

    Goicoechea, J.; Cuadrado, S.; Pety, J.; Ag'undez, M.; Cernicharo, J.; Chapillon, E.; Dumas, G.; Fuente, A.; Gerin, M.; Joblin, C.; Marcelino, N.; Müller, H. S. P.; Pilleri, P.

    2015-12-01

    The Orion Bar is the prototypical photodissociation region (PDR) exposed to a far-UV radiation field (FUV) of a few 104 times the mean interstellar field. Because of its proximity and nearly edge-on orientation, it provides a unique laboratory to study the physical and chemical gradients of a strongly FUV-illuminated molecular cloud. Using ALMA at ˜350 GHz, we have observed a field-of-view of ˜40”×40” toward the Orion Bar PDR consisting of a mosaic of 27 Nyquist-sampled pointings. These observations provide an unprecedented high angular resolution view (˜1” or ˜414 AU at the distance to Orion) of the most exposed molecular cloud edge. In addition, ACA and IRAM-30m maps were used to produce the short-spacing visibilities filtered out by the ALMA array. These interferometric observations complement a complete line survey we have carried out using the IRAM-30m telescope between ˜80 GHz and ˜360 GHz. Despite being a harsh environment, over 60 species with up to 6 atoms have been identified, including main isotopologues (D, 13C, 18O, 17O, 34S, 33S, and 15N). The first molecular line images of the Orion Bar obtained with ALMA at ˜1” resolution reveal the fundamental structure in density and temperature of the molecular gas as well as its complex kinematics at an unprecedented spatial resolution. This early data set also allowed us to compute corrected line frequencies for SH+, an interesting hydride tracing reactions of S+ with vibrationally excited H2 in the PDR edge.

  18. Coupled Fe and S isotope variations in pyrite nodules from Archean shale

    NASA Astrophysics Data System (ADS)

    Marin-Carbonne, Johanna; Rollion-Bard, Claire; Bekker, Andrey; Rouxel, Olivier; Agangi, Andrea; Cavalazzi, Barbara; Wohlgemuth-Ueberwasser, Cora C.; Hofmann, Axel; McKeegan, Kevin D.

    2014-04-01

    Iron and sulfur isotope compositions recorded in ancient rocks and minerals such as pyrite (FeS2) have been widely used as a proxy for early microbial metabolisms and redox evolution of the oceans. However, most previous studies focused on only one of these isotopic systems. Herein, we illustrate the importance of in-situ and coupled study of Fe and S isotopes on two pyrite nodules in a c. 2.7 Ga shale from the Bubi Greenstone Belt (Zimbabwe). Fe and S isotope compositions were measured both by bulk-sample mass spectrometry techniques and by ion microprobe in-situ methods (Secondary Ion Mass Spectrometry, SIMS). Spatially-resolved analysis across the nodules shows a large range of variations at micrometer-scale for both Fe and S isotope compositions, with δ56Fe and δ34S values from -2.1 to +0.7‰ and from -0.5 to +8.2‰, respectively, and Δ33S values from -1.6 to +2.9‰. The Fe and S isotope variations in these nodules cannot be explained by tandem operation of Dissimilatory Iron Reduction (DIR) and Bacterial Sulfate Reduction (BSR) as was previously proposed, but rather they reflect the contributions of different Fe and S sources during a complex diagenetic history. Pyrite formed from two different mineral precursors: (1) mackinawite precipitated in the water column, and (2) greigite formed in the sediment during early diagenesis. The in-situ analytical approach reveals a complex history of the pyrite nodule growth and allows us to better constrain environmental conditions during the Archean.

  19. A Molecular Line Survey of the Extreme Carbon Star CRL 3068 at Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Kwok, Sun; Nakashima, Jun-ichi

    2009-08-01

    We present the results of a molecular line survey of the extreme carbon star CRL 3068. The observations were carried out with the Arizona Radio Observatory (ARO) 12 m telescope and the Heinrich Hertz Submillimeter Telescope (SMT) at the λ 2 mm and λ 1.3 mm atmospheric windows. The observations cover the frequency bands from 130 to 162 GHz and 219.5 to 267.5 GHz. The typical sensitivities achieved are TR < 15 mK and TR < 7 mK for the ARO 12 m and SMT, respectively. Seventy-two individual emission features belonging to 23 molecular species and isotopologues were detected. Only three faint lines remain unidentified. The species c-C3H, CH3CN, SiC2, and the isotopologues, C17O, C18O, HC15N, HN13C, C33S, C34S, 13CS, 29SiS, and 30SiS are detected in this object for the first time. Rotational-diagram analysis is carried out to determine the column densities and excitation temperatures. The isotopic ratios of the elements C, N, O, S, and Si have also been estimated. The results are consistent with stellar CNO processing and suggest that CRL 3068 is more carbon rich than IRC+10216 and CIT 6. It is also shown that the chemical composition in CRL 3068 is somewhat different from that in IRC+10216 with a more extensive synthesis of cyclic and long-chain molecules in CRL 3068. The results will provide valuable clues for better understanding circumstellar chemistry.

  20. Anoxic pyrite oxidation by water radiolysis products — A potential source of biosustaining energy

    NASA Astrophysics Data System (ADS)

    Lefticariu, Liliana; Pratt, Lisa A.; LaVerne, Jay A.; Schimmelmann, Arndt

    2010-03-01

    Radiolysis on rocky planetary bodies provides chemical species across redox gradients that can supply energy for microbial life in subsurface environments. We investigated the oxidation of pyrite to aqueous sulfate (SO 42-) by water γ-radiolysis products with concomitant production of molecular hydrogen (H 2). The production of H 2, the only gaseous product recovered at the end of pyrite-water irradiation experiments, was found to be dependent on pyrite/water ratios. The yield of radiolytically-produced SO 42- correlated with the total irradiation dose. The effectiveness of γ-radiation in oxidative dissolution of pyrite is determined by (1) redox reactions between radiolytically-produced oxidants and pyrite, and (2) the interaction between γ-radiation and pyrite's crystalline structure. Radiolytic oxidation of reduced sulfur occurs with the oxidants HO ● (hydroxyl radical) and Fe 3+ (ferric iron) involving two different pathways. The radiolytic production of these two chemical oxidants is self-sustaining in the presence of water and Fe 2+ in the system. Radiolytic oxidation can produce significant sulfur isotope effects by preferentially bringing 34S into solution as sulfate and leaving a 32S-enriched elemental sulfur layer on the pyrite surface. Experimental abiotic fractionations of sulfur isotopes between original pyrite and its sulfur oxidation products are significant and indicate that isotopically distinct sulfate is being produced during oxidation. Based on measured radiolysis constants for pyrite and radiation dose estimates for continental crust, we show that radiolysis of water coupled to oxidation of metallic sulfides could be a significant source of sulfate in many geological environments. Implications of this work are broad, impacting our assessment of the potential for life to exist in subsurface environments on Earth as well as in extraterrestrial environments.

  1. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    PubMed Central

    Church, Clinton D; Wilkin, Richard T; Alpers, Charles N; Rye, Robert O; McCleskey, R Blaine

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. PMID:17956615

  2. SIMS and NanoSIMS analyses of Mesoproterozoic individual microfossils indicating continuous oxygen-producing photosynthesis in Proterozoic Ocean

    NASA Astrophysics Data System (ADS)

    Peng, X.; Guo, Z.; House, C. H.; Chen, S.; Ta, K.

    2015-12-01

    Well-preserved microfossils in the stromatolites from the Gaoyuzhuang Formation (~1500Ma), which is younger than the Gunflint Formation (~1880Ma) and older than the Bitter Springs Formation (~850Ma), may play key roles in systematizing information about the evolution of early life and environmental changes in the Proterozoic Ocean. Here, a combination of light microscopy (LM), scanning electron microscopy (SEM), focused ion beam (FIB), nano-scale secondary ion mass spectrometry (NanoSIMS) and secondary ion mass spectrometry (SIMS) were employed to characterize the morphology, elemental distributions and carbon isotope values of individual microfossils in the stromatolites from the Gaoyuahzuang Formation. Light microscopy analyses show that abundant filamentous and coccoid microfossils are exceptionally well preserved in chert. NanoSIMS analyses show that metabolically important elements such as 12C-, 13C-, 12C14N-, 32S-, and 34S- are concentrated in these microfossils and that the variations in the concentrations of these elements are similar, establishing the elemental distributions in incontestably biogenic microstructures. Carbon isotope (δ13C) values of individual microfossils range from -32.2‰ ± 0.9‰ to -23.3‰ ± 1.0‰ (weighted mean= -28.9‰ ± 0.1‰), consistent with carbon fixation via the Calvin cycle. The elevated δ13C values of the microfossils from Early-, Meso- to Late Proterozoic Era, possibly indicate decreasing CO2 and increasing O2 concentrations in the Proterozoic atmosphere. Our results, for the first time, provided the element distributions and cell specific carbon isotope values on convincing Mesoproterozoic cyanobacterial fossils, supporting continuous oxygen-producing photosynthesis in the Proterozoic Ocean.

  3. Atmospheric DMS and Biogenic Sulfur aerosol measurements in the Arctic

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Wentworth, G.; Burkart, J.; Leaitch, W. R.; Abbatt, J.; Sharma, S.; Desiree, T. S.

    2014-12-01

    Dimethyl Sulfide (DMS) and its oxidation products were measured on the board of the Canadian Coast Guard Ship (CCGS) Amundsen and above melt ponds in the Arctic during July 2014 in the context of the NETCARE study which seeks to understand the effect of DMS and its oxidation products with respect to aerosol nucleation, as well as its effect on cloud and precipitation properties. The objective of this study is to quantify the role of DMS in aerosol growth and activation in the Arctic atmosphere. Atmospheric DMS samples were collected from different altitudes, from 200 to 9500 feet, aboard the POLAR6 aircraft expedition to determine variations in the DMS concentration and a comparison was made to shipboard DMS measurements and its effects on aerosol size fractions. The chemical and isotopic composition of sulfate aerosol size fractions was studied. Sulfur isotope ratios (34S/32S) offer a way to determine the oceanic DMS contribution to aerosol growth. The results are expected to address the contribution of anthropogenic as well as biogenic sources of aerosols to the growth of the different aerosol size fractions. In addition, aerosol sulfate concentrations were measured at the same time within precipitation and fogs to compare with the characteristics of aerosols in each size fraction with the characteristics of the sulfate in each medium. This measurement is expected to explain the contribution of DMS oxidation in aerosol activation in the Arctic summer. Preliminary results from the measurement campaign for DMS and its oxidation products in air, fog and precipitation will be presented.

  4. The microbial methane cycle in subsurface sediments. Final project report, July 1, 1993--August 31, 1997

    SciTech Connect

    Grossman, E.L.; Ammerman, J.W.; Suflita, J.M.

    1997-12-31

    The objectives of this study were to determine the factors controlling microbial activity and survival in the subsurface and, specifically, to determine whether microbial communities in aquitards and in aquifer microenvironments provide electron donors and/or acceptors that enhance microbial survival in aquifers. Although the original objectives were to focus on methane cycling, the authors pursued an opportunity to study sulfur cycling in aquifer systems, a process of much greater importance in microbial activity and survival, and in the mobility of metals in the subsurface. Furthermore, sulfur cycling is pertinent to the Subsurface Science Program`s study at Cerro Negro, New Mexico. The study combined field and laboratory approaches and microbiological, molecular, geochemical, and hydrogeological techniques. During drilling operations, sediments were collected aseptically and assayed for a variety of microorganisms and metabolic capabilities including total counts, viable aerobic heterotrophs, total anaerobic heterotrophs, sulfate reducing bacteria (SRB) and sulfate reduction activity (in situ and in slurries), methanogens, methanotrophs, and Fe- and S-oxidizers, among others. Geochemical analyses of sediments included organic carbon content and {sup 13}C/{sup 12}C ratio, sulfur chemistry (reduced sulfur, sulfate), {sup 34}S/{sup 32}S, {sup 13}C/{sup 12}C, {sup 14}C, tritium, etc. The authors drilled eight boreholes in the Eocene Yegua formation at four localities on the Texas A&M University campus using a hollow-stem auger drilling rig. The drilling pattern forms a T, with three well clusters along the dip direction and two along strike. Four boreholes were sampled for sediments and screened at the deepest sand interval encountered, and four boreholes were drilled to install wells in shallower sands. Boreholes range in depth from 8 to 31 m, with screened intervals ranging from 6 to 31 m. Below are the results of these field studies.

  5. Snowpack chemistry at selected sites in northwestern Colorado during spring 1995

    USGS Publications Warehouse

    Ingersoll, G.P.

    1996-01-01

    Samples of the alpine and subalpine snowpack were collected in and near the headwater basins of the Yampa River in northwestern Colorado during maximum annual accumulation of snowpack in spring 1995. Sampling protocol at seven selected sites at more than 2,500 meters above sea level divided the snowpack into two distinct strata to enable separate chemical analyses of upper and lower layers of the annual snow cover. These two layers correspond to the early snow season beginning in September until December 12, 1994, and the remainder of the season from January 1 until the sampling date in spring 1995. At one site these two strata were resampled at closely spaced intervals defining substrata to observe variance within the two strata dividing the snow season. Analytical results of snowpack chemistry are presented in support of investigations of seasonal effects on ion concentrations in the snowpack. Chemical concentrations of major anions and cations, dissolved organic carbon, and alkalinity; measured pH; calculated charge balance between anions and cations; the stable-sulfur isotope ratio (34S/32S); and summary statistics of chemical concentrations are tabulated. Sampling sites are plotted on a map of the area. Spatial distributions of the concentrations of the hydrogen, nitrate, and sulfate ions and stable- sulfur isotope ratios also are mapped. Several unusual, late-season, snowfall events occurred during April and May of 1995 after the snowpack was sampled at most of the seven sites in the study area. Consequently, a considerable fraction of the total annual snowpack was not sampled. At one site, the full snowpack was sampled again in June, after the late-spring storms, for comparison to the chemistry of the snowpack sampled earlier in April. Precipitation chemistry from a National Atmospheric Deposition Program (NADP) collector located near the site is presented for comparison of the chemistry of the late-season snow to that of the typical annual snowpack season.

  6. Is white clover able to switch to atmospheric sulphur sources when sulphate availability decreases?

    PubMed

    Varin, Sébastien; Lemauviel-Lavenant, Servane; Cliquet, Jean-Bernard

    2013-05-01

    Sulphur (S) is one of the very few nutrients that plants can absorb either through roots as sulphate or via leaves in a gas form such as SO2 or H2S. This study was realized in a non-S-enriched atmosphere and its purpose was to test whether clover plants can increase their ability to use atmospheric S when sulphate availability decreases. A novel methodology measuring the dilution of (34)S provided from a nutrient solution by atmospheric (32)S was developed to measure S acquisition by Trifolium repens L. Clones of white clover were grown for 140 d in a hydroponic system with three levels of sulphate concentrations. S concentration in plants decreased with S deficiency and plant age. In the experimental conditions used here, S derived from atmospheric deposition (Sdad) constituted from 36% to 100% of the total S. The allocation of S coming from atmospheric and pedospheric sources depends on organs and compounds. Nodules appeared as major sinks for sulphate. A greater proportion of atmospheric S was observed in buffer-soluble proteins than in the insoluble S fraction. Decreasing the S concentration in the nutrient solution resulted in an increase in the Sdad:leaf area ratio and in an increase in the leaf:stolon and root:shoot mass ratios, suggesting that a plasticity in the partitioning of resources to organs may allow a higher gain of S by both roots and leaves. This study shows that clover can increase its ability to use atmospheric S even at low concentration when pedospheric S availability decreases. PMID:23645868

  7. EXPLORING IO'S ATMOSPHERIC COMPOSITION WITH APEX: FIRST MEASUREMENT OF {sup 34}SO{sub 2} AND TENTATIVE DETECTION OF KCl

    SciTech Connect

    Moullet, A.; Lellouch, E.; Moreno, R.; Gurwell, M.; Black, J. H; Butler, B.

    2013-10-10

    The composition of Io's tenuous atmosphere is poorly constrained. Only the major species SO{sub 2} and a handful of minor species have been positively identified, but a variety of other molecular species should be present, based on thermochemical equilibrium models of volcanic gas chemistry and the composition of Io's environment. This paper focuses on the spectral search for expected yet undetected molecular species (KCl, SiO, S{sub 2}O) and isotopes ({sup 34}SO{sub 2}). We analyze a disk-averaged spectrum of a potentially line-rich spectral window around 345 GHz, obtained in 2010 at the APEX 12 m antenna. Using different models assuming either extended atmospheric distributions or a purely volcanically sustained atmosphere, we tentatively measure the KCl relative abundance with respect to SO{sub 2} and derive a range of 4 × 10{sup –4}-8 × 10{sup –3}. We do not detect SiO or S{sub 2}O and present new upper limits on their abundances. We also present the first measurement of the {sup 34}S/{sup 32}S isotopic ratio in gas phase on Io, which appears to be twice as high as the Earth and interstellar medium reference values. Strong lines of SO{sub 2} and SO are also analyzed to check for longitudinal variations of column density and relative abundance. Our models show that, based on their predicted relative abundance with respect to SO{sub 2} in volcanic plumes, both the tentative KCl detection and SiO upper limit are compatible with a purely volcanic origin for these species.

  8. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    USGS Publications Warehouse

    Church, C.D.; Wilkin, R.T.; Alpers, C.N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  9. Isotopic mapping of transition-state structural features associated with enzymic catalysis of methyl transfer

    SciTech Connect

    Rodgers, J.; Femec, D.A.; Schowen, R.L.

    1982-06-16

    For comparison of the molecular structures of nonenzymic and enzymic sulfur-to-oxygen transmethylation transition states by the use of kinetic isotope effects, a series of isotopic maps is produced. In these, contours of constant isotope effect are displayed vs. the Pauling bond orders B/sub CS/ and B/sub CO/, for the carbon-sulfur and carbon-oxygen bonds, respectively, taken as independent variables to describe the transition states. Maps are calculated by the BEBOVIB approach for k(CH/sub 3/)/k(CD/sub 3/), k(/sup 12/CH/sub 3/)/k(/sup 13/CH/sub 3/), k(/sup 16/O)/k(/sup 18/O), and k(/sup 32/S)/k(/sup 34/S), with two models for the reaction coordinate, two force-field assumptions, and four temperatures. Nonenzymic isotope effects and isotope effects for catechol-O-methyltransferase action are then used to construct figures on the CH/sub 3//CD/sub 3/ and /sup 12/CH/sub 3///sup 13/CH/sub 3/ maps which correspond to allowed spaces of transition-states structures. Superposition of the figures yields the spaces of transition-state structures simultaneously consistent with both hydrogen and carbon isotope effects. It is concluded that the enzyme compresses the S/sub N/2 transition state and that the compression of the C-O and C-S bonds may well be of the order of 0.15 A per bond and could conceivably be more than twice as large.

  10. Pyrite formation and trace metal enrichment patterns reflect past environmental conditions on the Peru-Chile continental margin

    NASA Astrophysics Data System (ADS)

    Böning, Philipp; Böttcher, Michael E.; Brumsack, Hans-Jürgen

    2010-05-01

    source. In-situ sulfur fractionation is significantly decreased due to high amounts of reactive OM and possible reservoir effects. This indicates control of isotope discrimination by heterotrophic bacterial activity in this deep sediment section. The long cores off Concepcion may indicate two episodes of sea level lowstand. This is reflected by the rather positive d34S signature of pyrite (up to 0 per mil) in sandy layers which is typical of the depletion of 32S in a closed system. The continuous decrease in d34S values of pyrite from 0 to -35 per mil indicates relative sea level changes.

  11. Tracing sources of crustal contamination using multiple S and Fe isotopes in the Hart komatiite-associated Ni-Cu-PGE sulfide deposit, Abitibi greenstone belt, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Hiebert, R. S.; Bekker, A.; Houlé, M. G.; Wing, B. A.; Rouxel, O. J.

    2016-10-01

    Assimilation by mafic to ultramafic magmas of sulfur-bearing country rocks is considered an important contributing factor to reach sulfide saturation and form magmatic Ni-Cu-platinum group element (PGE) sulfide deposits. Sulfur-bearing sedimentary rocks in the Archean are generally characterized by mass-independent fractionation of sulfur isotopes that is a result of atmospheric photochemical reactions, which produces isotopically distinct pools of sulfur. Likewise, low-temperature processing of iron, through biological and abiotic redox cycling, produces a range of Fe isotope values in Archean sedimentary rocks that is distinct from the range of the mantle and magmatic Fe isotope values. Both of these signals can be used to identify potential country rock assimilants and their contribution to magmatic sulfide deposits. We use multiple S and Fe isotopes to characterize the composition of the potential iron and sulfur sources for the sulfide liquids that formed the Hart deposit in the Shaw Dome area within the Abitibi greenstone belt in Ontario (Canada). The Hart deposit is composed of two zones with komatiite-associated Ni-Cu-PGE mineralization; the main zone consists of a massive sulfide deposit at the base of the basal flow in the komatiite sequence, whereas the eastern extension consists of a semi-massive sulfide zone located 12 to 25 m above the base of the second flow in the komatiite sequence. Low δ56Fe values and non-zero δ34S and Δ33S values of the komatiitic rocks and associated mineralization at the Hart deposit is best explained by mixing and isotope exchange with crustal materials, such as exhalite and graphitic argillite, rather than intrinsic fractionation within the komatiite. This approach allows tracing the extent of crustal contamination away from the deposit and the degree of mixing between the sulfide and komatiite melts. The exhalite and graphitic argillite were the dominant contaminants for the main zone of mineralization and the eastern

  12. A Precambrian-Cambrian oil play in southern Utah

    SciTech Connect

    Lillis, P.G.; Palacas, J.G.; Warden, A.

