Science.gov

Sample records for 32x32 cmos photogate

  1. A 32 x 32 array for satellite reception

    NASA Astrophysics Data System (ADS)

    Russo, P.; Ruggieri, M.

    1989-12-01

    The possible adoption of microstrip arrays in the 12 GHz direct satellite reception is investigated. An array synthesis is performed and the dependence of the performance on the number of radiating elements, the type of feeding network, and the fabrication materials is evaluated. A 32 x 32 element array is synthesized which shows the flexibility and great potential of planar arrays in end-user applications.

  2. An Arduino-Controlled Photogate

    ERIC Educational Resources Information Center

    Galeriu, Calin

    2013-01-01

    It is hard to imagine teaching physics without doing experimental measurements of position as a function of time. These measurements, needed for the determination of velocity and acceleration, are most easily performed with the help of photogates. Unfortunately, commercial photogates are rather expensive. Many require the purchase of an additional…

  3. Instantaneous Velocity Using Photogate Timers

    ERIC Educational Resources Information Center

    Wolbeck, John

    2010-01-01

    Photogate timers are commonly used in physics laboratories to determine the velocity of a passing object. In this application a card attached to a moving object breaks the beam of the photogate timer providing the time for the card to pass. The length L of the passing card can then be divided by this time to yield the average velocity (or speed)…

  4. Review of sound card photogates

    NASA Astrophysics Data System (ADS)

    Gingl, Zoltán; Mingesz, Róbert; Makra, Péter; Mellár, János

    2011-07-01

    Photogates are probably the most commonly used electronic instruments to aid experiments in the field of mechanics. Although they are offered by many manufacturers, they can be too expensive to be widely used in all classrooms, in multiple experiments or even at home experimentation. Today all computers have a sound card--an interface for analogue signals. It is possible to make very simple yet highly accurate photogates for cents, while much more sophisticated solutions are also available at a still very low cost. In our paper we show several experimentally tested ways of implementing sound card photogates in detail, and we also provide full-featured, free, open-source photogate software as a much more efficient experimentation tool than the usually used sound recording programs. Further information is provided on a dedicated web page, www.noise.physx.u-szeged.hu/edudev.

  5. An Arduino-Controlled Photogate

    NASA Astrophysics Data System (ADS)

    Galeriu, Calin

    2013-03-01

    It is hard to imagine teaching physics without doing experimental measurements of position as a function of time. These measurements, needed for the determination of velocity and acceleration, are most easily performed with the help of photogates.1,2 Unfortunately, commercial photogates are rather expensive. Many require the purchase of an additional matching timer or other electronic device. Sometimes special software is also needed. The total bill can easily become prohibitive. For this reason physics teachers have shown considerable interest for cheaper, in-house designed and manufactured photogates.3-6 The photogate systems described in the literature have their limitations. Some rely on a digital stopwatch and therefore cannot measure time with a precision higher than 0.01 seconds. Some use photoresistors that have a slower response than phototransistors. Some are based on the computer microphone port and therefore cannot handle more than two photogates (two audio channels) at the same time. Extracting the time information from an audio file can also be a challenge for some students. We describe here a photogate system that matches the performance of a commercial one but at a fraction of the cost. The key to this success is the use of an Arduino microcontroller for data collection. The Arduino platform, initially developed for electronics and robotics educational projects, has recently been incorporated in physics labs.7 The Arduino microcontroller, because of its low cost and because it provides a broad exposure to electronics and computer programming, is an ideal tool for integrated STEM projects.

  6. A Photogate Design for Air Track Experiments.

    ERIC Educational Resources Information Center

    Hinrichsen, P. F.

    1988-01-01

    Introduces a photogate arrangement using a photo-reflective sensor for air track experiments. Reports that the sensitivity to sunlight can be eliminated and a mechanically more convenient package produced. Shows the mounting, circuit, and usage of the photogate. (YP)

  7. Review of Sound Card Photogates

    ERIC Educational Resources Information Center

    Gingl, Zoltan; Mingesz, Robert; Makra, Peter; Mellar, Janos

    2011-01-01

    Photogates are probably the most commonly used electronic instruments to aid experiments in the field of mechanics. Although they are offered by many manufacturers, they can be too expensive to be widely used in all classrooms, in multiple experiments or even at home experimentation. Today all computers have a sound card--an interface for analogue…

  8. Packaging of an optoelectronic-VLSI chip supporting a 32 X 32 array of surface-active devices

    NASA Astrophysics Data System (ADS)

    Ayliffe, Michael H.; Rolston, D. R.; Chuah, E. L.; Bernier, Eric; Michael, Feras S. J.; Kabal, D.; Kirk, Andrew G.; Plant, David V.

    2000-05-01

    Innovative approaches to the packaging of a high-performance module accommodating a 32 X 32 array of surface-active devices indium bump bonded to a 9 X 9 mm2 VLSI chip are described. The module integrates a mini-lens array, a copper heat spreader, a thermoelectric cooler and an aluminum heatsink. The mini-lens array is aligned and packaged with the chip using a novel six degrees of freedom alignment technique. The module is compact (44 X 44 X 45 mm3), easy to assemble and can be passively removed and inserted into a free-space optical system with no need for further adjustments. The chip is mounted directly on a flexible printed-circuit board using a chip-on-board approach, providing 207 bond pad connections to the chip. The junction-to-TEC thermal resistance is only 0.4 degree(s)C/W.

  9. Photogate Timing with a Smartphone

    NASA Astrophysics Data System (ADS)

    Forinash, Kyle; Wisman, Raymond F.

    2015-04-01

    In a previous article we demonstrated that a simple, passive external circuit incorporating a thermistor, connected to a mobile device through the headset jack, can be used to collect temperature data.1 The basic approach is to output a sine wave signal to the headset port, through the circuit, and input the resulting signal from the headset microphone. By replacing the thermistor with other variable resistors, the circuit can perform other data measurements. A photoresistor in the circuit will change the amplitude of the returning signal by varying the resistance, depending upon the intensity of light reaching it. The circuit used is shown in Fig. 1 (a discussion of alternative circuits is given in Ref. 2). Two or more photoresistors can be placed in series to form multiple photogates, as shown in Fig. 2. The photoresistors used here have a resistance of about 120 kΩ in the dark and 5 kΩ under lamp light. Ordinary household lamps were used as light sources.

  10. Fault tolerant photodiode and photogate active pixel sensors

    NASA Astrophysics Data System (ADS)

    Jung, Cory; Chapman, Glenn H.; La Haye, Michelle L.; Djaja, Sunjaya; Cheung, Desmond Y. H.; Lin, Henry; Loo, Edward; Audet, Yves R.

    2005-03-01

    As the pixel counts of digital imagers increase, the challenge of maintaining high yields and ensuring reliability over an imager"s lifetime increases. A fault tolerant active pixel sensor (APS) has been designed to meet this need by splitting an APS in half and operating both halves in parallel. The fault tolerant APS will perform normally in the no defect case and will produce approximately half the output for single defects. Thus, the entire signal can be recovered by multiplying the output by two. Since pixels containing multiple defects are rare, this design can correct for most defects allowing for higher production yields. Fault tolerant photodiode and photogate APS" were fabricated in 0.18-micron technology. Testing showed that the photodiode APS could correct for optically induced and electrically induced faults, within experimental error. The photogate APS was only tested for optically induced defects and also corrects for defects within experimental error. Further testing showed that the sensitivity of fault tolerant pixels was approximately 2-3 times more sensitive than the normal pixels. HSpice simulations of the fault tolerant APS circuit did not show increased sensitivity, however an equivalent normal APS circuit with twice width readout and row transistors was 1.90 times more sensitive than a normal pixel.

  11. PhotoGate microscopy to track single molecules in crowded environments

    PubMed Central

    Belyy, Vladislav; Shih, Sheng-Min; Bandaria, Jigar; Huang, Yongjian; Lawrence, Rosalie E.; Zoncu, Roberto; Yildiz, Ahmet

    2017-01-01

    Tracking single molecules inside cells reveals the dynamics of biological processes, including receptor trafficking, signalling and cargo transport. However, individual molecules often cannot be resolved inside cells due to their high density. Here we develop the PhotoGate technique that controls the number of fluorescent particles in a region of interest by repeatedly photobleaching its boundary. PhotoGate bypasses the requirement of photoactivation to track single particles at surface densities two orders of magnitude greater than the single-molecule detection limit. Using this method, we observe ligand-induced dimerization of a receptor tyrosine kinase at the cell surface and directly measure binding and dissociation of signalling molecules from early endosomes in a dense cytoplasm with single-molecule resolution. We additionally develop a numerical simulation suite for rapid quantitative optimization of Photogate experimental conditions. PhotoGate yields longer tracking times and more accurate measurements of complex stoichiometry than existing single-molecule imaging methods. PMID:28071667

  12. Improved Design of Active Pixel CMOS Sensors for Charged Particle Detection

    SciTech Connect

    Deptuch, Grzegorz

    2007-11-12

    The Department of Energy (DOE) nuclear physics program requires developments in detector instrumentation electronics with improved energy, position and timing resolution, sensitivity, rate capability, stability, dynamic range, and background suppression. The current Phase-I project was focused on analysis of standard-CMOS photogate Active Pixel Sensors (APS) as an efficient solution to this challenge. The advantages of the CMOS APS over traditional hybrid approaches (i.e., separate detection regions bump-bonded to readout circuits) include greatly reduced cost, low power and the potential for vastly larger pixel counts and densities. However, challenges remain in terms of the signal-to-noise ratio (SNR) and readout speed (currently on the order of milliseconds), which is the major problem for this technology. Recent work has shown that the long readout time for photogate APS is due to the presence of (interface) traps at the semiconductor-oxide interface. This Phase-I work yielded useful results in two areas: (a) Advanced three-dimensional (3D) physics-based simulation models and simulation-based analysis of the impact of interface trap density on the transient charge collection characteristics of existing APS structures; and (b) Preliminary analysis of the feasibility of an improved photogate pixel structure (i.e., new APS design) with an induced electric field under the charge collecting electrode to enhance charge collection. Significant effort was dedicated in Phase-I to the critical task of implementing accurate interface trap models in CFDRC's NanoTCAD 3D semiconductor device-physics simulator. This resulted in validation of the new NanoTCAD models and simulation results against experimental (published) data, within the margin of uncertainty associated with obtaining device geometry, material properties, and experimentation details. Analyses of the new, proposed photogate APS design demonstrated several promising trends.

  13. Novel integrated CMOS pixel structures for vertex detectors

    SciTech Connect

    Kleinfelder, Stuart; Bieser, Fred; Chen, Yandong; Gareus, Robin; Matis, Howard S.; Oldenburg, Markus; Retiere, Fabrice; Ritter, Hans Georg; Wieman, Howard H.; Yamamoto, Eugene

    2003-10-29

    Novel CMOS active pixel structures for vertex detector applications have been designed and tested. The overriding goal of this work is to increase the signal to noise ratio of the sensors and readout circuits. A large-area native epitaxial silicon photogate was designed with the aim of increasing the charge collected per struck pixel and to reduce charge diffusion to neighboring pixels. The photogate then transfers the charge to a low capacitance readout node to maintain a high charge to voltage conversion gain. Two techniques for noise reduction are also presented. The first is a per-pixel kT/C noise reduction circuit that produces results similar to traditional correlated double sampling (CDS). It has the advantage of requiring only one read, as compared to two for CDS, and no external storage or subtraction is needed. The technique reduced input-referred temporal noise by a factor of 2.5, to 12.8 e{sup -}. Finally, a column-level active reset technique is explored that suppresses kT/C noise during pixel reset. In tests, noise was reduced by a factor of 7.6 times, to an estimated 5.1 e{sup -} input-referred noise. The technique also dramatically reduces fixed pattern (pedestal) noise, by up to a factor of 21 in our tests. The latter feature may possibly reduce pixel-by-pixel pedestal differences to levels low enough to permit sparse data scan without per-pixel offset corrections.

  14. Photogating effect as a defect probe in hydrogenated nanocrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Li, Hongbo B. T.; Schropp, Ruud E. I.; Rubinelli, Francisco A.

    2010-07-01

    The measurement of the spectrally resolved collection efficiency is of great importance in solar cell characterization. Under standard conditions the bias light is a solar simulator or a light source with a similar broadband irradiation spectrum. When a colored blue or red bias light is used instead, an enhanced collection efficiency effect, in the literature known as the photogating effect, can be observed under certain conditions. While most of the published reports on such effect were on solar cells with amorphous silicon based absorber layers, we have shown that the enhanced collection efficiency could be also present in thin film silicon solar cells where hydrogenated nanocrystalline silicon (nc-Si:H) is used as the absorber layer. In this article we present detailed experimental results and simulations aiming at a better understanding of this phenomenon. We show that the collection efficiency is strongly dependent on the intensity of bias light and the intensity of the monochromatic light. These experimental results are consistent with the computer predictions made by our code. We also show that the photogating effect is greatly enhanced when nanocrystalline silicon cells are built with an improperly doped p-layer or with a defective p/i interface region due to the reduced internal electric field present in such cells. The existence of this effect further proves that carrier transport in a nc-Si:H solar cell with an i-layer made close to the phase transition regime is influenced to a large extent by drift transport. The study of this effect is proposed as an alternative approach to gain a deeper understanding about the carrier transport scenarios in thin film solar cells, especially nanocrystalline silicon solar cells.

  15. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect

    NASA Astrophysics Data System (ADS)

    Huang, Hai; Wang, Jianlu; Hu, Weida; Liao, Lei; Wang, Peng; Wang, Xudong; Gong, Fan; Chen, Yan; Wu, Guangjian; Luo, Wenjin; Shen, Hong; Lin, Tie; Sun, Jinglan; Meng, Xiangjian; Chen, Xiaoshuang; Chu, Junhao

    2016-11-01

    Two-dimensional materials are promising candidates for electronic and optoelectronic applications. MoTe2 has an appropriate bandgap for both visible and infrared light photodetection. Here we fabricate a high-performance photodetector based on few-layer MoTe2. Raman spectral properties have been studied for different thicknesses of MoTe2. The photodetector based on few-layer MoTe2 exhibits broad spectral range photodetection (0.6-1.55 μm) and a stable and fast photoresponse. The detectivity is calculated to be 3.1 × 109 cm Hz1/2 W-1 for 637 nm light and 1.3 × 109 cm Hz1/2 W-1 for 1060 nm light at a backgate voltage of 10 V. The mechanisms of photocurrent generation have been analyzed in detail, and it is considered that a photogating effect plays an important role in photodetection. The appreciable performance and detection over a broad spectral range make it a promising material for high-performance photodetectors.

  16. Enhancing the fill-factor of CMOS SPAD arrays using microlens integration

    NASA Astrophysics Data System (ADS)

    Intermite, G.; Warburton, R. E.; McCarthy, A.; Ren, X.; Villa, F.; Waddie, A. J.; Taghizadeh, M. R.; Zou, Y.; Zappa, F.; Tosi, A.; Buller, G. S.

    2015-05-01

    Arrays of single-photon avalanche diode (SPAD) detectors were fabricated, using a 0.35 μm CMOS technology process, for use in applications such as time-of-flight 3D ranging and microscopy. Each 150 x 150 μm pixel comprises a 30 μm active area diameter SPAD and its associated circuitry for counting, timing and quenching, resulting in a fill-factor of 3.14%. This paper reports how a higher effective fill-factor was achieved as a result of integrating microlens arrays on top of the 32 x 32 SPAD arrays. Diffractive and refractive microlens arrays were designed to concentrate the incoming light onto the active area of each pixel. A telecentric imaging system was used to measure the improvement factor (IF) resulting from microlens integration, whilst varying the f-number of incident light from f/2 to f/22 in one-stop increments across a spectral range of 500-900 nm. These measurements have demonstrated an increasing IF with fnumber, and a maximum of ~16 at the peak wavelength, showing a good agreement with theoretical values. An IF of 16 represents the highest value reported in the literature for microlenses integrated onto a SPAD detector array. The results from statistical analysis indicated the variation of detector efficiency was between 3-10% across the whole f-number range, demonstrating excellent uniformity across the detector plane with and without microlenses.

  17. Influence of Partial Solar Eclipse 2016 on the surface gravity acceleration using photogate sensor on Kater's reversible pendulum

    NASA Astrophysics Data System (ADS)

    Nugraha, M. G.; Saepuzaman, D.; Sholihat, F. N.; Ramayanti, S.; Setyadin, A. H.; Ferahenki, A. R.; Samsudin, A.; Utama, J. A.; Susanti, H.; Kirana, K. H.

    2016-11-01

    This study was conducted to determine the Earth's surface gravitational acceleration (g) prior to, during, and after a partial solar eclipse. Data was collected in Basic Physics Laboratory Universitas Pendidikan Indonesia, Bandung with coordinates S 6°51'48", E 107°35'40" for three days on March 8 - 10, 2016, in time interval measurement from 6 a.m. to 9 a.m. This research used a standard pendulum, Kater's reversible pendulum, which deviated less than 3° so that the motion can be regarded harmonics oscillation. The period of pendulum oscillation motion is measured by a light sensor (photogate sensor) with accuracy until 10-13 seconds. The data analysis shows that there is small difference value of gravity acceleration at the Earth's surface from three days of observation, i.e. in the order of 10-3 ms-2. It means, there is a changes in the Earth's surface gravitational acceleration (g) due to the partial solar eclipse but not significant.

  18. CAOS-CMOS camera.

    PubMed

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems.

  19. Josephson-CMOS Hybrid Memories

    DTIC Science & Technology

    2007-04-25

    Liu, X . Meng, S. R. Whiteley, and T. Van Duzer, “Characterization of 4 K CMOS devices and circuits for hybrid Josephson- CMOS systems,” IEEE Trans. on...Josephson- CMOS hybrid memories Qingguo Liu Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB...to 00-00-2007 4. TITLE AND SUBTITLE Josephson- CMOS hybrid memories 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  20. Performance Measurements On A 32X32 InSb-CID Detector Array For Astronomical Observations

    NASA Astrophysics Data System (ADS)

    Tiphene, D.; Lacombe, F.; Rouan, D.

    1989-01-01

    The use at liquid helium temperature of a InSb-CID detector array differs significantly from opera-tion at conditions usually adopted by the manufacturer (77K). In particular, the dark current behaviour hugely changes between the two temperatures. Only the tunnel current, independant of temperature conditions, is still active at 4.2K while the thermal-family currents vanish. We have studied the tunnel current of one InSb-MIS detector to determine its suitability to the low background conditions that will be met in the space experiment ISO. The search for the maximum integration time and the best quantum efficiency, the constraint about the photonic response linearity (especially at low photon flux), and the reduction of the readout noise constitute the main points of this study. Moreover, laboratory measurements showed secondary effects due to the detector (lag) or to the wiring (crosstalk). The CID array reactions to high energy radiations (Gamma rays) are finally discussed.

  1. Implantable CMOS Biomedical Devices

    PubMed Central

    Ohta, Jun; Tokuda, Takashi; Sasagawa, Kiyotaka; Noda, Toshihiko

    2009-01-01

    The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented. PMID:22291554

  2. Building strong partnerships with CMOs.

    PubMed

    Dye, Carson F

    2014-07-01

    CFOs and chief medical officers (CMOs) can build on common traits to form productive partnerships in guiding healthcare organizations through the changes affecting the industry. CFOs can strengthen bonds with CMOs by taking steps to engage physicians on their own turf--by visiting clinical locations and attending medical-executive committee meetings, for example. Steps CFOs can take to help CMOs become more acquainted with the financial operations of health systems include demonstrating the impact of clinical decisions on costs and inviting CMOs to attend finance-related meetings.

  3. A High-Voltage SOI CMOS Exciter Chip for a Programmable Fluidic Processor System.

    PubMed

    Current, K W; Yuk, K; McConaghy, C; Gascoyne, P R C; Schwartz, J A; Vykoukal, J V; Andrews, C

    2007-06-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport fluidic droplet samples on programmable paths across the array of driving electrodes on its hydrophobically coated surface. This exciter chip is the engine for dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip systems, creating field excitations that inject and move fluidic droplets onto and about the manipulation surface. The architecture of this chip is expandable to arrays of N X N identical HV electrode driver circuits and electrodes. The exciter chip is programmable in several senses. The routes of multiple droplets may be set arbitrarily within the bounds of the electrode array. The electrode excitation waveform voltage amplitude, phase, and frequency may be adjusted based on the system configuration and the signal required to manipulate a particular fluid droplet composition. The voltage amplitude of the electrode excitation waveform can be set from the minimum logic level up to the maximum limit of the breakdown voltage of the fabrication technology. The frequency of the electrode excitation waveform can also be set independently of its voltage, up to a maximum depending upon the type of droplets that must be driven. The exciter chip can be coated and its oxide surface used as the droplet manipulation surface or it can be used with a top-mounted, enclosed fluidic chamber consisting of a variety of materials. The HV capability of the exciter chip allows the generated DEP forces to penetrate into the enclosed chamber region and an adjustable voltage amplitude can accommodate a variety of chamber floor thicknesses. This demonstration exciter chip has a 32 x 32 array of nominally 100 V electrode drivers that are individually programmable at each time point in the procedure to either of two phases: 0deg and 180deg with respect to the reference clock. For this demonstration chip, while operating the electrodes with a 100-V peak-to-peak periodic waveform, the maximum HV electrode

  4. Regenerative switching CMOS system

    DOEpatents

    Welch, James D.

    1998-01-01

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a seriesed combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided.

  5. Regenerative switching CMOS system

    DOEpatents

    Welch, J.D.

    1998-06-02

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a series combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electrically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided. 14 figs.

  6. CMOS array design automation techniques

    NASA Technical Reports Server (NTRS)

    Lombardi, T.; Feller, A.

    1976-01-01

    The design considerations and the circuit development for a 4096-bit CMOS SOS ROM chip, the ATL078 are described. Organization of the ATL078 is 512 words by 8 bits. The ROM was designed to be programmable either at the metal mask level or by a directed laser beam after processing. The development of a 4K CMOS SOS ROM fills a void left by available ROM chip types, and makes the design of a totally major high speed system more realizable.

  7. New optical four-quadrant phase detector integrated into a photogate array for small and precise 3D cameras

    NASA Astrophysics Data System (ADS)

    Schwarte, Rudolf; Xu, Zhanping; Heinol, Horst-Guenther; Olk, Joachim; Buxbaum, Bernd

    1997-03-01

    The photonic mixer device (PMD) is a new electro-optical mixing semiconductor device. Integrated into a line or an array it may contribute a significant improvement in developing an extremely fast, flexible, robust and low cost 3D-solid-state camera. Three dimensional (3D)-cameras are of dramatically increasing interest in industrial automation, especially for production integrated quality control, in- house navigation, etc. The type of 3D-camera here under consideration is based on the principle of time-of-flight respectively phase delay of surface reflected echoes of rf- modulated light. In contrast to 3D-laser radars there is no scanner required since the whole 3D-scene is illuminated simultaneously using intensity-modulated incoherent light, e.g. in the 10 to 1000 MHz range. The rf-modulated light reflected from the 3D-scene represents the total depth information within the local delay of the back scattered phase front. If this incoming wave front is again rf- modulated by a 2D-mixer within the whole receiving aperture we get a quasi-stationary rf-inference pattern respectively rf-interferogram which may be captured by means of a conventional CCD-camera. This procedure is called rf- modulation interferometry (RFMI). Corresponding to first simulative results the new PMD-array will be appropriate to the RFMI-procedure. Though looking like a modified CCD-array or CMOS-photodetector array it will be able to perform both, the pixelwise mixing process for phase delay respectively depth evaluation and the pixelwise light intensity acquisition for gray level or color evaluation. Further advantageous properties are achieved by means of a four- quadrant (4Q)-PMD array which operates as a balanced inphase/quadrature phase (I/Q)-mixer and will be able to capture the total 3D-scene information of several 100,000 voxels within the microsecond(s) - to ms-range.

  8. A CMOS floating point multiplier

    NASA Astrophysics Data System (ADS)

    Uya, M.; Kaneko, K.; Yasui, J.

    1984-10-01

    This paper describes a 32-bit CMOS floating point multiplier. The chip can perform 32-bit floating point multiplication (based on the proposed IEEE Standard format) and 24-bit fixed point multiplication (two's complement format) in less than 78.7 and 71.1 ns, respectively, and the typical power dissipation is 195 mW at 10 million operations per second. High-speed multiplication techniques - a modified Booth's allgorithm, a carry save adder scheme, a high-speed CMOS full adder, and a modified carry select adder - are used to achieve the above high performance. The chip is designed for compatibility with 16-bit microcomputer systems, and is fabricated in 2 micron n-well CMOS technology; it contains about 23000 transistors of 5.75 x 5.67 sq mm in size.

  9. MonoColor CMOS sensor

    NASA Astrophysics Data System (ADS)

    Wang, Ynjiun P.

    2009-02-01

    A new breed of CMOS color sensor called MonoColor sensor is developed for a barcode reading application in AIDC industry. The RGBW color filter array (CFA) in a MonoColor sensor is arranged in a 8 x 8 pixels CFA with only 4 pixels of them are color (RGB) pixels and the rest of 60 pixels are transparent or monochrome. Since the majority of pixels are monochrome, MonoColor sensor maintains 98% barcode decode performance compared with a pure monochrome CMOS sensor. With the help of monochrome and color pixel fusion technique, the resulting color pictures have similar color quality in terms of Color Semantic Error (CSE) compared with a Bayer pattern (RGB) CMOS color camera. Since monochrome pixels are more sensitive than color pixels, a MonoColor sensor produces in general about 2X brighter color picture and higher luminance pixel resolution.

  10. CMOS Integrated Carbon Nanotube Sensor

    SciTech Connect

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-05-23

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  11. Reliability in CMOS IC processing

    NASA Technical Reports Server (NTRS)

    Shreeve, R.; Ferrier, S.; Hall, D.; Wang, J.

    1990-01-01

    Critical CMOS IC processing reliability monitors are defined in this paper. These monitors are divided into three categories: process qualifications, ongoing production workcell monitors, and ongoing reliability monitors. The key measures in each of these categories are identified and prioritized based on their importance.

  12. Development of CMOS integrated circuits

    NASA Technical Reports Server (NTRS)

    Bertino, F.; Feller, A.; Greenhouse, J.; Lombardi, T.; Merriam, A.; Noto, R.; Ozga, S.; Pryor, R.; Ramondetta, P.; Smith, A.

    1979-01-01

    Report documents life cycles of two custom CMOS integrated circuits: (1) 4-bit multiplexed register with shift left and shift right capabilities, and (2) dual 4-bit registers. Cycles described include conception as logic diagrams through design, fabrication, testing, and delivery.

  13. Digital-Centric RF CMOS Technologies

    NASA Astrophysics Data System (ADS)

    Matsuzawa, Akira

    Analog-centric RFCMOS technology has played an important role in motivating the change of technology from conventional discrete device technology or bipolar IC technology to CMOS technology. However it introduces many problems such as poor performance, susceptibility to PVT fluctuation, and cost increase with technology scaling. The most important advantage of CMOS technology compared with legacy RF technology is that CMOS can use more high performance digital circuits for very low cost. In fact, analog-centric RF-CMOS technology has failed the FM/AM tuner business and the digital-centric CMOS technology is becoming attractive for many users. It has many advantages; such as high performance, no external calibration points, high yield, and low cost. From the above facts, digital-centric CMOS technology which utilizes the advantages of digital technology must be the right path for future RF technology. Further investment in this technology is necessary for the advancement of RF technology.

  14. Research on evaluation method of CMOS camera

    NASA Astrophysics Data System (ADS)

    Zhang, Shaoqiang; Han, Weiqiang; Cui, Lanfang

    2014-09-01

    In some professional image application fields, we need to test some key parameters of the CMOS camera and evaluate the performance of the device. Aiming at this requirement, this paper proposes a perfect test method to evaluate the CMOS camera. Considering that the CMOS camera has a big fixed pattern noise, the method proposes the `photon transfer curve method' based on pixels to measure the gain and the read noise of the camera. The advantage of this method is that it can effectively wipe out the error brought by the response nonlinearity. Then the reason of photoelectric response nonlinearity of CMOS camera is theoretically analyzed, and the calculation formula of CMOS camera response nonlinearity is deduced. Finally, we use the proposed test method to test the CMOS camera of 2560*2048 pixels. In addition, we analyze the validity and the feasibility of this method.

  15. CMOS output buffer wave shaper

    NASA Technical Reports Server (NTRS)

    Albertson, L.; Whitaker, S.; Merrell, R.

    1990-01-01

    As the switching speeds and densities of Digital CMOS integrated circuits continue to increase, output switching noise becomes more of a problem. A design technique which aids in the reduction of switching noise is reported. The output driver stage is analyzed through the use of an equivalent RLC circuit. The results of the analysis are used in the design of an output driver stage. A test circuit based on these techniques is being submitted to MOSIS for fabrication.

  16. CMOS Image Sensors for High Speed Applications

    PubMed Central

    El-Desouki, Munir; Deen, M. Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps). PMID:22389609

  17. CMOS Image Sensors for High Speed Applications.

    PubMed

    El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).

  18. Photogated humidity-driven motility

    PubMed Central

    Zhang, Lidong; Liang, Haoran; Jacob, Jolly; Naumov, Panče

    2015-01-01

    Hygroinduced motion is a fundamental process of energy conversion that is essential for applications that require contactless actuation in response to the day–night rhythm of atmospheric humidity. Here we demonstrate that mechanical bistability caused by rapid and anisotropic adsorption and desorption of water vapour by a flexible dynamic element that harnesses the chemical potential across very small humidity gradients for perpetual motion can be effectively modulated with light. A mechanically robust material capable of rapid exchange of water with the surroundings is prepared that undergoes swift locomotion in effect to periodic shape reconfiguration with turnover frequency of <150 min−1. The element can lift objects ∼85 times heavier and can transport cargos ∼20 times heavier than itself. Having an azobenzene-containing conjugate as a photoactive dopant, this entirely humidity-driven self-actuation can be controlled remotely with ultraviolet light, thus setting a platform for next-generation smart biomimetic hybrids. PMID:26067649

  19. Photogate Timing with a Smartphone

    ERIC Educational Resources Information Center

    Forinash, Kyle; Wisman, Raymond F.

    2015-01-01

    In a previous article we demonstrated that a simple, passive external circuit incorporating a thermistor, connected to a mobile device through the headset jack, can be used to collect temperature data. The basic approach is to output a sine wave signal to the headset port, through the circuit, and input the resulting signal from the headset…

  20. Photogated humidity-driven motility.

    PubMed

    Zhang, Lidong; Liang, Haoran; Jacob, Jolly; Naumov, Panče

    2015-06-11

    Hygroinduced motion is a fundamental process of energy conversion that is essential for applications that require contactless actuation in response to the day-night rhythm of atmospheric humidity. Here we demonstrate that mechanical bistability caused by rapid and anisotropic adsorption and desorption of water vapour by a flexible dynamic element that harnesses the chemical potential across very small humidity gradients for perpetual motion can be effectively modulated with light. A mechanically robust material capable of rapid exchange of water with the surroundings is prepared that undergoes swift locomotion in effect to periodic shape reconfiguration with turnover frequency of <150 min(-1). The element can lift objects ∼85 times heavier and can transport cargos ∼20 times heavier than itself. Having an azobenzene-containing conjugate as a photoactive dopant, this entirely humidity-driven self-actuation can be controlled remotely with ultraviolet light, thus setting a platform for next-generation smart biomimetic hybrids.

  1. Photogated humidity-driven motility

    NASA Astrophysics Data System (ADS)

    Zhang, Lidong; Liang, Haoran; Jacob, Jolly; Naumov, Panče

    2015-06-01

    Hygroinduced motion is a fundamental process of energy conversion that is essential for applications that require contactless actuation in response to the day-night rhythm of atmospheric humidity. Here we demonstrate that mechanical bistability caused by rapid and anisotropic adsorption and desorption of water vapour by a flexible dynamic element that harnesses the chemical potential across very small humidity gradients for perpetual motion can be effectively modulated with light. A mechanically robust material capable of rapid exchange of water with the surroundings is prepared that undergoes swift locomotion in effect to periodic shape reconfiguration with turnover frequency of <150 min-1. The element can lift objects ~85 times heavier and can transport cargos ~20 times heavier than itself. Having an azobenzene-containing conjugate as a photoactive dopant, this entirely humidity-driven self-actuation can be controlled remotely with ultraviolet light, thus setting a platform for next-generation smart biomimetic hybrids.

  2. CMOS foveal image sensor chip

    NASA Technical Reports Server (NTRS)

    Bandera, Cesar (Inventor); Scott, Peter (Inventor); Sridhar, Ramalingam (Inventor); Xia, Shu (Inventor)

    2002-01-01

    A foveal image sensor integrated circuit comprising a plurality of CMOS active pixel sensors arranged both within and about a central fovea region of the chip. The pixels in the central fovea region have a smaller size than the pixels arranged in peripheral rings about the central region. A new photocharge normalization scheme and associated circuitry normalizes the output signals from the different size pixels in the array. The pixels are assembled into a multi-resolution rectilinear foveal image sensor chip using a novel access scheme to reduce the number of analog RAM cells needed. Localized spatial resolution declines monotonically with offset from the imager's optical axis, analogous to biological foveal vision.

  3. Nanosecond monolithic CMOS readout cell

    DOEpatents

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  4. A CMOS silicon spin qubit

    NASA Astrophysics Data System (ADS)

    Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; de Franceschi, S.

    2016-11-01

    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.

  5. A CMOS silicon spin qubit

    PubMed Central

    Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; De Franceschi, S.

    2016-01-01

    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal–oxide–semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform. PMID:27882926

  6. A CMOS silicon spin qubit.

    PubMed

    Maurand, R; Jehl, X; Kotekar-Patil, D; Corna, A; Bohuslavskyi, H; Laviéville, R; Hutin, L; Barraud, S; Vinet, M; Sanquer, M; De Franceschi, S

    2016-11-24

    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.

  7. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Accelerated life tests were performed on CMOS microcircuits to predict their long term reliability. The consistency of the CMOS microcircuit activation energy between the range of 125 C to 200 C and the range 200 C to 250 C was determined. Results indicate CMOS complexity and the amount of moisture detected inside the devices after testing influences time to failure of tested CMOS devices.

  8. Spectrometry with consumer-quality CMOS cameras.

    PubMed

    Scheeline, Alexander

    2015-01-01

    Many modern spectrometric instruments use diode arrays, charge-coupled arrays, or CMOS cameras for detection and measurement. As portable or point-of-use instruments are desirable, one would expect that instruments using the cameras in cellular telephones and tablet computers would be the basis of numerous instruments. However, no mass market for such devices has yet developed. The difficulties in using megapixel CMOS cameras for scientific measurements are discussed, and promising avenues for instrument development reviewed. Inexpensive alternatives to use of the built-in camera are also mentioned, as the long-term question is whether it is better to overcome the constraints of CMOS cameras or to bypass them.

  9. Carbon nanotube integration with a CMOS process.

    PubMed

    Perez, Maximiliano S; Lerner, Betiana; Resasco, Daniel E; Pareja Obregon, Pablo D; Julian, Pedro M; Mandolesi, Pablo S; Buffa, Fabian A; Boselli, Alfredo; Lamagna, Alberto

    2010-01-01

    This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture.

  10. Carbon Nanotube Integration with a CMOS Process

    PubMed Central

    Perez, Maximiliano S.; Lerner, Betiana; Resasco, Daniel E.; Pareja Obregon, Pablo D.; Julian, Pedro M.; Mandolesi, Pablo S.; Buffa, Fabian A.; Boselli, Alfredo; Lamagna, Alberto

    2010-01-01

    This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture. PMID:22319330

  11. Nanopore-CMOS Interfaces for DNA Sequencing.

    PubMed

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-08-06

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces.

  12. CMOS analog switches for adaptive filters

    NASA Technical Reports Server (NTRS)

    Dixon, C. E.

    1980-01-01

    Adaptive active low-pass filters incorporate CMOS (Complimentary Metal-Oxide Semiconductor) analog switches (such as 4066 switch) that reduce variation in switch resistance when filter is switched to any selected transfer function.

  13. Fundamental study on identification of CMOS cameras

    NASA Astrophysics Data System (ADS)

    Kurosawa, Kenji; Saitoh, Naoki

    2003-08-01

    In this study, we discussed individual camera identification of CMOS cameras, because CMOS (complementary-metal-oxide-semiconductor) imaging detectors have begun to make their move into the CCD (charge-coupled-device) fields for recent years. It can be identified whether or not the given images have been taken with the given CMOS camera by detecting the imager's intrinsic unique fixed pattern noise (FPN) just like the individual CCD camera identification method proposed by the authors. Both dark and bright pictures taken with the CMOS cameras can be identified by the method, because not only dark current in the photo detectors but also MOS-FET amplifiers incorporated in each pixel may produce pixel-to-pixel nonuniformity in sensitivity. Each pixel in CMOS detectors has the amplifier, which degrades image quality of bright images due to the nonuniformity of the amplifier gain. Two CMOS cameras were evaluated in our experiments. They were WebCamGoPlus (Creative), and EOS D30 (Canon). WebCamGoPlus is a low-priced web camera, whereas EOS D30 is for professional use. Image of a white plate were recorded with the cameras under the plate's luminance condition of 0cd/m2 and 150cd/m2. The recorded images were multiply integrated to reduce the random noise component. From the images of both cameras, characteristic dots patterns were observed. Some bright dots were observed in the dark images, whereas some dark dots were in the bright images. The results show that the camera identification method is also effective for CMOS cameras.

  14. Optical waveguide taps on silicon CMOS circuits

    NASA Astrophysics Data System (ADS)

    Stenger, Vincent E.; Beyette, Fred R., Jr.

    2000-11-01

    As silicon CMOS circuit technology is scaled beyond the GHz range, both chipmakers and board makers face increasingly difficult challenges in implementing high speed metal interconnects. Metal traces are limited in density-speed performance due to the skin effect, electrical conductivity, and cross talk. Optical based interconnects have higher available bandwidth by virtue of the extremely high carrier frequencies of optical signals (> 100 THz). For this work, an effort has been made to determine an optimal optical tap receiver design for integration with commercial CMOS processes. Candidate waveguide tap technologies were considered in terms of optical loss, bandwidth, economy, and CMOS process compatibility. A new device, which is based on a variation of the multimode interference effect, has been found to be especially promising. BeamProp simulation results show nearly zero excess optical loss for the design, and up to 70% coupling into a 25 micrometer traveling wave CMOS photodetector device. Single-mode waveguides make the design readily compatible with wavelength multiplexing/demultiplexing elements. Polymer waveguide materials are targeted for fabrication due to planarization properties, low cost, broad index control, and poling abilities for modulation/tuning functions. Low cost, silicon CMOS based processing makes the new tap technology especially suitable for computer chip and board level interconnects, as well as metro fiber-to-the- home/desk telecommunications applications.

  15. CMOS detectors at Rome "Tor Vergata" University

    NASA Astrophysics Data System (ADS)

    Berrilli, F.; Cantarano, S.; Egidi, A.; Giordano, S.

    The new class of CMOS panoramic detectors represents an innovative tool for the experimental astronomy of the forthcoming years. While current charge-coupled device (CCD) technology can produce nearly ideal detectors for astronomical use, the scientific quality CMOS detectors made today have characteristics similar to those of CCD devices but a simpler electronics and a reduced cost. Moreover, the high frame rate capability and the amplification of each pixel - active pixel - in a CMOS detector, allows the implementation of a specific data management. So, it is possible to design cameras with very high dynamic range suitable for the imaging of solar active regions. In fact, in such regions, the onset of a flare can produce problems of saturation in a CCD-based camera. In this work we present the preliminary result obtained with the Tor Vergata C-Cam APS camera used at the University Solar Station.

  16. Nanopore-CMOS Interfaces for DNA Sequencing

    PubMed Central

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-01-01

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529

  17. Experiments with synchronized sCMOS cameras

    NASA Astrophysics Data System (ADS)

    Steele, Iain A.; Jermak, Helen; Copperwheat, Chris M.; Smith, Robert J.; Poshyachinda, Saran; Soonthorntham, Boonrucksar

    2016-07-01

    Scientific-CMOS (sCMOS) cameras can combine low noise with high readout speeds and do not suffer the charge multiplication noise that effectively reduces the quantum efficiency of electron multiplying CCDs by a factor 2. As such they have strong potential in fast photometry and polarimetry instrumentation. In this paper we describe the results of laboratory experiments using a pair of commercial off the shelf sCMOS cameras based around a 4 transistor per pixel architecture. In particular using a both stable and a pulsed light sources we evaluate the timing precision that may be obtained when the cameras readouts are synchronized either in software or electronically. We find that software synchronization can introduce an error of 200-msec. With electronic synchronization any error is below the limit ( 50-msec) of our simple measurement technique.

  18. Ion traps fabricated in a CMOS foundry

    SciTech Connect

    Mehta, K. K.; Ram, R. J.; Eltony, A. M.; Chuang, I. L.; Bruzewicz, C. D.; Sage, J. M. Chiaverini, J.

    2014-07-28

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This demonstration of scalable quantum computing hardware utilizing a commercial CMOS process opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  19. Resistor Extends Life Of Battery In Clocked CMOS Circuit

    NASA Technical Reports Server (NTRS)

    Wells, George H., Jr.

    1991-01-01

    Addition of fixed resistor between battery and clocked complementary metal oxide/semiconductor (CMOS) circuit reduces current drawn from battery. Basic idea to minimize current drawn from battery by operating CMOS circuit at lowest possible current consistent with use of simple, fixed off-the-shelf components. Prolongs lives of batteries in such low-power CMOS circuits as watches and calculators.

  20. High-temperature Complementary Metal Oxide Semiconductors (CMOS)

    NASA Technical Reports Server (NTRS)

    Mcbrayer, J. D.

    1981-01-01

    The results of an investigation into the possibility of using complementary metal oxide semiconductor (CMOS) technology for high temperature electronics are presented. A CMOS test chip was specifically developed as the test bed. This test chip incorporates CMOS transistors that have no gate protection diodes; these diodes are the major cause of leakage in commercial devices.

  1. Low power, CMOS digital autocorrelator spectrometer for spaceborne applications

    NASA Technical Reports Server (NTRS)

    Chandra, Kumar; Wilson, William J.

    1992-01-01

    A 128-channel digital autocorrelator spectrometer using four 32 channel low power CMOS correlator chips was built and tested. The CMOS correlator chip uses a 2-bit multiplication algorithm and a full-custom CMOS VLSI design to achieve low DC power consumption. The digital autocorrelator spectrometer has a 20 MHz band width, and the total DC power requirement is 6 Watts.

  2. Optical addressing technique for a CMOS RAM

    NASA Technical Reports Server (NTRS)

    Wu, W. H.; Bergman, L. A.; Allen, R. A.; Johnston, A. R.

    1988-01-01

    Progress on optically addressing a CMOS RAM for a feasibility demonstration of free space optical interconnection is reported in this paper. The optical RAM chip has been fabricated and functional testing is in progress. Initial results seem promising. New design and SPICE simulation of optical gate cell (OGC) circuits have been carried out to correct the slow fall time of the 'weak pull down' OGC, which has been characterized experimentally. Methods of reducing the response times of the photodiodes and the associated circuits are discussed. Even with the current photodiode, it appears that an OGC can be designed with a performance that is compatible with a CMOS circuit such as the RAM.

  3. End-of-fabrication CMOS process monitor

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Allen, R. A.; Blaes, B. R.; Hannaman, D. J.; Lieneweg, U.; Lin, Y.-S.; Sayah, H. R.

    1990-01-01

    A set of test 'modules' for verifying the quality of a complementary metal oxide semiconductor (CMOS) process at the end of the wafer fabrication is documented. By electrical testing of specific structures, over thirty parameters are collected characterizing interconnects, dielectrics, contacts, transistors, and inverters. Each test module contains a specification of its purpose, the layout of the test structure, the test procedures, the data reduction algorithms, and exemplary results obtained from 3-, 2-, or 1.6-micrometer CMOS/bulk processes. The document is intended to establish standard process qualification procedures for Application Specific Integrated Circuits (ASIC's).

  4. CMOS sensor for face tracking and recognition

    NASA Astrophysics Data System (ADS)

    Ginhac, Dominique; Prasetyo, Eri; Paindavoine, Michel

    2005-03-01

    This paper describes the main principles of a vision sensor dedicated to the detecting and tracking faces in video sequences. For this purpose, a current mode CMOS active sensor has been designed using an array of pixels that are amplified by using current mirrors of column amplifier. This circuit is simulated using Mentor Graphics software with parameters of a 0.6 μm CMOS process. The circuit design is added with a sequential control unit which purpose is to realise capture of subwindows at any location and any size in the whole image.

  5. Improving CMOS-compatible Germanium photodetectors.

    PubMed

    Li, Guoliang; Luo, Ying; Zheng, Xuezhe; Masini, Gianlorenzo; Mekis, Attila; Sahni, Subal; Thacker, Hiren; Yao, Jin; Shubin, Ivan; Raj, Kannan; Cunningham, John E; Krishnamoorthy, Ashok V

    2012-11-19

    We report design improvements for evanescently coupled Germanium photodetectors grown at low temperature. The resulting photodetectors with 10 μm Ge length manufactured in a commercial CMOS process achieve >0.8 A/W responsivity over the entire C-band, with a device capacitance of <7 fF based on measured data.

  6. Design and realization of CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Xiao, Zexin

    2008-02-01

    A project was presented that instrumental design of an economical CMOS microscope image sensor. A high performance, low price, black-white camera chip OV5116P was used as the core of the sensor circuit; Designing and realizing peripheral control circuit of sensor; Through the control on dial switch to realize different functions of the sensor chip in the system. For example: auto brightness level descending function on or off; gamma correction function on or off; auto and manual backlight compensation mode conversion and so on. The optical interface of sensor is designed for commercialization and standardization. The images of sample were respectively gathered with CCD and CMOS. Result of the experiment indicates that both performances were identical in several aspects as follows: image definition, contrast control, heating degree and the function can be adjusted according to the demand of user etc. The imperfection was that the CMOS with smaller field and higher noise than CCD; nevertheless, the maximal advantage of choosing the CMOS chip is its low cost. And its imaging quality conformed to requirement of the economical microscope image sensor.

  7. SEU hardening of CMOS memory circuit

    NASA Technical Reports Server (NTRS)

    Whitaker, S.; Canaris, J.; Liu, K.

    1990-01-01

    This paper reports a design technique to harden CMOS memory circuits against Single Event Upset (SEU) in the space environment. A RAM cell and Flip Flop design are presented to demonstrate the method. The Flip Flop was used in the control circuitry for a Reed Solomon encoder designed for the Space Station.

  8. Fully CMOS-compatible titanium nitride nanoantennas

    SciTech Connect

    Briggs, Justin A.; Naik, Gururaj V.; Baum, Brian K.; Dionne, Jennifer A.; Petach, Trevor A.; Goldhaber-Gordon, David

    2016-02-01

    CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.

  9. Low energy CMOS for space applications

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Alkalaj, Leon

    1992-01-01

    The current focus of NASA's space flight programs reflects a new thrust towards smaller, less costly, and more frequent space missions, when compared to missions such as Galileo, Magellan, or Cassini. Recently, the concept of a microspacecraft was proposed. In this concept, a small, compact spacecraft that weighs tens of kilograms performs focused scientific objectives such as imaging. Similarly, a Mars Lander micro-rover project is under study that will allow miniature robots weighing less than seven kilograms to explore the Martian surface. To bring the microspacecraft and microrover ideas to fruition, one will have to leverage compact 3D multi-chip module-based multiprocessors (MCM) technologies. Low energy CMOS will become increasingly important because of the thermodynamic considerations in cooling compact 3D MCM implementations and also from considerations of the power budget for space applications. In this paper, we show how the operating voltage is related to the threshold voltage of the CMOS transistors for accomplishing a task in VLSI with minimal energy. We also derive expressions for the noise margins at the optimal operating point. We then look at a low voltage CMOS (LVCMOS) technology developed at Stanford University which improves the power consumption over conventional CMOS by a couple of orders of magnitude and consider the suitability of the technology for space applications by characterizing its SEU immunity.

  10. A Hybrid CMOS-Memristor Neuromorphic Synapse.

    PubMed

    Azghadi, Mostafa Rahimi; Linares-Barranco, Bernabe; Abbott, Derek; Leong, Philip H W

    2017-04-01

    Although data processing technology continues to advance at an astonishing rate, computers with brain-like processing capabilities still elude us. It is envisioned that such computers may be achieved by the fusion of neuroscience and nano-electronics to realize a brain-inspired platform. This paper proposes a high-performance nano-scale Complementary Metal Oxide Semiconductor (CMOS)-memristive circuit, which mimics a number of essential learning properties of biological synapses. The proposed synaptic circuit that is composed of memristors and CMOS transistors, alters its memristance in response to timing differences among its pre- and post-synaptic action potentials, giving rise to a family of Spike Timing Dependent Plasticity (STDP). The presented design advances preceding memristive synapse designs with regards to the ability to replicate essential behaviours characterised in a number of electrophysiological experiments performed in the animal brain, which involve higher order spike interactions. Furthermore, the proposed hybrid device CMOS area is estimated as [Formula: see text] in a [Formula: see text] process-this represents a factor of ten reduction in area with respect to prior CMOS art. The new design is integrated with silicon neurons in a crossbar array structure amenable to large-scale neuromorphic architectures and may pave the way for future neuromorphic systems with spike timing-dependent learning features. These systems are emerging for deployment in various applications ranging from basic neuroscience research, to pattern recognition, to Brain-Machine-Interfaces.

  11. CMOS preamplifiers for detectors large and small

    SciTech Connect

    O`Connor, P.

    1997-12-31

    We describe four CMOS preamplifiers developed for multiwire proportional chambers (MWPC) and silicon drift detectors (SDD) covering a capacitance range from 150 pF to 0.15 pF. Circuit techniques to optimize noise performance, particularly in the low-capacitance regime, are discussed.

  12. Radiation Tolerance of 65nm CMOS Transistors

    DOE PAGES

    Krohn, M.; Bentele, B.; Christian, D. C.; ...

    2015-12-11

    We report on the effects of ionizing radiation on 65 nm CMOS transistors held at approximately -20°C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.

  13. Low-Power SOI CMOS Transceiver

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene (Technical Monitor); Cheruiyot, K.; Cothern, J.; Huang, D.; Singh, S.; Zencir, E.; Dogan, N.

    2003-01-01

    The work aims at developing a low-power Silicon on Insulator Complementary Metal Oxide Semiconductor (SOI CMOS) Transceiver for deep-space communications. RF Receiver must accomplish the following tasks: (a) Select the desired radio channel and reject other radio signals, (b) Amplify the desired radio signal and translate them back to baseband, and (c) Detect and decode the information with Low BER. In order to minimize cost and achieve high level of integration, receiver architecture should use least number of external filters and passive components. It should also consume least amount of power to minimize battery cost, size, and weight. One of the most stringent requirements for deep-space communication is the low-power operation. Our study identified that two candidate architectures listed in the following meet these requirements: (1) Low-IF receiver, (2) Sub-sampling receiver. The low-IF receiver uses minimum number of external components. Compared to Zero-IF (Direct conversion) architecture, it has less severe offset and flicker noise problems. The Sub-sampling receiver amplifies the RF signal and samples it using track-and-hold Subsampling mixer. These architectures provide low-power solution for the short- range communications missions on Mars. Accomplishments to date include: (1) System-level design and simulation of a Double-Differential PSK receiver, (2) Implementation of Honeywell SOI CMOS process design kit (PDK) in Cadence design tools, (3) Design of test circuits to investigate relationships between layout techniques, geometry, and low-frequency noise in SOI CMOS, (4) Model development and verification of on-chip spiral inductors in SOI CMOS process, (5) Design/implementation of low-power low-noise amplifier (LNA) and mixer for low-IF receiver, and (6) Design/implementation of high-gain LNA for sub-sampling receiver. Our initial results show that substantial improvement in power consumption is achieved using SOI CMOS as compared to standard CMOS

  14. CMOS-compatible spintronic devices: a review

    NASA Astrophysics Data System (ADS)

    Makarov, Alexander; Windbacher, Thomas; Sverdlov, Viktor; Selberherr, Siegfried

    2016-11-01

    For many decades CMOS devices have been successfully scaled down to achieve higher speed and increased performance of integrated circuits at lower cost. Today’s charge-based CMOS electronics encounters two major challenges: power dissipation and variability. Spintronics is a rapidly evolving research and development field, which offers a potential solution to these issues by introducing novel ‘more than Moore’ devices. Spin-based magnetoresistive random-access memory (MRAM) is already recognized as one of the most promising candidates for future universal memory. Magnetic tunnel junctions, the main elements of MRAM cells, can also be used to build logic-in-memory circuits with non-volatile storage elements on top of CMOS logic circuits, as well as versatile compact on-chip oscillators with low power consumption. We give an overview of CMOS-compatible spintronics applications. First, we present a brief introduction to the physical background considering such effects as magnetoresistance, spin-transfer torque (STT), spin Hall effect, and magnetoelectric effects. We continue with a comprehensive review of the state-of-the-art spintronic devices for memory applications (STT-MRAM, domain wall-motion MRAM, and spin-orbit torque MRAM), oscillators (spin torque oscillators and spin Hall nano-oscillators), logic (logic-in-memory, all-spin logic, and buffered magnetic logic gate grid), sensors, and random number generators. Devices with different types of resistivity switching are analyzed and compared, with their advantages highlighted and challenges revealed. CMOS-compatible spintronic devices are demonstrated beginning with predictive simulations, proceeding to their experimental confirmation and realization, and finalized by the current status of application in modern integrated systems and circuits. We conclude the review with an outlook, where we share our vision on the future applications of the prospective devices in the area.

  15. Graphene/Si CMOS Hybrid Hall Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-07-01

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process.

  16. Graphene/Si CMOS hybrid hall integrated circuits.

    PubMed

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-07-07

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process.

  17. SOI-CMOS-MEMS electrothermal micromirror arrays

    NASA Astrophysics Data System (ADS)

    Gilgunn, Peter J.

    A fabrication technology called SOI-CMOS-MEMS is developed to realize arrays of electrothermally actuated micromirror arrays with fill factors up to 90% and mechanical scan ranges up to +/-45°. SOI-CMOS-MEMS features bonding of a CMOS-MEMS folded electrothermal actuator chip with a SOI mirror chip. Actuators and micromirrors are separately released using Bosch-type and isotropic Si etch processes. A 1-D, 3 x 3 SOI-CMOS-MEMS mirror array is characterized at a 1 mm scale that meets fill factor and scan range targets with a power sensitivity of 1.9 deg·m W-1 and -0.9 deg·m W-1 on inner and outer actuator legs, respectively. Issues preventing fabrication of SOI-CMOS-MEMS micromirror arrays designed for 1-D and 3-D motion at scales from 500 microm to 50 microm are discussed. Electrothermomechanical analytic models of power response of a generic folded actuator topology are developed that provide insight into the trends in actuator behavior for actuator design elements such as beam geometry and heater type, among others. Adverse power and scan range scaling and favorable speed scaling are demonstrated. Mechanical constraints on device geometry are derived. Detailed material, process, test structure and device characterization is presented that demonstrates the consistency of measured device behavior with analytic models. A unified model for aspect ratio dependent etch modulation is developed that achieves depth prediction accuracy of better than 10% up to 160 microm depth over a range of feature shapes and dimensions. The technique is applied extensively in the SOI-CMOS-MEMS process to produce deep multi-level structures in Si with a single etch mask and to control uniformity and feature profiles. TiW attack during release etch is shown to be the driving factor in mirror coplanarity loss. The effect is due to thermally accelerated etching caused by heating of released structures by the exothermic reaction of Si and F. The effect is quantified using in situ infrared

  18. Ultralow-Loss CMOS Copper Plasmonic Waveguides.

    PubMed

    Fedyanin, Dmitry Yu; Yakubovsky, Dmitry I; Kirtaev, Roman V; Volkov, Valentyn S

    2016-01-13

    Surface plasmon polaritons can give a unique opportunity to manipulate light at a scale well below the diffraction limit reducing the size of optical components down to that of nanoelectronic circuits. At the same time, plasmonics is mostly based on noble metals, which are not compatible with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which can outperform gold plasmonic waveguides simultaneously providing long (>40 μm) propagation length and deep subwavelength (∼λ(2)/50, where λ is the free-space wavelength) mode confinement in the telecommunication spectral range. These results create the backbone for the development of a CMOS plasmonic platform and its integration in future electronic chips.