    1995-06-01

    The potential of the Precambrian Chuar Group as a petroleum source rock in southern Utah and northern Arizona resulted in the drilling of two wildcat wells in 1994. Both wells penetrated the Cambrian Tapeats Sandstone (the target reservoir rock) and presumably Precambrian rocks. The first well, Burnett Federal 36-1, was drilled east of Kanab, Utah (sec.36, T.34S., R.3W.) to a total depth of 5,365 ft and encountered Precambrian (?) reddish-brown sedimentary rocks at 4,790 ft. The Tapeats Sandstone had live oil shows and minor CO{sub 2} (?) gas shows. The second well, BHP Federal 28-1, was drilled near Capitol Reef (sec.28, T.33S., R.7E.) to a total depth of 6,185 ft and encountered the Tapeats Sandstone at 5,922 ft and Precambrian (?) phyllite at 6,125 ft. The upper Paleozoic rocks had abundant live oil/tar shows, and the Cambrian Bright Angel Shale and Tapeats Sandstone had numerous oil shows. There were no gas shows in the well except for a large CO{sub 2} gas kick in the Tapeats Sandstone. A drill-stem test from 5,950 to 6,185 ft yielded mostly CO{sub 2} (92%) and nitrogen gas (6%) and minor amounts of helium, argon, hydrogen, and methane. The {delta}{sup 13}C of the CO{sub 2} is -3.9 per mil PDB. The chemical composition of the extracted oil in the Cambrian sandstones is significantly different than oils produced from the Upper Valley field (upper Paleozoic reservoirs) and the tar sands that are widespread throughout southern and central Utah. However, the oil composition is similar in several aspects to the composition of some of the Precambrian Chuar Group bitumen extracts from the Grand Canyon area in Arizona. The encouraging features of both wells are the good reservoir characteristics and oil shows in the Tapeats Sandstone. In the BHP well the oil appears to be a new oil type, possibly derived from Precambrian or Cambrian source rocks.

  13. Measurements of radioactive and stable sulfur isotopes at Mt. Everest and its geochemical implications

    NASA Astrophysics Data System (ADS)

    Lin, M.; Thiemens, M. H.; Zhang, Q.; Li, C.; Kang, S.; Hsu, S. C.; Zhang, Z.; Su, L.

    2015-12-01

    The Himalayas were recently identified as a global hotspot for deep stratosphere-to-troposphere transport (STT) during spring [1]. Although STT transport in this region may play a vital role in tropospheric chemistry, the hydrological cycle and aquatic ecosystems in Asia, there is no direct measurement of a specific chemical stratospheric tracer to verify and evaluate its possible impact. Here, cosmogenic 35S tracer (half-life: ~87 days) produced in the stratosphere was measured for the first time in surface snow and river runoff samples collected at Mt. Everest in April 2013 using a low-noise liquid scintillation spectroscopy [2]. Strikingly, we find extraordinarily high concentrations of 35S in these samples (>10 times higher than the southern Tibetan Plateau), verifying the Himalayas as a gateway of springtime STT. In light of this, two studies were conducted: a) Measurements of 35SO2 and 35SO42- at the southern Tibetan Plateau reveals that the oxidative life time of SO2 is reduced to 2.1 days under the influence of aged stratospheric air masses from the Himalayas. A concept box model for estimating the influence of STT on surface O3 using 35S tracer is proposed. b) Quadruple stable sulfur isotopes in a sediment core (~250 years) from the Gokyo Lake (the world's highest freshwater lake) [3] near Mt. Everest are being measured to investigate the possible impact of STT on sulfur budget at the Himalayas. The absence of sulfide suggests that bacterial sulfate reduction may be negligible in this lake. Enrichment of uranium (EF ≈ 10) in 20th century samples highlights the impact of atmospheric deposition. S-isotope sulfate anomalies are not found (∆33S and ∆36S ≈ 0‰), implying that sulfate in this lake may be mainly contributed by eolian dust or derived from rock. This is also supported by the low enrichments of most trace elements (EF ≈ 1). Rare earth elements will be used to assist in identifying the potential sources and interpreting the variation of

  14. Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki's Castle vent field.

    PubMed

    Eickmann, B; Thorseth, I H; Peters, M; Strauss, H; Bröcker, M; Pedersen, R B

    2014-07-01

    Barite chimneys are known to form in hydrothermal systems where barium-enriched fluids generated by leaching of the oceanic basement are discharged and react with seawater sulfate. They also form at cold seeps along continental margins, where marine (or pelagic) barite in the sediments is remobilized because of subseafloor microbial sulfate reduction. We test the possibility of using multiple sulfur isotopes (δ34S, Δ33S, ∆36S) of barite to identify microbial sulfate reduction in a hydrothermal system. In addition to multiple sulfur isotopes, we present oxygen (δ18O) and strontium (87Sr/86Sr) isotopes for one of numerous barite chimneys in a low-temperature (~20 °C) venting area of the Loki's Castle black smoker field at the ultraslow-spreading Arctic Mid-Ocean Ridge (AMOR). The chemistry of the venting fluids in the barite field identifies a contribution of at least 10% of high-temperature black smoker fluid, which is corroborated by 87Sr/86 Sr ratios in the barite chimney that are less radiogenic than in seawater. In contrast, oxygen and multiple sulfur isotopes indicate that the fluid from which the barite precipitated contained residual sulfate that was affected by microbial sulfate reduction. A sulfate reduction zone at this site is further supported by the multiple sulfur isotopic composition of framboidal pyrite in the flow channel of the barite chimney and in the hydrothermal sediments in the barite field, as well as by low SO4 and elevated H2S concentrations in the venting fluids compared with conservative mixing values. We suggest that the mixing of ascending H2- and CH4-rich high-temperature fluids with percolating seawater fuels microbial sulfate reduction, which is subsequently recorded by barite formed at the seafloor in areas where the flow rate is sufficient. Thus, low-temperature precipitates in hydrothermal systems are promising sites to explore the interactions between the geosphere and biosphere in order to evaluate the microbial impact on

  15. Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki's Castle vent field.

    PubMed

    Eickmann, B; Thorseth, I H; Peters, M; Strauss, H; Bröcker, M; Pedersen, R B

    2014-07-01

    Barite chimneys are known to form in hydrothermal systems where barium-enriched fluids generated by leaching of the oceanic basement are discharged and react with seawater sulfate. They also form at cold seeps along continental margins, where marine (or pelagic) barite in the sediments is remobilized because of subseafloor microbial sulfate reduction. We test the possibility of using multiple sulfur isotopes (δ34S, Δ33S, ∆36S) of barite to identify microbial sulfate reduction in a hydrothermal system. In addition to multiple sulfur isotopes, we present oxygen (δ18O) and strontium (87Sr/86Sr) isotopes for one of numerous barite chimneys in a low-temperature (~20 °C) venting area of the Loki's Castle black smoker field at the ultraslow-spreading Arctic Mid-Ocean Ridge (AMOR). The chemistry of the venting fluids in the barite field identifies a contribution of at least 10% of high-temperature black smoker fluid, which is corroborated by 87Sr/86 Sr ratios in the barite chimney that are less radiogenic than in seawater. In contrast, oxygen and multiple sulfur isotopes indicate that the fluid from which the barite precipitated contained residual sulfate that was affected by microbial sulfate reduction. A sulfate reduction zone at this site is further supported by the multiple sulfur isotopic composition of framboidal pyrite in the flow channel of the barite chimney and in the hydrothermal sediments in the barite field, as well as by low SO4 and elevated H2S concentrations in the venting fluids compared with conservative mixing values. We suggest that the mixing of ascending H2- and CH4-rich high-temperature fluids with percolating seawater fuels microbial sulfate reduction, which is subsequently recorded by barite formed at the seafloor in areas where the flow rate is sufficient. Thus, low-temperature precipitates in hydrothermal systems are promising sites to explore the interactions between the geosphere and biosphere in order to evaluate the microbial impact on

  16. Geochemical Markers of the Cretaceous-Tertiary Boundary Event at Brazos River, Texas, USA

    NASA Astrophysics Data System (ADS)

    Heymann, D.; Yancey, T. E.; Wolbach, W. S.; Thiemens, M. H.; Johnson, E. A.; Roach, D.; Moecker, S.

    1998-01-01

    The Cretaceous-Tertiary boundary sites around the Gulf of Mexico are close to the Chixculub impact site and are relatively well studied, yet much remains to be learned about them. Therefore, the first integrated study of carbon, soot, and fullerenes in a Cretaceous-Tertiary boundary section was undertaken at the Brazos-1 site on the Brazos River in Texas at the most complete section of end Cretaceous and basal Paleocene deposits on the Texas segment of the Gulf Coast area. Up to 409 ppm of native sulfur (S o) were serendipitously discovered in a spherule-bearing unit of the BR-1 section, and lesser amounts were found in spherule-bearing units of nearby Brazos riverbed sections in a section on Darting Minnow Creek. The isotopic composition, δ 33S = -12.97‰, δ 34S = -24.89‰, and δ 36S = -46.4‰, implies that this S o cannot have come to Earth by the impactor that formed the Chicxulub crater, but, most likely, was produced by sulfate-reducing bacteria during a local, transient bacterial bloom for which the sulfate was provided by CaSO 4-bearing spherules. Carbon and soot were determined in twelve samples representing all units of BR-1 from the Cretaceous Corsicana/Kemp Formation to the Tertiary Kincaid Formation. A significant increase of C and soot contents, up to 2.2×10 4 ppm and 1.4×10 4 ppm, respectively, occurs in a sandy bed at the top of the KT complex. Fullerenes were determined in fifty-four samples from all units of the same BR-1 section. Less than 1 ppb was reliably detected at the same sandy bed where the strongest Ir anomaly of the section is known to occur. It is suggested here that the Chicxulub impact 65 Ma ago ignited local wildfires that produced C, soot, and fullerene, which settled onshore, or near-shore, whence they were transported to the Brazos site by coastal flooding and associated sediment-laden water plumes moving offshore.

  17. Isotopic mass independent signature of black crusts: a proxy for atmospheric aerosols formation in the Paris area (France).

    NASA Astrophysics Data System (ADS)

    Genot, Isabelle; Martin, Erwan; Yang, David Au; De Rafelis, Marc; Cartigny, Pierre; Wing, Boswell; Le Gendre, Erwann; Bekki, Slimane

    2016-04-01

    In view of the negative forcing of the sulfate aerosols on climate, a more accurate understanding of the formation of these particles is crucial. Indeed, despite the knowledge of their effects, uncertainties remain regarding the formation of sulfate aerosols, particularly the oxidation processes of S-bearing gases. Since the discovery of oxygen and sulfur mass independent fractionation (O- and S-MIF) processes on Earth, the sulfate isotopic composition became essential to investigate the atmospheric composition evolution and its consequences on the climate and the biosphere. Large amount of S-bearing compounds (SO2 mainly) is released into the atmosphere by anthropogenic and natural sources. Their oxidation in the atmosphere generates sulfate aerosols, H2SO4, which precipitate on the earth surface mainly as acid rain. One consequence of this precipitation is the formation of black crust on buildings made of carbonate stones. Indeed the chemical alteration of CaCO3 by H2SO4 leads to gypsum (CaSO4·2H2O) concretions on building walls. Associated to other particles, gypsum forms black-crusts. Therefore, black crusts acts as 'sulfate aerosol traps', meaning that their isotopic composition reveals the composition and thus the source and formation processes of sulfate aerosols in the atmosphere in a specific region. In this study we collected 37 black crusts on a 300km NW-SE profile centered on Paris (France). In our samples, sulfate represent 40wt.% and other particles 60wt.% of the black crusts. After sulfate extraction from each samples we measured their O- and S-isotopes composition. Variations of about 10‰ in δ18O and δ34S are observed and both O-MIF (Δ17O from 0 to 1.4‰) and S-MIF (Δ33S from 0 to -0.3‰) compositions have been measured. In regards to these compositions we can discuss the source and formation (oxidation pathways) of the sulfate aerosols in troposphere above the Paris region that covers urban, rural and coastal environments. Furthermore

  18. Endothelial dysfunction following prolonged sitting is mediated by a reduction in shear stress.

    PubMed

    Restaino, Robert M; Walsh, Lauren K; Morishima, Takuma; Vranish, Jennifer R; Martinez-Lemus, Luis A; Fadel, Paul J; Padilla, Jaume

    2016-03-01

    We and others have recently reported that prolonged sitting impairs endothelial function in the leg vasculature; however, the mechanism(s) remain unknown. Herein, we tested the hypothesis that a sustained reduction in flow-induced shear stress is the underlying mechanism by which sitting induces leg endothelial dysfunction. Specifically, we examined whether preventing the reduction in shear stress during sitting would abolish the detrimental effects of sitting on popliteal artery endothelial function. In 10 young healthy men, bilateral measurements of popliteal artery flow-mediated dilation were performed before and after a 3-h sitting period during which one foot was submerged in 42°C water (i.e., heated) to increase blood flow and thus shear stress, whereas the contralateral leg remained dry and served as internal control (i.e., nonheated). During sitting, popliteal artery mean shear rate was reduced in the nonheated leg (pre-sit, 42.9 ± 4.5 s(-1); and 3-h sit, 23.6 ± 3.3 s(-1); P < 0.05) but not in the heated leg (pre-sit, 38.9 ± 3.4 s(-1); and 3-h sit, 63.9 ± 16.9 s(-1); P > 0.05). Popliteal artery flow-mediated dilation was impaired after 3 h of sitting in the nonheated leg (pre-sit, 7.1 ± 1.4% vs. post-sit, 2.8 ± 0.9%; P < 0.05) but not in the heated leg (pre-sit: 7.3 ± 1.5% vs. post-sit, 10.9 ± 1.8%; P > 0.05). Collectively, these data suggest that preventing the reduction of flow-induced shear stress during prolonged sitting with local heating abolishes the impairment in popliteal artery endothelial function. Thus these findings are consistent with the hypothesis that sitting-induced leg endothelial dysfunction is mediated by a reduction in shear stress. PMID:26747508

  19. Molecular complexity in envelopes of evolved Oxygen-rich stars: IK Tauri and OH231.8+4.2

    NASA Astrophysics Data System (ADS)

    Velilla Prieto, L.; Sánchez Contreras, C.; Cernicharo, J.; Alcolea, J.; Agúndez, M.; Pardo, J. R.; Bujarrabal, V.; Herpin, F.; Menten, K. M.; Wyrowsky, F.

    2013-05-01

    During the late phases of low-intermediate mass (0.1 to 8 solar masses) stars, a significant mass loss is produced creating a gas and dust envelope surrounding the central star. Due to the physical conditions in the envelope, gas is primarily molecular, placing these objects as efficient molecular factories that will enrich the interstellar medium. Observation and study of molecular emission allows deriving physical and chemical properties of these envelopes. As far as today, Oxygen rich objects are not so well studied as their Carbon counterparts, because Carbon chemistry is much more active than Oxygen chemistry. Importance of this work is that the Oxygen rich envelopes are not completely characterized yet. We present preliminary results from our on-going milimiter wavelength survey with the EMIR receivers of the IRAM 30 meters radiotelescope towards the envelopes of two evolved Oxygen rich objects: IK Tauri and OH231.8+4.2. We detect a wealth of lines ranging from few mK to K (with rms ranging from 1 to 3 mK in best cases). Both objects present significant differences in their molecular emission features due to contrast of evolutionary stage and physical properties and both show evidences of different chemical formation processes. Some of the molecules identified are CO, SiO, H_{2}O, NS, HCO^{+}, SO, SO_{2}, SH_{2}, OCS, HCN, HNC, CN, HC_{3}N, CS, H_{2}CO, HNCO, HNCS, SiS, N_{2}H^{+} and a number of isotopologues (bearing ^{13}C, ^{33}S, ^{34}S, ^{17}O, ^{18}O, ^{28}Si, ^{29}Si, ^{30}Si and ^{15}N atoms). Some of the molecules identified represent first detections in Oxygen rich AGB stars. We expect to get a better understanding of the chemistry and structure of these objects, in particular how interaction between AGB (Asymptotic Giant Branch) envelopes and post-AGB winds influences chemistry producing a reformation of molecules through shocked gas reactions. held in Valencia, July 9 - 13, 2012, Eds.: J.C. Guirado, L.M. Lara, V. Quilis, and J. Gorgas.

  20. Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China

    NASA Astrophysics Data System (ADS)

    Duan, Jun; Li, Chusi; Qian, Zhuangzhi; Jiao, Jiangang; Ripley, Edward M.; Feng, Yanqing

    2016-04-01

    Previous geochemical data for the Jinchuan Ni-Cu-(platinum-group elements, PGE) deposit, the single largest magmatic sulfide deposit in the world, are derived primarily from the upper parts of the deposit. This paper reports new PGE and S-Hf-Sr-Nd isotope data for the lower parts of the deposit that have become accessible for sampling by ongoing underground mining activity. New PGE data from this study, together with previous results, indicate that PGE tenors in the bulk sulfide ores of the deposit increase eastward, except for two fault-offset ore zones which occur together within the western part of the deposit. Generally, these two ore zones show depletions in IPGE (Ir, Ru, Rh) but not in PPGE (Pt, Pd) and Cu, and more fractionated olivine and Cr-spinel compositions than the rest of the deposit. These differences can be explained by a more evolved parental magma for the IPGE-depleted ore zones. The eastward increase of PGE tenors in the rest of the deposit can be explained by upgrading of preexisting sulfide liquid in a subhorizontal conduit by a new surge of magma moving through the conduit from west to east, which took place before the formation of the IPGE-depleted ore zones. The Jinchuan ultramafic rocks are characterized by elevated initial 87Sr/86Sr ratios from 0.7077 to 0.7093, negative ɛ Nd values from -9.2 to -10.5, and zircon ɛ Hf values from -4 to -7. These data indicate up to 20 % of crustal contamination in the Jinchuan magma. Four of nine multiple sulfur isotope analyses for the Jinchuan deposit show anomalous ∆33S values varying from 0.12 to 2.67 ‰. These results, together with elevated δ34S values (>2 ‰) for some of the samples analyzed previously by other researchers, indicate the involvement of external sulfur from Archean and Proterozoic sedimentary rocks. Modeling results based on our olivine data and magma compositions estimated previously by other researchers indicate that fractional crystallization did not play a major role in

  1. Tracing sources of crustal contamination using multiple S and Fe isotopes in the Hart komatiite-associated Ni-Cu-PGE sulfide deposit, Abitibi greenstone belt, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Hiebert, R. S.; Bekker, A.; Houlé, M. G.; Wing, B. A.; Rouxel, O. J.

    2016-03-01

    Assimilation by mafic to ultramafic magmas of sulfur-bearing country rocks is considered an important contributing factor to reach sulfide saturation and form magmatic Ni-Cu-platinum group element (PGE) sulfide deposits. Sulfur-bearing sedimentary rocks in the Archean are generally characterized by mass-independent fractionation of sulfur isotopes that is a result of atmospheric photochemical reactions, which produces isotopically distinct pools of sulfur. Likewise, low-temperature processing of iron, through biological and abiotic redox cycling, produces a range of Fe isotope values in Archean sedimentary rocks that is distinct from the range of the mantle and magmatic Fe isotope values. Both of these signals can be used to identify potential country rock assimilants and their contribution to magmatic sulfide deposits. We use multiple S and Fe isotopes to characterize the composition of the potential iron and sulfur sources for the sulfide liquids that formed the Hart deposit in the Shaw Dome area within the Abitibi greenstone belt in Ontario (Canada). The Hart deposit is composed of two zones with komatiite-associated Ni-Cu-PGE mineralization; the main zone consists of a massive sulfide deposit at the base of the basal flow in the komatiite sequence, whereas the eastern extension consists of a semi-massive sulfide zone located 12 to 25 m above the base of the second flow in the komatiite sequence. Low δ56Fe values and non-zero δ34S and Δ33S values of the komatiitic rocks and associated mineralization at the Hart deposit is best explained by mixing and isotope exchange with crustal materials, such as exhalite and graphitic argillite, rather than intrinsic fractionation within the komatiite. This approach allows tracing the extent of crustal contamination away from the deposit and the degree of mixing between the sulfide and komatiite melts. The exhalite and graphitic argillite were the dominant contaminants for the main zone of mineralization and the eastern

  2. Triple oxygen and sulfur isotope analyses of sulfate extracted from voluminous volcanic ashes in the Oligocene John Day Formation: insight into dry climate conditions and ozone contribution to supereruptions

    NASA Astrophysics Data System (ADS)

    Workman, J.; Bindeman, I. N.; Martin, E.; Retallack, G.; Palandri, J. L.; Weldon, N.

    2014-12-01

    Large volume pyroclastic silicic eruptions emit hundreds of megatons of SO2 into the troposphere and stratosphere that is oxidized into sulfuric acid (H2SO4) by a variety of reactions with mass independent oxygen signatures (MIF), Δ17O>0. Sulfuric acid is then preserved as gypsum in parental volcanic deposits. Diagenic effects are mass dependent and can dilute, but otherwise do not affect MIF ratios. Pleistocene Yellowstone and Bishop tuffs and modern volcanic eruptions preserved under arid climate conditions in North American playa lakes, preserve small amounts of volcanic sulfate as gypsum. This gypsum's Δ17O>0, in combination with isotopic variations of δ18O, δ33S and δ34S is distinct from sedimentary sulfate and reveals its original MIF sulfate isotopic signal and the effect of super eruptions on the atmosphere, and ozone consumption in particular. We use linear algebraic equations to resolve volcanic versus sedimentary (MIF=0) sources. We have found that many large volume ignimbrites have very high initial Δ17O in volcanic sulfate that can only be acquired from reaction with stratospheric ozone. We here investigate nine thick (>2 m) ash beds ranging in age from ~33-23 Ma in the John Day Formation of central Oregon, including massive 28.6 Ma Picture Gorge tuff of newly identified Crooked River supercaldera. The 28.6 Ma Picture Gorge tuff (PGT) has the highest measured Δ17O of 3.5‰, and other tuffs (Tin Roof, Biotite, Deep Creek) have +1.3 to 3.4‰ Δ17O excesses. Sulfate from modern smaller tropospheric eruptions studied for comparison have a resolvable 0.4‰ range consistent with liquid-phase based H2O2 oxidation. The PGT is coeval with the ignimbrite flare-up in western N. America, the 28-29 Ma eruption of the 5000 km3 Fish Canyon tuff and the 28 Ma Never Summer Field eruption in Nebraska-Colorado that have the highest measured Δ17O of 6‰ (Bao et al. 2003). We speculate on the climatic/atmospheric effects of these multiple ~28 Ma supereruptions

  3. Mantle oddities: A sulphate fluid preserved in a MARID xenolith from the Bultfontein kimberlite (Kimberley, South Africa)

    NASA Astrophysics Data System (ADS)

    Giuliani, A.; Phillips, D.; Fiorentini, M. L.; Kendrick, M. A.; Maas, R.; Wing, B. A.; Woodhead, J. D.; Bui, T. H.; Kamenetsky, V. S.

    2013-08-01

    Sulphur in the lithospheric mantle is concentrated in sulphide minerals, with limited evidence for the occurrence of sulphate phases. Here we describe an unusual assemblage of celestine (SrSO4), clinopyroxene and minor phlogopite, pectolite, sphene, apatite, barite (BaSO4) and Ca-Sr carbonates in a MARID mantle xenolith sampled by the Bultfontein kimberlite (Kimberley, South Africa). This assemblage occurs in veins that pervasively traverse the xenolith, indicating that celestine and the other vein minerals crystallised from a fluid. In the MARID host rock, K-richterite is resorbed where in contact with celestine and is overgrown by clinopyroxene. Celestine hosts the other metasomatic vein phases, but also occurs as inclusions in euhedral clinopyroxene, suggesting co-precipitation of these minerals. Celestine was partly replaced by serpentine during alteration by hydrous fluids after kimberlite emplacement in the upper crust. Celestine has relatively radiogenic Sr isotopes (87Sr/86Sr = 0.70677), which overlap those of K-richterite in the MARID host rock and fall within the range of other MARID and phlogopite-K-richterite peridotites sampled by southern African kimberlites. Celestine displays S isotopes (δ34S=+5.9‰) that are slightly heavier than typical mantle values (δ34S∼0‰) and there is no evidence of mass-independent fractionation (Δ33S=-0.01‰). The texture and chemical composition of the metasomatic phases indicate that the MARID rock was infiltrated by a sulphate fluid enriched in Sr, Ba, Na and Ca, with lesser P, Ti, LREE, CO2 and F. The similar Sr/Ba ratios and Sr isotopic compositions of celestine and K-richterite suggest that K-richterite breakdown contributed to the alkali enrichment of the sulphate fluid. A mantle origin for the sulphate fluid is supported by (i) comparisons between the Sr-S isotopic compositions of celestine and the host kimberlite, crustal and mantle lithologies from the area, and (ii) alteration of celestine by late

  4. Submillimetric study of nearby galaxies: A tool for new extragalactic molecules

    NASA Astrophysics Data System (ADS)

    Villicana Pedraza, Ilhuiyolitzin; Guesten, Rolf; Armijos Abendaño, Jairo; Carreto, Francisco; Martin, Sergio; Martin-Pintado, Jesus; Requena-Torres, Miguel; Perez-Beaupuits, Juan Pablo

    2016-07-01

    We present the first submillimetre line survey of extragalactic sources carried out by APEX, the results were presented inside of Villicana-Pedraza phd thesis in 2015. The surveys cover the 0.8 mm atmospheric window toward NGC253, NGC4945 and Arp220. We found HCN, C2H, CN, CS, C34S, HCO+, HNC, CO, N2H+, CH3OH are presents in all the sources, while 13CO,C18O and C17O, HNCO, H2CO, H2CS, SO, NO, SO2 were detected toward NGC253 and NGC4945, 13CN, *CO+, OCS, H2S in Arp220, 13CS, NH2CN, SiO in NGC253, and c-C3H2 in NGC4945 were detected. Column densities and rotation temperatures have been determinate using the Local Thermodinamical Equilibrium(LTE) line profile simulation and fitting in the MADCUBA IJ software. The differences found in the 32S/34S and 18O/17O ratios between the GC and the starburst galaxies NGC 4945 and NGC 253 suggest that the gas is less processed in the latter than in the GC. The high 18O/17O ratios in the galaxies NGC 4945 and NGC 253 suggest also material less processed in the nuclei of these galaxies than in the GC. This is consistent with the claim that 17O is a more representative primary product than 18O in stellar nucleosynthesis (Wilson and Rood 1994); Also, we did a Multitransitions study of H3O+ at 307GHz, 364GHz, 388GHz and 396GHz. From our non-LTE analysis of H3O+ in NGC253 with RADEX we found that the collisional excitation cannot explain the observed intensity of the ortho 396 GHz line. Excitation by radiation from the dust in the Far-IR can roughly explain the observations if the H2 densities are relatively low. From the derived H3O+ column densities we conclude that the chemistry of this molecule is dominated by ionization produce by the starburst in NGC253 (UV radiation from the O stars) and Arp 220 (cosmic rays from the supernovae) and likely from the AGN in NGC4549 (X-rays ); We report, for the first time, the tentative detection of the molecular ion HCNH+ (precursor of HCN and HNC) toward a galaxy, NGC4945, the abundance is much

  5. High Resolution Cl and S Isotope Analyses in Rocks and Minerals Using NanoSIMS

    NASA Astrophysics Data System (ADS)

    Kagoshima, T.; Takahata, N.; Ishida, A.; Sano, Y.

    2014-12-01

    We have developed highly spatial resolution isotope analysis with cycling magnetic fields on NanoSIMS 50 (Cameca, Gennevilliers, France) housed at Atmosphere and Ocean Research Institute, Japan. This technique requires two unmovable EM detectors (EM1 and EM2) and three magnetic fields (B1, B2, and B3). For Cl measurements, the following configuration was applied: (B1-EM1) 35Cl-; (B2-EM1) 37Cl-; (B2-EM2) 35Cl-; (B3-EM2) 37Cl-, in the form of "(B and EM configurations) target ions" (Table 1). When magnetic fields are in a cycling mode and moving next to next, we can obtain three isotopic ratios from the same spot: 37ClEM1/35ClEM1, 37ClEM2/35ClEM2, and 37ClEM1/35ClEM2 where subscripts show corresponding detectors. Considering the average of 37ClEM1/35ClEM1 and 37ClEM2/35ClEM2, reproducibility gets higher because total counts increase and analytical artifacts due to difference between detectors' sensitivity are offset. 10-μm spots were used for analyses. Reproducibility of 37Cl/35Cl in an apatite crystal from Imilchil/Errachidia region in Morroco was 1.1‰ (1σ; N=10), and that in RY380-R03b (EPR basalt: 17.4S, 113.2W) was 1.3‰ (1σ; N=8). These values may be small enough to evaluate aqueous alteration on mantle-derived materials because it causes 6‰ variation in reaction related reservoirs such as sediments and pore fluids[1]. There were no apparent correlations between Cl contents and 37Cl/35Cl in RY380-R03b, supporting that strong correlations between them found in MORB by a pyrohydrolysis method[2] may be analytical artifacts[1]. We also measured S isotope ratios based on the same method as Cl. 5-μm spots were used for analyses. Reproducibility of 34S/32S in a pyrite crystal from Udo mine in Japan[3] was 1.8‰ (1σ; N=6), and that in CH98 DR12 (MAR basalt: 30.1N, 41.9W) was 1.7‰ (1σ; N=5). These values are small enough to evaluate S fractionation or mixing in the basalt-seawater system which have 20‰ difference in δ34S. This technique will enable us

  6. Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Harris, E.; Sinha, B.; Hoppe, P.; Foley, S.; Borrmann, S.

    2012-05-01

    The oxidation of SO2 to sulfate on sea salt aerosols in the marine environment is highly important because of its effect on the size distribution of sulfate and the potential for new particle nucleation from H2SO4 (g). However, models of the sulfur cycle are not currently able to account for the complex relationship between particle size, alkalinity, oxidation pathway and rate - which is critical as SO2 oxidation by O3 and Cl catalysis are limited by aerosol alkalinity, whereas oxidation by hypohalous acids and transition metal ions can continue at low pH once alkalinity is titrated. We have measured 34S/32S fractionation factors for SO2 oxidation in sea salt, pure water and NaOCl aerosol, as well as the pH dependency of fractionation. Oxidation of SO2 by NaOCl aerosol was extremely efficient, with a reactive uptake coefficient of ≈0.5, and produced sulfate that was enriched in 32S with αOCl = 0.9882±0.0036 at 19 °C. Oxidation on sea salt aerosol was much less efficient than on NaOCl aerosol, suggesting alkalinity was already exhausted on the short timescale of the experiments. Measurements at pH = 2.1 and 7.2 were used to calculate fractionation factors for each step from SO2(g) → multiple steps → SOOCl2-. Oxidation on sea salt aerosol resulted in a lower fractionation factor than expected for oxidation of SO32- by O3 (αseasalt = 1.0124±0.0017 at 19 °C). Comparison of the lower fractionation during oxidation on sea salt aerosol to the fractionation factor for high pH oxidation shows HOCl contributed 29% of S(IV) oxidation on sea salt in the short experimental timescale, highlighting the potential importance of hypohalous acids in the marine environment. The sulfur isotope fractionation factors measured in this study allow differentiation between the alkalinity-limited pathways - oxidation by O3 and by Cl catalysis (α34 = 1.0163±0.0018 at 19 °C in pure water or 1.0199±0.0024 at pH = 7.2) - which favour the heavy isotope, and the alkalinity non

  7. Gusev-Meridiani-Type Soil Component Dissolved in Some Shock Glasses in Shergottites

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Rao, M. N.; Nyquist, L. E.; Shi, C. Y.; Sutton, S.; Harrison, D. H.

    2015-01-01

    Modal analysis, based on APXS, MiniTES and Mossbauer results obtained at Gusev and Meridiani sites on Mars, indicates that Martian soils consist predominantly of igneous minerals such as olivine, pyroxene and feldspar (approximately70 - 80%), with the balance consisting of alteration minerals such as sulfates, silica and chlorides]. These studies also showed that soil alteration did not occur in-situ and igneous and alteration components are derived from different sources. Below, we analyse the chemical abundance data obtained from shock glasses in shergottites using mass balance mixing models. In these models, the two main end members used are (a) host rock chemical composition and (b) the GM soils average composition as the second component. Here, we consider the S-bearing phases as indicators of added alteration phases in the shock glasses and GM soils. Although the S-bearing phase in shock glasses occurs as micron sized sulfide blebs, we showed in earlier abstracts that sulfur was originally present as sulfate in impact glass-precursor materials and was subsequently reduced to sulfide during shock melting. This conclusion is based on results obtained from S-K XANES studies, Fe/S atomic ratios in sulfide blebs and 34S/32S isotopic measurements in these sulfide blebs. Additionally, sulfur in several EET79001 Lith. A glasses is found to correlate positively with Al2O3 and CaO (and negatively with FeO and MgO), suggesting the presence of Al- and Ca- sul-fate-bearing phases. The distribution of the 87Sr/86Sr iso-topic ratios determined in Lith. A glasses (,27 &,188 and,54) indicate that Martian soil gypsum and host rock material were mixed with each other in the glass precursors. In some vugs in Lith A glass,27 detected gypsum laths. Furthermore, the Martian regolith-de-rived component (where sulfur typically occurs as sul-fate) is identified in these glasses by determining neutron produced isotopic excesses/deficits in 80Kr and 149Sm isotopes. Moreover, the

  8. Multi-material 3-D viscoelastic model of a transtibial residuum from in-vivo indentation and MRI data.

    PubMed

    Sengeh, David M; Moerman, Kevin M; Petron, Arthur; Herr, Hugh

    2016-06-01

    Although the socket is critical in a prosthetic system for a person with limb amputation, the methods of its design are largely artisanal. A roadblock for a repeatable and quantitative socket design process is the lack of predictive and patient specific biomechanical models of the residuum. This study presents the evaluation of such a model using a combined experimental-numerical approach. The model geometry and tissue boundaries are derived from magnetic resonance imaging (MRI). The soft tissue non-linear elastic and viscoelastic mechanical behavior was evaluated using inverse finite element analysis (FEA) of in-vivo indentation experiments. A custom designed robotic in-vivo indentation system was used to provide a rich experimental data set of force versus time at 18 sites across a limb. During FEA, the tissues were represented by two layers, namely the skin-adipose layer and an underlying muscle-soft tissue complex. The non-linear elastic behavior was modeled using 2nd order Ogden hyperelastic formulations, and viscoelasticity was modeled using the quasi-linear theory of viscoelasticity. To determine the material parameters for each tissue, an inverse FEA based optimization routine was used that minimizes the combined mean of the squared force differences between the numerical and experimental force-time curves for indentations at 4 distinct anatomical regions on the residuum. The optimization provided the following material parameters for the skin-adipose layer: [c=5.22kPam=4.79γ=3.57MPaτ=0.32s] and for the muscle-soft tissue complex [c=5.20kPam=4.78γ=3.47MPaτ=0.34s]. These parameters were evaluated to predict the force-time curves for the remaining 14 anatomical locations. The mean percentage error (mean absolute error/ maximum experimental force) for these predictions was 7±3%. The mean percentage error at the 4 sites used for the optimization was 4%. PMID:26946095

  9. NanoSIMS STUDIES OF SMALL PRESOLAR SiC GRAINS: NEW INSIGHTS INTO SUPERNOVA NUCLEOSYNTHESIS, CHEMISTRY, AND DUST FORMATION

    SciTech Connect

    Hoppe, Peter; Leitner, Jan; Groener, Elmar; Marhas, Kuljeet K.; Meyer, Bradley S.; Amari, Sachiko

    2010-08-20

    We have studied more than 2000 presolar silicon carbide (SiC) grains from the Murchison CM2 chondrite in the size range 0.2-0.5 {mu}m for C- and Si-isotopic compositions. In a subset of these grains, we also measured N-, Mg-Al-, S-, and Ca-Ti-isotopic compositions as well as trace element concentrations. The overall picture emerging from the isotope data is quite comparable with that of larger grains, except for the abundances of grains from Type II supernovae (SNeII) and low-metallicity asymptotic giant branch (AGB) stars. Especially, the latter are much more abundant among submicrometer-sized grains than among micrometer-sized grains. This implies that SiC grains from lower-than-solar-metallicity AGB stars are on average smaller than those from solar metallicity AGB stars which provided the majority of presolar SiC grains. We identified five grains with large enrichments in {sup 29}Si (up to 3.5x solar) and {sup 30}Si (up to 3.9x solar in three of these grains). These grains are most likely from SNeII. The isotopically light S ({sup 32}S/{sup 34}S of 2x solar) together with the heavy Si in one of these grains suggests that molecule formation precedes macroscopic mixing and dust formation in SNII ejecta. This adds to the complexity of SN mixing calculations and should be considered in future studies. In total, about 2% of the presolar SiC grains in the size range 0.2-0.5 {mu}m appear to come from SNeII. This is about a factor of 2 higher than for micrometer-sized grains and suggests that SNeII, on average, produce smaller SiC grains than solar metallicity AGB stars. The high {sup 29}Si/{sup 30}Si ratio in one of the SN grains suggests that current SN models underestimate the {sup 29}Si production in the C- and Ne-burning regions by about a factor of 2. It is shown that with this adjustment the solar {sup 29}Si/{sup 28}Si ratio can be well reproduced in Galactic chemical evolution models and that a merger of our Galaxy with a low-metallicity satellite some 1.5 Gyr

  10. Major and trace-element analyses of acid mine waters in the Leviathan Mine drainage basin, California/Nevada; October, 1981 to October, 1982

    USGS Publications Warehouse

    Ball, J.W.; Nordstrom, D.K.

    1985-01-01

    Water issuing from the inactive Leviathan open-pit sulfur mine has caused serious degradation of the water quality in the Leviathan/Bryant Creek drainage basin which drains into the East Fork of the Carson River. As part of a pollution abatement project of the California Regional Water Quality Control Board, the U.S. Geological Survey collected hydrologic and water quality data for the basin during 1981-82. During this period a comprehensive sampling survey was completed to provide information on trace metal attenuation during downstream transport and to provide data for interpreting geochemical processes. This report presents the analytical results from this sampling survey. Sixty-seven water samples were filtered and preserved on-site at 45 locations and at 3 different times. Temperature, discharge, pH, and Eh and specific conductance were measured on-site. Concentrations of 37 major and trace constituents were determined later in the laboratory on preserved samples. The quality of the analyses was checked by using two or more techniques to determine the concentrations including d.c.-argon plasma emission spectrometry (DCP), flame and flameless atomic absorption spectrophotometry, UV-visible spectrophotometry, hydride-generation atomic absorption spectrophotometry and ion chromatography. Additional quality control was obtained by comparing measured to calculated conductance, comparing measured to calculated Eh (from Fe-2 +/Fe-3+ determinations), charge balance calculations and mass balance calculations for conservative constituents at confluence points. Leviathan acid mine waters contain mg/L concentrations of As, Cr, Co, Cu, Mn, Ni, T1, V and Zn, and hundreds to thousands of mg/L concentrations of Al, Fe, and sulfate at pH values as low as 1.8. Other elements including Ba, B, Be, Bi, Cd , Mo, Sb, Se and Te are elevated above normal background concentrations and fall in the microgram/L range. The chemical and 34 S/32 S isotopic analyses demonstrate that these

  11. Geochemistry of sulfur in the Florida Everglades; 1994 through 1999

    USGS Publications Warehouse

    Bates, Anne L.; Orem, W.H.; Harvey, J.W.; Spiker, E. C.

    2000-01-01

    In this report, we present data on the geochemistry of sulfur in sediments and in surface water, groundwater, and rainwater in the Everglades region in south Florida. The results presented here are part of a larger study intended to determine the roles played by the cycling of carbon, nitrogen, phosphorus, and sulfur in the ecology of the south Florida wetlands. The geochemistry of sulfur in the region is particularly important because of its link to the production of toxic methylmercury through processes mediated by sulfate reducing bacteria. Sediment cores were collected from the Everglades Agricultural Area (EAA), Water Conservation Areas (WCAs) 1A and 2A, from Lake Okeechobee, and from Taylor Slough in the southern Everglades. Water collection was more widespread and includes surface water from WCAs 1A, 2A, 3A, 2B, the EAA, Taylor Slough, Lake Okeechobee, and the Kissimmee River. Groundwater was collected from The Everglades Nutrient Removal Area (ENR) and from WCA 2A. Rainwater was collected at two month intervals over a period of one year from the ENR and from WCA 2A. Water was analyzed for sulfate concentration and sulfate sulfur stable isotopic ratio (34S/32S). Sediment cores were analyzed for total sulfur concentration and/or for concentrations of sulfur species (sulfate, organic sulfur, disulfides, and acid volatile sulfides (AVS)) and for their stable sulfur isotopic ratio. Results show a decrease in total sulfur content (1.57 to 0.61 percent dry weight) with depth in two sediment cores collected in WCA 2A, indicating that there has been an increase in total sulfur content in recent times. A sediment core from the center of Lake Okeechobee shows a decrease in total sulfur content with depth (0.28 to 0.08 percent dry weight). A core from the periphery of the lake (South Bay) likewise shows a decrease in total sulfur content with depth (1.00 to 0.69 percent dry weight), however, the overall sulfur content is greater than that near the center at all depths

  12. A Coordinated Research Project on the Implementation of Nuclear Techniques to Improve Food Traceability

    NASA Astrophysics Data System (ADS)

    Frew, Russell; Cannavan, Andrew; Zandric, Zora; Maestroni, Britt; Abrahim, Aiman

    2013-04-01

    coffee, the adulteration of milk with soy protein, chemical contamination of food products, and inhomogeneity in isotopic ratios in poultry and eggs as a means to determine production history. Analytical techniques include stable isotope ratio measurements (2H/1H, 13C/12C, 15N/14N, 18O/16O, 34S/32S, 87Sr/86Sr, 208Pb/207Pb/206Pb), elemental analysis, DNA fingerprinting, fatty acid and other biomolecule profiling, chromatography-mass spectrometry and near infra-red spectroscopy.

  13. Mineralogical and Sulfur Isotopic Study on Volcanic Ash of the 2014 Eruption at Ontake Volcano, Central Honshu, Japan

    NASA Astrophysics Data System (ADS)

    Imura, T.; Minami, Y.; Ohba, T.; Takahashi, R.; Imai, A.; Hayashi, S.

    2015-12-01

    Ontake volcano erupted on 27th September 2014. Components in fallout samples were analyzed with microscope, XRD, and SEM-EDS. Pyrophyllite, smectite, muscovite, kaoline group minerals, quartz, cristobalite, tridymite, pyrite, alunite, gypsum and anhydrite were identified from bulk samples. Coarse ash fraction (> 125 µm) consists mainly of siliceous fragments that are intensely altered and contain pyrite and rutile. Weakly-altered dark-gray volcanic rock fragments are also contained. Fine fraction is abundant in euhedral free crystals of alunite and gypsum and aggregates of silica minerals. The 34S/32S ratios of bulk ash samples were analyzed for sulfur leached by water (water-soluble sulfate), gastric (HCl-soluble sulfate), and HNO3 (sulfide). Gastric and HNO3 leaching methods were applied to coarse fraction too. The bulk δ34SCDT compositions of water-soluble sulfate, HCl-soluble sulfate and sulfide were +14.7 ‰, +15.7 ‰, and -4.7 ‰, respectively. Those of HCl-soluble sulfate and sulfide in coarse fraction were +9.1 ‰ and -4.3 ‰, respectively. Paragenesis of quartz and pyrophyllite in single grain implies hydrothermal alteration by hot (> 230 °C), acidic fluid in the sub-volcanic system. The sulfur isotope geothermometry (Ohmoto and Rye, 1979) applied to the pair of water-soluble sulfate and bulk sulfide resulted in 306 °C. Similar temperature (ca. 296 °C) was estimated for the pair of HCl-soluble sulfate and sulfide in bulk ash. The mineralogy and sulfur isotopic study indicate that the 2014 Ontake eruption was derived from an acidic high-temperature (ca. 300 °C) sub-volcanic hydrothermal fluid. However, the estimated temperature for the pair of HCl-soluble sulfate and sulfide from coarse fraction resulted in higher temperature (ca. 482 °C). The coarse fraction preserved the past temperature record of the hydrothermal fluid, because the coarse lithic fragments were derived from pre-existing altered rocks.

  14. Ground-water and stream-water interaction in the Owl Creek basin, Wyoming

    USGS Publications Warehouse

    Ogle, K.M.