  19. Radiation effects on scientific CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Yuanfu, Zhao; Liyan, Liu; Xiaohui, Liu; Xiaofeng, Jin; Xiang, Li

    2015-11-01

    A systemic solution for radiation hardened design is presented. Besides, a series of experiments have been carried out on the samples, and then the photoelectric response characteristic and spectral characteristic before and after the experiments have been comprehensively analyzed. The performance of the CMOS image sensor with the radiation hardened design technique realized total-dose resilience up to 300 krad(Si) and resilience to single-event latch up for LET up to 110 MeV·cm2/mg.

  20. CMOS-array design-automation techniques

    NASA Technical Reports Server (NTRS)

    Feller, A.; Lombardt, T.

    1979-01-01

    Thirty four page report discusses design of 4,096-bit complementary metal oxide semiconductor (CMOS) read-only memory (ROM). CMOSROM is either mask or laser programable. Report is divided into six sections; section one describes background of ROM chips; section two presents design goals for chip; section three discusses chip implementation and chip statistics; conclusions and recommendations are given in sections four thru six.

  1. Advanced CMOS Radiation Effects Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; Phan, A. M.; Seidleck, C. M.

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  2. CMOS Camera Array With Onboard Memory

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2009-01-01

    A compact CMOS (complementary metal oxide semiconductor) camera system has been developed with high resolution (1.3 Megapixels), a USB (universal serial bus) 2.0 interface, and an onboard memory. Exposure times, and other operating parameters, are sent from a control PC via the USB port. Data from the camera can be received via the USB port and the interface allows for simple control and data capture through a laptop computer.

  3. CMOS-controlled rapidly tunable photodetectors

    NASA Astrophysics Data System (ADS)

    Chen, Ray

    With rapidly increasing data bandwidth demands, wavelength-division-multiplexing (WDM) optical access networks seem unavoidable in the near future. To operate WDM optical networks in an efficient scheme, wavelength reconfigurability and scalability of the network are crucial. Unfortunately, most of the existing wavelength tunable technologies are neither rapidly tunable nor spectrally programmable. This dissertation presents a tunable photodetector that is designed for dynamic-wavelength allocation WDM network environments. The wavelength tuning mechanism is completely different from existing technologies. The spectrum of this detector is programmable through low-voltage digital patterns. Since the wavelength selection is achieved by electronic means, the device wavelength reconfiguration time is as fast as the electronic switching time. In this dissertation work, we have demonstrated a tunable detector that is hybridly integrated with its customized CMOS driver and receiver with nanosecond wavelength reconfiguration time. In addition to its nanosecond wavelength reconfiguration time, the spectrum of this detector is digitally programmable, which means that it can adapt to system changes without re-fabrication. We have theoretically developed and experimentally demonstrated two device operating algorithms based on the same orthogonal device-optics basis. Both the rapid wavelength tuning time and the scalability make this novel device very viable for new reconfigurable WDM networks. By taking advantage of CMOS circuit design, this detector concept can be further extended for simultaneous multiple wavelength detection. We have developed one possible chip architecture and have designed a CMOS tunable optical demux for simultaneous controllable two-wavelength detection.

  4. A CMOS compatible, ferroelectric tunnel junction.

    PubMed

    Ambriz Vargas, Fabian; Kolhatkar, Gitanjali; Broyer, Maxime; Hadj Youssef, Azza; Nouar, Rafik; Sarkissian, Andranik; Thomas, Reji; Gomez-Yanez, Carlos; Gauthier, Marc A; Ruediger, Andreas

    2017-04-03

    In recent years, the experimental demonstration of Ferroelectric Tunnel Junctions (FTJ) based on perovskite tunnel barriers has been reported. However, integrating these perovskite materials into conventional silicon memory technology remains challenging due to their lack of compatibility with the complementary metal oxide semiconductor process (CMOS). The present communication reports the fabrication of an FTJ based on a CMOS compatible tunnel barrier Hf0.5Zr0.5O2 (6 unit cells thick) on an equally CMOS compatible TiN electrode. Analysis of the FTJ by grazing angle incidence X-ray diffraction confirmed the formation of the non-centrosymmetric orthorhombic phase (Pbc2_1, ferroelectric phase). The FTJ characterization is followed by the reconstruction of the electrostatic potential profile in the as-grown TiN/Hf0.5Zr0.5O2/Pt heterostructure. A direct tunneling current model across a trapezoidal barrier was used to correlate the electronic and electrical properties of our FTJ devices. The good agreement between the experimental and the theoretical model attests to the tunneling electroresistance effect (TER) in our FTJ device. A TER ratio of ~15 was calculated for the present FTJ device at low read voltage (+0.2 V). This study makes Hf0.5Zr0.5O2 a promising candidate for integration into conventional Si memory technology.

  5. Correct CMOS IC defect models for quality testing

    NASA Technical Reports Server (NTRS)

    Soden, Jerry M.; Hawkins, Charles F.

    1993-01-01

    Leading edge, high reliability, and low escape CMOS IC test practices have now virtually removed the stuck-at fault model and replaced it with more defect-orientated models. Quiescent power supply current testing (I(sub DDQ)) combined with strategic use of high speed test patterns is the recommended approach to zero defect and high reliability testing goals. This paper reviews the reasons for the change in CMOS IC test practices and outlines an improved CMOS IC test methodology.

  6. Behavior of faulty double BJT BiCMOS logic gates

    NASA Technical Reports Server (NTRS)

    Menon, Sankaran M.; Malaiya, Yashwant K.; Jayasumana, Anura P.

    1992-01-01

    Logic Behavior of a Double BJT BiCMOS device under transistor level shorts and opens is examined. In addition to delay faults, faults that cause the gate to exhibit sequential behavior were observed. Several faults can be detected only by monitoring the current. The faulty behavior of Bipolar (TTL) and CMOS logic families is compared with BiCMOS, to bring out the testability differences.

  7. Small-area and compact CMOS emulator circuit for CMOS/nanoscale memristor co-design.

    PubMed

    Shin, Sanghak; Choi, Jun-Myung; Cho, Seongik; Min, Kyeong-Sik

    2013-11-01

    In this paper, a CMOS emulator circuit that can reproduce nanoscale memristive behavior is proposed. The proposed emulator circuit can mimic the pinched hysteresis loops of nanoscale memristor memory's current-voltage relationship without using any resistor array, complicated circuit blocks, etc. that may occupy very large layout area. Instead of using a resistor array, other complicated circuit blocks, etc., the proposed emulator circuit can describe the nanoscale memristor's current-voltage relationship using a simple voltage-controlled resistor, where its resistance can be programmed by the stored voltage at the state variable capacitor. Comparing the layout area between the previous emulator circuit and the proposed one, the layout area of the proposed emulator circuit is estimated to be 32 times smaller than the previous emulator circuit. The proposed CMOS emulator circuit of nanoscale memristor memory will be very useful in developing hybrid circuits of CMOS/nanoscale memristor memory.

  8. Interferometric comparison of the performance of a CMOS and sCMOS detector

    NASA Astrophysics Data System (ADS)

    Flores-Moreno, J. M.; De la Torre I., Manuel H.; Hernández-Montes, M. S.; Pérez-López, Carlos; Mendoza S., Fernando

    2015-08-01

    We present an analysis of the imaging performance of two state-of-the-art sensors widely used in the nondestructive- testing area (NDT). The analysis is based on the quantification of the signal-to-noise (SNR) ratio from an optical phase image. The calculation of the SNR is based on the relation of the median (average) and standard deviation measurements over specific areas of interest in the phase images of both sensors. This retrieved phase is coming from the vibrational behavior of a large object by means of an out-of-plane holographic interferometer. The SNR is used as a figure-of-merit to evaluate and compare the performance of the CMOS and scientific CMOS (sCMOS) camera as part of the experimental set-up. One of the cameras has a high speed CMOS sensor while the other has a high resolution sCMOS sensor. The object under study is a metallically framed table with a Formica cover with an observable area of 1.1 m2. The vibration induced to the sample is performed by a linear step motor with an attached tip in the motion stage. Each camera is used once at the time to record the deformation keeping the same experimental conditions for each case. These measurements may complement the conventional procedures or technical information commonly used to evaluate a camerás performance such as: quantum efficiency, spatial resolution and others. Results present post processed images from both cameras, but showing a smoother and easy to unwrap optical phase coming from those recorded with the sCMOS camera.

  9. Fundamental performance differences of CMOS and CCD imagers: part V

    NASA Astrophysics Data System (ADS)

    Janesick, James R.; Elliott, Tom; Andrews, James; Tower, John; Pinter, Jeff

    2013-02-01

    Previous papers delivered over the last decade have documented developmental progress made on large pixel scientific CMOS imagers that match or surpass CCD performance. New data and discussions presented in this paper include: 1) a new buried channel CCD fabricated on a CMOS process line, 2) new data products generated by high performance custom scientific CMOS 4T/5T/6T PPD pixel imagers, 3) ultimate CTE and speed limits for large pixel CMOS imagers, 4) fabrication and test results of a flight 4k x 4k CMOS imager for NRL's SoloHi Solar Orbiter Mission, 5) a progress report on ultra large stitched Mk x Nk CMOS imager, 6) data generated by on-chip sub-electron CDS signal chain circuitry used in our imagers, 7) CMOS and CMOSCCD proton and electron radiation damage data for dose levels up to 10 Mrd, 8) discussions and data for a new class of PMOS pixel CMOS imagers and 9) future CMOS development work planned.

  10. Development of a Depleted Monolithic CMOS Sensor in a 150 nm CMOS Technology for the ATLAS Inner Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Wang, T.; Rymaszewski, P.; Barbero, M.; Degerli, Y.; Godiot, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Krüger, H.; Liu, J.; Orsini, F.; Pangaud, P.; Rozanov, A.; Wermes, N.

    2017-01-01

    The recent R&D focus on CMOS sensors with charge collection in a depleted zone has opened new perspectives for CMOS sensors as fast and radiation hard pixel devices. These sensors, labelled as depleted CMOS sensors (DMAPS), have already shown promising performance as feasible candidates for the ATLAS Inner Tracker (ITk) upgrade, possibly replacing the current passive sensors. A further step to exploit the potential of DMAPS is to investigate the suitability of equipping the outer layers of the ATLAS ITk upgrade with fully monolithic CMOS sensors. This paper presents the development of a depleted monolithic CMOS pixel sensor designed in the LFoundry 150 nm CMOS technology, with the focus on design details and simulation results.

  11. High responsivity CMOS imager pixel implemented in SOI technology

    NASA Technical Reports Server (NTRS)

    Zheng, X.; Wrigley, C.; Yang, G.; Pain, B.

    2000-01-01

    Availability of mature sub-micron CMOS technology and the advent of the new low noise active pixel sensor (APS) concept have enabled the development of low power, miniature, single-chip, CMOS digital imagers in the decade of the 1990's.

  12. Lab-on-CMOS integration of microfluidics and electrochemical sensors.

    PubMed

    Huang, Yue; Mason, Andrew J

    2013-10-07

    This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device containing SU-8 microfluidic mixers and detection channels crossing over microelectrodes on a CMOS integrated circuit was constructed using the chip-carrier assembly scheme. Functional integrity of microfluidic structures and on-CMOS electrodes was verified by a simultaneous sample dilution and electrochemical detection experiment within multi-channel microfluidics. This lab-on-CMOS integration process is capable of high packing density, is suitable for wafer-level batch production, and opens new opportunities to combine the performance benefits of on-CMOS sensors with lab-on-chip platforms.

  13. CMOS-integrated geometrically tunable optical filters.

    PubMed

    Lerose, Damiana; Hei, Evie Kho Siaw; Ching, Bong Ching; Sterger, Martin; Yaw, Liau Chu; Schulze, Frank Michael; Schmidt, Frank; Schmidt, Andrei; Bach, Konrad

    2013-03-10

    We present a method for producing monolithically integrated complementary metal-oxide-semiconductor (CMOS) optical filters with different and customer-specific responses. The filters are constituted by a Fabry-Perot resonator formed by two Bragg mirrors separated by a patterned cavity. The filter response can be tuned by changing the geometric parameters of the patterning, and consequently the cavity effective refractive index. In this way, many different filters can be produced at once on a single chip, allowing multichanneling. The filter has been designed, produced, and characterized. The results for a chip with 24 filters are presented.

  14. Monolithic CMOS imaging x-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  15. Vertical Isolation for Photodiodes in CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2008-01-01

    In a proposed improvement in complementary metal oxide/semi conduct - or (CMOS) image detectors, two additional implants in each pixel would effect vertical isolation between the metal oxide/semiconductor field-effect transistors (MOSFETs) and the photodiode of the pixel. This improvement is expected to enable separate optimization of the designs of the photodiode and the MOSFETs so as to optimize their performances independently of each other. The purpose to be served by enabling this separate optimization is to eliminate or vastly reduce diffusion cross-talk, thereby increasing sensitivity, effective spatial resolution, and color fidelity while reducing noise.

  16. Diurnal measurements with prototype CMOS Omega receivers

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1976-01-01

    Diurnal signals from eight omega channels have been monitored at 10.2 KHz for selected station pairs. All eight Omega stations have been received at least 50 percent of the time over a 24 hour period during the month of October 1976. The data presented confirm the expected performance of the CMOS omega sensor processor in being able to digsignals out of a noisy environment. Of particular interest are possibilities for use of antipodal reception phenomena and a need for some ways of correcting for multi-modal propagation effects.

  17. Design of high speed camera based on CMOS technology

    NASA Astrophysics Data System (ADS)

    Park, Sei-Hun; An, Jun-Sick; Oh, Tae-Seok; Kim, Il-Hwan

    2007-12-01

    The capacity of a high speed camera in taking high speed images has been evaluated using CMOS image sensors. There are 2 types of image sensors, namely, CCD and CMOS sensors. CMOS sensor consumes less power than CCD sensor and can take images more rapidly. High speed camera with built-in CMOS sensor is widely used in vehicle crash tests and airbag controls, golf training aids, and in bullet direction measurement in the military. The High Speed Camera System made in this study has the following components: CMOS image sensor that can take about 500 frames per second at a resolution of 1280*1024; FPGA and DDR2 memory that control the image sensor and save images; Camera Link Module that transmits saved data to PC; and RS-422 communication function that enables control of the camera from a PC.

  18. A CMOS high speed imaging system design based on FPGA

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Wang, Huawei; Cao, Jianzhong; Qiao, Mingrui

    2015-10-01

    CMOS sensors have more advantages than traditional CCD sensors. The imaging system based on CMOS has become a hot spot in research and development. In order to achieve the real-time data acquisition and high-speed transmission, we design a high-speed CMOS imaging system on account of FPGA. The core control chip of this system is XC6SL75T and we take advantages of CameraLink interface and AM41V4 CMOS image sensors to transmit and acquire image data. AM41V4 is a 4 Megapixel High speed 500 frames per second CMOS image sensor with global shutter and 4/3" optical format. The sensor uses column parallel A/D converters to digitize the images. The CameraLink interface adopts DS90CR287 and it can convert 28 bits of LVCMOS/LVTTL data into four LVDS data stream. The reflected light of objects is photographed by the CMOS detectors. CMOS sensors convert the light to electronic signals and then send them to FPGA. FPGA processes data it received and transmits them to upper computer which has acquisition cards through CameraLink interface configured as full models. Then PC will store, visualize and process images later. The structure and principle of the system are both explained in this paper and this paper introduces the hardware and software design of the system. FPGA introduces the driven clock of CMOS. The data in CMOS is converted to LVDS signals and then transmitted to the data acquisition cards. After simulation, the paper presents a row transfer timing sequence of CMOS. The system realized real-time image acquisition and external controls.

  19. Theoretical performance analysis for CMOS based high resolution detectors.

    PubMed

    Jain, Amit; Bednarek, Daniel R; Rudin, Stephen

    2013-03-06

    High resolution imaging capabilities are essential for accurately guiding successful endovascular interventional procedures. Present x-ray imaging detectors are not always adequate due to their inherent limitations. The newly-developed high-resolution micro-angiographic fluoroscope (MAF-CCD) detector has demonstrated excellent clinical image quality; however, further improvement in performance and physical design may be possible using CMOS sensors. We have thus calculated the theoretical performance of two proposed CMOS detectors which may be used as a successor to the MAF. The proposed detectors have a 300 μm thick HL-type CsI phosphor, a 50 μm-pixel CMOS sensor with and without a variable gain light image intensifier (LII), and are designated MAF-CMOS-LII and MAF-CMOS, respectively. For the performance evaluation, linear cascade modeling was used. The detector imaging chains were divided into individual stages characterized by one of the basic processes (quantum gain, binomial selection, stochastic and deterministic blurring, additive noise). Ranges of readout noise and exposure were used to calculate the detectors' MTF and DQE. The MAF-CMOS showed slightly better MTF than the MAF-CMOS-LII, but the MAF-CMOS-LII showed far better DQE, especially for lower exposures. The proposed detectors can have improved MTF and DQE compared with the present high resolution MAF detector. The performance of the MAF-CMOS is excellent for the angiography exposure range; however it is limited at fluoroscopic levels due to additive instrumentation noise. The MAF-CMOS-LII, having the advantage of the variable LII gain, can overcome the noise limitation and hence may perform exceptionally for the full range of required exposures; however, it is more complex and hence more expensive.

  20. Bulk CMOS VLSI Technology Studies. Part 1. Scalable CMOS Design Rules. Part 2. CMOS Approaches to PLA (Programmable Logic Array) Design.

    DTIC Science & Technology

    2014-09-26

    microns %H*SIC dimensions. Part 2: Various Programmable Logic Array (PLA) implementations with clocked CMOS technology are explored inthis project...Previous research at MSU has dealt with clocked CMOS circuit styles with some application to gate array and microprocessor applications. Work under this...in this report deals with structured logic schemes based on Programmable Logic Arrays (PLAs). Three different PLA design methods are reported with a

  1. Modulated CMOS camera for fluorescence lifetime microscopy.

    PubMed

    Chen, Hongtao; Holst, Gerhard; Gratton, Enrico

    2015-12-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition.

  2. The 1.2 micron CMOS technology

    NASA Technical Reports Server (NTRS)

    Pina, C. A.

    1985-01-01

    A set of test structures was designed using the Jet Propulsion Laboratory (JPL) test chip assembler and was used to evaluate the first CMOS-bulk foundry runs with feature sizes of 1.2 microns. In addition to the problems associated with the physical scaling of the structures, this geometry provided an additional set of problems, since the design files had to be generated in such a way as to be capable of being processed through p-well, n-well, and twin-well processing lines. This requirement meant that the files containing the geometric design rules as well as the structure design files had to produce process-insensitive designs, a requirement that does not apply to the more mature 3.0-micron CMOS feature size technology. Because of the photolithographic steps required with this feature size, the maximum allowable chip size was 10 x 10 mm, and this chip was divided into 24 project areas, with each area being 1.6 x 1.6 mm in size. The JPL-designed structures occupied 13 out of the 21 allowable project sizes and provided the only test information obtained from these three preliminary runs. The structures were used to successfully evaluate three different manufacturing runs through two separate foundries.

  3. Fault detection in CMOS manufacturing using MBPCA

    NASA Astrophysics Data System (ADS)

    Lachman-Shalem, Sivan; Haimovitch, Nir; Shauly, Eitan N.; Lewin, Daniel R.

    2000-08-01

    This paper describes the application of model-based principal component analysis (MBPCA) to the identification and isolation of faults in CMOS manufacture. Some of the CMOS fabrication processing steps are well understood, with first principles mathematical models available which can describe the physical and chemical phenomena that takes place. The fabrication of the device using a known industrial process is therefore first modeled 'ideally', using ATHENA and MATLAB. Detailed furnace models are used to investigate the effect of errors in furnace control on the device fabrication and the subsequent effect on the device electrical properties. This models the distribution of device properties resulting from processing a stack of wafers in a furnace, and allows faults and production errors to be simulated for analysis. The analysis is performed using MBPCA. which has been shown to improve fault-detection resolution for batch processes. The diagnosis method is demonstrated on an industrial NMOS transistor fabrication process with faults introduced in places where they might realistically occur.

  4. Challenges of nickel silicidation in CMOS technologies

    SciTech Connect

    Breil, Nicolas; Lavoie, Christian; Ozcan, Ahmet; Baumann, Frieder; Klymko, Nancy; Nummy, Karen; Sun, Bing; Jordan-Sweet, Jean; Yu, Jian; Zhu, Frank; Narasimha, Shreesh; Chudzik, Michael

    2015-04-01

    In our paper, we review some of the key challenges associated with the Ni silicidation process in the most recent CMOS technologies. The introduction of new materials (e.g.SiGe), and of non-planar architectures bring some important changes that require fundamental investigation from a material engineering perspective. Following a discussion of the device architecture and silicide evolution through the last CMOS generations, we focus our study on a very peculiar defect, termed NiSi-Fangs. We describe a mechanism for the defect formation, and present a detailed material analysis that supports this mechanism. We highlight some of the possible metal enrichment processes of the nickel monosilicide such as oxidation or various RIE (Reactive Ion Etching) plasma process, leading to a metal source available for defect formation. Furthermore, we investigate the NiSi formation and re-formation silicidation differences between Si and SiGe materials, and between (1 0 0) and (1 1 1) orientations. Finally, we show that the thermal budgets post silicidation can lead to the formation of NiSi-Fangs if the structure and the processes are not optimized. Beyond the understanding of the defect and the discussion on the engineering solutions used to prevent its formation, the interest of this investigation also lies in the fundamental learning within the Ni–Pt–Si–Ge system and some additional perspective on Ni-based contacts to advanced microelectronic devices.

  5. Monolithic CMUT on CMOS Integration for Intravascular Ultrasound Applications

    PubMed Central

    Zahorian, Jaime; Hochman, Michael; Xu, Toby; Satir, Sarp; Gurun, Gokce; Karaman, Mustafa; Degertekin, F. Levent

    2012-01-01

    One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter based volumetric imaging arrays where the elements need to be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom designed CMOS receiver electronics from a commercial IC foundry. The CMUT on CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT to CMOS interconnection. This CMUT to CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire bonding method. Characterization experiments indicate that the CMUT on CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Experiments on a 1.6 mm diameter dual-ring CMUT array with a 15 MHz center frequency show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging CTOs located 1 cm away from the CMUT array. PMID:23443701

  6. All-CMOS night vision viewer with integrated microdisplay

    NASA Astrophysics Data System (ADS)

    Goosen, Marius E.; Venter, Petrus J.; du Plessis, Monuko; Faure, Nicolaas M.; Janse van Rensburg, Christo; Rademeyer, Pieter

    2014-02-01

    The unrivalled integration potential of CMOS has made it the dominant technology for digital integrated circuits. With the advent of visible light emission from silicon through hot carrier electroluminescence, several applications arose, all of which rely upon the advantages of mature CMOS technologies for a competitive edge in a very active and attractive market. In this paper we present a low-cost night vision viewer which employs only standard CMOS technologies. A commercial CMOS imager is utilized for near infrared image capturing with a 128x96 pixel all-CMOS microdisplay implemented to convey the image to the user. The display is implemented in a standard 0.35 μm CMOS process, with no process alterations or post processing. The display features a 25 μm pixel pitch and a 3.2 mm x 2.4 mm active area, which through magnification presents the virtual image to the user equivalent of a 19-inch display viewed from a distance of 3 meters. This work represents the first application of a CMOS microdisplay in a low-cost consumer product.

  7. Ink-Jet Printed CMOS Electronics from Oxide Semiconductors.

    PubMed

    Garlapati, Suresh Kumar; Baby, Tessy Theres; Dehm, Simone; Hammad, Mohammed; Chakravadhanula, Venkata Sai Kiran; Kruk, Robert; Hahn, Horst; Dasgupta, Subho

    2015-08-05

    Complementary metal oxide semiconductor (CMOS) technology with high transconductance and signal gain is mandatory for practicable digital/analog logic electronics. However, high performance all-oxide CMOS logics are scarcely reported in the literature; specifically, not at all for solution-processed/printed transistors. As a major step toward solution-processed all-oxide electronics, here it is shown that using a highly efficient electrolyte-gating approach one can obtain printed and low-voltage operated oxide CMOS logics with high signal gain (≈21 at a supply voltage of only 1.5 V) and low static power dissipation.

  8. Lower-Dark-Current, Higher-Blue-Response CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas; Hancock, Bruce

    2008-01-01

    Several improved designs for complementary metal oxide/semiconductor (CMOS) integrated-circuit image detectors have been developed, primarily to reduce dark currents (leakage currents) and secondarily to increase responses to blue light and increase signal-handling capacities, relative to those of prior CMOS imagers. The main conclusion that can be drawn from a study of the causes of dark currents in prior CMOS imagers is that dark currents could be reduced by relocating p/n junctions away from Si/SiO2 interfaces. In addition to reflecting this conclusion, the improved designs include several other features to counteract dark-current mechanisms and enhance performance.

  9. A monolithically integrated torsional CMOS-MEMS relay

    NASA Astrophysics Data System (ADS)

    Riverola, M.; Sobreviela, G.; Torres, F.; Uranga, A.; Barniol, N.

    2016-11-01

    We report experimental demonstrations of a torsional microelectromechanical (MEM) relay fabricated using the CMOS-MEMS approach (or intra-CMOS) which exploits the full foundry inherent characteristics enabling drastic reduction of the fabrication costs and batch production. In particular, the relay is monolithically integrated in the back end of line of a commercial standard CMOS technology (AMS 0.35 μm) and released by means of a simple one-step mask-less wet etching. The fabricated torsional relay exhibits an extremely steep switching behaviour symmetrical about both contact sides with an on-state contact resistance in the k Ω -range throughout the on-off cycling test.

  10. Radiation tolerant 1 micron CMOS technology

    NASA Astrophysics Data System (ADS)

    Crevel, P.; Rodde, K.

    1991-03-01

    Starting from a standard one micron Complementary Metal Oxide Semiconductor (CMOS) for high density, low power memory applications, the degree of radiation tolerance of the baseline process is evaluated. Implemented process modifications to improve latchup sensitivity under heavy ion irradiation as well as total dose effects without changing layout rules are described. By changing doping profiles in Metal Nitride Oxide Semiconductors (MNOS) and P-channel MOS (PMOS) device regions, it is possible to guarantee data sheet specification of a 64 K low power static RAM for total gamma dose up to 35 krad (Si) (and even higher values for the gate array family) without latch up for Linear Energy Transfer LET up to 115 MeV/(mg/cm squared).

  11. Latchup in CMOS devices from heavy ions

    NASA Technical Reports Server (NTRS)

    Soliman, K.; Nichols, D. K.

    1983-01-01

    It is noted that complementary metal oxide semiconductor (CMOS) microcircuits are inherently latchup prone. The four-layer n-p-n-p structures formed from the parasitic pnp and npn transistors make up a silicon controlled rectifier. If properly biased, this rectifier may be triggered 'ON' by electrical transients, ionizing radiation, or a single heavy ion. This latchup phenomenon might lead to a loss of functionality or device burnout. Results are presented from tests on 19 different device types from six manufacturers which investigate their latchup sensitivity with argon and krypton beams. The parasitic npnp paths are identified in general, and a qualitative rationale is given for latchup susceptibility, along with a latchup cross section for each type of device. Also presented is the correlation between bit-flip sensitivity and latchup susceptibility.

  12. CMOS imager for pointing and tracking applications

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Heynssens, Julie B. (Inventor)

    2006-01-01

    Systems and techniques to realize pointing and tracking applications with CMOS imaging devices. In general, in one implementation, the technique includes: sampling multiple rows and multiple columns of an active pixel sensor array into a memory array (e.g., an on-chip memory array), and reading out the multiple rows and multiple columns sampled in the memory array to provide image data with reduced motion artifact. Various operation modes may be provided, including TDS, CDS, CQS, a tracking mode to read out multiple windows, and/or a mode employing a sample-first-read-later readout scheme. The tracking mode can take advantage of a diagonal switch array. The diagonal switch array, the active pixel sensor array and the memory array can be integrated onto a single imager chip with a controller. This imager device can be part of a larger imaging system for both space-based applications and terrestrial applications.

  13. CMOS digital pixel sensors: technology and applications

    NASA Astrophysics Data System (ADS)

    Skorka, Orit; Joseph, Dileepan

    2014-04-01

    CMOS active pixel sensor technology, which is widely used these days for digital imaging, is based on analog pixels. Transition to digital pixel sensors can boost signal-to-noise ratios and enhance image quality, but can increase pixel area to dimensions that are impractical for the high-volume market of consumer electronic devices. There are two main approaches to digital pixel design. The first uses digitization methods that largely rely on photodetector properties and so are unique to imaging. The second is based on adaptation of a classical analog-to-digital converter (ADC) for in-pixel data conversion. Imaging systems for medical, industrial, and security applications are emerging lower-volume markets that can benefit from these in-pixel ADCs. With these applications, larger pixels are typically acceptable, and imaging may be done in invisible spectral bands.

  14. A Multipurpose CMOS Platform for Nanosensing

    PubMed Central

    Bonanno, Alberto; Sanginario, Alessandro; Marasso, Simone L.; Miccoli, Beatrice; Bejtka, Katarzyna; Benetto, Simone; Demarchi, Danilo

    2016-01-01

    This paper presents a customizable sensing system based on functionalized nanowires (NWs) assembled onto complementary metal oxide semiconductor (CMOS) technology. The Micro-for-Nano (M4N) chip integrates on top of the electronics an array of aluminum microelectrodes covered with gold by means of a customized electroless plating process. The NW assembly process is driven by an array of on-chip dielectrophoresis (DEP) generators, enabling a custom layout of different nanosensors on the same microelectrode array. The electrical properties of each assembled NW are singularly sensed through an in situ CMOS read-out circuit (ROC) that guarantees a low noise and reliable measurement. The M4N chip is directly connected to an external microcontroller for configuration and data processing. The processed data are then redirected to a workstation for real-time data visualization and storage during sensing experiments. As proof of concept, ZnO nanowires have been integrated onto the M4N chip to validate the approach that enables different kind of sensing experiments. The device has been then irradiated by an external UV source with adjustable power to measure the ZnO sensitivity to UV-light exposure. A maximum variation of about 80% of the ZnO-NW resistance has been detected by the M4N system when the assembled 5 μm × 500 nm single ZnO-NW is exposed to an estimated incident radiant UV-light flux in the range of 1 nW–229 nW. The performed experiments prove the efficiency of the platform conceived for exploiting any kind of material that can change its capacitance and/or resistance due to an external stimulus. PMID:27916911

  15. A Multipurpose CMOS Platform for Nanosensing.

    PubMed

    Bonanno, Alberto; Sanginario, Alessandro; Marasso, Simone L; Miccoli, Beatrice; Bejtka, Katarzyna; Benetto, Simone; Demarchi, Danilo

    2016-11-30

    This paper presents a customizable sensing system based on functionalized nanowires (NWs) assembled onto complementary metal oxide semiconductor (CMOS) technology. The Micro-for-Nano (M4N) chip integrates on top of the electronics an array of aluminum microelectrodes covered with gold by means of a customized electroless plating process. The NW assembly process is driven by an array of on-chip dielectrophoresis (DEP) generators, enabling a custom layout of different nanosensors on the same microelectrode array. The electrical properties of each assembled NW are singularly sensed through an in situ CMOS read-out circuit (ROC) that guarantees a low noise and reliable measurement. The M4N chip is directly connected to an external microcontroller for configuration and data processing. The processed data are then redirected to a workstation for real-time data visualization and storage during sensing experiments. As proof of concept, ZnO nanowires have been integrated onto the M4N chip to validate the approach that enables different kind of sensing experiments. The device has been then irradiated by an external UV source with adjustable power to measure the ZnO sensitivity to UV-light exposure. A maximum variation of about 80% of the ZnO-NW resistance has been detected by the M4N system when the assembled 5 μ m × 500 nm single ZnO-NW is exposed to an estimated incident radiant UV-light flux in the range of 1 nW-229 nW. The performed experiments prove the efficiency of the platform conceived for exploiting any kind of material that can change its capacitance and/or resistance due to an external stimulus.

  16. X-ray tomography using a CMOS area detector

    NASA Astrophysics Data System (ADS)

    Brunetti, A.; Cesareo, R.

    2007-05-01

    A flat panel based on CMOS technology represents a valid alternative to other kinds of flat panels and to ccd detectors for X-ray imaging. Although the spatial resolution of the ccd sensors is better than that of a CMOS sensor, the last has a larger sensitive-area and it can work at room temperature reaching a dynamic performance comparable to that of a cooled ccd sensor. Other kinds of flat panels, such as TFT screen are much more expensive and they have lower spatial resolution and higher noise than the CMOS detector. In this paper, an application of the CMOS sensor to X-ray tomography is described. Preliminary results are reported and discussed.

  17. CMOS Active Pixel Sensor Technology and Reliability Characterization Methodology

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Guertin, Steven M.; Pain, Bedabrata; Kayaii, Sammy

    2006-01-01

    This paper describes the technology, design features and reliability characterization methodology of a CMOS Active Pixel Sensor. Both overall chip reliability and pixel reliability are projected for the imagers.

  18. Tests of commercial colour CMOS cameras for astronomical applications

    NASA Astrophysics Data System (ADS)

    Pokhvala, S. M.; Reshetnyk, V. M.; Zhilyaev, B. E.

    2013-12-01

    We present some results of testing commercial colour CMOS cameras for astronomical applications. Colour CMOS sensors allow to perform photometry in three filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR colour system realized in colour CMOS sensors is close to the astronomical Johnson BVR system. The basic camera characteristics: read noise (e^{-}/pix), thermal noise (e^{-}/pix/sec) and electronic gain (e^{-}/ADU) for the commercial digital camera Canon 5D MarkIII are presented. We give the same characteristics for the scientific high performance cooled CCD camera system ALTA E47. Comparing results for tests of Canon 5D MarkIII and CCD ALTA E47 show that present-day commercial colour CMOS cameras can seriously compete with the scientific CCD cameras in deep astronomical imaging.

  19. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review.

    PubMed

    Li, Haitao; Liu, Xiaowen; Li, Lin; Mu, Xiaoyi; Genov, Roman; Mason, Andrew J

    2016-12-31

    Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS) instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.

  20. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review

    PubMed Central

    Li, Haitao; Liu, Xiaowen; Li, Lin; Mu, Xiaoyi; Genov, Roman; Mason, Andrew J.

    2016-01-01

    Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS) instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design. PMID:28042860

  1. CMOS serial link for fully duplexed data communication

    NASA Astrophysics Data System (ADS)

    Lee, Kyeongho; Kim, Sungjoon; Ahn, Gijung; Jeong, Deog-Kyoon

    1995-04-01

    This paper describes a CMOS serial link allowing fully duplexed 500 Mbaud serial data communication. The CMOS serial link is a robust and low-cost solution to high data rate requirements. A central charge pump PLL for generating multiphase clocks for oversampling is shared by several serial link channels. Fully duplexed serial data communication is realized in the bidirectional bridge by separating incoming data from the mixed signal on the cable end. The digital PLL accomplishes process-independent data recovery by using a low-ratio oversampling, a majority voting, and a parallel data recovery scheme. Mostly, digital approach could extend its bandwidth further with scaled CMOS technology. A single channel serial link and a charge pump PLL are integrated in a test chip using 1.2 micron CMOS process technology. The test chip confirms upto 500 Mbaud unidirectional mode operation and 320 Mbaud fully duplexed mode operation with pseudo random data patterns.

  2. CMOS-Memristor Hybrid Nanoelectronics for AES Encryption

    DTIC Science & Technology

    2013-03-01

    URL: https://www.cvimellesgriot.com/ Products /Ultraviolet-325-nm-Medium-Frame-Unpolarized-Heli um- Cadmium -Laser-Systems.aspx 2. URL: http...the existing industry -standard CMOS integrated circuit manufacturing base. Our in-house facility development focused on establishing a very high...leveraging the well-proven vast functionality of the existing industry -standard CMOS integrated circuit manufacturing base. Maintaining compatibility

  3. CMOS front end electronics for the ATLAS muon detector

    SciTech Connect

    Huth, J.; Oliver, J.; Hazen, E.; Shank, J.

    1997-12-31

    An all-CMOS design for an integrated ASD (Amplifier-Shaper-Discriminator) chip for readout of the ATLAS Monitored Drift Tubes (MDTs) is presented. Eight channels of charge-sensitive preamp, two-stage pole/zero shaper, Wilkinson ADC and discriminator with programmable hysteresis are integrated on a single IC. Key elements have been prototyped in 1.2 and 0.5 micron CMOS operating at 5V and 3.3V respectively.

  4. CMOS monolithic pixel sensors research and development at LBNL

    NASA Astrophysics Data System (ADS)

    Contarato, D.; Bussat, J.-M.; Denes, P.; Greiner, L.; Kim, T.; Stezelberger, T.; Wieman, H.; Battaglia, M.; Hooberman, B.; Tompkins, L.

    2007-12-01

    This paper summarizes the recent progress in the design and characterization of CMOS pixel sensors at LBNL. Results of lab tests, beam tests and radiation hardness tests carried out at LBNL on a test structure with pixels of various sizes are reported. The first results of the characterization of back-thinned CMOS pixel sensors are also reported, and future plans and activities are discussed.

  5. Delta Doping High Purity CCDs and CMOS for LSST

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana; Nikzad, Shouleh; Hoenk, Michael; Elliott, S. Tom; Bebek, Chris; Holland, Steve; Kolbe, Bill

    2006-01-01

    A viewgraph presentation describing delta doping high purity CCD's and CMOS for LSST is shown. The topics include: 1) Overview of JPL s versatile back-surface process for CCDs and CMOS; 2) Application to SNAP and ORION missions; 3) Delta doping as a back-surface electrode for fully depleted LBNL CCDs; 4) Delta doping high purity CCDs for SNAP and ORION; 5) JPL CMP thinning process development; and 6) Antireflection coating process development.

  6. Advancement of CMOS Doping Technology in an External Development Framework

    NASA Astrophysics Data System (ADS)

    Jain, Amitabh; Chambers, James J.; Shaw, Judy B.

    2011-01-01

    The consumer appetite for a rich multimedia experience drives technology development for mobile hand-held devices and the infrastructure to support them. Enhancements in functionality, speed, and user experience are derived from advancements in CMOS technology. The technical challenges in developing each successive CMOS technology node to support these enhancements have become increasingly difficult. These trends have motivated the CMOS business towards a collaborative approach based on strategic partnerships. This paper describes our model and experience of CMOS development, based on multi-dimensional industrial and academic partnerships. We provide to our process equipment, materials, and simulation partners, as well as to our silicon foundry partners, the detailed requirements for future integrated circuit products. This is done very early in the development cycle to ensure that these requirements can be met. In order to determine these fundamental requirements, we rely on a strategy that requires strong interaction between process and device simulation, physical and chemical analytical methods, and research at academic institutions. This learning is shared with each project partner to address integration and manufacturing issues encountered during CMOS technology development from its inception through product ramp. We utilize TI's core strengths in physical analysis, unit processes and integration, yield ramp, reliability, and product engineering to support this technological development. Finally, this paper presents examples of the advancement of CMOS doping technology for the 28 nm node and beyond through this development model.

  7. Surface enhanced biodetection on a CMOS biosensor chip

    NASA Astrophysics Data System (ADS)

    Belloni, Federico; Sandeau, Laure; Contié, Sylvain; Vicaire, Florence; Owens, Roisin; Rigneault, Hervé

    2012-03-01

    We present a rigorous electromagnetic theory of the electromagnetic power emitted by a dipole located in the vicinity of a multilayer stack. We applied this formalism to a luminescent molecule attached to a CMOS photodiode surface and report light collection efficiency larger than 80% toward the CMOS silicon substrate. We applied this result to the development of a low-cost, simple, portable device based on CMOS photodiodes technology for the detection and quantification of biological targets through light detection, presenting high sensitivity, multiplex ability, and fast data processing. The key feature of our approach is to perform the analytical test directly on the CMOS sensor surface, improving dramatically the optical detection of the molecule emitted light into the high refractive index semiconductor CMOS material. Based on adequate surface chemistry modifications, probe spotting and micro-fluidics, we performed proof-of-concept bio-assays directed against typical immuno-markers (TNF-α and IFN-γ). We compared the developed CMOS chip with a commercial micro-plate reader and found similar intrinsic sensitivities in the pg/ml range.

  8. An RF energy harvester system using UHF micropower CMOS rectifier based on a diode connected CMOS transistor.

    PubMed

    Shokrani, Mohammad Reza; Khoddam, Mojtaba; Hamidon, Mohd Nizar B; Kamsani, Noor Ain; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin

    2014-01-01

    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18  μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology.

  9. Integration of III-V materials and Si-CMOS through double layer transfer process

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Hong; Bao, Shuyu; Fitzgerald, Eugene; Tan, Chuan Seng

    2015-03-01

    A method to integrate III-V compound semiconductor and SOI-CMOS on a common Si substrate is demonstrated. The SOI-CMOS layer is temporarily bonded on a Si handle wafer. Another III-V/Si substrate is then bonded to the SOI-CMOS containing handle wafer. Finally, the handle wafer is released to realize the SOI-CMOS on III-V/Si hybrid structure on a common substrate. Through this method, high temperature III-V materials growth can be completed without the presence of the temperature sensitive CMOS layer, hence damage to the CMOS layer is avoided.

  10. On noise in time-delay integration CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Levski, Deyan; Choubey, Bhaskar

    2016-05-01

    Time delay integration sensors are of increasing interest in CMOS processes owing to their low cost, power and ability to integrate with other circuit readout blocks. This paper presents an analysis of the noise contributors in current day CMOS Time-Delay-Integration image sensors with various readout architectures. An analysis of charge versus voltage domain readout modes is presented, followed by a noise classification of the existing Analog Accumulator Readout (AAR) and Digital Accumulator Readout (DAR) schemes for TDI imaging. The analysis and classification of existing readout schemes include, pipelined charge transfer, buffered direct injection, voltage as well as current-mode analog accumulators and all-digital accumulator techniques. Time-Delay-Integration imaging modes in CMOS processes typically use an N-number of readout steps, equivalent to the number of TDI pixel stages. In CMOS TDI sensors, where voltage domain readout is used, the requirements over speed and noise of the ADC readout chain are increased due to accumulation of the dominant voltage readout and ADC noise with every stage N. Until this day, the latter is the primary reason for a leap-back of CMOS TDI sensors as compared to their CCD counterparts. Moreover, most commercial CMOS TDI implementations are still based on a charge-domain readout, mimicking a CCD-like operation mode. Thus, having a good understanding of each noise contributor in the signal chain, as well as its magnitude in different readout architectures, is vital for the design of future generation low-noise CMOS TDI image sensors based on a voltage domain readout. This paper gives a quantitative classification of all major noise sources for all popular implementations in the literature.

  11. Monolithic CMUT-on-CMOS integration for intravascular ultrasound applications.

    PubMed

    Zahorian, Jaime; Hochman, Michael; Xu, Toby; Satir, Sarp; Gurun, Gokce; Karaman, Mustafa; Degertekin, F Levent

    2011-12-01

    One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter-based volumetric imaging arrays, for which the elements must be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom-designed CMOS receiver electronics from a commercial IC foundry. The CMUT-on-CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low-temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT-to-CMOS interconnection. This CMUT-to-CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire-bonding method. Characterization experiments indicate that the CMUT-on-CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Ex- periments on a 1.6-mm-diameter dual-ring CMUT array with a center frequency of 15 MHz show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging chronic total occlusions located 1 cm from the CMUT array.

  12. Photonic circuits integrated with CMOS compatible photodetectors

    NASA Astrophysics Data System (ADS)

    Cristea, Dana; Craciunoiu, F.; Modreanu, M.; Caldararu, M.; Cernica, I.

    2001-06-01

    This paper presents the integration of photodetectors and photonic circuits (waveguides and interferometers, coupling elements and chemo-optical transducing layer) on one silicon chip. Different materials: silicon, doped or undoped silica, SiO xN y, polymers, and different technologies: LPCVD, APCVD, sol-gel, spinning, micromachining have been used to realize the photonic and micromechanical components and the transducers. Also, MOS compatible processes have been used for optoelectronic circuits. The attention was focused on the matching of all the involved technologies, to allow the monolithic integration of all components, and also on the design and fabrication of special structures of photodetectors. Two types of high responsivity photodetectors, a photo-FET and a bipolar NPN phototransistor, with modified structures that allow the optical coupling to the waveguides have been designed and experimented. An original 3-D model was developed for the system: opto-FET-coupler-waveguide. A test circuit for sensor applications was experimented. All the components of the test circuits, photodetectors, waveguides, couplers, were obtained using CMOS-compatible processes. The aim of our research activity was to obtain microsensors with optical read-out.

  13. NSC 800, 8-bit CMOS microprocessor

    NASA Technical Reports Server (NTRS)

    Suszko, S. F.

    1984-01-01

    The NSC 800 is an 8-bit CMOS microprocessor manufactured by National Semiconductor Corp., Santa Clara, California. The 8-bit microprocessor chip with 40-pad pin-terminals has eight address buffers (A8-A15), eight data address -- I/O buffers (AD(sub 0)-AD(sub 7)), six interrupt controls and sixteen timing controls with a chip clock generator and an 8-bit dynamic RAM refresh circuit. The 22 internal registers have the capability of addressing 64K bytes of memory and 256 I/O devices. The chip is fabricated on N-type (100) silicon using self-aligned polysilicon gates and local oxidation process technology. The chip interconnect consists of four levels: Aluminum, Polysi 2, Polysi 1, and P(+) and N(+) diffusions. The four levels, except for contact interface, are isolated by interlevel oxide. The chip is packaged in a 40-pin dual-in-line (DIP), side brazed, hermetically sealed, ceramic package with a metal lid. The operating voltage for the device is 5 V. It is available in three operating temperature ranges: 0 to +70 C, -40 to +85 C, and -55 to +125 C. Two devices were submitted for product evaluation by F. Stott, MTS, JPL Microprocessor Specialist. The devices were pencil-marked and photographed for identification.

  14. Simulation of SEU transients in CMOS ICs

    SciTech Connect

    Kaul, N.; Bhuva, B.L.; Kerns, S.E. )

    1991-12-01

    This paper reports that available analytical models of the number of single-event-induced errors (SEU) in combinational logic systems are not easily applicable to real integrated circuits (ICs). An efficient computer simulation algorithm set, SITA, predicts the vulnerability of data stored in and processed by complex combinational logic circuits to SEU. SITA is described in detail to allow researchers to incorporate it into their error analysis packages. Required simulation algorithms are based on approximate closed-form equations modeling individual device behavior in CMOS logic units. Device-level simulation is used to estimate the probability that ion-device interactions produce erroneous signals capable of propagating to a latch (or n output node), and logic-level simulation to predict the spread of such erroneous, latched information through the IC. Simulation results are compared to those from SPICE for several circuit and logic configurations. SITA results are comparable to this established circuit-level code, and SITA can analyze circuits with state-of-the-art device densities (which SPICE cannot). At all IC complexity levels, SITAS offers several factors of 10 savings in simulation time over SPICE.

  15. Improved Space Object Observation Techniques Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Hinze, A.; Schlatter, P.; Silha, J.; Peltonen, J.; Santti, T.; Flohrer, T.

    2013-08-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contain their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. Presently applied and proposed optical observation strategies for space debris surveys and space surveillance applications had to be analyzed. The major design drivers were identified and potential benefits from using available and future CMOS sensors were assessed. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, the characteristics of a particular CMOS sensor available at the Zimmerwald observatory were analyzed by performing laboratory test measurements.

  16. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  17. Figures of merit for CMOS SPADs and arrays

    NASA Astrophysics Data System (ADS)

    Bronzi, D.; Villa, F.; Bellisai, S.; Tisa, S.; Ripamonti, G.; Tosi, A.

    2013-05-01

    SPADs (Single Photon Avalanche Diodes) are emerging as most suitable photodetectors for both single-photon counting (Fluorescence Correlation Spectroscopy, Lock-in 3D Ranging) and single-photon timing (Lidar, Fluorescence Lifetime Imaging, Diffuse Optical Imaging) applications. Different complementary metal-oxide semiconductor (CMOS) implementations have been reported in literature. We present some figure of merit able to summarize the typical SPAD performances (i.e. Dark Counting Rate, Photo Detection Efficiency, afterpulsing probability, hold-off time, timing jitter) and to identify a proper metric for SPAD comparison, both as single detectors and also as imaging arrays. The goal is to define a practical framework within which it is possible to rank detectors based on their performances in specific experimental conditions, for either photon-counting or photon-timing applications. Furthermore we review the performances of some CMOS and custom-made SPADs. Results show that CMOS SPADs performances improve as the technology scales down; moreover, miniaturization of SPADs and new solutions adopted to counteract issues related with the SPAD design (electric field uniformity, premature edge breakdown, tunneling effects, defect-rich STI interface) along with advances in standard CMOS processes led to a general improvement in all fabricated photodetectors; therefore, CMOS SPADs can be suitable for very dense and cost-effective many-pixels imagers with high performances.

  18. Design and Fabrication of Vertically-Integrated CMOS Image Sensors

    PubMed Central

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860

  19. CMOS Cell Sensors for Point-of-Care Diagnostics

    PubMed Central

    Adiguzel, Yekbun; Kulah, Haluk

    2012-01-01

    The burden of health-care related services in a global era with continuously increasing population and inefficient dissipation of the resources requires effective solutions. From this perspective, point-of-care diagnostics is a demanded field in clinics. It is also necessary both for prompt diagnosis and for providing health services evenly throughout the population, including the rural districts. The requirements can only be fulfilled by technologies whose productivity has already been proven, such as complementary metal-oxide-semiconductors (CMOS). CMOS-based products can enable clinical tests in a fast, simple, safe, and reliable manner, with improved sensitivities. Portability due to diminished sensor dimensions and compactness of the test set-ups, along with low sample and power consumption, is another vital feature. CMOS-based sensors for cell studies have the potential to become essential counterparts of point-of-care diagnostics technologies. Hence, this review attempts to inform on the sensors fabricated with CMOS technology for point-of-care diagnostic studies, with a focus on CMOS image sensors and capacitance sensors for cell studies. PMID:23112587

  20. Silicon CMOS-based vertical multimode interference optical taps

    NASA Astrophysics Data System (ADS)

    Stenger, Vincent E.; Beyette, Fred R., Jr.

    2001-12-01

    A compact, low loss, optical tap technology is critical for the incorporation of optical interconnects into mainstream CMOS processes. A recently introduced multimode interference effect based device has the potential for very high speed performance in a compact geometry and in a CMOS compatible process. For this work, 2-D and 3-D device simulations confirm a low excess optical loss on order of 0.1 dB, and a nominal 40% (2.2 dB) optical coupling into the CMOS circuitry over a wide range of guide to substrate distances. Simulated devices are on the order of 25micrometers in length and as narrow as 1 um. High temperature, hybrid polymer materials used for commercial CMOS inter-metal dielectric layers are targeted for tap fabrication and are incorporated into the models. Low cost, silicon CMOS based processing makes the new tap technology especially suitable for computer multi-chip module and board level interconnects, as well as for metro fiber to the home and desk telecommunications applications.

  1. Design and fabrication of vertically-integrated CMOS image sensors.

    PubMed

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors.

  2. CMOS cell sensors for point-of-care diagnostics.

    PubMed

    Adiguzel, Yekbun; Kulah, Haluk

    2012-01-01

    The burden of health-care related services in a global era with continuously increasing population and inefficient dissipation of the resources requires effective solutions. From this perspective, point-of-care diagnostics is a demanded field in clinics. It is also necessary both for prompt diagnosis and for providing health services evenly throughout the population, including the rural districts. The requirements can only be fulfilled by technologies whose productivity has already been proven, such as complementary metal-oxide-semiconductors (CMOS). CMOS-based products can enable clinical tests in a fast, simple, safe, and reliable manner, with improved sensitivities. Portability due to diminished sensor dimensions and compactness of the test set-ups, along with low sample and power consumption, is another vital feature. CMOS-based sensors for cell studies have the potential to become essential counterparts of point-of-care diagnostics technologies. Hence, this review attempts to inform on the sensors fabricated with CMOS technology for point-of-care diagnostic studies, with a focus on CMOS image sensors and capacitance sensors for cell studies.

  3. CMOS Conductometric System for Growth Monitoring and Sensing of Bacteria.

    PubMed

    Lei Yao; Lamarche, P; Tawil, N; Khan, R; Aliakbar, A M; Hassan, M H; Chodavarapu, V P; Mandeville, R

    2011-06-01

    We present the design and implementation of a prototype complementary metal-oxide semiconductor (CMOS) conductometric integrated circuit (IC) for colony growth monitoring and specific sensing of Escherichia coli (E. coli) bacteria. The detection of E. coli is done by employing T4 bacteriophages as receptor organisms. The conductometric system operates by measuring the resistance of the test sample between the electrodes of a two-electrode electrochemical system (reference electrode and working electrode). The CMOS IC is fabricated in a TSMC 0.35-μm process and uses a current-to-frequency (I to F) conversion circuit to convert the test sample resistance into a digital output modulated in frequency. Pulsewidth control (one-shot circuit) is implemented on-chip to control the pulsewidth of the output digital signal. The novelty in the current work lies in the ability of the CMOS sensor system to monitor very low initial concentrations of bacteria (4×10(2) to 4×10(4) colony forming unit (CFU)/mL). The CMOS system is also used to record the interaction between E. coli and its specific receptor T4 bacteriophage. The prototype CMOS IC consumes an average power of 1.85 mW with a 3.3-V dc power supply.

  4. ESD protection design for advanced CMOS

    NASA Astrophysics Data System (ADS)

    Huang, Jin B.; Wang, Gewen

    2001-10-01

    ESD effects in integrated circuits have become a major concern as today's technologies shrink to sub-micron/deep- sub-micron dimensions. The thinner gate oxide and shallower junction depth used in the advanced technologies make them very vulnerable to ESD damages. The advanced techniques like silicidation and STI (shallow trench insulation) used for improving other device performances make ESD design even more challenging. For non-silicided technologies, a certain DCGS (drain contact to gate edge spacing) is needed to achieve ESD hardness for nMOS output drivers and nMOS protection transistors. The typical DCGS values are 4-5um and 2-3um for 0.5um and 0.25um CMOS, respectively. The silicidation reduces the ballast resistance provided by DCGS with at least a factor of 10. As a result, scaling of the ESD performance with device width is lost and even zero ESD performance is reported for standard silicided devices. The device level ESD design is focused in this paper, which includes GGNMOS (gate grounded NMOS) and GCNMOS (gate coupled NMOS). The device level ESD testing including TLP (transmission line pulse) is given. Several ESD issues caused by advanced technologies have been pointed out. The possible solutions have been developed and summarized including silicide blocking, process optimization, back-end ballasting, and new protection scheme, dummy gate/n-well resistor ballsting, etc. Some of them require process cost increase, and others provide novel, compact, and simple design but involving royalty/IP (intellectual property) issue. Circuit level ESD design and layout design considerations are covered. The top-level ESD protection strategies are also given.

  5. Adiabatic circuits: converter for static CMOS signals

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Amirante, E.; Bargagli-Stoffi, A.; Schmitt-Landsiedel, D.

    2003-05-01

    Ultra low power applications can take great advantages from adiabatic circuitry. In this technique a multiphase system is used which consists ideally of trapezoidal voltage signals. The input signals to be processed will often come from a function block realized in static CMOS. The static rectangular signals must be converted for the oscillating multiphase system of the adiabatic circuitry. This work shows how to convert the input signals to the proposed pulse form which is synchronized to the appropriate supply voltage. By means of adder structures designed for a 0.13µm technology in a 4-phase system there will be demonstrated, which additional circuits are necessary for the conversion. It must be taken into account whether the data arrive in parallel or serial form. Parallel data are all in one phase and therefore it is advantageous to use an adder structure with a proper input stage, e.g. a Carry Lookahead Adder (CLA). With a serial input stage it is possible to read and to process four signals during one cycle due to the adiabatic 4-phase system. Therefore input signals with a frequency four times higher than the adiabatic clock frequency can be used. This reduces the disadvantage of the slow clock period typical for adiabatic circuits. By means of an 8 bit Ripple Carry Adder (8 bit RCA) the serial reading will be introduced. If the word width is larger than 4 bits the word can be divided in 4 bit words which are processed in parallel. This is the most efficient way to minimize the number of input lines and pads. At the same time a high throughput is achieved.