    1996-01-01

    Understanding of the interaction of ground-water and surface-water resources is vital to water management when water availability is limited.Inflow of ground water is the primary source ofwater during stream base flow. The water chemistry of streams may substantially be affected by that inflow of ground water. This report is part of a study to examine ground-water and surface-water interaction in the Owl Creek Basin, Wyoming, completed by the U.S. Geological Survey incooperation with the Northern Arapaho Tribe and the Shoshone Tribe. During a low flow period between November\\x1113 - 17, 1991, streamflowmeasurements and water-quality samples were collected at 16 selected sites along major streams and tributaries in the Owl Creek Basin,Wyoming. The data were used to identify stream reaches receiving ground-water inflow and to examine causes of changes in stream chemistry.Streamflow measurements, radon-222 activity load, and dissolved solids load were used to identified stream reaches receiving ground-water inflow.Streamflow measurements identified three stream reaches receiving ground-water inflow. Analysis of radon-222 activity load identified five stream reaches receiving ground-water inflow. Dissolvedsolids load identified six stream reaches receiving ground-water inflow. When these three methods were combined, stream reaches in two areas, theEmbar Area and the Thermopolis Anticline Area, were identified as receiving ground-water inflow.The Embar Area and the Thermopolis Anticline Area were then evaluated to determine the source of increased chemical load in stream water. Three potential sources were analyzed: tributary inflow, surficial geology, and anticlines. Two sources,tributary inflow and surficial geology, were related to changes in isotopic ratios and chemical load in the Embar Area. In two reaches in the Embar Area, isotopic ratios of 18O/16O, D/H, and 34S/32S indicated that tributary inflow affected stream-water chemistry. Increased chemical load of

  15. Calculation of the properties of the S3- radical anion and its complexes with Cu+ in aqueous solution

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    2012-10-01

    A species observed in aqueous sulfidic solutions at high T and P has recently been identified as the anion radical S3-, based on the Raman spectrum obtained in a hydrothermal diamond-anvil cell (Pokrovski and Dubrovinsky, 2011, Science, 331, 1052-1054). Such a species had not been expected to occur in such environments, although S3- as an component of lapis lazuli, other solids and even albite melt has been well studied (Winther et al., 1998; Reinen and Lindner, 1999; Arieli et al., 2004; Shnitko et al., 2008; Bacci et al., 2009). We have calculated the structures, energetics, vibrational and UV-visible spectra of S3- and several other similar species and confirm the species identification of Pokrovski and Dubrovinsky, although we are still somewhat concerned about the apparent lack of a third peak which we calculate to be present in the Raman spectrum of S3-. Our calculations indicate that the reaction: S6-2⇒2S3- in aqueous solution has a free energy change of +3 kcal/mol at 298 K and 1 atm pressure but -13 kcal/mol at 723 K and 1 atm pressure, consistent with the disappearance of disulfide species and the appearance of S3-at high T. Likewise, the free energy for the reaction: 2HS+SO4-2+H⇒S3-+.75O+2.5HO decreases from 44.1 to 19.0 kcal/mol between 298 and 723 K (again at 1 atm). This is consistent with the decrease in concentrations of SH- and SO4-2 and the formation of S3- observed by Pokrovski and Dubrovinski over this temperature range. The corresponding log K values are in semiquantitative agreement with those found by Pokrovski and Dubrovinsky. The main contribution to these changes in reaction free energy with temperature come from the VRT (vibrational-rotational-translational) contribution to the gas-phase free energy, while the hydration free energy difference changes little. Calculation of 34S-32S isotopic fractionations for S3- at 298 K give δ values of around +4.3% relative to H2S, a value intermediate between that of S3 and S3-2. Calculated free

  16. Formation and resulfidization of a South Texas roll-type uranium deposit

    USGS Publications Warehouse

    Goldhaber, Martin B.; Reynolds, Richard L.; Rye, Robert O.

    1979-01-01

    Core samples from a roll type uranium deposit in Live Oak County, south Texas have been studied and results are reported for Se, Mo, FeS2 and organic-carbon distribution, sulfide mineral petrology, and sulfur isotopic composition of iron-disulfide phases. In addition, sulfur isotopic compositions of dissolved sulfate and sulfide from the modern ground water within the ore bearing sand have been studied. The suite of elements in the ore sand and their geometric relationships throughout the deposit are those expected for typical roll-type deposits with well-developed oxidation-reduction interfaces. However, iron-disulfide minerals are abundant in the altered tongue, demonstrating that this interval has been sulfidized after mineralization (resulfidized or rereduced). Iron disulfide minerals in the rereduced interval differ mineralogically and isotopically from those throughout the remainder of the deposit. The resulfidized sand contains dominantly pyrite that is enriched in 34S, whereas the sand beyond the altered tongue contains abundant marcasite that is enriched in the light isotope, 32S. Textural relationships between pyrite and marcasite help to establish relative timing of iron disulfide formation. In reduced rock outside the altered tongue, three distinct generations of iron disulfide are present. The oldest of these generations consists largely of pyrite with lesser amounts of marcasite. A major episode of marcasite formation contemporaneous with ore genesis postdates the oldest pyrite generation but predates a younger pyrite generation. Resulfidization probably led to the final pyrite stage recognized beyond the altered tongue. Stable isotope data establish that the source of sulfur for the resulfidization was fault-leaked H2S probably derived from the Edwards Limestone of Cretaceous age which underlies the deposit. The deposit formed in at least two stages: (1) a pre-ore process of host rock sulfidization which produced disseminated pyrite as the dominant

  17. The biogeochemistry, stable isotope geochemistry, and microbial community structure of a temperate intertidal mudflat: an integrated study

    NASA Astrophysics Data System (ADS)

    Böttcher, Michael E.; Hespenheide, Britta; Llobet-Brossa, Enrique; Beardsley, Christine; Larsen, Ole; Schramm, Andreas; Wieland, Andrea; Böttcher, Gerd; Berninger, Ulrike-G.; Amann, Rudolf

    2000-09-01

    the measured sulfate reduction rates and ranged between 0.06 and 0.55 fmol SO 42- cell -1 day -1 which is at the lower end determined for pure cultures. From a comparison of cellular SRR and stable sulfur isotope ( 34S/ 32S) fractionation between coexisting dissolved pore water sulfate and sedimentary reduced sulfur species with laboratory studies a significant contribution of bacterial disproportionation reactions within the oxidative part of the sedimentary sulfur cycle is indicated.

  18. Rapid biphasic arteriolar dilations induced by skeletal muscle contraction are dependent on stimulation characteristics.

    PubMed

    Mihok, Marika L; Murrant, Coral L

    2004-04-01

    To test the hypothesis that measurable changes in microvasculature dilation occur in response to a single short-duration tetanic contraction, we contracted three to five skeletal muscle fibres of the hamster cremaster muscle microvascular preparation (in situ) and evaluated the response of an arteriole overlapping the active muscle fibres. Arteriolar diameter (baseline diameter = 16.4 +/- 0.9 micro m, maximum diameter = 34.7 +/- 1.2 micro m) was measured before and after a single contraction resulting from a range of stimulus frequencies (4, 10, 20, 30, 40, 60, and 80 Hz) within a 250- or 500-ms train. Four and 10 Hz produced a significant dilation at 2.9 +/- 0.4 and 6.5 +/- 2.8 s, respectively, within a 250-ms train and 3.0 +/- 0.2 and 6.1 +/- 1.3 s, respectively, within a 500-ms train. Biphasic dilations were observed within a 250-ms train at 20 Hz (at 3.9 +/- 0.9 and 22.1 +/- 4.3 s), 30 Hz (at 2.7 +/- 0.3 and 17.5 +/- 2.9 s), and 40 Hz (at 3.8 +/- 0.4 and 23.2 +/- 2.6 s) and within a 500-ms train at 20 Hz (at 4.8 +/- 0.4 and 31.9 +/- 3.8 s) and 30 Hz (at 3.4 +/- 0.3 and 27.6 +/- 3.0 s). A single dilation was observed within a 250-ms train at 60 Hz (at 5.1 +/- 0.7 s) and 80 Hz (at 14.2 +/- 3.3 s) and within a 500-ms train at 40 Hz (at 9.9 +/- 3.2 s), 60 Hz (at 7.9 +/- 2.1 s), and 80 Hz (at 13.4 +/- 4.0 s). We have shown that a single contraction ranging from a single twitch (4 Hz, 250 ms) to fused tetanic contractions produces significant arteriolar dilations and that the pattern of dilation is dependent on the stimulus frequency and train duration.

  19. Effect of biological contamination on dentine bond strength of adhesive resins.

    PubMed

    van Schalkwyk, J H; Botha, F S; van der Vyver, P J; de Wet, F A; Botha, S J

    2003-05-01

    The purpose of this in vitro study was to determine the effect of saliva (S) and blood (B) contamination on the dentine bond strength of two single-component dentine bonding systems. The occlusal thirds of 120 recently extracted, human molars were removed with a low speed saw and subsequently embedded in Bencor rings by means of self-curing, acrylic resin. The occlusal surfaces were ground wet on 600-grit silicone carbide paper in a polishing machine to expose superficial dentine and to create a smear layer. The teeth were randomly divided into 12 groups (n = 10). All the dentine surfaces were etched with 34% phosphoric acid for 15 seconds rinsed with water, air-dried for 3 seconds, leaving the surfaces visibly moist. For the control groups (C) the etched dentine surfaces were treated with either, Scotchbond 1 (SB1, 3M) or Prime & Bond NT (PBNT, Dentsply) according to the manufacturer's instructions. In the contaminated groups, the saliva or blood was applied by means of a disposable brush, left undisturbed for 1 minute, and the excess then thinned by air spray. The dentine bonding systems were then applied, also according to manufacturer's instructions. Composite (Z250 and TPH) and Compomer (F2000 and Dyract AP (D-AP)) stubs were packed and cured incrementally to the corresponding pretreated dentine surfaces. All specimens were stored for 24 hours under water at 37 degrees C. The bonds were then stressed to failure with a Zwick testing machine, operating at a crosshead speed of 0.5 mm/min. Fractured samples were examined in a Scanning Electron Microscope. The data were statistically analysed (Student-t test). The mean SBS (MPa) were. SB1 with Z250: C = 19.1 +/- 4.4; S = 17.3 +/- 3.5; B = 2.6 +/- 0.9; SB1 with F2000: C = 11.8 +/- 3.3; S = 9.7 +/- 1.8; B = 4.7 +/- 1.6. PBNT with TPH: C = 9.2 +/- 3.2; S = 6.5 +/- 3.0; B = 4.3 +/- 1.5; PBNT with D-AP: C = 10.2 +/- 3.6; S = 9.3 +/- 2.9 and B = 7.3 +/- 2.5. There was no statistical significant difference in shear bond strengths between the control and the saliva-contaminated samples for both systems. There was, however, a significant difference in bond strengths between the control and the blood-contaminated samples. Blood contamination negatively influenced bond strength of bonding systems to dentine. PMID:13677688

  20. Response Allocation in Concurrent Chains when Terminal-Link Delays Follow an Ascending and Descending Series

    ERIC Educational Resources Information Center

    Christensen, Darren R.; Grace, Randolph C.

    2009-01-01

    Eight pigeons were trained in a concurrent-chains procedure in which the terminal-link immediacy ratio followed an ascending or descending series. Across sessions, one terminal-link delay changed from 2 s to 32 s to 2 s or from 32 s to 2 s to 32 s, while the other was always 8 s. For all pigeons, response allocation tracked changes in delay and…

  1. Sulfur isotopic composition of surface snow along a latitudinal transect in East Antarctica

    NASA Astrophysics Data System (ADS)

    Uemura, Ryu; Masaka, Kosuke; Fukui, Kotaro; Iizuka, Yoshinori; Hirabayashi, Motohiro; Motoyama, Hideaki

    2016-06-01

    The sulfur stable isotopic values (δ34S) of sulfate aerosols can be used to assess oxidation pathways and contributions from various sources, such as marine biogenic sulfur, volcanoes, and sea salt. However, because of a lack of observations, the spatial distribution of δ34S values in Antarctic sulfate aerosols remains unclear. Here we present the first sulfur isotopic values from surface snow samples along a latitudinal transect in eastern Dronning Maud Land, East Antarctica. The δ34S values of sulfate showed remarkably uniform values, in the range of 14.8-16.9‰, and no significant decrease toward the inland part of the transect was noted. These results suggest that net isotopic fractionation during long-range transport is insignificant. Thus, the δ34S values can be used to infer source contributions. The δ34S values suggest that marine biogenic sulfur is the dominant source of sulfate aerosols, with a fractional contribution of 84 ± 16%.

  2. Neoarchean carbonate-associated sulfate records positive Δ³³S anomalies.

    PubMed

    Paris, G; Adkins, J F; Sessions, A L; Webb, S M; Fischer, W W

    2014-11-01

    Mass-independent fractionation of sulfur isotopes (reported as Δ(33)S) recorded in Archean sedimentary rocks helps to constrain the composition of Earth's early atmosphere and the timing of the rise of oxygen ~2.4 billion years ago. Although current hypotheses predict uniformly negative Δ(33)S for Archean seawater sulfate, this remains untested through the vast majority of Archean time. We applied x-ray absorption spectroscopy to investigate the low sulfate content of particularly well-preserved Neoarchean carbonates and mass spectrometry to measure their Δ(33)S signatures. We report unexpected, large, widespread positive Δ(33)S values from stratigraphic sections capturing over 70 million years and diverse depositional environments. Combined with the pyrite record, these results show that sulfate does not carry the expected negative Δ(33)S from sulfur mass-independent fractionation in the Neoarchean atmosphere. PMID:25378622

  3. Neoarchean carbonate-associated sulfate records positive Δ³³S anomalies.

    PubMed

    Paris, G; Adkins, J F; Sessions, A L; Webb, S M; Fischer, W W

    2014-11-01

    Mass-independent fractionation of sulfur isotopes (reported as Δ(33)S) recorded in Archean sedimentary rocks helps to constrain the composition of Earth's early atmosphere and the timing of the rise of oxygen ~2.4 billion years ago. Although current hypotheses predict uniformly negative Δ(33)S for Archean seawater sulfate, this remains untested through the vast majority of Archean time. We applied x-ray absorption spectroscopy to investigate the low sulfate content of particularly well-preserved Neoarchean carbonates and mass spectrometry to measure their Δ(33)S signatures. We report unexpected, large, widespread positive Δ(33)S values from stratigraphic sections capturing over 70 million years and diverse depositional environments. Combined with the pyrite record, these results show that sulfate does not carry the expected negative Δ(33)S from sulfur mass-independent fractionation in the Neoarchean atmosphere.

  4. Use of isotopic sulfur to determine whitebark pine consumption by Yellowstone bears: a reassessment

    USGS Publications Warehouse

    Schwartz, Charles C.; Teisberg, Justin E.; Fortin, Jennifer K.; Haroldson, Mark A.; Servheen, Christopher; Robbins, Charles T.; van Manen, Frank T.

    2014-01-01

    Use of naturally occurring stable isotopes to estimate assimilated diet of bears is one of the single greatest breakthroughs in nutritional ecology during the past 20 years. Previous research in the Greater Yellowstone Ecosystem (GYE), USA, established a positive relationship between the stable isotope of sulfur (δ34S) and consumption of whitebark pine (Pinus albicaulis) seeds. That work combined a limited sample of hair, blood clots, and serum. Here we use a much larger sample to reassess those findings. We contrasted δ34S values in spring hair and serum with abundance of seeds of whitebark pine in samples collected from grizzly (Ursus arctos) and American black bears (U. americanus) in the GYE during 2000–2010. Although we found a positive relationship between δ34S values in spring hair and pine seed abundance for grizzly bears, the coefficients of determination were small (R2 ≤ 0.097); we failed to find a similar relationship with black bears. Values of δ34S in spring hair were larger in black bears and δ34S values in serum of grizzly bears were lowest in September and October, a time when we expect δ34S to peak if whitebark pine seeds were the sole source of high δ34S. The relationship between δ34S in bear tissue and the consumption of whitebark pine seeds, as originally reported, may not be as clean a method as proposed. Data we present here suggest other foods have high values of δ34S, and there is spatial heterogeneity affecting the δ34S values in whitebark pine, which must be addressed.

  5. Evaluating the relationship between the carbon and sulfur cycles in the later Cambrian ocean: An example from the Port au Port Group, western Newfoundland, Canada

    NASA Astrophysics Data System (ADS)

    Hurtgen, Matthew T.; Pruss, Sara B.; Knoll, Andrew H.

    2009-05-01

    We present a high-resolution δ34S (sulfate and pyrite) and δ13C carbonate record from the Middle-Upper Cambrian Port au Port Group, a mixed carbonate-siliciclastic succession exposed in western Newfoundland, Canada. The results illustrate systematic δ34S sulfate shifts of > 15‰ over relatively short stratigraphic intervals (10 m, likely < 1 m.y.), low average Δ 34S sulfate-pyrite (ca. 23‰) and a generally positive coupling between changes in δ13C carbonate and δ34S sulfate. Together, these results indicate that Middle to Late Cambrian sulfate concentrations were low and that the sulfate reservoir was more sensitive to change than it was in either terminal Neoproterozoic or Cenozoic oceans. However, a simple carbon (C) and sulfur (S) isotope box model of the Late Cambrian ocean illustrates that low sulfate concentrations alone fail to account for the > 15‰ δ34S sulfate shifts recognized in Port au Port strata. Such large shifts can be generated only if fluctuating oceanic redox is invoked; marine anoxia forces reduced C/S burial and elevated Δ 34S, driving larger δ34S changes per mole of organic carbon buried. The conclusion that later Cambrian oceans featured both low sulfate levels and widespread subsurface anoxia supports hypotheses that link fluctuating marine redox conditions in the delayed recovery of skeletal animals and metazoan reefs from late Early Cambrian extinction.

  6. CHK1-driven histone H3.3 serine 31 phosphorylation is important for chromatin maintenance and cell survival in human ALT cancer cells.

    PubMed

    Chang, Fiona T M; Chan, F Lyn; R McGhie, James D; Udugama, Maheshi; Mayne, Lynne; Collas, Philippe; Mann, Jeffrey R; Wong, Lee H

    2015-03-11

    Human ALT cancers show high mutation rates in ATRX and DAXX. Although it is well known that the absence of ATRX/DAXX disrupts H3.3 deposition at heterochromatin, its impact on H3.3 deposition and post-translational modification in the global genome remains unclear. Here, we explore the dynamics of phosphorylated H3.3 serine 31 (H3.3S31ph) in human ALT cancer cells. While H3.3S31ph is found only at pericentric satellite DNA repeats during mitosis in most somatic human cells, a high level of H3.3S31ph is detected on the entire chromosome in ALT cells, attributable to an elevated CHK1 activity in these cells. Drug inhibition of CHK1 activity during mitosis and expression of mutant H3.3S31A in these ALT cells result in a decrease in H3.3S31ph levels accompanied with increased levels of phosphorylated H2AX serine 139 on chromosome arms and at the telomeres. Furthermore, the inhibition of CHK1 activity in these cells also reduces cell viability. Our findings suggest a novel role of CHK1 as an H3.3S31 kinase, and that CHK1-mediated H3.3S31ph plays an important role in the maintenance of chromatin integrity and cell survival in ALT cancer cells. PMID:25690891

  7. Progression in sulfur isotopic compositions from coal to fly ash: Examples from single-source combustion in Indiana

    USGS Publications Warehouse

    Yaofa, Jiang; Elswick, E.R.; Mastalerz, Maria

    2008-01-01

    Sulfur occurs in multiple mineral forms in coals, and its fate in coal combustion is still not well understood. The sulfur isotopic composition of coal from two coal mines in Indiana and fly ash from two power plants that use these coals were studied using geological and geochemical methods. The two coal beds are Middle Pennsylvanian in age; one seam is the low-sulfur ( 5%) Springfield Coal Member of the Petersburg Formation. Both seams have ash contents of approximately 11%. Fly-ash samples were collected at various points in the ash-collection system in the two plants. The results show notable difference in ??34S for sulfur species within and between the low-sulfur and high-sulfur coal. The ??34S values for all sulfur species are exclusively positive in the low-sulfur Danville coal, whereas the ??34S values for sulfate, pyritic, and organic sulfur are both positive and negative in the high-sulfur Springfield coal. Each coal exhibits a distinct pattern of stratigraphic variation in sulfur isotopic composition. Overall, the ??34S for sulfur species values increase up the section in the low-sulfur Danville coal, whereas they show a decrease up the vertical section in the high-sulfur Springfield coal. Based on the evolution of ??34S for sulfur species, it is suggested that there was influence of seawater on peat swamp, with two marine incursions occurring during peat accumulation of the high-sulfur Springfield coal. Therefore, bacterial sulfate reduction played a key role in converting sulfate into hydrogen sulfide, sulfide minerals, and elemental sulfur. The differences in ??34S between sulfate sulfur and pyritic sulfur is very small between individual benches of both coals, implying that some oxidation occurred during deposition or postdeposition. The ??34S values for fly ash from the high-sulfur Springfield coal (averaging 9.7???) are greatly enriched in 34S relative to those in the parent coal (averaging 2.2???). This indicates a fractionation of sulfur isotopes

  8. Isotopic ratio and concentration of sulfur in the undersaturated alkaline magmas of Vulture Volcano (Italy)

    NASA Astrophysics Data System (ADS)

    Marini, L.; Paiotti, A.; Principe, C.; Ferrara, G.; Cioni, R.

    1994-12-01

    Both the δ34S value and the total S content of products from Vulture Volcano, Italy are mainly controlled by the separation of S gases, predominantly SO2, from high f O2 magmas containing S predominantly as SO2 4. The addition of evaporites to such magmas appears to be a relatively uncommon and limited phenomenon. The total S content of the most primitive product of Vulture Volcano (5600 mg/kg) is very high. The high δ34S value of 4ö indicates an origin through the partial melting of a mantle containing high S, enriched in 34S of unknown origin.

  9. RNA-dependent DNA polymerase activity of RNA tumor virus. VI. Processive mode of action of avian myeloblastosis virus polymerase.

    PubMed Central

    Leis, J P

    1976-01-01

    Purified avian myeloblastosis virus (AMV) polymerase consisting of alpha,beta subunits has been shown to act processively in catalyzing DNA synthesis primed with 34S AMV RNA oligo(dT), poly(A)-poly(dT), and poly(I)-poly(dC). DNA transcripts prepared with 34S AMV RNA-oligo(dT)14 and AMV polymerase (alphabeta) have been shown to have a molecular weight of 1.05 X 10(6), or approximately one-third the size of the 34S RNA genome. Polymerase subunit alpha acts nonprocessively with the above templates. PMID:61286

  10. Stable sulphur isotope ratios in the moss species Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from the Kielce area (south-central Poland).

    PubMed

    Migaszewski, Zdzisław M; Dołegowska, Sabina; Hałas, Stanisław; Trembaczowski, Andrzej

    2010-06-01

    Stable sulphur isotope determinations were performed on 18 moss samples collected at nine sites in forested areas of the city of Kielce. The delta(34)S of Hylocomium splendens varied from 4.4 to 7.1 per thousand, whereas the delta(34)S of Pleurozium schreberi was in the range of 3.7-9.1 per thousand. The Holy Cross Mountains mosses display a positive delta(34)S signature of airborne SO(2) and sulphates of anthropogenic origin, which is characteristic for this part of Europe. Some spatial variations in the delta(34)S of mosses are due to the interactions that occur between coal combustion emissions with diverse isotopic imprints, variations in wind direction and topographic features combined with biological fractionation.

  11. Stable sulphur isotope ratios in the moss species Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from the Kielce area (south-central Poland).

    PubMed

    Migaszewski, Zdzisław M; Dołegowska, Sabina; Hałas, Stanisław; Trembaczowski, Andrzej

    2010-06-01

    Stable sulphur isotope determinations were performed on 18 moss samples collected at nine sites in forested areas of the city of Kielce. The delta(34)S of Hylocomium splendens varied from 4.4 to 7.1 per thousand, whereas the delta(34)S of Pleurozium schreberi was in the range of 3.7-9.1 per thousand. The Holy Cross Mountains mosses display a positive delta(34)S signature of airborne SO(2) and sulphates of anthropogenic origin, which is characteristic for this part of Europe. Some spatial variations in the delta(34)S of mosses are due to the interactions that occur between coal combustion emissions with diverse isotopic imprints, variations in wind direction and topographic features combined with biological fractionation. PMID:20582790

  12. Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist Belt, northern Finland

    NASA Astrophysics Data System (ADS)

    Molnár, Ferenc; Oduro, Harry; Cook, Nick D. J.; Pohjolainen, Esa; Takács, Ágnes; O'Brien, Hugh; Pakkanen, Lassi; Johanson, Bo; Wirth, Richard

    2016-06-01

    -ordered graphite in calcsilicate veins. Mean random reflectance data for pyrobitumen indicate 270-340 °C maximum temperature of thermal maturation—this temperature range is also considered as the temperature of gold deposition. Results of multiple sulphur isotope analyses of organic material-, pyrite- and acid-volatile-bound sulphur show distinct ranges of δ34S values for SORG and SCRS in uraninite-pyrobitumen (from -6.99 to -3.55‰ and from -10.02 to -4.41‰, respectively) and uraninite-pyrobitumen-native gold mineral associations (from +1.36 to +6.87‰ and from +0.42 to +9.7‰, respectively). Δ33S data indicate local occurrence of nonmass-dependent sulphur isotope fractionation owing to interaction of fluids with organic material. Concentration of lead in uraninite is depleted along the gold mineral filled fractures whereas the uranogenic lead isotope contents of galena, altaite and hunchuite deposited in the same fractures are extremely high, suggesting that the dominant source of lead for the crystallisation of these minerals was the radiogenic lead content of uraninite. Taking into account this source of radiogenic lead, the calculated Pb-Pb model ages for the lead minerals are between 1.75 and 1.70 Ga. Sulphur and tellurium removal from the fluid by reaction with radiogenic lead released by uraninite appears to be an important mechanism in the strongly localised deposition of gold minerals. Scavenging of sulphur by pyrobitumen nodules from gold transporting fluids was an additional process triggering precipitation of gold. Carbon particles and organic functional groups in pyrobitumen probably acted as nucleation and adsorption centres for gold minerals.

  13. Application of sulphur isotope ratios to examine weaning patterns and freshwater fish consumption in Roman Oxfordshire, UK

    NASA Astrophysics Data System (ADS)

    Nehlich, Olaf; Fuller, Benjamin T.; Jay, Mandy; Mora, Alice; Nicholson, Rebecca A.; Smith, Colin I.; Richards, Michael P.

    2011-09-01

    This study investigates the application of sulphur isotope ratios (δ 34S) in combination with carbon (δ 13C) and nitrogen (δ 15N) ratios to understand the influence of environmental sulphur on the isotopic composition of archaeological human and faunal remains from Roman era sites in Oxfordshire, UK. Humans ( n = 83), terrestrial animals ( n = 11), and freshwater fish ( n = 5) were analysed for their isotope values from four locations in the Thames River Valley, and a broad range of δ 34S values were found. The δ 34S values from the terrestrial animals were highly variable (-13.6‰ to +0.5‰), but the δ 34S values of the fish were clustered and 34S-depleted (-20.9‰ to -17.3‰). The results of the faunal remains suggest that riverine sulphur influenced the terrestrial sulphur isotopic signatures. Terrestrial animals were possibly raised on the floodplains of the River Thames, where highly 34S-depleted sulphur influenced the soil. The humans show the largest range of δ 34S values (-18.8‰ to +9.6‰) from any archaeological context to date. No differences in δ 34S values were found between the males (-7.8 ± 6.0‰) and females (-5.3 ± 6.8‰), but the females had a linear correlation ( R2 = 0.71; p < 0.0001) between their δ 15N and δ 34S compositions. These δ 34S results suggest a greater dietary variability for the inhabitants of Roman Oxfordshire than previously thought, with some individuals eating solely terrestrial protein resources and others showing a diet almost exclusively based on freshwater protein such as fish. Such large dietary variability was not visible by analysing only the carbon and nitrogen isotope ratios, and this research represents the largest and most detailed application of δ 34S analysis to examine dietary practices (including breastfeeding and weaning patterns) during the Romano-British Period.

  14. Sulfur isotope study of chimney minerals and vent fluids from 21°N, East Pacific Rise: Hydrothermal sulfur sources and disequilibrium sulfate reduction

    NASA Astrophysics Data System (ADS)

    Woodruff, Laurel G.; Shanks, Wayne C., III

    1988-05-01

    Sulfur isotopic analyses of hydrothermal chimneys and coexisting fluids collected from hot vent areas at 21°N, East Pacific Rise, indicate δ34S values for sulfide minerals of 0.9-6.2‰ and for aqueous H2S of 1.3-5.5‰. The chemical processes resulting in mineral zoning of chimney structures are a controlling influence on 34S variation within individual chimneys. In general, coarsely crystalline chalcopyrite, which lines chimney interiors, is depleted in δ34S relative to exterior ZnS (either sphalerite or wurtzite). Chalcopyrite which formed by replacement of other sulfides has higher sulfur isotope values than chalcopyrite which precipitated directly from hydrothermal fluid. Bornite and other Cu-rich sulfides, which occur as thin layers replacing the outer margins of massive chalcopyrite zones, have the highest δ34S values of any 21°N samples, ranging from 5.2‰ to 6.2‰. The significant 34S enrichment in bornite requires reduction of isotopically heavy seawater-derived sulfate in the chimney walls. Vent fluid δ34SH2S values are similar to δ34S values of inner wall chimney sulfides for seven of 11 samples. In other samples, aqueous H2S is enriched isotopically in δ34S compared with coexisting sulfides, suggesting admixture of H2S derived from reduced seawater sulfate. The δ34S value of end-member hydrothermal fluid at 21°N is about 1.0-1.5‰, which is somewhat higher than basaltic sulfide, the main source of sulfur in the hydrothermal system. This 34S enrichment apparently is due to sulfate reduction in the deep hydrothermal system during conversion of basaltic pyrrhotite to pyrite. The South West (SW) vent field has significantly higher average δ34S values (3.1‰) compared with the other 21°N vent fields. The SW field is situated on the edge of a lava collapse structure, promoting development of an extensive feeder zone which is the site of near-surface sulfate reduction during redissolution of previously deposited anhydrite. The δ34S values for

  15. Production of Gastrointestinal Tumors in Mice by Modulating Latent Transforming Growth Factor Beta 1 Activation

    PubMed Central

    Shibahara, Kotaro; Ota, Mitsuhiko; Horiguchi, Masahito; Yoshinaga, Keiji; Melamed, Jonathan; Rifkin, Daniel B

    2012-01-01

    Transforming growth factor-β (TGF-β) and its signaling pathways are important mediators in the suppression of cancers of the gastrointestinal (GI) tract. TGF-β is released from cells in a latent complex consisting of TGF-β, the TGF-β propeptide (LAP) and a latent TGF-β binding protein (LTBP). We previously generated mice in which the LTBP-binding cysteine residues in LAP TGF-β1 were mutated to serine precluding covalent interactions with LTBP. These Tgfb1C33S/C33S mice develop multiorgan inflammation and tumors consistent with reduced TGF-β1 activity. To test whether further reduction in active TGF-β levels would yield additional tumors and a phenotype more similar to Tgfb1-/- mice, we generated mice that express TGF-β1C33S and are deficient in either integrin β8 or TSP-1, known activators of latent TGF-β1. In addition we generated mice that have one mutant allele and one null allele at the Tgfb1 locus, reasoning that these mice should synthesize half the total amount of TGF-β1 as Tgfb1C33S/C33S mice and the amount of active TGF-β1 would be correspondingly decreased compared to Tgfb1C33S/C33S mice. These compound mutant mice displayed more severe inflammation and higher tumor numbers than the parental Tgfb1C33S/C33S animals. The level of active TGF-β1 in compound mutant mice appeared to be decreased compared to Tgfb1C33S/C33S mice as determined from analyses of surrogate markers of active TGF-β, such as P-Smad2, C-Myc, KI-67, and markers of cell cycle traverse. We conclude that these mutant mice provide a useful system for modulating TGF-β levels in a manner that determines tumor number and inflammation within the GI tract. PMID:23117884

  16. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation

    USGS Publications Warehouse

    Claypool, George E.; Holser, William T.; Kaplan, Isaac R.; Sakai, Hitoshi; Zak, Israel

    1980-01-01

    Three hundred new samples of marine evaporite sulfate, of world-wide distribution, were analyzed for δ34S, and 60 of these also for δ18O in the sulfate ion. Detailed δ34S age curves for Tertiary—Cretaceous, Permian—Pennsylvanian, Devonian, Cambrian and Proterozoic times document large variations in δ34S. A summary curve forδ18O also shows definite variations, some at different times than δ34S, and always smaller. The measured δ34S and δ18O correspond to variations in these isotopes in sulfate of the world ocean surface. The variations of δ18O are controlled by input and output fluxes of sulfur in the ocean, three of which are the same that control δ34S: deposition and erosion of sulfate, and deposition of sulfide. Erosion of sulfide differs in its effect on the S and O systems. δ18O in the sulfate does not seem to be measurably affected by equilibration with either seawater or with subsurface waters after crystallization. In principle, the simultaneous application of both δ34S and δ18O age curves should help reduce the number of assumptions in calculations of the cycles of sulfur and oxygen through geological time, and a new model involving symmetrical fluxes is introduced here to take advantage of the oxygen data. However, all previously published models as well as this one lead to anomalies, such as unreasonable calcium or oxygen depletions in the ocean—atmosphere system. In addition, most models are incapable of reproducing the sharp rises of the δ34S curve in the late Proterozoic, the Devonian and the Triassic which would be the result of unreasonably fast net sulfide deposition. This fast depletion could result from an ocean that has not always been mixed (as previously assumed in all model calculations).

  17. [Sulfur isotopic ratios indicating sulfur cycling in slope soils of karst areas].

    PubMed

    Zhang, Wei; Liu, Cong-qiang; Li, Xiao-dong; Liu, Tao-ze; Zhang, Li-li

    2010-02-01

    Sequential extraction methods for soil sulfur were used to determine delta34 S ratios and sulfur contents of total sulfur, organic sulfur, SO4(21) and FeS2 in slope soils of karst areas. In general, FeS2 has the lowest delta34 S ratios, ranging from -6.86% per hundred to -4.229% per hundred, followed in ascending order by SO4(2-) (-2.64% per hundred - -1.34% per hundred), total sulfur (-3.25% per hundred - -1.03% per hundred) and organic sulfur (-1.63% per hundred -0.50% per hundred) in surface soils of profiles, and delta34 S ratios in different sulfur forms all show increasing trend with profiles deepening. Covariations of delta34 S ratios of SO4(2-) and FeS2 with increasing depth are related to SO4(2-) dissimilatory reduction, while the increase in parallel of delta34 S ratios of total sulfur and organic sulfur could be resulted from organic sulfur cycling. delta34 S ratios have been extensively used to indicate sulfur sources, moreover, SO4(2-) dissimilatory reduction and organic sulfur mineralization result in significant sulfur isotopic fractionation, and sulfides oxidation and SO4(2-) assimilation have no isotopic fractionation occurred, the vertical variations of delta34 S ratios in different sulfur forms can therefore be good records for depth-dependant sulfur cycling processes. Furthermore, by comparing depth distributions of sulfur contents and delta34 S ratios in different sulfur forms, it is easily to discuss the migration of SO4(-1) and organic sulfur fractions in soil profiles.

  18. Isotopic ratios of H, C, N, O, and S in comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy)

    NASA Astrophysics Data System (ADS)

    Biver, N.; Moreno, R.; Bockelée-Morvan, D.; Sandqvist, Aa.; Colom, P.; Crovisier, J.; Lis, D. C.; Boissier, J.; Debout, V.; Paubert, G.; Milam, S.; Hjalmarson, A.; Lundin, S.; Karlsson, T.; Battelino, M.; Frisk, U.; Murtagh, D.; Odin Team

    2016-05-01

    The apparition of bright comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) in March-April 2013 and January 2015, combined with the improved observational capabilities of submillimeter facilities, offered an opportunity to carry out sensitive compositional and isotopic studies of the volatiles in their coma. We observed comet Lovejoy with the IRAM 30 m telescope between 13 and 26 January 2015, and with the Odin submillimeter space observatory on 29 January-3 February 2015. We detected 22 molecules and several isotopologues. The H216O and H218O production rates measured with Odin follow a periodic pattern with a period of 0.94 days and an amplitude of ~25%. The inferred isotope ratios in comet Lovejoy are 16O/18O = 499 ± 24 and D/H = 1.4 ± 0.4 × 10-4 in water, 32S/34S = 24.7 ± 3.5 in CS, all compatible with terrestrial values. The ratio 12C/13C = 109 ± 14 in HCN is marginally higher than terrestrial and 14N/15N = 145 ± 12 in HCN is half the Earth ratio. Several upper limits for D/H or 12C/13C in other molecules are reported. From our observation of HDO in comet C/2014 Q2 (Lovejoy), we report the first D/H ratio in an Oort Cloud comet that is not larger than the terrestrial value. On the other hand, the observation of the same HDO line in the other Oort-cloud comet, C/2012 F6 (Lemmon), suggests a D/H value four times higher. Given the previous measurements of D/H in cometary water, this illustrates that a diversity in the D/H ratio and in the chemical composition, is present even within the same dynamical group of comets, suggesting that current dynamical groups contain comets formed at very different places or times in the early solar system. Based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Odin is a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes) and the

  19. Biogeochemical fingerprints of life: earlier analogies with polar ecosystems suggest feasible instrumentation for probing the Galilean moons

    NASA Astrophysics Data System (ADS)

    Chela-Flores, J.; Cicuttin, A.; Crespo, M. L.; Tuniz, C.

    2015-07-01

    1960s) that the distribution range of 32S/34S in analysed extra-terrestrial material appears to be narrower than the isotopic ratio of H, C or N and may be the most reliable for estimating biological effects. In addition, we discuss the necessary instruments that can test our biogenic hypothesis. First of all we hasten to clarify that the last-generation miniaturized mass spectrometer we discuss in the present paper are capable of reaching the required accuracy of ‰ for the all-important measurements with JGO of the thin atmospheres of the icy satellites. To implement the measurements, we single out miniature laser ablation time-of-flight mass spectrometers that are ideal for the forthcoming JUICE probing of the exoatmospheres, ionospheres and, indirectly, surficial low-albedo regions. Ganymede's surface, besides having ancient dark terrains covering about one-third of the total surface, has bright terrains of more recent origin, possibly due to some internal processes, not excluding biological ones. The geochemical test could identify bioindicators on Europa and exclude them on its large neighbour by probing relatively recent bright terrains on Ganymede's Polar Regions.

  20. Fractionation of Sulfur Isotopes by Desulfovibrio vulgaris Mutants Lacking Periplasmic Hydrogenases or the Type I Tetraheme Cytochrome c3

    NASA Astrophysics Data System (ADS)

    Sim, M.; Ono, S.; Bosak, T.

    2012-12-01

    A large fraction of anaerobic mineralization of organic compounds relies on microbial sulfate reduction. Sulfur isotope fractionation by these microbes has been widely used to trace the biogeochemical cycling of sulfur and carbon, but intracellular mechanisms behind the wide range of fractionations observed in nature and cultures are not fully understood. In this study, we investigated the influence of electron transport chain components on the fractionation of sulfur isotopes by culturing Desulfovibrio vulgaris Hildenborough mutants lacking hydrogenases or type I tetraheme cytochrome c3 (Tp1-c3). The mutants were grown both in batch and continuous cultures. All tested mutants grew on lactate or pyruvate as the sole carbon and energy sources, generating sulfide. Mutants lacking cytoplasmic and periplasmic hydrogenases exhibited similar growth physiologies and sulfur isotope fractionations to their parent strains. On the other hand, a mutant lacking Tp1-c3 (ΔcycA) fractionated the 34S/32S ratio more than the wild type, evolving H2 in the headspace and exhibiting a lower specific respiration rate. In the presence of high concentrations of pyruvate, the growth of ΔcycA relied largely on fermentation rather than sulfate reduction, even when sulfate was abundant, producing the largest sulfur isotope effect observed in this study. Differences between sulfur isotope fractionation by ΔcycA and the wild type highlight the effect of electron transfer chains on the magnitude of sulfur isotope fractionation. Because Tp1-c3 is known to exclusively shuttle electrons from periplasmic hydrogenases to transmembrane complexes, electron transfers in the absence of Tp1-c3 should bypass the periplasmic hydrogen cycling, and the loss of reducing equivalents in the form of H2 can impair the flow of electrons from organic acids to sulfur, increasing isotope fractionation. Larger fractionation by ΔcycA can inform interpretations of sulfur isotope data at an environmental scale as well

  1. Formation of Saturn and Jupiter and their Atmospheres

    NASA Astrophysics Data System (ADS)

    Atreya, S. K.; Lunine, J. I.; Simon-Miller, A. A.; Atkinson, D. H.; Brinckerhoff, W. B.; Coustenis, A.; Mahaffy, P. R.; Spilker, T. R.; Colaprete, A.; Reh, K.

    2012-04-01

    disequilibrium in the upper atmosphere. If Saturn's O/H is subsolar, a measurement of water even at shallow depths could allow its determination. CO could also provide a handle on O/H, but requires a knowledge of vertical mixing in Saturn's interior. The measurement of water and phosphine, respectively by the MWR and the Jovian InfraRed Auroral Mapper (JIRAM) on Juno, together with prior data on CO at Jupiter will provide a useful guide for determining convective mixing in Saturn as well. As in the case of Jupiter, an entry probe is essential for determining the bulk composition in Saturn's atmosphere, especially the elemental abundances of He, Ne, Ar, Kr, Xe, O, N and S and the critical isotopes, D/H, 3He/4He, 18O/16O, 13C/12C, 15N/14N, 34S/32S and the isotopes of the heavy noble gases. This would enable the type of comparative study of Saturn and Jupiter that is crucial to unraveling the mystery of the formation and evolution of the solar system and, by extension, extrasolar systems. [www.umich.edu/~atreya to download pdf's of related publications

  2. Fractionation of sulfur isotopes during atmospheric processes: SO2 oxidation and photolysis

    NASA Astrophysics Data System (ADS)

    Harris, E. J.; Sinha, B.; Hoppe, P.; Crowley, J.; Foley, S. F.

    2010-12-01

    Measurements of stable sulfur isotopes can be used to investigate the chemistry of SO2 in the environment. The oxidation pathway of SO2 plays an important role in determining its environmental effect: gaseous oxidation by OH radicals produces gas-phase sulfuric acid that can nucleate to produce new particles and CCN, while heterogeneous oxidation can change the surface properties of existing particles. Stable isotopes have been used in the investigation of these oxidation pathways, but a major limitation is the lack of laboratory studies of the isotopic fractionation factor for the gaseous reaction (Castleman et al., 1974; Leung et al., 2001; Tanaka et al., 1994). An experimental set-up to investigate the kinetic fractionation of 34S/32S (α = k34/k32) during this reaction has been developed. OH radicals are generated by flowing humidified nitrogen past a mercury lamp producing high-energy UV light. SO2 gas with a known isotopic composition reacts with the OH radicals to produce sulfuric acid gas. Collection methods for both H2SO4 and SO2 gases have been characterised. H2SO4 gas is collected in a glass condenser system and washed out with MilliQ water. This collection method introduces no significant isotopic fractionation. SO2 gas is collected in two bubblers containing 6% H2O2 solution at 273 K, which introduces fractionation of 13 ± 2‰ (α = 1.013 ± 0.002) at 273 K, agreeing with aqueous uptake and oxidation (Saltzman et al., 1983). Following collection, BaCl2 is added to precipitate the sulfur as BaSO4 and the solutions are filtered to collect the BaSO4 grains for analysis in the NanoSIMS. Photolytic and aqueous oxidation of SO2 are the main interfering reactions occurring in the system, and were investigated by running the reaction set-up without generating OH radicals. High humidity conditions produce fractionation of 11 ± 7‰ (α = 1.011 ± 0.007) at 293 K, which corresponds well with previous results for the SO2(g)-HSO3-(aq) system (Eriksen, 1972

  3. Sulfur Isotopes as Indicators of Amended Bacterial Sulfate Reduction Processes Influencing Field Scale Uranium Bioremediation

    SciTech Connect

    Druhan, Jennifer L.; Conrad, Mark E.; Williams, Kenneth H.; N'Guessan, A. Lucie; Long, Philip E.; Hubbard, Susan S.