  6. Radiation tolerant back biased CMOS VLSI

    NASA Technical Reports Server (NTRS)

    Maki, Gary K. (Inventor); Gambles, Jody W. (Inventor); Hass, Kenneth J. (Inventor)

    2003-01-01

    A CMOS circuit formed in a semiconductor substrate having improved immunity to total ionizing dose radiation, improved immunity to radiation induced latch up, and improved immunity to a single event upset. The architecture of the present invention can be utilized with the n-well, p-well, or dual-well processes. For example, a preferred embodiment of the present invention is described relative to a p-well process wherein the p-well is formed in an n-type substrate. A network of NMOS transistors is formed in the p-well, and a network of PMOS transistors is formed in the n-type substrate. A contact is electrically coupled to the p-well region and is coupled to first means for independently controlling the voltage in the p-well region. Another contact is electrically coupled to the n-type substrate and is coupled to second means for independently controlling the voltage in the n-type substrate. By controlling the p-well voltage, the effective threshold voltages of the n-channel transistors both drawn and parasitic can be dynamically tuned. Likewise, by controlling the n-type substrate, the effective threshold voltages of the p-channel transistors both drawn and parasitic can also be dynamically tuned. Preferably, by optimizing the threshold voltages of the n-channel and p-channel transistors, the total ionizing dose radiation effect will be neutralized and lower supply voltages can be utilized for the circuit which would result in the circuit requiring less power.

  7. CMOS reliability issues for emerging cryogenic Lunar electronics applications

    NASA Astrophysics Data System (ADS)

    Chen, Tianbing; Zhu, Chendong; Najafizadeh, Laleh; Jun, Bongim; Ahmed, Adnan; Diestelhorst, Ryan; Espinel, Gustavo; Cressler, John D.

    2006-06-01

    We investigate the reliability issues associated with the application of CMOS devices contained within an advanced SiGe HBT BiCMOS technology to emerging cryogenic space electronics (e.g., down to 43 K, for Lunar missions). Reduced temperature operation improves CMOS device performance (e.g., transconductance, carrier mobility, subthreshold swing, and output current drive), as expected. However, operation at cryogenic temperatures also causes serious device reliability concerns, since it aggravates hot-carrier effects, effectively decreasing the inferred device lifetime significantly, especially at short gate lengths. In the paper, hot-carrier effects are demonstrated to be a stronger function of the device gate length than the temperature, suggesting that significant trade-offs between the gate length and the operational temperature must be made in order to ensure safe and reliable operation over typical projected mission lifetimes in these hostile environments.

  8. A CMOS humidity sensor for passive RFID sensing applications.

    PubMed

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-05-16

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  9. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 μW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  10. IGBT scaling principle toward CMOS compatible wafer processes

    NASA Astrophysics Data System (ADS)

    Tanaka, Masahiro; Omura, Ichiro

    2013-02-01

    A scaling principle for trench gate IGBT is proposed. CMOS technology on large diameter wafer enables to produce various digital circuits with higher performance and lower cost. The transistor cell structure becomes laterally smaller and smaller and vertically shallower and shallower. In contrast, latest IGBTs have rather deeper trench structure to obtain lower on-state voltage drop and turn-off loss. In the aspect of the process uniformity and wafer warpage, manufacturing such structure in the CMOS factory is difficult. In this paper, we show the scaling principle toward shallower structure and better performance. The principle is theoretically explained by our previously proposed "Structure Oriented" analytical model. The principle represents a possibility of technology direction and roadmap for future IGBT for improving the device performance consistent with lower cost and high volume productivity with CMOS compatible large diameter wafer technologies.

  11. Silicon pixel detector prototyping in SOI CMOS technology

    NASA Astrophysics Data System (ADS)

    Dasgupta, Roma; Bugiel, Szymon; Idzik, Marek; Kapusta, Piotr; Kucewicz, Wojciech; Turala, Michal

    2016-12-01

    The Silicon-On-Insulator (SOI) CMOS is one of the most advanced and promising technology for monolithic pixel detectors design. The insulator layer that is implemented inside the silicon crystal allows to integrate sensors matrix and readout electronic on a single wafer. Moreover, the separation of electronic and substrate increases also the SOI circuits performance. The parasitic capacitances to substrate are significantly reduced, so the electronic systems are faster and consume much less power. The authors of this presentation are the members of international SOIPIX collaboration, that is developing SOI pixel detectors in 200 nm Lapis Fully-Depleted, Low-Leakage SOI CMOS. This work shows a set of advantages of SOI technology and presents possibilities for pixel detector design SOI CMOS. In particular, the preliminary results of a Cracow chip are presented.

  12. Operation and biasing for single device equivalent to CMOS

    DOEpatents

    Welch, James D.

    2001-01-01

    Disclosed are semiconductor devices including at least one junction which is rectifying whether the semiconductor is caused to be N or P-type, by the presence of field induced carriers. In particular, inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to conventional multiple device CMOS systems, which can be operated as modulators, are disclosed as are a non-latching SCR and an approach to blocking parasitic currents. Operation of the gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems under typical bias schemes is described, and simple demonstrative five mask fabrication procedures for the inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  13. CMOS biosensors for in vitro diagnosis - transducing mechanisms and applications.

    PubMed

    Lei, Ka-Meng; Mak, Pui-In; Law, Man-Kay; Martins, Rui P

    2016-09-21

    Complementary metal oxide semiconductor (CMOS) technology enables low-cost and large-scale integration of transistors and physical sensing materials on tiny chips (e.g., <1 cm(2)), seamlessly combining the two key functions of biosensors: transducing and signal processing. Recent CMOS biosensors unified different transducing mechanisms (impedance, fluorescence, and nuclear spin) and readout electronics have demonstrated competitive sensitivity for in vitro diagnosis, such as detection of DNA (down to 10 aM), protein (down to 10 fM), or bacteria/cells (single cell). Herein, we detail the recent advances in CMOS biosensors, centering on their key principles, requisites, and applications. Together, these may contribute to the advancement of our healthcare system, which should be decentralized by broadly utilizing point-of-care diagnostic tools.

  14. Complementary Metal-Oxide-Silicon (CMOS)-Memristor Hybrid Nanoelectronics for Advanced Encryption Standard (AES) Encryption

    DTIC Science & Technology

    2016-04-01

    reliability were developed and integrated with CMOS circuitry to establish an efficient hybrid nanoelectronic computing module for Advanced...node integrated with the memristors without leaving the CMOS foundry setting. 15. SUBJECT TERMS nanoelectronics, CMOS, memristor, crossbar 16...Table of Contents 1. SUMMARY ..................................................................................................................... 1 2

  15. Spectrometer with CMOS demodulation of fiber optic Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Christiansen, Martin Brokner

    A CMOS imager based spectrometer is developed to interrogate a network containing a large number of Bragg grating sensors. The spectrometer uses a Prism-Grating- Prism (PGP) to spectrally separate serially multiplexed Bragg reflections on a single fiber. As a result, each Bragg grating produces a discrete spot on the CMOS imager that shifts horizontally as the Bragg grating experiences changes in strain or temperature. The reflected wavelength of the spot can be determined by finding the center of the spot produced. The use of a randomly addressable CMOS imager enables a flexible sampling rate. Some fibers can be interrogated at a high sampling rate while others can be interrogated at a low sampling rate. However, the use of a CMOS imager leads to several unique problems in terms of signal processing. These include a logarithmic pixel response, a low signal-to-noise ratio, a long pixel time constant, and software issues. The expected capabilities of the CMOS imager based spectrometer are determined with a theoretical model. The theoretical model tests three algorithms for determining the center of the spot: single row centroid, single row parabolic fit, and entire spot centroid. The theoretical results are compared to laboratory test data and field test data. The CMOS based spectrometer is capable of interrogating many optical fibers, and in the configuration tested, the fiber bundle consisted of 23 fibers. Using this system, a single fiber can be interrogated from 778 nm to 852 nm at 2100 Hz or multiple fibers can be interrogated over the same wavelength so that the total number of fiber interrogations is up to 2100 per second. The reflected Bragg wavelength can be determined within +/-3pm, corresponding to a +/-3μɛ uncertainty.

  16. CMOS-compatible photonic devices for single-photon generation

    NASA Astrophysics Data System (ADS)

    Xiong, Chunle; Bell, Bryn; Eggleton, Benjamin J.

    2016-09-01

    Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal-oxide-semiconductor (CMOS)-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon) and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  17. Statistical circuit design for yield improvement in CMOS circuits

    NASA Technical Reports Server (NTRS)

    Kamath, H. J.; Purviance, J. E.; Whitaker, S. R.

    1990-01-01

    This paper addresses the statistical design of CMOS integrated circuits for improved parametric yield. The work uses the Monte Carlo technique of circuit simulation to obtain an unbiased estimation of the yield. A simple graphical analysis tool, the yield factor histogram, is presented. The yield factor histograms are generated by a new computer program called SPICENTER. Using the yield factor histograms, the most sensitive circuit parameters are noted, and their nominal values are changed to improve the yield. Two basic CMOS example circuits, one analog and one digital, are chosen and their designs are 'centered' to illustrate the use of the yield factor histograms for statistical circuit design.

  18. Black silicon enhanced photodetectors: a path to IR CMOS

    NASA Astrophysics Data System (ADS)

    Pralle, M. U.; Carey, J. E.; Homayoon, H.; Alie, S.; Sickler, J.; Li, X.; Jiang, J.; Miller, D.; Palsule, C.; McKee, J.

    2010-04-01

    SiOnyx has developed a novel silicon processing technology for CMOS sensors that will extend spectral sensitivity into the near/shortwave infrared (NIR/SWIR) and enable a full performance digital night vision capability comparable to that of current image-intensifier based night vision goggles. The process is compatible with established CMOS manufacturing infrastructure and has the promise of much lower cost than competing approaches. The measured thin layer quantum efficiency is as much as 10x that of incumbent imaging sensors with spectral sensitivity from 400 to 1200 nm.

  19. IR CMOS: ultrafast laser-enhanced silicon detection

    NASA Astrophysics Data System (ADS)

    Pralle, M. U.; Carey, J. E.; Homayoon, H.; Sickler, J.; Li, X.; Jiang, J.; Miller, D.; Palsule, C.; McKee, J.

    2011-06-01

    SiOnyx has developed a novel silicon processing technology for CMOS sensors that will extend spectral sensitivity into the near/shortwave infrared (NIR/SWIR) and enable a full performance digital night vision capability comparable to that of current image-intensifier based night vision goggles. The process is compatible with established CMOS manufacturing infrastructure and has the promise of much lower cost than competing approaches. The measured thin layer quantum efficiency is as much as 10x that of incumbent imaging sensors with spectral sensitivity from 400 to 1200 nm.

  20. A Force-Detection NMR Sensor in CMOS-MEMS

    DTIC Science & Technology

    2003-01-01

    Lauterbur. “Design and Analysis of Microcoils for NMR Microscopy.” Journal of Magnetic Resonance B, Vol. 108, pp. 114-124. 1995. 59 [29] Protasis...A Force-Detection NMR Sensor in CMOS-MEMS by Kevin M. Frederick Bachelor of Science, 2001 Carnegie Mellon University, Pittsburgh...REPORT TYPE 3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE A Force-Detection NMR Sensor in CMOS-MEMS 5a. CONTRACT NUMBER 5b

  1. Developments and Applications of High-Performance CCD and CMOS Imaging Arrays

    NASA Astrophysics Data System (ADS)

    Janesick, James; Putnam, Gloria

    2003-12-01

    For over 20 years, charge-coupled devices (CCDs) have dominated most digital imaging applications and markets. Today, complementary metal oxide semiconductor (CMOS) arrays are displacing CCDs in some applications, and this trend is expected to continue. Low cost, low power, on-chip system integration, and high-speed operation are unique features that have generated interest in CMOS arrays. This paper reviews current CCD and CMOS sensor developments and related applications. We compare fundamental performance parameters common to these technologies and describe why the CCD is considered a mature technology, whereas CMOS arrays have significant room for growth. The paper presents custom CMOS pixel designs and related fabrication processes that address performance deficiencies of the CCD in high-performance applications. We discuss areas of development for future CCD and CMOS imagers. The paper also briefly reviews hybrid imaging arrays that combine the advantages of CCD and CMOS, producing better sensors than either technology alone can provide.

  2. Fabrication and characterization of CMOS-MEMS thermoelectric micro generators.

    PubMed

    Kao, Pin-Hsu; Shih, Po-Jen; Dai, Ching-Liang; Liu, Mao-Chen

    2010-01-01

    This work presents a thermoelectric micro generator fabricated by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and the post-CMOS process. The micro generator is composed of 24 thermocouples in series. Each thermocouple is constructed by p-type and n-type polysilicon strips. The output power of the generator depends on the temperature difference between the hot and cold parts in the thermocouples. In order to prevent heat-receiving in the cold part in the thermocouples, the cold part is covered with a silicon dioxide layer with low thermal conductivity to insulate the heat source. The hot part of the thermocouples is suspended and connected to an aluminum plate, to increases the heat-receiving area in the hot part. The generator requires a post-CMOS process to release the suspended structures. The post-CMOS process uses an anisotropic dry etching to remove the oxide sacrificial layer and an isotropic dry etching to etch the silicon substrate. Experimental results show that the micro generator has an output voltage of 67 μV at the temperature difference of 1 K.

  3. Single Event Upset Behavior of CMOS Static RAM Cells

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo; Jeppson, Kjell O.; Buehler, Martin G.

    1993-01-01

    An improved state-space analysis of the CMOS static RAM cell is presented. Introducing theconcept of the dividing line, the critical charge for heavy-ion-induced upset of memory cells can becalculated considering symmetrical as well as asymmetrical capacitive loads. From the criticalcharge, the upset-rate per bit-day for static RAMs can be estimated.

  4. Mechanically Flexible and High-Performance CMOS Logic Circuits

    PubMed Central

    Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-01-01

    Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal–oxide–semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices. PMID:26459882

  5. High speed CMOS/SOS standard cell notebook

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The NASA/MSFC high speed CMOS/SOS standard cell family, designed to be compatible with the PR2D (Place, Route in 2-Dimensions) automatic layout program, is described. Standard cell data sheets show the logic diagram, the schematic, the truth table, and propagation delays for each logic cell.

  6. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  7. Planar CMOS analog SiPMs: design, modeling, and characterization

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Villa, Federica; Bronzi, Danilo; Tisa, Simone; Tosi, Alberto; Zappa, Franco

    2015-11-01

    Silicon photomultipliers (SiPMs) are large area detectors consisting of an array of single-photon-sensitive microcells, which make SiPMs extremely attractive to substitute the photomultiplier tubes in many applications. We present the design, fabrication, and characterization of analog SiPMs in standard planar 0.35 μm CMOS technology, with about 1 mm × 1 mm total area and different kinds of microcells, based on single-photon avalanche diodes with 30 μm diameter reaching 21.0% fill-factor (FF), 50 μm diameter (FF = 58.3%) or 50 μm square active area with rounded corner of 5 μm radius (FF = 73.7%). We also developed the electrical SPICE model for CMOS SiPMs. Our CMOS SiPMs have 25 V breakdown voltage, in line with most commercial SiPMs and higher gain (8.8 × 106, 13.2 × 106, and 15.0 × 106, respectively). Although dark count rate density is slightly higher than state-of-the-art analog SiPMs, the proposed standard CMOS processing opens the feasibility of integration with active electronics, for switching hot pixels off, drastically reducing the overall dark count rate, or for further on-chip processing.

  8. Fundamental Problems of Hybrid CMOS/Nanodevice Circuits

    DTIC Science & Technology

    2010-12-14

    allowing individual access to each via from the peripheral contact pads . Such layout is sufficient for a broad range of experiments with CMOS...mechanical polishing ( CMP ). For that, we have modified a commercial, 2- inch CMP tool for individual chip processing. Inspection and testing of the polished

  9. Novel Ferroelectric CMOS Circuits as a Nonvolatile Logic

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Horiuchi, T.; Li, Q.-H.; Wang, S.; Yun, K. Y.; Sakai, S.

    2008-03-01

    We propose a novel and promising nonvolatile-logic circuit constructed by p channel type (Pch) and n channel type (Nch) ferroelectric gate field effect transistors (FeFETs), which we named a ferroelectric CMOS (FeCMOS) circuit. The circuit works as both logic and memory. We fabricated a NOT logic FeCMOS device which have Pt metal gates and gate oxides of ferroelectric SrBi2Ta2O9 (SBT) and high-k HfAlO on Si. Key technology was adjusting threshold voltages of the FeFETs as well as preparing those of high quality. We demonstrate basic operations of the NOT-logic response, memory writing, holding and non-destructive reading. The memory writing is done by amplifying the input node voltage to a higher level when the node was logically high and to a lower one when it was logically low just before the writing operation. The data retention was also measured. The retained high and low voltages were almost unchanged for 1.2 days. The idea of this FeCMOS will enhance flexibility of circuit designing by merging logic and memory functions. This work was partially supported by NEDO.

  10. Integrated imaging sensor systems with CMOS active pixel sensor technology

    NASA Technical Reports Server (NTRS)

    Yang, G.; Cunningham, T.; Ortiz, M.; Heynssens, J.; Sun, C.; Hancock, B.; Seshadri, S.; Wrigley, C.; McCarty, K.; Pain, B.

    2002-01-01

    This paper discusses common approaches to CMOS APS technology, as well as specific results on the five-wire programmable digital camera-on-a-chip developed at JPL. The paper also reports recent research in the design, operation, and performance of APS imagers for several imager applications.

  11. Holographic voltage profiling on 75 nm gate architecture CMOS devices.

    PubMed

    Thesen, Alexander E; Frost, Bernhard G; Joy, David C

    2003-04-01

    Voltage profiles of the source-drain region of a CMOS transistor with 75nm gate architecture taken from an off-the-shelf Intel PIII processor are presented. The sample preparation using a dual beam system is discussed as well as details of the electron optical setup of the microscope. Special attention is given to the analysis of the reconstructed holograms.

  12. Effects Of Dose Rates On Radiation Damage In CMOS Parts

    NASA Technical Reports Server (NTRS)

    Goben, Charles A.; Coss, James R.; Price, William E.

    1990-01-01

    Report describes measurements of effects of ionizing-radiation dose rate on consequent damage to complementary metal oxide/semiconductor (CMOS) electronic devices. Depending on irradiation time and degree of annealing, survivability of devices in outer space, or after explosion of nuclear weapons, enhanced. Annealing involving recovery beyond pre-irradiation conditions (rebound) detrimental. Damage more severe at lower dose rates.

  13. Simulation toolkit with CMOS detector in the framework of hadrontherapy

    NASA Astrophysics Data System (ADS)

    Rescigno, R.; Finck, Ch.; Juliani, D.; Baudot, J.; Dauvergne, D.; Dedes, G.; Krimmer, J.; Ray, C.; Reithinger, V.; Rousseau, M.; Testa, E.; Winter, M.

    2014-03-01

    Proton imaging can be seen as a powerful technique for on-line monitoring of ion range during carbon ion therapy irradiation. The protons detection technique uses, as three-dimensional tracking system, a set of CMOS sensor planes. A simulation toolkit based on GEANT4 and ROOT is presented including detector response and reconstruction algorithm.

  14. CMOS VLSI Layout and Verification of a SIMD Computer

    NASA Technical Reports Server (NTRS)

    Zheng, Jianqing

    1996-01-01

    A CMOS VLSI layout and verification of a 3 x 3 processor parallel computer has been completed. The layout was done using the MAGIC tool and the verification using HSPICE. Suggestions for expanding the computer into a million processor network are presented. Many problems that might be encountered when implementing a massively parallel computer are discussed.

  15. Detection and compensation of bad pixel for CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Xu, Youqing; Yu, Shengsheng; Zhou, Jingli; Fang, Zuyuan

    2000-05-01

    This paper presents a detailed analysis of the occurring reason and features of bad pixels in CMOS image sensor. Detect and compensate algorithms have also bee introduced. Experimental result show that the algorithms are efficiently when they are applied on CH5001 produced by Chrontel Inc.

  16. Research-grade CMOS image sensors for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Saint-Pe, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Martin-Gonthier, Philippe; Corbiere, Franck; Belliot, Pierre; Estribeau, Magali

    2004-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding space applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this paper will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments and performances of CIS prototypes built using an imaging CMOS process will be presented in the corresponding section.

  17. Research-grade CMOS image sensors for demanding space applications

    NASA Astrophysics Data System (ADS)

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre

    2004-06-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  18. Analysis of pixel circuits in CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Mei, Zou; Chen, Nan; Yao, Li-bin

    2015-04-01

    CMOS image sensors (CIS) have lower power consumption, lower cost and smaller size than CCD image sensors. However, generally CCDs have higher performance than CIS mainly due to lower noise. The pixel circuit used in CIS is the first part of the signal processing circuit and connected to photodiode directly, so its performance will greatly affect the CIS or even the whole imaging system. To achieve high performance, CMOS image sensors need advanced pixel circuits. There are many pixel circuits used in CIS, such as passive pixel sensor (PPS), 3T and 4T active pixel sensor (APS), capacitive transimpedance amplifier (CTIA), and passive pixel sensor (PPS). At first, the main performance parameters of each pixel structure including the noise, injection efficiency, sensitivity, power consumption, and stability of bias voltage are analyzed. Through the theoretical analysis of those pixel circuits, it is concluded that CTIA pixel circuit has good noise performance, high injection efficiency, stable photodiode bias, and high sensitivity with small integrator capacitor. Furthermore, the APS and CTIA pixel circuits are simulated in a standard 0.18-μm CMOS process and using a n-well/p-sub photodiode by SPICE and the simulation result confirms the theoretical analysis result. It shows the possibility that CMOS image sensors can be extended to a wide range of applications requiring high performance.

  19. CMOS Ultra Low Power Radiation Tolerant (CULPRiT) Microelectronics

    NASA Technical Reports Server (NTRS)

    Yeh, Penshu; Maki, Gary

    2007-01-01

    Space Electronics needs Radiation Tolerance or hardness to withstand the harsh space environment: high-energy particles can change the state of the electronics or puncture transistors making them disfunctional. This viewgraph document reviews the use of CMOS Ultra Low Power Radiation Tolerant circuits for NASA's electronic requirements.

  20. Mechanically Flexible and High-Performance CMOS Logic Circuits.

    PubMed

    Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-10-13

    Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal-oxide-semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices.

  1. CMOS image sensors as an efficient platform for glucose monitoring.

    PubMed

    Devadhasan, Jasmine Pramila; Kim, Sanghyo; Choi, Cheol Soo

    2013-10-07

    Complementary metal oxide semiconductor (CMOS) image sensors have been used previously in the analysis of biological samples. In the present study, a CMOS image sensor was used to monitor the concentration of oxidized mouse plasma glucose (86-322 mg dL(-1)) based on photon count variation. Measurement of the concentration of oxidized glucose was dependent on changes in color intensity; color intensity increased with increasing glucose concentration. The high color density of glucose highly prevented photons from passing through the polydimethylsiloxane (PDMS) chip, which suggests that the photon count was altered by color intensity. Photons were detected by a photodiode in the CMOS image sensor and converted to digital numbers by an analog to digital converter (ADC). Additionally, UV-spectral analysis and time-dependent photon analysis proved the efficiency of the detection system. This simple, effective, and consistent method for glucose measurement shows that CMOS image sensors are efficient devices for monitoring glucose in point-of-care applications.

  2. Characterizations of and Radiation Effects in Several Emerging CMOS Technologies

    NASA Astrophysics Data System (ADS)

    Shufeng Ren

    As the conventional scaling of Si based CMOS is approaching its limit at 7 nm technology node, many perceive that the adoption of novel materials and/or device structures are inevitable to keep Moore's law going. High mobility channel materials such as III-V compound semiconductors or Ge are considered promising to replace Si in order to achieve high performance as well as low power consumption. However, interface and oxide traps have become a major obstacle for high-mobility semiconductors (such as Ge, GaAs, InGaAs, GaSb, etc) to replace Si CMOS technology. Therefore novel high-k dielectrics, such as epitaxially grown crystalline oxides, have been explored to be incorporated onto the high mobility channel materials. Moreover, to enable continued scaling, extremely scaled devices structures such as nanowire gate-all-around structure are needed in the near future. Moreover, as the CMOS industry moves into the 7 nm node and beyond, novel lithography techniques such as EUV are believed to be adopted soon, which can bring radiation damage to CMOS devices and circuit during the fabrication process. Therefore radiation hardening technology in future generations of CMOS devices has again become an interesting research topic to deal with the possible process-induced damage as well as damage caused by operating in radiation harsh environment such as outer space, nuclear plant, etc. In this thesis, the electrical properties of a few selected emerging novel CMOS devices are investigated, which include InGaAs based extremely scaled ultra-thin body nanowire gate-all-around MOSFETs, GOI (Ge On Insulator) CMOS with recessed channel and source/drain, GaAs MOSFETs with crystalline La based gate stack, and crystalline SrTiO3, are investigated to extend our understanding of their electrical characteristics, underlying physical mechanisms, and material properties. Furthermore, the radiation responses of these aforementioned novel devices are thoroughly investigated, with a focus on

  3. Hybrid CMOS SiPIN detectors as astronomical imagers

    NASA Astrophysics Data System (ADS)

    Simms, Lance Michael

    Charge Coupled Devices (CCDs) have dominated optical and x-ray astronomy since their inception in 1969. Only recently, through improvements in design and fabrication methods, have imagers that use Complimentary Metal Oxide Semiconductor (CMOS) technology gained ground on CCDs in scientific imaging. We are now in the midst of an era where astronomers might begin to design optical telescope cameras that employ CMOS imagers. The first three chapters of this dissertation are primarily composed of introductory material. In them, we discuss the potential advantages that CMOS imagers offer over CCDs in astronomical applications. We compare the two technologies in terms of the standard metrics used to evaluate and compare scientific imagers: dark current, read noise, linearity, etc. We also discuss novel features of CMOS devices and the benefits they offer to astronomy. In particular, we focus on a specific kind of hybrid CMOS sensor that uses Silicon PIN photodiodes to detect optical light in order to overcome deficiencies of commercial CMOS sensors. The remaining four chapters focus on a specific type of hybrid CMOS Silicon PIN sensor: the Teledyne Hybrid Visible Silicon PIN Imager (HyViSI). In chapters four and five, results from testing HyViSI detectors in the laboratory and at the Kitt Peak 2.1m telescope are presented. We present our laboratory measurements of the standard detector metrics for a number of HyViSI devices, ranging from 1k×1k to 4k×4k format. We also include a description of the SIDECAR readout circuit that was used to control the detectors. We then show how they performed at the telescope in terms of photometry, astrometry, variability measurement, and telescope focusing and guiding. Lastly, in the final two chapters we present results on detector artifacts such as pixel crosstalk, electronic crosstalk, and image persistence. One form of pixel crosstalk that has not been discussed elsewhere in the literature, which we refer to as Interpixel Charge

  4. CMOS in-pixel optical pulse frequency modulator

    NASA Astrophysics Data System (ADS)

    Nel, Nicolaas E.; du Plessis, M.; Joubert, T.-H.

    2016-02-01

    This paper covers the design of a complementary metal oxide semiconductor (CMOS) pixel readout circuit with a built-in frequency conversion feature. The pixel contains a CMOS photo sensor along with all signal-to-frequency conversion circuitry. An 8×8 array of these pixels is also designed. Current imaging arrays often use analog-to-digital conversion (ADC) and digital signal processing (DSP) techniques that are off-chip1. The frequency modulation technique investigated in this paper is preferred over other ADC techniques due to its smaller size, and the possibility of a higher dynamic range. Careful considerations are made regarding the size of the components of the pixel, as various characteristics of CMOS devices are limited by decreasing the scale of the components2. The methodology used was the CMOS design cycle for integrated circuit design. All components of the pixel were designed from first principles to meet necessary requirements of a small pixel size (30×30 μm2) and an output resolution greater than that of an 8-bit ADC. For the photodetector, an n+-p+/p-substrate diode was designed with a parasitic capacitance of 3 fF. The analog front-end stage was designed around a Schmitt trigger circuit. The photo current is integrated on an integration capacitor of 200 fF, which is reset when the Schmitt trigger output voltage exceeds a preset threshold. The circuit schematic and layout were designed using Cadence Virtuoso and the process used was the AMS CMOS 350 nm process using a power supply of 5V. The simulation results were confirmed to comply with specifications, and the layout passed all verification checks. The dynamic range achieved is 58.828 dB per pixel, with the output frequencies ranging from 12.341kHz to 10.783 MHz. It is also confirmed that the output frequency has a linear relationship to the photocurrent generated by the photodiode.

  5. Contact CMOS imaging of gaseous oxygen sensor array

    PubMed Central

    Daivasagaya, Daisy S.; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C.; Chodavarapu, Vamsy P.; Bright, Frank V.

    2014-01-01

    We describe a compact luminescent gaseous oxygen (O2) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O2-sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp)3]2+) encapsulated within sol–gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors. PMID:24493909

  6. Contact CMOS imaging of gaseous oxygen sensor array.

    PubMed

    Daivasagaya, Daisy S; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C; Chodavarapu, Vamsy P; Bright, Frank V

    2011-10-01

    We describe a compact luminescent gaseous oxygen (O2) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O2-sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp)3](2+)) encapsulated within sol-gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors.

  7. Design and characterization of high precision in-pixel discriminators for rolling shutter CMOS pixel sensors with full CMOS capability

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Hu-Guo, C.; Dorokhov, A.; Pham, H.; Hu, Y.

    2013-07-01

    In order to exploit the ability to integrate a charge collecting electrode with analog and digital processing circuitry down to the pixel level, a new type of CMOS pixel sensors with full CMOS capability is presented in this paper. The pixel array is read out based on a column-parallel read-out architecture, where each pixel incorporates a diode, a preamplifier with a double sampling circuitry and a discriminator to completely eliminate analog read-out bottlenecks. The sensor featuring a pixel array of 8 rows and 32 columns with a pixel pitch of 80 μm×16 μm was fabricated in a 0.18 μm CMOS process. The behavior of each pixel-level discriminator isolated from the diode and the preamplifier was studied. The experimental results indicate that all in-pixel discriminators which are fully operational can provide significant improvements in the read-out speed and the power consumption of CMOS pixel sensors.

  8. High-Voltage-Input Level Translator Using Standard CMOS

    NASA Technical Reports Server (NTRS)

    Yager, Jeremy A.; Mojarradi, Mohammad M.; Vo, Tuan A.; Blalock, Benjamin J.

    2011-01-01

    proposed integrated circuit would translate (1) a pair of input signals having a low differential potential and a possibly high common-mode potential into (2) a pair of output signals having the same low differential potential and a low common-mode potential. As used here, "low" and "high" refer to potentials that are, respectively, below or above the nominal supply potential (3.3 V) at which standard complementary metal oxide/semiconductor (CMOS) integrated circuits are designed to operate. The input common-mode potential could lie between 0 and 10 V; the output common-mode potential would be 2 V. This translation would make it possible to process the pair of signals by use of standard 3.3-V CMOS analog and/or mixed-signal (analog and digital) circuitry on the same integrated-circuit chip. A schematic of the circuit is shown in the figure. Standard 3.3-V CMOS circuitry cannot withstand input potentials greater than about 4 V. However, there are many applications that involve low-differential-potential, high-common-mode-potential input signal pairs and in which standard 3.3-V CMOS circuitry, which is relatively inexpensive, would be the most appropriate circuitry for performing other functions on the integrated-circuit chip that handles the high-potential input signals. Thus, there is a need to combine high-voltage input circuitry with standard low-voltage CMOS circuitry on the same integrated-circuit chip. The proposed circuit would satisfy this need. In the proposed circuit, the input signals would be coupled into both a level-shifting pair and a common-mode-sensing pair of CMOS transistors. The output of the level-shifting pair would be fed as input to a differential pair of transistors. The resulting differential current output would pass through six standoff transistors to be mirrored into an output branch by four heterojunction bipolar transistors. The mirrored differential current would be converted back to potential by a pair of diode-connected transistors

  9. Improved Space Object Orbit Determination Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Peltonen, J.; Sännti, T.; Silha, J.; Flohrer, T.

    2014-09-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contains their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, we simulated several observation scenarios for ground- and space-based sensor by assuming different observation and sensor properties. We will introduce the analyzed end-to-end simulations of the ground- and space-based strategies in order to investigate the orbit determination accuracy and its sensitivity which may result from different values for the frame-rate, pixel scale, astrometric and epoch registration accuracies. Two cases were simulated, a survey using a ground-based sensor to observe objects in LEO for surveillance applications, and a statistical survey with a space-based sensor orbiting in LEO observing small-size debris in LEO. The ground-based LEO survey uses a dynamical fence close to the Earth shadow a few hours after sunset. For the space-based scenario

  10. CMOS VLSI Active-Pixel Sensor for Tracking

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Sun, Chao; Yang, Guang; Heynssens, Julie

    2004-01-01

    An architecture for a proposed active-pixel sensor (APS) and a design to implement the architecture in a complementary metal oxide semiconductor (CMOS) very-large-scale integrated (VLSI) circuit provide for some advanced features that are expected to be especially desirable for tracking pointlike features of stars. The architecture would also make this APS suitable for robotic- vision and general pointing and tracking applications. CMOS imagers in general are well suited for pointing and tracking because they can be configured for random access to selected pixels and to provide readout from windows of interest within their fields of view. However, until now, the architectures of CMOS imagers have not supported multiwindow operation or low-noise data collection. Moreover, smearing and motion artifacts in collected images have made prior CMOS imagers unsuitable for tracking applications. The proposed CMOS imager (see figure) would include an array of 1,024 by 1,024 pixels containing high-performance photodiode-based APS circuitry. The pixel pitch would be 9 m. The operations of the pixel circuits would be sequenced and otherwise controlled by an on-chip timing and control block, which would enable the collection of image data, during a single frame period, from either the full frame (that is, all 1,024 1,024 pixels) or from within as many as 8 different arbitrarily placed windows as large as 8 by 8 pixels each. A typical prior CMOS APS operates in a row-at-a-time ( grolling-shutter h) readout mode, which gives rise to exposure skew. In contrast, the proposed APS would operate in a sample-first/readlater mode, suppressing rolling-shutter effects. In this mode, the analog readout signals from the pixels corresponding to the windows of the interest (which windows, in the star-tracking application, would presumably contain guide stars) would be sampled rapidly by routing them through a programmable diagonal switch array to an on-chip parallel analog memory array. The

  11. Large-area low-temperature ultrananocrystaline diamond (UNCD) films and integration with CMOS devices for monolithically integrated diamond MEMD/NEMS-CMOS systems.

    SciTech Connect

    Sumant, A.V.; Auciello, O.; Yuan, H.-C; Ma, Z.; Carpick, R. W.; Mancini, D. C.; Univ. of Wisconsin; Univ. of Pennsylvania

    2009-05-01

    Because of exceptional mechanical, chemical, and tribological properties, diamond has a great potential to be used as a material for the development of high-performance MEMS and NEMS such as resonators and switches compatible with harsh environments, which involve mechanical motion and intermittent contact. Integration of such MEMS/NEMS devices with complementary metal oxide semiconductor (CMOS) microelectronics will provide a unique platform for CMOS-driven commercial MEMS/NEMS. The main hurdle to achieve diamond-CMOS integration is the relatively high substrate temperatures (600-800 C) required for depositing conventional diamond thin films, which are well above the CMOS operating thermal budget (400 C). Additionally, a materials integration strategy has to be developed to enable diamond-CMOS integration. Ultrananocrystalline diamond (UNCD), a novel material developed in thin film form at Argonne, is currently the only microwave plasma chemical vapor deposition (MPCVD) grown diamond film that can be grown at 400 C, and still retain exceptional mechanical, chemical, and tribological properties comparable to that of single crystal diamond. We have developed a process based on MPCVD to synthesize UNCD films on up to 200 mm in diameter CMOS wafers, which will open new avenues for the fabrication of monolithically integrated CMOS-driven MEMS/NEMS based on UNCD. UNCD films were grown successfully on individual Si-based CMOS chips and on 200 mm CMOS wafers at 400 C in a MPCVD system, using Ar-rich/CH4 gas mixture. The CMOS devices on the wafers were characterized before and after UNCD deposition. All devices were performing to specifications with very small degradation after UNCD deposition and processing. A threshold voltage degradation in the range of 0.08-0.44V and transconductance degradation in the range of 1.5-9% were observed.

  12. Smart CMOS image sensor for lightning detection and imaging.

    PubMed

    Rolando, Sébastien; Goiffon, Vincent; Magnan, Pierre; Corbière, Franck; Molina, Romain; Tulet, Michel; Bréart-de-Boisanger, Michel; Saint-Pé, Olivier; Guiry, Saïprasad; Larnaudie, Franck; Leone, Bruno; Perez-Cuevas, Leticia; Zayer, Igor

    2013-03-01

    We present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency. The lightning detection process is performed by a smart detector combining an in-pixel frame-to-frame difference comparison with an adjustable threshold and on-chip digital processing allowing an efficient localization of a faint lightning pulse on the entire large format array at a frequency of 1 kHz. A CMOS prototype sensor with a 256×256 pixel array and a 60 μm pixel pitch has been fabricated using a 0.35 μm 2P 5M technology and tested to validate the selected detection approach.

  13. An OTA-based CMOS bandpass filter for NMR applications

    NASA Astrophysics Data System (ADS)

    Shesharaman, K. N.; Kittur, Harish M.

    2012-12-01

    One of the very popular medical imaging techniques used in present-day radiology is the magnetic resonance imaging (MRI) which is based on the phenomenon of nuclear magnetic resonance (NMR) in the hydrogen atoms present in the body. There is ever-increasing research in electronic circuit design for biomedical applications using NMR. Earlier magnetic resonance imagers operated at a magnetic field strength of 0.3 T. The present imagers operate at a magnetic field of 1.5 T, the resonance frequency of the nuclei being 64 MHz. This article presents a CMOS bandpass filter (BPF) design for NMR applications. The overall BPF design is realised in 180 nm CMOS technology which occupies an active area of 24.23 × 33.125 µm2 and consumes 0.165 mW of power from a 1.5 V supply.

  14. A Brief Discussion of Radiation Hardening of CMOS Microelectronics

    SciTech Connect

    Myers, D.R.

    1998-12-18

    Commercial microchips work well in their intended environments. However, generic microchips will not fimction correctly if exposed to sufficient amounts of ionizing radiation, the kind that satellites encounter in outer space. Modern CMOS circuits must overcome three specific concerns from ionizing radiation: total-dose, single-event, and dose-rate effects. Minority-carrier devices such as bipolar transistors, optical receivers, and solar cells must also deal with recombination-generation centers caused by displacement damage, which are not major concerns for majority-carrier CMOS devices. There are ways to make the chips themselves more resistant to radiation. This extra protection, called radiation hardening, has been called both a science and an art. Radiation hardening requires both changing the designs of the chips and altering the ways that the chips are manufactured.

  15. Diffuse reflectance measurements using lensless CMOS imaging chip

    NASA Astrophysics Data System (ADS)

    Schelkanova, I.; Pandya, A.; Shah, D.; Lilge, L.; Douplik, A.

    2014-10-01

    To assess superficial epithelial microcirculation, a diagnostic tool should be able to detect the heterogeneity of microvasculature, and to monitor qualitative derangement of perfusion in a diseased condition. Employing a lensless CMOS imaging chip with an RGB Bayer filter, experiments were conducted with a microfluidic platform to obtain diffuse reflectance maps. Haemoglobin (Hb) solution (160 g/l) was injected in the periodic channels (grooves) of the microfluidic phantom which were covered with ~250 μm thick layer of intralipid to obtain a diffusive environment. Image processing was performed on data acquired on the surface of the phantom to evaluate the diffuse reflectance from the subsurface periodic pattern. Thickness of the microfluidic grooves, the wavelength dependent contrast between Hb and the background, and effective periodicity of the grooves were evaluated. Results demonstrate that a lens-less CMOS camera is capable of capturing images of subsurface structures with large field of view.

  16. Wide modulation bandwidth terahertz detection in 130 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Nahar, Shamsun; Shafee, Marwah; Blin, Stéphane; Pénarier, Annick; Nouvel, Philippe; Coquillat, Dominique; Safwa, Amr M. E.; Knap, Wojciech; Hella, Mona M.

    2016-11-01

    Design, manufacturing and measurements results for silicon plasma wave transistors based wireless communication wideband receivers operating at 300 GHz carrier frequency are presented. We show the possibility of Si-CMOS based integrated circuits, in which by: (i) specific physics based plasma wave transistor design allowing impedance matching to the antenna and the amplifier, (ii) engineering the shape of the patch antenna through a stacked resonator approach and (iii) applying bandwidth enhancement strategies to the design of integrated broadband amplifier, we achieve an integrated circuit of the 300 GHz carrier frequency receiver for wireless wideband operation up to/over 10 GHz. This is, to the best of our knowledge, the first demonstration of low cost 130 nm Si-CMOS technology, plasma wave transistors based fast/wideband integrated receiver operating at 300 GHz atmospheric window. These results pave the way towards future large scale (cost effective) silicon technology based terahertz wireless communication receivers.

  17. Radiation Hard 0.13 Micron CMOS Library at IHP

    NASA Astrophysics Data System (ADS)

    Jagdhold, U.

    2013-08-01

    To support space applications we have developed an 0.13 micron CMOS library which should be radiation hard up to 200 krad. The article describes the concept to come to a radiation hard digital circuit and was introduces in 2010 [1]. By introducing new radiation hard design rules we will minimize IC-level leakage and single event latch-up (SEL). To reduce single event upset (SEU) we add two p-MOS transistors to all flip flops. For reliability reasons we use double contacts in all library elements. The additional rules and the library elements are integrated in our Cadence mixed signal design kit, “Virtuoso” IC6.1 [2]. A test chip is produced with our in house 0.13 micron BiCMOS technology, see Ref. [3]. As next step we will doing radiation tests according the european space agency (ESA) specifications, see Ref. [4], [5].

  18. TID Simulation of Advanced CMOS Devices for Space Applications

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    2016-07-01

    This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.

  19. Micromachined high-performance RF passives in CMOS substrate

    NASA Astrophysics Data System (ADS)

    Li, Xinxin; Ni, Zao; Gu, Lei; Wu, Zhengzheng; Yang, Chen

    2016-11-01

    This review systematically addresses the micromachining technologies used for the fabrication of high-performance radio-frequency (RF) passives that can be integrated into low-cost complementary metal-oxide semiconductor (CMOS)-grade (i.e. low-resistivity) silicon wafers. With the development of various kinds of post-CMOS-compatible microelectromechanical systems (MEMS) processes, 3D structural inductors/transformers, variable capacitors, tunable resonators and band-pass/low-pass filters can be compatibly integrated into active integrated circuits to form monolithic RF system-on-chips. By using MEMS processes, including substrate modifying/suspending and LIGA-like metal electroplating, both the highly lossy substrate effect and the resistive loss can be largely eliminated and depressed, thereby meeting the high-performance requirements of telecommunication applications.

  20. A back-illuminated megapixel CMOS image sensor

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas; Nikzad, Shouleh; Hoenk, Michael; Jones, Todd; Wrigley, Chris; Hancock, Bruce

    2005-01-01

    In this paper, we present the test and characterization results for a back-illuminated megapixel CMOS imager. The imager pixel consists of a standard junction photodiode coupled to a three transistor-per-pixel switched source-follower readout [1]. The imager also consists of integrated timing and control and bias generation circuits, and provides analog output. The analog column-scan circuits were implemented in such a way that the imager could be configured to run in off-chip correlated double-sampling (CDS) mode. The imager was originally designed for normal front-illuminated operation, and was fabricated in a commercially available 0.5 pn triple-metal CMOS-imager compatible process. For backside illumination, the imager was thinned by etching away the substrate was etched away in a post-fabrication processing step.

  1. A novel noise optimization technique for inductively degenerated CMOS LNA

    NASA Astrophysics Data System (ADS)

    Zhiqing, Geng; Haiyong, Wang; Nanjian, Wu

    2009-10-01

    This paper proposes a novel noise optimization technique. The technique gives analytical formulae for the noise performance of inductively degenerated CMOS low noise amplifier (LNA) circuits with an ideal gate inductor for a fixed bias voltage and nonideal gate inductor for a fixed power dissipation, respectively, by mathematical analysis and reasonable approximation methods. LNA circuits with required noise figure can be designed effectively and rapidly just by using hand calculations of the proposed formulae. We design a 1.8 GHz LNA in a TSMC 0.25 μm CMOS process. The measured results show a noise figure of 1.6 dB with a forward gain of 14.4 dB at a power consumption of 5 mW, demonstrating that the designed LNA circuits can achieve low noise figure levels at low power dissipation.

  2. On testing stuck-open faults in CMOS combinational circuits

    NASA Technical Reports Server (NTRS)

    Chandramouli, R.

    1982-01-01

    Recently it has been found that a class of failure related to a particular technology (CMOS) cannot be modelled as the conventional stuck-at fault model. These failures change the combinational behavior of CMOS logic gates into a sequential one. Such a failure is modelled as a fault, called the Stuck-Open fault (SOP). The object of this paper is to develop a procedure to detect single SOPs in combinational circuits. It is shown, that in general, tests generated for stuck-at faults when applied in a particular sequence will detect all single SOP faults. In case of single redundancy in the network, the SOP fault on the redundant line cannot be detected. When there is reconvergent fan-out in the network, there is a one-one correspondence between the conditions for stuck-at fault and stuck-open fault detectability.

  3. Development of CMOS-compatible membrane projection lithography

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce; Samora, Sally; Wiwi, Mike; Wendt, Joel R.

    2013-09-01

    Recently we have demonstrated membrane projection lithography (MPL) as a fabrication approach capable of creating 3D structures with sub-micron metallic inclusions for use in metamaterial and plasmonic applications using polymer material systems. While polymers provide several advantages in processing, they are soft and subject to stress-induced buckling. Furthermore, in next generation active photonic structures, integration of photonic components with CMOS electronics is desirable. While the MPL process flow is conceptually simple, it requires matrix, membrane and backfill materials with orthogonal processing deposition/removal chemistries. By transitioning the MPL process flow into an entirely inorganic material set based around silicon and standard CMOS-compatible materials, several elements of silicon microelectronics can be integrated into photonic devices at the unit-cell scale. This paper will present detailed fabrication and characterization data of these materials, emphasizing the processing trade space as well as optical characterization of the resulting structures.

  4. Dark current study for CMOS fully integrated-PIN-photodiodes

    NASA Astrophysics Data System (ADS)

    Teva, Jordi; Jessenig, Stefan; Jonak-Auer, Ingrid; Schrank, Franz; Wachmann, Ewald

    2011-05-01

    PIN photodiodes are semiconductor devices widely used in a huge range of applications, such as photoconductors, charge-coupled devices and pulse oximeters for medical applications. The possibility to combine and to integrate the fabrication of the sensor with its signal conditioning circuitry in a CMOS process allows device miniaturization in addition to enhance its properties lowering the production and assembly costs. This paper presents the design and characterization of silicon based PIN photodiodes integrated in a CMOS commercial process. A high-resistivity, low impurity substrate is chosen as the start material for the PIN photodiode array fabrication in order to fabricate devices with a minimum dark current. The dark current is studied, analyzed and measured for two different starting materials and for different geometries. A model previously proposed is reviewed and compared with experimental data.

  5. Monolithic CMOS-MEMS integration for high-g accelerometers

    NASA Astrophysics Data System (ADS)

    Narasimhan, Vinayak; Li, Holden; Tan, Chuan Seng

    2014-10-01

    This paper highlights work-in-progress towards the conceptualization, simulation, fabrication and initial testing of a silicon-germanium (SiGe) integrated CMOS-MEMS high-g accelerometer for military, munition, fuze and shock measurement applications. Developed on IMEC's SiGe MEMS platform, the MEMS offers a dynamic range of 5,000 g and a bandwidth of 12 kHz. The low noise readout circuit adopts a chopper-stabilization technique implementing the CMOS through the TSMC 0.18 µm process. The device structure employs a fully differential split comb-drive set up with two sets of stators and a rotor all driven separately. Dummy structures acting as protective over-range stops were designed to protect the active components when under impacts well above the designed dynamic range.

  6. 324GHz CMOS VCO Using Linear Superimposition Technique

    NASA Technical Reports Server (NTRS)

    Daquan, Huang; LaRocca, Tim R.; Samoska, Lorene A; Fung, Andy; Chang, Frank

    2007-01-01

    Terahertz (frequencies ranged from 300GHz to 3THz) imaging and spectroscopic systems have drawn increasing attention recently due to their unique capabilities in detecting and possibly analyzing concealed objects. The generation of terahertz signals is nonetheless nontrivial and traditionally accomplished by using either free-electron radiation, optical lasers, Gunn diodes or fundamental oscillation by using III-V based HBT/HEMT technology[1-3]... We have substantially extended the operation range of deep-scaled CMOS by using a linear superimposition method, in which we have realized a 324GHz VCO in 90nm digital CMOS with 4GHz tuning range under 1V supply voltage. This may also pave the way for ultra-high data rate wireless communications beyond that of IEEE 802.15.3c and reach data rates comparable to that of fiber optical communications, such as OC768 (40Gbps) and beyond.

  7. CMOS floating-point vector-arithmetic unit

    NASA Astrophysics Data System (ADS)

    Timmermann, D.; Rix, B.; Hahn, H.; Hosticka, B. J.

    1994-05-01

    This work describes a floating-point arithmetic unit based on the CORDIC algorithm. The unit computes a full set of high level arithmetic and elementary functions: multiplication, division, (co)sine, hyperbolic (co)sine, square root, natural logarithm, inverse (hyperbolic) tangent, vector norm, and phase. The chip has been integrated in 1.6 micron double-metal n-well CMOS technology and achieves a normalized peak performance of 220 MFLOPS.

  8. Hybrid CMOS/Nanodevice Integrated Circuits Design and Fabrication

    DTIC Science & Technology

    2008-08-25

    This approach combines a semiconductor transistor system with a nanowire crossbar, with simple two-terminal nanodevices self-assembled at each...hybrid CMOS/nanodevice integrated circuits [10-12]. Such circuit combines a semiconductor transistors system with a nanowire crossbar, with simple two...both with and without embedded metallic clusters), self-assembled molecular monolayers, and thin chalcogenide and crystalline perovskite layers [20

  9. CMOS Alcohol Sensor Employing ZnO Nanowire Sensing Films

    NASA Astrophysics Data System (ADS)

    Santra, S.; Ali, S. Z.; Guha, P. K.; Hiralal, P.; Unalan, H. E.; Dalal, S. H.; Covington, J. A.; Milne, W. I.; Gardner, J. W.; Udrea, F.

    2009-05-01

    This paper reports on the utilization of zinc oxide nanowires (ZnO NWs) on a silicon on insulator (SOI) CMOS micro-hotplate for use as an alcohol sensor. The device was designed in Cadence and fabricated in a 1.0 μm SOI CMOS process at XFAB (Germany). The basic resistive gas sensor comprises of a metal micro-heater (made of aluminum) embedded in an ultra-thin membrane. Gold plated aluminum electrodes, formed of the top metal, are used for contacting with the sensing material. This design allows high operating temperatures with low power consumption. The membrane was formed by using deep reactive ion etching. ZnO NWs were grown on SOI CMOS substrates by a simple and low-cost hydrothermal method. A few nanometer of ZnO seed layer was first sputtered on the chips, using a metal mask, and then the chips were dipped in a zinc nitrate hexahydrate and hexamethylenetramine solution at 90° C to grow ZnO NWs. The chemical sensitivity of the on-chip NWs were studied in the presence of ethanol (C2H5OH) vapour (with 10% relative humidity) at two different temperatures: 200 and 250° C (the corresponding power consumptions are only 18 and 22 mW). The concentrations of ethanol vapour were varied from 175-1484 ppm (pers per million) and the maximum response was observed 40% (change in resistance in %) at 786 ppm at 250° C. These preliminary measurements showed that the on-chip deposited ZnO NWs could be a promising material for a CMOS based ethanol sensor.

  10. Integrated CMOS transceiver for indoor optical wireless links

    NASA Astrophysics Data System (ADS)

    Holburn, David M.; Lalithambika, Vinod A.; Joyner, Valencia M.; Samsudin, Rina J.; Mears, Robert J.

    2001-11-01

    The purpose of this work is to develop integrated CMOS designs for optical transceivers at 1.55um wavelength that both meet the current system specification of 155Mb/s and provide a viable upgrade path to higher bit-rates. We present the design and implementation of an integrated multi-channel CMOS transceiver for use in a cellular 155Mb/s Manchester-coded optical wireless link. The receiver is an angle-diversity design and consists of multiple sectors with relatively small field of view; each driving an individual pre-amplifier channel. An on-chip selector selects signals to be passed to the combiner depending on the signal level and external control signals. The outputs of all the selected channels are combined using a current summing junction, implemented using a transconductance-transimpedance approach. In order to achieve a receiver design that will be robust in the face of process variations, an on-chip circuit is provided to maintain the operating point of the amplifier chain. The design has been optimized to achieve -30dBm sensitivity at a BER of 10-9. The CMOS transmitter circuit is tailored to match the electro-optic response of the resonant cavity LEDs being used. The transmitter driver incorporates current-peaking and charge-extraction circuitry using a novel timing generator, and has been designed to achieve rise and fall times of better than 0.2ns. Considerable effort is being directed towards the development of integrated designs which do not require significant numbers of discrete components. The prototype designs are being realised in a 0.7μm commodity mixed-signal CMOS process by Alcatel Microelectronics. We report results from the first prototype multi-channel demonstrator system and discuss future research directions.

  11. Performance Analysis of Visible Light Communication Using CMOS Sensors.

    PubMed

    Do, Trong-Hop; Yoo, Myungsik

    2016-02-29

    This paper elucidates the fundamentals of visible light communication systems that use the rolling shutter mechanism of CMOS sensors. All related information involving different subjects, such as photometry, camera operation, photography and image processing, are studied in tandem to explain the system. Then, the system performance is analyzed with respect to signal quality and data rate. To this end, a measure of signal quality, the signal to interference plus noise ratio (SINR), is formulated. Finally, a simulation is conducted to verify the analysis.

  12. Hardening of commercial CMOS PROMs with polysilicon fusible links

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Rauchfuss, J. E.

    1985-01-01

    The method by which a commercial 4K CMOS PROM with polysilicon fuses was hardened and the feasibility of applying this method to a 16K PROM are presented. A description of the process and the necessary minor modifications to the original layout are given. The PROM circuit and discrete device characteristics over radiation to 1000K rad-Si are summarized. The dose rate sensitivity of the 4K PROMs is also presented.

  13. Accelerated life testing effects on CMOS microcircuit characteristics, phase 1

    NASA Technical Reports Server (NTRS)

    Maximow, B.

    1976-01-01

    An accelerated life test of sufficient duration to generate a minimum of 50% cumulative failures in lots of CMOS devices was conducted to provide a basis for determining the consistency of activation energy at 250 C. An investigation was made to determine whether any thresholds were exceeded during the high temperature testing, which could trigger failure mechanisms unique to that temperature. The usefulness of the 250 C temperature test as a predictor of long term reliability was evaluated.

  14. Linear dynamic range enhancement in a CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2008-01-01

    A CMOS imager with increased linear dynamic range but without degradation in noise, responsivity, linearity, fixed-pattern noise, or photometric calibration comprises a linear calibrated dual gain pixel in which the gain is reduced after a pre-defined threshold level by switching in an additional capacitance. The pixel may include a novel on-pixel latch circuit that is used to switch in the additional capacitance.

  15. CMOS integration of inkjet-printed graphene for humidity sensing

    PubMed Central

    Santra, S.; Hu, G.; Howe, R. C. T.; De Luca, A.; Ali, S. Z.; Udrea, F.; Gardner, J. W.; Ray, S. K.; Guha, P. K.; Hasan, T.

    2015-01-01

    We report on the integration of inkjet-printed graphene with a CMOS micro-electro-mechanical-system (MEMS) microhotplate for humidity sensing. The graphene ink is produced via ultrasonic assisted liquid phase exfoliation in isopropyl alcohol (IPA) using polyvinyl pyrrolidone (PVP) polymer as the stabilizer. We formulate inks with different graphene concentrations, which are then deposited through inkjet printing over predefined interdigitated gold electrodes on a CMOS microhotplate. The graphene flakes form a percolating network to render the resultant graphene-PVP thin film conductive, which varies in presence of humidity due to swelling of the hygroscopic PVP host. When the sensors are exposed to relative humidity ranging from 10–80%, we observe significant changes in resistance with increasing sensitivity from the amount of graphene in the inks. Our sensors show excellent repeatability and stability, over a period of several weeks. The location specific deposition of functional graphene ink onto a low cost CMOS platform has the potential for high volume, economic manufacturing and application as a new generation of miniature, low power humidity sensors for the internet of things. PMID:26616216

  16. Low voltage electron multiplying CCD in a CMOS process

    NASA Astrophysics Data System (ADS)

    Dunford, Alice; Stefanov, Konstantin; Holland, Andrew

    2016-07-01

    Low light level and high-speed image sensors as required for space applications can suffer from a decrease in the signal to noise ratio (SNR) due to the photon-starved environment and limitations of the sensor's readout noise. The SNR can be increased by the implementation of Time Delay Integration (TDI) as it allows photoelectrons from multiple exposures to be summed in the charge domain with no added noise. Electron Multiplication (EM) can further improve the SNR and lead to an increase in device performance. However, both techniques have traditionally been confined to Charge Coupled Devices (CCD) due to the efficient charge transfer required. With the increase in demand for CMOS sensors with equivalent or superior functionality and performance, this paper presents findings from the characterisation of a low voltage EMCCD in a CMOS process using advanced design features to increase the electron multiplying gain. By using the CMOS process, it is possible to increase chip integration and functionality and achieve higher readout speeds and reduced pixel size. The presented characterisation results include analysis of the photon transfer curve, the dark current, the electron multiplying gain and analysis of the parameters' dependence on temperature and operating voltage.