    2008-11-01

    Aqueous uranium (U(VI)) concentrations in a contaminated aquifer in Rifle Colorado have been successfully lowered through electron donor amended bioreduction. Samples collected during the acetate amendment experiment were analyzed for aqueous concentrations of Fe(II), sulfate, sulfide, acetate, U(VI), and δ34S of sulfate and sulfide to explore the utility of sulfur isotopes as indicators of in situ acetate amended sulfate and uranium bioreduction processes. Enrichment of up to 7‰ in δ34S of sulfate in down-gradient monitoring wells indicates a transition to elevated bacterial sulfate reduction. A depletion in Fe(II), sulfate, and sulfide concentrations at the height of sulfate reduction, along with an increase in the δ34S of sulfide to levels approaching the d34S values of sulfate, indicates sulfate limited conditions concurrent with a rebound in U(VI) concentrations. Upon cessation of acetate amendment, sulfate and sulfide concentrations increased, while δ34S values of sulfide returned to less than -20‰ and sulfate δ34S decreased to near-background values, indicating lower levels of sulfate reduction accompanied by a corresponding drop in U(VI). Results indicate a transition between electron donor and sulfate-limited conditions at the height of sulfate reduction and suggest stability of biogenic FeS precipitates following the end of acetate amendment.

  4. Characteristics of a strong promoter from figwort mosaic virus: comparison with the analogous 35S promoter from cauliflower mosaic virus and the regulated mannopine synthase promoter.

    PubMed

    Sanger, M; Daubert, S; Goodman, R M

    1990-03-01

    A segment of DNA from the genome of figwort mosaic virus (FMV) strain M3 possesses promoter activity when tested in electroporated protoplasts from, and transgenic plants of, Nicotiana tabacum cv. Xanthi nc. The 1.1 kb DNA segment, designated the '34S' promoter, is derived from a position on the FMV genome comparable to the position on the cauliflower mosaic virus (CaMV) genome containing the 35S promoter. The 34S and 35S promoters show approximately 63% nucleotide homology in the TATA, CCACT, and -18 to +1 domains, but in sequences further upstream the homology drops below 50%. Promoter activities were estimated using beta-glucuronidase and neomycin phosphotransferase II reporter gene systems. The activity of the 34S promoter segment approximates that of the 35S promoter in both protoplast transient expression assays and in stably transformed tobacco plants. Truncation of 5' sequences from the 34S promoter indicates that promoter strength depends upon DNA sequences located several hundred nucleotides upstream from the TATA box. In leaf tissue the 34S promoter is 20-fold more active than the mannopine synthase (MAS) promoter from Agrobacterium tumefaciens T-DNA. The 34S promoter lacks the root-specific and wound-stimulated expression of the MAS promoter, showing relatively uniform root, stem, leaf, and floral activities.

  5. Characterization of sulfur deposition over the period of industrialization in Japan using sulfur isotope ratio in Japanese cedar tree rings taken from stumps.

    PubMed

    Ishida, Takuya; Tayasu, Ichiro; Takenaka, Chisato

    2015-07-01

    We characterized the sulfur deposition history over the period of industrialization in Japan based on the sulfur isotope ratio (δ(34)S) in tree rings of Japanese cedar (Cryptomeria japonica D. Don) stumps. We analyzed and compared δ(34)S values in the rings from two types of disk samples from 170-year-old stumps that had been cut 5 years earlier (older forest stand) and from 40-year-old living trees (younger forest stand) in order to confirm the validity of using stump disks for δ(34)S analysis. No differences in δ(34)S values by age were found between the sample types, indicating that stump disks can be used for δ(34)S analysis. The δ(34)S profile in tree rings was significantly correlated with anthropogenic SO2 emissions in Japan (r = -0.76, p < 0.05) and, thus, tree rings serve as a record of anthropogenic sulfur emissions. In addition, the values did not change largely from pre-industrialization to the 1940s (+4.2 to +6.1‰). The values before the 1940s are expected to reflect the background sulfur conditions in Japan and, thus, disks containing rings formed before the 1940s contain information about the natural environmental sulfur, which is useful for biogeochemical studies.

  6. Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets

    PubMed Central

    Antonelli, Michael A.; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J.; Lyons, James R.; Hoek, Joost; Farquhar, James

    2014-01-01

    Achondrite meteorites have anomalous enrichments in 33S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying 33S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the 33S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous 33S depletions in IIIF iron meteorites (<−0.02 per mil), and 33S enrichments in other magmatic iron meteorite groups. The 33S depletions support the idea that differentiated planetesimals inherited sulfur that was photochemically derived from gases in the early inner solar system (<∼2 AU), and that bulk inner solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content. PMID:25453079

  7. Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets.

    PubMed

    Antonelli, Michael A; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J; Lyons, James R; Hoek, Joost; Farquhar, James

    2014-12-16

    Achondrite meteorites have anomalous enrichments in (33)S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying (33)S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the (33)S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous (33)S depletions in IIIF iron meteorites (<-0.02 per mil), and (33)S enrichments in other magmatic iron meteorite groups. The (33)S depletions support the idea that differentiated planetesimals inherited sulfur that was photochemically derived from gases in the early inner solar system (<∼2 AU), and that bulk inner solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content. PMID:25453079

  8. Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets.

    PubMed

    Antonelli, Michael A; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J; Lyons, James R; Hoek, Joost; Farquhar, James

    2014-12-16

    Achondrite meteorites have anomalous enrichments in (33)S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying (33)S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the (33)S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous (33)S depletions in IIIF iron meteorites (<-0.02 per mil), and (33)S enrichments in other magmatic iron meteorite groups. The (33)S depletions support the idea that differentiated planetesimals inherited sulfur that was photochemically derived from gases in the early inner solar system (<∼2 AU), and that bulk inner solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content.

  9. Sulphur isotope geochemistry of pyrite from the Upper Cretaceous Marshybank Formation, Western Interior Basin

    NASA Astrophysics Data System (ADS)

    McKay, J. L.; Longstaffe, F. J.

    2003-04-01

    Variations in the texture and sulphur isotopic composition of pyrite in the Upper Cretaceous Marshybank Formation are linked to depositional environment. Abundant, framboidal (and lesser euhedral) pyrite precipitated in offshore marine rocks. Moderate quantities of pyrite also crystallized in brackish, coastal plain rocks. However, in contrast to marine pyrite, coastal plain pyrite is dominantly euhedral in texture, reflecting direct precipitation from a porewater with a relatively low dissolved sulphide concentration. In the marine rocks, pyrite δ34S values range from -35.7‰ to +27.4‰ (avg. -4.8‰ Canyon Diablo Troilite, CDT). Pyrite within carbonate concretions hosted in these marine rocks has a similar isotopic composition (-49.8‰ to +10.6‰ CDT). However, isotopic values are often highly variable within individual concretions as a result of the heterogeneous nature of sulphate reduction and pyrite formation within marine sediments. Pyrite in coastal plain rocks is characterized by relatively high δ34S values (-4.2‰ to +35.5‰, avg. +13.2‰ CDT), while the overlying sideritized conglomerates have the lowest δ34S values reported for Cretaceous rocks from the Western Interior Basin of North America (-49.8‰ to -41.7‰ CDT). Very low δ34S values, which are only observed in the marine rocks, are indicative of microbial sulphate reduction and pyrite formation in a sulphate-replete (i.e., open) system. Higher δ34S values (up to +18‰), which were obtained for both the marine and coastal plain rocks, are indicative of progressive pyrite crystallization in a sulphate-limited (i.e., closed) system. Such conditions are expected in marine sediments as burial occurs, and in brackish (i.e., low sulphate) sediments. Pyrite with very high δ34S values (>+18‰) is common in the coastal plain rocks. These high values are the result of influx of 34S-enriched, residual sulphide derived from overlying marine units. A minor amount of 34S-enriched pyrite is also

  10. Effects of strain on phonon interactions and phase nucleation in several semiconductor and nano particle systems

    NASA Astrophysics Data System (ADS)

    Tallman, Robert E.

    Raman scattering is utilized to explore the effects of applied pressure and strain on anharmonic phonon interactions and nucleation of structural transitions in several bulk and nanoparticle semiconductor systems. The systems investigated are bulk ZnS and ZnSe in several isotopic compositions, InP/CdS core/shell nanoparticles exhibiting confined and surface optical Raman modes, and amorphous selenium films undergoing photo-induced crystallization. The anharmonic decay of long-wavelength optical modes into two-phonon acoustic combinations modes is studied in 64Zn32S, 64Zn34S, natZnatS bulk crystals by measuring the TO(Gamma) Raman line-shape as a function of applied hydrostatic pressure. The experiments are carried out at room temperature and 16K for pressures up to 150 kbars using diamond-anvil cells. The most striking effects occur in 68Zn32S where the TO(Gamma) peak narrows by a factor of 10 and increases in intensity at pressures for which the TO(Gamma) frequency has been tuned into a gap in the two-phonon density of states (DOS). In all the isotopic compositions, the observed phonon decay processes can be adequately explained by a second order perturbation treatment of the anharmonic coupling between TO(Gamma) and TA + LA combinations at various critical points, combined with an adiabatic bond-charge model for the phonon DOS and the known mode Gruneisen parameters. Bulk ZnSe crystals exhibit very different behavior. Here we find that anharmonic decay alone can not explain the excessive (˜ 60 cm-1 ) broadening in the TO(Gamma) Raman peak observed as the pressure approaches to within 50kbar of the ZB -> B1 phase transition (at P ˜ 137 kbar). Rather the broadening appears to arise from antecedent nucleation of structural changes within nanoscopic domains, with the mechanism for line-shape changes being mode mixing via localization and disorder instead of anharmonicity. To sort out these contributions, pressure experiments on natural ZnSe and on isotopically pure

  11. High arsenic concentrations and enriched sulfur and oxygen isotopes in a fractured-bedrock ground-water system

    USGS Publications Warehouse

    Lipfert, G.; Sidle, W.C.; Reeve, A.S.; Ayuso, R.A.; Boyce, A.J.

    2007-01-01

    Ground water with high arsenic concentrations (up to 26.6????mol L- 1) has sulfate enriched in 34S and 18O in the fractured-bedrock, ground-water system of the Kelly's Cove watershed, Northport, Maine, USA. The ranges of sulfur and oxygen isotope values in aqueous sulfate, ??34S[SO4] and ??18O[SO4], at the Kelly's Cove watershed are + 3.4 to + 4.9??? and - 2.0 to + 6.7???, respectively. These isotope values are strikingly similar to those of the Goose River, Maine watershed which has ??34S[SO4] and ??18O[SO4] ranges of + 3.7 to + 4.6 ??? and - 2.6 to + 7.5???, respectively. In both systems, high arsenic concentrations occur with high ??34S[SO4] and ??18O[SO4] values, yet redox conditions and underlying rock types are quite different. The isotope values of sulfide minerals, ??34S[min], from four bedrock cores vary over short distances and range from - 5.1 to + 7.5???. The ??34S[SO4] values are controlled by the ??34S[min] values with minor input of atmospheric SO4. The much narrower range in ??34S[SO4] values than ??34S[min] values is probably due to sufficient ground-water mixing at a scale greater than the ??34S[min] variability. The ??34S[SO4] values are about 2??? higher than the average ??34S[min] value and fall within the range of ??34S[min] values, indicating only minor fractionation due to bacterial reduction of SO4. The highest ??18O[SO4] values were measured in the downgradient, confined, arsenic-rich ground water. High ??18O[SO4] values there cannot be due to aeration by atmospheric oxygen, but may arise from reoxidation of reduced SO4 products. The enrichment factors of ??18O in SO4 compared to H2O, + 7.2 to + 15.5???, in the Kelly's Cove ground water and the negligible 34S enrichment is very similar to those derived from experimental data of anaerobic sulfide oxidation in the presence of Mn and Fe oxides. Sea level at the Kelly's Cove watershed was approximately 80??m above present sea level about 13 000??years before present, imposing reducing

  12. Compound-specific sulfur isotope analysis of thiadiamondoids of oils from the Smackover Formation, USA

    USGS Publications Warehouse

    Zvi Gvirtzman,; Ward Said-Ahmad,; Ellis, Geoffrey S.; Ronald J. Hill,; J. Michael Moldowan,; Zhibin Wei,; Alon Amrani,

    2015-01-01

    Thiadiamondoids (TDs) are diamond-like compounds with a sulfide bond located within the cage structure. These compounds were suggested as a molecular proxy for the occurrence and extent of thermochemical sulfate reduction (TSR). Compound-specific sulfur-isotope analysis of TDs may create a multi-parameter system, based on molecular and δ34S values that may be sensitive over a wider range of TSR and thermal maturation stages. In this study, we analyzed a suite of 12 Upper Jurassic oil and condensate samples generated from source rocks in the Smackover Formation to perform a systematic study of the sulfur isotope distribution in thiadiamondoids (one and two cages). For comparison we measured the δ34S composition of benzothiophenes (BTs) and dibenzothiophenes (DBTs). We also conducted pyrolysis experiments with petroleum and model compounds to have an insight into the formation mechanisms of TDs. The δ34S of the TDs varied significantly (ca 30‰) between the different oils depending on the degree of TSR alteration. The results showed that within the same oil, the one-cage TDs were relatively uniform, with 34S enriched values similar to those of the coexisting BTs. The two-cage TDs had more variable δ34S values that range from the δ34S values of BTs to those of the DBTs, but with general 34S depletion relative to one cage TDs. Hydrous pyrolysis experiments (360 °C, 40 h) with either CaSO4 or elemental S (equivalent S molar concentrations) and adamantane as a model compound demonstrate the formation of one cage TDs in relatively low yields (<0.2%). Higher concentrations of TDs were observed in the elemental sulfur experiments, most likely because of the higher rates of reaction with adamantane under these experimental conditions. These results show that the formation of TDs is not exclusive to TSR reactions, and that they can also form by reaction with reduced S species apart from sulfate reduction, though at low yields. Oxygenated compounds, most notably 2

  13. Compound-specific sulfur isotope analysis of thiadiamondoids of oils from the Smackover Formation, USA

    NASA Astrophysics Data System (ADS)

    Gvirtzman, Zvi; Said-Ahmad, Ward; Ellis, Geoffrey S.; Hill, Ronald J.; Moldowan, J. Michael; Wei, Zhibin; Amrani, Alon

    2015-10-01

    Thiadiamondoids (TDs) are diamond-like compounds with a sulfide bond located within the cage structure. These compounds were suggested as a molecular proxy for the occurrence and extent of thermochemical sulfate reduction (TSR). Compound-specific sulfur-isotope analysis of TDs may create a multi-parameter system, based on molecular and δ34S values that may be sensitive over a wider range of TSR and thermal maturation stages. In this study, we analyzed a suite of 12 Upper Jurassic oil and condensate samples generated from source rocks in the Smackover Formation to perform a systematic study of the sulfur isotope distribution in thiadiamondoids (one and two cages). For comparison we measured the δ34S composition of benzothiophenes (BTs) and dibenzothiophenes (DBTs). We also conducted pyrolysis experiments with petroleum and model compounds to have an insight into the formation mechanisms of TDs. The δ34S of the TDs varied significantly (ca 30‰) between the different oils depending on the degree of TSR alteration. The results showed that within the same oil, the one-cage TDs were relatively uniform, with 34S enriched values similar to those of the coexisting BTs. The two-cage TDs had more variable δ34S values that range from the δ34S values of BTs to those of the DBTs, but with general 34S depletion relative to one cage TDs. Hydrous pyrolysis experiments (360 °C, 40 h) with either CaSO4 or elemental S (equivalent S molar concentrations) and adamantane as a model compound demonstrate the formation of one cage TDs in relatively low yields (<0.2%). Higher concentrations of TDs were observed in the elemental sulfur experiments, most likely because of the higher rates of reaction with adamantane under these experimental conditions. These results show that the formation of TDs is not exclusive to TSR reactions, and that they can also form by reaction with reduced S species apart from sulfate reduction, though at low yields. Oxygenated compounds, most notably 2

  14. Sulfur isotope dynamics in two central european watersheds affected by high atmospheric deposition of SO x

    NASA Astrophysics Data System (ADS)

    Novák, Martin; Kirchner, James W.; Groscheová, Hana; Havel, Miroslav; Černý, Jiří; Krejčí, Radovan; Buzek, František

    2000-02-01

    Sulfur fluxes and δ34S values were determined in two acidified small watersheds located near the Czech-German border, Central Europe. Sulfur of sulfate aerosol in the broader region (mean δ 34S of 7.5‰ CDT) was isotopically heavier than sulfur of airborne SO 2 (mean δ 34S of 4.7‰). The annual atmospheric S deposition to the Jezeřı´ watershed decreased markedly in 1993, 1994, and 1995 (40, 33, and 29 kg/ ha · yr), reflecting reductions in industrial S emissions. Sulfur export from Jezeří via surface discharge was twice atmospheric inputs, and increased from 52 to 58 to 85 kg/ha · yr over the same three-year period. The δ 34S value of Jezeřı´ streamflow was 4.5 ± 0.3‰, intermediate between the average atmospheric deposition (5.4 ± 0.2‰) and soil S (4.0 ± 0.5‰), suggesting that the excess sulfate in runoff comes from release of S from the soil. Bedrock is not a plausible source of the excess S, because its S concentration is very low (<0.003 wt.%) and because its δ 34S value is too high (5.8‰) to be consistent with the δ 34S of runoff. A sulfur isotope mixing model indicated that release of soil S accounted for 64 ± 33% of sulfate S in Jezeřı´ discharge. Approximately 30% of total sulfate S in the discharge were organically cycled. At Načetı´n, the same sequence of δ34S IN > δ34S OUT > δ34S SOIL was observed. The seasonality found in atmospheric input (higher δ 34S in summer, lower δ 34S in winter) was preserved in shallow (<10 cm) soil water, but not in deeper soil water. δ 34S values of deeper (>10 cm) soil water (4.8 ± 0.2‰) were intermediate between those of atmospheric input (5.9 ± 0.3‰) and Nac̆etín soils (2.4 ± 0.1‰), again suggesting that remobilization of soil S accounts for a significant fraction (roughly 40 ± 10%) of the S in soil water at Načetı´n. The inventories of soil S at both of these sites are legacies of more intense atmospheric pollution during previous decades, and are large enough (740

  15. Sulfur isotopic systematics in alteration assemblages in martian meteorite Allan Hills 84001

    NASA Astrophysics Data System (ADS)

    Shearer, C. K.; Layne, G. D.; Papike, J. J.; Spilde, M. N.

    1996-08-01

    ALH84001 is a coarse-grained, clastic orthopyroxenite meteorite related to the SNC meteorite group ( shergottites, nakhlites, Chassigny). Superimposed upon the orthopyroxene-dominant igneous mineral assemblage is a hydrothermal signature. This hydrothermal overprint consists of carbonate assemblages occurring in spheroidal aggregates and fine-grained carbonate-sulfide vug-filling. The sulfide in this assemblage has been identified as pyrite, an unusual sulfide in meteorites. Previously, Burgess et al. (1989) reported a bulk δ 34S for a SNC group meteorite (Shergotty) of -0.5 ± 1.5‰. Here, we report the first martian δ 34S values from individual sulfide grains. Using newly developed ion microprobe techniques, we were able to determine δ 34S of the pyrite in ALH84001 with a 1 a precision of better than ±0.5‰. The δ 34S values for the pyrite range from +4.8 to +7.8‰. Within the stated uncertainties, the pyrite from ALH84001 exhibits a real variability in δ 34S in this alteration assemblage. In addition, these sulfides are demonstrably enriched in 34S relative to Canon Diablo troilite and sulfides from most other meteorites. This signature implies that the planetary body represented by ALH84001 experienced processes capable of fractionating sulphur isotopes and that hydrothermal conditions changed during pyrite precipitation (T, pH, fluid composition, etc.). The fractionated signature of the sulphur in the pyrite is most likely attributed to either conditions of pyrite precipitation (low temperature, reduced (low fo 2) and moderately alkaline (pH > 8) environment) or enrichment of fluids in 34S by surface processes (weathering or impact processes) prior to precipitation. These new data are not consistent with the pyrite recording either biogenic activity or atmospheric fractionation of sulphur through nonthermal escape mechanisms or oxidation processes. This study also demonstrates the usefulness of ion microprobe measurements of sulphur isotopes in

  16. Involvement of magmatic fluids at the Laloki and Federal Flag massive sulfide Cu-Zn-Au-Ag deposits, Astrolabe mineral district, Papua New Guinea: sulfur isotope evidence

    NASA Astrophysics Data System (ADS)

    Noku, Shadrach K.; Espi, Joseph O.; Matsueda, Hiroharu

    2015-01-01

    We present the first sulfur (S) isotope data of sulfides, sulfates, pyrite in host mudstone, and bulk sulfur of gabbroic rocks from the Laloki and Federal Flag massive Cu-Zn-Au-Ag deposits in the Astrolabe mineral district, Papua New Guinea. Early-stage pyrite-marcasite, chalcopyrite, and sphalerite from Laloki display wide range of δ34S values from -4.5 to +7.0 ‰ ( n = 16). Late-stage pyrite, chalcopyrite, and sphalerite have restricted δ34S values of -1.9 to +4.7 ‰ ( n = 16). The mineralizing stage these correspond to had moderately saline (5.9-8.4 NaCl eq. wt%) mineralizing fluids of possible magmatic origin. A single analysis of late-stage barite has a value of δ34S +17.9 ‰, which is likely similar to coexisting seawater sulfate. Pyrite from the foot-wall mudstone at Laloki has very light δ34S values of -36.1 to -33.8 ‰ ( n = 2), which suggest an organic source for S. Pyrite-marcasite and chalcopyrite from Federal Flag show δ34S values of -2.4 to -1.9 ‰ ( n = 2), consistent with a magmatic origin, either leached from intrusive magmatic rocks or derived from magmatic-hydrothermal fluids. The very narrow range and near-zero δ34S values (-1.0 to +0.6 ‰) of bulk gabbroic samples is consistent with mantle-derived magmatic S. Sulfur isotope characteristics of sulfides and sulfates are, however, very similar to base metal sulfide accumulations associated with modern volcanic arcs and sedimented mid-ocean ridges. The most reasonable interpretation is that the range of the sulfide and sulfate δ34S values from both Laloki and Federal Flag massive sulfide deposits is indicative of the complex interaction of magmatic fluids, seawater, gabbroic rocks, and mudstone.

  17. Sulphur isotope geochemistry of the ores and country rocks at the Almadén mercury deposit, Ciudad Real, Spain

    NASA Astrophysics Data System (ADS)

    Saupé, Francis; Arnold, Michel

    1992-10-01

    Seventy-four new S isotope analyses of ore minerals and country rocks are given for the Hg deposit of Almadén. The spread of the cinnabar δ34S is narrow within each of the three orebodies, but the δ34S average values differ sufficiently between them (mean δ34S: San Nicolas = 0.2 ± 1.1 %., San Francisco = 8.1 ± 0.7%., San Pedro = 5.9 ± 1.0%.) to indicate three different mineralization episodes and possibly processes. The unweighted mean for all cinnabar samples is 5.6%. and the S source is considered to be the host-rocks, either the Footwall Shales ( δ34S = 5.5%.) or the spilites ( δ34 S = 5.1 ± 1.3%.). For geometric and chronologic reasons, the former seem the best potential source. However, the high δ34 S values of the San Francisco cinnabar cannot be explained without addition of heavy S from reduction of seawater sulphate. Orderly distributions of the δ34S values are observed in all three orebodies: (1) their increase from the stratigraphic bottom to the top in the San Pedro orebody is explained by a Rayleigh process, and (2) the maxima in the centres of the San Francisco and San Nicolas orebodies are explained by mixing of the S transporting hydrothermal fluids with seawater within the sediments. Associated pyrite and cinnabar were deposited under isotopic disequilibrium, probably because the low solubility of cinnabar caused rapid precipitation of cinnabar. The different morphological pyrite types have their own isotopic δ34S signatures. The spilites are notably enriched in S ( n = 3; average S content = 0.56%) compared to normal basalts (1000 ppm) and have an average δ34S = 5.1 ± 1.3%.. The linear relationship between the δ34S and the S content of the spilites is interpreted as a mixing line between mantle S and a constant S source, probably an infinite open reservoir. An incomplete basalt-seawater reaction at nearly constant temperature is the best explanation for this relation. The S (predominantly pyrite) of the black shales ( n = 3; δ34S

  18. Assessing the Influences of Mercury Bioaccumulation and Bioavailability in Everglades Food Webs

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Bemis, B. E.

    2005-05-01

    Eastern mosquitofish are an important sentinel species used to monitor mercury contamination of the aquatic ecosystem in the Everglades. Like other freshwater fish, the primary route of mercury uptake into mosquitofish tissues is through diet as bioavailable methylmercury. Yet, it is unclear whether variations in mosquitofish mercury observed across the Everglades are due primarily to differences in bioaccumulation (i.e., increase of mercury at higher trophic levels) or abundance of methylmercury available to the food web base. We use isotopic methods to investigate the importance of these two controls on mosquitofish mercury at the landscape scale. As part of the USEPA REMAP project, mosquitofish, periphyton, and sediments were collected during September 1996 from over one hundred sites throughout the Everglades and analyzed for mercury concentration and many other parameters. The USGS analyzed splits of the samples for d15N, d13C, and d34S. Mosquitofish were analyzed as composites of 5-10 fish and periphyton and 0-5 cm sediment samples were analyzed in bulk. Tissue d15N is widely used to estimate the relative trophic positions of organisms in a food web, and should correlate positively with tissue mercury if bioaccumulation is an important control on mosquitofish mercury concentration. Tissue d34S values potentially indicate the extent of dissimilatory sulfate reduction in sediments, a process used by sulfate-reducing bacteria (SRB) during conversion of inorganic Hg(II) to bioavailable methylmercury. Because this process increases the d34S value of remaining sulfate (assimilated by the food web base), mosquitofish d34S should show positive correlations with SRB activity, methylmercury production, and mosquitofish mercury concentrations. Mosquitofish and periphyton isotopes are significantly correlated (d15N-Mosq vs. d15N-Peri, d34S-Mosq vs. d34S-Peri), indicating that a component of the bulk periphyton analyzed in this study is part of the mosquitofish food web

  19. SPINK1 Is a Susceptibility Gene for Fibrocalculous Pancreatic Diabetes in Subjects from the Indian Subcontinent

    PubMed Central

    Hassan, Zahid; Mohan, Viswananthan; Ali, Liaquat; Allotey, Rebecca; Barakat, Khalid; Faruque, M. Omar; Deepa, Raj; McDermott, Michael F.; Jackson, Alan E.; Cassell, Paul; Curtis, David; Gelding, Susan V.; Vijayaravaghan, Shanti; Gyr, Niklaus; Whitcomb, David C.; Khan, A. K. Azad; Hitman, Graham A.

    2002-01-01

    Fibrocalculous pancreatic diabetes (FCPD) is a secondary cause of diabetes due to chronic pancreatitis. Since the N34S variant of the SPINK1 trypsin inhibitor gene has been found to partially account for genetic susceptibility to chronic pancreatitis, we used a family-based and case-control approach in two separate ethnic groups from the Indian subcontinent, to determine whether N34S was associated with susceptibility to FCPD. Clear excess transmission of SPINK1 N34S to the probands with FCPD in 69 Bangladeshi families was observed (P<.0001; 20 transmissions and 2 nontransmissions). In the total study group (Bangladeshi and southern Indian) the N34S variant was present in 33% of 180 subjects with FCPD, 4.4% of 861 nondiabetic subjects (odds ratio 10.8; P<.0001 compared with FCPD), 3.7% of 219 subjects with type 2 diabetes, and 10.6% of 354 subjects with early-onset diabetes (aged <30 years) (P=.02 compared with the ethnically matched control group). These results suggest that the N34S variant of SPINK1 is a susceptibility gene for FCPD in the Indian subcontinent, although, by itself, it is not sufficient to cause disease. PMID:12187509

  20. Sulfur redox reactions: Hydrocarbons, native sulfur, Mississippi Valley-type deposits, and sulfuric acid karst in the Delaware Basin, New Mexico and Texas

    SciTech Connect

    Hill, C.A.

    1995-02-01

    Hydrocarbons, native sulfur, Mississippi Valley-type (MVT) deposits, and sulfuric acid karst in the Delaware Basin, southeastern New Mexico, and west Texas, USA, are all genetically related through a series of sulfur redox reactions. The relationship began with hydrocarbons in the basin that reacted with sulfate ions from evaporite rock to produce isotopically light ({delta}{sup 34}S = -22 to -12) H{sub 2}S and bioepigenetic limestone (castiles). This light H{sub 2}S was then oxidized at the redox interface to produce economic native sulfur deposits ({delta}{sup 34}S = -15 to +9) in the castiles, paleokarst, and along graben-boundary faults. This isotopically light H{sub 2}S also migrated from the basin into its margins to accumulate in structural (anticlinal) and stratigraphic (Yates siltstone) traps, where it formed MVT deposits within the zone of reduction ({delta}{sup 34}S = -15 to +7). Later in time, in the zone of oxidation, this H{sub 2}S reacted with oxygenated water to produce sulfuric acid, which dissolved the caves (e.g., Carlsbad Cavern and Lechuguilla Cave, Guadalupe Mountains). Massive gypsum blocks on the floors of the caves ({delta}{sup 34}S = -25 to +4) were formed as a result of this reaction. The H{sub 2}S also produced isotopically light cave sulfur ({delta}{sup 34}S = -24 to -15), which is now slowly oxidizing to gypsum in the presence of vadose drip water. 16 refs., 10 figs.

  1. Stable isotopic evidence for anaerobic maintained sulphate discharge in a polythermal glacier

    NASA Astrophysics Data System (ADS)

    Ansari, A. H.

    2016-03-01

    To understand the sources and sinks of sulphate and associated biogeochemical processes in a High Arctic environment, late winter snowpacks, the summer melt-waters and rock samples were collected and analysed for major ions and stable isotope tracers (δ18O, δ34S). The SO42bar/Clbar ratio reveal that more than 87% of sulphate (frequently > 95%) of total sulphate carried by the subglacial runoff and proglacial streams was derived from non-snowpack sources. The proximity of non-snowpack sulphate δ34S (∼8-19‰) to the δ34S of the major rocks in the vicinity (∼-6 to +18‰) suggest that the non-snowpack sulphate was principally derived from rock weathering. Furthermore, Ca2++Mg2+/SO42ˉ molar shows that sulphate acquisition in the meltwaters was controlled by two major processes: 1) coupled-sulphide carbonate weathering (molar ratio ∼ 2) and, 2) re-dissolution of secondary salts (molar ratio ∼ 1). The δ34S-SO4 = +19.4‰ > δ34S-S of rock, accompanied by increased sulphate concentration also indicates an input from re-dissolution of secondary salts. Overall, δ18O composition of these non-snowpack sulphate (-11.9 to -2.2‰) mostly stayed below the threshold δ18O value (-6.7 to -3.3‰) for minimum O2 condition, suggesting that certain proportion of sulphate was regularly supplied from anaerobic sulphide oxidation.

  2. In situ sulfur isotope analysis of sulfide minerals by SIMS: Precision and accuracy, with application to thermometry of ~3.5Ga Pilbara cherts

    USGS Publications Warehouse

    Kozdon, R.; Kita, N.T.; Huberty, J.M.; Fournelle, J.H.; Johnson, C.A.; Valley, J.W.

    2010-01-01

    Secondary ion mass spectrometry (SIMS) measurement of sulfur isotope ratios is a potentially powerful technique for in situ studies in many areas of Earth and planetary science. Tests were performed to evaluate the accuracy and precision of sulfur isotope analysis by SIMS in a set of seven well-characterized, isotopically homogeneous natural sulfide standards. The spot-to-spot and grain-to-grain precision for δ34S is ± 0.3‰ for chalcopyrite and pyrrhotite, and ± 0.2‰ for pyrite (2SD) using a 1.6 nA primary beam that was focused to 10 µm diameter with a Gaussian-beam density distribution. Likewise, multiple δ34S measurements within single grains of sphalerite are within ± 0.3‰. However, between individual sphalerite grains, δ34S varies by up to 3.4‰ and the grain-to-grain precision is poor (± 1.7‰, n = 20). Measured values of δ34S correspond with analysis pit microstructures, ranging from smooth surfaces for grains with high δ34S values, to pronounced ripples and terraces in analysis pits from grains featuring low δ34S values. Electron backscatter diffraction (EBSD) shows that individual sphalerite grains are single crystals, whereas crystal orientation varies from grain-to-grain. The 3.4‰ variation in measured δ34S between individual grains of sphalerite is attributed to changes in instrumental bias caused by different crystal orientations with respect to the incident primary Cs+ beam. High δ34S values in sphalerite correlate to when the Cs+ beam is parallel to the set of directions , from [111] to [110], which are preferred directions for channeling and focusing in diamond-centered cubic crystals. Crystal orientation effects on instrumental bias were further detected in galena. However, as a result of the perfect cleavage along {100} crushed chips of galena are typically cube-shaped and likely to be preferentially oriented, thus crystal orientation effects on instrumental bias may be obscured. Test were made to improve the analytical

  3. TR-LIF LIFETIME MEASUREMENTS AND HFR+CPOL CALCULATIONS OF RADIATIVE PARAMETERS IN VANADIUM ATOM (V I)

    SciTech Connect

    Wang, Q.; Jiang, L. Y.; Shang, X.; Tian, Y. S.; Dai, Z. W.; Quinet, P.; Palmeri, P.; Zhang, W. E-mail: Pascal.quinet@umons.ac.be

    2014-04-01

    Radiative lifetimes of 79 levels belonging to the 3d {sup 3}4s4p, 3d {sup 4}4p, 3d {sup 3}4s5p, 3d {sup 4}5p, and 3d {sup 3}4s4d configurations of V I with energy from 26,604.807 to 46,862.786 cm{sup –1} have been measured using time-resolved laser-induced fluorescence (TR-LIF) spectroscopy in laser-produced plasma. The lifetime values reported in this paper are in the range of 3.3-494 ns, and the uncertainties of these measurements are within ±10%. A good agreement was obtained with previous data. HFR+CPOL calculations have been performed and used to combine the calculated branching fractions with the available experimental lifetimes to determine semi-empirical transition probabilities for 784 V I transitions.

  4. VizieR Online Data Catalog: Atomic data of vanadium (V I) (Wang+, 2014)

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Jiang, L. Y.; Quinet, P.; Palmeri, P.; Zhang, W.; Shang, X.; Tian, Y. S.; Dai, Z. W.

    2014-05-01

    Radiative lifetimes of 79 levels belonging to the 3d34s4p, 3d< 3d34s5p, 3d45p, and 3d34s4d configurations of V I with energy from 26604.807 to 46862.786cm-1 have been measured using time-resolved laser-induced fluorescence (TR-LIF) spectroscopy in laser-produced plasma. The lifetime values reported in this paper are in the range of 3.3-494ns, and the uncertainties of these measurements are within +/-10%. A good agreement was obtained with previous data. HFR+CPOL (Hartree-Fock with relativistic corrections method - Cowan; 1981tass.book.....C + core-polarization; Quinet et al. 1999MNRAS.307..934Q) calculations have been performed and used to combine the calculated branching fractions with the available experimental lifetimes to determine semi-empirical transition probabilities for 784 V I transitions. (1 data file).

  5. The multiple sulfur isotopic composition of iron meteorites: Implications for nebular evolution

    NASA Astrophysics Data System (ADS)

    Antonelli, Michael Ariel

    2013-12-01

    Multiple sulfur isotopic measurements of troilite from 61 different iron meteorites were undertaken in order to test for sulfur isotopic homogeneity within (and between) 8 different iron meteorite groups. It was found that different members within a given group of iron meteorites have homogeneous Delta 33S compositions, but that these Delta33S compositions differ between groups. This thesis shows that iron meteorites from the groups IC, IIAB, IIIAB, IIIF, and IVA have small yet resolvable enrichments or depletions in Delta33S relative to Canyon Diablo Troilite (CDT) and troilite from other non-magmatic (IAB and IIE) iron meteorites. The observed anomalous sulfur isotopic compositions in magmatic iron meteorites are most consistent with Lyman-alpha photolysis of H2S, pointing towards inheritance of an unexpected photolytically-derived sulfur component in magmatic iron meteorite groups which is absent in non-magmatic iron meteorites, chondrites, and the Earth-Moon System.

  6. Large sulfur isotope fractionations associated with Neoarchean microbial sulfate reduction.

    PubMed

    Zhelezinskaia, Iadviga; Kaufman, Alan J; Farquhar, James; Cliff, John

    2014-11-01

    The minor extent of sulfur isotope fractionation preserved in many Neoarchean sedimentary successions suggests that sulfate-reducing microorganisms played an insignificant role in ancient marine environments, despite evidence that these organisms evolved much earlier. We present bulk, microdrilled, and ion probe sulfur isotope data from carbonate-associated pyrite in the ~2.5-billion-year-old Batatal Formation of Brazil, revealing large mass-dependent fractionations (approaching 50 per mil) associated with microbial sulfate reduction, as well as consistently negative Δ(33)S values (~ -2 per mil) indicative of atmospheric photochemical reactions. Persistent (33)S depletion through ~60 meters of shallow marine carbonate implies long-term stability of seawater sulfate abundance and isotope composition. In contrast, a negative Δ(33)S excursion in lower Batatal strata indicates a response time of ~40,000 to 150,000 years, suggesting Neoarchean sulfate concentrations between ~1 and 10 μM.

  7. Protein unfolding as a switch from self-recognition to high-affinity client binding

    PubMed Central

    Groitl, Bastian; Horowitz, Scott; Makepeace, Karl A. T.; Petrotchenko, Evgeniy V.; Borchers, Christoph H.; Reichmann, Dana; Bardwell, James C. A.; Jakob, Ursula

    2016-01-01

    Stress-specific activation of the chaperone Hsp33 requires the unfolding of a central linker region. This activation mechanism suggests an intriguing functional relationship between the chaperone's own partial unfolding and its ability to bind other partially folded client proteins. However, identifying where Hsp33 binds its clients has remained a major gap in our understanding of Hsp33's working mechanism. By using site-specific Fluorine-19 nuclear magnetic resonance experiments guided by in vivo crosslinking studies, we now reveal that the partial unfolding of Hsp33's linker region facilitates client binding to an amphipathic docking surface on Hsp33. Furthermore, our results provide experimental evidence for the direct involvement of conditionally disordered regions in unfolded protein binding. The observed structural similarities between Hsp33's own metastable linker region and client proteins present a possible model for how Hsp33 uses protein unfolding as a switch from self-recognition to high-affinity client binding. PMID:26787517

  8. Correlations Between Surficial Sulfur and a REE Crustal Assimilation Signature in Martian Shergottites

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Franz, H. B.

    2015-01-01

    Compared to terrestrial basalts, the Martian shergottite meteorites have an extraordinary range of Sr and Nd isotopic signatures. In addition, the S isotopic compositions of many shergottites show evidence of interaction with the Martian surface/ atmosphere through mass-independent isotopic fractionations (MIF, positive, non-zero delta(exp 33)S) that must have originated in the Martian atmosphere, yet ultimately were incorporated into igneous sulfides (AVS - acid-volatile sulfur). These positive delta(exp 33)S signatures are thought to be governed by solar UV photochemical processes. And to the extent that S is bound to Mars and not lost to space from the upper atmosphere, a positive delta(exp 33)S reservoir must be mass balanced by a complementary negative reservoir.

  9. Sulfur isotopic systematics in alteration assemblages in martian meteorite Allan Hills 84001

    SciTech Connect

    Shearer, C.K.; Layne, G.D.; Papike, J.J.; Spilde, M.N.

    1996-08-01

    ALH84001 is a coarse-grained, clastic orthopyroxenite meteorite related to the SNC meteorite group (shergottites, nakhlites, Chassigny). Superimposed upon the orthopyroxene-dominant igneous mineral assemblage is a hydrothermal signature. This hydrothermal overprint consists of carbonate assemblages occurring in spheroidal aggregates and fine-grained carbonate-sulfide vug-filling. The sulfide in this assemblage has been identified as pyrite, an unusual sulfide in meteorites. Previously, Burgess et al. (1989) reported a bulk {delta} {sup 34}S for a SNC group meteorite (Shergotty) of -0.5 {+-} 1.5%. Here, we report the first martian {delta} {sup 34}S values from individual sulfide grains. Using newly developed ion microprobe techniques, we were able to determine {delta} {sup 34}S of the pyrite in ALH84001 with a 1 {alpha} precision of better than {+-}0.5%. The {delta} {sup 34}S values for the pyrite range from +4.8 to +7.8%. Within the stated uncertainties, the pyrite from ALH84001 exhibits a real variability in {delta} {sup 34}S in this alteration assemblage. In addition, these sulfides are demonstrably enriched in {sup 34}S relative to Canon Diablo troilite and sulfides from most other meteorites. This signature implies that the planetary body represented by ALH 84001 experienced processes capable of fractionating sulphur isotopes and that hydrothermal conditions changed during pyrite precipitation (T, pH, fluid composition, etc.). These new data are not consistent with the pyrite recording either biogenic activity or atmospheric fractionation of sulphur through nonthermal escape mechanisms or oxidation processes. This study also demonstrates the usefulness of ion microprobe measurements of sulphur isotopes in constraining conditions on other planetary bodies.

  10. Micro-scale (1.5 microm) sulphur isotope analysis of contemporary and early Archean pyrite.

    PubMed

    Nishizawa, Manabu; Maruyama, Shigenori; Urabe, Tetsuro; Takahata, Naoto; Sano, Yuji

    2010-05-30

    We present a method for in situ sulphur (S) isotopic analysis of significantly small areas (1.5 microm in diameter) in pyrite using secondary ion mass spectrometry (NanoSIMS) to interpret microbial sulphur metabolism in the early earth. We evaluated the precision and accuracy of S isotopic ratios obtained by this method using hydrothermal pyrite samples with homogeneous S isotopic ratios. The internal precision of the delta(34)S value was 1.5 per thousand at the level of 1 sigma of standard error (named 1SE) for a single spot, while the external reproducibility was estimated to be 1.6 per thousand at the level of 1 sigma of standard deviation (named 1SD, n = 25). For each separate sample, the average delta(34)S value was comparable with that measured by a conventional method, and the accuracy was better than 2.3 per thousand. Consequently, the in situ method is sufficiently accurate and precise to detect the S isotopic variations of small sample of the pyrite (less than 20 microm) that occurs ubiquitously in ancient sedimentary rocks. This method was applied to measure the S isotopic distribution of pyrite within black chert fragments in early Archean sandstone. The pyrite had isotopic zoning with a (34)S-depleted core and (34)S-enriched rim, suggesting isotopic evolution of the source H(2)S from -15 to -5 per thousand. Production of H(2)S by microbial sulphate reduction (MSR) in a closed system provides a possible explanation for both the (34)S-depleted initial H(2)S and the progressive increase in the delta(34)S(H2S) value. Although more extensive data are necessary to strengthen the explanation for the origin of the MSR, the results show that the S isotopic distribution within pyrite crystals may be a key tracer for MSR activity in the early earth.

  11. Investigation of diachronic dietary patterns on the islands of Ibiza and Formentera, Spain: evidence from sulfur stable isotope ratio analysis.

    PubMed

    Nehlich, Olaf; Fuller, Benjamin T; Márquez-Grant, Nicholas; Richards, Michael P

    2012-09-01

    We present sulfur isotope ratio measurements of bone collagen from animals (n = 75) and humans (n = 120) from five sites dating to four chronological periods (Chalcolithic, Punic, Late Antiquity-Early Byzantine, and Islamic) from the Balearic Islands of Ibiza and Formentera, Spain. This study is a follow up to previously published δ(13)C and δ(15)N values by [Fuller et al.: Am J Phys Anthropol 143 (2010) 512-522] and focuses on using δ(34)S values to better understand the dietary patterns of these populations through time and to possibly identify immigrants to these islands. The range of δ(34)S values (10.5-17.8‰) observed for the animals was relatively broad, which suggests that a significant sea spray effect has added marine sulfates to the soils of Formentera and Ibiza. The mean δ(34)S values of the different human populations were found to be: Chalcolithic (16.5 ± 1.4‰), Punic rural (13.6 ± 1.7‰), Punic urban (12.9 ± 1.8‰), Late Antiquity-Early Byzantine (12.3 ± 2.1‰), and Islamic (9.1 ± 2.7‰). These human δ(34)S results are similar to the animal data, a finding that supports the notion that there was little marine protein consumption by these societies and that the diet was mainly based on terrestrial resources. During the Punic and Late Antiquity-Early Byzantine periods the δ(34)S values were used to identify individuals in the population who likely were not born or raised on the islands. In addition, 18 of the 20 individuals analyzed from the Islamic period have δ(34)S values that indicate that they were immigrants to Ibiza who died before acquiring the new local sulfur isotopic signature.