  17. Multi-target electrochemical biosensing enabled by integrated CMOS electronics

    NASA Astrophysics Data System (ADS)

    Rothe, J.; Lewandowska, M. K.; Heer, F.; Frey, O.; Hierlemann, A.

    2011-05-01

    An integrated electrochemical measurement system, based on CMOS technology, is presented, which allows the detection of several analytes in parallel (multi-analyte) and enables simultaneous monitoring at different locations (multi-site). The system comprises a 576-electrode CMOS sensor chip, an FPGA module for chip control and data processing, and the measurement laptop. The advantages of the highly versatile system are demonstrated by two applications. First, a label-free, hybridization-based DNA sensor is enabled by the possibility of large-scale integration in CMOS technology. Second, the detection of the neurotransmitter choline is presented by assembling the chip with biosensor microprobe arrays. The low noise level enables a limit of detection of, e.g., 0.3 µM choline. The fully integrated system is self-contained: it features cleaning, functionalization and measurement functions without the need for additional electrical equipment. With the power supplied by the laptop, the system is very suitable for on-site measurements.

  18. Polycrystalline Mercuric Iodide Films on CMOS Readout Arrays

    PubMed Central

    Hartsough, Neal E.; Iwanczyk, Jan S.; Nygard, Einar; Malakhov, Nail; Barber, William C.; Gandhi, Thulasidharan

    2009-01-01

    We have created high-resolution x-ray imaging devices using polycrystalline mercuric iodide (HgI2) films grown directly onto CMOS readout chips using a thermal vapor transport process. Images from prototype 400×400 pixel HgI2-coated CMOS readout chips are presented, where the pixel grid is 30 μm × 30 μm. The devices exhibited sensitivity of 6.2 μC/Rcm2 with corresponding dark current of ∼2.7 nA/cm2, and a 80 μm FWHM planar image response to a 50 μm slit aperture. X-ray CT images demonstrate a point spread function sufficient to obtain a 50 μm spatial resolution in reconstructed CT images at a substantially reduced dose compared to phosphor-coated readouts. The use of CMOS technology allows for small pixels (30 μm), fast readout speeds (8 fps for a 3200×3200 pixel array), and future design flexibility due to the use of well-developed fabrication processes. PMID:20161098

  19. Seamless integration of CMOS and microfluidics using flip chip bonding

    NASA Astrophysics Data System (ADS)

    Welch, David; Blain Christen, Jennifer

    2013-03-01

    We demonstrate the microassembly of PDMS (polydimethylsiloxane) microfluidics with integrated circuits made in complementary metal-oxide-semiconductor (CMOS) processes. CMOS-sized chips are flip chip bonded to a flexible polyimide printed circuit board (PCB) with commercially available solder paste patterned using a SU-8 epoxy. The average resistance of each flip chip bond is negligible and all connections are electrically isolated. PDMS is attached to the flexible polyimide PCB using a combination of oxygen plasma treatment and chemical bonding with 3-aminopropyltriethoxysilane. The total device has a burst pressure of 175 kPA which is limited by the strength of the flip chip attachment. This technique allows the sensor area of the die to act as the bottom of the microfluidic channel. The SU-8 provides a barrier between the pad ring (electrical interface) and the fluids; post-processing is not required on the CMOS die. This assembly method shows great promise for developing analytic systems which combine the strengths of microelectronics and microfluidics into one device.

  20. From vertex detectors to inner trackers with CMOS pixel sensors

    NASA Astrophysics Data System (ADS)

    Besson, A.; Pérez, A. Pérez; Spiriti, E.; Baudot, J.; Claus, G.; Goffe, M.; Winter, M.

    2017-02-01

    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming applications like the upgraded ALICE Inner Tracking System (ITS), which requires sensors with one order of magnitude improvement on readout speed and improved radiation tolerance. This triggered the exploration of a deeper sub-micron CMOS technology, Tower-Jazz 180 nm, for the design of a CPS well adapted for the new ALICE-ITS running conditions. This paper reports the R & D results for the conception of a CPS well adapted for the ALICE-ITS.

  1. Aluminum nitride on titanium for CMOS compatible piezoelectric transducers

    PubMed Central

    Doll, Joseph C; Petzold, Bryan C; Ninan, Biju; Mullapudi, Ravi; Pruitt, Beth L

    2010-01-01

    Piezoelectric materials are widely used for microscale sensors and actuators but can pose material compatibility challenges. This paper reports a post-CMOS compatible fabrication process for piezoelectric sensors and actuators on silicon using only standard CMOS metals. The piezoelectric properties of aluminum nitride (AlN) deposited on titanium (Ti) by reactive sputtering are characterized and microcantilever actuators are demonstrated. The film texture of the polycrystalline Ti and AlN films is improved by removing the native oxide from the silicon substrate in situ and sequentially depositing the films under vacuum to provide a uniform growth surface. The piezoelectric properties for several AlN film thicknesses are measured using laser doppler vibrometry on unpatterned wafers and released cantilever beams. The film structure and properties are shown to vary with thickness, with values of d33f, d31 and d33 of up to 2.9, −1.9 and 6.5 pm V−1, respectively. These values are comparable with AlN deposited on a Pt metal electrode, but with the benefit of a fabrication process that uses only standard CMOS metals. PMID:20333316

  2. CCD/CMOS hybrid FPA for low light level imaging

    NASA Astrophysics Data System (ADS)

    Liu, Xinqiao; Fowler, Boyd A.; Onishi, Steve K.; Vu, Paul; Wen, David D.; Do, Hung; Horn, Stuart

    2005-08-01

    We present a CCD / CMOS hybrid focal plane array (FPA) for low light level imaging applications. The hybrid approach combines the best of CCD imaging characteristics (e.g. high quantum efficiency, low dark current, excellent uniformity, and low pixel cross talk) with the high speed, low power and ultra-low read noise of CMOS readout technology. The FPA is comprised of two CMOS readout integrated circuits (ROIC) that are bump bonded to a CCD imaging substrate. Each ROIC is an array of Capacitive Transimpedence Amplifiers (CTIA) that connect to the CCD columns via indium bumps. The proposed column parallel readout architecture eliminates the slow speed, high noise, and high power limitations of a conventional CCD. This results in a compact, low power, ultra-sensitive solid-state FPA that can be used in low light level applications such as live-cell microscopy and security cameras at room temperature operation. The prototype FPA has a 1280×1024 format with 12-um square pixels. Measured dark current is less than 5.8 pA/cm2 at room temperature and the overall read noise is as low as 2.9e at 30 frames/sec.

  3. Fully depleted and backside biased monolithic CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Stefanov, Konstantin D.; Clarke, Andrew S.; Holland, Andrew D.

    2016-07-01

    We are presenting a novel concept for a fully depleted, monolithic, pinned photodiode CMOS image sensor using reverse substrate bias. The principle of operation allows the manufacture of backside illuminated CMOS sensors with active thickness in excess of 100 μm. This helps increase the QE at near-IR and soft X-ray wavelengths, while preserving the excellent characteristics associated with the pinned photodiode sensitive elements. Such sensors are relevant to a wide range of applications, including scientific imaging, astronomy, Earth observation and surveillance. A prototype device with 10 μm and 5.4 μm pixels using this concept has been designed and is being manufactured on a 0.18 μm CMOS image sensor process. Only one additional implantation step has been introduced to the normal manufacturing flow to make this device. The paper discusses the design of the sensor and the challenges that had to be overcome to realise it in practice, and in particular the method of achieving full depletion without parasitic substrate currents. It is expected that this new technology can be competitive with modern backside illuminated thick CCDs for use at visible to near-IR telescopes and synchrotron light sources.

  4. Development of CMOS Imager Block for Capsule Endoscope

    NASA Astrophysics Data System (ADS)

    Shafie, S.; Fodzi, F. A. M.; Tung, L. Q.; Lioe, D. X.; Halin, I. A.; Hasan, W. Z. W.; Jaafar, H.

    2014-04-01

    This paper presents the development of imager block to be associated in a capsule endoscopy system. Since the capsule endoscope is used to diagnose gastrointestinal diseases, the imager block must be in small size which is comfortable for the patients to swallow. In this project, a small size 1.5V button battery is used as the power supply while the voltage supply requirements for other components such as microcontroller and CMOS image sensor are higher. Therefore, a voltage booster circuit is proposed to boost up the voltage supply from 1.5V to 3.3V. A low power microcontroller is used to generate control pulses for the CMOS image sensor and to convert the 8-bits parallel data output to serial data to be transmitted to the display panel. The results show that the voltage booster circuit was able to boost the voltage supply from 1.5V to 3.3V. The microcontroller precisely controls the CMOS image sensor to produce parallel data which is then serialized again by the microcontroller. The serial data is then successfully translated to 2fps image and displayed on computer.

  5. Cryogenic CMOS circuits for single charge digital readout.

    SciTech Connect

    Gurrieri, Thomas M.; Longoria, Erin Michelle; Eng, Kevin; Carroll, Malcolm S.; Hamlet, Jason R.; Young, Ralph Watson

    2010-03-01

    The readout of a solid state qubit often relies on single charge sensitive electrometry. However the combination of fast and accurate measurements is non trivial due to large RC time constants due to the electrometers resistance and shunt capacitance from wires between the cold stage and room temperature. Currently fast sensitive measurements are accomplished through rf reflectrometry. I will present an alternative single charge readout technique based on cryogenic CMOS circuits in hopes to improve speed, signal-to-noise, power consumption and simplicity in implementation. The readout circuit is based on a current comparator where changes in current from an electrometer will trigger a digital output. These circuits were fabricated using Sandia's 0.35 {micro}m CMOS foundry process. Initial measurements of comparators with an addition a current amplifier have displayed current sensitivities of < 1nA at 4.2K, switching speeds up to {approx}120ns, while consuming {approx}10 {micro}W. I will also discuss an investigation of noise characterization of our CMOS process in hopes to obtain a better understanding of the ultimate limit in signal to noise performance.

  6. CMOS integration of inkjet-printed graphene for humidity sensing.

    PubMed

    Santra, S; Hu, G; Howe, R C T; De Luca, A; Ali, S Z; Udrea, F; Gardner, J W; Ray, S K; Guha, P K; Hasan, T

    2015-11-30

    We report on the integration of inkjet-printed graphene with a CMOS micro-electro-mechanical-system (MEMS) microhotplate for humidity sensing. The graphene ink is produced via ultrasonic assisted liquid phase exfoliation in isopropyl alcohol (IPA) using polyvinyl pyrrolidone (PVP) polymer as the stabilizer. We formulate inks with different graphene concentrations, which are then deposited through inkjet printing over predefined interdigitated gold electrodes on a CMOS microhotplate. The graphene flakes form a percolating network to render the resultant graphene-PVP thin film conductive, which varies in presence of humidity due to swelling of the hygroscopic PVP host. When the sensors are exposed to relative humidity ranging from 10-80%, we observe significant changes in resistance with increasing sensitivity from the amount of graphene in the inks. Our sensors show excellent repeatability and stability, over a period of several weeks. The location specific deposition of functional graphene ink onto a low cost CMOS platform has the potential for high volume, economic manufacturing and application as a new generation of miniature, low power humidity sensors for the internet of things.

  7. Single photon detection and localization accuracy with an ebCMOS camera

    NASA Astrophysics Data System (ADS)

    Cajgfinger, T.; Dominjon, A.; Barbier, R.

    2015-07-01

    The CMOS sensor technologies evolve very fast and offer today very promising solutions to existing issues facing by imaging camera systems. CMOS sensors are very attractive for fast and sensitive imaging thanks to their low pixel noise (1e-) and their possibility of backside illumination. The ebCMOS group of IPNL has produced a camera system dedicated to Low Light Level detection and based on a 640 kPixels ebCMOS with its acquisition system. After reminding the principle of detection of an ebCMOS and the characteristics of our prototype, we confront our camera to other imaging systems. We compare the identification efficiency and the localization accuracy of a point source by four different photo-detection devices: the scientific CMOS (sCMOS), the Charge Coupled Device (CDD), the Electron Multiplying CCD (emCCD) and the Electron Bombarded CMOS (ebCMOS). Our ebCMOS camera is able to identify a single photon source in less than 10 ms with a localization accuracy better than 1 μm. We report as well efficiency measurement and the false positive identification of the ebCMOS camera by identifying more than hundreds of single photon sources in parallel. About 700 spots are identified with a detection efficiency higher than 90% and a false positive percentage lower than 5. With these measurements, we show that our target tracking algorithm can be implemented in real time at 500 frames per second under a photon flux of the order of 8000 photons per frame. These results demonstrate that the ebCMOS camera concept with its single photon detection and target tracking algorithm is one of the best devices for low light and fast applications such as bioluminescence imaging, quantum dots tracking or adaptive optics.

  8. CMOS Integrated Single Electron Transistor Electrometry (CMOS-SET) circuit design for nanosecond quantum-bit read-out.

    SciTech Connect

    Gurrieri, Thomas M.; Lilly, Michael Patrick; Carroll, Malcolm S.; Levy, James E.

    2008-08-01

    Novel single electron transistor (SET) read-out circuit designs are described. The circuits use a silicon SET interfaced to a CMOS voltage mode or current mode comparator to obtain a digital read-out of the state of the qubit. The design assumes standard submicron (0.35 um) CMOS SOI technology using room temperature SPICE models. Implications and uncertainties related to the temperature scaling of these models to 100mK operation are discussed. Using this technology, the simulations predict a read-out operation speed of approximately Ins and a power dissipation per cell as low as 2nW for single-shot read-out, which is a significant advantage over currently used radio frequency SET (RF-SET) approaches.

  9. Novel digital logic gate for high-performance CMOS imaging system

    NASA Astrophysics Data System (ADS)

    Chung, Hoon H.; Joo, Youngjoong

    2004-06-01

    In these days, the CMOS image sensors are commonly used in many low resolution applications because the CMOS imaging system has several advantages against the conventional CCD imaging system. However, there are still several problems for the realization of the single-chip CMOS imaging system. One main problem is the substrate coupling noise, which is caused by the digital switching noise. Because the CMOS image sensors share the same substrate with surrounding digital circuit, it is difficult for the CMOS image sensor to get a good performance. In order to investigate the substrate coupling noise effect of the CMOS image sensor, the conventional CMOS logic, C-CBL (Complementary-Current balanced logic) and proposed low switching noise logic are simulated and compared. Consequently, the proposed logic compensates not only the large digital switching noise of conventional CMOS logic ,but also the huge power consumption of the C-CBL. Both the total instantaneous current behaviors on the power supply and the peak-to-peak voltages of the substrate voltage variation (di/dt noise) are investigated. The simulation is performed by AMI 0.5μm CMOS technology.

  10. Growth of carbon nanotubes on fully processed silicon-on-insulator CMOS substrates.

    PubMed

    Haque, M Samiul; Ali, S Zeeshan; Guha, P K; Oei, S P; Park, J; Maeng, S; Teo, K B K; Udrea, F; Milne, W I

    2008-11-01

    This paper describes the growth of Carbon Nanotubes (CNTs) both aligned and non-aligned on fully processed CMOS substrates containing high temperature tungsten metallization. While the growth method has been demonstrated in fabricating CNT gas sensitive layers for high temperatures SOI CMOS sensors, it can be employed in a variety of applications which require the use of CNTs or other nanomaterials with CMOS electronics. In our experiments we have grown CNTs both on SOI CMOS substrates and SOI CMOS microhotplates (suspended on membranes formed by post-CMOS deep RIE etching). The fully processed SOI substrates contain CMOS devices and circuits and additionally, some wafers contained high current LDMOSFETs and bipolar structures such as Lateral Insulated Gate Bipolar Transistors. All these devices were used as test structures to investigate the effect of additional post-CMOS processing such as CNT growth, membrane formation, high temperature annealing, etc. Electrical characterisation of the devices with CNTs were performed along with SEM and Raman spectroscopy. The CNTs were grown both at low and high temperatures, the former being compatible with Aluminium metallization while the latter being possible through the use of the high temperature CMOS metallization (Tungsten). In both cases we have found that there is no change in the electrical behaviour of the CMOS devices, circuits or the high current devices. A slight degradation of the thermal performance of the CMOS microhotplates was observed due to the extra heat dissipation path created by the CNT layers, but this is expected as CNTs exhibit a high thermal conductance. In addition we also observed that in the case of high temperature CNT growth a slight degradation in the manufacturing yield was observed. This is especially the case where large area membranes with a diameter in excess of 500 microns are used.

  11. Fully depleted CMOS pixel sensor development and potential applications

    SciTech Connect

    Baudot, J.; Kachel, M.

    2015-07-01

    CMOS pixel sensors are often opposed to hybrid pixel sensors due to their very different sensitive layer. In standard CMOS imaging processes, a thin (about 20 μm) low resistivity epitaxial layer acts as the sensitive volume and charge collection is mostly driven by thermal agitation. In contrast, the so-called hybrid pixel technology exploits a thick (typically 300 μm) silicon sensor with high resistivity allowing for the depletion of this volume, hence charges drift toward collecting electrodes. But this difference is fading away with the recent availability of some CMOS imaging processes based on a relatively thick (about 50 μm) high resistivity epitaxial layer which allows for full depletion. This evolution extents the range of applications for CMOS pixel sensors where their known assets, high sensitivity and granularity combined with embedded signal treatment, could potentially foster breakthrough in detection performances for specific scientific instruments. One such domain is the Xray detection for soft energies, typically below 10 keV, where the thin sensitive layer was previously severely impeding CMOS sensor usage. Another application becoming realistic for CMOS sensors, is the detection in environment with a high fluence of non-ionizing radiation, such as hadron colliders. However, when considering highly demanding applications, it is still to be proven that micro-circuits required to uniformly deplete the sensor at the pixel level, do not mitigate the sensitivity and efficiency required. Prototype sensors in two different technologies with resistivity higher than 1 kΩ, sensitive layer between 40 and 50 μm and featuring pixel pitch in the range 25 to 50 μm, have been designed and fabricated. Various biasing architectures were adopted to reach full depletion with only a few volts. Laboratory investigations with three types of sources (X-rays, β-rays and infrared light) demonstrated the validity of the approach with respect to depletion, keeping a

  12. Comparison of Total Dose Effects on Micropower Op-Amps: Bipolar and CMOS

    NASA Technical Reports Server (NTRS)

    Lee, C.; Johnston, A.

    1998-01-01

    This paper compares low-paper op-amps, OPA241 (bipolar) and OPA336 (CMOS), from Burr-Brown, MAX473 (bipolar) and MAX409 (CMOS), characterizing their total dose response with a single 2.7V power supply voltage.

  13. Integration of GMR-based spin torque oscillators and CMOS circuitry

    NASA Astrophysics Data System (ADS)

    Chen, Tingsu; Eklund, Anders; Sani, Sohrab; Rodriguez, Saul; Malm, B. Gunnar; Åkerman, Johan; Rusu, Ana

    2015-09-01

    This paper demonstrates the integration of giant magnetoresistance (GMR) spin torque oscillators (STO) with dedicated high frequency CMOS circuits. The wire-bonding-based integration approach is employed in this work, since it allows easy implementation, measurement and replacement. A GMR STO is wire-bonded to the dedicated CMOS integrated circuit (IC) mounted on a PCB, forming a (GMR STO + CMOS IC) pair. The GMR STO has a lateral size of 70 nm and more than an octave of tunability in the microwave frequency range. The proposed CMOS IC provides the necessary bias-tee for the GMR STO, as well as electrostatic discharge (ESD) protection and wideband amplification targeting high frequency GMR STO-based applications. It is implemented in a 65 nm CMOS process, offers a measured gain of 12 dB, while consuming only 14.3 mW and taking a total silicon area of 0.329 mm2. The measurement results show that the (GMR STO + CMOS IC) pair has a wide tunability range from 8 GHz to 16.5 GHz and improves the output power of the GMR STO by about 10 dB. This GMR STO-CMOS integration eliminates wave reflections during the signal transmission and therefore exhibits good potential for developing high frequency GMR STO-based applications, which combine the features of CMOS and STO technologies.

  14. 77 FR 33488 - Certain CMOS Image Sensors and Products Containing Same; Institution of Investigation Pursuant to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... COMMISSION Certain CMOS Image Sensors and Products Containing Same; Institution of Investigation Pursuant to... States after importation of certain CMOS image sensors and products containing same by reason of... image sensors and products containing same that infringe one or more of claims 1 and 2 of the...

  15. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager

    PubMed Central

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2012-01-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm2 at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm2. Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm2 while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt. PMID:23136624

  16. NV-CMOS HD camera for day/night imaging

    NASA Astrophysics Data System (ADS)

    Vogelsong, T.; Tower, J.; Sudol, Thomas; Senko, T.; Chodelka, D.

    2014-06-01

    SRI International (SRI) has developed a new multi-purpose day/night video camera with low-light imaging performance comparable to an image intensifier, while offering the size, weight, ruggedness, and cost advantages enabled by the use of SRI's NV-CMOS HD digital image sensor chip. The digital video output is ideal for image enhancement, sharing with others through networking, video capture for data analysis, or fusion with thermal cameras. The camera provides Camera Link output with HD/WUXGA resolution of 1920 x 1200 pixels operating at 60 Hz. Windowing to smaller sizes enables operation at higher frame rates. High sensitivity is achieved through use of backside illumination, providing high Quantum Efficiency (QE) across the visible and near infrared (NIR) bands (peak QE <90%), as well as projected low noise (<2h+) readout. Power consumption is minimized in the camera, which operates from a single 5V supply. The NVCMOS HD camera provides a substantial reduction in size, weight, and power (SWaP) , ideal for SWaP-constrained day/night imaging platforms such as UAVs, ground vehicles, fixed mount surveillance, and may be reconfigured for mobile soldier operations such as night vision goggles and weapon sights. In addition the camera with the NV-CMOS HD imager is suitable for high performance digital cinematography/broadcast systems, biofluorescence/microscopy imaging, day/night security and surveillance, and other high-end applications which require HD video imaging with high sensitivity and wide dynamic range. The camera comes with an array of lens mounts including C-mount and F-mount. The latest test data from the NV-CMOS HD camera will be presented.

  17. SOI CMOS Imager with Suppression of Cross-Talk

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Zheng, Xingyu; Cunningham, Thomas J.; Seshadri, Suresh; Sun, Chao

    2009-01-01

    A monolithic silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) image-detecting integrated circuit of the active-pixel-sensor type, now undergoing development, is designed to operate at visible and near-infrared wavelengths and to offer a combination of high quantum efficiency and low diffusion and capacitive cross-talk among pixels. The imager is designed to be especially suitable for astronomical and astrophysical applications. The imager design could also readily be adapted to general scientific, biological, medical, and spectroscopic applications. One of the conditions needed to ensure both high quantum efficiency and low diffusion cross-talk is a relatively high reverse bias potential (between about 20 and about 50 V) on the photodiode in each pixel. Heretofore, a major obstacle to realization of this condition in a monolithic integrated circuit has been posed by the fact that the required high reverse bias on the photodiode is incompatible with metal oxide/semiconductor field-effect transistors (MOSFETs) in the CMOS pixel readout circuitry. In the imager now being developed, the SOI structure is utilized to overcome this obstacle: The handle wafer is retained and the photodiode is formed in the handle wafer. The MOSFETs are formed on the SOI layer, which is separated from the handle wafer by a buried oxide layer. The electrical isolation provided by the buried oxide layer makes it possible to bias the MOSFETs at CMOS-compatible potentials (between 0 and 3 V), while biasing the photodiode at the required higher potential, and enables independent optimization of the sensory and readout portions of the imager.

  18. Widefield heterodyne interferometry using a custom CMOS modulated light camera.

    PubMed

    Patel, Rikesh; Achamfuo-Yeboah, Samuel; Light, Roger; Clark, Matt

    2011-11-21

    In this paper a method of taking widefield heterodyne interferograms using a prototype modulated light camera is described. This custom CMOS modulated light camera (MLC) uses analogue quadrature demodulation at each pixel to output the phase and amplitude of the modulated light as DC voltages. The heterodyne interference fringe patterns are generated using an acousto-optical frequency shifter (AOFS) in an arm of a Mach-Zehnder interferometer. Widefield images of fringe patterns acquired using the prototype MLC are presented. The phase can be measured to an accuracy of ±6.6°. The added value of this method to acquire widefield images are discussed along with the advantages.

  19. Fabrication and Characterization of a CMOS-MEMS Humidity Sensor

    PubMed Central

    Dennis, John-Ojur; Ahmed, Abdelaziz-Yousif; Khir, Mohd-Haris

    2015-01-01

    This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensing principle is based on the change in amplitude of the device due to adsorption or desorption of humidity on the active material layer of titanium dioxide (TiO2) nanoparticles deposited on the moving plate, which results in changes in the mass of the device. The sensor has been designed and fabricated through a standard 0.35 µm CMOS process technology and post-CMOS micromachining technique has been successfully implemented to release the MEMS structures. The sensor is operated in the dynamic mode using electrothermal actuation and the output signal measured using a piezoresistive (PZR) sensor connected in a Wheatstone bridge circuit. The output voltage of the humidity sensor increases from 0.585 mV to 30.580 mV as the humidity increases from 35% RH to 95% RH. The output voltage is found to be linear from 0.585 mV to 3.250 mV as the humidity increased from 35% RH to 60% RH, with sensitivity of 0.107 mV/% RH; and again linear from 3.250 mV to 30.580 mV as the humidity level increases from 60% RH to 95% RH, with higher sensitivity of 0.781 mV/% RH. On the other hand, the sensitivity of the humidity sensor increases linearly from 0.102 mV/% RH to 0.501 mV/% RH with increase in the temperature from 40 °C to 80 °C and a maximum hysteresis of 0.87% RH is found at a relative humidity of 80%. The sensitivity is also frequency dependent, increasing from 0.500 mV/% RH at 2 Hz to reach a maximum value of 1.634 mV/% RH at a frequency of 12 Hz, then decreasing to 1.110 mV/% RH at a frequency of 20 Hz. Finally, the CMOS-MEMS humidity sensor showed comparable response, recovery, and repeatability of measurements in three cycles as compared to a standard sensor that directly

  20. A high speed CMOS A/D converter

    NASA Technical Reports Server (NTRS)

    Wiseman, Don R.; Whitaker, Sterling R.

    1992-01-01

    This paper presents a high speed analog-to-digital (A/D) converter. The converter is a 7 bit flash converter with one half LSB accuracy. Typical parts will function at approximately 200 MHz. The converter uses a novel comparator circuit that is shown to out perform more traditional comparators, and thus increases the speed of the converter. The comparator is a clocked, precharged circuit that offers very fast operation with a minimal offset voltage (2 mv). The converter was designed using a standard 1 micron digital CMOS process and is 2,244 microns by 3,972 microns.

  1. Design and optimization of BCCD in CMOS technology

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Li, Yi; Gao, Zhi-yuan; Luo, Tao

    2016-09-01

    This paper optimizes the buried channel charge-coupled device (BCCD) structure fabricated by complementary metal oxide semiconductor (CMOS) technology. The optimized BCCD has advantages of low noise, high integration and high image quality. The charge transfer process shows that interface traps, weak fringing fields and potential well between adjacent gates all cause the decrease of charge transfer efficiency ( CTE). CTE and well capacity are simulated with different operating voltages and gap sizes. CTE can achieve 99.999% and the well capacity reaches up to 25 000 electrons for the gap size of 130 nm and the maximum operating voltage of 3 V.

  2. A quasi-passive CMOS pipeline D/A converter

    NASA Technical Reports Server (NTRS)

    Wang, Fong-Jim; Temes, Gabor C.; Law, Simon

    1989-01-01

    A novel pipeline digital-to-analog converter configuration, based on switched-capacitor techniques, is described. An n-bit D/A conversion can be implemented by cascading n + 1 unit cells. The device count of the circuit increases linearly, not exponentially, with the conversion accuracy. The new configuration can be pipelined. Hence, the conversion rate can be increased without requiring a higher clock rate. An experimental 10-bit DAC prototype has been fabricated using a 3-micron CMOS process. The results show that high-speed, high-accuracy, and low-power operation can be achieved without special process or postprocess trimming.

  3. Silicide Nanowires for Low-Resistance CMOS Transistor Contacts.

    NASA Astrophysics Data System (ADS)

    Zollner, Stefan

    2007-03-01

    Transition metal (TM) silicide nanowires are used as contacts for modern CMOS transistors. (Our smallest wires are ˜20 nm thick and ˜50 nm wide.) While much research on thick TM silicides was conducted long ago, materials perform differently at the nanoscale. For example, the usual phase transformation sequences (e.g., Ni, Ni2Si, NiSi, NiSi2) for the reaction of thick metal films on Si no longer apply to nanostructures, because the surface and interface energies compete with the bulk energy of a given crystal structure. Therefore, a NiSi film will agglomerate into hemispherical droplets of NiSi by annealing before it reaches the lowest-energy (NiSi2) crystalline structure. These dynamics can be tuned by addition of impurities (such as Pt in Ni). The Si surface preparation is also a more important factor for nanowires than for silicidation of thick TM films. Ni nanowires formed on Si surfaces that were cleaned and amorphized by sputtering with Ar ions have a tendency to form NiSi2 pyramids (``spikes'') even at moderate temperatures (˜400^oC), while similar Ni films formed on atomically clean or hydrogen-terminated Si form uniform NiSi nanowires. Another issue affecting TM silicides is the barrier height between the silicide contact and the silicon transistor. For most TM silicides, the Fermi level of the silicide is aligned with the center of the Si band gap. Therefore, silicide contacts experience Schottky barrier heights of around 0.5 eV for both n-type and p-type Si. The resulting contact resistance becomes a significant term for the overall resistance of modern CMOS transistors. Lowering this contact resistance is an important goal in CMOS research. New materials are under investigation (for example PtSi, which has a barrier height of only 0.3 eV to p-type Si). This talk will describe recent results, with special emphasis on characterization techniques and electrical testing useful for the development of silicide nanowires for CMOS contacts. In collaboration

  4. Test of radiation hardness of CMOS transistors under neutron irradiation

    SciTech Connect

    Sadrozinski, H.F.W.; Rowe, W.A.; Seiden, A.; Spencer, E.; Hoffman, C.M.; Holtkamp, D.; Kinnison, W.W.; Sommer, W.F. Jr.; Ziock, H.J.

    1989-01-01

    We have tested 2 micron CMOS test structures from various foundries in the LAMPF Beam stop for radiation damage under prolongued neutron irradiation. The fluxes employed covered the region expected to be encountered at the SSC and led to fluences of up to 10/sup 14/ neutrons/cm/sup 2/ in about 500 hrs of running. We show that test structures which have been measured to survive ionizing radiation of the order MRad also survive these high neutron fluences. 5 refs., 4 figs.

  5. Autonomous pedestrian localization technique using CMOS camera sensors

    NASA Astrophysics Data System (ADS)

    Chun, Chanwoo

    2014-09-01

    We present a pedestrian localization technique that does not need infrastructure. The proposed angle-only measurement method needs specially manufactured shoes. Each shoe has two CMOS cameras and two markers such as LEDs attached on the inward side. The line of sight (LOS) angles towards the two markers on the forward shoe are measured using the two cameras on the other rear shoe. Our simulation results shows that a pedestrian walking down in a shopping mall wearing this device can be accurately guided to the front of a destination store located 100m away, if the floor plan of the mall is available.

  6. Fabrication and Characterization of a CMOS-MEMS Humidity Sensor.

    PubMed

    Dennis, John-Ojur; Ahmed, Abdelaziz-Yousif; Khir, Mohd-Haris

    2015-07-10

    This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensing principle is based on the change in amplitude of the device due to adsorption or desorption of humidity on the active material layer of titanium dioxide (TiO2) nanoparticles deposited on the moving plate, which results in changes in the mass of the device. The sensor has been designed and fabricated through a standard 0.35 µm CMOS process technology and post-CMOS micromachining technique has been successfully implemented to release the MEMS structures. The sensor is operated in the dynamic mode using electrothermal actuation and the output signal measured using a piezoresistive (PZR) sensor connected in a Wheatstone bridge circuit. The output voltage of the humidity sensor increases from 0.585 mV to 30.580 mV as the humidity increases from 35% RH to 95% RH. The output voltage is found to be linear from 0.585 mV to 3.250 mV as the humidity increased from 35% RH to 60% RH, with sensitivity of 0.107 mV/% RH; and again linear from 3.250 mV to 30.580 mV as the humidity level increases from 60% RH to 95% RH, with higher sensitivity of 0.781 mV/% RH. On the other hand, the sensitivity of the humidity sensor increases linearly from 0.102 mV/% RH to 0.501 mV/% RH with increase in the temperature from 40 °C to 80 °C and a maximum hysteresis of 0.87% RH is found at a relative humidity of 80%. The sensitivity is also frequency dependent, increasing from 0.500 mV/% RH at 2 Hz to reach a maximum value of 1.634 mV/% RH at a frequency of 12 Hz, then decreasing to 1.110 mV/% RH at a frequency of 20 Hz. Finally, the CMOS-MEMS humidity sensor showed comparable response, recovery, and repeatability of measurements in three cycles as compared to a standard sensor that directly

  7. The DUV Stability of Superlattice-Doped CMOS Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hoenk, M. E.; Carver, A. G.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.; Tsur, S.

    2013-01-01

    JPL and Alacron have recently developed a high performance, DUV camera with a superlattice doped CMOS imaging detector. Supperlattice doped detectors achieve nearly 100% internal quantum efficiency in the deep and far ultraviolet, and a single layer, Al2O3 antireflection coating enables 64% external quantum efficiency at 263nm. In lifetime tests performed at Applied Materials using 263 nm pulsed, solid state and 193 nm pulsed excimer laser, the quantum efficiency and dark current of the JPL/Alacron camera remained stable to better than 1% precision during long-term exposure to several billion laser pulses, with no measurable degradation, no blooming and no image memory at 1000 fps.

  8. Beyond CMOS: heterogeneous integration of III–V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems

    PubMed Central

    Kazior, Thomas E.

    2014-01-01

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III–V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III–V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III–V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications. PMID:24567473

  9. Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems.

    PubMed

    Kazior, Thomas E

    2014-03-28

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III-V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III-V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III-V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications.

  10. An electrostatic CMOS/BiCMOS Lithium ion vibration-based harvester-charger IC

    NASA Astrophysics Data System (ADS)

    Torres, Erick Omar

    Self-powered microsystems, such as wireless transceiver microsensors, appeal to an expanding application space in monitoring, control, and diagnosis for commercial, industrial, military, space, and biomedical products. As these devices continue to shrink, their microscale dimensions allow them to be unobtrusive and economical, with the potential to operate from typically unreachable environments and, in wireless network applications, deploy numerous distributed sensing nodes simultaneously. Extended operational life, however, is difficult to achieve since their limited volume space constrains the stored energy available, even with state-of-the-art technologies, such as thin-film lithium-ion batteries (Li Ion) and micro-fuel cells. Harvesting ambient energy overcomes this deficit by continually replenishing the energy reservoir and, as a result, indefinitely extending system lifetime. In this work, an electrostatic harvester that harnesses ambient kinetic energy from vibrations to charge an energy-storage device (e.g., a battery) is investigated, developed, and evaluated. The proposed harvester charges and holds the voltage across a vibration-sensitive variable capacitor so that vibrations can induce it to generate current into the battery when capacitance decreases (as its plates separate). The challenge is that energy is harnessed at relatively slow rates, producing low output power, and the electronics required to transfer it to charge a battery can easily demand more than the power produced. To this end, the system reduces losses by time-managing and biasing its circuits to operate only when needed and with just enough energy while charging the capacitor through an efficient quasi-lossless inductor-based precharger. As result, the proposed energy harvester stores a net energy gain in the battery during every vibration cycle. Two energy-harvesting integrated circuits (IC) were analyzed, designed, developed, and validated using a 0.7-im BiCMOS process and a 30-Hz

  11. Design considerations for a new high resolution Micro-Angiographic Fluoroscope based on a CMOS sensor (MAF-CMOS)

    NASA Astrophysics Data System (ADS)

    Loughran, Brendan; Swetadri Vasan, S. N.; Singh, Vivek; Ionita, Ciprian N.; Jain, Amit; Bednarek, Daniel R.; Titus, Albert H.; Rudin, Stephen

    2013-03-01

    The detectors that are used for endovascular image-guided interventions (EIGI), particularly for neurovascular interventions, do not provide clinicians with adequate visualization to ensure the best possible treatment outcomes. Developing an improved x-ray imaging detector requires the determination of estimated clinical x-ray entrance exposures to the detector. The range of exposures to the detector in clinical studies was found for the three modes of operation: fluoroscopic mode, high frame-rate digital angiographic mode (HD fluoroscopic mode), and DSA mode. Using these estimated detector exposure ranges and available CMOS detector technical specifications, design requirements were developed to pursue a quantum limited, high resolution, dynamic x-ray detector based on a CMOS sensor with 50 μm pixel size. For the proposed MAF-CMOS, the estimated charge collected within the full exposure range was found to be within the estimated full well capacity of the pixels. Expected instrumentation noise for the proposed detector was estimated to be 50-1,300 electrons. Adding a gain stage such as a light image intensifier would minimize the effect of the estimated instrumentation noise on total image noise but may not be necessary to ensure quantum limited detector operation at low exposure levels. A recursive temporal filter may decrease the effective total noise by 2 to 3 times, allowing for the improved signal to noise ratios at the lowest estimated exposures despite consequent loss in temporal resolution. This work can serve as a guide for further development of dynamic x-ray imaging prototypes or improvements for existing dynamic x-ray imaging systems.

  12. Design considerations for a new, high resolution Micro-Angiographic Fluoroscope based on a CMOS sensor (MAF-CMOS).

    PubMed

    Loughran, Brendan; Swetadri Vasan, S N; Singh, Vivek; Ionita, Ciprian N; Jain, Amit; Bednarek, Daniel R; Titus, Albert; Rudin, Stephen

    2013-03-06

    The detectors that are used for endovascular image-guided interventions (EIGI), particularly for neurovascular interventions, do not provide clinicians with adequate visualization to ensure the best possible treatment outcomes. Developing an improved x-ray imaging detector requires the determination of estimated clinical x-ray entrance exposures to the detector. The range of exposures to the detector in clinical studies was found for the three modes of operation: fluoroscopic mode, high frame-rate digital angiographic mode (HD fluoroscopic mode), and DSA mode. Using these estimated detector exposure ranges and available CMOS detector technical specifications, design requirements were developed to pursue a quantum limited, high resolution, dynamic x-ray detector based on a CMOS sensor with 50 μm pixel size. For the proposed MAF-CMOS, the estimated charge collected within the full exposure range was found to be within the estimated full well capacity of the pixels. Expected instrumentation noise for the proposed detector was estimated to be 50-1,300 electrons. Adding a gain stage such as a light image intensifier would minimize the effect of the estimated instrumentation noise on total image noise but may not be necessary to ensure quantum limited detector operation at low exposure levels. A recursive temporal filter may decrease the effective total noise by 2 to 3 times, allowing for the improved signal to noise ratios at the lowest estimated exposures despite consequent loss in temporal resolution. This work can serve as a guide for further development of dynamic x-ray imaging prototypes or improvements for existing dynamic x-ray imaging systems.

  13. Fabrication and Characterization of CMOS-MEMS Magnetic Microsensors

    PubMed Central

    Hsieh, Chen-Hsuan; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    This study investigates the design and fabrication of magnetic microsensors using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process. The magnetic sensor is composed of springs and interdigitated electrodes, and it is actuated by the Lorentz force. The finite element method (FEM) software CoventorWare is adopted to simulate the displacement and capacitance of the magnetic sensor. A post-CMOS process is utilized to release the suspended structure. The post-process uses an anisotropic dry etching to etch the silicon dioxide layer and an isotropic dry etching to remove the silicon substrate. When a magnetic field is applied to the magnetic sensor, it generates a change in capacitance. A sensing circuit is employed to convert the capacitance variation of the sensor into the output voltage. The experimental results show that the output voltage of the magnetic microsensor varies from 0.05 to 1.94 V in the magnetic field range of 5–200 mT. PMID:24172287

  14. A CMOS Smart Temperature and Humidity Sensor with Combined Readout

    PubMed Central

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-01-01

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 μA. PMID:25230305

  15. Improvement to the signaling interface for CMOS pixel sensors

    NASA Astrophysics Data System (ADS)

    Shi, Zhan; Tang, Zhenan; Feng, Chong; Cai, Hong

    2016-10-01

    The development of the readout speed of CMOS pixel sensors (CPS) is motivated by the demanding requirements of future high energy physics (HEP) experiments. As the interface between CPS and the data acquisition (DAQ) system, which inputs clock from the DAQ system and outputs data from CPS, the signaling interface should also be improved in terms of data rates. Meanwhile, the power consumption of the signaling interface should be maintained as low as possible. Consequently, a reduced swing differential signaling (RSDS) driver was adopted instead of a low-voltage differential signaling (LVDS) driver to transmit data from CPS to the DAQ system. In order to increase the capability of data rates, a serial source termination technique was employed. A LVDS/RSDS receiver was employed for transmitting clock from the DAQ system to CPS. A new method of generating hysteresis and a special current comparator were used to achieve a higher speed with lower power consumption. The signaling interface was designed and submitted for fabrication in a 0.18 μm CMOS image sensor (CIS) process. Measurement results indicate that the RSDS driver and the LVDS receiver can operate correctly at a data rate of 2 Gb/s with a power consumption of 19.1 mW.

  16. CMOS: efficient clustered data monitoring in sensor networks.

    PubMed

    Min, Jun-Ki

    2013-01-01

    Tiny and smart sensors enable applications that access a network of hundreds or thousands of sensors. Thus, recently, many researchers have paid attention to wireless sensor networks (WSNs). The limitation of energy is critical since most sensors are battery-powered and it is very difficult to replace batteries in cases that sensor networks are utilized outdoors. Data transmission between sensor nodes needs more energy than computation in a sensor node. In order to reduce the energy consumption of sensors, we present an approximate data gathering technique, called CMOS, based on the Kalman filter. The goal of CMOS is to efficiently obtain the sensor readings within a certain error bound. In our approach, spatially close sensors are grouped as a cluster. Since a cluster header generates approximate readings of member nodes, a user query can be answered efficiently using the cluster headers. In addition, we suggest an energy efficient clustering method to distribute the energy consumption of cluster headers. Our simulation results with synthetic data demonstrate the efficiency and accuracy of our proposed technique.

  17. BiCMOS-integrated photodiode exploiting drift enhancement

    NASA Astrophysics Data System (ADS)

    Swoboda, Robert; Schneider-Hornstein, Kerstin; Wille, Holger; Langguth, Gernot; Zimmermann, Horst

    2014-08-01

    A vertical pin photodiode with a thick intrinsic layer is integrated in a 0.5-μm BiCMOS process. The reverse bias of the photodiode can be increased far above the circuit supply voltage, enabling a high-drift velocity. Therefore, a highly efficient and very fast photodiode is achieved. Rise/fall times down to 94 ps/141 ps at a bias of 17 V were measured for a wavelength of 660 nm. The bandwidth was increased from 1.1 GHz at 3 V to 2.9 GHz at 17 V due to the drift enhancement. A quantum efficiency of 85% with a 660-nm light was verified. The technological measures to avoid negative effects on an NPN transistor due to the Kirk effect caused by the low-doped I-layer epitaxy are described. With a high-energy collector implant, the NPN transit frequency is held above 20 GHz. CMOS devices are unaffected. This photodiode is suitable for a wide variety of high-sensitivity optical sensor applications, for optical communications, for fiber-in-the-home applications, and for optical interconnects.

  18. IR CMOS: near infrared enhanced digital imaging (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani

    2015-08-01

    SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km

  19. Manufacture of Micromirror Arrays Using a CMOS-MEMS Technique

    PubMed Central

    Kao, Pin-Hsu; Dai, Ching-Liang; Hsu, Cheng-Chih; Wu, Chyan-Chyi

    2009-01-01

    In this study we used the commercial 0.35 μm CMOS (complementary metal oxide semiconductor) process and simple maskless post-processing to fabricate an array of micromirrors exhibiting high natural frequency. The micromirrors were manufactured from aluminum; the sacrificial layer was silicon dioxide. Because we fabricated the micromirror arrays using the standard CMOS process, they have the potential to be integrated with circuitry on a chip. For post-processing we used an etchant to remove the sacrificial layer and thereby suspend the micromirrors. The micromirror array contained a circular membrane and four fixed beams set symmetrically around and below the circular mirror; these four fan-shaped electrodes controlled the tilting of the micromirror. A MEMS (microelectromechanical system) motion analysis system and a confocal 3D-surface topography were used to characterize the properties and configuration of the micromirror array. Each micromirror could be rotated in four independent directions. Experimentally, we found that the micromirror had a tilting angle of about 2.55° when applying a driving voltage of 40 V. The natural frequency of the micromirrors was 59.1 kHz. PMID:22454581

  20. Review of radiation damage studies on DNW CMOS MAPS

    NASA Astrophysics Data System (ADS)

    Traversi, G.; Gaioni, L.; Manazza, A.; Manghisoni, M.; Ratti, L.; Re, V.; Zucca, S.; Bettarini, S.; Rizzo, G.; Morsani, F.; Bosisio, L.; Rashevskaya, I.; Cindro, V.

    2013-12-01

    Monolithic active pixel sensors fabricated in a bulk CMOS technology with no epitaxial layer and standard resistivity (10 Ω cm) substrate, featuring a deep N-well as the collecting electrode (DNW MAPS), have been exposed to γ-rays, up to a final dose of 10 Mrad (SiO2), and to neutrons from a nuclear reactor, up to a total 1 MeV neutron equivalent fluence of about 3.7 ·1013cm-2. The irradiation campaign was aimed at studying the effects of radiation on the most significant parameters of the front-end electronics and on the charge collection properties of the sensors. Device characterization has been carried out before and after irradiations. The DNW MAPS irradiated with 60Co γ-rays were also subjected to high temperature annealing (100 °C for 168 h). Measurements have been performed through a number of different techniques, including electrical characterization of the front-end electronics and of DNW diodes, laser stimulation of the sensors and tests with 55Fe and 90Sr radioactive sources. This paper reviews the measurement results, their relation with the damage mechanisms underlying performance degradation and provides a new comparison between DNW devices and MAPS fabricated in a CMOS process with high resistivity (1 kΩ cm) epitaxial layer.

  1. A Low-Cost CMOS Programmable Temperature Switch.

    PubMed

    Li, Yunlong; Wu, Nanjian

    2008-05-15

    A novel uncalibrated CMOS programmable temperature switch with high temperature accuracy is presented. Its threshold temperature Tth can be programmed by adjusting the ratios of width and length of the transistors. The operating principles of the temperature switch circuit is theoretically explained. A floating gate neural MOS circuit is designed to compensate automatically the threshold temperature Tth variation that results form the process tolerance. The switch circuit is implemented in a standard 0.35 μm CMOS process. The temperature switch can be programmed to perform the switch operation at 16 different threshold temperature Tths from 45-120°C with a 5°C increment. The measurement shows a good consistency in the threshold temperatures. The chip core area is 0.04 mm² and power consumption is 3.1 μA at 3.3V power supply. The advantages of the temperature switch are low power consumption, the programmable threshold temperature and the controllable hysteresis.

  2. High-stage analog accumulator for TDI CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Jianxin, Li; Fujun, Huang; Yong, Zong; Jing, Gao

    2016-02-01

    The impact of the parasitic phenomenon on the performance of the analog accumulator in TDI CMOS image sensor is analyzed and resolved. A 128-stage optimized accumulator based on 0.18-μm one-poly four-metal 3.3 V CMOS technology is designed and simulated. A charge injection effect from the top plate sampling is employed to compensate the un-eliminated parasitics based on the accumulator with a decoupling switch, and then a calibration circuit is designed to restrain the mismatch and Process, Voltage and Temperature (PVT) variations. The post layout simulation indicates that the improved SNR of the accumulator upgrades from 17.835 to 21.067 dB, while an ideal value is 21.072 dB. In addition, the linearity of the accumulator is 99.62%. The simulation results of two extreme cases and Monte Carlo show that the mismatch and PVT variations are restrained by the calibration circuit. Furthermore, it is promising to design a higher stage accumulator based on the proposed structure. Project supported by the National Natural Science Foundation of China (Nos. 61404090, 61434004).

  3. An integrated CMOS high data rate transceiver for video applications

    NASA Astrophysics Data System (ADS)

    Yaping, Liang; Dazhi, Che; Cheng, Liang; Lingling, Sun

    2012-07-01

    This paper presents a 5 GHz CMOS radio frequency (RF) transceiver built with 0.18 μm RF-CMOS technology by using a proprietary protocol, which combines the new IEEE 802.11n features such as multiple-in multiple-out (MIMO) technology with other wireless technologies to provide high data rate robust real-time high definition television (HDTV) distribution within a home environment. The RF frequencies cover from 4.9 to 5.9 GHz: the industrial, scientific and medical (ISM) band. Each RF channel bandwidth is 20 MHz. The transceiver utilizes a direct up transmitter and low-IF receiver architecture. A dual-quadrature direct up conversion mixer is used that achieves better than 35 dB image rejection without any on chip calibration. The measurement shows a 6 dB typical receiver noise figure and a better than 33 dB transmitter error vector magnitude (EVM) at -3 dBm output power.

  4. A CMOS smart temperature and humidity sensor with combined readout.

    PubMed

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-09-16

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 µA.

  5. CMOS prototype for retinal prosthesis applications with analog processing

    NASA Astrophysics Data System (ADS)

    Castillo-Cabrera, G.; García-Lamont, J.; Reyes-Barranca, M. A.; Matsumoto-Kuwabara, Y.; Moreno-Cadenas, J. A.; Flores-Nava, L. M.

    2014-12-01

    A core architecture for analog processing, which emulates a retina's receptive field, is presented in this work. A model was partially implemented and built on CMOS standard technology through MOSIS. It considers that the receptive field is the basic unit for image processing in the visual system. That is why the design is concerned on a partial solution of receptive field properties in order to be adapted in the future as an aid to people with retinal diseases. A receptive field is represented by an array of 3×3 pixels. Each pixel carries out a process based on four main operations. This means that image processing is developed at pixel level. Operations involved are: (1) photo-transduction by photocurrent integration, (2) signal averaging from eight neighbouring pixels executed by a neu-NMOS (ν-NMOS) neuron, (3) signal average gradient between central pixel and the average value from the eight neighbouring pixels (this gradient is performed by a comparator) and finally (4) a pulse generator. Each one of these operations gives place to circuital blocks which were built on 0.5 μm CMOS technology.

  6. Custom CMOS Reed Solomon coder for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Whitaker, S.; Cameron, K.; Owsley, P.; Maki, G.

    1990-01-01

    A VLSI coder is presented that can function either as an encoder or decoder for Reed-Solomon codes. VLSI is one approach to implementing high-performance Reed-Solomon decoders. There are three VLSI technologies that could be used: gate arrays, standard cells, and full custom. The first two approaches are relatively easy to implement, but are limited in both performance and density. Full-custom VLSI is used to achieve both circuit density and speed, and allows control of the amount of interconnect. Speed, which is a function of capacitance, which is a function of interconnect, is an important parameter in high-performance VLSI. A single 8.2 mm x 8.4 mm, 200,000 transistor CMOS chip implementation of the Reed-Solomon code required by the Hubble Space Telescope is reported. The chip features a 10-MHz sustained byte rate independent of error pattern. The 1.6-micron CMOS integrated circuit has complete decoder and encoder functions and uses a single data/system clock. Block lengths up to 255 bytes and shortened codes are supported with no external buffering. Erasure corrections and random error corrections are supported with programmable correction of up to 10 symbol errors. Correction time is independent of error pattern and the number of errors in the incoming message.

  7. Single phase dynamic CMOS PLA using charge sharing technique

    NASA Astrophysics Data System (ADS)

    Dhong, Y. B.; Tsang, C. P.

    A single phase dynamic CMOS NOR-NOR programmable logic array (PLA) using triggered decoders and charge sharing techniques for high speed and low power is presented. By using the triggered decoder technique, the ground switches are eliminated, thereby, making this new design much faster and lower power dissipation than conventional PLA's. By using the charge-sharing technique in a dynamic CMOS NOR structure, a cascading AND gate can be implemented. The proposed PLA's are presented with a delay-time of 15.95 and 18.05 nsec, respectively, which compare with a conventional single phase PLA with 35.5 nsec delay-time. For a typical example of PLA like the Signetics 82S100 with 16 inputs, 48 input minterms (m) and 8 output minterms (n), the 2-SOP PLA using the triggered 2-bit decoder is 2.23 times faster and has 2.1 times less power dissipation than the conventional PLA. These results are simulated using maximum drain current of 600 micro-A, gate length of 2.0 micron, V sub DD of 5 V, the capacitance of an input miniterm of 1600 fF, and the capacitance of an output minterm of 1500 fF.

  8. Illumination robust change detection with CMOS imaging sensors

    NASA Astrophysics Data System (ADS)

    Rengarajan, Vijay; Gupta, Sheetal B.; Rajagopalan, A. N.; Seetharaman, Guna

    2015-05-01

    Change detection between two images in the presence of degradations is an important problem in the computer vision community, more so for the aerial scenario which is particularly challenging. Cameras mounted on moving platforms such as aircrafts or drones are subject to general six-dimensional motion as the motion is not restricted to a single plane. With CMOS cameras increasingly in vogue due to their low power consumption, the inevitability of rolling-shutter (RS) effect adds to the challenge. This is caused by sequential exposure of rows in CMOS cameras unlike conventional global shutter cameras where all pixels are exposed simultaneously. The RS effect is particularly pronounced in aerial imaging since each row of the imaging sensor is likely to experience a different motion. For fast-moving platforms, the problem is further compounded since the rows are also affected by motion blur. Moreover, since the two images are shot at different times, illumination differences are common. In this paper, we propose a unified computational framework that elegantly exploits the scarcity constraint to deal with the problem of change detection in images degraded by RS effect, motion blur as well as non-global illumination differences. We formulate an optimization problem where each row of the distorted image is approximated as a weighted sum of the corresponding rows in warped versions of the reference image due to camera motion within the exposure period to account for geometric as well as photometric differences. The method has been validated on both synthetic and real data.

  9. HV-CMOS detectors in BCD8 technology

    NASA Astrophysics Data System (ADS)

    Andreazza, A.; Castoldi, A.; Ceriale, V.; Chiodini, G.; Citterio, M.; Darbo, G.; Gariano, G.; Gaudiello, A.; Guazzoni, C.; Joshi, A.; Liberali, V.; Passadore, S.; Ragusa, F.; Ruscino, E.; Sbarra, C.; Shrimali, H.; Sidoti, A.; Stabile, A.; Yadav, I.; Zaffaroni, E.

    2016-11-01

    This paper presents the first pixel detector realized using the BCD8 technology of STMicroelectronics. The BCD8 is a 160 nm process with bipolar, CMOS and DMOS devices; mainly targeted for an automotive application. The silicon particle detector is realized as a pixel sensor diode with a dimension of 250 × 50 μm2. To support the signal sensitivity of pixel diode, the circuit simulations have been performed with a substrate voltage of 50 V. The analog signal processing circuitry and the digital operation of the circuit is designed with the supply voltage of 1.8 V. Moreover, an analog processing part of the pixel detector circuit is confined in a unit pixel (diode sensor) to achieve 100 % fill factor. As a first phase of the design, an array of 8 pixels and 4 passive diodes have been designed and measured experimentally. The entire analog circuitry including passive diodes is implemented in a single chip. This chip has been tested experimentally with 70 V voltage capability, to evaluate its suitability. The sensor on a 125 Ωcm resistivity substrate has been characterized in the laboratory. The CMOS sensor realizes a depleted region of several tens of micrometer. The characterization shows a uniform breakdown at 70 V before irradiation and an approximate capacitance of 80 fF at 50 V of reverse bias voltage. The response to ionizing radiation is tested using radioactive sources and an X-ray tube.