  12. Micro-scale (1.5 microm) sulphur isotope analysis of contemporary and early Archean pyrite.

    PubMed

    Nishizawa, Manabu; Maruyama, Shigenori; Urabe, Tetsuro; Takahata, Naoto; Sano, Yuji

    2010-05-30

    We present a method for in situ sulphur (S) isotopic analysis of significantly small areas (1.5 microm in diameter) in pyrite using secondary ion mass spectrometry (NanoSIMS) to interpret microbial sulphur metabolism in the early earth. We evaluated the precision and accuracy of S isotopic ratios obtained by this method using hydrothermal pyrite samples with homogeneous S isotopic ratios. The internal precision of the delta(34)S value was 1.5 per thousand at the level of 1 sigma of standard error (named 1SE) for a single spot, while the external reproducibility was estimated to be 1.6 per thousand at the level of 1 sigma of standard deviation (named 1SD, n = 25). For each separate sample, the average delta(34)S value was comparable with that measured by a conventional method, and the accuracy was better than 2.3 per thousand. Consequently, the in situ method is sufficiently accurate and precise to detect the S isotopic variations of small sample of the pyrite (less than 20 microm) that occurs ubiquitously in ancient sedimentary rocks. This method was applied to measure the S isotopic distribution of pyrite within black chert fragments in early Archean sandstone. The pyrite had isotopic zoning with a (34)S-depleted core and (34)S-enriched rim, suggesting isotopic evolution of the source H(2)S from -15 to -5 per thousand. Production of H(2)S by microbial sulphate reduction (MSR) in a closed system provides a possible explanation for both the (34)S-depleted initial H(2)S and the progressive increase in the delta(34)S(H2S) value. Although more extensive data are necessary to strengthen the explanation for the origin of the MSR, the results show that the S isotopic distribution within pyrite crystals may be a key tracer for MSR activity in the early earth. PMID:20411578

  13. Origin of stratiform sediment-hosted manganese carbonate ore deposits: Examples from Molango, Mexico, and TaoJiang, China

    USGS Publications Warehouse

    Okita, P.M.; Shanks, Wayne C.

    1992-01-01

    Carbonate and sulfide minerals from the Molango, Mexico, and TaoJiang, China, Mn deposits display similar and distinctive ??34S and ??13C patterns in intervals of manganese carbonate mineralization. ??13C-values for Mn-bearing carbonate range from -17.8 to +0.5??? (PDB), with the most negative values occurring in high-grade ore zones that are composed predominantly of rhodochrosite. In contrast, calcite from below, within and above Mn-carbonate zones at Molango has ??13C???0??? (PDB). Markedly negative ??13C data indicate that a large proportion of the carbon in Mn-carbonates was derived from organic matter oxidation. Diagenetic reactions using MnO2 and SO2-4 to oxidize sedimentary organic matter were the principle causes of such 12C enrichment. Pyrite content and sulfide ?? 34S-values also show distinctive variations. In unmineralized rocks, very negative ??34S-values (avg. < -21??? CDT) and abundant pyrite content suggest that pyrite formed from diagenetic, bacteriogenic sulfate reduction. In contrast, Mn-bearing horizons typically contain only trace amounts of pyrite (e.g., <0.5 wt% S with ??34S-values 34S-enriched, in some cases to nearly the value for contemporaneous seawater. 34S-enriched pyrite from the Mn-carbonate intervals indicates sulfide precipitation in an environment that underwent extensive SO2-4 reduction, and was largely a closed system with regard to exchange of sulfate and dissolved sulfide with normal seawater. The occasional occurrence of 34S-depleted pyrite within Mn-carbonate zones dominated by 34S-enriched pyrite is evidence that closed-system conditions were intermittent and limited to local pore waters and did not involve entire sedimentary basins. Mn-carbonate precipitation may have occluded porosity in the surficial sediments, thus establishing an effective barrier to SO2-4 exchange with overlying seawater. Similar isotopic and mineralogic characteristics from both the Molango and TaoJiang deposits, widely separated in geologic time and

  14. Sedimentary sulfur geochemistry of the Paleogene Green River Formation, western USA: Implications for interpreting depositional and diagenetic processes in saline alkaline lakes

    NASA Astrophysics Data System (ADS)

    Tuttle, Michele L.; Goldhaber, Martin B.

    1993-07-01

    The sulfur geochemistry of the lacustrine Paleogene Green River Formation (Colorado, Utah, and Wyoming, USA) is unlike that of most marine and other lacustrine rocks. Distinctive chemical, isotopic, and mineralogical characteristics of the formation are pyrrhotite and marcasite, high contents of iron mineral sulfides strikingly enriched in 34S, cyclical trends in sulfur abundance and δ 34S values, and long-term evolutionary trends in δ 34S values. Analyses that identified and quantified these characteristics include carbonate-free abundance of organic carbon (0.13-47 wt%), total iron (0.31-13 wt%), reactive iron (>70% of total iron), total sulfur (0.02-16 wt%), acid-volatile monosulfide (S Av), disulfide (S Di > 70% of total sulfur), sulfate (S SO4) and organosulfur (S Org); isotopic composition of separated sulfur phases (δ 34S Di,Av up to +49‰); and mineralogy, morphology and paragenesis of sulfide minerals. Mineralogy, morphology, δ 34S Di,Av, and δ 34S Org have a distinctive relation, reflecting variable and unique depositional and early diagenetic conditions in the Green River lakes. When the lakes were brackish, dissimilatory sulfate-reducing bacteria in the sediment produced H 2S, which initially reacted with labile iron to form pyrite framboids and more gradually with organic matter to form organosulfur compounds. During a long-lived stage of saline lake water, the amount of sulfate supplied by inflow decreased and alkalinity and pH of lake waters increased substantially. Extensive bacterial sulfate reduction in the water column kept lake waters undersaturated with sulfate minerals. A very high H 2S:SO 4 ratio developed in stagnant bottom water aided by the high pH that kinetically inhibited iron sulfidization. Progressive removal of H 2S by coeval formation of iron sulfides and organosulfur compounds caused the isotopic composition of the entire dissolved sulfur reservoir to evolve to δ 34S values much greater than that of inflow sulfate, which is

  15. Stable sulfur isotope partitioning during simulated petroleum formation as determined by hydrous pyrolysis of Ghareb Limestone, Israel

    USGS Publications Warehouse

    Amrani, A.; Lewan, M.D.; Aizenshtat, Zeev

    2005-01-01

    Hydrous pyrolysis experiments at 200 to 365??C were carried out on a thermally immature organic-rich limestone containing Type-IIS kerogen from the Ghareb Limestone in North Negev, Israel. This work focuses on the thermal behavior of both organic and inorganic sulfur species and the partitioning of their stable sulfur isotopes among organic and inorganic phases generated during hydrous pyrolyses. Most of the sulfur in the rock (85%) is organic sulfur. The most dominant sulfur transformation is cleavage of organic-bound sulfur to form H2 S(gas). Up to 70% of this organic sulfur is released as H2S(gas) that is isotopically lighter than the sulfur in the kerogen. Organic sulfur is enriched by up to 2??? in 34S during thermal maturation compared with the initial ??34S values. The ??34S values of the three main organic fractions (kerogen, bitumen and expelled oil) are within 1??? of one another. No thermochemical sulfate reduction or sulfate formation was observed during the experiments. The early released sulfur reacted with available iron to form secondary pyrite and is the most 34S depleted phase, which is 21??? lighter than the bulk organic sulfur. The large isotopic fractionation for the early formed H2S is a result of the system not being in equilibrium. As partial pressure of H2S(gas) increases, retro reactions with the organic sulfur in the closed system may cause isotope exchange and isotopic homogenization. Part of the ??34S-enriched secondary pyrite decomposes above 300??C resulting in a corresponding decrease in the ??34S of the remaining pyrite. These results are relevant to interpreting thermal maturation processes and their effect on kerogen-oil-H2S-pyrite correlations. In particular, the use of pyrite-kerogen ??34S relations in reconstructing diagenetic conditions of thermally mature rocks is questionable because formation of secondary pyrite during thermal maturation can mask the isotopic signature and quantity of the original diagenetic pyrite. The

  16. VizieR Online Data Catalog: Are infrared dark clouds really quiescent? (Feng+, 2016)

    NASA Astrophysics Data System (ADS)

    Feng, S.; Beuther, H.; Zhang, Q.; Henning, T.; Linz, H.; Ragan, S.; Smith, R.

    2016-05-01

    All fits files are molecular line integrated intensity maps in G28.34S, IRDC18530, IRDC18306, and IRDC 18308 (Fig.3 in the paper). The maps unit is the intensity integrations (Kkm/s) over the velocity dispersion of each line. For the lines with <4σ detections, we only integrate a total of three channels around the system Vlsr at their rest frequencies. Files are named as "source"+"species"+".fits". G28.34S is abbreviated as "28", IRDC18306 is abbreviated as "06", IRDC18308 is abbreviated as "08", and IRDC18530 is abbreviated as "30". (2 data files).

  17. Variations in the magnitude of non mass dependent sulfur fractionation in the Archean atmosphere

    NASA Astrophysics Data System (ADS)

    Claire, M.; Kasting, J. F.

    2010-12-01

    Recent experimental data have enabled quantitatively meaningful computations of the non-mass dependent fractionation of sulfur’s isotopes (Δ33S) that exemplify the Archean rock record. The Δ33S signal originates as a result of fine structure in the absorption cross-section of SO2 isotopologues [1], which only undergo significant photolysis in reducing atmospheres [2]. The Δ33S signal produced by SO2 photolysis varies significantly between 190 and 220 nm, and thus is strongly dependent on any other atmospheric gases which absorb photons in this range [3], as well as the height at which photolysis occurs. A model that is capable of resolving the altitude-dependent radiative transfer through a realistic self-consistent reducing atmosphere is therefore essential when making direct comparisons between atmospheric Δ33S production and the rock record. In this work, we investigate how the magnitude of Δ33S might vary as function of atmospheric composition, which in turn allows the rock record to constrain the Archean atmosphere. Other recent work on this topic using simplied atmospheric models has implicated large concentrations of SO2 [5], OCS [3], and CO2 [6] as being responsible for the variations in Archean Δ33S. We present results from an altitude-dependent photochemical model of Archean photochemistry [4] of necessary complexity to resolve the complicated redox structure of the Archean atmosphere. We show that while increased concentrations of these gases all affect Δ33S in an unconstrained model, the atmospheric conditions required for OCS or SO2 shielding are unlikely to occur in an Archean atmosphere constrained by reasonable expectations of volcanic and biogenic fluxes. Within the context of plausible Archean atmospheres, we investigate how shielding due to changing amounts of CO2, biogenic sulfur gases, and fractal organic haze [7] affect the magnitude of Δ33S produced by the Archean atmosphere, and show why simplified atmospheric modeling may lead to

  18. Reaction mechanism underlying the in vitro transformation of thioarsenicals

    SciTech Connect

    Naranmandura, Hua; Suzuki, Noriyuki; Suzuki, Kazuo T.

    2008-09-15

    Thioarsenicals have been paid much attention due to the toxicity of arsenic, since some of them are highly toxic and commonly found in the urine of mammals. We previously reported that thioarsenicals might be produced in red blood cells (RBCs). Here, we further characterized the mechanism underlying the production and metabolism of thioarsenicals in RBCs using {sup 34}S-labeled dimethylmonothioarsinic acid ({sup 34}S-DMMTA{sup V}) and purified rat hemoglobin (Hb) or a rat RBC lysate. {sup 34}S-DMMTA{sup V} did not bind to Hb on incubation with purified rat Hb, remaining in its original form. However, when {sup 34}S-DMMTA{sup V} was incubated with a rat RBC lysate, only arsenic, i.e., not sulfur ({sup 34}S), was detected in a form bound to Hb (As-Hb). In addition, another arsenic product containing sulfur ({sup 34}S) in the molar ratio of {sup 34}S/As = 2 was detected, which was assigned as dimethyldithioarsinic acid (DMDTA{sup V}), suggesting that arsenic does not bind to Hb in the form of {sup 34}S-DMMTA{sup V} but does so in the form of dimethylarsinous acid (DMA{sup III}). Namely, DMMTA{sup V} appeared to be hydrolyzed into dimethylarsinic acid (DMA{sup V}) and H{sup 34}S{sup -}, and the released H{sup 34}S{sup -} reacted with DMMTA{sup V} to produce DMDTA{sup V}. Thus, DMMTA{sup V} was transformed into DMDTA{sup V} and DMA{sup V} (2DMMTA{sup V} - > DMDTA{sup V} + DMA{sup V}), the latter product being reduced to DMA{sup III} in the presence of GSH and bound to Hb. In a separate experiment, {sup 34}S-DMMTA{sup V} was incubated with sulfide (Na{sub 2}S) and GSH. Although DMMTA{sup V} was not transformed into DMDTA{sup V} in the presence of only Na{sub 2}S or GSH, it was transformed into DMDTA{sup V} in the presence of both Na{sub 2}S and GSH. Our results suggest that DMMTA{sup V} is hydrolyzed enzymatically into DMA{sup V} and sulfide, the former being reduced to DMA{sup III} and bound to Hb, and the latter reacting with DMMTA{sup V} to yield DMDTA{sup V}. Thus

  19. Probing dynamics of fusion reactions through cross-section and spin distribution measurement

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder; Behera, B. R.; Singh, Gulzar; Singh, Varinderjit; Madhavan, N.; Muralithar, S.; Nath, S.; Gehlot, J.; Mohanto, G.; Mukul, Ish; Siwal, D.; Thakur, M.; Kapoor, K.; Sharma, P.; Banerjee, T.; Jhingan, A.; Varughese, T.; Bala, Indu; Nayak, B. K.; Saxena, A.; Chatterjee, M. B.; Stevenson, P. D.

    2016-05-01

    Present work aims to explicate the effect of entrance channel mass asymmetry on fusion dynamics for the Compound Nucleus 80Sr populated through two different channels, 16O+64Zn and 32S+48Ti, using cross-section and spin distribution measurements as probes. The evaporation spectra studies for these systems, reported earlier indicate the presence of dynamical effects for mass symmetric 32S+48Ti system.The CCDEF and TDHF calculations have been performed for both the systems and an attempt has been made to explain the reported deviations in the α-particle spectrum for the mass symmetric system.

  20. Sulfur contents and sulfur-isotope compositions of thiotrophic symbioses in bivalve molluscs and vestimentiferan worms

    USGS Publications Warehouse

    Vetter, R.D.; Fry, B.

    1998-01-01

    Total sulfur (S(TOT)), elemental sulfur (S??) and sulfur-isotope compositions (??34S) of marine animals were analyzed to determine whether these chemical characteristics could help distinguish animals with a sulfur-based, thiotrophic nutrition from animals whose nutrition is based on methanotrophy or on more normal consumption of phytoplankton-derived organic matter. The presence of S??was almost entirely confined to the symbiont-containing tissues of thiotrophs, but was sometimes undetectable in thiotrophic species where sulfide availability was probably low. When S??contents were subtracted, the remaining tissue-sulfur concentrations were similar for all nutritional groups. ??34S values were typically lower for thiotrophs than for other groups, although there was overlap in methanotroph and thiotroph values at some sites. Field evidence supported the existence of small to moderate (1 to 10???)34S fractionations in the uptake of sulfides and metabolism of thiosulfate. In general, a total sulfur content of >3% dry weight, the presence of elemental sulfur, and ??34S values less than + 5??? can be used to infer a thiotrophic mode of nutrition.

  1. 75 FR 442 - Notice of Proposed Withdrawal Extension and Opportunity for Public Meeting; South Dakota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... term. PLO No. 6782 withdrew 2,387.22 acres of National Forest System land from location and entry under... public land laws governing the use of National Forest System lands under lease, license, or permit or...: Black Hills Meridian Black Hills National Forest T. 3 S., R. 2 E., Sec. 34, S\\1/2\\S\\1/2\\. T. 4 S., R....

  2. Cretaceous shales from the western interior of North America: sulfur/carbon ratios and sulfur-isotope composition.

    USGS Publications Warehouse

    Gautier, D.L.

    1986-01-01

    Sulphur/carbon ratios in cores of selected Cretaceous marine shales average 0.67, a value greater than that observed in recent marine sediments and much higher than global values calculated for the Cretaceous. This may be ascribed to generally low levels of bioturbation and enhanced efficiency of sulphate reduction due to low oxygen levels in Cretaceous seaways. Isotopic compositions of pyrite sulphur vary systematically with level of oxygenation of the depositional environment and therefore with organic carbon abundance and type of organic matter. Samples with >4% organic carbon are extremely depleted in 34S (mean delta 34S -31per mille) and contain hydrogen-rich organic matter. Samples containing <1.5% organic carbon display relatively 'heavy' but wide-ranging delta 34S values (-34.6 to +16.8per mille) and contain hydrogen-poor organic matter. Samples with intermediate amounts of organic carbon have average delta 34S of -25.9per mille and contain both types of organic matter. Relations between the nature of these shales, and their sedimentation rate and depositional environment are discussed.-L.C.H.

  3. Concrete under sulphate attack: an isotope study on sulphur sources.

    PubMed

    Mittermayr, Florian; Bauer, Christoph; Klammer, Dietmar; Böttcher, Michael E; Leis, Albrecht; Escher, Peter; Dietzel, Martin

    2012-01-01

    The formation of secondary sulphate minerals such as thaumasite, ettringite and gypsum is a process causing severe damage to concrete constructions. A major key to understand the complex reactions, involving concrete deterioration is to decipher the cause of its appearance, including the sources of the involved elements. In the present study, sulphate attack on the concrete of two Austrian tunnels is investigated. The distribution of stable sulphur isotopes is successfully applied to decipher the source(s) of sulphur in the deteriorating sulphate-bearing minerals. Interestingly, δ(34)S values of sulphate in local groundwater and in the deteriorating minerals are mostly in the range from+14 to+27 ‰. These δ(34)S values match the isotope patterns of regional Permian and Triassic marine evaporites. Soot relicts from steam- and diesel-driven trains found in one of the tunnels show δ(34)S values from-3 to+5 ‰, and are therefore assumed to be of minor importance for sulphate attack on the concretes. In areas of pyrite-containing sedimentary rocks, the δ(34)S values of sulphate from damaged concrete range between-1 and+11 ‰. The latter range reflects the impact of sulphide oxidation on local groundwater sulphate.

  4. The sulphur stable isotope compositions of urban sources and atmospheric particles (PM2.5 & PM10) from Paris (France)

    NASA Astrophysics Data System (ADS)

    Widory, D.; Landry, J.; Helie, J.; Ravelomanantsoa, H.

    2013-12-01

    Sulphur (S) in atmospheric particles in the environment can be derived from a variety of primary sources and cycled through numerous secondary processes, complicating identification of its origin. Using the PM10 fraction of aerosols from Paris and its vicinity, we are investigating the suitability of sulphur stable isotope compositions (δ34S) as tracers of origins and processes affecting the atmospheric S budget. Characterization of S isotope compositions of emissions from the different potential sources (e.g. waste incinerators, coal-fired power plants, metal refining plants, road traffic and heating sources) shows these are clearly discriminated by specific coupled S-δ34S isotope signatures. While S concentrations vary from 0.7 to 11.5%, δ34S display a large range of values from -2.2 and 13.4‰. PM10 samples from Paris and its vicinity show that S is usually present at low levels, around 1 μg.m-3 in average, but that concentrations as high as 100 μg.m-3 can punctually be observed. By the time of the conference, we will have analysed and interpreted the corresponding δ34S in order to help elucidate the origin(s) of sulphur in the atmosphere of the city.

  5. Sulphur stable isotope systematics in diagenetic pyrite from the North Sea hydrocarbon reservoirs revealed by laser combustion analysis.

    PubMed

    Fallick, Anthony E; Boyce, Adrian J; McConville, Paul

    2012-01-01

    Our study focuses on pyrite nodules developed in the Brent Group sandstones, which host the Brent Oilfield, one of the North Sea's greatest oil and gas producers. Timing of nodule formation is equivocal, but due to the forceful, penetrative textures that abound, it is considered late. This pyrite offers a research opportunity because it records the development of the supply of H(2)S in a hydrocarbon reservoir and its sulphur isotopic composition. Laser-based analysis of δ(34)S reveals an extraordinary diversity in values and patterns. The values range from-27 to+72‰, covering half the terrestrial range, with large variations at the submillimetre scale. Isotopically heavy (δ(34)S ∼+30‰ or higher) sulphide is endemic, but low δ(34)S pyrite is also present and appears to represent a temporally though not spatially (on the ∼cm scale) distinct pyritisation event. The distribution of δ(34)S values within individual concretions can be normal (Gaussian), but in some cases may reflect progressive isotope fractionation process(es), conceivably of Rayleigh type. The source of the sulphur and the identity of the isotope fractionation process(es) remain enigmatic.

  6. MONITORING FOOD WEB CHANGES IN TIDE-RESTORED SALT MARSHES: A CARBON STABLE ISOTOPE APPROACH

    EPA Science Inventory

    Primary producer (angiosperms, macroalgae, submerged aquatic vegetation), suspended particulate matter, and Fundulus heteroclitus isotope values (d13C , d15N, d34S) were examined to assess their use as an indicator for changes in food web support functions in tidally-restored sal...

  7. Source of arsenic-bearing pyrite in southwestern Vermont, USA: sulfur isotope evidence.

    PubMed

    Mango, Helen; Ryan, Peter

    2015-02-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ(34)S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to >2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from -5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in (34)S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ(34)S and arsenic co