  10. A low voltage CMOS low drop-out voltage regulator

    NASA Astrophysics Data System (ADS)

    Bakr, Salma Ali; Abbasi, Tanvir Ahmad; Abbasi, Mohammas Suhaib; Aldessouky, Mohamed Samir; Abbasi, Mohammad Usaid

    2009-05-01

    A low voltage implementation of a CMOS Low Drop-Out voltage regulator (LDO) is presented. The requirement of low voltage devices is crucial for portable devices that require extensive computations in a low power environment. The LDO is implemented in 90nm generic CMOS technology. It generates a fixed 0.8V from a 2.5V supply which on discharging goes to 1V. The buffer stage used is unity gain configured unbuffered OpAmp with rail-to-rail swing input stage. The simulation result shows that the implemented circuit provides load regulation of 0.004%/mA and line regulation of -11.09mV/V. The LDO provides full load transient response with a settling time of 5.2μs. Further, the dropout voltage is 200mV and the quiescent current through the pass transistor (Iload=0) is 20μA. The total power consumption of this LDO (excluding bandgap reference) is only 80μW.

  11. A 50Mbit/Sec. CMOS Video Linestore System

    NASA Astrophysics Data System (ADS)

    Jeung, Yeun C.

    1988-10-01

    This paper reports the architecture, design and test results of a CMOS single chip programmable video linestore system which has 16-bit data words with 1024 bit depth. The delay is fully programmable from 9 to 1033 samples by a 10 bit binary control word. The large 16 bit data word width makes the chip useful for a wide variety of digital video signal processing applications such as DPCM coding, High-Definition TV, and Video scramblers/descramblers etc. For those applications, the conventional large fixed-length shift register or static RAM scheme is not very popular because of its lack of versatility, high power consumption, and required support circuitry. The very high throughput of 50Mbit/sec is made possible by a highly parallel, pipelined dynamic memory architecture implemented in a 2-um N-well CMOS technology. The basic cell of the programmable video linestore chip is an four transistor dynamic RAM element. This cell comprises the majority of the chip's real estate, consumes no static power, and gives good noise immunity to the simply designed sense amplifier. The chip design was done using Bellcore's version of the MULGA virtual grid symbolic layout system. The chip contains approximately 90,000 transistors in an area of 6.5 x 7.5 square mm and the I/Os are TTL compatible. The chip is packaged in a 68-pin leadless ceramic chip carrier package.

  12. W-CMOS blanking device for projection multibeam lithography

    NASA Astrophysics Data System (ADS)

    Jurisch, Michael; Irmscher, Mathias; Letzkus, Florian; Eder-Kapl, Stefan; Klein, Christof; Loeschner, Hans; Piller, Walter; Platzgummer, Elmar

    2010-05-01

    As the designs of future mask nodes become more and more complex the corresponding pattern writing times will rise significantly when using single beam writing tools. Projection multi-beam lithography [1] is one promising technology to enhance the throughput compared to state of the art VSB pattern generators. One key component of the projection multi-beam tool is an Aperture Plate System (APS) to form and switch thousands of individual beamlets. In our present setup a highly parallel beam is divided into 43,008 individual beamlets by a Siaperture- plate. These micrometer sized beams pass through larger openings in a blanking-plate and are individually switched on and off by applying a voltage to blanking-electrodes which are placed around the blanking-plate openings. A charged particle 200x reduction optics demagnifies the beamlet array to the substrate. The switched off beams are filtered out in the projection optics so that only the beams which are unaffected by the blanking-plate are projected to the substrate with 200x reduction. The blanking-plate is basically a CMOS device for handling the writing data. In our work the blanking-electrodes are fabricated using CMOS compatible add on processes like SiO2-etching or metal deposition and structuring. A new approach is the implementation of buried tungsten electrodes for beam blanking.

  13. Single phase dynamic CMOS PLA using charge sharing technique

    NASA Technical Reports Server (NTRS)

    Dhong, Y. B.; Tsang, C. P.

    1991-01-01

    A single phase dynamic CMOS NOR-NOR programmable logic array (PLA) using triggered decoders and charge sharing techniques for high speed and low power is presented. By using the triggered decoder technique, the ground switches are eliminated, thereby, making this new design much faster and lower power dissipation than conventional PLA's. By using the charge-sharing technique in a dynamic CMOS NOR structure, a cascading AND gate can be implemented. The proposed PLA's are presented with a delay-time of 15.95 and 18.05 nsec, respectively, which compare with a conventional single phase PLA with 35.5 nsec delay-time. For a typical example of PLA like the Signetics 82S100 with 16 inputs, 48 input minterms (m) and 8 output minterms (n), the 2-SOP PLA using the triggered 2-bit decoder is 2.23 times faster and has 2.1 times less power dissipation than the conventional PLA. These results are simulated using maximum drain current of 600 micro-A, gate length of 2.0 micron, V sub DD of 5 V, the capacitance of an input miniterm of 1600 fF, and the capacitance of an output minterm of 1500 fF.

  14. CMOS mm-wave transceivers for Gbps wireless communication

    NASA Astrophysics Data System (ADS)

    Baoyong, Chi; Zheng, Song; Lixue, Kuang; Haikun, Jia; Xiangyu, Meng; Zhihua, Wang

    2016-07-01

    The challenges in the design of CMOS millimeter-wave (mm-wave) transceiver for Gbps wireless communication are discussed. To support the Gbps data rate, the link bandwidth of the receiver/transmitter must be wide enough, which puts a lot of pressure on the mm-wave front-end as well as on the baseband circuit. This paper discusses the effects of the limited link bandwidth on the transceiver system performance and overviews the bandwidth expansion techniques for mm-wave amplifiers and IF programmable gain amplifier. Furthermore, dual-mode power amplifier (PA) and self-healing technique are introduced to improve the PA's average efficiency and to deal with the process, voltage, and temperature variation issue, respectively. Several fully-integrated CMOS mm-wave transceivers are also presented to give a short overview on the state-of-the-art mm-wave transceivers. Project supported in part by the National Natural Science Foundation of China (No. 61331003).

  15. Manufacture of Micromirror Arrays Using a CMOS-MEMS Technique.

    PubMed

    Kao, Pin-Hsu; Dai, Ching-Liang; Hsu, Cheng-Chih; Wu, Chyan-Chyi

    2009-01-01

    In this study we used the commercial 0.35 μm CMOS (complementary metal oxide semiconductor) process and simple maskless post-processing to fabricate an array of micromirrors exhibiting high natural frequency. The micromirrors were manufactured from aluminum; the sacrificial layer was silicon dioxide. Because we fabricated the micromirror arrays using the standard CMOS process, they have the potential to be integrated with circuitry on a chip. For post-processing we used an etchant to remove the sacrificial layer and thereby suspend the micromirrors. The micromirror array contained a circular membrane and four fixed beams set symmetrically around and below the circular mirror; these four fan-shaped electrodes controlled the tilting of the micromirror. A MEMS (microelectromechanical system) motion analysis system and a confocal 3D-surface topography were used to characterize the properties and configuration of the micromirror array. Each micromirror could be rotated in four independent directions. Experimentally, we found that the micromirror had a tilting angle of about 2.55° when applying a driving voltage of 40 V. The natural frequency of the micromirrors was 59.1 kHz.

  16. CMOS-TDI detector technology for reconnaissance application

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Reulke, Ralf; Jung, Melanie; Sengebusch, Karsten

    2014-10-01

    The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design CMOS in a TDI (Time Delay and Integration) architecture. This project includes the technological design of future high or multi-spectral resolution spaceborne instruments and the possibility of higher integration. DLR OS and the Fraunhofer Institute for Microelectronic Circuits and Systems (IMS) in Duisburg were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large-swath and high-spectral resolution with intelligent synchronization control, fast-readout ADC (analog digital converter) chains and new focal-plane concepts opens the door to new remote-sensing and smart deep-space instruments. The paper gives an overview of the detector development status and verification program at DLR, as well as of new control possibilities for CMOS-TDI detectors in synchronization control mode.

  17. A CMOS Imager with Focal Plane Compression using Predictive Coding

    NASA Technical Reports Server (NTRS)

    Leon-Salas, Walter D.; Balkir, Sina; Sayood, Khalid; Schemm, Nathan; Hoffman, Michael W.

    2007-01-01

    This paper presents a CMOS image sensor with focal-plane compression. The design has a column-level architecture and it is based on predictive coding techniques for image decorrelation. The prediction operations are performed in the analog domain to avoid quantization noise and to decrease the area complexity of the circuit, The prediction residuals are quantized and encoded by a joint quantizer/coder circuit. To save area resources, the joint quantizerlcoder circuit exploits common circuitry between a single-slope analog-to-digital converter (ADC) and a Golomb-Rice entropy coder. This combination of ADC and encoder allows the integration of the entropy coder at the column level. A prototype chip was fabricated in a 0.35 pm CMOS process. The output of the chip is a compressed bit stream. The test chip occupies a silicon area of 2.60 mm x 5.96 mm which includes an 80 X 44 APS array. Tests of the fabricated chip demonstrate the validity of the design.

  18. Large CMOS imager using hadamard transform based multiplexing

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Wadsworth, Mark V.

    2005-01-01

    We have developed a concept design for a large (10k x 10k) CMOS imaging array whose elements are grouped in small subarrays with N pixels in each. The subarrays are code-division multiplexed using the Hadamard Transform (HT) based encoding. The Hadamard code improves the signal-to-noise (SNR) ratio to the reference of the read-out amplifier by a factor of N^1/2. This way of grouping pixels reduces the number of hybridization bumps by N. A single chip layout has been designed and the architecture of the imager has been developed to accommodate the HT base multiplexing into the existing CMOS technology. The imager architecture allows for a trade-off between the speed and the sensitivity. The envisioned imager would operate at a speed >100 fps with the pixel noise < 20 e-. The power dissipation would be 100 pW/pixe1. The combination of the large format, high speed, high sensitivity and low power dissipation can be very attractive for space reconnaissance applications.

  19. Investigation of CMOS pixel sensor with 0.18 μm CMOS technology for high-precision tracking detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Fu, M.; Zhang, Y.; Yan, W.; Wang, M.

    2017-01-01

    The Circular Electron Positron Collider (CEPC) proposed by the Chinese high energy physics community is aiming to measure Higgs particles and their interactions precisely. The tracking detector including Silicon Inner Tracker (SIT) and Forward Tracking Disks (FTD) has driven stringent requirements on sensor technologies in term of spatial resolution, power consumption and readout speed. CMOS Pixel Sensor (CPS) is a promising candidate to approach these requirements. This paper presents the preliminary studies on the sensor optimization for tracking detector to achieve high collection efficiency while keeping necessary spatial resolution. Detailed studies have been performed on the charge collection using a 0.18 μm CMOS image sensor process. This process allows high resistivity epitaxial layer, leading to a significant improvement on the charge collection and therefore improving the radiation tolerance. Together with the simulation results, the first exploratory prototype has bee designed and fabricated. The prototype includes 9 different pixel arrays, which vary in terms of pixel pitch, diode size and geometry. The total area of the prototype amounts to 2 × 7.88 mm2.

  20. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging.

    PubMed

    Tanaka, Tsuyoshi; Saeki, Tatsuya; Sunaga, Yoshihiko; Matsunaga, Tadashi

    2010-12-15

    A complementary metal oxide semiconductor (CMOS) image sensor was applied to high-content analysis of single cells which were assembled closely or directly onto the CMOS sensor surface. The direct assembling of cell groups on CMOS sensor surface allows large-field (6.66 mm×5.32 mm in entire active area of CMOS sensor) imaging within a second. Trypan blue-stained and non-stained cells in the same field area on the CMOS sensor were successfully distinguished as white- and blue-colored images under white LED light irradiation. Furthermore, the chemiluminescent signals of each cell were successfully visualized as blue-colored images on CMOS sensor only when HeLa cells were placed directly on the micro-lens array of the CMOS sensor. Our proposed approach will be a promising technique for real-time and high-content analysis of single cells in a large-field area based on color imaging.

  1. Investigation of HV/HR-CMOS technology for the ATLAS Phase-II Strip Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Fadeyev, V.; Galloway, Z.; Grabas, H.; Grillo, A. A.; Liang, Z.; Martinez-Mckinney, F.; Seiden, A.; Volk, J.; Affolder, A.; Buckland, M.; Meng, L.; Arndt, K.; Bortoletto, D.; Huffman, T.; John, J.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I.; Vigani, L.; Bates, R.; Blue, A.; Buttar, C.; Kanisauskas, K.; Maneuski, D.; Benoit, M.; Di Bello, F.; Caragiulo, P.; Dragone, A.; Grenier, P.; Kenney, C.; Rubbo, F.; Segal, J.; Su, D.; Tamma, C.; Das, D.; Dopke, J.; Turchetta, R.; Wilson, F.; Worm, S.; Ehrler, F.; Peric, I.; Gregor, I. M.; Stanitzki, M.; Hoeferkamp, M.; Seidel, S.; Hommels, L. B. A.; Kramberger, G.; Mandić, I.; Mikuž, M.; Muenstermann, D.; Wang, R.; Zhang, J.; Warren, M.; Song, W.; Xiu, Q.; Zhu, H.

    2016-09-01

    ATLAS has formed strip CMOS project to study the use of CMOS MAPS devices as silicon strip sensors for the Phase-II Strip Tracker Upgrade. This choice of sensors promises several advantages over the conventional baseline design, such as better resolution, less material in the tracking volume, and faster construction speed. At the same time, many design features of the sensors are driven by the requirement of minimizing the impact on the rest of the detector. Hence the target devices feature long pixels which are grouped to form a virtual strip with binary-encoded z position. The key performance aspects are radiation hardness compatibility with HL-LHC environment, as well as extraction of the full hit position with full-reticle readout architecture. To date, several test chips have been submitted using two different CMOS technologies. The AMS 350 nm is a high voltage CMOS process (HV-CMOS), that features the sensor bias of up to 120 V. The TowerJazz 180 nm high resistivity CMOS process (HR-CMOS) uses a high resistivity epitaxial layer to provide the depletion region on top of the substrate. We have evaluated passive pixel performance, and charge collection projections. The results strongly support the radiation tolerance of these devices to radiation dose of the HL-LHC in the strip tracker region. We also describe design features for the next chip submission that are motivated by our technology evaluation.

  2. Delta-Doped Back-Illuminated CMOS Imaging Arrays: Progress and Prospects

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Jones, Todd J.; Dickie, Matthew R.; Greer, Frank; Cunningham, Thomas J.; Blazejewski, Edward; Nikzad, Shouleh

    2009-01-01

    In this paper, we report the latest results on our development of delta-doped, thinned, back-illuminated CMOS imaging arrays. As with charge-coupled devices, thinning and back-illumination are essential to the development of high performance CMOS imaging arrays. Problems with back surface passivation have emerged as critical to the prospects for incorporating CMOS imaging arrays into high performance scientific instruments, just as they did for CCDs over twenty years ago. In the early 1990's, JPL developed delta-doped CCDs, in which low temperature molecular beam epitaxy was used to form an ideal passivation layer on the silicon back surface. Comprising only a few nanometers of highly-doped epitaxial silicon, delta-doping achieves the stability and uniformity that are essential for high performance imaging and spectroscopy. Delta-doped CCDs were shown to have high, stable, and uniform quantum efficiency across the entire spectral range from the extreme ultraviolet through the near infrared. JPL has recently bump-bonded thinned, delta-doped CMOS imaging arrays to a CMOS readout, and demonstrated imaging. Delta-doped CMOS devices exhibit the high quantum efficiency that has become the standard for scientific-grade CCDs. Together with new circuit designs for low-noise readout currently under development, delta-doping expands the potential scientific applications of CMOS imaging arrays, and brings within reach important new capabilities, such as fast, high-sensitivity imaging with parallel readout and real-time signal processing. It remains to demonstrate manufacturability of delta-doped CMOS imaging arrays. To that end, JPL has acquired a new silicon MBE and ancillary equipment for delta-doping wafers up to 200mm in diameter, and is now developing processes for high-throughput, high yield delta-doping of fully-processed wafers with CCD and CMOS imaging devices.

  3. High-performance VGA-resolution digital color CMOS imager

    NASA Astrophysics Data System (ADS)

    Agwani, Suhail; Domer, Steve; Rubacha, Ray; Stanley, Scott

    1999-04-01

    This paper discusses the performance of a new VGA resolution color CMOS imager developed by Motorola on a 0.5micrometers /3.3V CMOS process. This fully integrated, high performance imager has on chip timing, control, and analog signal processing chain for digital imaging applications. The picture elements are based on 7.8micrometers active CMOS pixels that use pinned photodiodes for higher quantum efficiency and low noise performance. The image processing engine includes a bank of programmable gain amplifiers, line rate clamping for dark offset removal, real time auto white balancing, per column gain and offset calibration, and a 10 bit pipelined RSD analog to digital converter with a programmable input range. Post ADC signal processing includes features such as bad pixel replacement based on user defined thresholds levels, 10 to 8 bit companding and 5 tap FIR filtering. The sensor can be programmed via a standard I2C interface that runs on 3.3V clocks. Programmable features include variable frame rates using a constant frequency master clock, electronic exposure control, continuous or single frame capture, progressive or interlace scanning modes. Each pixel is individually addressable allowing region of interest imaging and image subsampling. The sensor operates with master clock frequencies of up to 13.5MHz resulting in 30FPS. A total programmable gain of 27dB is available. The sensor power dissipation is 400mW at full speed of operation. The low noise design yields a measured 'system on a chip' dynamic range of 50dB thus giving over 8 true bits of resolution. Extremely high conversion gain result in an excellent peak sensitivity of 22V/(mu) J/cm2 or 3.3V/lux-sec. This monolithic image capture and processing engine represent a compete imaging solution making it a true 'camera on a chip'. Yet in its operation it remains extremely easy to use requiring only one clock and a 3.3V power supply. Given the available features and performance levels, this sensor will be

  4. CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics

    PubMed Central

    Guo, Nan; Cheung, Ka Wai; Wong, Hiu Tung; Ho, Derek

    2014-01-01

    Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA) detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS) technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art. PMID:25365460

  5. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications.

    PubMed

    Kim, Kuk-Hwan; Gaba, Siddharth; Wheeler, Dana; Cruz-Albrecht, Jose M; Hussain, Tahir; Srinivasa, Narayan; Lu, Wei

    2012-01-11

    Crossbar arrays based on two-terminal resistive switches have been proposed as a leading candidate for future memory and logic applications. Here we demonstrate a high-density, fully operational hybrid crossbar/CMOS system composed of a transistor- and diode-less memristor crossbar array vertically integrated on top of a CMOS chip by taking advantage of the intrinsic nonlinear characteristics of the memristor element. The hybrid crossbar/CMOS system can reliably store complex binary and multilevel 1600 pixel bitmap images using a new programming scheme.

  6. A platform for monolithic CMOS-MEMS integration on SOI wafers

    NASA Astrophysics Data System (ADS)

    Villarroya, María; Figueras, Eduard; Montserrat, Josep; Verd, Jaume; Teva, Jordi; Abadal, Gabriel; Pérez Murano, Francesc; Esteve, Jaume; Barniol, Núria

    2006-10-01

    A new platform for micro- and nano-electromechanical systems based on crystalline silicon as the structural layer in CMOS substrates is presented. This platform is fabricated using silicon on insulator (SOI) substrates, which allows the monolithic integration of the mechanical transducer on crystalline silicon while the characteristics of the structural layer are kept independent from the CMOS technology. We report the design characteristics, the fabrication process and an example of application of the CMOS SOI-MEMS platform to obtain a mass sensor based on a crystalline silicon resonating cantilever.

  7. Evaluation of sCMOS cameras for detection and localization of single Cy5 molecules.

    PubMed

    Saurabh, Saumya; Maji, Suvrajit; Bruchez, Marcel P

    2012-03-26

    The ability to detect single molecules over the electronic noise requires high performance detector systems. Electron Multiplying Charge-Coupled Device (EMCCD) cameras have been employed successfully to image single molecules. Recently, scientific Complementary Metal Oxide Semiconductor (sCMOS) based cameras have been introduced with very low read noise at faster read out rates, smaller pixel sizes and a lower price compared to EMCCD cameras. In this study, we have compared the two technologies using two EMCCD and three sCMOS cameras to detect single Cy5 molecules. Our findings indicate that the sCMOS cameras perform similar to EMCCD cameras for detecting and localizing single Cy5 molecules.

  8. Top-Down CMOS-NEMS Polysilicon Nanowire with Piezoresistive Transduction

    PubMed Central

    Marigó, Eloi; Sansa, Marc; Pérez-Murano, Francesc; Uranga, Arantxa; Barniol, Núria

    2015-01-01

    A top-down clamped-clamped beam integrated in a CMOS technology with a cross section of 500 nm × 280 nm has been electrostatic actuated and sensed using two different transduction methods: capacitive and piezoresistive. The resonator made from a single polysilicon layer has a fundamental in-plane resonance at 27 MHz. Piezoresistive transduction avoids the effect of the parasitic capacitance assessing the capability to use it and enhance the CMOS-NEMS resonators towards more efficient oscillator. The displacement derived from the capacitive transduction allows to compute the gauge factor for the polysilicon material available in the CMOS technology. PMID:26184222

  9. Top-Down CMOS-NEMS Polysilicon Nanowire with Piezoresistive Transduction.

    PubMed

    Marigó, Eloi; Sansa, Marc; Pérez-Murano, Francesc; Uranga, Arantxa; Barniol, Núria

    2015-07-14

    A top-down clamped-clamped beam integrated in a CMOS technology with a cross section of 500 nm × 280 nm has been electrostatic actuated and sensed using two different transduction methods: capacitive and piezoresistive. The resonator made from a single polysilicon layer has a fundamental in-plane resonance at 27 MHz. Piezoresistive transduction avoids the effect of the parasitic capacitance assessing the capability to use it and enhance the CMOS-NEMS resonators towards more efficient oscillator. The displacement derived from the capacitive transduction allows to compute the gauge factor for the polysilicon material available in the CMOS technology.

  10. Steps toward fabricating cryogenic CMOS compatible single electron devices for future qubits.

    SciTech Connect

    Wendt, Joel Robert; Childs, Kenton David; Ten Eyck, Gregory A.; Tracy, Lisa A.; Eng, Kevin; Stevens, Jeffrey; Nordberg, Eric; Carroll, Malcolm S.; Lilly, Michael Patrick

    2008-08-01

    We describe the development of a novel silicon quantum bit (qubit) device architecture that involves using materials that are compatible with a Sandia National Laboratories (SNL) 0.35 mum complementary metal oxide semiconductor (CMOS) process intended to operate at 100 mK. We describe how the qubit structure can be integrated with CMOS electronics, which is believed to have advantages for critical functions like fast single electron electrometry for readout compared to current approaches using radio frequency techniques. Critical materials properties are reviewed and preliminary characterization of the SNL CMOS devices at 4.2 K is presented.

  11. Proof of principle study of the use of a CMOS active pixel sensor for proton radiography

    SciTech Connect

    Seco, Joao; Depauw, Nicolas

    2011-02-15

    Purpose: Proof of principle study of the use of a CMOS active pixel sensor (APS) in producing proton radiographic images using the proton beam at the Massachusetts General Hospital (MGH). Methods: A CMOS APS, previously tested for use in s-ray radiation therapy applications, was used for proton beam radiographic imaging at the MGH. Two different setups were used as a proof of principle that CMOS can be used as proton imaging device: (i) a pen with two metal screws to assess spatial resolution of the CMOS and (ii) a phantom with lung tissue, bone tissue, and water to assess tissue contrast of the CMOS. The sensor was then traversed by a double scattered monoenergetic proton beam at 117 MeV, and the energy deposition inside the detector was recorded to assess its energy response. Conventional x-ray images with similar setup at voltages of 70 kVp and proton images using commercial Gafchromic EBT 2 and Kodak X-Omat V films were also taken for comparison purposes. Results: Images were successfully acquired and compared to x-ray kVp and proton EBT2/X-Omat film images. The spatial resolution of the CMOS detector image is subjectively comparable to the EBT2 and Kodak X-Omat V film images obtained at the same object-detector distance. X-rays have apparent higher spatial resolution than the CMOS. However, further studies with different commercial films using proton beam irradiation demonstrate that the distance of the detector to the object is important to the amount of proton scatter contributing to the proton image. Proton images obtained with films at different distances from the source indicate that proton scatter significantly affects the CMOS image quality. Conclusion: Proton radiographic images were successfully acquired at MGH using a CMOS active pixel sensor detector. The CMOS demonstrated spatial resolution subjectively comparable to films at the same object-detector distance. Further work will be done in order to establish the spatial and energy resolution of the

  12. Micro-lens maker equation of a CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Wu, Yang

    2007-09-01

    The demand of a large resolution CMOS image sensor (CIS) in a small package drives the pixel pitch size down to the neighborhood of 2 μm. Double-micro-lens (ML) structure is a promising technology to obtain the high focusing capability required by such a small pixel. In this work, an optical model of a double-ML is derived from the well-known lens maker equation. This model predicts the critical back focal length (BFL) and the effective focal length (EFL) of the double-ML embedded in the Back-End-Of-The-Line (BEOL) stack. Explained by this model, a design guideline is provided to optimize the amount of light collected by the photo diode area for a good quantum efficiency (QE), which is crucial to the sensitivity of the sensor.

  13. Development of a radiation-hard CMOS process

    NASA Technical Reports Server (NTRS)

    Power, W. L.

    1983-01-01

    It is recommended that various techniques be investigated which appear to have the potential for improving the radiation hardness of CMOS devices for prolonged space flight mission. The three key recommended processing techniques are: (1) making the gate oxide thin. It has been shown that radiation degradation is proportional to the cube of oxide thickness so that a relatively small reduction in thickness can greatly improve radiation resistance; (2) cleanliness and contamination control; and (3) to investigate different oxide growth (low temperature dry, TCE and HCL). All three produce high quality clean oxides, which are more radiation tolerant. Technique 2 addresses the reduction of metallic contamination. Technique 3 will produce a higher quality oxide by using slow growth rate conditions, and will minimize the effects of any residual sodium contamination through the introduction of hydrogen and chlorine into the oxide during growth.

  14. Rapid Bacterial Detection via an All-Electronic CMOS Biosensor

    PubMed Central

    Nikkhoo, Nasim; Cumby, Nichole; Gulak, P. Glenn; Maxwell, Karen L.

    2016-01-01

    The timely and accurate diagnosis of infectious diseases is one of the greatest challenges currently facing modern medicine. The development of innovative techniques for the rapid and accurate identification of bacterial pathogens in point-of-care facilities using low-cost, portable instruments is essential. We have developed a novel all-electronic biosensor that is able to identify bacteria in less than ten minutes. This technology exploits bacteriocins, protein toxins naturally produced by bacteria, as the selective biological detection element. The bacteriocins are integrated with an array of potassium-selective sensors in Complementary Metal Oxide Semiconductor technology to provide an inexpensive bacterial biosensor. An electronic platform connects the CMOS sensor to a computer for processing and real-time visualization. We have used this technology to successfully identify both Gram-positive and Gram-negative bacteria commonly found in human infections. PMID:27618185

  15. A 20 MHz CMOS reorder buffer for a superscalar microprocessor

    NASA Technical Reports Server (NTRS)

    Lenell, John; Wallace, Steve; Bagherzadeh, Nader

    1992-01-01

    Superscalar processors can achieve increased performance by issuing instructions out-of-order from the original sequential instruction stream. Implementing an out-of-order instruction issue policy requires a hardware mechanism to prevent incorrectly executed instructions from updating register values. A reorder buffer can be used to allow a superscalar processor to issue instructions out-of-order and maintain program correctness. This paper describes the design and implementation of a 20MHz CMOS reorder buffer for superscalar processors. The reorder buffer is designed to accept and retire two instructions per cycle. A full-custom layout in 1.2 micron has been implemented, measuring 1.1058 mm by 1.3542 mm.

  16. Broadband terahertz imaging with highly sensitive silicon CMOS detectors.

    PubMed

    Schuster, Franz; Coquillat, Dominique; Videlier, Hadley; Sakowicz, Maciej; Teppe, Frédéric; Dussopt, Laurent; Giffard, Benoît; Skotnicki, Thomas; Knap, Wojciech

    2011-04-11

    This paper investigates terahertz detectors fabricated in a low-cost 130 nm silicon CMOS technology. We show that the detectors consisting of a nMOS field effect transistor as rectifying element and an integrated bow-tie coupling antenna achieve a record responsivity above 5 kV/W and a noise equivalent power below 10 pW/Hz(0.5) in the important atmospheric window around 300 GHz and at room temperature. We demonstrate furthermore that the same detectors are efficient for imaging in a very wide frequency range from ~0.27 THz up to 1.05 THz. These results pave the way towards high sensitivity focal plane arrays in silicon for terahertz imaging.

  17. CMOS capacitive biosensors for highly sensitive biosensing applications.

    PubMed

    Chang, An-Yu; Lu, Michael S-C

    2013-01-01

    Magnetic microbeads are widely used in biotechnology and biomedical research for manipulation and detection of cells and biomolecules. Most lab-on-chip systems capable of performing manipulation and detection require external instruments to perform one of the functions, leading to increased size and cost. This work aims at developing an integrated platform to perform these two functions by implementing electromagnetic microcoils and capacitive biosensors on a CMOS (complementary metal oxide semiconductor) chip. Compared to most magnetic-type sensors, our detection method requires no externally applied magnetic fields and the associated fabrication is less complicated. In our experiment, microbeads coated with streptavidin were driven to the sensors located in the center of microcoils with functionalized anti-streptavidin antibody. Detection of a single microbead was successfully demonstrated using a capacitance-to-frequency readout. The average capacitance changes for the experimental and control groups were -5.3 fF and -0.2 fF, respectively.

  18. An Approach for Self-Timed Synchronous CMOS Circuit Design

    NASA Technical Reports Server (NTRS)

    Walker, Alvernon; Lala, Parag K.

    2001-01-01

    In this letter we present a timing and control strategy that can be used to realize synchronous systems with a level of performance that approaches that of asynchronous circuits or systems. This approach is based upon a single-phase synchronous circuit/system architecture with a variable period clock. The handshaking signals required for asynchronous self-timed circuits are not needed. Dynamic power supply current monitoring is used to generate the timing information, that is comparable to the completion signal found in self-timed circuits; this timing information is used to modi@ the circuit clock period. This letter is concluded with an example of the proposed approach applied to a static CMOS ripple-carry adder.

  19. Triple inverter pierce oscillator circuit suitable for CMOS

    DOEpatents

    Wessendorf; Kurt O.

    2007-02-27

    An oscillator circuit is disclosed which can be formed using discrete field-effect transistors (FETs), or as a complementary metal-oxide-semiconductor (CMOS) integrated circuit. The oscillator circuit utilizes a Pierce oscillator design with three inverter stages connected in series. A feedback resistor provided in a feedback loop about a second inverter stage provides an almost ideal inverting transconductance thereby allowing high-Q operation at the resonator-controlled frequency while suppressing a parasitic oscillation frequency that is inherent in a Pierce configuration using a "standard" triple inverter for the sustaining amplifier. The oscillator circuit, which operates in a range of 10 50 MHz, has applications for use as a clock in a microprocessor and can also be used for sensor applications.

  20. Failure analysis of a half-micron CMOS IC technology

    SciTech Connect

    Liang, A.Y.; Tangyunyong, P.; Bennett, R.S.; Flores, R.S.

    1996-08-01

    We present the results of recent failure analysis of an advanced, 0.5 {mu}m, fully planarized, triple metallization CMOS technology. A variety of failure analysis (FA) tools and techniques were used to localize and identify defects generated by wafer processing. These include light (photon) emission microscopy (LE), fluorescent microthermal imaging (FMI), focused ion beam cross sectioning, SEM/voltage contrast imaging, resistive contrast imaging (RCI), and e-beam testing using an IDS-5000 with an HP 82000. The defects identified included inter- and intra-metal shorts, gate oxide shorts due to plasma processing damage, and high contact resistance due to the contact etch and deposition process. Root causes of these defects were determined and corrective action was taken to improve yield and reliability.

  1. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The 250 C, 200C and 125C accelerated tests are described. The wear-out distributions from the 250 and 200 C tests were used to estimate the activation energy between the two test temperatures. The duration of the 125 C test was not sufficient to bring the test devices into the wear-out region. It was estimated that, for the most complex of the three devices types, the activation energy between 200 C and 125 C should be at least as high as that between 250 C and 200 C. The practicality of the use of high temperature for the accelerated life tests from the point of view of durability of equipment is assessed. Guidlines for the development of accelerated life-test conditions are proposed. The use of the silicon nitride overcoat to improve the high temperature accelerated life-test characteristics of CMOS microcircuits is described.

  2. A portable swappable method scientific CMOS image data storage system

    NASA Astrophysics Data System (ADS)

    Liu, Wen-long; Pi, Hai-feng; Hu, Bing-liang; Gao, Jia-rui

    2015-11-01

    In the field of deep space exploration, the detector needs high-speed data real-time transmission and large capacity storage. SATA(Serial advanced technology attachment) as a new generation of interface protocols, SATA interface hard disk has the advantages of with large storage capacity, high transmission rate, the cheap price, data is not lost when power supply drop, so it is suitable for used in high speed large capacity data storage system. This paper by using Kintex-7 XCE7K325T XILINK series FPGA, the data of scientific CMOS CIS2521F through the SATA controller is stored in the hard disk. If the hard disk storage is full, it will automatically switch to the next hard disk.

  3. Cryogenic CMOS cameras for high voltage monitoring in liquid argon

    NASA Astrophysics Data System (ADS)

    McConkey, N.; Spooner, N.; Thiesse, M.; Wallbank, M.; Warburton, T. K.

    2017-03-01

    The prevalent use of large volume liquid argon detectors strongly motivates the development of novel readout and monitoring technology which functions at cryogenic temperatures. This paper presents the development of a cryogenic CMOS camera system suitable for use inside a large volume liquid argon detector for online monitoring purposes. The characterisation of the system is described in detail. The reliability of such a camera system has been demonstrated over several months, and recent data from operation within the liquid argon region of the DUNE 35 t cryostat is presented. The cameras were used to monitor for high voltage breakdown inside the cryostat, with capability to observe breakdown of a liquid argon time projection chamber in situ. They were also used for detector monitoring, especially of components during cooldown.

  4. Pauli spin blockade in CMOS double quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kotekar-Patil, D.; Corna, A.; Maurand, R.; Crippa, A.; Orlov, A.; Barraud, S.; Hutin, L.; Vinet, M.; Jehl, X.; De Franceschi, S.; Sanquer, M.

    2017-03-01

    Silicon quantum dots are attractive candidates for the development of scalable, spin-based qubits. Pauli spin blockade in double quantum dots provides an efficient, temperature independent mechanism for qubit readout. Here we report on transport experiments in double gate nanowire transistors issued from a CMOS process on 300 mm silicon-on-insulator wafers. At low temperature the devices behave as two few-electron quantum dots in series. We observe signatures of Pauli spin blockade with a singlet-triplet splitting ranging from 0.3 to 1.3 meV. Magneto-transport measurements show that transitions which conserve spin are shown to be magnetic-field independent up to B = 6 T.

  5. Reliability Considerations of ULP Scaled CMOS in Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    White, Mark; MacNeal, Kristen; Cooper, Mark

    2012-01-01

    NASA, the aerospace community, and other high reliability (hi-rel) users of advanced microelectronic products face many challenges as technology continues to scale into the deep sub-micron region. Decreasing the feature size of CMOS devices not only allows more components to be placed on a single chip, but it increases performance by allowing faster switching (or clock) speeds with reduced power compared to larger scaled devices. Higher performance, and lower operating and stand-by power characteristics of Ultra-Low Power (ULP) microelectronics are not only desirable, but also necessary to meet low power consumption design goals of critical spacecraft systems. The integration of these components in such systems, however, must be balanced with the overall risk tolerance of the project.

  6. Packaging commercial CMOS chips for lab on a chip integration.

    PubMed

    Datta-Chaudhuri, Timir; Abshire, Pamela; Smela, Elisabeth

    2014-05-21

    Combining integrated circuitry with microfluidics enables lab-on-a-chip (LOC) devices to perform sensing, freeing them from benchtop equipment. However, this integration is challenging with small chips, as is briefly reviewed with reference to key metrics for package comparison. In this paper we present a simple packaging method for including mm-sized, foundry-fabricated dies containing complementary metal oxide semiconductor (CMOS) circuits within LOCs. The chip is embedded in an epoxy handle wafer to yield a level, large-area surface, allowing subsequent photolithographic post-processing and microfluidic integration. Electrical connection off-chip is provided by thin film metal traces passivated with parylene-C. The parylene is patterned to selectively expose the active sensing area of the chip, allowing direct interaction with a fluidic environment. The method accommodates any die size and automatically levels the die and handle wafer surfaces. Functionality was demonstrated by packaging two different types of CMOS sensor ICs, a bioamplifier chip with an array of surface electrodes connected to internal amplifiers for recording extracellular electrical signals and a capacitance sensor chip for monitoring cell adhesion and viability. Cells were cultured on the surface of both types of chips, and data were acquired using a PC. Long term culture (weeks) showed the packaging materials to be biocompatible. Package lifetime was demonstrated by exposure to fluids over a longer duration (months), and the package was robust enough to allow repeated sterilization and re-use. The ease of fabrication and good performance of this packaging method should allow wide adoption, thereby spurring advances in miniaturized sensing systems.

  7. Using of a modulated CMOS camera for fluorescence lifetime microscopy

    PubMed Central

    Chen, Hongtao; Holst, Gerhard

    2016-01-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The non-uniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. PMID:26500051

  8. A CMOS Neural Interface for a Multichannel Vestibular Prosthesis

    PubMed Central

    Hageman, Kristin N.; Kalayjian, Zaven K.; Tejada, Francisco; Chiang, Bryce; Rahman, Mehdi A.; Fridman, Gene Y.; Dai, Chenkai; Pouliquen, Philippe O.; Georgiou, Julio; Della Santina, Charles C.; Andreou, Andreas G.

    2015-01-01

    We present a high-voltage CMOS neural-interface chip for a multichannel vestibular prosthesis (MVP) that measures head motion and modulates vestibular nerve activity to restore vision- and posture-stabilizing reflexes. This application specific integrated circuit neural interface (ASIC-NI) chip was designed to work with a commercially available microcontroller, which controls the ASIC-NI via a fast parallel interface to deliver biphasic stimulation pulses with 9-bit programmable current amplitude via 16 stimulation channels. The chip was fabricated in the ONSemi C5 0.5 micron, high-voltage CMOS process and can accommodate compliance voltages up to 12 V, stimulating vestibular nerve branches using biphasic current pulses up to 1.45 ± 0.06 mA with durations as short as 10 µs/phase. The ASIC-NI includes a dedicated digital-to-analog converter for each channel, enabling it to perform complex multipolar stimulation. The ASIC-NI replaces discrete components that cover nearly half of the 2nd generation MVP (MVP2) printed circuit board, reducing the MVP system size by 48% and power consumption by 17%. Physiological tests of the ASIC-based MVP system (MVP2A) in a rhesus monkey produced reflexive eye movement responses to prosthetic stimulation similar to those observed when using the MVP2. Sinusoidal modulation of stimulus pulse rate from 68–130 pulses per second at frequencies from 0.1 to 5 Hz elicited appropriately-directed slow phase eye velocities ranging in amplitude from 1.9–16.7°/s for the MVP2 and 2.0–14.2°/s for the MVP2A. The eye velocities evoked by MVP2 and MVP2A showed no significant difference (t-test, p = 0.034), suggesting that the MVP2A achieves performance at least as good as the larger MVP2. PMID:25974945

  9. Mutation analysis of the c-mos proto-oncogene in human ovarian teratomas.

    PubMed Central

    de Foy, K. A.; Gayther, S. A.; Colledge, W. H.; Crockett, S.; Scott, I. V.; Evans, M. J.; Ponder, B. A.

    1998-01-01

    Female transgenic mice lacking a functional c-mos proto-oncogene develop ovarian teratomas, indicating that c-mos may behave as a tumour-suppressor gene for this type of tumour. We have analysed the entire coding region of the c-MOS gene in a series of human ovarian teratomas to determine whether there are any cancer-causing alterations. DNA from twenty teratomas was analysed by single-strand conformational analysis (SSCA) and heteroduplex analysis (HA) to screen for somatic and germline mutations. In nine of these tumours the entire gene was also sequenced. A previously reported polymorphism and a single new sequence variant were identified, neither of which we would predict to be disease-causing alterations. These results suggest that mutations in the coding region of the c-MOS gene do not play a significant role in the genesis of human ovarian teratomas. Images Figure 1 PMID:9635841

  10. An integrating CMOS APS for X-ray imaging with an in-pixel preamplifier

    NASA Astrophysics Data System (ADS)

    Abdalla, M. A.; Fröjdh, C.; Petersson, C. S.

    2001-06-01

    We present in this paper an integrating CMOS Active Pixel Sensor (APS) circuit coated with scintillator type sensors for intra-oral dental X-ray imaging systems. The photosensing element in the pixel is formed by the p-diffusion on the n-well diode. The advantage of this photosensor is its very low direct absorption of X-rays compared to the other available photosensing elements in the CMOS pixel. The pixel features an integrating capacitor in the feedback loop of a preamplifier of a finite gain in order to increase the optical sensitivity. To verify the effectiveness of this in-pixel preamplification, a prototype 32×80 element CMOS active pixel array was implemented in a 0.8 μm CMOS double poly, n-well process with a pixel pitch of 50 μm. Measured results confirmed the improved optical sensitivity performance of the APS. Various measurements on device performance are presented.

  11. ''Normal'' tissues from humans exposed to radium contain an alteration in the c-mos locus

    SciTech Connect

    Huberman, E.; Schlenker, R.A.; Hardwick, J.P.

    1989-01-01

    The structures of a number of human proto-oncogenes from persons with internal systemic exposure to radium were analyzed by restriction enzyme digestion and southern blotting of their DNA. Two extra c-mos Eco R1 restriction-fragment-length bands of 5.0 kb and 5.5 kb were found in tissue DNA from six of seven individuals. The extra c-mos bands were detected in DNA from many, but not all, of the tissues of the individuals exposed to radium. Our results suggest that the c-mos restriction-fragment-length alterations (RFLA) found in individuals exposed to radium were induced rather than inherited, are epigenetic in origin, and most likely result from changes in the methylation of bases surrounding the single exon of the c-mos proto-oncogene. 7 refs., 3 figs., 2 tabs.

  12. CMOS color image sensor with overlaid organic photoconductive layers having narrow absorption band

    NASA Astrophysics Data System (ADS)

    Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi; Komatsu, Takashi; Saito, Takahiro

    2007-02-01

    At EI2006, we proposed the CMOS image sensor, which was overlaid with organic photoconductive layers in order to incorporate in it large light-capturing ability of a color film owing to its multiple-layer structure, and demonstrated the pictures taken by the trial product of the proposed CMOS image sensor overlaid with an organic layer having green sensitivity. In this study, we have tried to get the optimized spectral sensitivity for the proposed CMOS image sensor by means of the simulation to minimize the color difference between the original Macbeth chart and its reproduction with the spectral sensitivity of the sensor as a parameter. As a result, it has been confirmed that the proposed CMOS image sensor with multiple-layer structure possesses high potential capability in terms of imagecapturing efficiency when it is provided with the optimized spectral sensitivity.

  13. Compressive Sensing Based Bio-Inspired Shape Feature Detection CMOS Imager

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor)

    2015-01-01

    A CMOS imager integrated circuit using compressive sensing and bio-inspired detection is presented which integrates novel functions and algorithms within a novel hardware architecture enabling efficient on-chip implementation.

  14. Prediction and measurement of radiation damage to CMOS devices on board spacecraft

    NASA Technical Reports Server (NTRS)

    Cliff, R. A.; Danchenko, V.; Stassinopoulos, E. G.; Sing, M.; Brucker, G. J.; Ohanian, R. S.

    1976-01-01

    The CMOS Radiation Effects Measurement (CREM) experiment is presently being flown on the Explorer-55. The purpose of the experiment is to evaluate device performance in the actual space radiation environment and to correlate the respective measurements to on-the-ground laboratory irradiation results. The experiment contains an assembly of C-MOS and P-MOS devices shielded in front by flat slabs of aluminum and by a practically infinite shield in the back. Predictions of radiation damage to C-MOS devices are based on standard environment models and computational techniques. A comparison of the shifts in CMOS threshold potentials, that is, those measured in space to those obtained from the on-the-ground simulation experiment with Co-60, indicates that the measured space damage is smaller than predicted by about a factor of 2-3 for thin shields, but agrees well with predictions for thicker shields.

  15. Radiation Performance of 1 Gbit DDR SDRAMs Fabricated in the 90 nm CMOS Technology Node

    NASA Technical Reports Server (NTRS)

    Ladbury, Raymond L.; Gorelick, Jerry L.; Berg, M. D.; Kim, H.; LaBel, K.; Friendlich, M.; Koga, R.; George, J.; Crain, S.; Yu, P.; Reed, R. A.

    2006-01-01

    We present Single Event Effect (SEE) and Total Ionizing Dose (TID) data for 1 Gbit DDR SDRAMs (90 nm CMOS technology) as well as comparing this data with earlier technology nodes from the same manufacturer.

  16. e2v CCD and CMOS sensors and systems designed for astronomical applications

    NASA Astrophysics Data System (ADS)

    Jorden, Paul; Jerram, Paul; Jordan, Douglas; Pratlong, Jérôme; Robbins, Mark

    2016-08-01

    e2v continues to evolve its product range of sensors and systems, with CCD and CMOS sensors. We describe recent developments of high performance image sensors and precision system components. Several low noise backthinned CMOS sensors have been developed for scientific applications. CCDs have become larger whilst retaining very low noise and high quantum efficiency. Examples of sensors and sub-systems are presented including the recently completed 1.2 GigaPixel J-PAS cryogenic camera.

  17. CMOS-based smart-electrode-type retinal stimulator with bullet-shaped bulk Pt electrodes.

    PubMed

    Tokuda, T; Ito, T; Kitao, T; Noda, T; Sasagawa, K; Terasawa, Y; Tashiro, H; Kanda, H; Fujikado, T; Ohta, J

    2011-01-01

    A CMOS-based flexible retinal stimulator equipped with bullet-shaped bulk Pt electrodes was fabricated and demonstrated. We designed a new CMOS unit chip with an on-chip stimulator, single- and multi-site stimulation modes, and monitoring functions. We have developed a new structure and packaging process of flexible retinal stimulator with bullet-type bulk Pt electrode. We have confirmed the retinal stimulation functionality in an in vivo stimulation trial on rabbit's retina.

  18. Combined Effects of Radio Frequency and Electron Radiation on CMOS Inverters

    DTIC Science & Technology

    2011-03-01

    logic gates and more complex circuits. A CMOS inverter is made of two matched enhancement type MOSFETs (metal- oxide-semiconductor field-effect...5 2. A cutaway of a CMOS inverter [8]. Vin is connected to the NMOS and PMOS gates , VDD is...cold head. .............. 33 20. The test circuit, showing CAT 5 and SMA connections, floating battery and connection from the test circuit to

  19. Off-Line Testing for Bridge Faults in CMOS Domino Logic Circuits

    NASA Technical Reports Server (NTRS)

    Bennett, K.; Lala, P. K.; Busaba, F.

    1997-01-01

    Bridge faults, especially in CMOS circuits, have unique characteristics which make them difficult to detect during testing. This paper presents a technique for detecting bridge faults which have an effect on the output of CMOS Domino logic circuits. The faults are modeled at the transistor level and this technique is based on analyzing the off-set of the function during off-line testing.

  20. A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit.

    PubMed

    Chakrabarti, B; Lastras-Montaño, M A; Adam, G; Prezioso, M; Hoskins, B; Cheng, K-T; Strukov, D B

    2017-02-14

    Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore's law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + "Molecular") architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit.

  1. A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit

    NASA Astrophysics Data System (ADS)

    Chakrabarti, B.; Lastras-Montaño, M. A.; Adam, G.; Prezioso, M.; Hoskins, B.; Cheng, K.-T.; Strukov, D. B.

    2017-02-01

    Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore’s law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + “Molecular”) architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit.

  2. Critical issues for the application of integrated MEMS/CMOS technologies to inertial measurement units

    SciTech Connect

    Smith, J.H.; Ellis, J.R.; Montague, S.; Allen, J.J.

    1997-03-01

    One of the principal applications of monolithically integrated micromechanical/microelectronic systems has been accelerometers for automotive applications. As integrated MEMS/CMOS technologies such as those developed by U.C. Berkeley, Analog Devices, and Sandia National Laboratories mature, additional systems for more sensitive inertial measurements will enter the commercial marketplace. In this paper, the authors will examine key technology design rules which impact the performance and cost of inertial measurement devices manufactured in integrated MEMS/CMOS technologies. These design parameters include: (1) minimum MEMS feature size, (2) minimum CMOS feature size, (3) maximum MEMS linear dimension, (4) number of mechanical MEMS layers, (5) MEMS/CMOS spacing. In particular, the embedded approach to integration developed at Sandia will be examined in the context of these technology features. Presently, this technology offers MEMS feature sizes as small as 1 {micro}m, CMOS critical dimensions of 1.25 {micro}m, MEMS linear dimensions of 1,000 {micro}m, a single mechanical level of polysilicon, and a 100 {micro}m space between MEMS and CMOS. This is applicable to modern precision guided munitions.

  3. Single event effects in 0.18μm CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Rushton, Joseph E.; Stefanov, Konstantin D.; Holland, Andrew D.; Bugnet, Henri; Mayer, Frederic; Cordrey-Gale, Matthew; Endicott, James

    2016-08-01

    CMOS image sensors are widely used on Earth and are becoming increasingly favourable for use in space. Advantages, such as low power consumption, and ever-improving imaging peformance make CMOS an attractive option. The ability to integrate camera functions on-chip, such as biasing and sequencing, simplifies designing with CMOS sensors and can improve system reliability. One potential disadvantage to the use of CMOS is the possibility of single event effects, such as single event latchup (SEL), which can cause malfunctions or even permanent destruction of the sensor. These single event effects occur in the space environment due to the high levels of radiation incident on the sensor. This work investigates the ocurrence of SEL in CMOS image sensors subjected to heavy-ion irradiation. Three devices are investigated, two of which have triple-well doping implants. The resulting latchup cross-sections are presented. It is shown that using a deep p well on 18 μm epitaxial silicon increases the radiation hardness of the sensor against latchup. The linear energy transfer (LET) threshold for latchup is increased when using this configuration. Our findings suggest deep p wells can be used to increase the radiation tolerance of CMOS image sensors for use in future space missions.

  4. CMOS-APS Detectors for Solar Physics: Lessons Learned during the SWAP Preflight Calibration

    NASA Astrophysics Data System (ADS)

    de Groof, A.; Berghmans, D.; Nicula, B.; Halain, J.-P.; Defise, J.-M.; Thibert, T.; Schühle, U.

    2008-05-01

    CMOS-APS imaging detectors open new opportunities for remote sensing in solar physics beyond what classical CCDs can provide, offering far less power consumption, simpler electronics, better radiation hardness, and the possibility of avoiding a mechanical shutter. The SWAP telescope onboard the PROBA2 technology demonstration satellite of the European Space Agency will be the first actual implementation of a CMOS-APS detector for solar physics in orbit. One of the goals of the SWAP project is precisely to acquire experience with the CMOS-APS technology in a real-live space science context. Such a precursor mission is essential in the preparation of missions such as Solar Orbiter where the extra CMOS-APS functionalities will be hard requirements. The current paper concentrates on specific CMOS-APS issues that were identified during the SWAP preflight calibration measurements. We will discuss the different readout possibilities that the CMOS-APS detector of SWAP provides and their associated pros and cons. In particular we describe the “image lag” effect, which results in a contamination of each image with a remnant of the previous image. We have characterised this effect for the specific SWAP implementation and we conclude with a strategy on how to successfully circumvent the problem and actually take benefit of it for solar monitoring.

  5. A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit

    PubMed Central

    Chakrabarti, B.; Lastras-Montaño, M. A.; Adam, G.; Prezioso, M.; Hoskins, B.; Cheng, K.-T.; Strukov, D. B.

    2017-01-01

    Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore’s law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + “Molecular”) architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit. PMID:28195239

  6. System-on-Chip Considerations for Heterogeneous Integration of CMOS and Fluidic Bio-Interfaces.

    PubMed

    Datta-Chaudhuri, Timir; Smela, Elisabeth; Abshire, Pamela A

    2016-04-21

    CMOS chips are increasingly used for direct sensing and interfacing with fluidic and biological systems. While many biosensing systems have successfully combined CMOS chips for readout and signal processing with passive sensing arrays, systems that co-locate sensing with active circuits on a single chip offer significant advantages in size and performance but increase the complexity of multi-domain design and heterogeneous integration. This emerging class of lab-on-CMOS systems also poses distinct and vexing technical challenges that arise from the disparate requirements of biosensors and integrated circuits (ICs). Modeling these systems must address not only circuit design, but also the behavior of biological components on the surface of the IC and any physical structures. Existing tools do not support the cross-domain simulation of heterogeneous lab-on-CMOS systems, so we recommend a two-step modeling approach: using circuit simulation to inform physics-based simulation, and vice versa. We review the primary lab-on-CMOS implementation challenges and discuss practical approaches to overcome them. Issues include new versions of classical challenges in system-on-chip integration, such as thermal effects, floor-planning, and signal coupling, as well as new challenges that are specifically attributable to biological and fluidic domains, such as electrochemical effects, non-standard packaging, surface treatments, sterilization, microfabrication of surface structures, and microfluidic integration. We describe these concerns as they arise in lab-on-CMOS systems and discuss solutions that have been experimentally demonstrated.

  7. A low-cost CMOS-MEMS piezoresistive accelerometer with large proof mass.

    PubMed

    Khir, Mohd Haris Md; Qu, Peng; Qu, Hongwei

    2011-01-01

    This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS) substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference.

  8. System-on-Chip Considerations for Heterogeneous Integration of CMOS and Fluidic Bio-Interfaces.

    PubMed

    Datta-Chaudhuri, Timir; Smela, Elisabeth; Abshire, Pamela A

    2016-12-01

    CMOS chips are increasingly used for direct sensing and interfacing with fluidic and biological systems. While many biosensing systems have successfully combined CMOS chips for readout and signal processing with passive sensing arrays, systems that co-locate sensing with active circuits on a single chip offer significant advantages in size and performance but increase the complexity of multi-domain design and heterogeneous integration. This emerging class of lab-on-CMOS systems also poses distinct and vexing technical challenges that arise from the disparate requirements of biosensors and integrated circuits (ICs). Modeling these systems must address not only circuit design, but also the behavior of biological components on the surface of the IC and any physical structures. Existing tools do not support the cross-domain simulation of heterogeneous lab-on-CMOS systems, so we recommend a two-step modeling approach: using circuit simulation to inform physics-based simulation, and vice versa. We review the primary lab-on-CMOS implementation challenges and discuss practical approaches to overcome them. Issues include new versions of classical challenges in system-on-chip integration, such as thermal effects, floor-planning, and signal coupling, as well as new challenges that are specifically attributable to biological and fluidic domains, such as electrochemical effects, non-standard packaging, surface treatments, sterilization, microfabrication of surface structures, and microfluidic integration. We describe these concerns as they arise in lab-on-CMOS systems and discuss solutions that have been experimentally demonstrated.

  9. A low-cost CMOS neurological sensor array

    NASA Astrophysics Data System (ADS)

    Newman, Paul J.; Lisner, Peter; Yeow, Y.; Choy, Peng; Lavidis, Nick A.

    2005-02-01

    Current methods used to study neural communication have not been able to achieve both good spatial and temporal resolution of recordings. There are two ways to record synaptic potentials from nerve endings: recordings using single or dual intracellular or extra cellular metal electrodes give good temporal resolution but poor spatial resolution, and recording activity with fluorescent dyes gives good spatial resolution but poor temporal resolution. Such medical research activity in the area of neurological signal detection has thus identified a requirement for the design of a CMOS circuit that contains an array of independent sensors. As both spatial and temporal distribution of acquired data is required in this application, the circuit must be capable of continuous measurement of synaptic potentials from an array of points on a tissue sample, with a 10 μm separation between sensor points. The major requirement for the circuit is that it is capable of sensing synaptic potentials of the order of several mV, with a resolution of 0.05 mV. For data recording purposes, the circuit must amplify these synaptic potentials and digitise them together with their locations in the sensor array. Finally, the circuit must be biologically inert, to avoid specimen deterioration. This paper presents the design of a prototype single-chip circuit, which provides a 6 x 3 array of independent synaptic potential sensors. The signal from each of the sensors is amplified and time-multiplexed into an on-chip A/D converter. The circuit provides an 8-bit synaptic potential value, together with an 8-bit field containing array location and trigger signals suitable for external data acquisition instrumentation. Our test circuit is implemented in a low-cost 0.5 um, 5 V CMOS process. The fabricated die is mounted in a standard 40 pin DIP ceramic package, with no lid to allow direct contact of the die surface with the tissue sample. The only post-processing step required for these packages is to

  10. Users Guide on Scaled CMOS Reliability: NASA Electronic Parts and Packaging (NEPP) Program Office of Safety and Mission Assurance

    NASA Technical Reports Server (NTRS)

    White, Mark; Cooper, Mark; Johnston, Allan

    2011-01-01

    Reliability of advanced CMOS technology is a complex problem that is usually addressed from the standpoint of specific failure mechanisms rather than overall reliability of a finished microcircuit. A detailed treatment of CMOS reliability in scaled devices can be found in Ref. 1; it should be consulted for a more thorough discussion. The present document provides a more concise treatment of the scaled CMOS reliability problem, emphasizing differences in the recommended approach for these advanced devices compared to that of less aggressively scaled devices. It includes specific recommendations that can be used by flight projects that use advanced CMOS. The primary emphasis is on conventional memories, microprocessors, and related devices.

  11. Design and simulation of multi-color infrared CMOS metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengxi; Chen, Yongping; Ma, Bin

    2016-05-01

    Metamaterial electromagnetic wave absorbers, which usually can be fabricated in a low weight thin film structure, have a near unity absorptivity in a special waveband, and therefore have been widely applied from microwave to optical waveband. To increase absorptance of CMOS MEMS devices in 2-5 μmm waveband, multi-color infrared metamaterial absorbers are designed with CSMC 0.5 μmm 2P3M and 0.18 μmm 1P6M CMOS technology in this work. Metal-insulator-metal (MIM) three-layer MMAs and Insulator-metal-insulator-metal (MIMI) four-layer MMAs are formed by CMOS metal interconnect layers and inter metal dielectrics layer. To broaden absorption waveband in 2-5μmm range, MMAs with a combination of different sizes cross bars are designed. The top metal layer is a periodic aluminum square array or cross bar array with width ranging from submicron to several microns. The absorption peak position and intensity of MMAs can be tuned by adjusting the top aluminum micro structure array. Post-CMOS process is adopted to fabricate MMAs. The infrared absorption spectra of MMAs are verified with finite element method simulation, and the effects of top metal structure sizes, patterns, and films thickness are also simulated and intensively discussed. The simulation results show that CMOS MEMS MMAs enhance infrared absorption in 2-20 μmm. The MIM broad MMA has an average absorptance of 0.22 in 2-5 μmm waveband, and 0.76 in 8-14 μm waveband. The CMOS metamaterial absorbers can be inherently integrated in many kinds of MEMS devices fabricated with CMOS technology, such as uncooled bolometers, infrared thermal emitters.

  12. Dielectrophoretic lab-on-CMOS platform for trapping and manipulation of cells.

    PubMed

    Park, Kyoungchul; Kabiri, Shideh; Sonkusale, Sameer

    2016-02-01

    Trapping and manipulation of cells are essential operations in numerous studies in biology and life sciences. We discuss the realization of a Lab-on-a-Chip platform for dielectrophoretic trapping and repositioning of cells and microorganisms on a complementary metal oxide semiconductor (CMOS) technology, which we define here as Lab-on-CMOS (LoC). The LoC platform is based on dielectrophoresis (DEP) which is the force experienced by any dielectric particle including biological entities in non-uniform AC electrical field. DEP force depends on the permittivity of the cells, its size and shape and also on the permittivity of the medium and therefore it enables selective targeting of cells based on their phenotype. In this paper, we address an important matter that of electrode design for DEP for which we propose a three-dimensional (3D) octapole geometry to create highly confined electric fields for trapping and manipulation of cells. Conventional DEP-based platforms are implemented stand-alone on glass, silicon or polymers connected to external infrastructure for electronics and optics, making it bulky and expensive. In this paper, the use of CMOS as a platform provides a pathway to truly miniaturized lab-on-CMOS or LoC platform, where DEP electrodes are designed using built-in multiple metal layers of the CMOS process for effective trapping of cells, with built-in electronics for in-situ impedance monitoring of the cell position. We present electromagnetic simulation results of DEP force for this unique 3D octapole geometry on CMOS. Experimental results with yeast cells validate the design. These preliminary results indicate the promise of using CMOS technology for truly compact miniaturized lab-on-chip platform for cell biotechnology applications.

  13. Label-free immunodetection with CMOS-compatible semiconducting nanowires.

    PubMed

    Stern, Eric; Klemic, James F; Routenberg, David A; Wyrembak, Pauline N; Turner-Evans, Daniel B; Hamilton, Andrew D; LaVan, David A; Fahmy, Tarek M; Reed, Mark A

    2007-02-01

    Semiconducting nanowires have the potential to function as highly sensitive and selective sensors for the label-free detection of low concentrations of pathogenic microorganisms. Successful solution-phase nanowire sensing has been demonstrated for ions, small molecules, proteins, DNA and viruses; however, 'bottom-up' nanowires (or similarly configured carbon nanotubes) used for these demonstrations require hybrid fabrication schemes, which result in severe integration issues that have hindered widespread application. Alternative 'top-down' fabrication methods of nanowire-like devices produce disappointing performance because of process-induced material and device degradation. Here we report an approach that uses complementary metal oxide semiconductor (CMOS) field effect transistor compatible technology and hence demonstrate the specific label-free detection of below 100 femtomolar concentrations of antibodies as well as real-time monitoring of the cellular immune response. This approach eliminates the need for hybrid methods and enables system-scale integration of these sensors with signal processing and information systems. Additionally, the ability to monitor antibody binding and sense the cellular immune response in real time with readily available technology should facilitate widespread diagnostic applications.

  14. Charge collection studies in irradiated HV-CMOS particle detectors

    NASA Astrophysics Data System (ADS)

    Affolder, A.; Andelković, M.; Arndt, K.; Bates, R.; Blue, A.; Bortoletto, D.; Buttar, C.; Caragiulo, P.; Cindro, V.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Gorišek, A.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hommels, L. B. A.; Huffman, T.; John, J.; Kanisauskas, K.; Kenney, C.; Kramberger, G.; Liang, Z.; Mandić, I.; Maneuski, D.; McMahon, S.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Perić, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seiden, A.; Shipsey, I.; Song, W.; Stanitzki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zavrtanik, M.; Zhang, J.; Zhu, H.

    2016-04-01

    Charge collection properties of particle detectors made in HV-CMOS technology were investigated before and after irradiation with reactor neutrons. Two different sensor types were designed and processed in 180 and 350 nm technology by AMS. Edge-TCT and charge collection measurements with electrons from 90Sr source were employed. Diffusion of generated carriers from undepleted substrate contributes significantly to the charge collection before irradiation, while after irradiation the drift contribution prevails as shown by charge measurements at different shaping times. The depleted region at a given bias voltage was found to grow with irradiation in the fluence range of interest for strip detectors at the HL-LHC. This leads to large gains in the measured charge with respect to the one before irradiation. The increase of the depleted region was attributed to removal of effective acceptors. The evolution of depleted region with fluence was investigated and modeled. Initial studies show a small effect of short term annealing on charge collection.

  15. A CMOS pressure sensor tag chip for passive wireless applications.

    PubMed

    Deng, Fangming; He, Yigang; Li, Bing; Zuo, Lei; Wu, Xiang; Fu, Zhihui

    2015-03-23

    This paper presents a novel monolithic pressure sensor tag for passive wireless applications. The proposed pressure sensor tag is based on an ultra-high frequency RFID system. The pressure sensor element is implemented in the 0.18 µm CMOS process and the membrane gap is formed by sacrificial layer release, resulting in a sensitivity of 1.2 fF/kPa within the range from 0 to 600 kPa. A three-stage rectifier adopts a chain of auxiliary floating rectifier cells to boost the gate voltage of the switching transistors, resulting in a power conversion efficiency of 53% at the low input power of -20 dBm. The capacitive sensor interface, using phase-locked loop archietcture, employs fully-digital blocks, which results in a 7.4 bits resolution and 0.8 µW power dissipation at 0.8 V supply voltage. The proposed passive wireless pressure sensor tag costs a total 3.2 µW power dissipation.

  16. High resolution, high bandwidth global shutter CMOS area scan sensors

    NASA Astrophysics Data System (ADS)

    Faramarzpour, Naser; Sonder, Matthias; Li, Binqiao

    2013-10-01

    Global shuttering, sometimes also known as electronic shuttering, enables the use of CMOS sensors in a vast range of applications. Teledyne DALSA Global shutter sensors are able to integrate light synchronously across millions of pixels with microsecond accuracy. Teledyne DALSA offers 5 transistor global shutter pixels in variety of resolutions, pitches and noise and full-well combinations. One of the recent generations of these pixels is implemented in 12 mega pixel area scan device at 6 um pitch and that images up to 70 frames per second with 58 dB dynamic range. These square pixels include microlens and optional color filters. These sensors also offer exposure control, anti-blooming and high dynamic range operation by introduction of a drain and a PPD reset gate to the pixel. The state of the art sense node design of Teledyne DALSA's 5T pixel offers exceptional shutter rejection ratio. The architecture is consistent with the requirements to use stitching to achieve very large area scan devices. Parallel or serial digital output is provided on these sensors using on-chip, column-wise analog to digital converters. Flexible ADC bit depth combined with windowing (adjustable region of interest, ROI) allows these sensors to run with variety of resolution/bandwidth combinations. The low power, state of the art LVDS I/O technology allows for overall power consumptions of less than 2W at full performance conditions.

  17. Capacitively Coupled CMOS VCSEL Driver Circuits for Optical Communication

    NASA Astrophysics Data System (ADS)

    Kozlov, Victor

    This thesis presents the analysis, design and implementation of a common-cathode capacitively-coupled VCSEL driver in 65nm CMOS intended for short-reach optical interconnects. The driver consists of an AC-coupled high-frequency path and a low-frequency path that provides DC signal components. By increasing the low-frequency path bandwidth by 10 times compared to previous AC-coupled drivers allowed the on-chip coupling capacitor to be reduced to 2.1pF, occupying 3 times less area than prior art. The driver introduces capacitively-coupled two-tap emphasis to equalize the VCSEL's optical response. The VCSEL was modulated with an OMA of up to 5.1dBm and an ER of 9dB, measuring an RMS jitter of 5ps at a data rate of 15Gb/s, which represents the highest OMA and ER achieved in high-speed anode-driving LDDs. The driver could be programmed for a low-power mode, outputting 2.3dBm OMA at power consumption of only 30mW, corresponding to an energy efficiency of 2pJ/bit.

  18. Smart CMOS sensor for wideband laser threat detection

    NASA Astrophysics Data System (ADS)

    Schwarze, Craig R.; Sonkusale, Sameer

    2015-09-01

    The proliferation of lasers has led to their widespread use in applications ranging from short range standoff chemical detection to long range Lidar sensing and target designation operating across the UV to LWIR spectrum. Recent advances in high energy lasers have renewed the development of laser weapons systems. The ability to measure and assess laser source information is important to both identify a potential threat as well as determine safety and nominal hazard zone (NHZ). Laser detection sensors are required that provide high dynamic range, wide spectral coverage, pulsed and continuous wave detection, and large field of view. OPTRA, Inc. and Tufts have developed a custom ROIC smart pixel imaging sensor architecture and wavelength encoding optics for measurement of source wavelength, pulse length, pulse repetition frequency (PRF), irradiance, and angle of arrival. The smart architecture provides dual linear and logarithmic operating modes to provide 8+ orders of signal dynamic range and nanosecond pulse measurement capability that can be hybridized with the appropriate detector array to provide UV through LWIR laser sensing. Recent advances in sputtering techniques provide the capability for post-processing CMOS dies from the foundry and patterning PbS and PbSe photoconductors directly on the chip to create a single monolithic sensor array architecture for measuring sources operating from 0.26 - 5.0 microns, 1 mW/cm2 - 2 kW/cm2.

  19. Measurements of Si Hybrid CMOS X-Ray Detector Characteristics

    NASA Astrophysics Data System (ADS)

    Bongiorno, Stephen; Falcone, A.; Burrows, D.; Cook, R.

    2010-01-01

    The development of Hybrid CMOS Detectors (HCDs) for X-Ray telescope focal planes will place them in contention with CCDs on future satellite missions due to their faster frame rates, flexible readout scenarios, lower power consumption, and inherent radiation hardness. CCDs have been used with great success on the current generation of X-Ray telescopes (e.g. Chandra, XMM, Suzaku, and Swift). However their bucket-brigade readout architecture, which transfers charge across the chip with discrete component readout electronics, results in clockrate limited readout speeds that cause pileup (saturation) of bright sources and an inherent susceptibility to radiation induced displacement damage that limits mission lifetime. In contrast, HCDs read pixels with low power, on-chip multiplexer electronics in a random access fashion. Faster frame rates, achieved with multi-output readout design, will allow the next generation's larger effective area telescopes to observe bright sources free of pileup. Radiation damaged lattice sites effect a single pixel instead of an entire row. Random access, multi-output readout will allow for novel readout modes such as simultaneous bright-source-fast/whole-chip-slow readout. In order for HCDs to become useful X-Ray detectors, they must show noise and energy resolution performance similar to CCDs while retaining advantages inherent to HCDs. We will report on readnoise, conversion gain, and energy resolution measurements of X-Ray enhanced Teledyne HAWAII-1RG (H1RG) HCDs and describe techniques of H1RG data reduction.

  20. Measurements of Si hybrid CMOS x-ray detector characteristics

    NASA Astrophysics Data System (ADS)

    Bongiorno, Stephen D.; Falcone, Abe D.; Burrows, David N.; Cook, Robert; Bai, Yibin; Farris, Mark

    2009-08-01

    The development of Hybrid CMOS Detectors (HCDs) for X-Ray telescope focal planes will place them in contention with CCDs on future satellite missions due to their faster frame rates, flexible readout scenarios, lower power consumption, and inherent radiation hardness. CCDs have been used with great success on the current generation of X-Ray telescopes (e.g. Chandra, XMM, Suzaku, and Swift). However their bucket-brigade readout architecture, which transfers charge across the chip with discrete component readout electronics, results in clockrate limited readout speeds that cause pileup (saturation) of bright sources and an inherent susceptibility to radiation induced displacement damage that limits mission lifetime. In contrast, HCDs read pixels with low power, on-chip multiplexer electronics in a random access fashion. Faster frame rates achieved with multi-output readout design will allow the next generation's larger effective area telescopes to observe bright sources free of pileup. Radiation damaged lattice sites effect a single pixel instead of an entire row. Random access, multi-output readout will allow for novel readout modes such as simultaneous bright-source-fast/whole-chip-slow readout. In order for HCDs to be useful as X-Ray detectors, they must show noise and energy resolution performance similar to CCDs while retaining advantages inherent to HCDs. We will report on readnoise, conversion gain, and energy resolution measurements of an X-Ray enhanced Teledyne HAWAII-1RG (H1RG) HCD and describe techniques of H1RG data reduction.

  1. Read disturb errors in a CMOS static RAM chip

    NASA Astrophysics Data System (ADS)

    Wood, Steven H.; Marr, James C., IV; Nguyen, Tien T.; Padgett, Dwayne J.; Tran, Joe C.; Griswold, Thomas W.; Lebowitz, Daniel C.

    Results are reported from an extensive investigation into pattern-sensitive soft errors (read disturb errors) in the TCC244 CMOS static RAM chip. The TCC244, also known as the SA2838, is a radiation-hard single-event-upset-resistant 4 x 256 memory chip. This device is being used by the Jet Propulsion Laboratory in the Galileo and Magellan spacecraft, which will have encounters with Jupiter and Venus, respectively. Two aspects of the part's design are shown to result in the occurrence of read disturb errors: the transparence of the signal path from the address pins to the array of cells, and the large resistance in the Vdd and Vss lines of the cells in the center of the array. Probe measurements taken during a read disturb failure illustrate how address skews and the data pattern in the chip combine to produce a bit flip. A capacitive charge pump formed by the individual cell capacitances and the resistance in the supply lines pumps down both the internal cell voltage and the local supply voltage until a bit flip occurs.

  2. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This report covers the time period from May 1976 to December 1979 and encompasses the three phases of accelerated testing: Phase 1, the 250 C testing; Phase 2, the 200 C testing; and Phase 3, the 125 C testing. The duration of the test in Phase 1 and Phase 2 was sufficient to take the devices into the wear out region. The wear out distributions were used to estimate the activation energy between the 250 C and the 200 C test temperatures. The duration of the 125 C test, 20,000 hours, was not sufficient to bring the test devices into the wear out region; consequently the third data point at 125 C for determining the consistency of activation energy could not be obtained. It was estimated that, for the most complex of the three device types, the activation energy between 200 C and 125 C should be at least as high as that between 250 C and 200 C. The practicality of the use of high temperature for the accelerated life tests from the point of view of durability of equipment was assessed. Guidelines for the development of accelerated life test conditions were proposed. The use of the silicon nitride overcoat to improve the high temperature accelerated life test characteristics of CMOS microcircuits was explored in Phase 4 of this study and is attached as an appendix to this report.

  3. Improved Signal Chains for Readout of CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Hancock, Bruce; Cunningham, Thomas

    2009-01-01

    An improved generic design has been devised for implementing signal chains involved in readout from complementary metal oxide/semiconductor (CMOS) image sensors and for other readout integrated circuits (ICs) that perform equivalent functions. The design applies to any such IC in which output signal charges from the pixels in a given row are transferred simultaneously into sampling capacitors at the bottoms of the columns, then voltages representing individual pixel charges are read out in sequence by sequentially turning on column-selecting field-effect transistors (FETs) in synchronism with source-follower- or operational-amplifier-based amplifier circuits. The improved design affords the best features of prior source-follower-and operational- amplifier-based designs while overcoming the major limitations of those designs. The limitations can be summarized as follows: a) For a source-follower-based signal chain, the ohmic voltage drop associated with DC bias current flowing through the column-selection FET causes unacceptable voltage offset, nonlinearity, and reduced small-signal gain. b) For an operational-amplifier-based signal chain, the required bias current and the output noise increase superlinearly with size of the pixel array because of a corresponding increase in the effective capacitance of the row bus used to couple the sampled column charges to the operational amplifier. The effect of the bus capacitance is to simultaneously slow down the readout circuit and increase noise through the Miller effect.

  4. Multi-Aperture CMOS Sun Sensor for Microsatellite Attitude Determination

    PubMed Central

    Rufino, Giancarlo; Grassi, Michele

    2009-01-01

    This paper describes the high precision digital sun sensor under development at the University of Naples. The sensor determines the sun line orientation in the sensor frame from the measurement of the sun position on the focal plane. It exploits CMOS technology and an original optical head design with multiple apertures. This allows simultaneous multiple acquisitions of the sun as spots on the focal plane. The sensor can be operated either with a fixed or a variable number of sun spots, depending on the required field of view and sun-line measurement precision. Multiple acquisitions are averaged by using techniques which minimize the computational load to extract the sun line orientation with high precision. Accuracy and computational efficiency are also improved thanks to an original design of the calibration function relying on neural networks. Extensive test campaigns are carried out using a laboratory test facility reproducing sun spectrum, apparent size and distance, and variable illumination directions. Test results validate the sensor concept, confirming the precision improvement achievable with multiple apertures, and sensor operation with a variable number of sun spots. Specifically, the sensor provides accuracy and precision in the order of 1 arcmin and 1 arcsec, respectively. PMID:22408538

  5. A CMOS ASIC Design for SiPM Arrays

    PubMed Central

    Dey, Samrat; Banks, Lushon; Chen, Shaw-Pin; Xu, Wenbin; Lewellen, Thomas K.; Miyaoka, Robert S.; Rudell, Jacques C.

    2012-01-01

    Our lab has previously reported on novel board-level readout electronics for an 8×8 silicon photomultiplier (SiPM) array featuring row/column summation technique to reduce the hardware requirements for signal processing. We are taking the next step by implementing a monolithic CMOS chip which is based on the row-column architecture. In addition, this paper explores the option of using diagonal summation as well as calibration to compensate for temperature and process variations. Further description of a timing pickoff signal which aligns all of the positioning (spatial channels) pulses in the array is described. The ASIC design is targeted to be scalable with the detector size and flexible to accommodate detectors from different vendors. This paper focuses on circuit implementation issues associated with the design of the ASIC to interface our Phase II MiCES FPGA board with a SiPM array. Moreover, a discussion is provided for strategies to eventually integrate all the analog and mixed-signal electronics with the SiPM, on either a single-silicon substrate or multi-chip module (MCM). PMID:24825923

  6. High-frequency BiCMOS transconductance integrators

    NASA Astrophysics Data System (ADS)

    Beards, R. Douglas

    1990-10-01

    The capabilities of a fine-line bipolar complementary metal oxide semiconductor (BiCMOS) process in the design of wideband transconductance integrators for precision monolithic continuous time filtering are explored. The design considerations of such an integrator are examined in detail, with an emphasis on tunability and phase compensation as a means for realizing a precision wideband design. The concept of open-loop transconductance filtering is described and possible circuit topologies are investigated. Detailed small-signal and large-signal analysis of one proposed circuit which has both tunable bandwidth and tunable phase compensation is presented. Application of such an integrator to open-loop transconductance filtering in the 10-50 MHz frequency range is studied. Simulation results show specific performance expectations of the proposed circuit. The tunable compensation circuit was seen to restrict the amplitude of signals which the integrator can pass without severe distortion or even instability occurring. A potential solution to this problem is deemed to be unsuitable for high frequency applications. The general design philosophy of applying low-frequency techniques to realize a high frequency circuit was seen to result in several fundamental problems.

  7. A CMOS ASIC Design for SiPM Arrays.

    PubMed

    Dey, Samrat; Banks, Lushon; Chen, Shaw-Pin; Xu, Wenbin; Lewellen, Thomas K; Miyaoka, Robert S; Rudell, Jacques C

    2011-12-01

    Our lab has previously reported on novel board-level readout electronics for an 8×8 silicon photomultiplier (SiPM) array featuring row/column summation technique to reduce the hardware requirements for signal processing. We are taking the next step by implementing a monolithic CMOS chip which is based on the row-column architecture. In addition, this paper explores the option of using diagonal summation as well as calibration to compensate for temperature and process variations. Further description of a timing pickoff signal which aligns all of the positioning (spatial channels) pulses in the array is described. The ASIC design is targeted to be scalable with the detector size and flexible to accommodate detectors from different vendors. This paper focuses on circuit implementation issues associated with the design of the ASIC to interface our Phase II MiCES FPGA board with a SiPM array. Moreover, a discussion is provided for strategies to eventually integrate all the analog and mixed-signal electronics with the SiPM, on either a single-silicon substrate or multi-chip module (MCM).

  8. Passive radiation detection using optically active CMOS sensors

    NASA Astrophysics Data System (ADS)

    Dosiek, Luke; Schalk, Patrick D.

    2013-05-01

    Recently, there have been a number of small-scale and hobbyist successes in employing commodity CMOS-based camera sensors for radiation detection. For example, several smartphone applications initially developed for use in areas near the Fukushima nuclear disaster are capable of detecting radiation using a cell phone camera, provided opaque tape is placed over the lens. In all current useful implementations, it is required that the sensor not be exposed to visible light. We seek to build a system that does not have this restriction. While building such a system would require sophisticated signal processing, it would nevertheless provide great benefits. In addition to fulfilling their primary function of image capture, cameras would also be able to detect unknown radiation sources even when the danger is considered to be low or non-existent. By experimentally profiling the image artifacts generated by gamma ray and β particle impacts, algorithms are developed to identify the unique features of radiation exposure, while discarding optical interaction and thermal noise effects. Preliminary results focus on achieving this goal in a laboratory setting, without regard to integration time or computational complexity. However, future work will seek to address these additional issues.

  9. A 16-channel CMOS preamplifier for laser ranging radar receivers

    NASA Astrophysics Data System (ADS)

    Liu, Ru-qing; Zhu, Jing-guo; Jiang, Yan; Li, Meng-lin; Li, Feng

    2015-10-01

    A 16-channal front-end preamplifier array has been design in a 0.18um CMOS process for pulse Laser ranging radar receiver. This front-end preamplifier array incorporates transimpedance amplifiers(TIAs) and differential voltage post-amplifier(PAMP),band gap reference and other interface circuits. In the circuit design, the regulated cascade (RGC) input stage, Cherry-Hooper and active inductor peaking were employed to enhance the bandwidth. And in the layout design, by applying the layout isolation structure combined with P+ guard-ring(PGR), N+ guard-ring(NGR),and deep-n-well(DNW) for amplifier array, the crosstalk and the substrate noise coupling was reduced effectively. The simulations show that a single channel receiver front-end preamplifier achieves 95 dBΩ transimpedance gain and 600MHz bandwidth for 3 PF photodiode capacitance. The total power of 16-channel front-end amplifier array is about 800mW for 1.8V supply.

  10. A CMOS Pressure Sensor Tag Chip for Passive Wireless Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Li, Bing; Zuo, Lei; Wu, Xiang; Fu, Zhihui

    2015-01-01

    This paper presents a novel monolithic pressure sensor tag for passive wireless applications. The proposed pressure sensor tag is based on an ultra-high frequency RFID system. The pressure sensor element is implemented in the 0.18 µm CMOS process and the membrane gap is formed by sacrificial layer release, resulting in a sensitivity of 1.2 fF/kPa within the range from 0 to 600 kPa. A three-stage rectifier adopts a chain of auxiliary floating rectifier cells to boost the gate voltage of the switching transistors, resulting in a power conversion efficiency of 53% at the low input power of −20 dBm. The capacitive sensor interface, using phase-locked loop archietcture, employs fully-digital blocks, which results in a 7.4 bits resolution and 0.8 µW power dissipation at 0.8 V supply voltage. The proposed passive wireless pressure sensor tag costs a total 3.2 µW power dissipation. PMID:25806868

  11. A Radiation Hardened by Design CMOS ASIC for Thermopile Readouts

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; Aslam, S.; DuMonthier, J.

    2012-01-01

    A radiation hardened by design (RHBD) mixed-signal application specific integrated circuit (ASIC) has been designed for a thermopile readout for operation in the harsh Jovian orbital environment. The multi-channel digitizer (MCD) ASIC includes 18 low noise amplifier channels which have tunable gain/filtering coefficients, a 16-bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The 18 channels, SDADC and controller were designed to operate with immunity to single event latchup (SEL) and to at least 10 Mrad total ionizing dose (TID). The ASIC also contains a radiation tolerant 16-bit 20 MHz Nyquist ADC for general purpose instrumentation digitizer needs. The ASIC is currently undergoing fabrication in a commercial 180 nm CMOS process. Although this ASIC was designed specifically for the harsh radiation environment of the NASA led JEO mission it is suitable for integration into instrumentation payloads 011 the ESA JUICE mission where the radiation hardness requirements are slightly less stringent.

  12. Deposition of titanium dioxide nanoparticles on the membrane of a CMOS-MEMS resonator

    NASA Astrophysics Data System (ADS)

    Ahmed, A. Y.; Dennis, J. O.; Khir, M. H. Md; Saad, M. N. Mohamad

    2014-10-01

    A CMOS-MEMS resonator is optimized as a highly sensitive gas sensor. The principle of detection is based on change in resonant frequency of the resonator due to adsorption/absorption of trace gases onto the active material on the resonator membrane. The resonator was successfully fabricated using 0.35 μm CMOS technology and post-CMOS micromachining process. The post-CMOS process is used to etch the silicon substrate and silicon oxide to release the suspended structures of the devices. Preliminary trials of nanocrystalline Titania paste (TiO2) was screen-printed on three aluminum plates of sizes 2mm × 2 mm. One of the samples was analysed as prepared while the other two samples were sintered at 300°C and 550°C, respectively. Physical observation indicated a change of the color for heated samples as compared to the unheated one. EDX results indicates a carbon (C) peak with average weight % of 18.816 in the as prepared sample and absence of the peaks for the samples sintered at 300°C and 550°C. EDX results also show that the TiO2 used consists of a uniform distribution of spherical shaped nanoparticles with a diameter of about 13.49 to 48.42 nm. Finally, the Titania paste was successfully deposit on the membrane of the CMOS-MEMS resonator for use as the gas sensitive membrane of the sensor.

  13. Transmission and reflective ultrasound images using PE-CMOS sensor array

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung B.; Liu, Chu Chuan; Freedman, Matthew T.; Kula, John; Lasser, Bob; Lasser, Marvin E.; Wang, Yue

    2005-04-01

    The purpose of this study is to investigate the imaging capability of a CMOS (PE-CMOS) ultrasound sensing array coated with piezoelectric material. There are three main components in the laboratory setup: (1) a transducer operated at 3.5MHz-7MHz frequency generating unfocused ultrasound plane waves, (2) an acoustic compound lens that collects the energy and focuses ultrasound signals onto the detector array, and (3) a PE-CMOS ultrasound sensing array (Model I400, Imperium Inc. Silver Spring, MD) that receives the ultrasound and converts the energy to analog voltage followed by a digital conversion. The PE-CMOS array consists of 128×128 pixel elements with 85μm per pixel. The major improvement of the new ultrasound sensor array has been in its dynamic range. We found that the current PE-CMOS ultrasound sensor (Model I400) possesses a dynamic range up to 70dB. The system can generate ultrasound attenuation images of soft tissues which are similar to digital images obtained from an x-ray projection system. In the paper, we also show that the prototype system can image bone fractures using reflective geometry.

  14. Ultraviolet detector with CMOS-coupled microchannel plates for future space missions

    NASA Astrophysics Data System (ADS)

    Murakami, Go; Kuwabara, Masaki; Yoshioka, Kazuo; Hikida, Reina; Suzuki, Fumiharu; Yoshikawa, Ichiro

    2016-07-01

    The extreme ultraviolet (EUV) telescopes and spectrometers have been used as powerful tools in a variety of space applications, especially in planetary science. Many EUV instruments adopted microchannel plate (MCP) detection systems with resistive anode encoders (RAEs). An RAE is one of the position sensitive anodes suitable for space-based applications because of its low power, mass, and volume coupled with very high reliability. However, this detection system with RAE has limitations of resolution (up to 512 x 512 pixels) and incident count rate (up to 104 count/sec). Concerning the future space and planetary missions, a new detector with different position sensitive system is required in order to a higher resolution and dynamic range of incident photons. One of the solutions of this issue is using a CMOS imaging sensor. The CMOS imaging sensor with high resolution and high radiation tolerance has been widely used. Here we developed a new CMOS-coupled MCP detector for future UV space and planetary missions. It consists of MCPs followed by a phosphor screen, fiber optic plate, and a windowless CMOS. We manufactured a test model of this detector and performed vibration, thermal cycle, and performance tests. The test sample of FOP-coupled CMOS image sensor achieved the resolving limit of 32 lp/mm and the PSF of 28 um, corresponds to the spatial resolution of 1024 x 1024 pixels. Our results indicate that this new type of UV detector can be widely used for future space applications.

  15. High-sensitivity chemiluminescence detection of cytokines using an antibody-immobilized CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Hong, Dong-Gu; Joung, Hyou-Arm; Kim, Sang-Hyo; Kim, Min-Gon

    2013-05-01

    In this study, we used a Complementary Metal Oxide Semiconductor (CMOS) image sensor with immobilizing antibodies on its surface to detect human cytokines, which are activators that mediate intercellular communication including expression and control of immune responses. The CMOS image sensor has many advantages over the Charge Couple Device, including lower power consumption, operation voltage, and cost. The photodiode, a unit pixel component in the CMOS image sensor, receives light from the detection area and generates digital image data. About a million pixels are embedded, and size of each pixel is 3 x 3 μm. The chemiluminescence reaction produces light from the chemical reaction of luminol and hydrogen peroxide. To detect cytokines, antibodies were immobilized on the surface of the CMOS image sensor, and a sandwich immunoassay using an HRP-labeled antibody was performed. An HRP-catalyzed chemiluminescence reaction was measured by each pixel of the CMOS image sensor. Pixels with stronger signals indicated higher cytokine concentrations; thus, we were able to measure human interleukin-5 (IL-5) at femtomolar concentrations.

  16. Characteristics of Various Photodiode Structures in CMOS Technology with Monolithic Signal Processing Electronics

    SciTech Connect

    Mukhopadhyay, Sourav; Chandratre, V. B.; Sukhwani, Menka; Pithawa, C. K.

    2011-10-20

    Monolithic optical sensor with readout electronics are needed in optical communication, medical imaging and scintillator based gamma spectroscopy system. This paper presents the design of three different CMOS photodiode test structures and two readout channels in a commercial CMOS technology catering to the need of nuclear instrumentation. The three photodiode structures each of 1 mm{sup 2} with readout electronics are fabricated in 0.35 um, 4 metal, double poly, N-well CMOS process. These photodiode structures are based on available P-N junction of standard CMOS process i.e. N-well/P-substrate, P+/N-well/P-substrate and inter-digitized P+/N-well/P-substrate. The comparisons of typical characteristics among three fabricated photo sensors are reported in terms of spectral sensitivity, dark current and junction capacitance. Among the three photodiode structures N-well/P-substrate photodiode shows higher spectral sensitivity compared to the other two photodiode structures. The inter-digitized P+/N-well/P-substrate structure has enhanced blue response compared to N-well/P-substrate and P+/N-well/P-substrate photodiode. Design and test results of monolithic readout electronics, for three different CMOS photodiode structures for application related to nuclear instrumentation, are also reported.

  17. Highly Flexible Hybrid CMOS Inverter Based on Si Nanomembrane and Molybdenum Disulfide.

    PubMed

    Das, Tanmoy; Chen, Xiang; Jang, Houk; Oh, Il-Kwon; Kim, Hyungjun; Ahn, Jong-Hyun

    2016-11-01

    2D semiconductor materials are being considered for next generation electronic device application such as thin-film transistors and complementary metal-oxide-semiconductor (CMOS) circuit due to their unique structural and superior electronics properties. Various approaches have already been taken to fabricate 2D complementary logics circuits. However, those CMOS devices mostly demonstrated based on exfoliated 2D materials show the performance of a single device. In this work, the design and fabrication of a complementary inverter is experimentally reported, based on a chemical vapor deposition MoS2 n-type transistor and a Si nanomembrane p-type transistor on the same substrate. The advantages offered by such CMOS configuration allow to fabricate large area wafer scale integration of high performance Si technology with transition-metal dichalcogenide materials. The fabricated hetero-CMOS inverters which are composed of two isolated transistors exhibit a novel high performance air-stable voltage transfer characteristic with different supply voltages, with a maximum voltage gain of ≈16, and sub-nano watt power consumption. Moreover, the logic gates have been integrated on a plastic substrate and displayed reliable electrical properties paving a realistic path for the fabrication of flexible/transparent CMOS circuits in 2D electronics.

  18. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    SciTech Connect

    Wang, Zujun Huang, Shaoyan; Liu, Minbo; Xiao, Zhigang; He, Baoping; Yao, Zhibin; Sheng, Jiangkun

    2014-07-15

    The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 10{sup 8} n/cm{sup 2}s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 10{sup 11}, 5 × 10{sup 11}, and 1 × 10{sup 12} n/cm{sup 2}, respectively. The mean dark signal (K{sub D}), dark signal spike, dark signal non-uniformity (DSNU), noise (V{sub N}), saturation output signal voltage (V{sub S}), and dynamic range (DR) versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike.

  19. Hot-carrier reliability assessment in CMOS digital integrated circuits

    NASA Astrophysics Data System (ADS)

    Jiang, Wenjie

    As VLSI technologies scale to deep submicron region, the DC device-based hot-carrier criterion is no longer practical for predicting hot-carrier reliability. Understanding the AC hot-carrier degradation of MOSFETs in actual circuit environment and their corresponding impact on circuit performance becomes increasingly important. The purpose of this research is to contribute to the assessment of hot-carrier reliability in digital CMOS circuits. Several critical issues that face circuit- level hot-carrier reliability evaluation are investigated, including AC hot-carrier test circuit design and characterization, AC hot-carrier degradation model calibration, the major factors determining circuit- level hot-carrier reliability, and the trade-offs between circuit-level hot-carrier lifetime underestimation and the amount of information required. In the area of experimental assessment of AC hot-carrier reliability, this thesis provides a comprehensive understanding of the key issues in designing and characterizing hot-carrier reliability test circuits. Test circuits that can provide realistic stress voltage waveforms, allow access to the internal device nodes, and provide insight about circuit performance sensitivity to hot-carrier damage are presented. New insights about previous test circuit designs are presented and additional test circuit designs are demonstrated. The design trade-offs between realistic waveform generation and internal device accessibility are analyzed and clarified. Recommendations for optimal test-circuit design for hot-carrier reliability characterization and model calibration are proposed. In the area of circuit-level hot-carrier reliability simulation, this thesis examines key issues involved in the calibration and verification of the hot-carrier degradation models that are used for AC hot-carrier reliability simulation. The need to account for the stress oxide-field dependence of the degradation model coefficients is demonstrated. The statistical

  20. A novel CMOS transducer for giant magnetoresistance sensors

    NASA Astrophysics Data System (ADS)

    Luong, Van Su; Lu, Chih-Cheng; Yang, Jing-Wen; Jeng, Jen-Tzong

    2017-02-01

    In this work, an ASIC (application specific integrated circuits) transducer circuit for field modulated giant magnetoresistance (GMR) sensors was designed and fabricated using a 0.18-μ m CMOS process. The transducer circuits consist of a frequency divider, a digital phase shifter, an instrument amplifier, and an analog mixer. These comprise a mix of analog and digital circuit techniques. The compact chip size of 1.5 mm × 1.5 mm for both analog and digital parts was achieved using the TSMC18 1P6M (1-polysilicon 6-metal) process design kit, and the characteristics of the system were simulated using an HSpice simulator. The output of the transducer circuit is the result of the first harmonic detection, which resolves the modulated field using a phase sensitive detection (PSD) technique and is proportional to the measured magnetic field. When the dual-bridge GMR sensor is driven by the transducer circuit with a current of 10 mA at 10 kHz, the observed sensitivity of the field sensor is 10.2 mV/V/Oe and the nonlinearity error was 3% in the linear range of ±1 Oe. The performance of the system was also verified by rotating the sensor system horizontally in earth's magnetic field and recording the sinusoidal output with respect to the azimuth angle, which exhibits an error of less than ±0.04 Oe. These results prove that the ASIC transducer is suitable for driving the AC field modulated GMR sensors applied to geomagnetic measurement.

  1. Integrating silicon photonic interconnects with CMOS: Fabrication to architecture

    NASA Astrophysics Data System (ADS)

    Sherwood, Nicholas Ramsey

    While it was for many years the goal of microelectronics to speed up our daily tasks, the focus of today's technological developments is heavily centered on electronic media. Anyone can share their thoughts as text, sound, images or full videos, they can even make phone calls and download full movies on their computers, tablets and phones. The impact of this upsurge in bandwidth is directly on the infrastructure that carries this data. Long distance telecom lines were long ago replaced by optical fibers; now shorter and shorter distance connections have moved to optical transmission to keep up with the bandwidth requirements. Yet microprocessors that make up the switching nodes as well as the endpoints are not only stagnant in terms of processing speed, but also unlikely to continue Moore's transistor-doubling trend for much longer. Silicon photonics stands to make a technical leap in microprocessor technology by allowing monolithic communication speeds between arbitrarily spaced processing elements. The improvement in on-chip communication could reduce power and enable new improvements in this field. This work explores a few aspects involved in making such a leap practical in real life. The first part of the thesis develops process techniques and materials to make silicon photonics truly compatible with CMOS electronics, for two different stack layouts, including a glimpse into multilayerd photonics. Following this is an evaluation of the limitations of integrated devices and a post-fabrication/stabilizing solution using thermal index shifting. In the last parts we explore higher level device design and architecture on the SOI platform.

  2. CMOS Hybrid Pixel Detectors for Scientific, Industrial and Medical Applications

    NASA Astrophysics Data System (ADS)

    Broennimann, Christian

    2009-03-01

    Crystallography is the principal technique for determining macromolecular structures at atomic resolution and uses advantageously the high intensity of 3rd generation synchrotron X-ray sources . Macromolecular crystallography experiments benefit from excellent beamline equipment, recent software advances and modern X-ray detectors. However, the latter do not take full advantage of the brightness of modern synchrotron sources. CMOS Hybrid pixel array detectors, originally developed for high energy physics experiments, meet these requirements. X-rays are recorded in single photon counting mode and data thus are stored digitally at the earliest possible stage. This architecture leads to several advantages over current detectors: No detector noise is added to the signal. Readout time is reduced to a few milliseconds. The counting rates are matched to beam intensities at protein crystallography beamlines at 3rd generation synchrotrons. The detector is not sensitive to X-rays during readout; therefore no mechanical shutter is required. The detector has a very sharp point spread function (PSF) of one pixel, which allows better resolution of adjacent reflections. Low energy X-rays can be suppressed by the comparator At the Paul Scherrer Institute (PSI) in Switzerland the first and largest array based on this technology was constructed: The Pilatus 6M detector. The detector covers an area of 43.1 x 44.8 cm2 , has 6 million pixels and is read out noise free in 3.7 ms. Since June 2007 the detector is in routine operation at the beamline 6S of the Swiss Light Source (SLS). The company DETCRIS Ltd, has licensed the technology from PSI and is commercially offering the PILATUS detectors. Examples of the wide application range of the detectors will be shown.

  3. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    NASA Astrophysics Data System (ADS)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  4. A novel CMOS transducer for giant magnetoresistance sensors.

    PubMed

    Luong, Van Su; Lu, Chih-Cheng; Yang, Jing-Wen; Jeng, Jen-Tzong

    2017-02-01

    In this work, an ASIC (application specific integrated circuits) transducer circuit for field modulated giant magnetoresistance (GMR) sensors was designed and fabricated using a 0.18-μm CMOS process. The transducer circuits consist of a frequency divider, a digital phase shifter, an instrument amplifier, and an analog mixer. These comprise a mix of analog and digital circuit techniques. The compact chip size of 1.5 mm × 1.5 mm for both analog and digital parts was achieved using the TSMC18 1P6M (1-polysilicon 6-metal) process design kit, and the characteristics of the system were simulated using an HSpice simulator. The output of the transducer circuit is the result of the first harmonic detection, which resolves the modulated field using a phase sensitive detection (PSD) technique and is proportional to the measured magnetic field. When the dual-bridge GMR sensor is driven by the transducer circuit with a current of 10 mA at 10 kHz, the observed sensitivity of the field sensor is 10.2 mV/V/Oe and the nonlinearity error was 3% in the linear range of ±1 Oe. The performance of the system was also verified by rotating the sensor system horizontally in earth's magnetic field and recording the sinusoidal output with respect to the azimuth angle, which exhibits an error of less than ±0.04 Oe. These results prove that the ASIC transducer is suitable for driving the AC field modulated GMR sensors applied to geomagnetic measurement.

  5. CMOS analog implementation of a simplified spinal cord neural model

    NASA Astrophysics Data System (ADS)

    Domenech-Asensi, Gines; Ruiz-Merino, Ramon; Hauer, Hans; Diaz-Madrid, Jose A.

    2003-04-01

    This paper presents an analog CMOS implementation of a neural network based on a spinal cord model. The network is comprised by three pairs of cells, Alpha motorneurons, Interneurons and Renshaw cells, which form the basic control motor system for a single limb movement. Behaviour of each neuron is described by a differential equation, which provides it with a dynamic performance. This network is useful to control limb movements based in an antagonist pair of actuators, i.e. muscles for a human limb or electric motors or SMA fibers for machine applications. This antagonist structure has the main advantage that allows independent control of limb position and stiffness, which makes it suitable for applications where inertial load compensation is a critical factor. For the implementation of the neurons we have developed individual analog operators, like multipliers and integrators, which have been then joined to obtain the cell. The whole circuit works in current mode, and exhibits good performance in power disipation and bandwidth. The implementation of the network has been done in a 0.35um process from AMS. The layout size is 870 × 480 μm and the power dissipation is 14 mW, using a reference voltage of 3.3 volts. The applications in which this network canbe used fall in two broad cathegories. Firstly, in the development of human-machine interfaces capable to be used both in industry and in handicaped people and secondly in the development o neural controller for industrial robots, providing them with a compliance performance.

  6. sCMOS detector for imaging VNIR spectrometry

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Reulke, Ralf; Schwarzer, Horst; Venus, Holger; Neumann, Christian

    2013-09-01

    The facility Optical Information Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the scientific results of the institute of leading edge instruments and focal plane designs for EnMAP VIS/NIR spectrograph. EnMAP (Environmental Mapping and Analysis Program) is one of the selected proposals for the national German Space Program. The EnMAP project includes the technological design of the hyper spectral space borne instrument and the algorithms development of the classification. The EnMAP project is a joint response of German Earth observation research institutions, value-added resellers and the German space industry like Kayser-Threde GmbH (KT) and others to the increasing demand on information about the status of our environment. The Geo Forschungs Zentrum (GFZ) Potsdam is the Principal Investigator of EnMAP. DLR OS and KT were driving the technology of new detectors and the FPA design for this project, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generations of space borne sensor systems are focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high spectral resolution with intelligent synchronization control, fast-readout ADC chains and new focal-plane concepts open the door to new remote-sensing and smart deep space instruments. The paper gives an overview over the detector verification program at DLR on FPA level, new control possibilities for sCMOS detectors in global shutter mode and key parameters like PRNU, DSNU, MTF, SNR, Linearity, Spectral Response, Quantum Efficiency, Flatness and Radiation Tolerance will be discussed in detail.

  7. Volumetric imaging using single chip integrated CMUT-on-CMOS IVUS array.

    PubMed

    Tekes, Coskun; Zahorian, Jaime; Gurun, Gokce; Satir, Sarp; Xu, Toby; Hochman, Michael; Degertekin, F Levent

    2012-01-01

    An intravascular ultrasound (IVUS) catheter that can provide forward viewing volumetric ultrasound images would be an invaluable clinical tool for guiding interventions. Single chip integration of front-end electronics with capacitive micromachined ultrasonic transducers (CMUTs) is highly desirable to reduce the interconnection complexity and enable miniaturization in IVUS catheters. For this purpose we use the monolithic CMUT-on-CMOS integration where CMUTs are fabricated directly on top of pre-processed CMOS wafers. This minimizes parasitic capacitances associated with connection lines. We have recently implemented a system design including all the required electronics using 0.35-µm CMOS process integrated with a 1.4-mm diameter CMUT array. In this study, we present the experimental volumetric imaging results from an ex-vivo chicken heart phantom. The imaging results demonstrate that the single-chip forward looking IVUS (FL-IVUS) system with monolithically integrated electronics has potential to visualize the front view of coronary arteries.

  8. Design of a CMOS-based multichannel integrated biosensor chip for bioelectronic interface with neurons.

    PubMed

    Zhang, Xin; Wong, Wai Man; Zhang, Yulong; Zhang, Yandong; Gao, Fei; Nelson, Richard D; Larue, John C

    2009-01-01

    In this paper we present the design and prototyping of a 24-channel mixed signal full-customized CMOS integrated biosensor chip for in vitro extracellular recording of neural signals. Design and implementation of hierarchical modules including microelectrode electrophysiological sensors, analog signal buffers, high gain amplifier and control/interface units are presented in detail. The prototype chip was fabricated by MOSIS with AMI C5 0.5 microm, double poly, triple metal layer CMOS technology. The electroless gold plating process is used to replace the aluminum material obtained from the standard CMOS process with biocompatible metal gold in the planner microelectrode array sensors to prevent cell poisoning and undesirable electrochemical corrosion. The biosensor chip provides a satisfactory signal-to-noise ratio for neural signals with amplitudes and frequencies within the range of 600microV - 2mV and 100 Hz to 10KHz, respectively.

  9. Application of CMOS image sensor OV9620 in number recognition system

    NASA Astrophysics Data System (ADS)

    Li, Yu-feng; Liang, Fei; Xue, Rong-kun

    2009-11-01

    An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The system structure and its application of CMOS image sensor OV9620 in paper currency number recognition are also introduced. The hardware and software design of the image acquisition and recognition system is given. In this system, we use the template matching character recognition method to guarantee fast recognition speed and high correct recognition probability.

  10. A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System

    PubMed Central

    Rae, Bruce R.; Muir, Keith R.; Gong, Zheng; McKendry, Jonathan; Girkin, John M.; Gu, Erdan; Renshaw, David; Dawson, Martin D.; Henderson, Robert K.

    2009-01-01

    We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × 8 AlInGaN blue micro-pixellated light-emitting diode (micro-LED) array bump-bonded to an equivalent array of LED drivers realized in a standard low-voltage 0.35 μm CMOS technology, capable of producing excitation pulses with a width of 777 ps (FWHM). This system replaces instrumentation based on lasers, photomultiplier tubes, bulk optics and discrete electronics with a PC-based micro-system. Demonstrator lifetime measurements of colloidal quantum dot and Rhodamine samples are presented. PMID:22291564

  11. New generation CMOS 2D imager evaluation and qualification for semiconductor inspection applications

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Hart, Darcy

    2013-09-01

    Semiconductor fabrication process defect inspection industry is always driven by inspection resolution and through-put. With fabrication technology node advances to 2X ~1Xnm range, critical macro defect size approaches to typical CMOS camera pixel size range, therefore single pixel defect detection technology becomes more and more essential, which is fundamentally constrained by camera performance. A new evaluation model is presented here to specifically describe the camera performance for semiconductor machine vision applications, especially targeting at low image contrast high speed applications. Current mainline cameras and high-end OEM cameras are evaluated with this model. Camera performances are clearly differentiated among CMOS technology generations and vendors, which will facilitate application driven camera selection and operation optimization. The new challenges for CMOS detectors are discussed for semiconductor inspection applications.

  12. A Demonstration of TIA Using FD-SOI CMOS OPAMP for Far-Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Nagase, Koichi; Wada, Takehiko; Ikeda, Hirokazu; Arai, Yasuo; Ohno, Morifumi; Hanaoka, Misaki; Kanada, Hidehiro; Oyabu, Shinki; Hattori, Yasuki; Ukai, Sota; Suzuki, Toyoaki; Watanabe, Kentaroh; Baba, Shunsuke; Kochi, Chihiro; Yamamoto, Keita

    2016-07-01

    We are developing a fully depleted silicon-on-insulator (FD-SOI) CMOS readout integrated circuit (ROIC) operated at temperatures below ˜ 4 K. Its application is planned for the readout circuit of high-impedance far-infrared detectors for astronomical observations. We designed a trans-impedance amplifier (TIA) using a CMOS operational amplifier (OPAMP) with FD-SOI technique. The TIA is optimized to readout signals from a germanium blocked impurity band (Ge BIB) detector which is highly sensitive to wavelengths of up to ˜ 200 \\upmu m. For the first time, we demonstrated the FD-SOI CMOS OPAMP combined with the Ge BIB detector at 4.5 K. The result promises to solve issues faced by conventional cryogenic ROICs.

  13. A modular process for integrating thick polysilicon MEMS devices with sub-micron CMOS

    NASA Astrophysics Data System (ADS)

    Yasaitis, John A.; Judy, Michael; Brosnihan, Tim; Garone, Peter M.; Pokrovskiy, Nikolay; Sniderman, Debbie; Limb, Scott; Howe, Roger T.; Boser, Bernhard E.; Palaniapan, Moorthi; Jiang, Xuesong; Bhave, Sunil

    2003-01-01

    A new MEMS process module, called Mod MEMS, has been developed to monolithically integrate thick (5-10um), multilayer polysilicon MEMS structures with sub-micron CMOS. This process is particularly useful for advanced inertial MEMS products such as automotive airbag accelerometers where reduced cost and increased functionality is required, or low cost, high performance gyroscopes where thick polysilicon (>6um) and CMOS integration is required to increase poly mass and stiffness, and reduce electrical parasitics in order to optimize angular rate sensing. In this paper we will describe the new modular process flow, development of the critical unit process steps, integration of the module with a foundry sub-micron CMOS process, and provide test data on several inertial designs fabricated with this process.

  14. A CMOS-compatible, surface-micromachined pressure sensor for aqueous ultrasonic application

    SciTech Connect

    Eaton, W.P.; Smith, J.H.

    1994-12-31

    A surface micromachined pressure sensor array is under development at the Integrated Micromechanics, Microsensors, and CMOS Technologies organization at Sandia National Laboratories. This array is designed to sense absolute pressures from ambient pressure to 650 psia with frequency responses from DC to 2 MHz. The sensor is based upon a sealed, deformable, circular LPCVD silicon nitride diaphragm. Absolute pressure is determined from diaphragm deflection, which is sensed with low-stress, micromechanical, LPCVD polysilicon piezoresistors. All materials and processes used for sensor fabrication are CMOS compatible, and are part of Sandia`s ongoing effort of CMOS integration with Micro-ElectroMechanical Systems (MEMS). Test results of individual sensors are presented along with process issues involving the release etch and metal step coverage.

  15. A scalable neural chip with synaptic electronics using CMOS integrated memristors.

    PubMed

    Cruz-Albrecht, Jose M; Derosier, Timothy; Srinivasa, Narayan

    2013-09-27

    The design and simulation of a scalable neural chip with synaptic electronics using nanoscale memristors fully integrated with complementary metal-oxide-semiconductor (CMOS) is presented. The circuit consists of integrate-and-fire neurons and synapses with spike-timing dependent plasticity (STDP). The synaptic conductance values can be stored in memristors with eight levels, and the topology of connections between neurons is reconfigurable. The circuit has been designed using a 90 nm CMOS process with via connections to on-chip post-processed memristor arrays. The design has about 16 million CMOS transistors and 73 728 integrated memristors. We provide circuit level simulations of the entire chip performing neuronal and synaptic computations that result in biologically realistic functional behavior.

  16. A 512-channels, whole array readout, CMOS implantable probe for acute recordings from the brain.

    PubMed

    Angotzi, G N; Malerba, M; Zucca, S; Berdondini, L

    2015-08-01

    The integration of implantable CMOS neural probes with thousands of simultaneously recording microelectrodes is a promising approach for neuroscience and might allow to literally image electrophysiological neuronal activity in multiple brain circuits as we have previously shown in vitro. Here, we present a complete system based on a fully multiplexed CMOS neural probe that was designed for in-vivo acute recordings with a scalable circuit architecture. In particular, a first prototype of a single-shaft probe with 512 electrodes was realized in a standard CMOS 0.18μm technology and post-processed to structure the shaft with a wedge-like geometry of 30μm in thickness at the tip and 80μm at the base. The design of the system and of the probe as well as the post-processing techniques are discussed. Finally, preliminary results on electrical, mechanical and implantation tests are presented to demonstrate the feasibility of our approach.

  17. A Glucose Biosensor Using CMOS Potentiostat and Vertically Aligned Carbon Nanofibers.

    PubMed

    Al Mamun, Khandaker A; Islam, Syed K; Hensley, Dale K; McFarlane, Nicole

    2016-08-01

    This paper reports a linear, low power, and compact CMOS based potentiostat for vertically aligned carbon nanofibers (VACNF) based amperometric glucose sensors. The CMOS based potentiostat consists of a single-ended potential control unit, a low noise common gate difference-differential pair transimpedance amplifier and a low power VCO. The potentiostat current measuring unit can detect electrochemical current ranging from 500 nA to 7 [Formula: see text] from the VACNF working electrodes with high degree of linearity. This current corresponds to a range of glucose, which depends on the fiber forest density. The potentiostat consumes 71.7 [Formula: see text] of power from a 1.8 V supply and occupies 0.017 [Formula: see text] of chip area realized in a 0.18 [Formula: see text] standard CMOS process.

  18. Fabrication and characterization of a charge-biased CMOS-MEMS resonant gate field effect transistor

    NASA Astrophysics Data System (ADS)

    Chin, C. H.; Li, C. S.; Li, M. H.; Wang, Y. L.; Li, S. S.

    2014-09-01

    A high-frequency charge-biased CMOS-MEMS resonant gate field effect transistor (RGFET) composed of a metal-oxide composite resonant-gate structure and an FET transducer has been demonstrated utilizing the TSMC 0.35 μm CMOS technology with Q > 1700 and a signal-to-feedthrough ratio greater than 35 dB under a direct two-port measurement configuration. As compared to the conventional capacitive-type MEMS resonators, the proposed CMOS-MEMS RGFET features an inherent transconductance gain (gm) offered by the FET transduction capable of enhancing the motional signal of the resonator and relaxing the impedance mismatch issue to its succeeding electronics or 50 Ω-based test facilities. In this work, we design a clamped-clamped beam resonant-gate structure right above a floating gate FET transducer as a high-Q building block through a maskless post-CMOS process to combine merits from the large capacitive transduction areas of the large-width beam resonator and the high gain of the underneath FET. An analytical model is also provided to simulate the behavior of the charge-biased RGFET; the theoretical prediction is in good agreement with the experimental results. Thanks to the deep-submicrometer gap spacing enabled by the post-CMOS polysilicon release process, the proposed resonator under a purely capacitive transduction already attains motional impedance less than 10 kΩ, a record-low value among CMOS-MEMS capacitive resonators. To go one step further, the motional signal of the proposed RGFET is greatly enhanced through the FET transduction. Such a strong transmission and a sharp phase transition across 0° pave a way for future RGFET-type oscillators in RF and sensor applications. A time-elapsed characterization of the charge leakage rate for the floating gate is also carried out.

  19. CMOS technology: a critical enabler for free-form electronics-based killer applications

    NASA Astrophysics Data System (ADS)

    Hussain, Muhammad M.; Hussain, Aftab M.; Hanna, Amir

    2016-05-01

    Complementary metal oxide semiconductor (CMOS) technology offers batch manufacturability by ultra-large-scaleintegration (ULSI) of high performance electronics with a performance/cost advantage and profound reliability. However, as of today their focus has been on rigid and bulky thin film based materials. Their applications have been limited to computation, communication, display and vehicular electronics. With the upcoming surge of Internet of Everything, we have critical opportunity to expand the world of electronics by bridging between CMOS technology and free form electronics which can be used as wearable, implantable and embedded form. The asymmetry of shape and softness of surface (skins) in natural living objects including human, other species, plants make them incompatible with the presently available uniformly shaped and rigidly structured today's CMOS electronics. But if we can break this barrier then we can use the physically free form electronics for applications like plant monitoring for expansion of agricultural productivity and quality, we can find monitoring and treatment focused consumer healthcare electronics - and many more creative applications. In our view, the fundamental challenge is to engage the mass users to materialize their creative ideas. Present form of electronics are too complex to understand, to work with and to use. By deploying game changing additive manufacturing, low-cost raw materials, transfer printing along with CMOS technology, we can potentially stick high quality CMOS electronics on any existing objects and embed such electronics into any future objects that will be made. The end goal is to make them smart to augment the quality of our life. We use a particular example on implantable electronics (brain machine interface) and its integration strategy enabled by CMOS device design and technology run path.

  20. New integration concept of PIN photodiodes in 0.35μm CMOS technologies

    NASA Astrophysics Data System (ADS)

    Jonak-Auer, I.; Teva, J.; Park, J. M.; Jessenig, S.; Rohrbacher, M.; Wachmann, E.

    2012-06-01

    We report on a new and very cost effective way to integrate PIN photo detectors into a standard CMOS process. Starting with lowly p-doped (intrinsic) EPI we need just one additional mask and ion implantation in order to provide doping concentrations very similar to standard CMOS substrates to areas outside the photoactive regions. Thus full functionality of the standard CMOS logic can be guaranteed while the photo detectors highly benefit from the low doping concentrations of the intrinsic EPI. The major advantage of this integration concept is that complete modularity of the CMOS process remains untouched by the implementation of PIN photodiodes. Functionality of the implanted region as host of logic components was confirmed by electrical measurements of relevant standard transistor as well as ESD protection devices. We also succeeded in establishing an EPI deposition process in austriamicrosystems 200mm wafer fabrication which guarantees the formation of very lowly p-doped intrinsic layers, which major semiconductor vendors could not provide. With our EPI deposition process we acquire doping levels as low as 1•1012/cm3. In order to maintain those doping levels during CMOS processing we employed special surface protection techniques. After complete CMOS processing doping concentrations were about 4•1013/cm3 at the EPI surface while the bulk EPI kept its original low doping concentrations. Photodiode parameters could further be improved by bottom antireflective coatings and a special implant to reduce dark currents. For 100×100μm2 photodiodes in 20μm thick intrinsic EPI on highly p-doped substrates we achieved responsivities of 0.57A/W at λ=675nm, capacitances of 0.066pF and dark currents of 0.8pA at 2V reverse voltage.

  1. Label free sensing of creatinine using a 6 GHz CMOS near-field dielectric immunosensor.

    PubMed

    Guha, S; Warsinke, A; Tientcheu, Ch M; Schmalz, K; Meliani, C; Wenger, Ch

    2015-05-07

    In this work we present a CMOS high frequency direct immunosensor operating at 6 GHz (C-band) for label free determination of creatinine. The sensor is fabricated in standard 0.13 μm SiGe:C BiCMOS process. The report also demonstrates the ability to immobilize creatinine molecules on a Si3N4 passivation layer of the standard BiCMOS/CMOS process, therefore, evading any further need of cumbersome post processing of the fabricated sensor chip. The sensor is based on capacitive detection of the amount of non-creatinine bound antibodies binding to an immobilized creatinine layer on the passivated sensor. The chip bound antibody amount in turn corresponds indirectly to the creatinine concentration used in the incubation phase. The determination of creatinine in the concentration range of 0.88-880 μM is successfully demonstrated in this work. A sensitivity of 35 MHz/10 fold increase in creatinine concentration (during incubation) at the centre frequency of 6 GHz is gained by the immunosensor. The results are compared with a standard optical measurement technique and the dynamic range and sensitivity is of the order of the established optical indication technique. The C-band immunosensor chip comprising an area of 0.3 mm(2) reduces the sensing area considerably, therefore, requiring a sample volume as low as 2 μl. The small analyte sample volume and label free approach also reduce the experimental costs in addition to the low fabrication costs offered by the batch fabrication technique of CMOS/BiCMOS process.

  2. Design and experimental demonstration of low-power CMOS magnetic cell manipulation platform using charge recycling technique

    NASA Astrophysics Data System (ADS)

    Niitsu, Kiichi; Yoshida, Kohei; Nakazato, Kazuo

    2016-03-01

    We present the world’s first charge-recycling-based low-power technique of complementary metal-oxide-semiconductor (CMOS) magnetic cell manipulation. CMOS magnetic cell manipulation associated with magnetic beads is a promissing tool for on-chip biomedical-analysis applications such as drug screening because CMOS can integrate control electronics and electro-chemical sensors. However, the conventional CMOS cell manipulation requires considerable power consumption. In this work, by concatenating multiple unit circuits and recycling electric charge among them, power consumption is reduced by a factor of the number of the concatenated unit circuits (1/N). For verifying the effectiveness, test chip was fabricated in a 0.6-µm CMOS. The chip successfully manipulates magnetic microbeads with achieving 49% power reduction (from 51 to 26.2 mW). Even considering the additional serial resistance of the concatenated inductors, nearly theoretical power reduction effect can be confirmed.

  3. Enhancement in open-circuit voltage of implantable CMOS-compatible glucose fuel cell by improving the anodic catalyst

    NASA Astrophysics Data System (ADS)

    Niitsu, Kiichi; Ando, Takashi; Kobayashi, Atsuki; Nakazato, Kazuo

    2017-01-01

    This paper presents an implantable CMOS-compatible glucose fuel cell that generates an open-circuit voltage (OCV) of 880 mV. The developed fuel cell is solid-catalyst-based and manufactured from biocompatible materials; thus, it can be implanted to the human body. Additionally, since the cell can be manufactured using a semiconductor (CMOS) fabrication process, it can also be manufactured together with CMOS circuits on a single silicon wafer. In the literature, an implantable CMOS-compatible glucose fuel cell has been reported. However, its OCV is 192 mV, which is insufficient for CMOS circuit operation. In this work, we have enhanced the performance of the fuel cell by improving the electrocatalytic ability of the anode. The prototype with the newly proposed Pt/carbon nanotube (CNT) anode structure successfully achieved an OCV of 880 mV, which is the highest ever reported.

  4. A single-supply, monolithic, MIL-STD-1553 transceiver implemented in BiCMOS wafer fabrication technology

    NASA Astrophysics Data System (ADS)

    Albrecht, Thomas L.; Molinari, Lou

    An integrated circuit has been designed for use as a single supply, MIL-STD-1553 transceiver using BiCMOS technology. Use of the BiCMOS fabrication process has advantages over both Bipolar and CMOS technologies. These advantages include: reduced standby current drain, increased flexibility in mating the transceiver to various remote terminals, increased control over output amplitude and rise/fall times, easier methods for adjusting filter response and residual voltage, and reduced chip size (over a CMOS transceiver). Development of this monolithic transceiver opens the door to future advances in remote terminal design. By combining the current driving capacity of Bipolar with the digital design capability of CMOS, the next probable step in the progression of MIL-STD-1553 technology would be a fully monolithic remote terminal. This device would combine a transceiver with the encoder/decoder and protocol logic on a single semiconductor device.

  5. 180 Degree Hybrid (Rat-Race) Junction on CMOS Grade Silicon with a Polyimide Interface Layer

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Papapolymerou, John

    2003-01-01

    180-degree hybrid junctions can be used to equally divide power between two output ports with either a 0 or 180-degree phase difference. Alternatively, they can be used to combine signals from two sources and output a sum and difference signal. The main limitation of implementing; these on CMOS grade silicon is the high loss associated with the substrate. In this paper, we present a low loss 180-degree hybrid junction on CMOS grade (15 omega-cm) silicon with a polyimide interface layer for the first time. The divider utilizes Finite Ground Coplanar (FGC) line technology, and operates at a center frequency of 15 GIIz.

  6. A novel CMOS sensor with in-pixel auto-zeroed discrimination for charged particle tracking

    NASA Astrophysics Data System (ADS)

    Degerli, Y.; Guilloux, F.; Orsini, F.

    2014-05-01

    With the aim of developing fast and granular Monolithic Active Pixels Sensors (MAPS) as new charged particle tracking detectors for high energy physics experiments, a new rolling shutter binary pixel architecture concept (RSBPix) with in-pixel correlated double sampling, amplification and discrimination is presented. The discriminator features auto-zeroing in order to compensate process-related transistor mismatches. In order to validate the pixel, a first monolithic CMOS sensor prototype, including a pixel array of 96 × 64 pixels, has been designed and fabricated in the Tower-Jazz 0.18 μm CMOS Image Sensor (CIS) process. Results of laboratory tests are presented.

  7. Wireless power transmission for biomedical implants: The role of near-zero threshold CMOS rectifiers.

    PubMed

    Mohammadi, Ali; Redoute, Jean-Michel; Yuce, Mehmet R

    2015-01-01

    Biomedical implants require an electronic power conditioning circuitry to provide a stable electrical power supply. The efficiency of wireless power transmission is strongly dependent on the power conditioning circuitry specifically the rectifier. A cross-connected CMOS bridge rectifier is implemented to demonstrate the impact of thresholds of rectifiers on wireless power transfer. The performance of the proposed rectifier is experimentally compared with a conventional Schottky diode full wave rectifier over 9 cm distance of air and tissue medium between the transmitter and receiver. The output voltage generated by the CMOS rectifier across a 1 KΩ resistive load is around twice as much as the Schottky rectifier.

  8. A CMOS current-mode log(x) and log(1/x) functions generator

    NASA Astrophysics Data System (ADS)

    Al-Absi, Munir A.; Al-Tamimi, Karama M.

    2014-08-01

    A novel Complementary Metal Oxide Semiconductor (CMOS) current-mode low-voltage and low-power controllable logarithmic function circuit is presented. The proposed design utilises one Operational Transconductance Amplifier (OTA) and two PMOS transistors biased in weak inversion region. The proposed design provides high dynamic range, controllable amplitude, high accuracy and is insensitive to temperature variations. The circuit operates on a ±0.6 V power supply and consumes 0.3 μW. The functionality of the proposed circuit was verified using HSPICE with 0.35 μm 2P4M CMOS process technology.

  9. High-End CMOS Active Pixel Sensors For Space-Borne Imaging Instruments

    DTIC Science & Technology

    2005-07-13

    sur la technologie CCD, alors que les capteurs CMOS à pixel actifs (APS) ont des nombreux avantages pour des applications embarquées. Cette...Les capteurs optiques intégrés sont utilisés dans le domaine spatial dans un large éventail d’applications. Beaucoup d’entres elles reposent toujours...publication présente des capteurs CMOS hautes performances d’aujourd’hui et met en lumière leurs avantages par rapport à leur équivalent CCD. Ces capteurs

  10. Prediction and measurement of radiation damage to CMOS devices on board spacecraft

    NASA Technical Reports Server (NTRS)

    Cliff, R. A.; Danchenko, V.; Stassinopoulos, E. G.; Sing, M.; Brucker, G. J.; Ohanian, R. S.

    1976-01-01

    The initial results obtained from the Complementary Metal Oxide Semiconductors Radiation Effects Measurement experiment are presented. Predictions of radiation damage to C-MOS devices are based on standard environment models and computational techniques. A comparison of the shifts in CMOS threshold potentials, that is, those measured in space to those obtained from the on the ground simulation experiment with Co 60, indicated that the measured space damage is greater than predicted by a factor of two for shields thicker than 100 mils (2.54 mm), but agrees well with predictions for the thinner shields.

  11. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms.

    PubMed

    Huang, Fang; Hartwich, Tobias M P; Rivera-Molina, Felix E; Lin, Yu; Duim, Whitney C; Long, Jane J; Uchil, Pradeep D; Myers, Jordan R; Baird, Michelle A; Mothes, Walther; Davidson, Michael W; Toomre, Derek; Bewersdorf, Joerg

    2013-07-01

    Newly developed scientific complementary metal-oxide semiconductor (sCMOS) cameras have the potential to dramatically accelerate data acquisition, enlarge the field of view and increase the effective quantum efficiency in single-molecule switching nanoscopy. However, sCMOS-intrinsic pixel-dependent readout noise substantially lowers the localization precision and introduces localization artifacts. We present algorithms that overcome these limitations and that provide unbiased, precise localization of single molecules at the theoretical limit. Using these in combination with a multi-emitter fitting algorithm, we demonstrate single-molecule localization super-resolution imaging at rates of up to 32 reconstructed images per second in fixed and living cells.

  12. Verilog-A Device Models for Cryogenic Temperature Operation of Bulk Silicon CMOS Devices

    NASA Technical Reports Server (NTRS)

    Akturk, Akin; Potbhare, Siddharth; Goldsman, Neil; Holloway, Michael

    2012-01-01

    Verilog-A based cryogenic bulk CMOS (complementary metal oxide semiconductor) compact models are built for state-of-the-art silicon CMOS processes. These models accurately predict device operation at cryogenic temperatures down to 4 K. The models are compatible with commercial circuit simulators. The models extend the standard BSIM4 [Berkeley Short-channel IGFET (insulated-gate field-effect transistor ) Model] type compact models by re-parameterizing existing equations, as well as adding new equations that capture the physics of device operation at cryogenic temperatures. These models will allow circuit designers to create optimized, reliable, and robust circuits operating at cryogenic temperatures.

  13. Use of CMOS imagers to measure high fluxes of charged particles

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Tucceri, P.

    2016-03-01

    The measurement of high flux charged particle beams, specifically at medical accelerators and with small fields, poses several challenges. In this work we propose a single particle counting method based on CMOS imagers optimized for visible light collection, exploiting their very high spatial segmentation (> 3 106 pixels/cm2) and almost full efficiency detection capability. An algorithm to measure the charged particle flux with a precision of ~ 1% for fluxes up to 40 MHz/cm2 has been developed, using a non-linear calibration algorithm, and several CMOS imagers with different characteristics have been compared to find their limits on flux measurement.

  14. Integration of RF-MEMS resonators on submicrometric commercial CMOS technologies

    NASA Astrophysics Data System (ADS)

    Lopez, J. L.; Verd, J.; Teva, J.; Murillo, G.; Giner, J.; Torres, F.; Uranga, A.; Abadal, G.; Barniol, N.

    2009-01-01

    Integration of electrostatically driven and capacitively transduced MEMS resonators in commercial CMOS technologies is discussed. A figure of merit to study the performance of different structural layers and different technologies is defined. High frequency (HF) and very high frequency (VHF) resonance MEMS metal resonators are fabricated on a deep submicron 0.18 µm commercial CMOS technology and are characterized using electrical tests without amplification, demonstrating the applicability of the MEMS fabrication process for future technologies. Moreover, the fabricated devices show comparable performance in terms of Q × fres with previously presented MEMS resonators, whereas the small gap allows obtaining a low motional resistance with a single resonator approach.

  15. Results of the 2015 testbeam of a 180 nm AMS High-Voltage CMOS sensor prototype

    SciTech Connect

    Benoit, M.; de Mendizabal, J. Bilbao; Casse, G.; Chen, H.; Chen, K.; Bello, F. A. Di; Ferrere, D.; Golling, T.; Gonzalez-Sevilla, S.; Iacobucci, G.; Lanni, F.; Liu, H.; Meloni, F.; Meng, L.; Miucci, A.; Muenstermann, D.; Nessi, M.; Perić, I.; Rimoldi, M.; Ristic, B.; Pinto, M. Vicente Barrero; Vossebeld, J.; Weber, M.; Wu, W.; Xu, L.

    2016-07-21

    We investigated the active pixel sensors based on the High-Voltage CMOS technology as a viable option for the future pixel tracker of the ATLAS experiment at the High-Luminosity LHC. Our paper reports on the testbeam measurements performed at the H8 beamline of the CERN Super Proton Synchrotron on a High-Voltage CMOS sensor prototype produced in 180 nm AMS technology. These results in terms of tracking efficiency and timing performance, for different threshold and bias conditions, are shown.

  16. Second Generation Monolithic Full-depletion Radiation Sensor with Integrated CMOS Circuitry

    SciTech Connect

    Segal, J.D.; Kenney, C.J.; Parker, S.I.; Aw, C.H.; Snoeys, W.J.; Wooley, B.; Plummer, J.D.; /Stanford U., Elect. Eng. Dept.

    2011-05-20

    A second-generation monolithic silicon radiation sensor has been built and characterized. This pixel detector has CMOS circuitry fabricated directly in the high-resistivity floatzone substrate. The bulk is fully depleted from bias applied to the backside diode. Within the array, PMOS pixel circuitry forms the first stage amplifiers. Full CMOS circuitry implementing further amplification as well as column and row logic is located in the periphery of the pixel array. This allows a sparse-field readout scheme where only pixels with signals above a certain threshold are readout. We describe the fabrication process, circuit design, system performance, and results of gamma-ray radiation tests.

  17. Localization-based super-resolution microscopy with an sCMOS camera part II: experimental methodology for comparing sCMOS with EMCCD cameras.

    PubMed

    Long, Fan; Zeng, Shaoqun; Huang, Zhen-Li

    2012-07-30

    Nowadays, there is a hot debate among industry and academic researchers that whether the newly developed scientific-grade Complementary Metal Oxide Semiconductor (sCMOS) cameras could become the image sensors of choice in localization-based super-resolution microscopy. To help researchers find answers to this question, here we reported an experimental methodology for quantitatively comparing the performance of low-light cameras in single molecule detection (characterized via image SNR) and localization (via localization accuracy). We found that a newly launched sCMOS camera can present superior imaging performance than a popular Electron Multiplying Charge Coupled Device (EMCCD) camera in a signal range (15-12000 photon/pixel) more than enough for typical localization-based super-resolution microscopy.

  18. Automatic Synthesis of CMOS Algorithmic Analog To-Digital Converter.

    NASA Astrophysics Data System (ADS)

    Jusuf, Gani

    The steady decrease in technological feature size is allowing increasing levels of integration in analog/digital interface functions. These functions consist of analog as well as digital circuits. While the turn around time for an all digital IC chip is very short due to the maturity of digital IC computer-aided design (CAD) tools over the last ten years, most analog circuits have to be designed manually due to the lack of analog IC CAD tools. As a result, analog circuit design becomes the bottleneck in the design of mixed signal processing chips. One common analog function in a mixed signal processing chip is an analog-to-digital conversion (ADC) function. This function recurs frequently but with varying performance requirements. The objective of this research is to study the design methodology of a compilation program capable of synthesizing ADC's with a broad range of sampling rates and resolution, and silicon area and performance comparable with the manual approach. The automatic compilation of the ADC function is a difficult problem mainly because ADC techniques span such a wide spectrum of performance, with radically different implementations being optimum for different ranges of conversion range, resolution, and power dissipation. We will show that a proper choice of the ADC architectures and the incorporation of many analog circuit design techniques will simplify the synthesis procedure tremendously. Moreover, in order to speed up the device sizing, hierarchical optimization procedure and behavioral simulation are implemented into the ADC module generation steps. As a result of this study, a new improved algorithmic ADC without the need of high precision comparators has been developed. This type of ADC lends itself to automatic generation due to its modularity, simplicity, small area consumption, moderate speed, low power dissipation, and single parameter trim capability that can be added at high resolution. Furthermore, a performance-driven CMOS ADC module

  19. Defect-sensitivity analysis of an SEU immune CMOS logic family

    NASA Technical Reports Server (NTRS)

    Ingermann, Erik H.; Frenzel, James F.

    1992-01-01

    Fault testing of resistive manufacturing defects is done on a recently developed single event upset immune logic family. Resistive ranges and delay times are compared with those of traditional CMOS logic. Reaction of the logic to these defects is observed for a NOR gate, and an evaluation of its ability to cope with them is determined.

  20. Front-end receiver electronics for high-frequency monolithic CMUT-on-CMOS imaging arrays.

    PubMed

    Gurun, Gokce; Hasler, Paul; Degertekin, F

    2011-08-01

    This paper describes the design of CMOS receiver electronics for monolithic integration with capacitive micromachined ultrasonic transducer (CMUT) arrays for highfrequency intravascular ultrasound imaging. A custom 8-inch (20-cm) wafer is fabricated in a 0.35-μm two-poly, four-metal CMOS process and then CMUT arrays are built on top of the application specific integrated circuits (ASICs) on the wafer. We discuss advantages of the single-chip CMUT-on-CMOS approach in terms of receive sensitivity and SNR. Low-noise and high-gain design of a transimpedance amplifier (TIA) optimized for a forward-looking volumetric-imaging CMUT array element is discussed as a challenging design example. Amplifier gain, bandwidth, dynamic range, and power consumption trade-offs are discussed in detail. With minimized parasitics provided by the CMUT-on-CMOS approach, the optimized TIA design achieves a 90 fA/√Hz input-referred current noise, which is less than the thermal-mechanical noise of the CMUT element. We show successful system operation with a pulseecho measurement. Transducer-noise-dominated detection in immersion is also demonstrated through output noise spectrum measurement of the integrated system at different CMUT bias voltages. A noise figure of 1.8 dB is obtained in the designed CMUT bandwidth of 10 to 20 MHz.

  1. Frontend Receiver Electronics for High Frequency Monolithic CMUT-on-CMOS Imaging Arrays

    PubMed Central

    Gurun, Gokce; Hasler, Paul; Degertekin, F. Levent

    2012-01-01

    This paper describes the design of CMOS receiver electronics for monolithic integration with capacitive micromachined ultrasonic transducer (CMUT) arrays for high-frequency intravascular ultrasound imaging. A custom 8-inch wafer is fabricated in a 0.35 μm two-poly, four-metal CMOS process and then CMUT arrays are built on top of the application specific integrated circuits (ASICs) on the wafer. We discuss advantages of the single-chip CMUT-on-CMOS approach in terms of receive sensitivity and SNR. Low-noise and high-gain design of a transimpedance amplifier (TIA) optimized for a forward-looking volumetric-imaging CMUT array element is discussed as a challenging design example. Amplifier gain, bandwidth, dynamic range and power consumption trade-offs are discussed in detail. With minimized parasitics provided by the CMUT-on-CMOS approach, the optimized TIA design achieves a 90 fA/√Hz input referred current noise, which is less than the thermal-mechanical noise of the CMUT element. We show successful system operation with a pulse-echo measurement. Transducer noise-dominated detection in immersion is also demonstrated through output noise spectrum measurement of the integrated system at different CMUT bias voltages. A noise figure of 1.8 dB is obtained in the designed CMUT bandwidth of 10 MHz to 20 MHz. PMID:21859585

  2. Gyroscope and Micromirror Design Using Vertical-Axis CMOS-MEMS Actuation and Sensing

    DTIC Science & Technology

    2002-01-01

    Johnston, Jr., Mechanics of Materials, McGraw-Hill Book Co., Singapore, 1987, pp.574-583. [95] S.P. Timoshenko and J.N. Goodier , Theory of Elasticity...Using Vertical-Axis CMOS-MEMS Sensing and Actuation Bibliography[118] David F. Guillou, Suresh Santhanam and L. R. Carley, “Laminated, sacrificial-poly

  3. A single-photon sensitive ebCMOS camera: The LUSIPHER prototype

    NASA Astrophysics Data System (ADS)

    Barbier, R.; Cajgfinger, T.; Calabria, P.; Chabanat, E.; Chaize, D.; Depasse, P.; Doan, Q. T.; Dominjon, A.; Guérin, C.; Houles, J.; Vagneron, L.; Baudot, J.; Dorokhov, A.; Dulinski, W.; Winter, M.; Kaiser, C. T.

    2011-08-01

    Processing high-definition images with single-photon sensitivity acquired above 500 frames per second (fps) will certainly find ground-breaking applications in scientific and industrial domains such as nano-photonics. However, current technologies for low light imaging suffer limitations above the standard 30 fps to keep providing both excellent spatial resolution and signal-over-noise. This paper presents the state of the art on a promising way to answer this challenge, the electron bombarded CMOS (ebCMOS) detector. A large-scale ultra fast single-photon tracker camera prototype produced with an industrial partner is described. The full characterization of the back-thinned CMOS sensor is presented and a method for Point Spread Function measurements is elaborated. Then the study of the ebCMOS performance is presented for two different multi-alkali cathodes, S20 and S25. Point Spread Function measurements carried out on an optical test bench are analysed to extract the PSF of the tube by deconvolution. The resolution of the tube is studied as a function of temperature, high voltage and incident wavelength. Results are discussed for both multi-alkali cathodes as well as a Maxwellian modelization of the radial initial energy of the photo-electrons.

  4. Noise analysis for infrared focal plane arrays CMOS readout integrated circuit

    NASA Astrophysics Data System (ADS)

    Lin, Jiamu; Ding, Ruijun; Chen, Honglei; Shen, Xiao; Liu, Fei

    2008-12-01

    With the development of the infrared focal plane detectors, the internal noises in the infrared focal plane arrays (IRFPAs) CMOS readout integrated circuit gradually became an important factor of the development of the IRFPAs. The internal noises in IRFPAs CMOS readout integrated circuit are researched in this work. Part of the motivation for this work is to analyze the mechanism and influence of the internal noises in readout integrated circuit. And according to the signal transporting process, many kinds of internal noises are analyzed. According to the results of theory analysis, it is shown that 1/f noise, KTC noise and pulse switch noise have greater amplitude in frequency domain. These noises have seriously affected the performance of output signal. Also this work has frequency test on the signals of a readout integrated circuit chip which is using DI readout mode. After analyzing the frequency test results, it is shown that 1/f noises and pulse switch noises are the main components of the internal noises in IRFPAS CMOS readout integrated circuit and they are the noises which give a major impact to the output signal. In accordance with the type of noise, some design methods for noise suppression are put forward. And after the simulation of these methods with EDA software, the results show that noises have been reduced. The results of this work gave the referenced gist for improving the noise suppression design of IRFPAs CMOS readout integrated circuit.

  5. Overview of CMOS process and design options for image sensor dedicated to space applications

    NASA Astrophysics Data System (ADS)

    Martin-Gonthier, P.; Magnan, P.; Corbiere, F.

    2005-10-01

    With the growth of huge volume markets (mobile phones, digital cameras...) CMOS technologies for image sensor improve significantly. New process flows appear in order to optimize some parameters such as quantum efficiency, dark current, and conversion gain. Space applications can of course benefit from these improvements. To illustrate this evolution, this paper reports results from three technologies that have been evaluated with test vehicles composed of several sub arrays designed with some space applications as target. These three technologies are CMOS standard, improved and sensor optimized process in 0.35μm generation. Measurements are focussed on quantum efficiency, dark current, conversion gain and noise. Other measurements such as Modulation Transfer Function (MTF) and crosstalk are depicted in [1]. A comparison between results has been done and three categories of CMOS process for image sensors have been listed. Radiation tolerance has been also studied for the CMOS improved process in the way of hardening the imager by design. Results at 4, 15, 25 and 50 krad prove a good ionizing dose radiation tolerance applying specific techniques.

  6. High-speed binary CMOS image sensor using a high-responsivity MOSFET-type photodetector

    NASA Astrophysics Data System (ADS)

    Choi, Byoung-Soo; Jo, Sung-Hyun; Bae, Myunghan; Choi, Pyung; Shin, Jang-Kyoo

    2015-03-01

    In this paper, a complementary metal oxide semiconductor (CMOS) binary image sensor based on a gate/body-tied (GBT) MOSFET-type photodetector is proposed. The proposed CMOS binary image sensor was simulated and measured using a standard CMOS 0.18-μm process. The GBT MOSFET-type photodetector is composed of a floating gate (n+- polysilicon) tied to the body (n-well) of the p-type MOSFET. The size of the active pixel sensor (APS) using GBT photodetector is smaller than that of APS using the photodiode. This means that the resolution of the image can be increased. The high-gain GBT photodetector has a higher photosensitivity compared to the p-n junction photodiode that is used in a conventional APS. Because GBT has a high sensitivity, fast operation of the binary processing is possible. A CMOS image sensor with the binary processing can be designed with simple circuits composed of a comparator and a Dflip- flop while a complex analog to digital converter (ADC) is not required. In addition, the binary image sensor has low power consumption and high speed operation with the ability to switch back and forth between a binary mode and an analog mode.

  7. Nano-electromechanical switch-CMOS hybrid technology and its applications.

    PubMed

    Lee, B H; Hwang, H J; Cho, C H; Lim, S K; Lee, S Y; Hwang, H

    2011-01-01

    Si-based CMOS technology is facing a serious challenge in terms of power consumption and variability. The increasing costs associated with physical scaling have motivated a search for alternative approaches. Hybridization of nano-electromechanical (NEM)-switch and Si-based CMOS devices has shown a theoretical feasibility for power management, but a huge technical gap must be bridged before a nanoscale NEM switch can be realized due to insufficient material development and the limited understanding of its reliability characteristics. These authors propose the use of a multilayer graphene as a nanoscale cantilever material for a nanoscale NEM switchwith dimensions comparable to those of the state-of-the-art Si-based CMOS devices. The optimal thickness for the multilayer graphene (about five layers) is suggested based on an analytical model. Multilayer graphene can provide the highest Young's modulus among the known electrode materials and a yielding strength that allows more than 15% bending. Further research on material screening and device integration is needed, however, to realize the promises of the hybridization of NEM-switch and Si-based CMOS devices.

  8. Method for implementation of back-illuminated CMOS or CCD imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2008-01-01

    A method for implementation of back-illuminated CMOS or CCD imagers. An oxide layer buried between silicon wafer and device silicon is provided. The oxide layer forms a passivation layer in the imaging structure. A device layer and interlayer dielectric are formed, and the silicon wafer is removed to expose the oxide layer.

  9. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits

    PubMed Central

    Aull, Brian

    2016-01-01

    This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging. PMID:27070609

  10. About the choice of initial voltages in the synchronous sense amplifier for CMOS memory

    NASA Astrophysics Data System (ADS)

    Gerasimov, Y. M.; Grigoryev, N. G.; Kobylyatskiy, A. V.

    2016-10-01

    It was shown that the choice of initial voltage sat the nodes of CMOS memory synchronous sense amplifiers has a significant effect on the amplifier data sensitivity. The research of the sense amplifier sensitivity with various initial conditions was performed. According to the results we gave some recommendations about the choice of initial voltages in synchronous sense amplifiers.

  11. Total Ionizing Dose Effects in Bipolar and BiCMOS Devices

    NASA Technical Reports Server (NTRS)

    Chavez, Rosa M.; Rax, Bernard G.; Scheick, Leif Z.; Johnston, Allan H.

    2005-01-01

    This paper describes total ionizing dose (TID) test results performed at JPL. Bipolar and BiCMOS device samples were tested exhibiting significant degradation and failures at different irradiation levels. Linear technology which is susceptible to low-dose dependency (ELDRS) exhibited greater damage for devices tested under zero bias condition.

  12. Neural network approach to fault diagnosis in CMOS opamps with gate oxide short faults

    NASA Astrophysics Data System (ADS)

    Yu, S.; Jervis, B. W.; Eckersall, K. R.; Bell, I. M.; Hall, A. G.; Taylor, G. E.

    1994-04-01

    Faults owing to gate oxide shorts in a CMOS opamp have been diagnosed in simulations using artificial neural networks to identify corresponding variations in supply current. Ramp and sinusoidal signals gave fault diagnostic accuracy of 67 and 83 percent, respectively. Using both test signals 100 percent diagnostic accuracy was achieved.

  13. On-Wafer Measurement of a Silicon-Based CMOS VCO at 324 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Man Fung, King; Gaier, Todd; Huang, Daquan; Larocca, Tim; Chang, M. F.; Campbell, Richard; Andrews, Michael

    2008-01-01

    The world s first silicon-based complementary metal oxide/semiconductor (CMOS) integrated-circuit voltage-controlled oscillator (VCO) operating in a frequency range around 324 GHz has been built and tested. Concomitantly, equipment for measuring the performance of this oscillator has been built and tested. These accomplishments are intermediate steps in a continuing effort to develop low-power-consumption, low-phase-noise, electronically tunable signal generators as local oscillators for heterodyne receivers in submillimeter-wavelength (frequency > 300 GHz) scientific instruments and imaging systems. Submillimeter-wavelength imaging systems are of special interest for military and law-enforcement use because they could, potentially, be used to detect weapons hidden behind clothing and other opaque dielectric materials. In comparison with prior submillimeter- wavelength signal generators, CMOS VCOs offer significant potential advantages, including great reductions in power consumption, mass, size, and complexity. In addition, there is potential for on-chip integration of CMOS VCOs with other CMOS integrated circuitry, including phase-lock loops, analog- to-digital converters, and advanced microprocessors.

  14. The use of light emission in failure analysis of CMOS ICs

    SciTech Connect

    Hawkins, C.F. . Dept. of Electrical and Computer Engineering); Soden, J.M.; Cole, E.I. Jr.; Snyder, E.S. )

    1990-01-01

    The use of photon emission for analyzing failure mechanisms and defects in CMOS ICs is presented. Techniques are given for accurate identification and spatial localization of failure mechanisms and physical defects, including defects such as short and open circuits which do not themselves emit photons.

  15. CMOS Imaging of Temperature Effects on Pin-Printed Xerogel Sensor Microarrays.

    PubMed

    Lei Yao; Ka Yi Yung; Chodavarapu, Vamsy P; Bright, Frank V

    2011-04-01

    In this paper, we study the effect of temperature on the operation and performance of a xerogel-based sensor microarrays coupled to a complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC) that images the photoluminescence response from the sensor microarray. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. A correlated double sampling circuit and pixel address/digital control/signal integration circuit are also implemented on-chip. The CMOS imager data are read out as a serial coded signal. The sensor system uses a light-emitting diode to excite target analyte responsive organometallic luminophores doped within discrete xerogel-based sensor elements. As a proto type, we developed a 3 × 3 (9 elements) array of oxygen (O2) sensors. Each group of three sensor elements in the array (arranged in a column) is designed to provide a different and specific sensitivity to the target gaseous O2 concentration. This property of multiple sensitivities is achieved by using a mix of two O2 sensitive luminophores in each pin-printed xerogel sensor element. The CMOS imager is designed to be low noise and consumes a static power of 320.4 μW and an average dynamic power of 624.6 μW when operating at 100-Hz sampling frequency and 1.8-V dc power supply.

  16. Creating a parameterized model of a CMOS transistor with a gate of enclosed layout

    NASA Astrophysics Data System (ADS)

    Vinogradov, S. M.; Atkin, E. V.; Ivanov, P. Y.

    2016-02-01

    The method of creating a parameterized spice model of an N-channel transistor with a gate of enclosed layout is considered. Formulas and examples of engineering calculations for use of models in the computer-aided Design environment of Cadence Vitruoso are presented. Calculations are made for the CMOS technology with 180 nm design rules of the UMC.

  17. Affordable Wide-field Optical Space Surveillance using sCMOS and GPUs

    NASA Astrophysics Data System (ADS)

    Zimmer, P.; McGraw, J.; Ackermann, M.

    2016-09-01

    Recent improvements in sCMOS technology allow for affordable, wide-field, and rapid cadence surveillance from LEO to out past GEO using largely off-the-shelf hardware. sCMOS sensors, until very recently, suffered from several shortcomings when compared to CCD sensors - lower sensitivity, smaller physical size and less predictable noise characteristics. Sensors that overcome the first two of these are now available commercially and the principals at J.T. McGraw and Associates (JTMA) have developed observing strategies that minimize the impact of the third, while leveraging the key features of sCMOS, fast readout and low average readout noise. JTMA has integrated a new generation sCMOS sensor into an existing COTS telescope system in order to develop and test new detection techniques designed for uncued optical surveillance across a wide range of apparent object angular rates - from degree per second scale of LEO objects to a few arcseconds per second for objects out past GEO. One further complication arises from this: increased useful frame rate means increased data volume. Fortunately, GPU technology continues to advance at a breakneck pace and we report on the results and performance of our new detection techniques implemented on new generation GPUs. Early results show significance within 20% of the expected theoretical limiting signal-to-noise using commodity GPUs in near real time across a wide range of object parameters, closing the gap in detectivity between moving objects and tracked objects.

  18. CMOS VCSEL driver circuit for 25+Gbps/channel short-reach parallel optical links

    NASA Astrophysics Data System (ADS)

    Shibata, Masumi

    This thesis proposes a new CMOS driver for Vertical Cavity Surface Emitting LASER (VCSEL) diode arrays. A VCSEL is a promising light source for optical communication. However, its threshold voltage (1.5V for a 850-nm VCSEL) exceeds the rated supply voltage of nanoscale CMOS technologies. This makes difficult designing a driver sourcing a modulated current to a VCSELs anode directly, an arrangement suitable for low-cost parallel optical links. To overcome this problem, a combination of analog circuit techniques is proposed including a novel pad shield driving technique. A prototype fabricated in a 65-nm CMOS technology achieved 26-Gb/s bit-rate and 1.80-pJ/b power efficiency with an optical modulation amplitude (OMA) of +1.8dBm and 3.1ps-rms jitter when driving a 850-nm 14Gb/s commercial VCSEL. This is the highest-speed anode-driving CMOS VCSEL driver reported to date. Also it has the best power efficiency and the smallest area (0:024 mm2) amongst anode-driving drivers in any process technology.

  19. Radiation tolerance of CMOS monolithic active pixel sensors with self-biased pixels

    NASA Astrophysics Data System (ADS)

    Deveaux, M.; Amar-Youcef, S.; Besson, A.; Claus, G.; Colledani, C.; Dorokhov, M.; Dritsa, C.; Dulinski, W.; Fröhlich, I.; Goffe, M.; Grandjean, D.; Heini, S.; Himmi, A.; Hu, C.; Jaaskelainen, K.; Müntz, C.; Shabetai, A.; Stroth, J.; Szelezniak, M.; Valin, I.; Winter, M.

    2010-12-01

    CMOS monolithic active pixel sensors (MAPS) are proposed as a technology for various vertex detectors in nuclear and particle physics. We discuss the mechanisms of ionizing radiation damage on MAPS hosting the dead time free, so-called self bias pixel. Moreover, we introduce radiation hardened sensor designs which allow operating detectors after exposing them to irradiation doses above 1 Mrad.

  20. Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor.

    PubMed

    Wang, Tiantian; Devadhasan, Jasmine Pramila; Lee, Do Young; Kim, Sanghyo

    2016-01-01

    In the present study, we developed a polypropylene well-integrated complementary metal oxide semiconductor (CMOS) platform to perform the loop mediated isothermal amplification (LAMP) technique for real-time DNA amplification and detection simultaneously. An amplification-coupled detection system directly measures the photon number changes based on the generation of magnesium pyrophosphate and color changes. The photon number decreases during the amplification process. The CMOS image sensor observes the photons and converts into digital units with the aid of an analog-to-digital converter (ADC). In addition, UV-spectral studies, optical color intensity detection, pH analysis, and electrophoresis detection were carried out to prove the efficiency of the CMOS sensor based the LAMP system. Moreover, Clostridium perfringens was utilized as proof-of-concept detection for the new system. We anticipate that this CMOS image sensor-based LAMP method will enable the creation of cost-effective, label-free, optical, real-time and portable molecular diagnostic devices.

  1. Depletion-mode carrier-plasma optical modulator in zero-change advanced CMOS.

    PubMed

    Shainline, Jeffrey M; Orcutt, Jason S; Wade, Mark T; Nammari, Kareem; Moss, Benjamin; Georgas, Michael; Sun, Chen; Ram, Rajeev J; Stojanović, Vladimir; Popović, Miloš A

    2013-08-01

    We demonstrate the first (to the best of our knowledge) depletion-mode carrier-plasma optical modulator fabricated in a standard advanced complementary metal-oxide-semiconductor (CMOS) logic process (45 nm node SOI CMOS) with no process modifications. The zero-change CMOS photonics approach enables this device to be monolithically integrated into state-of-the-art microprocessors and advanced electronics. Because these processes support lateral p-n junctions but not efficient ridge waveguides, we accommodate these constraints with a new type of resonant modulator. It is based on a hybrid microring/disk cavity formed entirely in the sub-90 nm thick monocrystalline silicon transistor body layer. Electrical contact of both polarities is made along the inner radius of the multimode ring cavity via an array of silicon spokes. The spokes connect to p and n regions formed using transistor well implants, which form radially extending lateral junctions that provide index modulation. We show 5 Gbps data modulation at 1265 nm wavelength with 5.2 dB extinction ratio and an estimated 40 fJ/bit energy consumption. Broad thermal tuning is demonstrated across 3.2 THz (18 nm) with an efficiency of 291 GHz/mW. A single postprocessing step to remove the silicon handle wafer was necessary to support low-loss optical confinement in the device layer. This modulator is an important step toward monolithically integrated CMOS photonic interconnects.

  2. Ka-Band, RF MEMS Switches on CMOS Grade Silicon with a Polyimide Interface Layer

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Varaljay, Nicholas C.; Papapolymerou, John

    2003-01-01

    For the first time, RF MEMS switcbes on CMOS grade Si witb a polyimide interface layer are fabricated and characterized. At Ka-Band (36.6 GHz), an insertion loss of 0.52 dB and an isolation of 20 dB is obtained.

  3. A review on high-resolution CMOS delay lines: towards sub-picosecond jitter performance.

    PubMed

    Abdulrazzaq, Bilal I; Abdul Halin, Izhal; Kawahito, Shoji; Sidek, Roslina M; Shafie, Suhaidi; Yunus, Nurul Amziah Md

    2016-01-01

    A review on CMOS delay lines with a focus on the most frequently used techniques for high-resolution delay step is presented. The primary types, specifications, delay circuits, and operating principles are presented. The delay circuits reported in this paper are used for delaying digital inputs and clock signals. The most common analog and digitally-controlled delay elements topologies are presented, focusing on the main delay-tuning strategies. IC variables, namely, process, supply voltage, temperature, and noise sources that affect delay resolution through timing jitter are discussed. The design specifications of these delay elements are also discussed and compared for the common delay line circuits. As a result, the main findings of this paper are highlighting and discussing the followings: the most efficient high-resolution delay line techniques, the trade-off challenge found between CMOS delay lines designed using either analog or digitally-controlled delay elements, the trade-off challenge between delay resolution and delay range and the proposed solutions for this challenge, and how CMOS technology scaling can affect the performance of CMOS delay lines. Moreover, the current trends and efforts used in order to generate output delayed signal with low jitter in the sub-picosecond range are presented.

  4. Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks

    NASA Technical Reports Server (NTRS)

    Dogan, Numan S.

    2003-01-01

    The objective of this work is to design and develop Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks. We briefly report on the accomplishments in this work. We also list the impact of this work on graduate student research training/involvement.

  5. Design and fabrication of a CMOS-compatible MHP gas sensor

    SciTech Connect

    Li, Ying; Yu, Jun Wu, Hao; Tang, Zhenan

    2014-03-15

    A novel micro-hotplate (MHP) gas sensor is designed and fabricated with a standard CMOS technology followed by post-CMOS processes. The tungsten plugging between the first and the second metal layer in the CMOS processes is designed as zigzag resistor heaters embedded in the membrane. In the post-CMOS processes, the membrane is released by front-side bulk silicon etching, and excellent adiabatic performance of the sensor is obtained. Pt/Ti electrode films are prepared on the MHP before the coating of the SnO{sub 2} film, which are promising to present better contact stability compared with Al electrodes. Measurements show that at room temperature in atmosphere, the device has a low power consumption of ∼19 mW and a rapid thermal response of 8 ms for heating up to 300 °C. The tungsten heater exhibits good high temperature stability with a slight fluctuation (<0.3%) in the resistance at an operation temperature of 300 °C under constant heating mode for 336 h, and a satisfactory temperature coefficient of resistance of about 1.9‰/°C.

  6. Low-cost compact thermal imaging sensors for body temperature measurement

    NASA Astrophysics Data System (ADS)

    Han, Myung-Soo; Han, Seok Man; Kim, Hyo Jin; Shin, Jae Chul; Ahn, Mi Sook; Kim, Hyung Won; Han, Yong Hee

    2013-06-01

    This paper presents a 32x32 microbolometer thermal imaging sensor for human body temperature measurement. Waferlevel vacuum packaging technology allows us to get a low cost and compact imaging sensor chip. The microbolometer uses V-W-O film as sensing material and ROIC has been designed 0.35-um CMOS process in UMC. A thermal image of a human face and a hand using f/1 lens convinces that it has a potential of human body temperature for commercial use.

  7. Faint-meteor survey with a large-format CMOS sensor

    NASA Astrophysics Data System (ADS)

    Watanabe, J.; Enomoto, T.; Terai, T.; Kasuga, T.; Miyazaki, S.; Oota, K.; Muraoka, F.; Onishi, T.; Yamasaki, T.; Mito, H.; Aoki, T.; Soyano, T.; Tarusawa, K.; Matsunaga, N.; Sako, S.; Kobayashi, N.; Doi, M.

    2014-07-01

    For observing faint meteors, we need a large telescope or similar optics, which always give a restriction of the field of view. It is a kind of trade-off between the high sensitivity by using larger telescope and narrower field of view. Reconciling this contradiction, we need a large-format imaging detector together with fast readout for meteor observations. A high-sensitivity CMOS sensor of the large format was developed by Canon Inc. in 2010[1]. Its size is 202 mm×205 mm which makes it the largest one-chip CMOS sensor in the world, and approximately 40 times the size of Canon's largest commercial CMOS sensor as shown in the figure. The number of pixel is 1280×1248. Because the increased size of the new CMOS sensor allows more light to be gathered, it enables shooting in low-light environments. The sensor makes image capture possible in one-hundredth the amount of light required by a 35 mm full-frame CMOS sensor, facilitating the shooting of 60 frame-per-second video with a mere 0.3 lux of illumination. We tried to use this large-format CMOS sensor attached to the prime focus of the 1.05-m (F3.1) Schmidt telescope at the Kiso Observatory, University of Tokyo, for surveying faint meteors. The field of view is 3.3 by 3.3 degrees. Test observations including operation check of the system were carried out in January 2011, September 2011,and December 2012. Images were obtained at a time resolution of 60 frames per second. In this system, the limiting magnitude is estimated to be about 11-12. Because of the limitation of the data storage, full-power observations (14-bit data per 1/60 second) were performed for about one or two hours each night. During the first period, we can count a sporadic meteor every 5 seconds. This is about one order higher detection rate of the faint meteors compared with the previous work[2]. Assuming the height of faint meteors at 100 km, the derived flux of the sporadic meteors is about 5 × 10^{-4} km^{-2} sec^{-1}. The last run was

  8. Noise optimization of the source follower of a CMOS pixel using BSIM3 noise model

    NASA Astrophysics Data System (ADS)

    Mahato, Swaraj; Meynants, Guy; Raskin, Gert; De Ridder, J.; Van Winckel, H.

    2016-07-01

    CMOS imagers are becoming increasingly popular in astronomy. A very low noise level is required to observe extremely faint targets and to get high-precision flux measurements. Although CMOS technology offers many advantages over CCDs, a major bottleneck is still the read noise. To move from an industrial CMOS sensor to one suitable for scientific applications, an improved design that optimizes the noise level is essential. Here, we study the 1/f and thermal noise performance of the source follower (SF) of a CMOS pixel in detail. We identify the relevant design parameters, and analytically study their impact on the noise level using the BSIM3v3 noise model with an enhanced model of gate capacitance. Our detailed analysis shows that the dependence of the 1/f noise on the geometrical size of the source follower is not limited to minimum channel length, compared to the classical approach to achieve the minimum 1/f noise. We derive the optimal gate dimensions (the width and the length) of the source follower that minimize the 1/f noise, and validate our results using numerical simulations. By considering the thermal noise or white noise along with 1/f noise, the total input noise of the source follower depends on the capacitor ratio CG/CFD and the drain current (Id). Here, CG is the total gate capacitance of the source follower and CFD is the total floating diffusion capacitor at the input of the source follower. We demonstrate that the optimum gate capacitance (CG) depends on the chosen bias current but ranges from CFD/3 to CFD to achieve the minimum total noise of the source follower. Numerical calculation and circuit simulation with 180nm CMOS technology are performed to validate our results.

  9. Spoked-ring microcavities: enabling seamless integration of nanophotonics in unmodified advanced CMOS microelectronics chips

    NASA Astrophysics Data System (ADS)

    Wade, Mark T.; Shainline, Jeffrey M.; Orcutt, Jason S.; Ram, Rajeev J.; Stojanovic, Vladimir; Popovic, Milos A.

    2014-03-01

    We present the spoked-ring microcavity, a nanophotonic building block enabling energy-efficient, active photonics in unmodified, advanced CMOS microelectronics processes. The cavity is realized in the IBM 45nm SOI CMOS process - the same process used to make many commercially available microprocessors including the IBM Power7 and Sony Playstation 3 processors. In advanced SOI CMOS processes, no partial etch steps and no vertical junctions are available, which limits the types of optical cavities that can be used for active nanophotonics. To enable efficient active devices with no process modifications, we designed a novel spoked-ring microcavity which is fully compatible with the constraints of the process. As a modulator, the device leverages the sub-100nm lithography resolution of the process to create radially extending p-n junctions, providing high optical fill factor depletion-mode modulation and thereby eliminating the need for a vertical junction. The device is made entirely in the transistor active layer, low-loss crystalline silicon, which eliminates the need for a partial etch commonly used to create ridge cavities. In this work, we present the full optical and electrical design of the cavity including rigorous mode solver and FDTD simulations to design the Qlimiting electrical contacts and the coupling/excitation. We address the layout of active photonics within the mask set of a standard advanced CMOS process and show that high-performance photonic devices can be seamlessly monolithically integrated alongside electronics on the same chip. The present designs enable monolithically integrated optoelectronic transceivers on a single advanced CMOS chip, without requiring any process changes, enabling the penetration of photonics into the microprocessor.

  10. Characterisation of diode-connected SiGe BiCMOS HBTs for space applications

    NASA Astrophysics Data System (ADS)

    Venter, Johan; Sinha, Saurabh; Lambrechts, Wynand

    2016-02-01

    Silicon-germanium (SiGe) bipolar complementary metal-oxide semiconductor (BiCMOS) transistors have vertical doping profiles reaching deeper into the substrate when compared to lateral CMOS transistors. Apart from benefiting from high-speed, high current gain and low-output resistance due to its vertical profile, BiCMOS technology is increasingly becoming a preferred technology for researchers to realise next-generation space-based optoelectronic applications. BiCMOS transistors have inherent radiation hardening, to an extent predictable cryogenic performance and monolithic integration potential. SiGe BiCMOS transistors and p-n junction diodes have been researched and used as a primary active component for over the last two decades. However, further research can be conducted with diode-connected heterojunction bipolar transistors (HBTs) operating at cryogenic temperatures. This work investigates these characteristics and models devices by adapting standard fabrication technology components. This work focuses on measurements of the current-voltage relationship (I-V curves) and capacitance-voltage relationships (C-V curves) of diode-connected HBTs. One configuration is proposed and measured, which is emitterbase shorted. The I-V curves are measured for various temperature points ranging from room temperature (300 K) to the temperature of liquid nitrogen (77 K). The measured datasets are used to extract a model of the formed diode operating at cryogenic temperatures and used as a standard library component in computer aided software designs. The advantage of having broad-range temperature models of SiGe transistors becomes apparent when considering implementation of application-specific integrated circuits and silicon-based infrared radiation photodetectors on a single wafer, thus shortening interconnects and lowering parasitic interference, decreasing the overall die size and improving on overall cost-effectiveness. Primary applications include space-based geothermal

  11. Region-of-interest cone beam computed tomography (ROI CBCT) with a high resolution CMOS detector

    PubMed Central

    Jain, A; Takemoto, H; Silver, M D; Nagesh, S V S; Ionita, C N; Bednarek, D R; Rudin, S

    2015-01-01

    Cone beam computed tomography (CBCT) systems with rotational gantries that have standard flat panel detectors (FPD) are widely used for the 3D rendering of vascular structures using Feldkamp cone beam reconstruction algorithms. One of the inherent limitations of these systems is limited resolution (<3 lp/mm). There are systems available with higher resolution but their small FOV limits them to small animal imaging only. In this work, we report on region-of-interest (ROI) CBCT with a high resolution CMOS detector (75 μm pixels, 600 μm HR-CsI) mounted with motorized detector changer on a commercial FPD-based C-arm angiography gantry (194 μm pixels, 600 μm HL-CsI). A cylindrical CT phantom and neuro stents were imaged with both detectors. For each detector a total of 209 images were acquired in a rotational protocol. The technique parameters chosen for the FPD by the imaging system were used for the CMOS detector. The anti-scatter grid was removed and the incident scatter was kept the same for both detectors with identical collimator settings. The FPD images were reconstructed for the 10 cm x10 cm FOV and the CMOS images were reconstructed for a 3.84 cm × 3.84 cm FOV. Although the reconstructed images from the CMOS detector demonstrated comparable contrast to the FPD images, the reconstructed 3D images of the neuro stent clearly showed that the CMOS detector improved delineation of smaller objects such as the stent struts (~70 μm) compared to the FPD. Further development and the potential for substantial clinical impact are suggested. PMID:26877577

  12. Design and Fabrication of High-Efficiency CMOS/CCD Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2007-01-01

    An architecture for back-illuminated complementary metal oxide/semiconductor (CMOS) and charge-coupled-device (CCD) ultraviolet/visible/near infrared- light image sensors, and a method of fabrication to implement the architecture, are undergoing development. The architecture and method are expected to enable realization of the full potential of back-illuminated CMOS/CCD imagers to perform with high efficiency, high sensitivity, excellent angular response, and in-pixel signal processing. The architecture and method are compatible with next-generation CMOS dielectric-forming and metallization techniques, and the process flow of the method is compatible with process flows typical of the manufacture of very-large-scale integrated (VLSI) circuits. The architecture and method overcome all obstacles that have hitherto prevented high-yield, low-cost fabrication of back-illuminated CMOS/CCD imagers by use of standard VLSI fabrication tools and techniques. It is not possible to discuss the obstacles in detail within the space available for this article. Briefly, the obstacles are posed by the problems of generating light-absorbing layers having desired uniform and accurate thicknesses, passivation of surfaces, forming structures for efficient collection of charge carriers, and wafer-scale thinning (in contradistinction to diescale thinning). A basic element of the present architecture and method - the element that, more than any other, makes it possible to overcome the obstacles - is the use of an alternative starting material: Instead of starting with a conventional bulk-CMOS wafer that consists of a p-doped epitaxial silicon layer grown on a heavily-p-doped silicon substrate, one starts with a special silicon-on-insulator (SOI) wafer that consists of a thermal oxide buried between a lightly p- or n-doped, thick silicon layer and a device silicon layer of appropriate thickness and doping. The thick silicon layer is used as a handle: that is, as a mechanical support for the

  13. Region-of-interest cone beam computed tomography (ROI CBCT) with a high resolution CMOS detector

    NASA Astrophysics Data System (ADS)

    Jain, A.; Takemoto, H.; Silver, M. D.; Nagesh, S. V. S.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2015-03-01

    Cone beam computed tomography (CBCT) systems with rotational gantries that have standard flat panel detectors (FPD) are widely used for the 3D rendering of vascular structures using Feldkamp cone beam reconstruction algorithms. One of the inherent limitations of these systems is limited resolution (<3 lp/mm). There are systems available with higher resolution but their small FOV limits them to small animal imaging only. In this work, we report on region-of-interest (ROI) CBCT with a high resolution CMOS detector (75 μm pixels, 600 μm HR-CsI) mounted with motorized detector changer on a commercial FPD-based C-arm angiography gantry (194 μm pixels, 600 μm HL-CsI). A cylindrical CT phantom and neuro stents were imaged with both detectors. For each detector a total of 209 images were acquired in a rotational protocol. The technique parameters chosen for the FPD by the imaging system were used for the CMOS detector. The anti-scatter grid was removed and the incident scatter was kept the same for both detectors with identical collimator settings. The FPD images were reconstructed for the 10 cm x10 cm FOV and the CMOS images were reconstructed for a 3.84 cm x 3.84 cm FOV. Although the reconstructed images from the CMOS detector demonstrated comparable contrast to the FPD images, the reconstructed 3D images of the neuro stent clearly showed that the CMOS detector improved delineation of smaller objects such as the stent struts (~70 μm) compared to the FPD. Further development and the potential for substantial clinical impact are suggested.

  14. Precision of FLEET Velocimetry Using High-speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 micro sec, precisions of 0.5 m/s in air and 0.2 m/s in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision High Speed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  15. Precision of FLEET Velocimetry Using High-Speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 microseconds, precisions of 0.5 meters per second in air and 0.2 meters per second in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision HighSpeed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  16. Region-of-interest cone beam computed tomography (ROI CBCT) with a high resolution CMOS detector.

    PubMed

    Jain, A; Takemoto, H; Silver, M D; Nagesh, S V S; Ionita, C N; Bednarek, D R; Rudin, S

    Cone beam computed tomography (CBCT) systems with rotational gantries that have standard flat panel detectors (FPD) are widely used for the 3D rendering of vascular structures using Feldkamp cone beam reconstruction algorithms. One of the inherent limitations of these systems is limited resolution (<3 lp/mm). There are systems available with higher resolution but their small FOV limits them to small animal imaging only. In this work, we report on region-of-interest (ROI) CBCT with a high resolution CMOS detector (75 μm pixels, 600 μm HR-CsI) mounted with motorized detector changer on a commercial FPD-based C-arm angiography gantry (194 μm pixels, 600 μm HL-CsI). A cylindrical CT phantom and neuro stents were imaged with both detectors. For each detector a total of 209 images were acquired in a rotational protocol. The technique parameters chosen for the FPD by the imaging system were used for the CMOS detector. The anti-scatter grid was removed and the incident scatter was kept the same for both detectors with identical collimator settings. The FPD images were reconstructed for the 10 cm x10 cm FOV and the CMOS images were reconstructed for a 3.84 cm × 3.84 cm FOV. Although the reconstructed images from the CMOS detector demonstrated comparable contrast to the FPD images, the reconstructed 3D images of the neuro stent clearly showed that the CMOS detector improved delineation of smaller objects such as the stent struts (~70 μm) compared to the FPD. Further development and the potential for substantial clinical impact are suggested.

  17. Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology.

    PubMed

    Sasagawa, Kiyotaka; Shishido, Sanshiro; Ando, Keisuke; Matsuoka, Hitoshi; Noda, Toshihiko; Tokuda, Takashi; Kakiuchi, Kiyomi; Ohta, Jun

    2013-05-06

    In this study, we demonstrate a polarization sensitive pixel for a complementary metal-oxide-semiconductor (CMOS) image sensor based on 65-nm standard CMOS technology. Using such a deep-submicron CMOS technology, it is possible to design fine metal patterns smaller than the wavelengths of visible light by using a metal wire layer. We designed and fabricated a metal wire grid polarizer on a 20 × 20 μm(2) pixel for image sensor. An extinction ratio of 19.7 dB was observed at a wavelength 750 nm.

  18. Increasing Linear Dynamic Range of a CMOS Image Sensor

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2007-01-01

    A generic design and a corresponding operating sequence have been developed for increasing the linear-response dynamic range of a complementary metal oxide/semiconductor (CMOS) image sensor. The design provides for linear calibrated dual-gain pixels that operate at high gain at a low signal level and at low gain at a signal level above a preset threshold. Unlike most prior designs for increasing dynamic range of an image sensor, this design does not entail any increase in noise (including fixed-pattern noise), decrease in responsivity or linearity, or degradation of photometric calibration. The figure is a simplified schematic diagram showing the circuit of one pixel and pertinent parts of its column readout circuitry. The conventional part of the pixel circuit includes a photodiode having a small capacitance, CD. The unconventional part includes an additional larger capacitance, CL, that can be connected to the photodiode via a transfer gate controlled in part by a latch. In the high-gain mode, the signal labeled TSR in the figure is held low through the latch, which also helps to adapt the gain on a pixel-by-pixel basis. Light must be coupled to the pixel through a microlens or by back illumination in order to obtain a high effective fill factor; this is necessary to ensure high quantum efficiency, a loss of which would minimize the efficacy of the dynamic- range-enhancement scheme. Once the level of illumination of the pixel exceeds the threshold, TSR is turned on, causing the transfer gate to conduct, thereby adding CL to the pixel capacitance. The added capacitance reduces the conversion gain, and increases the pixel electron-handling capacity, thereby providing an extension of the dynamic range. By use of an array of comparators also at the bottom of the column, photocharge voltages on sampling capacitors in each column are compared with a reference voltage to determine whether it is necessary to switch from the high-gain to the low-gain mode. Depending upon

  19. Device Design and Modeling for Beyond-CMOS Information Technology Based on Integrated Electronic-Magnetic Systems

    NASA Astrophysics Data System (ADS)

    Duan, Xiaopeng

    This thesis focuses on exploiting the correlation between insulating ferromagnets and 2- dimensional Dirac electronic systems in graphene and topological insulators (TI) to develop beyond-CMOS devices for information processing. (Abstract shortened by ProQuest.).

  20. Comprehensive understanding of dark count mechanisms of single-photon avalanche diodes fabricated in deep sub-micron CMOS technologies

    NASA Astrophysics Data System (ADS)

    Xu, Yux; Xiang, Ping; Xie, Xiaopeng

    2017-03-01

    The dark count noise mechanisms of single-photon avalanche diodes (SPADs) fabricated in deep sub-micron (DSM) CMOS technologies are investigated in depth. An electric field dependence of tunneling model combined with carrier thermal generation is established for dark count rate (DCR) prediction. Applying the crucial parameters provided by Geiger mode TCAD simulation such as avalanche triggering probability and electric field distribution in the SPAD avalanche region, the individual contribution of each noise source to DCR is calculated for several SPADs in DSM CMOS technologies. The model calculation results reveal that the trap-assisted tunneling is the main DCR generation source for these DSM CMOS SPADs. With the increase of doping levels in the device avalanche region, the band-to-band tunneling will be the dominant factor that could lead to the higher DCR in scaled DSM CMOS technologies.

  1. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging

    NASA Astrophysics Data System (ADS)

    Esposito, M.; Anaxagoras, T.; Konstantinidis, A. C.; Zheng, Y.; Speller, R. D.; Evans, P. M.; Allinson, N. M.; Wells, K.

    2014-07-01

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this

  2. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging.

    PubMed

    Esposito, M; Anaxagoras, T; Konstantinidis, A C; Zheng, Y; Speller, R D; Evans, P M; Allinson, N M; Wells, K

    2014-07-07

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this

  3. Integration of solid-state nanopores in a 0.5 μm cmos foundry process

    PubMed Central

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-01-01

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor’s 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the N+ polysilicon/SiO2/N+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3 which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3. PMID:23519330

  4. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.

    PubMed

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-04-19

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA-base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide-semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor's 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the n+ polysilicon/SiO2/n+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3, which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3.

  5. Physical and technological limitations of NanoCMOS devices to the end of the roadmap and beyond

    NASA Astrophysics Data System (ADS)

    Deleonibus, S.

    2006-12-01

    Since the end of the last millenium, the microelectronics industry has been facing new issues as far as CMOS devices scaling is concerned. Linear scaling will be possible in the future if new materials are introduced in CMOS device structures or if new device architectures are implemented. Innovations in the electronics history have been possible because of the strong association between devices and materials research. The demand for low voltage, low power and high performance are the great challenges for the engineering of sub 50nm gate length CMOS devices. Functional CMOS devices in the range of 5nm channel length have been demonstrated. The alternative architectures allowing to increase devices drivability and reduce power consumption are reviewed. The issues in the field of gate stack, channel, substrate, as well as source and drain engineering are addressed. HiK gate dielectric and metal gate are among the most strategic options to consider for power consumption and low supply voltage management. By introducing new materials (Ge, diamond/graphite carbon, HiK, ...), Si based CMOS will be scaled beyond the ITRS as the future System-on-Chip Platform integrating also new disruptive devices. For example, the association of C-diamond with HiK, as a combination for new functionalized Buried Insulators, will bring new ways of improving short channel effects and suppress self-heating. Because of the low parasitics required to obtain high performance circuits, alternative devices will hardly compete against logic CMOS.

  6. MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices.

    PubMed

    Emboras, Alexandros; Najar, Adel; Nambiar, Siddharth; Grosse, Philippe; Augendre, Emmanuel; Leroux, Charles; de Salvo, Barbara; de Lamaestre, Roch Espiau

    2012-06-18

    We study the electro optical properties of a Metal-Nitride-Oxide-Silicon (MNOS) stack for a use in CMOS compatible plasmonic active devices. We show that the insertion of an ultrathin stoichiometric Si(3)N(4) layer in a MOS stack lead to an increase in the electrical reliability of a copper gate MNOS capacitance from 50 to 95% thanks to a diffusion barrier effect, while preserving the low optical losses brought by the use of copper as the plasmon supporting metal. An experimental investigation is undertaken at a wafer scale using some CMOS standard processes of the LETI foundry. Optical transmission measurments conducted in a MNOS channel waveguide configuration coupled to standard silicon photonics circuitry confirms the very low optical losses (0.39 dB.μm(-1)), in good agreement with predictions using ellipsometric optical constants of Cu.

  7. A low noise CMOS RF front-end for UWB 6-9 GHz applications

    NASA Astrophysics Data System (ADS)

    Feng, Zhou; Ting, Gao; Fei, Lan; Wei, Li; Ning, Li; Junyan, Ren

    2010-11-01

    An integrated fully differential ultra-wideband CMOS RF front-end for 6-9 GHz is presented. A resistive feedback low noise amplifier and a gain controllable IQ merged folded quadrature mixer are integrated as the RF front-end. The ESD protected chip is fabricated in a TSMC 0.13 μm RF CMOS process and achieves a maximum voltage gain of 23-26 dB and a minimum voltage gain of 16-19 dB, an averaged total noise figure of 3.3-4.6 dB while operating in the high gain mode and an in-band IIP3 of -12.6 dBm while in the low gain mode. This RF front-end consumes 17 mA from a 1.2 V supply voltage.

  8. Monolithic optical phased-array transceiver in a standard SOI CMOS process.

    PubMed

    Abediasl, Hooman; Hashemi, Hossein

    2015-03-09

    Monolithic microwave phased arrays are turning mainstream in automotive radars and high-speed wireless communications fulfilling Gordon Moores 1965 prophecy to this effect. Optical phased arrays enable imaging, lidar, display, sensing, and holography. Advancements in fabrication technology has led to monolithic nanophotonic phased arrays, albeit without independent phase and amplitude control ability, integration with electronic circuitry, or including receive and transmit functions. We report the first monolithic optical phased array transceiver with independent control of amplitude and phase for each element using electronic circuitry that is tightly integrated with the nanophotonic components on one substrate using a commercial foundry CMOS SOI process. The 8 × 8 phased array chip includes thermo-optical tunable phase shifters and attenuators, nano-photonic antennas, and dedicated control electronics realized using CMOS transistors. The complex chip includes over 300 distinct optical components and over 74,000 distinct electrical components achieving the highest level of integration for any electronic-photonic system.

  9. Neural CMOS-integrated circuit and its application to data classification.

    PubMed

    Göknar, Izzet Cem; Yildiz, Merih; Minaei, Shahram; Deniz, Engin

    2012-05-01

    Implementation and new applications of a tunable complementary metal-oxide-semiconductor-integrated circuit (CMOS-IC) of a recently proposed classifier core-cell (CC) are presented and tested with two different datasets. With two algorithms-one based on Fisher's linear discriminant analysis and the other based on perceptron learning, used to obtain CCs' tunable parameters-the Haberman and Iris datasets are classified. The parameters so obtained are used for hard-classification of datasets with a neural network structured circuit. Classification performance and coefficient calculation times for both algorithms are given. The CC has 6-ns response time and 1.8-mW power consumption. The fabrication parameters used for the IC are taken from CMOS AMS 0.35-μm technology.

  10. A 2.2M CMOS image sensor for high-speed machine vision applications

    NASA Astrophysics Data System (ADS)

    Wang, Xinyang; Bogaerts, Jan; Vanhorebeek, Guido; Ruythoren, Koen; Ceulemans, Bart; Lepage, Gérald; Willems, Pieter; Meynants, Guy

    2010-01-01

    This paper describes a 2.2 Megapixel CMOS image sensor made in 0.18 μm CMOS process for high-speed machine vision applications. The sensor runs at 340 fps with digital output using 16 LVDS channels at 480MHz. The pixel array counts 2048x1088 pixels with a 5.5um pitch. The unique pixel architecture supports a true correlated double sampling, thus yields a noise level as low as 13 e- and a pixel parasitic light sensitivity (PLS) of 1/60 000. The sensitivity of the sensor is measured to be 4.64 Vlux.s and the pixel full well charge is 18k e-.

  11. Microlens performance limits in sub-2mum pixel CMOS image sensors.

    PubMed

    Huo, Yijie; Fesenmaier, Christian C; Catrysse, Peter B

    2010-03-15

    CMOS image sensors with smaller pixels are expected to enable digital imaging systems with better resolution. When pixel size scales below 2 mum, however, diffraction affects the optical performance of the pixel and its microlens, in particular. We present a first-principles electromagnetic analysis of microlens behavior during the lateral scaling of CMOS image sensor pixels. We establish for a three-metal-layer pixel that diffraction prevents the microlens from acting as a focusing element when pixels become smaller than 1.4 microm. This severely degrades performance for on and off-axis pixels in red, green and blue color channels. We predict that one-metal-layer or backside-illuminated pixels are required to extend the functionality of microlenses beyond the 1.4 microm pixel node.

  12. Development of a low power Delay-Locked Loop in two 130 nm CMOS technologies

    NASA Astrophysics Data System (ADS)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moron, J.; Swientek, K.

    2016-02-01

    The design and measurement results of two low power DLL prototypes for applications in particle physics readout systems are presented. The DLLs were fabricated in two different 130 nm CMOS technologies, called process A and process B, giving the opportunity to compare these two CMOS processes. Both circuits generate 64 uniform clock phases and operate at similar frequency range, from 20 MHz up to 60 MHz (10 MHz - 90 MHz in process B). The period jitter of both DLLs is in the range 2.5 ps - 12.1 ps (RMS) and depends on the selected output phase. The complete DLL functionality was experimentally verified, confirming a very low and frequency scalable power consumption of around 0.7 mW at typical 40 MHz input. The DLL prototype, designed in process A, occupies 680 μm × 210 μm, while the same circuit designed in process B occupies 430 μm × 190 μm.

  13. Total Dose Effects on Single Event Transients in Digital CMOS and Linear Bipolar Circuits

    NASA Technical Reports Server (NTRS)

    Buchner, S.; McMorrow, D.; Sibley, M.; Eaton, P.; Mavis, D.; Dusseau, L.; Roche, N. J-H.; Bernard, M.

    2009-01-01

    This presentation discusses the effects of ionizing radiation on single event transients (SETs) in circuits. The exposure of integrated circuits to ionizing radiation changes electrical parameters. The total ionizing dose effect is observed in both complementary metal-oxide-semiconductor (CMOS) and bipolar circuits. In bipolar circuits, transistors exhibit grain degradation, while in CMOS circuits, transistors exhibit threshold voltage shifts. Changes in electrical parameters can cause changes in single event upset(SEU)/SET rates. Depending on the effect, the rates may increase or decrease. Therefore, measures taken for SEU/SET mitigation might work at the beginning of a mission but not at the end following TID exposure. The effect of TID on SET rates should be considered if SETs cannot be tolerated.

  14. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique.

    PubMed

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-10-23

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm.

  15. Ambient and cryogenic temperature testing of a 32-channel CMOS multiplexer

    NASA Technical Reports Server (NTRS)

    Lee, J. H.

    1983-01-01

    A 32 channel CMOS multiplexer was tested at room temperature and at liquid helium temperature (4.9 K). Voltage gain of the FET input stage, leakage current, electrical crosstalk, and noise as a function of clock frequency were measured. The voltage gain measured at 4.9 K was slightly higher than that measured at 300 K and was independent of clock frequency at both operating temperatures. The off channel leakage current was 0.23 pA/channel at 4.9 K. Electrical crosstalk between adjacent channels (one on, one off) was quite low. The spot noise at 10 Hz, of the CMOS multiplexer operating in the static mode did not vary significantly with operating temperature. In the dynamic mode (3.2 kHz clock) at room temperature, the spot noise at 10 Hz was substantially higher than that measured in the static mode.

  16. Intrinsic signal imaging of brain function using a small implantable CMOS imaging device

    NASA Astrophysics Data System (ADS)

    Haruta, Makito; Sunaga, Yoshinori; Yamaguchi, Takahiro; Takehara, Hironari; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2015-04-01

    A brain functional imaging technique over a long period is important to understand brain functions related to animal behavior. We have developed a small implantable CMOS imaging device for measuring brain activity in freely moving animals. This device is composed of a CMOS image sensor chip and LEDs for illumination. In this study, we demonstrated intrinsic signal imaging of blood flow using the device with a green LED light source at a peak wavelength of 535 nm, which corresponds to one of the absorption spectral peaks of blood cells. Brain activity increases regional blood flow. The device light weight of about 0.02 g makes it possible to stably measure brain activity through blood flow over a long period. The device has successfully measured the intrinsic signal related to sensory stimulation on the primary somatosensory cortex.

  17. A New Fully Differential CMOS Capacitance to Digital Converter for Lab-on-Chip Applications.

    PubMed

    Nabovati, Ghazal; Ghafar-Zadeh, Ebrahim; Mirzaei, Maryam; Ayala-Charca, Giancarlo; Awwad, Falah; Sawan, Mohamad

    2015-06-01

    In this paper, we present a new differential CMOS capacitive sensor for Lab-on-Chip applications. The proposed integrated sensor features a DC-input ΣΔ capacitance to digital converter (CDC) and two reference and sensing microelectrodes integrated on the top most metal layer in 0.35 μm CMOS process. Herein, we describe a readout circuitry with a programmable clocking strategy using a Charge Based Capacitance Measurement technique. The simulation and experimental results demonstrate a high capacitive dynamic range of 100 fF-110 fF, the sensitivity of 350 mV/fF and the minimum detectable capacitance variation of as low as 10 aF. We also demonstrate and discuss the use of this device for environmental applications through various chemical solvents.

  18. Characterization of zeolite-trench-embedded microcantilevers with CMOS strain gauge for integrated gas sensor applications

    NASA Astrophysics Data System (ADS)

    Inoue, Shu; Denoual, Matthieu; Awala, Hussein; Grand, Julien; Mintova, Sveltana; Tixier-Mita, Agnès; Mita, Yoshio

    2016-04-01

    Custom-synthesized zeolite is coated and fixed into microcantilevers with microtrenches of 1 to 5 µm width. Zeolite is a porous material that absorbs chemical substances; thus, it is expected to work as a sensitive chemical-sensing head. The total mass increases with gas absorption, and the cantilever resonance frequency decreases accordingly. In this paper, a thick zeolite cantilever sensor array system for high sensitivity and selectivity is proposed. The system is composed of an array of microcantilevers with silicon deep trenches. The cantilevers are integrated with CMOS-made polysilicon strain gauges for frequency response electrical measurement. The post-process fabrication of such an integrated array out of a foundry-made CMOS chip is successful. On the cantilevers, three types of custom zeolite (FAU-X, LTL, and MFI) are integrated by dip and heating methods. The preliminary measurement has shown a clear shift of resonance frequency by the chemical absorbance of ethanol gas.

  19. CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide.

    PubMed

    Djordjevic, Stevan S; Shang, Kuanping; Guan, Binbin; Cheung, Stanley T S; Liao, Ling; Basak, Juthika; Liu, Hai-Feng; Yoo, S J B

    2013-06-17

    We present the design, fabrication and characterization of athermal nano-photonic silicon ring modulators. The athermalization method employs compensation of the silicon core thermo-optic contribution with that from the amorphous titanium dioxide (a-TiO(2)) overcladding with a negative thermo-optic coefficient. We developed a new CMOS-compatible fabrication process involving low temperature RF magnetron sputtering of high-density and low-loss a-TiO(2) that can withstand subsequent elevated-temperature CMOS processes. Silicon ring resonators with 275 nm wide rib waveguide clad with a-TiO(2) showed near complete athermalization and moderate optical losses. Small-signal testing of the micro-resonator modulators showed high extinction ratio and gigahertz bandwidth.

  20. A Highly Sensitive CMOS Digital Hall Sensor for Low Magnetic Field Applications

    PubMed Central

    Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li

    2012-01-01

    Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ±2 mT magnetic field and output a digital Hall signal in a wide temperature range from −40 °C to 120 °C. PMID:22438758

  1. Design of a Tunable All-Digital UWB Pulse Generator CMOS Chip for Wireless Endoscope.

    PubMed

    Chul Kim; Nooshabadi, S

    2010-04-01

    A novel tunable all-digital, ultrawideband pulse generator (PG) has been implemented in a standard 0.18-¿ m complementary metal-oxide semiconductor (CMOS) process for implantable medical applications. The chip shows that an ultra-low dynamic energy consumption of 27 pJ per pulse without static current flow at a 200-MHz pulse repetition frequency (PRF) with a 1.8-V power supply and low area of 90 × 50 ¿m(2). The PG generates tunable pulsewidth, amplitude, and transmit (Tx) power by using simple circuitry, through precise timing control of the H-bridge output stage. The all-digital architecture allows easy integration into a standard CMOS process, thus making it the most suitable candidate for in-vivo biotelemetry applications.

  2. Creation of a Radiation Hard 0.13 Micron CMOS Library at IHP

    NASA Astrophysics Data System (ADS)

    Jagdhold, U.

    2010-08-01

    To support space applications we will develop an 0.13 micron CMOS library which should be radiation hard up to 200 krad. By introducing new radiation hard design rules we will minimize IC-level leakage and single event latchup (SEL). To reduce single event upset (SEU) we will add two p-MOS transistors to all flip flops. For reliability reasons we will use double contacts in all library elements. The additional rules and the library elements will then be integrated in our Cadence mixed signal designkit, Virtuoso IC6.1 [1]. A test chip will be produced with our in house 0.13 micron BiCMOS technology, see Ref. [2].Thereafter we will doing radiation tests according the ESA specifications, see Ref. [3], [4].

  3. A high-speed lateral PIN polysilicon photodiode on standard bulk CMOS process

    NASA Astrophysics Data System (ADS)

    Zou, Wanghui; Xia, Yu; Chen, Diping; Zeng, Yun

    2017-03-01

    This paper reports a lateral PIN polysilicon photodiode on standard bulk complementary metal-oxidesemiconductor (CMOS) process for monolithically integrated high-speed optoelectronic integrated circuits (OEIC). A nominal undoped polysilicon as the photodetection area is intentionally created without introducing any process modification. With the device area of 50 × 50 μm2, a measured responsivity of 46 mA/W and a quantum efficiency of 11% were observed under the reverse voltage of 10 V and the wavelength of 520 nm. A compact equivalent circuit model for the proposed lateral photodiode is built to analyze the frequency response, and a bandwidth of over 20 GHz was obtained from the measured data, which is to the best of our knowledge the largest bandwidth ever reported based on standard bulk CMOS process.

  4. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique

    PubMed Central

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-01-01

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm. PMID:26512671

  5. Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms.

    PubMed

    Liang, Kevin; Chow, Chi-Wai; Liu, Yang; Yeh, Chien-Hung

    2016-10-31

    Recent visible light communication (VLC) studies mainly used positive-intrinsic-negative (PIN) and avalanche photodiode (APD). VLC using embedded complementary-metal-oxide-semiconductor (CMOS) camera is attractive. Using the rolling shutter effect of CMOS camera can increase the VLC data rate; and different techniques have been proposed for improving the demodulation of the rolling shutter pattern. Important steps to demodulate the rolling shutter pattern are the smoothing and the application of efficient thresholding to distinguish data logic. Here, we propose and demonstrate for the first time two entropy thresholding algorithms, including maximum entropy thresholding and minimum cross entropy thresholding. Experimental evaluation to compare their bit-error-rate (BER) performances and efficiencies are also performed.

  6. Break-before-make CMOS inverter for power-efficient delay implementation.

    PubMed

    Puhan, Janez; Raič, Dušan; Tuma, Tadej; Bűrmen, Árpád

    2014-01-01

    A modified static CMOS inverter with two inputs and two outputs is proposed to reduce short-circuit current in order to increment delay and reduce power overhead where slow operation is required. The circuit is based on bidirectional delay element connected in series with the PMOS and NMOS switching transistors. It provides differences in the dynamic response so that the direct-path current in the next stage is reduced. The switching transistors are never ON at the same time. Characteristics of various delay element implementations are presented and verified by circuit simulations. Global optimization procedure is used to obtain the most power-efficient transistor sizing. The performance of the modified CMOS inverter chain is compared to standard implementation for various delays. The energy (charge) per delay is reduced up to 40%. The use of the proposed delay element is demonstrated by implementing a low-power delay line and a leading-edge detector cell.

  7. 2.4 GHz CMOS Power Amplifier with Mode-Locking Structure to Enhance Gain

    PubMed Central

    2014-01-01

    We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RFCMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The designed chip size is 1.4 × 0.6 mm2. PMID:25045755

  8. Real-time detection of fast and thermal neutrons in radiotherapy with CMOS sensors

    NASA Astrophysics Data System (ADS)

    Arbor, Nicolas; Higueret, Stephane; Elazhar, Halima; Combe, Rodolphe; Meyer, Philippe; Dehaynin, Nicolas; Taupin, Florence; Husson, Daniel

    2017-03-01

    The peripheral dose distribution is a growing concern for the improvement of new external radiation modalities. Secondary particles, especially photo-neutrons produced by the accelerator, irradiate the patient more than tens of centimeters away from the tumor volume. However the out-of-field dose is still not estimated accurately by the treatment planning softwares. This study demonstrates the possibility of using a specially designed CMOS sensor for fast and thermal neutron monitoring in radiotherapy. The 14 microns-thick sensitive layer and the integrated electronic chain of the CMOS are particularly suitable for real-time measurements in γ/n mixed fields. An experimental field size dependency of the fast neutron production rate, supported by Monte Carlo simulations and CR-39 data, has been observed. This dependency points out the potential benefits of a real-time monitoring of fast and thermal neutron during beam intensity modulated radiation therapies.

  9. A CMOS image sensor using high-speed lock-in pixels for stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Lioe, DeXing; Mars, Kamel; Takasawa, Taishi; Yasutomi, Keita; Kagawa, Keiichiro; Hashimoto, Mamoru; Kawahito, Shoji

    2016-03-01

    A CMOS image sensor using high-speed lock-in pixels for stimulated Raman scattering (SRS) spectroscopy is presented in this paper. The effective SRS signal from the stimulated emission of SRS mechanism is very small in contrast to the offset of a probing laser source, which is in the ratio of 10-4 to 10-5. In order to extract this signal, the common offset component is removed, and the small difference component is sampled using switched-capacitor integrator with a fully differential amplifier. The sampling is performed over many integration cycles to achieve appropriate amplification. The lock-in pixels utilizes high-speed lateral electric field charge modulator (LEFM) to demodulate the SRS signal which is modulated at high-frequency of 20MHz. A prototype chip is implemented using 0.11μm CMOS image sensor technology.

  10. Break-before-Make CMOS Inverter for Power-Efficient Delay Implementation

    PubMed Central

    Raič, Dušan

    2014-01-01

    A modified static CMOS inverter with two inputs and two outputs is proposed to reduce short-circuit current in order to increment delay and reduce power overhead where slow operation is required. The circuit is based on bidirectional delay element connected in series with the PMOS and NMOS switching transistors. It provides differences in the dynamic response so that the direct-path current in the next stage is reduced. The switching transistors are never ON at the same time. Characteristics of various delay element implementations are presented and verified by circuit simulations. Global optimization procedure is used to obtain the most power-efficient transistor sizing. The performance of the modified CMOS inverter chain is compared to standard implementation for various delays. The energy (charge) per delay is reduced up to 40%. The use of the proposed delay element is demonstrated by implementing a low-power delay line and a leading-edge detector cell. PMID:25538951

  11. Modellierung und Simulation des Substrat-Rauschens in integrierten RF CMOS-Schaltungen

    NASA Astrophysics Data System (ADS)

    Lin, L.; Xiong, J.; Mathis, W.

    2009-05-01

    Im integrierten CMOS-Schaltungsentwurf kann das Substrat-Rauschen, das vom digitalen Teil entsteht, die Funktionalität des analogen Teils stark beeinflussen. Es wird daher immer wichtiger, das Substrat als ein Medium der Rauschen-Propagation genau zu modellieren. Im vorliegenden Artikel wird ein auf der Finite Elemente Methode (FEM) und Modellordnungsreduktion (MOR) basiertes Modellierungsverfahren zur Admittanzen-Extraktion im Halbleitersubstrat vorgestellt. Nach der Diskretisierung mit FEM wird das Substrat im Allgemeinen als ein resistives/kapazitives Netz angesehen. Durch Bestimmung der Admittanz-Matrix und MOR ist es möglich ein äquivalentes Dreipol-Modell zwischen digitalem und analogem Teil über das Substrat zu bilden. Das Ergebnis der Modellierung wird dargestellt und mit numerischer Simulation des Substrat-Rauschens verglichen. Die Modellierung ermöglicht es, die Einflüsse des Substrat-Rauschens im Schaltungsentwurf zu berücksichtigen und so bestehende CMOS-Schaltungsarchitekturen zu optimieren.

  12. A Review of the CMOS Buried Double Junction (BDJ) Photodetector and its Applications

    PubMed Central

    Feruglio, Sylvain; Lu, Guo-Neng; Garda, Patrick; Vasilescu, Gabriel

    2008-01-01

    A CMOS Buried Double Junction PN (BDJ) photodetector consists of two vertically-stacked photodiodes. It can be operated as a photodiode with improved performance and wavelength-sensitive response. This paper presents a review of this device and its applications. The CMOS implementation and operating principle are firstly described. This includes the description of several key aspects directly related to the device performances, such as surface reflection, photon absorption and electron-hole pair generation, photocurrent and dark current generation, etc. SPICE modelling of the detector is then presented. Next, design and process considerations are proposed in order to improve the BDJ performance. Finally, several BDJ-detector-based image sensors provide a survey of their applications. PMID:27873887

  13. Radiation hardness studies of AMS HV-CMOS 350 nm prototype chip HVStripV1

    NASA Astrophysics Data System (ADS)

    Kanisauskas, K.; Affolder, A.; Arndt, K.; Bates, R.; Benoit, M.; Di Bello, F.; Blue, A.; Bortoletto, D.; Buckland, M.; Buttar, C.; Caragiulo, P.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hiti, B.; Hoeferkamp, M.; Hommels, L. B. A.; Huffman, B. T.; John, J.; Kenney, C.; Kramberger, J.; Liang, Z.; Mandic, I.; Maneuski, D.; Martinez-Mckinney, F.; MacMahon, S.; Meng, L.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Peric, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seidel, S.; Seiden, A.; Shipsey, I.; Song, W.; Staniztki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zhang, J.; Zhu, H.

    2017-02-01

    CMOS active pixel sensors are being investigated for their potential use in the ATLAS inner tracker upgrade at the HL-LHC. The new inner tracker will have to handle a significant increase in luminosity while maintaining a sufficient signal-to-noise ratio and pulse shaping times. This paper focuses on the prototype chip "HVStripV1" (manufactured in the AMS HV-CMOS 350nm process) characterization before and after irradiation up to fluence levels expected for the strip region in the HL-LHC environment. The results indicate an increase of depletion region after irradiation for the same bias voltage by a factor of ≈2.4 and ≈2.8 for two active pixels on the test chip. There was also a notable increase in noise levels from 85 e‑ to 386 e‑ and from 75 e‑ to 277 e‑ for the corresponding pixels.

  14. CMOS-compatible fabrication of metamaterial-based absorbers for the mid-IR spectral range

    NASA Astrophysics Data System (ADS)

    Karimi Shahmarvandi, Ehsan; Ghaderi, Mohammadamir; Wolffenbuttel, Reinoud F.

    2016-10-01

    A CMOS-compatible approach is presented for the fabrication of a wideband mid-IR metamaterial-based absorber on top of a Si3N4 membrane, which contains poly-Si thermopiles. The application is in IR microspectrometers that are intended for implementation in portable microsystem for use in absorption spectroscopy. Although Au is the conventional material of choice, we demonstrate by simulation that near-perfect absorption can be achieved over a wider band when using the more CMOS-compatible Al. The absorber design is based on Al disk resonators and an Al backplane, which are separated by a SiO2 layer. The fabrication process involves the deposition of Al and SiO2 layers on top of a Si3N4 membrane, lithography and a lift-off process for patterning of the top Al layer.

  15. Integration of nanostructured planar diffractive lenses dedicated to near infrared detection for CMOS image sensors.

    PubMed

    Lopez, Thomas; Massenot, Sébastien; Estribeau, Magali; Magnan, Pierre; Pardo, Fabrice; Pelouard, Jean-Luc

    2016-04-18

    This paper deals with the integration of metallic and dielectric nanostructured planar lenses into a pixel from a silicon based CMOS image sensor, for a monochromatic application at 1.064 μm. The first is a Plasmonic Lens, based on the phase delay through nanoslits, which has been found to be hardly compatible with current CMOS technology and exhibits a notable metallic absorption. The second is a dielectric Phase-Fresnel Lens integrated at the top of a pixel, it exhibits an Optical Efficiency (OE) improved by a few percent and an angle of view of 50°. The third one is a metallic diffractive lens integrated inside a pixel, which shows a better OE and an angle of view of 24°. The last two lenses exhibit a compatibility with a spectral band close to 1.064 μm.

  16. Readout circuit design of the retina-like CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Cao, Fengmei; Song, Shengyu; Bai, Tingzhu; Cao, Nan

    2015-02-01

    Readout circuit is designed for a special retina-like CMOS image sensor. To realize the pixels timing drive and readout of the sensor, the Altera's Cyclone II FPGA is used as a control chip. The voltage of the sensor is supported by a voltage chip initialized by SPI with AVR MCU system. The analog image signal outputted by the sensor is converted to digital image data by 12-bits A/D converter ADS807 and the digital data is memorized in the SRAM. Using the Camera-link image grabber, the data stored in SRAM is transformed to image shown on PC. Experimental results show the circuit works well on retina-like CMOS timing drive and image readout and images can be displayed properly on the PC.

  17. A novel input-parasitic compensation technique for a nanopore-based CMOS DNA detection sensor

    NASA Astrophysics Data System (ADS)

    Kim, Jungsuk

    2016-12-01

    This paper presents a novel input-parasitic compensation (IPC) technique for a nanopore-based complementary metal-oxide-semiconductor (CMOS) DNA detection sensor. A resistive-feedback transimpedance amplifier is typically adopted as the headstage of a DNA detection sensor to amplify the minute ionic currents generated from a nanopore and convert them to a readable voltage range for digitization. But, parasitic capacitances arising from the headstage input and the nanopore often cause headstage saturation during nanopore sensing, thereby resulting in significant DNA data loss. To compensate for the unwanted saturation, in this work, we propose an area-efficient and automated IPC technique, customized for a low-noise DNA detection sensor, fabricated using a 0.35- μm CMOS process; we demonstrated this prototype in a benchtop test using an α-hemolysin ( α-HL) protein nanopore.

  18. A highly sensitive CMOS digital Hall sensor for low magnetic field applications.

    PubMed

    Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li

    2012-01-01

    Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ± 2 mT magnetic field and output a digital Hall signal in a wide temperature range from -40 °C to 120 °C.

  19. Analysis of incomplete charge transfer effects in a CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Liqiang, Han; Suying, Yao; Jiangtao, Xu; Chao, Xu; Zhiyuan, Gao

    2013-05-01

    A method to judge complete charger transfer is proposed for a four-transistor CMOS image sensor with a large pixel size. Based on the emission current theory, a qualitative photoresponse model is established to the preliminary prediction. Further analysis of noise for incomplete charge transfer predicts the noise variation. The test pixels were fabricated in a specialized 0.18 μm CMOS image sensor process and two different processes of buried N layer implantation are compared. The trend prediction corresponds with the test results, especially as it can distinguish an unobvious incomplete charge transfer. The method helps us judge whether the charge transfer time satisfies the requirements of the readout circuit for the given process especially for pixels of a large size.

  20. Pixel-based characterisation of CMOS high-speed camera systems

    NASA Astrophysics Data System (ADS)

    Weber, V.; Brübach, J.; Gordon, R. L.; Dreizler, A.

    2011-05-01

    Quantifying high-repetition rate laser diagnostic techniques for measuring scalars in turbulent combustion relies on a complete description of the relationship between detected photons and the signal produced by the detector. CMOS-chip based cameras are becoming an accepted tool for capturing high frame rate cinematographic sequences for laser-based techniques such as Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) and can be used with thermographic phosphors to determine surface temperatures. At low repetition rates, imaging techniques have benefitted from significant developments in the quality of CCD-based camera systems, particularly with the uniformity of pixel response and minimal non-linearities in the photon-to-signal conversion. The state of the art in CMOS technology displays a significant number of technical aspects that must be accounted for before these detectors can be used for quantitative diagnostics. This paper addresses these issues.

  1. Parallel-Processing CMOS Circuitry for M-QAM and 8PSK TCM

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Lee, Dennis; Hoy, Scott; Fisher, Dave; Fong, Wai; Ghuman, Parminder

    2009-01-01

    There has been some additional development of parts reported in "Multi-Modulator for Bandwidth-Efficient Communication" (NPO-40807), NASA Tech Briefs, Vol. 32, No. 6 (June 2009), page 34. The focus was on 1) The generation of M-order quadrature amplitude modulation (M-QAM) and octonary-phase-shift-keying, trellis-coded modulation (8PSK TCM), 2) The use of square-root raised-cosine pulse-shaping filters, 3) A parallel-processing architecture that enables low-speed [complementary metal oxide/semiconductor (CMOS)] circuitry to perform the coding, modulation, and pulse-shaping computations at a high rate; and 4) Implementation of the architecture in a CMOS field-programmable gate array.

  2. A CMOS detection chip for amperometric sensors with chopper stabilized incremental ΔΣ ADC

    NASA Astrophysics Data System (ADS)

    Min, Chen; Yuntao, Liu; Jingbo, Xiao; Jie, Chen

    2016-06-01

    This paper presents a low noise complimentary metal-oxide-semiconductor (CMOS) detection chip for amperometric electrochemical sensors. In order to effectively remove the input offset of the cascaded integrators and the low frequency noise in the modulator, a novel offset cancellation chopping scheme was proposed in the Incremental ΔΣ analog to digital converter (IADC). A novel low power potentiostat was employed in this chip to provide the biasing voltage for the sensor while mirroring the sensor current out for detection. The chip communicates with FPGA through standard built in I2C interface and SPI bus. Fabricated in 0.18-μm CMOS process, this chip detects current signal with high accuracy and high linearity. A prototype microsystem was produced to verify the detection chip performance with current input as well as micro-sensors. Project supported by the State Key Development Program for Basic Research of China (No. 2015CB352100).

  3. Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings.

    PubMed

    Rutkowska, K A; Duchesne, D; Strain, M J; Morandotti, R; Sorel, M; Azaña, J

    2011-09-26

    We report the first realization of integrated, all-optical first- and higher-order photonic differentiators operating at terahertz (THz) processing speeds. This is accomplished in a Silicon-on-Insulator (SOI) CMOS-compatible platform using a simple integrated geometry based on (π-)phase-shifted Bragg gratings. Moreover, we achieve on-chip generation of sub-picosecond Hermite-Gaussian pulse waveforms, which are noteworthy for applications in next-generation optical telecommunications.

  4. Successful large-scale use of CMOS devices on spacecraft traveling through intense radiation belts

    NASA Technical Reports Server (NTRS)

    Brucker, G. J.; Ohanian, R. S.; Stassinopoulos, E. G.

    1976-01-01

    This paper describes the environmental models of the radiation belts and computational techniques which have been developed for predicting the radiation hazards for spacecraft. These data and techniques are then applied to the Atmosphere Explorer 51 spacecraft to explain its successful survival for more than 18 months in a severe environment. In particular, the results of the analysis are used to explain the performance of some 2400 CMOS devices, and consequently, they demonstrate the reliability of this device technology in spacecraft systems.

  5. A low jitter all - digital phase - locked loop in 180 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Shumkin, O. V.; Butuzov, V. A.; Normanov, D. D.; Ivanov, P. Yu

    2016-02-01

    An all-digital phase locked loop (ADPLL) was implemented in 180 nm CMOS technology. The proposed ADPLL uses a digitally controlled oscillator to achieve 3 ps resolution. The pure digital phase locked loop is attractive because it is less sensitive to noise and operating conditions than its analog counterpart. The proposed ADPLL can be easily applied to different process as a soft IP block, making it very suitable for system-on-chip applications.

  6. A 1 GHz sample rate, 256-channel, 1-bit quantization, CMOS, digital correlator chip

    NASA Technical Reports Server (NTRS)

    Timoc, C.; Tran, T.; Wongso, J.

    1992-01-01

    This paper describes the development of a digital correlator chip with the following features: 1 Giga-sample/second; 256 channels; 1-bit quantization; 32-bit counters providing up to 4 seconds integration time at 1 GHz; and very low power dissipation per channel. The improvements in the performance-to-cost ratio of the digital correlator chip are achieved with a combination of systolic architecture, novel pipelined differential logic circuits, and standard 1.0 micron CMOS process.

  7. The CMOS Breakthrough for Space Optical Detection: Recent Advances and Short Term Perspectives

    DTIC Science & Technology

    2005-07-13

    Franck LARNAUDIE(1), Michel TULET(1), Robert DAVANCENS(1), Pierre MAGNAN(2), Philippe MARTIN GONTHIER(2) (1)EADS Astrium , 31 Avenue des...exemples de développements de CIS menés par EADS Astrium et Supaéro/CIMI pour des programmes spatiaux en cours ou devant démarrer prochainement...part reviews the advantages of CMOS technology for space applications, illustrated by examples of CIS developments performed by EADS Astrium and

  8. Recent developments in green light sensitive organic photodetectors for hybrid CMOS image sensor applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Leem, Dong-Seok; Lim, Seon-Jeong; Bulliard, Xavier; Lee, Gae Hwang; Lee, Kwang-Hee; Yun, Sungyoung; Yagi, Tadao; Satoh, Ryu-Ichi; Park, Kyung-Bae; Choi, Yeong Suk; Jin, Yong Wan; Lee, Sangyoon

    2016-09-01

    Typical CMOS colour image sensors consist of Si-based photodetectors (PDs) attached with colour filter arrays (i.e., the Bayer pattern). Recent trends on the development of high resolution image sensors, however, require downsizing the pixel dimension, which inevitably results in the loss of sensitivity due to the reduction in the photon acquisition. Very recently, hybrid stacks of organic photodetectors (OPDs) on conventional CMOS technologies have been proposed as one of the promising approaches to realise highly sensitive image sensors by doubling the light detecting area in the limited pixel size. Specifically, OPDs with orthogonal photosensitivity to green light and Si-based PDs with red and blue colour filters serve as the top and bottom photo-conversion layers, respectively. In this presentation, we will introduce the recent development of high performance green light sensitive OPDs and the demonstration of colour images from hybrid CMOS image sensors proposed. OPDs consisting of small molecule organic bulk heterto-junction structures, hole/electron buffer layers, and transparent top/bottom ITO electrodes exhibited peak external quantum efficiencies of 60-65% at 550-560 nm wavelengths and full width at half maximum of 120 nm at reverse bias of 3 V. Extremely low dark current densities in the range of 0.2-0.5 nA/cm2 at reverse bias of 3V and consequently high specific detectivities over 2×10^13 Jones were obtained from the developed OPD system. Further investigations in terms of the molecular structures of organic light absorbing materials, buffer materials, layer sequences, and even integration issues of the OPD on the CMOS will be described in detail.

  9. CMOS/BICMOS Self-assembling and Electrothermal Microactuators for Tunable Capacitors

    DTIC Science & Technology

    2003-12-01

    voltage of around 12 V maximum, which is compatible with IC technology and silicon substrates. Various micro-mover designs in four different CMOS...deflection is 1.57 kHz [18]. For the beam-bent actuators, designed by Gianchandani et al. [19] current is passed through the V -shaped beam anchored at two...power is consumed for switching operation, but only 10 V is needed for the electrostatic latch mechanism with close to zero continuous power. The

  10. Projection ultrasound and ultrasound CT using a PE-CMOS sensor: a preliminary study

    NASA Astrophysics Data System (ADS)

    Liu, Chu Chuan; Lo, Shih-Chung B.; Freedman, Matthew T.; Rich, David; Kula, John; Lasser, Bob; Lasser, Marvin E.; Zeng, JianChao; Ro, Doug

    2004-04-01

    The purpose of this study is to investigate the feasibility of generating 3D projection ultrasound computed tomography images using a transmission ultrasound system via a piezoelectric material coated CMOS ultrasound sensing array. There are four main components in the laboratory setup: (1) a transducer operated at 5MHz frequency generating unfocused ultrasound plane waves, (2) an acoustic compound lens that collects the energy and focuses ultrasound signals onto the detector array, and (3) a CMOS ultrasound sensing array (Model I100, Imperium Inc. Silver Spring, MD) that receives the ultrasound and converts the energy to analog voltage followed by a digital conversion, and (4) a stepping motor that controls the rotation of the target for each projection view. The CMOS array consists of 128×128 pixel elements with 85μm per pixel. The system can generate an ultrasound attenuation image similar to a digital image obtained from an x-ray projection system. A computed tomography (CT) study using the ultrasound projection was performed. The CMOS array acquired ultrasound attenuation images of the target. A total of 400 projections of the target image were generated to cover 180o rotation of the CT scan, each with 0.45° increment. Based on these 400 projection views, we rearranged each line profile in the corresponding projection views to form a sinogram. For each sinogram, we computed the cross section image of the target at the corresponding slice. Specifically, the projection ultrasound computed tomography (PUCT) images were reconstructed by applying the filtered back-projection method with scattering compensation technique. Based on the sequential 2D PUCT images of the target, we generated the 3D PUCT image.

  11. CMOS standard cells characterization for open defects for test pattern generation

    NASA Astrophysics Data System (ADS)

    Wielgus, Andrzej; Pleskacz, Witold

    2016-12-01

    This paper presents an extended method of CMOS standard cells characterization for defect based voltage testing. It allows to estimate the probabilities of physical open defects occurrences in a cell, describes its faulty behavior caused by the defects and finds the test sequences that detect those faults. Finally, the minimal set of test sequences is selected to cover all detectable faults and the optimal complex test sequence is constructed. Experimental results for cells from industrial standard cell library are presented as well.

  12. A compact picosecond pulsed laser source using a fully integrated CMOS driver circuit

    NASA Astrophysics Data System (ADS)

    He, Yuting; Li, Yuhua; Yadid-Pecht, Orly

    2016-03-01

    Picosecond pulsed laser source have applications in areas such as optical communications, biomedical imaging and supercontinuum generation. Direct modulation of a laser diode with ultrashort current pulses offers a compact and efficient approach to generate picosecond laser pulses. A fully integrated complementary metaloxide- semiconductor (CMOS) driver circuit is designed and applied to operate a 4 GHz distributed feedback laser (DFB). The CMOS driver circuit combines sub-circuits including a voltage-controlled ring oscillator, a voltagecontrolled delay line, an exclusive-or (XOR) circuit and a current source circuit. Ultrashort current pulses are generated by the XOR circuit when the delayed square wave is XOR'ed with the original square wave from the on-chip oscillator. Circuit post-layout simulation shows that output current pulses injected into an equivalent circuit load of the laser have a pulse full width at half maximum (FWHM) of 200 ps, a peak current of 80 mA and a repetition rate of 5.8 MHz. This driver circuit is designed in a 0.13 μm CMOS process and taped out on a 0.3 mm2 chip area. This CMOS chip is packaged and interconnected with the laser diode on a printed circuit board (PCB). The optical output waveform from the laser source is captured by a 5 GHz bandwidth photodiode and an 8 GHz bandwidth oscilloscope. Measured results show that the proposed laser source can output light pulses with a pulse FWHM of 151 ps, a peak power of 6.4 mW (55 mA laser peak forward current) and a repetition rate of 5.3 MHz.

  13. Hybrid Josephson-CMOS Random Access Memory with Interfacing to Josephson Digital Circuits

    DTIC Science & Technology

    2013-10-16

    as reliable high-speed Josephson voltage drivers, Superconductor Science and Technology, (01 2013): 1. doi: TOTAL: 4 (b) Papers published in non...Theodore Van Duzer, ISEC, Washington, DC 2011 "Hybrid Josephson-CMOS Random Access Memory, T. Van Duzer, US Workshop on Superconductor Electronics: Devices...Proceeding publications (other than abstracts): Received Paper 08/22/2013 2.00 Thomas Ortlepp. Vortex transitional superconductor random access memory

  14. Low-power thermal tuning of SOI-CMOS photonic structures

    NASA Astrophysics Data System (ADS)

    Shubin, Ivan; Zheng, Xuezhe; Li, Guoliang; Thacker, Hiren; Yao, Jin; Guenin, Bruce; Pinguet, Thierry; Mekis, Attila; Krishnamoorthy, A. V.; Cunningham, J. E.

    2011-01-01

    Ring waveguide resonating structures with high quality factors are the key components servicing silicon photonic links. We demonstrate highly efficient spectral tunability of the microphotonic ring structures manufactured in commercial 130 nm SOI CMOS technology. Our rings are fitted with dedicated heaters and integrated with silicon micro-machined features. Optimized layout and structure of the devices result in their maximized thermal impedance and increased efficiency of the thermal tuning.

  15. Physically unclonable function using initial waveform of ring oscillators on 65 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Tanamoto, Tetsufumi; Takaya, Satoshi; Sakamoto, Nobuaki; Kasho, Hirotsugu; Yasuda, Shinichi; Marukame, Takao; Fujita, Shinobu; Mitani, Yuichiro

    2017-04-01

    A silicon physically unclonable function (PUF) using ring oscillators (ROs) has the advantage of easy application in both an application specific integrated circuit (ASIC) and a field-programmable gate array (FPGA). Here, we provide an RO-PUF using the initial waveform of the ROs based on 65 nm CMOS technology. Compared with the conventional RO-PUF, the number of ROs is greatly reduced and the time needed to generate an ID is within a couple of system clocks.

  16. Real time M2 and beam parameter product measurement using GigE CMOS sensors

    NASA Astrophysics Data System (ADS)

    Scaggs, Michael; Haas, Gil

    2016-03-01

    The ISO 11146-1 standard for measurement of a laser's M-square requires the minimum measurement of five (5) spatial profiles within the first Rayleigh range and an addition five (5) outside the second Rayleigh range. The first five spatial profiles within the first Rayleigh range establish the beam waist and its location; the second five beyond the second Rayleigh range establish the divergence or convergence from the focusing lens for the M-square computation. The majority of methods used to date are all time averaged and as such are incapable of a real time M-square measurement. We present an ISO 11146-1 compliant method for measuring single shot M-square or beam parameter product values or the measurement of continuous wave sources at rates greater than five frames per second utilizing a pair of GigE based CMOS sensors. One GigE CMOS sensor is setup to measure the minimum of five spots within the first Rayleigh range for the establishment of the beam waist and its location. A second GigE CMOS sensor is setup to measure the five spatial profiles beyond the second Rayleigh range for the determination of the beam divergence from the focusing lens. Both GigE cameras utilize optics that passively create multiple spatial time slices of the beam and superimpose these time slices on the CMOS sensor in real time resulting in the ability to make single pulse measurements or continuous wave measurements at speeds of greater than five frames per second with full ISO 11146-1 compliance.

  17. Structure for implementation of back-illuminated CMOS or CCD imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2009-01-01

    A structure for implementation of back-illuminated CMOS or CCD imagers. An epitaxial silicon layer is connected with a passivation layer, acting as a junction anode. The epitaxial silicon layer converts light passing through the passivation layer and collected by the imaging structure to photoelectrons. A semiconductor well is also provided, located opposite the passivation layer with respect to the epitaxial silicon layer, acting as a junction cathode. Prior to detection, light does not pass through a dielectric separating interconnection metal layers.

  18. Surprising patterns of CMOS susceptibility to ESD and implications on long-term reliability

    SciTech Connect

    Schwank, J.R.; Baker, R.P.; Armendariz, M.G.

    1980-01-01

    CMOS electrostatic discharge (ESD) failures in a product where, by design, the device input terminals are not accessible to ESD led to this study of device susceptibility and an analysis of the long-term reliability of devices in assemblies from that production line. Some surprising patterns of device susceptibility are established and it is shown that the probability of long-term failure in devices whose electrical characteristics have been degraded by electrostatic discharge is small.

  19. Design automation techniques for high-resolution current folding and interpolating CMOS A/D converters

    NASA Astrophysics Data System (ADS)

    Gevaert, D.

    2007-05-01

    The design and testing of a 12-bit Analog-to-Digital (A/D) converter, in current mode, arranged in an 8-bit LSB and a 4- bit MSB architecture together with the integration of specialized test building blocks on chip allows the set up of a design automation technique for current folding and interpolation CMOS A/D converter architectures. The presented design methodology focuses on the automation for CMOS A/D building blocks in a flexible target current folding and interpolating architecture for a downscaling technology and for different quality specifications. The comprehensive understanding of all sources of mismatching in the crucial building blocks and the use of physical based mismatch modeling in the prediction of mismatch errors, more adequate and realistic sizing of all transistors will result in an overall area reduction of the A/D converter. In this design the folding degree is 16, the number of folders is 64 and the interpolation level is 4. The number of folders is reduced by creating intermediate folding signals with a 4-level interpolator based on current division techniques. Current comparators detect the zero-crossing between the differential folder output currents. The outputs of the comparators deliver a cyclic thermometer code. The digital synthesis part for decoding and error correction building blocks is a standardized digital standard cell design. The basic building blocks in the target architecture were designed in 0.35μ CMOS technology; they are suitable for topological reuse and are in an automated way downscaled into a 0.18μ CMOS technology.

  20. On-chip polarizer on image sensor using advanced CMOS technology

    NASA Astrophysics Data System (ADS)

    Sasagawa, Kiyotaka; Wakama, Norimitsu; Noda, Toshihiko; Tokuda, Takashi; Kakiuchi, Kiyomi; Ohta, Jun

    2014-03-01

    The structures in advanced complementary metal-oxide-semiconductor (CMOS) integrated circuit technology are in the range of deep-submicron. It allows designing and integrating nano-photonic structures for the visible to near infrared region on a chip. In this work, we designed and fabricated an image sensor with on-pixel metal wire grid polarizers by using a 65-nm standard CMOS technology. It is known that the extinction ratio of a metal wire grid polarizer is increased with decrease in the grid pitch. With the metal wire layers of the 65-nm technology, the grid pitch sufficiently smaller than the wavelengths of visible light can be realized. The extinction ratio of approximately 20 dB has been successfully achieved at a wavelength of 750 nm. In the CMOS technologies, it is usual to include multiple metal layers. This feature is also useful to increase the extinction ratio of polarizers. We designed dual layer polarizers. Each layer partially reflects incident light. Thus, the layers form a cavity and its transmission spectrum depends on the layer position. The extinction ratio of 19.2 dB at 780 nm was achieved with the grid pitch greater than the single layer polarizer. The high extinction ratio is obtained only red to near infrared region because the fine metal layers of deepsubmicron standard CMOS process is usually composed of Cu. Thus, it should be applied for measurement or observation where wide spectrum is not required such as optical rotation measurement of optically active materials or electro-optic imaging of RF/THz wave.